Science.gov

Sample records for 64-row cervico-cranial ct

  1. Multidetector-row CT with a 64-row amorphous silicon flat panel detector

    NASA Astrophysics Data System (ADS)

    Shapiro, Edward G.; Colbeth, Richard E.; Daley, Earl T.; Job, Isaias D.; Mollov, Ivan P.; Mollov, Todor I.; Pavkovich, John M.; Roos, Pieter G.; Star-Lack, Josh M.; Tognina, Carlo A.

    2007-03-01

    A unique 64-row flat panel (FP) detector has been developed for sub-second multidetector-row CT (MDCT). The intent was to explore the image quality achievable with relatively inexpensive amorphous silicon (a-Si) compared to existing diagnostic scanners with discrete crystalline diode detectors. The FP MDCT system is a bench-top design that consists of three FP modules. Each module uses a 30 cm x 3.3 cm a-Si array with 576 x 64 photodiodes. The photodiodes are 0.52 mm x 0.52 mm, which allows for about twice the spatial resolution of most commercial MDCT scanners. The modules are arranged in an overlapping geometry, which is sufficient to provide a full-fan 48 cm diameter scan. Scans were obtained with various detachable scintillators, e.g. ceramic Gd IIO IIS, particle-in-binder Gd IIO IIS:Tb and columnar CsI:Tl. Scan quality was evaluated with a Catphan-500 performance phantom and anthropomorphic phantoms. The FP MDCT scans demonstrate nearly equivalent performance scans to a commercial 16-slice MDCT scanner at comparable 10 - 20 mGy/100mAs doses. Thus far, a high contrast resolution of 15 lp/cm and a low contrast resolution of 5 mm @ 0.3 % have been achieved on 1 second scans. Sub-second scans have been achieved with partial rotations. Since the future direction of MDCT appears to be in acquiring single organ coverage per scan, future efforts are planned for increasing the number of detector rows beyond the current 64- rows.

  2. Value of Virtual Colonoscopy with 64 Row CT in Evaluation of Colorectal Cancer

    PubMed Central

    Zaleska-Dorobisz, Urszula; Łasecki, Mateusz; Nienartowicz, Ewa; Pelak, Joanna; Słonina, Joanna; Olchowy, Cyprian; Ścieżka, Marek; Sąsiadek, Marek

    2014-01-01

    Summary Background Virtual colonoscopy (VC) enables three-dimensional view of walls and internal lumen of the colon as a result of reconstruction of multislice CT images. The role of VC in diagnosis of the colon abnormalities systematically increases, and in many medical centers all over the world is carried out as a screening test of patients with high risk of colorectal cancer. Material/Methods We analyzed results of virtual colonoscopy of 360 patients with clinical suspicion of colorectal cancer. Sensitivity and specificity of CT colonoscopy for detection of colon cancers and polyps were assessed. Results Results of our research have shown high diagnostic efficiency of CT colonoscopy in detection of focal lesions in large intestine of 10 mm or more diameter. Sensitivity was 85.7%, specificity 89.2%. Conclusions Virtual colonoscopy is noninvasive and well tolerated by patients imaging method, which permits for early detection of the large intestine lesions with specificity and sensitivity similar to classical colonoscopy in screening exams in patients suspected for colorectal cancer. Good preparation of the patients for the examination is very important for proper diagnosis and interpretation of this imaginge procedure. PMID:25302086

  3. Comparison of Reconstruction Intervals in Routine ECG-Pulsed 64-Row-MSCT Coronary Angiography in Frequency Controlled Patients

    SciTech Connect

    Frydrychowicz, Alex Pache, Gregor; Saueressig, Ulrich; Foell, Daniela; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A.

    2007-02-15

    Purpose. In light of the increasing use and acceptance of multislice computed tomography (MSCT) coronary angiography it was the purpose of this study to compare reconstruction intervals used in a routine ECG-pulsed MSCT coronary artery angiography setting with frequency controlled patients. Methods. Examinations were performed on a Siemens Somatom Sensation 64 scanner with a total of 110 ml of contrast agent and ECG pulsing (interval from 40% to 70%) after oral application of a {beta}-blocker if the heart rate was higher than 65 bpm. All human subjects were referred for the evaluation of suspected coronary artery disease. Coronary artery segments were evaluated by two experienced radiologists in a consensus reading. A ranking of diagnostic image quality (from 1 (no evaluation possible) to 5 (excellent image quality)) was statistically evaluated by Wilcoxon Signed Rank Test. Results. In 45 patients (30 male, 15 female, age 63.8 {+-} 12.1 years) we detected a significant advantage of the 60% reconstruction interval over 40%, 50%, and 70% (for each p < 0.05). In cases of sudden arrhythmia or movement during the scan, additional reconstruction intervals within the ECG-pulsed reconstruction intervals remained necessary for diagnosis. Conclusion. In a routine diagnostic setting with frequency controlled patients and ECG pulsing the 60% reconstruction interval can be considered superior for the initial diagnosis in 64-row multislice computed tomography coronary angiography. However, further information can be derived from various reconstruction intervals such as 40% and 70%.

  4. Pulmonary arterial hypertension: an imaging review comparing MR pulmonary angiography and perfusion with multidetector CT angiography.

    PubMed

    Junqueira, F P; Lima, C M A O; Coutinho, A C; Parente, D B; Bittencourt, L K; Bessa, L G P; Domingues, R C; Marchiori, E

    2012-11-01

    Pulmonary hypertension (PH) is a progressive disease that leads to substantial morbidity and eventual death. Pulmonary multidetector CT angiography (MDCTA), pulmonary MR angiography (MRA) and MR-derived pulmonary perfusion (MRPP) imaging are non-invasive imaging techniques for the differential diagnosis of PH. MDCTA is considered the gold standard for the diagnosis of pulmonary embolism, one of the most common causes of PH. MRA and MRPP are promising techniques that do not require the use of ionising radiation or iodinated contrast material, and can be useful for patients for whom such material cannot be used. This review compares the imaging aspects of pulmonary MRA and 64-row MDCTA in patients with chronic thromboembolic or idiopathic PH.

  5. Pulmonary arterial hypertension: an imaging review comparing MR pulmonary angiography and perfusion with multidetector CT angiography

    PubMed Central

    Junqueira, F P; Lima, C M A O; Coutinho, A C; Parente, D B; Bittencourt, L K; Bessa, L G P; Domingues, R C; Marchiori, E

    2012-01-01

    Pulmonary hypertension (PH) is a progressive disease that leads to substantial morbidity and eventual death. Pulmonary multidetector CT angiography (MDCTA), pulmonary MR angiography (MRA) and MR-derived pulmonary perfusion (MRPP) imaging are non-invasive imaging techniques for the differential diagnosis of PH. MDCTA is considered the gold standard for the diagnosis of pulmonary embolism, one of the most common causes of PH. MRA and MRPP are promising techniques that do not require the use of ionising radiation or iodinated contrast material, and can be useful for patients for whom such material cannot be used. This review compares the imaging aspects of pulmonary MRA and 64-row MDCTA in patients with chronic thromboembolic or idiopathic PH. PMID:22932061

  6. CT Enterography

    MedlinePlus

    ... obstructions and Crohn’s disease. CT scanning is fast, painless, noninvasive and accurate. CT enterography is better able ... the benefits vs. risks? Benefits CT scanning is painless, noninvasive and accurate. A major advantage of CT ...

  7. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  8. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  9. CT Colonography (Virtual Colonoscopy)

    MedlinePlus

    ... Z CT Colonography Computed tomography (CT) colonography or virtual colonoscopy uses special x-ray equipment to examine ... and blood vessels. CT colonography, also known as virtual colonoscopy, uses low dose radiation CT scanning to ...

  10. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  11. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  12. Computed Tomography (CT) - Spine

    MedlinePlus

    ... test used to help diagnose—or rule out—spinal column damage in injured patients. CT scanning is fast, ... CT is to detect—or to rule out—spinal column damage in patients who have been injured. CT ...

  13. NETL CT Imaging Facility

    ScienceCinema

    None

    2016-07-12

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  14. Body CT (CAT Scan)

    MedlinePlus

    ... may increase the risk of an unusual adverse effect. Women should always inform their physician and the CT ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  15. CT angiography - chest

    MedlinePlus

    Computed tomography angiography - thorax; CTA - lungs; Pulmonary embolism - CTA chest; Thoracic aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT ...

  16. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  17. CT Angiography (CTA)

    MedlinePlus

    ... CT Angiography? Angiography is a minimally invasive medical test that helps physicians diagnose and treat medical conditions. Angiography uses one of three imaging technologies and, in most cases, a contrast material injection ...

  18. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... scanners can perform the exam without stopping.) A computer creates separate images of the body area, called ...

  19. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... scanners can perform the exam without stopping.) A computer creates separate images of the arm area, called ...

  20. Computed Tomography (CT) -- Sinuses

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  1. Computed Tomography (CT) -- Head

    MedlinePlus Videos and Cool Tools

    ... to urinate; however, this is actually a contrast effect and subsides quickly. When you enter the CT scanner room, special light lines may be seen projected onto your body, and are used to ensure that you are ...

  2. Thoracic spine CT scan

    MedlinePlus

    ... Narrowing of the spine ( spinal stenosis ) Scoliosis Tumor Risks Risks of CT scans include: Exposure to radiation ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  3. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  4. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  5. Body CT (CAT Scan)

    MedlinePlus

    ... lives. CT has been shown to be a cost-effective imaging tool for a wide range of ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  6. Cardiac CT Scan

    MedlinePlus

    ... CT Scan Related Topics Aneurysm Coronary Calcium Scan Coronary Heart Disease Heart Attack Pulmonary Embolism Send a link to ... imaging test can help doctors detect or evaluate coronary heart disease, calcium buildup in the coronary arteries, problems with ...

  7. CT of pituitary abscess

    SciTech Connect

    Fong, T.C.; Johns, R.D.; Long, M.; Myles, S.T.

    1985-06-01

    Pituitary abscess is a rare condition, with only 50 cases reported in the literature. Of those, 29 cases were well documented for analysis. Preoperative diagnosis of pituitary abscess is difficult. The computed tomographic (CT) appearance of pituitary abscess was first described in 1983; the abscess was depicted by axial images with coronal reconstruction. The authors recently encountered a case of pituitary abscess documented by direct coronal CT of the sella turcica.

  8. CT of abdominal tuberculosis

    SciTech Connect

    Epstein, B.M.; Mann, J.H.

    1982-11-01

    Intraabdominal tuberculosis (TB) presents with a wide variety of clinical and radiologic features. Besides the reported computed tomographic (CT) finding of high-density ascites in tuberculous peritonitis, this report describes additional CT features highly suggestive of abdominal tuberculosis in eight cases: (1) irregular soft-tissue densities in the omental area; (2) low-density masses surrounded by thick solid rims; (3) a disorganized appearance of soft-tissue densities, fluid, and bowel loops forming a poorly defined mass; (4) low-density lymph nodes with a multilocular appearance after intravenous contrast administration; and (5) possibly high-density ascites. The differential diagnosis of these features include lymphoma, various forms of peritonitis, peritoneal carcinomatosis, and peritoneal mesothelioma. It is important that the CT features of intraabdominal tuberculosis be recognized in order that laparotomy be avoided and less invasive procedures (e.g., laparoscopy, biopsy, or a trial of antituberculous therapy) be instituted.

  9. CT Perfusion of the Head

    MedlinePlus

    ... the machine as the actual CT scanning is performed. Depending on the type of CT scan, the machine may make several passes. The contrast material will then be injected through an intravenous line ( ...

  10. Technical aspects of CT angiography.

    PubMed

    Kuszyk, B S; Fishman, E K

    1998-10-01

    The basic tasks of spiral CT acquisition, image processing, and image display are the foundations underlying CT angiography regardless of the anatomic region of interest. Volume rendering is a rapidly emerging image processing technique for creating three-dimensional (3D) images from CT datasets, which has important advantages over other 3D rendering techniques including maximum intensity projection and surface rendering. This articles reviews the techniques that are commonly used in CT angiography and key considerations for optimization.

  11. Seventh-generation CT

    NASA Astrophysics Data System (ADS)

    Besson, G. M.

    2016-03-01

    A new dual-drum CT system architecture has been recently introduced with the potential to achieve significantly higher temporal resolution than is currently possible in medical imaging CT. The concept relies only on known technologies; in particular rotation speeds several times higher than what is possible today could be achieved leveraging typical x-ray tube designs and capabilities. However, the architecture lends itself to the development of a new arrangement of x-ray sources in a toroidal vacuum envelope containing a rotating cathode ring and a (optionally rotating) shared anode ring to potentially obtain increased individual beam power as well as increase total exposure per rotation. The new x-ray source sub-system design builds on previously described concepts and could make the provision of multiple conventional high-power cathodes in a CT system practical by distributing the anode target between the cathodes. In particular, relying on known magnetic-levitation technologies, it is in principle possible to more than double the relative speed of the electron-beam with respect to the target, thus potentially leading to significant individual beam power increases as compared to today's state-of-the-art. In one embodiment, the proposed design can be naturally leveraged by the dual-drum CT concept previously described to alleviate the problem of arranging a number of conventional rotating anode-stem x-ray tubes and power conditioners on the limited space of a CT gantry. In another embodiment, a system with three cathodes is suggested leveraging the architecture previously proposed by Franke.

  12. Chronic osteomyelitis examined by CT

    SciTech Connect

    Wing, V.W.; Jeffrey, R.B. Jr.; Federle, M.P.; Helms, C.A.; Trafton, P.

    1985-01-01

    CT examination of 25 patients who had acute exacerbations of chronic osteomyelitis allowed for the correct identification of single or multiple sequestra in 14 surgical patients. Plain radiographs were equivocal for sequestra in seven of these patients, because the sequestra were too small or because diffuse bony sclerosis was present. CT also demonstrated a foreign body and five soft tissue abscesses not suspected on the basis of plain radiographs. CT studies, which helped guide the operative approach, were also useful in treating those patients whose plain radiographs were positive for sequestra. The authors review the potential role of CT in evaluating patients with chronic osteomyelitis.

  13. Thoracic textilomas: CT findings*

    PubMed Central

    Machado, Dianne Melo; Zanetti, Gláucia; Araujo, Cesar Augusto; Nobre, Luiz Felipe; Meirelles, Gustavo de Souza Portes; Pereira e Silva, Jorge Luiz; Guimarães, Marcos Duarte; Escuissato, Dante Luiz; Souza, Arthur Soares; Hochhegger, Bruno; Marchiori, Edson

    2014-01-01

    OBJECTIVE: The aim of this study was to analyze chest CT scans of patients with thoracic textiloma. METHODS: This was a retrospective study of 16 patients (11 men and 5 women) with surgically confirmed thoracic textiloma. The chest CT scans of those patients were evaluated by two independent observers, and discordant results were resolved by consensus. RESULTS: The majority (62.5%) of the textilomas were caused by previous heart surgery. The most common symptoms were chest pain (in 68.75%) and cough (in 56.25%). In all cases, the main tomographic finding was a mass with regular contours and borders that were well-defined or partially defined. Half of the textilomas occurred in the right hemithorax and half occurred in the left. The majority (56.25%) were located in the lower third of the lung. The diameter of the mass was ≤ 10 cm in 10 cases (62.5%) and > 10 cm in the remaining 6 cases (37.5%). Most (81.25%) of the textilomas were heterogeneous in density, with signs of calcification, gas, radiopaque marker, or sponge-like material. Peripheral expansion of the mass was observed in 12 (92.3%) of the 13 patients in whom a contrast agent was used. Intraoperatively, pleural involvement was observed in 14 cases (87.5%) and pericardial involvement was observed in 2 (12.5%). CONCLUSIONS: It is important to recognize the main tomographic aspects of thoracic textilomas in order to include this possibility in the differential diagnosis of chest pain and cough in patients with a history of heart or thoracic surgery, thus promoting the early identification and treatment of this postoperative complication. PMID:25410842

  14. CT scanning of the breast using a conventional CT scanner.

    PubMed

    Doust, B D; Milbrath, J R; Doust, V L

    1981-09-01

    Using a conventional body CT scanner, computed tomography of the breast was performed on 32 patients known to have or suspected of having breast masses. Xeromammograms were available for comparison in all cases. All mass lesions were histologically proved. Seven patients were examined prone, 25 supine. The prone position yielded pictures that resembled craniocaudal mammograms. Breast asymmetry, skin thickening, stranding from a mass to the chest wall, calcification, and axillary lymphadenopathy could be demonstrated by means of CT. The portion of the breast adjacent to the chest wall was more readily examined by means of CT than by conventional mammography. Internal mammary nodes could not be demonstrated.

  15. Helical CT in emergency radiology.

    PubMed

    Novelline, R A; Rhea, J T; Rao, P M; Stuk, J L

    1999-11-01

    Today, a wide range of traumatic and nontraumatic emergency conditions are quickly and accurately diagnosed with helical computed tomography (CT). Many traditional emergency imaging procedures have been replaced with newer helical CT techniques that can be performed in less time and with greater accuracy, less patient discomfort, and decreased cost. The speed of helical technology permits CT examination of seriously ill patients in the emergency department, as well as patients who might not have been taken to CT previously because of the length of the examinations of the past. Also, helical technology permits multiple, sequential CT scans to be quickly obtained in the same patient, a great advance for the multiple-trauma patient. Higher quality CT examinations result from decreased respiratory misregistration, enhanced intravenous contrast material opacification of vascular structures and parenchymal organs, greater flexibility in image reconstruction, and improved multiplanar and three-dimensional reformations. This report summarizes the role and recommended protocols for the helical CT diagnosis of thoracic aortic trauma; aortic dissection; pulmonary embolism; acute conditions of the neck soft tissues; abdominal trauma; urinary tract stones; appendicitis; diverticulitis; abdominal aortic aneurysm; fractures of the face, spine, and extremities; and acute stroke.

  16. MULTIMODALITY IMAGING: BEYOND PET/CT AND SPECT/CT

    PubMed Central

    Cherry, Simon R.

    2009-01-01

    Multimodality imaging with PET/CT and SPECT/CT has become commonplace in clinical practice and in preclinical and basic medical research. Do other combinations of imaging modalities have a similar potential to impact medical science and clinical medicine? The combination of PET or SPECT with MRI is an area of active research at the present time, while other, perhaps less obvious combinations, including CT/MR and PET/optical also are being studied. In addition to the integration of the instrumentation, there are parallel developments in synthesizing imaging agents that can be viewed by multiple imaging modalities. Is the fusion of PET and SPECT with CT the ultimate answer in multimodality imaging, or is it just the first example of a more general trend towards harnessing the complementary nature of the different modalities on integrated imaging platforms? PMID:19646559

  17. Errors in CT colonography.

    PubMed

    Trilisky, Igor; Ward, Emily; Dachman, Abraham H

    2015-10-01

    CT colonography (CTC) is a colorectal cancer screening modality which is becoming more widely implemented and has shown polyp detection rates comparable to those of optical colonoscopy. CTC has the potential to improve population screening rates due to its minimal invasiveness, no sedation requirement, potential for reduced cathartic examination, faster patient throughput, and cost-effectiveness. Proper implementation of a CTC screening program requires careful attention to numerous factors, including patient preparation prior to the examination, the technical aspects of image acquisition, and post-processing of the acquired data. A CTC workstation with dedicated software is required with integrated CTC-specific display features. Many workstations include computer-aided detection software which is designed to decrease errors of detection by detecting and displaying polyp-candidates to the reader for evaluation. There are several pitfalls which may result in false-negative and false-positive reader interpretation. We present an overview of the potential errors in CTC and a systematic approach to avoid them.

  18. Greening America's Capitals - Hartford, CT

    EPA Pesticide Factsheets

    This Greening America's Capitals report gives Hartford, CT, a new vision for Capitol Avenue that highlights existing assets and fills in gaps along the mile-long area of focus and into the surrounding neighborhoods.

  19. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V. Jr.

    1986-01-01

    This is an illustrated text on computed tomography (CT) of the lumbar spine with an emphasis on the role and value of multiplanar imaging for helping determine diagnoses. The book has adequate discussion of scanning techniques for the different regions, interpretations of various abnormalities, degenerative disk disease, and different diagnoses. There is a 50-page chapter on detailed sectional anatomy of the spine and useful chapters on the postoperative spine and the planning and performing of spinal surgery with CT multiplanar reconstruction. There are comprehensive chapters on spinal tumors and trauma. The final two chapters of the book are devoted to CT image processing using digital networks and CT applications of medical computer graphics.

  20. CT Perfusion of the Head

    MedlinePlus

    ... ray beam follows a spiral path. A special computer program processes this large volume of data to create ... process. Nearly all CT scanners now have special computer programs that help to increase image quality at lower ...

  1. CT Demonstration of Caput Medusae

    ERIC Educational Resources Information Center

    Weber, Edward C.; Vilensky, Joel A.

    2009-01-01

    Maximum intensity and volume rendered CT displays of caput medusae are provided to demonstrate both the anatomy and physiology of this portosystemic shunt associated with portal hypertension. (Contains 2 figures.)

  2. Adrenal cortex dysfunction: CT findings

    SciTech Connect

    Huebener, K.H.; Treugut, H.

    1984-01-01

    The computed tomographic appearance of the adrenal gland was studied in 302 patients with possible endocrinologic disease and 107 patients undergoing CT for nonendocrinologic reasons. Measurements of adrenal size were also made in 100 adults with no known adrenal pathology. CT proved to be a sensitive diagnostic tool in combination with clinical studies. When blood hormone levels are increased, CT can differentiate among homogeneous organic hyperplasia, nodular hyperplasia, benign adenoma, and malignant cortical adenoma. When blood hormone levels are decreased, CT can demonstrate hypoplasia or metastatic tumorous destruction. Calcifications can be demonstrated earlier than on plain radiographs. When hormone elimination is increased, the morphologic substrate can be identified; tumorous changes can be localized and infiltration of surrounding organs recognized.

  3. Children's (Pediatric) CT (Computed Tomography)

    MedlinePlus Videos and Cool Tools

    ... What are the limitations of Children's CT? A person who is very large may not fit into ... facility staff and/or your insurance provider to get a better understanding of the possible charges you ...

  4. CT angiography - head and neck

    MedlinePlus

    ... medlineplus.gov/ency/article/007677.htm CT angiography - head and neck To use the sharing features on this page, ... create pictures of the blood vessels in the head and neck. How the Test is Performed You will be ...

  5. Multiplanar CT of the spine

    SciTech Connect

    Rothman, S.L.G.; Glenn, W.V.

    1985-01-01

    This book contains 16 chapters. Some of the topics are: CT of the Sacrum, The Postoperative Spine, Film Organizations and Case Reporting, Degeneration and Disc Disease of the Intervertebral Joint, Lumbar Spinal Stenosis, and Cervical and Thoracic Spine.

  6. A tonsillolith seen on CT.

    PubMed

    Espe, B J; Newmark, H

    1992-01-01

    A case of a large tonsillolith visualized by computerized tomography is presented. Although otolaryngologists are well aware of this entity, few radiologists are. The importance of distinguishing tonsilloliths from other structures by CT scan is discussed.

  7. Liver echinococcus - CT scan (image)

    MedlinePlus

    This upper abdominal CT scan shows multiple cysts in the liver, caused by dog tapeworm (echinococcus). Note the large circular cyst (seen on the left side of the screen) and multiple smaller cysts throughout ...

  8. Primary lower extremity lymphedema: CT diagnosis

    SciTech Connect

    Gamba, J.L.; Silverman, P.M.; Ling, D.; Dunnick, N.R.; Korobkin, M.

    1983-10-01

    The CT findings of two cases of primary lymphedema of the lower extremities are presented. CT showed a coarse, nonenhancing, reticular pattern in an enlarged subcutaneous compartment. CT excluded the diagnosis of secondary lymphedema from an obstructing mass by demonstrating a normal retroperitoneum and pelvis. The CT findings are correlated with pedal lymphangiograms.

  9. Primary epiploic appendagitis: CT diagnosis.

    PubMed

    Sandrasegaran, Kumaresan; Maglinte, Dean D; Rajesh, Arumugam; Akisik, Fatih M

    2004-08-01

    The purpose of this study was to analyze the CT signs of primary epiploic appendagitis. A retrospective search of the CT database over 12 months for this diagnosis revealed 11 cases. The clinical findings were recorded. Softcopy CT images were reviewed by two experienced abdominal radiologists (KS, DM) for location of lesion, size, shape, presence of central hyperdense focus, degree of bowel wall thickening, mass effect, and ancillary signs. Abdominal pain was the primary symptom in all patients. Preliminary diagnoses were appendicitis (n=2), diverticulitis (n=5), pancreatitis (n=1), ovarian lesion (n=1), or unknown (n=2). Abdominal examination and white blood cell count were uninformative. CT examination revealed a solitary (n=11), ovoid (n=9) fatty lesion with some soft tissue stranding adjacent to the left colon (n=6), transverse colon (n=3), or right colon (n=2). Central hyperdensity (n=5), mild bowel wall thickening (n=2), and parietal peritoneal thickening (n=4) were also seen. In 4 patients the lesions were not visible on follow-up CT examination performed 23-184 days later. Primary epiploic appendagitis can clinically mimic other, more serious inflammatory conditions. Knowledge of its findings on CT would help the radiologist make the diagnosis and allow a more conservative approach to patient care.

  10. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  11. Malignant external otitis: CT evaluation

    SciTech Connect

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-11-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull.

  12. [Gallstone ileus. Abdominal CT usefulness].

    PubMed

    Sukkarieh, F; Brasseur, P; Bissen, L

    2004-06-01

    The authors report the case of a 93-year old woman referred to the emergency department and presenting with an intestinal obstruction. Abdominal CT reveals a biliary ileus caused by the migration and the impaction of a 3 cm gallstone in the small bowel. Surgical treatment by enterolithotomy was successful. In over 90% of cases, gallstone ileus is a complication of cholelithiasis and accounts for 25% of intestinal obstruction in patients over 65 years. To reduce morbidity and mortality, early diagnosis and prompt treatment are essential. Abdominal CT-scan is the gold standard technique.

  13. Granulocytic sarcoma (chloroma): CT manifestations

    SciTech Connect

    Pomeranz, S.J.; Hawkins, H.H.; Towbin, R.; Lisberg, W.N.; Clark, R.A.

    1985-04-01

    Nests of granulocytic tumor cells in patients who have myelogeneous leukemia are termed chloromas. Eight cases of chloroma seen on CT were reviewed. Lymph nodes, subcutaneous tissues, peritoneum, pleural space, pelvis, and portal hepatis were involved. The extracranial appearance of chloroma on CT is that of small, nonenhancing, nodular densities that resemble lymphoma. Cranial involvement is characteristically in the orbit. The central nervous system appearance is variable, however, and high attenuation masses may occur that mimic lymphoma, hematoma, and metastatic neuroblastoma. The recognition of these lesions is important, since radiation, not chemotherapy, is often the preferred treatment for localized chloroma.

  14. Ontological analysis of SNOMED CT

    PubMed Central

    Héja, Gergely; Surján, György; Varga, Péter

    2008-01-01

    Background SNOMED CT is the most comprehensive medical terminology. However, its use for intelligent services based on formal reasoning is questionable. Methods The analysis of the structure of SNOMED CT is based on the formal top-level ontology DOLCE. Results The analysis revealed several ontological and knowledge-engineering errors, the most important are errors in the hierarchy (mostly from an ontological point of view, but also regarding medical aspects) and the mixing of subsumption relations with other types (mostly 'part of'). Conclusion The found errors impede formal reasoning. The paper presents a possible way to correct these problems. PMID:19007445

  15. PET/CT in radiation oncology

    SciTech Connect

    Pan, Tinsu; Mawlawi, Osama

    2008-11-15

    PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.

  16. Low-dose interpolated average CT for attenuation correction in cardiac PET/CT

    NASA Astrophysics Data System (ADS)

    Wu, Tung-Hsin; Zhang, Geoffrey; Wang, Shyh-Jen; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Huang, Tzung-Chi

    2010-07-01

    Because of the advantages in the use of high photon flux and thus the short scan times of CT imaging, the traditional 68Ge scans for positron emission tomography (PET) image attenuation correction have been replaced by CT scans in the modern PET/CT technology. The combination of fast CT scan and slow PET scan often causes image misalignment between the PET and CT images due to respiration motion. Use of the average CT derived from cine CT images is reported to reduce such misalignment. However, the radiation dose to patients is higher with cine CT scans. This study introduces a method that uses breath-hold CT images and their interpolations to generate the average CT for PET image attenuation correction. Breath-hold CT sets are taken at end-inspiration and end-expiration. Deformable image registration is applied to generate a voxel-to-voxel motion matrix between the two CT sets. The motion is equally divided into 5 steps from inspiration to expiration and 5 steps from expiration to inspiration, generating a total of 8 phases of interpolated CT sets. An average CT image is generated from all the 10 phase CT images, including original inhale/exhale CT and 8 interpolated CT sets. Quantitative comparison shows that the reduction of image misalignment artifacts using the average CT from the interpolation technique for PET attenuation correction is at a similar level as that using cine average CT, while the dose to the patient from the CT scans is reduced significantly. The interpolated average CT method hence provides a low dose alternative to cine CT scans for PET attenuation correction.

  17. CT angiography - arms and legs

    MedlinePlus

    ... combines a CT scan with the injection of dye. This technique is able to create pictures of ... Some exams require a special dye, called contrast, to be injected into your body before the test. Contrast helps certain areas show up better on the x- ...

  18. Pocket atlas of normal CT anatomy

    SciTech Connect

    Weinstein, J.B.; Lee, J.K.T.; Sagel, S.S.

    1985-01-01

    This book is a quick reference for interpreting CT scans of the extracranial organs. This collection of 41 CT scans covers all the major organs of the body: neck and larynx; chest; abdomen; male pelvis; and female pelvis.

  19. Abdominal CT findings in small bowel perforation.

    PubMed

    Zissin, R; Osadchy, A; Gayer, G

    2009-02-01

    Small bowel perforation is an emergent medical condition for which the diagnosis is usually not made clinically but by CT, a common imaging modality used for the diagnosis of acute abdomen. Direct CT features that suggest perforation include extraluminal air and oral contrast, which are often associated with secondary CT signs of bowel pathology. This pictorial review illustrates the CT findings of small bowel perforation caused by various clinical entities.

  20. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الأشعة المقطعية الحاسوبية - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) CT (Computerized Tomography) Scan CT ( ... 扫描 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) CT (Computerized Tomography) Scan CT ( ...

  1. Cervical tuberculous adenitis: CT manifestations

    SciTech Connect

    Reede, D.L.; Bergeron, R.T.

    1985-03-01

    Cervical tuberculous adenitis is being seen with increasing frequency in the United States; in the appropriate clinical setting it should be included in the differential diagnosis of an asymptomatic neck mass. Patients are typically young adults who are recent arrivals from Southeast Asia. A history of tuberculosis is not always elicited nor is the chest radiograph always abnormal. All of these patients have positive purified protein derivative tests unless they are anergic. The CT findings may lead to the diagnosis. Several CT patterns of nodal disease can be seen in tuberculous adenitis; some may mimic benign and neoplastic disease. The presence of a multiloculated or multichambered (conglomerate nodal) mass with central lucency and thick rims of enhancement and minimally effaced fascial planes is highly suggestive of tuberculous adenitis, especially if the patient has a strongly positive tuberculosis skin test.

  2. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  3. Ultra-low dose CT attenuation correction for PET/CT

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.

  4. Postmortem pulmonary CT in hypothermia.

    PubMed

    Schweitzer, Wolf; Thali, Michael; Giugni, Giannina; Winklhofer, Sebastian

    2014-12-01

    Fatal hypothermia has been associated with pulmonary edema. With postmortem full body computed tomography scanning (PMCT), the lungs can also be examined for CT attenuation. In fatal hypothermia cases low CT attenuation appeared to prevail in the lungs. We compared 14 cases of fatal hypothermia with an age-sex matched control group. Additionally, 4 cases of carbon monoxide (CO) poisoning were examined. Furthermore, 10 test cases were examined to test predictability based on PMCT. Two readers measured CT attenuation on four different axial slices across the lungs (blinded to case group and other reader's results). Hypothermia was associated with statistically significantly lower lung PMCT attenuation and lower lung weights than controls, and there was a dose-effect relationship at an environmental temperature cutoff of 2 °C. CO poisoning yielded low pulmonary attenuation but higher lung weights. General model based prediction yielded a 94% probability for fatal hypothermia deaths and a 21% probability for non-hypothermia deaths in the test group. Increased breathing rate is known to accompany both CO poisoning and hypothermia, so this could partly explain the low PMCT lung attenuation due to an oxygen dissociation curve left shift. A more marked distension in fatal hypothermia, compared to CO poisoning, indicates that further, possibly different mechanisms, are involved in these cases. Increased dead space and increased stiffness to deflation (but not inflation) appear to be effects of inhaling cold air (but not CO) that may explain the difference in low PMCT attenuation seen in hypothermia cases.

  5. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  6. CT of 338 active professional boxers.

    PubMed

    Jordan, B D; Jahre, C; Hauser, W A; Zimmerman, R D; Zarrelli, M; Lipsitz, E C; Johnson, V; Warren, R F; Tsairis, P; Folk, F S

    1992-11-01

    Computed tomography (CT) was performed in 338 active professional boxers. CT scans were abnormal in 25 boxers (7%). The most common CT abnormality was brain atrophy (22 cases). Focal lesions of low attenuation consistent with posttraumatic encephalomalacia were noted in only three boxers. Boxers with abnormal CT scans did not differ from those with borderline or normal CT scans in regard to age, win-loss record, number of bouts, or history of an abnormal electroencephalogram. Thirty-seven boxers with borderline CT scans (49%) and 17 with abnormal CT scans (68%) reported a previous technical knockout (TKO) or knockout (KO), compared with only 89 (37%) of the 238 boxers with normal CT scans (P < .01). Brain atrophy was noted more frequently in boxers with a large cavum septum pellucidum (CSP) than in those with a small or no CSP (P < .05). Boxers with abnormal or borderline CT scans who experienced a TKO or KO were slightly older than those with normal CT scans and a history of a TKO or KO (P < .05).

  7. Modern CT applications in veterinary medicine.

    PubMed

    Garland, Melissa R; Lawler, Leo P; Whitaker, Brent R; Walker, Ian D F; Corl, Frank M; Fishman, Elliot K

    2002-01-01

    Although computed tomography (CT) is used primarily for diagnosis in humans, it can also be used to diagnose disease in veterinary patients. CT and associated three-dimensional reconstruction have a role in diagnosis of a range of illnesses in a variety of animals. In a sea turtle with failure to thrive, CT showed a nodal mass in the chest, granulomas in the lungs, and a ball in the stomach. CT of a sea dragon with balance and movement problems showed absence of the swim bladder. In a sloth with failure to thrive, CT allowed diagnosis of a coin in the intestine. CT of a puffin with failure to thrive showed a mass in the chest, which was found to be a hematoma. In a smooth-sided toad whose head was tilted to one side and who was circling in that direction, CT showed partial destruction of the temporal bone. CT of a domestic cat with listlessness showed a mass with focal calcification, which proved to be a leiomyosarcoma. CT of a sea otter showed pectus excavatum, which is caused by the animal smashing oysters against its chest. In a Japanese koi with abdominal swelling, CT allowed diagnosis of a hepatoma.

  8. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  9. Cortical Tremor (CT) with coincident orthostatic movements.

    PubMed

    Termsarasab, Pichet; Frucht, Steven J

    2015-01-01

    Cortical tremor (CT) is a form of cortical reflex myoclonus that can mimic essential tremor (ET). Clinical features that are helpful in distinguishing CT from ET are the irregular and jerky appearance of the movements. We report two patients with CT with coexisting orthostatic movements, either orthostatic tremor (OT) or myoclonus, who experienced functional improvement in both cortical myoclonus and orthostatic movements when treated with levetiracetam.

  10. Pediatric CT and radiation: our responsibility

    NASA Astrophysics Data System (ADS)

    Frush, Donald P.

    2009-02-01

    In order to discuss the cost-benefit ratio of CT examinations in children, one must be familiar with the reasons why CT can provide a high collective or individual dose. The reasons include increasing CT use as well as lack of attention to dose reduction strategies. While those have been substantial efforts for dose reduction, additional work is necessary to prevent unnecessary radiation exposure. This responsibility is shared between science and medicine, industry, regulatory agencies, and patients as well.

  11. Multimodal CT in stroke imaging: new concepts.

    PubMed

    Ledezma, Carlos J; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive noninvasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. This article discusses the individual components of multimodal CT and addresses the potential role of a combined multimodal CT stroke protocol in acute stroke therapy.

  12. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  13. Normal conus medullaris: CT criteria for recognition

    SciTech Connect

    Grogan, J.P.; Daniels, D.L.; Williams, I.L.; Rauschning, W.; Haughton, V.M.

    1984-06-01

    The normal CT configuration and dimension of the conus medullaris and adjacent spinal cord were determined in 30 patients who had no clinical evidence of conus compression. CT studies were also correlated with anatomic sections in cadavers. The normal conus on CT has a distinctive oval configuration, an arterior sulcus, and a posterior promontory. The anteroposterior diameter ranged from 5 to 8 mm; the transverse diameter from 8 to 11 mm. Intramedullary processes altered both the dimensions and configuration of the conus.

  14. Intracranial CT angiography obtained from a cerebral CT perfusion examination

    SciTech Connect

    Gratama van Andel, H. A. F.; Venema, H. W.; Majoie, C. B.; Den Heeten, G. J.; Grimbergen, C. A.; Streekstra, G. J.

    2009-04-15

    CT perfusion (CTP) examinations of the brain are performed increasingly for the evaluation of cerebral blood flow in patients with stroke and vasospasm after subarachnoid hemorrhage. Of the same patient often also a CT angiography (CTA) examination is performed. This study investigates the possibility to obtain CTA images from the CTP examination, thereby possibly obviating the CTA examination. This would save the patient exposure to radiation, contrast, and time. Each CTP frame is a CTA image with a varying amount of contrast enhancement and with high noise. To improve the contrast-to-noise ratio (CNR) we combined all 3D images into one 3D image after registration to correct for patient motion between time frames. Image combination consists of weighted averaging in which the weighting factor of each frame is proportional to the arterial contrast. It can be shown that the arterial CNR is maximized in this procedure. An additional advantage of the use of the time series of CTP images is that automatic differentiation between arteries and veins is possible. This feature was used to mask veins in the resulting 3D images to enhance visibility of arteries in maximum intensity projection (MIP) images. With a Philips Brilliance 64 CT scanner (64x0.625 mm) CTP examinations of eight patients were performed on 80 mm of brain using the toggling table technique. The CTP examination consisted of a time series of 15 3D images (2x64x0.625 mm; 80 kV; 150 mAs each) with an interval of 4 s. The authors measured the CNR in images obtained with weighted averaging, images obtained with plain averaging, and images with maximal arterial enhancement. The authors also compared CNR and quality of the images with that of regular CTA examinations and examined the effectiveness of automatic vein masking in MIP images. The CNR of the weighted averaged images is, on the average, 1.73 times the CNR of an image at maximal arterial enhancement in the CTP series, where the use of plain averaging

  15. CT enterography with polyethylene glycol solution vs CT enteroclysis in small bowel disease

    PubMed Central

    Minordi, L M; Vecchioli, A; Mirk, P; Bonomo, L

    2011-01-01

    Objective The aim of the study is to compare CT enterography with polyethylene glycol solution (PEG-CT) with CT enteroclysis (CT-E) in patients with suspected small bowel disease. Methods 145 patients underwent abdominal contrast-enhanced 16-row multidetector CT after administration of 2000 ml of PEG by mouth (n = 75) or after administration of 2000 ml of methylcellulose by nasojejunal tube (n = 70). Small bowel distension, luminal and extraluminal findings were evaluated and compared with small bowel follow-through examination in 60 patients, double contrast enema in 50, surgery in 25 and endoscopy in 35. Statistical evaluation was carried out by χ2 testing. For both techniques we have also calculated the effective dose and the equivalent dose in a standard patient. Results Crohn's disease was diagnosed in 64 patients, neoplasms in 16, adhesions in 6. Distension of the jejunum was better with CT-E than PEG-CT (p<0.05: statistically significant difference). No significant difference was present for others sites (p>0.05). Evaluation of pathological ileal loops was good with both techniques. The values of sensitivity, specificity and diagnostic accuracy were respectively 94%, 100% and 96% with CT-E, and 93%, 94% and 93% with PEG-CT. The effective dose for PEG-CT was less than the dose for the CT-E (34.7 mSv vs 39.91 mSv). Conclusion PEG-CT shows findings of Crohn's disease as well as CT-E does, although CT-E gives better bowel distension, especially in the jejunum, and has higher specificity than PEG-CT. PMID:20959377

  16. CT demonstration of bilateral adrenal hemorrhage

    SciTech Connect

    Ling, D.; Korobkin, M.; Silverman, P.M.; Dunnick, N.R.

    1983-08-01

    Bilateral adrenal hemorrhage with subsequent adrenal insufficiency is a recognized complication of anticoagulant therapy. Because the clinical manifestations are often nonspecific, the antemortem diagnosis of adrenal hemorrhage has been a difficult clinical problem. Computed tomography (CT) provides detailed images of the adrenal glands that are not possible with conventional imaging methods. The CT findings of bilateral adrenal hemorrhage in an anticoagulated patient are reported.

  17. Reconstructing misaligned x-ray CT data

    SciTech Connect

    Divin, C. J.

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  18. CT of schistosomal calcification of the intestine

    SciTech Connect

    Fataar, S.; Bassiony, H.; Satyanath, S.; Rudwan, M.; Hebbar, G.; Khalifa, A.; Cherian, M.J.

    1985-01-01

    The spectrum of schistosomal colonic calcification on abdominal radiographs has been described. The appearance on computed tomography (CT) is equally distinctive and occurs with varying degrees of genitourinary calcification. The authors have experience in three cases with the appearance on CT of intestinal calcification due to schistosomiasis.

  19. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  20. State-of-the-art in CT hardware and scan modes for cardiovascular CT.

    PubMed

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J; Gentry, Ralph; George, Richard T; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm Guy

    2012-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography Basic and Emerging Sciences and Technology Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging.

  1. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.

    PubMed

    Yeh, Benjamin M; FitzGerald, Paul F; Edic, Peter M; Lambert, Jack W; Colborn, Robert E; Marino, Michael E; Evans, Paul M; Roberts, Jeannette C; Wang, Zhen J; Wong, Margaret J; Bonitatibus, Peter J

    2016-09-09

    The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time.

  2. Dual source CT (DSCT) imaging of obese patients: evaluation of CT number accuracy, uniformity, and noise

    NASA Astrophysics Data System (ADS)

    Walz-Flannigan, A.; Schmidt, B.,; Apel, A.; Eusemann, C.; Yu, L.; McCollough, C. H.

    2009-02-01

    Obese patients present challenges in obtaining sufficient x-ray exposure over reasonable time periods for acceptable CT image quality. To overcome this limitation, the exposure can be divided between two x-ray sources using a dualsource (DS) CT system. However, cross-scatter issues in DS CT may also compromise image quality. We evaluated a DS CT system optimized for imaging obese patients, comparing the CT number accuracy and uniformity to the same images obtained with a single-source (SS) acquisition. The imaging modes were compared using both solid cylindrical PMMA phantoms and a semi-anthropomorphic thorax phantom fitted with extension rings to simulate different size patients. Clinical protocols were used and CTDIvol and kVp were held constant between SS and DS modes. Results demonstrated good agreement in CT number between SS and DS modes in CT number, with the DS mode showing better axial uniformity for the largest phantoms.

  3. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  4. Cytomegalovirus pneumonia in transplant patients: CT findings

    SciTech Connect

    Eun-Young Kang; Patz, E.F. Jr.; Mueller, N.L.

    1996-03-01

    Our goal was to assess the CT findings of cytomegalovirus (CMV) pneumonia in transplant patients. The study included 10 transplant patients who had chest CT scan and pathologically proven isolated pulmonary CMV infection. Five patients had bone marrow transplant and five had solid organ transplant. The CT scans were retrospectively reviewed for pattern and distribution of disease and the CT findings compared with the findings on open lung biopsy (n = 9) and autopsy (n = 1). Nine of 10 patients had parenchymal abnormalities apparent at CT and I had normal CT scans. The findings in the nine patients included small nodules (n = 6), consolidation (n = 4), ground-glass attenuation (n = 4), and irregular lines (n = 1). The nodules had a bilateral and symmetric distribution and involved all lung zones. The consolidation was most marked in the lower lung zones. The CT findings of CMV pneumonia in transplant patients are heterogeneous. The most common patterns include small nodules and areas of consolidation. 13 refs., 4 figs., 1 tab.

  5. Ion Stopping Powers and CT Numbers

    SciTech Connect

    Moyers, Michael F.; Sardesai, Milind; Sun, Sean; Miller, Daniel W.

    2010-10-01

    One of the advantages of ion beam therapy is the steep dose gradient produced near the ion's range. Use of this advantage makes knowledge of the stopping powers for all materials through which the beam passes critical. Most treatment planning systems calculate dose distributions using depth dose data measured in water and an algorithm that converts the kilovoltage X-ray computed tomography (CT) number of a given material to its linear stopping power relative to water. Some materials present in kilovoltage scans of patients and simulation phantoms do not lie on the standard tissue conversion curve. The relative linear stopping powers (RLSPs) of 21 different tissue substitutes and positioning, registration, immobilization, and beamline materials were measured in beams of protons accelerated to energies of 155, 200, and 250 MeV; carbon ions accelerated to 290 MeV/n; and iron ions accelerated to 970 MeV/n. These same materials were scanned with both kilovoltage and megavoltage CT scanners to obtain their CT numbers. Measured RLSPs and CT numbers were compared with calculated and/or literature values. Relationships of RLSPs to physical densities, electronic densities, kilovoltage CT numbers, megavoltage CT numbers, and water equivalence values converted by a treatment planning system are given. Usage of CT numbers and substitution of measured values into treatment plans to provide accurate patient and phantom simulations are discussed.

  6. Askin tumor: CT and FDG-PET/CT imaging findings and follow-up.

    PubMed

    Xia, Tingting; Guan, Yubao; Chen, Yongxin; Li, Jingxu

    2014-07-01

    The aim of the study was to describe the imaging findings of Askin tumors on computed tomography (CT) and fluorine 18 fluorodeoxyglucose-positron emission tomography (FDG-PET/CT).Seventeen cases of Askin tumors confirmed by histopathology were retrospectively analyzed in terms of CT (17 cases) and FDG-PET/CT data (6 cases).Fifteen of the tumors were located in the chest wall and the other 2 were in the anterior middle mediastinum. Of the 15 chest wall cases, 13 demonstrated irregular, heterogeneous soft tissue masses with cystic degeneration and necrosis, and 2 demonstrated homogeneous soft tissue masses on unenhanced CT scans. Two mediastinal tumors demonstrated the irregular, heterogeneous soft tissue masses. Calcifications were found in 2 tumors. The tumors demonstrated heterogeneously enhancement in 16 cases and homogeneous enhancement in 1 case on contrast-enhanced scans. FDG-PET/CT images revealed increased metabolic activity in all 6 cases undergone FDG-PET/CT scan, and the lesion SUVmax ranged from 4.0 to 18.6. At initial diagnosis, CT and FDG-PET/CT scans revealed rib destruction in 9 cases, pleural effusion in 9 cases, and lung metastasis in 1 case. At follow-up, 12 cases showed recurrence and/or metastases, 4 cases showed improvement or remained stable, and 1 was lost to follow-up.In summary, CT and FDG-PET/CT images of Askin tumors showed heterogeneous soft tissue masses in the chest wall and the mediastinum, accompanied by rib destruction, pleural effusion, and increased FDG uptake. CT and FDG-PET/CT imaging play important roles in the diagnosis and follow-up of patients with Askin tumors.

  7. CT & CBCT imaging: assessment of the orbits.

    PubMed

    Hatcher, David C

    2012-11-01

    The orbits can be visualized easily on routine or customized protocols for computed tomography (CT) or cone beam CT (CBCT) scans. Detailed orbital investigations are best performed with 3-dimensional imaging methods. CT scans are preferred for visualizing the osseous orbital anatomy and fissures while magnetic resonance imaging is preferred for evaluating tumors and inflammation. CBCT provides high-resolution anatomic data of the sinonasal spaces, airway, soft tissue surfaces, and bones but does not provide much detail within the soft tissues. This article discusses CBCT imaging of the orbits, osseous anatomy of the orbits, and CBCT investigation of selected orbital pathosis.

  8. Doses metrics and patient age in CT.

    PubMed

    Huda, Walter; Tipnis, Sameer V

    2016-03-01

    The aim of this study was to investigate how effective dose and size-specific dose estimate (SSDE) change with patient age (size) for routine head and abdominal/pelvic CT examinations. Heads and abdomens of patients were modelled as a mass-equivalent cylinder of water corresponding to the patient 'effective diameter'. Head CT scans were performed at CTDIvol(S) of 40 mGy, and abdominal CT scans were performed at CTDIvol(L) of 10 mGy. Values of SSDE were obtained using conversion factors in AAPM Task Group Report 204. Age-specific scan lengths for head and abdominal CT scans obtained from the authors' clinical practice were used to estimate the dose-length product for each CT examination. Effective doses were calculated from previously published age- and sex-specific E/DLP conversion factors, based on ICRP 103 organ-weighting factors. For head CT examinations, the scan length increased from 15 cm in a newborn to 20 cm in adults, and for an abdominal/pelvic CT, the scan length increased from 20 cm in a newborn to 45 cm in adults. For head CT scans, SSDE ranged from 37.2 mGy in adults to 48.8 mGy in a newborn, an increase of 31 %. The corresponding head CT effective doses range from 1.4 mSv in adults to 5.2 mSv in a newborn, an increase of 270 %. For abdomen CT scans, SSDE ranged from 13.7 mGy in adults to 23.0 mGy in a newborn, an increase of 68 %. The corresponding abdominal CT effective doses ranged from 6.3 mSv in adults to 15.4 mSv in a newborn, an increase of 140 %. SSDE increases much less than effective dose in paediatric patients compared with adults because it does not account for scan length or scattered radiation. Size- and age-specific effective doses better quantify the total radiation received by patients in CT by explicitly accounting for all organ doses, as well as their relative radio sensitivity.

  9. [The use of CT in meniscopathy].

    PubMed

    Tellkamp, H; Klein, W; Rosenkranz, G; Köhler, K

    1988-12-01

    The results of CT examination of meniscopathies in 54 patients, most of them competitive athletes, are presented. CT has an overall accuracy of about 90 per cent and can hence be used for diagnosing a lesion of the meniscus with a reasonable amount of safety, while being rapid and avoiding unnecessary exposure to stress. This method, therefore, should be a focal point of the imaging methods and thus be placed between the specialist doctor's findings and possible surgery. The pros and cons of CT compared with other imaging methods are discussed.

  10. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  11. Combined SPECT/CT and PET/CT for breast imaging

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Larobina, Michele; Di Lillo, Francesca; Del Vecchio, Silvana; Mettivier, Giovanni

    2016-02-01

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  12. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  13. Radiation exposure in whole body CT screening.

    PubMed

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  14. CT appearance of thickened nerves in neurofibromatosis

    SciTech Connect

    Daneman, A.; Mancer, K.; Sonley, M.

    1983-11-01

    In neutrofibromatosis (von Recklinghausen disease), peripheral nerves may develop enlarged diameters or focal fusiform enlargement due to neurofibromatous involvement. Their appearance on computed tomography (CT) forms the basis of this report.

  15. Use of CT in stapedial otosclerosis

    SciTech Connect

    Mafee, M.F.; Henrikson, G.C.; Deitch, R.L.; Norouzi, P.; Kumar, A.; Kriz, R.; Valvassori, G.E.

    1985-09-01

    Otosclerosis (otospongiosis) is a primary focal disease of the labyrinthine capsule. The stapes footplate is fixed when the spongiotic focus expands and invades the oval window. Persons with stapedial otosclerosis experience a progressive conductive hearing loss. In many cases, cochlear degeneration is observed, in which a mixed hearing loss occurs. Using computed tomography (CT), the authors studied the ears of 45 selected patients with conductive or mixed hearing loss. CT proved valuable in determining otosclerotic changes of the oval window and otic capsule. Spongiotic changes of the otic capsule are better appreciated by CT than complex motion tomography. The usefulness of CT in diagnosing other causes of conductive or mixed hearing loss is also described.

  16. CT of soft-tissue neoplasms

    SciTech Connect

    Weekes, R.G.; McLeod, R.A.; Reiman, H.M.; Pritchard, D.J.

    1985-02-01

    The computed tomographic scans (CT) of 84 patients with untreated soft-tissue neoplasms were studied, 75 with primary and nine with secondary lesions. Each scan was evaluated using several criteria: homogeneity and density, presence and type of calcification, presence of bony destruction, involvement of multiple muscle groups, definition of adjacent fat, border definition, and vessel or nerve involvement. CT demonstrated the lesion in all 84 patients and showed excellent anatomic detail in 64 of the 75 patients with primary neoplasms. The CT findings were characteristic enough to suggest the histology of the neoplasm in only 13 lesions (nine lipomas, three hemangiomas, one neurofibroma). No malignant neoplasm had CT characteristics specific enough to differentiate it from any other malignant tumor. However, malignant neoplasms could be differentiated from benign neoplasms in 88% of the cases.

  17. CT in the diagnosis of enterovesical fistulae

    SciTech Connect

    Goldman, S.M.; Fishman, E.K.; Gatewood, O.M.B.; Jones, B.; Siegelman, S.S.

    1985-06-01

    Enterovesical fistulae are difficult to demonstrate by conventional radiographic methods. Computed tomography (CT), a sensitive, noninvasive method of documenting the presence of such fistulae, is unique in its ability to outline the extravesical component of the primary disease process. Twenty enterovesical fistulae identified by CT were caused by diverticulitis (nine), carcinoma of the rectosigmoid (two), Crohn disease (three), gynecologic tumors (two), bladder cancer (one), cecal carcinoma (one), prostatic neoplasia (one), and appendiceal abscess (one). The CT findings included intravesical air (90%), passage of orally or rectally administered contrast medium into the bladder (20%), focal bladder-wall thickening (90%), thickening of adjacent bowel wall (85%), and an extraluminal mass that often contained air (75%). CT proved to be an important new method in the diagnosis of enterovesical fistulae.

  18. CT Image Presentations For Oral Surgery

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael L.; Rothman, Stephen L. G.; Schwarz, Melvyn S.; Tivattanasuk, Eva S.

    1988-06-01

    Reformatted CT images of the mandible and maxilla are described as a planning aid to the surgical implantation of dental fixtures. Precisely scaled and cross referenced axial, oblique, CT generated panorex, and 3-D images are generated to help indicate where and how critical anatomic structures are positioned. This information guides the oral surgeon to those sites where dental implants have optimal osteotic support and least risk to sensitive neural tissue. Oblique images are generated at 1-2 mm increments along the arch of the mandible (or maxilla). Each oblique is oriented perpendicular to the local arch curvature. The adjoining five CT generated panorex views match the patient's mandibular (or maxilla) arch, with each of the views separated by twice the distance between axial CT slices. All views are mutually cross-referenced to show fine detail of the underlying mandibular (or maxilla) structure. Several exams are illustrated and benefit to subsequent surgery is assessed.

  19. MR and CT appearance of cardiac hemangioma

    SciTech Connect

    Kemp, J.L.; Kessler, R.M.; Raizada, V.; Williamson, M.R.

    1996-05-01

    We present a case of cardiac hemangioma in a symptomatic patient. MR and CT each have specific characteristics that should make one consider including or excluding this in the differential diagnosis of a cardiac tumor. 7 refs., 3 figs.

  20. Measuring CT scanner variability of radiomics features

    PubMed Central

    Mackin, Dennis; Fave, Xenia; Zhang, Lifei; Fried, David; Yang, Jinzhong; Taylor, Brian; Rodriguez-Rivera, Edgardo; Dodge, Cristina; Jones, A. Kyle; Court, Laurence

    2015-01-01

    Objectives The purpose of this study was to determine the significance of inter-scanner variability in CT image radiomics studies. Materials and Methods We compared the radiomics features calculated for non-small cell lung cancer (NSCLC) tumors from 20 patients with those calculated for 17 scans of a specially designed radiomics phantom. The phantom comprised 10 cartridges, each filled with different materials to produce a wide range of radiomics feature values. The scans were acquired using General Electric, Philips, Siemens, and Toshiba scanners from four medical centers using their routine thoracic imaging protocol. The radiomics feature studied included the mean and standard deviations of the CT numbers as well as textures derived from the neighborhood gray-tone difference matrix. To quantify the significance of the inter-scanner variability, we introduced the metric feature noise. To look for patterns in the scans, we performed hierarchical clustering for each cartridge. Results The mean CT numbers for the 17 CT scans of the phantom cartridges spanned from -864 to 652 Hounsfield units compared with a span of -186 to 35 Hounsfield units for the CT scans of the NSCLC tumors, showing that the phantom’s dynamic range includes that of the tumors. The inter-scanner variability of the feature values depended on both the cartridge material and the feature, and the variability was large relative to the inter-patient variability in the NSCLC tumors for some features. The feature inter-scanner noise was greatest for busyness and least for texture strength. Hierarchical clustering produced different clusters of the phantom scans for each cartridge, although there was some consistent clustering by scanner manufacturer. Conclusions The variability in the values of radiomics features calculated on CT images from different CT scanners can be comparable to the variability in these features found in CT images of NSCLC tumors. These inter-scanner differences should be

  1. CT of trauma to the abnormal kidney

    SciTech Connect

    Rhyner, P.; Federle, M.P.; Jeffrey, R.B.

    1984-04-01

    Traumatic injuries to already abnormal kidneys are difficult to assess by excretory urography and clinical evaluation. Bleeding and urinary extravasation may accompany minor trauma; conversely, underlying tumors, perirenal hemorrhage, and extravasation may be missed on urography. Computed tomography (CT) was performed in eight cases including three neoplasms, one adult polycystic disease, one simple renal cyst, two hydronephrotic kidneys, and one horseshoe kidney. CT provided specific and clinically useful information in each case that was not apparent on excretory urography.

  2. Bronchogenic cysts with high CT numbers

    SciTech Connect

    Mendelson, D.S.; Rose, J.S.; Efremidis, S.C.; Kirschner, P.A.; Cohen, B.A.

    1983-03-01

    Four patients with mediastinal masses are described. CT examinations demonstrated masses of high attenuation, and solid masses were suspected. At thoracotomy each patient had a cystic mass containing a brownish, turbid, mucoid material. The pathologic diagnosis in each case was a bronchogenic cyst. The possibility of such a cyst should not be excluded because of a high CT number, which reflects the turbid contents of the cyst.

  3. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  4. Pulmonary talcosis: CT findings in three cases.

    PubMed

    Padley, S P; Adler, B D; Staples, C A; Miller, R R; Müller, N L

    1993-01-01

    The authors describe the computed tomographic (CT) appearances in three patients with pulmonary talcosis resulting from chronic intravenous drug abuse. There was widespread ground-glass attenuation in one case and an appearance similar to that of progressive massive fibrosis in two cases. In the latter cases, there were confluent perihilar masses with areas of high attenuation. While the CT appearances may be suggestive of pulmonary talcosis, tissue sampling is required for definitive diagnosis.

  5. ADAPTIVE SMALL-ANIMAL SPECT/CT

    PubMed Central

    Furenlid, L.R.; Moore, J.W.; Freed, M.; Kupinski, M.A.; Clarkson, E.; Liu, Z.; Wilson, D.W.; Woolfenden, J.M.; Barrett, H.H.

    2015-01-01

    We are exploring the concept of adaptive multimodality imaging, a form of non-linear optimization where the imaging configuration is automatically adjusted in response to the object. Preliminary studies suggest that substantial improvement in objective, task-based measures of image quality can result. We describe here our work to add motorized adjustment capabilities and a matching CT to our existing FastSPECT II system to form an adaptive small-animal SPECT/CT. PMID:26617457

  6. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  7. CT imaging of enhanced oil recovery experiments

    SciTech Connect

    Gall, B.L.

    1992-12-01

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  8. CT evaluation of the colon: inflammatory disease.

    PubMed

    Horton, K M; Corl, F M; Fishman, E K

    2000-01-01

    Computed tomography (CT) is valuable for detection and characterization of many inflammatory conditions of the colon. At CT, a dilated, thickened appendix is suggestive of appendicitis. A 1-4-cm, oval, fatty pericolic lesion with surrounding mesenteric inflammation is diagnostic of epiploic appendagitis. The key to distinguishing diverticulitis from other inflammatory conditions of the colon is the presence of diverticula in the involved segment. In typhlitis, CT demonstrates cecal distention and circumferential thickening of the cecal wall, which may have low attenuation secondary to edema. In radiation colitis, the clinical history is the key to suggesting the diagnosis because the CT findings can be nonspecific. The location of the involved segment and the extent and appearance of wall thickening may help distinguish Crohn disease and ulcerative colitis. In ischemic colitis, CT typically demonstrates circumferential, symmetric wall thickening with fold enlargement. CT findings of graft-versus-host disease include small bowel and colonic wall thickening, which may result in luminal narrowing and separation of bowel loops. In infectious colitis, the site and thickness of colon affected may suggest a specific organism. The amount of wall thickening in pseudomembranous colitis is typically greater than in any other inflammatory disease of the colon except Crohn disease.

  9. Negative appendectomy rate: influence of CT scans.

    PubMed

    McGory, Marcia L; Zingmond, David S; Nanayakkara, Darshani; Maggard, Melinda A; Ko, Clifford Y

    2005-10-01

    Negative appendectomy rate varies significantly depending on patient age and sex. However, the impact of computed tomography (CT) scans on the diagnosis of appendicitis is unknown. The goal of this study was to examine the negative appendectomy rate using a statewide database and analyze the association of receipt of CT scan. Using the California Inpatient File, all patients undergoing appendectomy in 1999-2000 were identified (n = 75,452). Demographic and clinical data were analyzed, including procedure approach (open vs laparoscopic) and appendicitis type (negative, simple, abscess, peritonitis). Patients with CT scans performed were identified to compare the negative appendectomy rate. For the entire cohort, appendicitis type was 59 per cent simple, 10 per cent with abscess, 18.7 per cent with peritonitis, and 9.3 per cent negative. Males had a lower rate of negative appendicitis than females (6.0% vs 13.4%, P < 0.0001). The use of CT scans was associated with an overall lower negative appendectomy rate for females, especially in the < 5 years and > 45 years age categories. Use of CT scans in males does not appear to be efficacious, as the negative appendectomy rates were similar across all age categories. In conclusion, use of CT was associated with lower rate of negative appendectomy, depending on patient age and sex.

  10. Computing effective dose in cardiac CT

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Tipnis, Sameer; Sterzik, Alexander; Schoepf, U. Joseph

    2010-07-01

    We present a method of estimating effective doses in cardiac CT that accounts for selected techniques (kV mAs-1), anatomical location of the scan and patient size. A CT dosimetry spreadsheet (ImPACT CT Patient Dosimetry Calculator) was used to estimate effective doses (E) using ICRP 103 weighting factors for a 70 kg patient undergoing cardiac CT examinations. Using dose length product (DLP) for the same scans, we obtained values of E/DLP for three CT scanners used in cardiac imaging from two vendors. E/DLP ratios were obtained as a function of the anatomical location in the chest and for x-ray tube voltages ranging from 80 to 140 kV. We also computed the ratio of the average absorbed dose in a water cylinder modeling a patient weighing W kg to the corresponding average absorbed dose in a water cylinder equivalent to a 70 kg patient. The average E/DLP for a 16 cm cardiac heart CT scan was 26 µSv (mGy cm)-1, which is about 70% higher than the current E/DLP values used for chest CT scans (i.e. 14-17 µSv (mGy cm)-1). Our cardiac E/DLP ratios are higher because the cardiac region is ~30% more radiosensitive than the chest, and use of the ICRP 103 tissue weighting factors increases cardiac CT effective doses by ~30%. Increasing the x-ray tube voltage from 80 to 140 kV increases the E/DLP conversion factor for cardiac CT by 17%. For the same incident radiation at 120 kV, doses in 45 kg adults were ~22% higher than those in 70 kg adults, whereas doses in 120 kg adults were ~28% lower. Accurate estimates of the patient effective dose in cardiac CT should use ICRP 103 tissue weighting factors, and account for a choice of scan techniques (kV mAs-1), exposed scan region, as well as patient size.

  11. Characterizing anatomical variability in breast CT images

    PubMed Central

    Metheany, Kathrine G.; Abbey, Craig K.; Packard, Nathan; Boone, John M.

    2008-01-01

    Previous work [Burgess , Med. Phys. 28, 419–437 (2001)] has shown that anatomical noise in projection mammography results in a power spectrum well modeled over a range of frequencies by a power law, and the exponent (β) of this power law plays a critical role in determining the size at which a growing lesion reaches the threshold for detection. In this study, the authors evaluated the power-law model for breast computed tomography (bCT) images, which can be thought of as thin sections through a three-dimensional (3D) volume. Under the assumption of a 3D power law describing the distribution of attenuation coefficients in the breast parenchyma, the authors derived the relationship between the power-law exponents of bCT and projection images and found it to be βsection=βproj−1. They evaluated this relationship on clinical images by comparing bCT images from a set of 43 patients to Burgess’ findings in mammography. They were able to make a direct comparison for 6 of these patients who had both a bCT exam and a digitized film-screen mammogram. They also evaluated segmented bCT images to investigate the extent to which the bCT power-law exponent can be explained by a binary model of attenuation coefficients based on the different attenuation of glandular and adipose tissue. The power-law model was found to be a good fit for bCT data over frequencies from 0.07to0.45cyc∕mm, where anatomical variability dominates the spectrum. The average exponent for bCT images was 1.86. This value is close to the theoretical prediction using Burgess’ published data for projection mammography and for the limited set of mammography data available from the authors’ patient sample. Exponents from the segmented bCT images (average value: 2.06) were systematically slightly higher than bCT images, with substantial correlation between the two (r=0.84). PMID:18975714

  12. Renal Cell Carcinoma with Paraneoplastic Manifestations: Imaging with CT and F-18 FDG PET/CT.

    PubMed

    Nguyen, Ba D; Roarke, Michael C

    2007-01-01

    We present a case of renal cell carcinoma with prominent inflammatory and paraneoplastic manifestations. The initial CT detection of renal malignancy and subsequent post-therapeutic F-18 FDG PET/CT diagnosis of occult osseous metastasis were based on the patient's anemia, thrombocytosis and abnormally increased levels of serum C-reactive protein.

  13. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT.

    PubMed

    McNitt-Gray, Michael F

    2002-01-01

    This article describes basic radiation dose concepts as well as those specifically developed to describe the radiation dose from computed tomography (CT). Basic concepts of radiation dose are reviewed, including exposure, absorbed dose, and effective dose. Radiation dose from CT demonstrates variations within the scan plane and along the z axis because of its unique geometry and usage. Several CT-specific dose descriptors have been developed: the Multiple Scan Average Dose descriptor, the Computed Tomography Dose Index (CTDI) and its variations (CTDI(100), CTDI(w), CTDI(vol)), and the dose-length product. Factors that affect radiation dose from CT include the beam energy, tube current-time product, pitch, collimation, patient size, and dose reduction options. Methods of reducing the radiation dose to a patient from CT include reducing the milliampere-seconds value, increasing the pitch, varying the milliampere-seconds value according to patient size, and reducing the beam energy. The effective dose from CT can be estimated by using Monte Carlo methods to simulate CT of a mathematical patient model, by estimating the energy imparted to the body region being scanned, or by using conversion factors for general anatomic regions. Issues related to radiation dose from CT are being addressed by the Society for Pediatric Radiology, the American Association of Physicists in Medicine, the American College of Radiology, and the Center for Devices and Radiological Health of the Food and Drug Administration.

  14. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  15. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  16. Evaluation of superior vena cava syndrome by axial CT and CT phlebography

    SciTech Connect

    Moncada, R.; Cardella, R.; Demos, T.C.; Churchill, R.J.; Cardoso, M.; Love, L.; Reynes, C.J.

    1984-10-01

    Transverse axial computed tomography (CT) has been combined with CT digital phlebography to study nine patients with superior vena cava syndrome. Six were due to malignancy, two were secondary to benign disease, and one was a paraneoplastic manifestation. This combined CT approach successfully identified the abnormal morphology of the superior vena cava, demonstrating external compression, encasement, or intraluminal thrombus in all patients and the collateral venous channels in eight. This technique is a rapid, informative, and cost-effective method for the workup of superior vena cava syndrome. The CT digital phlebogram, however, is not successful in regularly and optimally opacifying the normal superior vena cava because of the limited amount of contrast material, dilution effect of the nonopacified incoming flow from the jugular and azygos veins, and the lack of image enhancement from the CT digital scanograms.

  17. Friction Reduction for Microhole CT Drilling

    SciTech Connect

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was

  18. Fast CT-CT fluoroscopy registration with respiratory motion compensation for image-guided lung intervention

    NASA Astrophysics Data System (ADS)

    Su, Po; Xue, Zhong; Lu, Kongkuo; Yang, Jianhua; Wong, Stephen T.

    2012-02-01

    CT-fluoroscopy (CTF) is an efficient imaging method for guiding percutaneous lung interventions such as biopsy. During CTF-guided biopsy procedure, four to ten axial sectional images are captured in a very short time period to provide nearly real-time feedback to physicians, so that they can adjust the needle as it is advanced toward the target lesion. Although popularly used in clinics, this traditional CTF-guided intervention procedure may require frequent scans and cause unnecessary radiation exposure to clinicians and patients. In addition, CTF only generates limited slices of images and provides limited anatomical information. It also has limited response to respiratory movements and has narrow local anatomical dynamics. To better utilize CTF guidance, we propose a fast CT-CTF registration algorithm with respiratory motion estimation for image-guided lung intervention using electromagnetic (EM) guidance. With the pre-procedural exhale and inhale CT scans, it would be possible to estimate a series of CT images of the same patient at different respiratory phases. Then, once a CTF image is captured during the intervention, our algorithm can pick the best respiratory phase-matched 3D CT image and performs a fast deformable registration to warp the 3D CT toward the CTF. The new 3D CT image can be used to guide the intervention by superimposing the EM-guided needle location on it. Compared to the traditional repetitive CTF guidance, the registered CT integrates both 3D volumetric patient data and nearly real-time local anatomy for more effective and efficient guidance. In this new system, CTF is used as a nearly real-time sensor to overcome the discrepancies between static pre-procedural CT and the patient's anatomy, so as to provide global guidance that may be supplemented with electromagnetic (EM) tracking and to reduce the number of CTF scans needed. In the experiments, the comparative results showed that our fast CT-CTF algorithm can achieve better registration

  19. Patient doses from CT examinations in Turkey

    PubMed Central

    Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi

    2015-01-01

    PURPOSE We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. METHODS CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). RESULTS The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. CONCLUSION The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey. PMID:26133189

  20. Multidetector CT of emergent biliary pathologic conditions.

    PubMed

    Patel, Neel B; Oto, Aytekin; Thomas, Stephen

    2013-01-01

    Various biliary pathologic conditions can lead to acute abdominal pain. Specific diagnosis is not always possible clinically because many biliary diseases have overlapping signs and symptoms. Imaging can help narrow the differential diagnosis and lead to a specific diagnosis. Although ultrasonography (US) is the most useful imaging modality for initial evaluation of the biliary system, multidetector computed tomography (CT) is helpful when US findings are equivocal or when biliary disease is suspected. Diagnostic accuracy can be increased by optimizing the CT protocol and using multiplanar reformations to localize biliary obstruction. CT can be used to diagnose and stage acute cholecystitis, including complications such as emphysematous, gangrenous, and hemorrhagic cholecystitis; gallbladder perforation; gallstone pancreatitis; gallstone ileus; and Mirizzi syndrome. CT also can be used to evaluate acute biliary diseases such as biliary stone disease, benign and malignant biliary obstruction, acute cholangitis, pyogenic hepatic abscess, hemobilia, and biliary necrosis and iatrogenic complications such as biliary leaks and malfunctioning biliary drains and stents. Treatment includes radiologic, endoscopic, or surgical intervention. Familiarity with CT imaging appearances of emergent biliary pathologic conditions is important for prompt diagnosis and appropriate clinical referral and treatment.

  1. Study of tuberculous meningitis by CT.

    PubMed

    Rovira, M; Romero, F; Torrent, O; Ibarra, B

    1980-04-01

    Computed tomography is a very valuable method by which the pathogenic evolution of tuberculous meningitis may be followed, thereby facilitating its differential diagnosis and controlling the efficiency of therapy. The initial miliary tuberculosis in the brain, very often unaccompanied by neurological symptoms, may offer very evident CT images. CT may also demonstrate the fibrogelatinous exudate which fills the basal cisterns and surrounds the arterial vessels which cross this region. Because of this, secondary arteritis is frequent and may be indirectly detected by CT in the form of foci of ischemic infarcts. Tuberculomas may be multiple, and are found equally in the cerebral and the cerebellar parenchyma. These tuberculomas present different images on CT, depending on the evolution of the disease at that moment. Hydrocephalus is a common complication of TM and is caused by a lack of reabsorption of the cerebrospinal fluid, or by an obstructive lesion in the ventricular drainage pathways due to a tuberculoma. This complication is usually easily identified by CT, which, moreover, permits the control of its evolution.

  2. CRYPTOSPORIDIUM LOG-INACTIVATION WITH OZONE USING EFFLUENT CT 10, GEOMETRIC MEAN CT 10 EXTENDED INTEGRATED CT 10 AND EXTENDED-CSTR CALCULATIONS

    EPA Science Inventory

    The draft Long Term 2 Enhanced Surface Water Treatment Rule ("LT2ESWTR") contains Cryptosporidium log-inactivation CT tables. Depending on the water temperature, the Cryptosporidium CT values that are listed are 15 to 25 times greater than CT values fo...

  3. CT10: a new cancer-testis (CT) antigen homologous to CT7 and the MAGE family, identified by representational-difference analysis.

    PubMed

    Güre, A O; Stockert, E; Arden, K C; Boyer, A D; Viars, C S; Scanlan, M J; Old, L J; Chen, Y T

    2000-03-01

    Assays relying on humoral or T-cell-based recognition of tumor antigens to identify potential targets for immunotherapy have led to the discovery of a significant number of immunogenic gene products, including cancer-testis (CT) antigens predominantly expressed in cancer cells and male germ cells. The search for cancer-specific antigens has been extended via the technique of representational-difference analysis and SK-MEL-37, a melanoma cell line expressing a broad range of CT antigens. Using this approach, we have isolated CT antigen genes, genes over-expressed in cancer, e. g., PRAME and KOC, and genes encoding neuro-ectodermal markers. The identified CT antigen genes include the previously defined MAGE-A6, MAGE-A4a, MAGE-A10, CT7/MAGE-C1, as well as a novel gene designated CT10, which shows strong homology to CT7/MAGE-C1 both at cDNA and at genomic levels. Chromosome mapping localized CT10 to Xq27, in close proximity to CT7/MAGE-C1 and MAGE-A genes. CT10 mRNA is expressed in testis and in 20 to 30% of various human cancers. A serological survey identified 2 melanoma patients with anti-CT10 antibody, demonstrating the immunogenicity of CT10 in humans.

  4. [Analysis of Factors on Clinical Application of Vehicle CT Shelter].

    PubMed

    Shuai, Wanjun; Chao, Yong; Liu, Shuai; Dong, Can; Gao, Huayong; Tan, Shulin; Niu, Fu

    2015-09-01

    To assure the clinical quality and requirement of CT shelter used in field environment, the factors related with the practical application were studied. The evaluation indicators of CT equipment were investigated. Based on the technical modification of vehicle shelter CT, the scanning conditions of shelter CT were analyzed. Moreover, the comparative study was done between shelter CT and common CT in hospitals. In result, in order to meet maneuverability application in the field, vehicle shelter CT was restrictive by the field conditions, traffic impacts and running requirement. The application of vehicle shelter CT was affected by the factors, such as mechanical stabilization, moving precision, power fluctuations and variations of temperature and humidity, etc. The results were helpful to improve the clinical quality of vehicle shelter CT and made a base for the quality control study in the future.

  5. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage

  6. CT measurments of cranial growth: normal subjects

    SciTech Connect

    Hahn, F.J.; Chu, W.K.; Cheung, J.Y.

    1984-06-01

    Growth patterns of the cranium measured directly as head circumference have been well documented. With the availability of computed tomography (CT) , cranial dimensions can be obtained easily. The objective of this project was to establish the mean values and their normal variance of CT cranial area of subjects at different ages. Cranial area and its long and short axes were measured on CT scans for 215 neurologic patients of a wide age range who presented no evidence of abnormal growth of head size. Growth patterns of the cranial area as well as the numeric product of it linear dimensions were determined via a curve fitting process. The patterns resemble that of the head circumference growth chart, with the most rapid growth observed in the first 12 months of age and reaching full size during adolescence.

  7. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  8. Neck after total laryngectomy: CT study

    SciTech Connect

    DiSantis, D.J.; Balfe, D.M.; Hayden, R.E.; Sagel, S.S.; Sessions, D.; Lee, J.K.T.

    1984-12-01

    Computed tomographic scans in 23 patients who had undergone total laryngectomy were analyzed retrospectively to determine normal postoperative appearance and to evaluate the role of CT in assessing recurrent neoplasm. Nine patients without clinical evidence of recurrence illustrated the normal postoperative changes: a round or ovoid neopharynx connecting the base of the tongue with the cervical esophagus and intact fat planes surrounding the neopharynx, neurovascular bundles, and sternocleidomastoid muscles. In the 12 patients with recurrent neoplasm, the CT manifestations included masses involving the internal jugular lymph node chain, tracheostomy site, or paratracheal region. CT supplemented physical examination and indirect mirror examination, providing data regarding presence and extent of recurrent tumor and aiding in planning the mode and scope of therapy.

  9. Stercoral colitis: diagnostic value of CT findings

    PubMed Central

    Ünal, Emre; Onur, Mehmet Ruhi; Balcı, Sinan; Görmez, Ayşegül; Akpınar, Erhan; Böge, Medine

    2017-01-01

    PURPOSE We aimed to evaluate the CT findings of stercoral colitis (SC). METHODS Forty-one patients diagnosed with SC between February 2006 and April 2015 were retrospectively reviewed. RESULTS Rectosigmoid colon was the most frequently involved segment (100%, n=41). CT findings can be summarized as follows: dilatation >6 cm and wall thickening >3 mm of the affected colon segment (100%, n=41), pericolonic fat stranding (100%, n=41), mucosal discontinuity (14.6 %, n=6), presence of free air (14.6%, n=6), free fluid (9.7%, n=4), and pericolonic abscess (2.4%, n=1). The sign most related with mortality was the length of the affected colon segment >40 cm. CONCLUSION CT has an important role in SC, since life-threatening complications can be easily revealed by this imaging modality. Increased length of involved colon segment (>40 cm) is more likely to be associated with mortality. PMID:27910814

  10. Patient position verification using CT images.

    PubMed

    Kress, J; Minohara, S; Endo, M; Debus, J; Kanai, T

    1999-06-01

    The use of ions in the radiotherapy of cancer patients requires an accurate patient positioning in order to exploit its potential benefits. Using CT images as the basis for the setup verification offers the advantage of a high in-plane resolution in combination with a geometrically accurate, volumetric information. Before each fraction a single CT slice is acquired at the isocenter level after the positioning procedure. This single slice is registered to the planning CT cube using automated image registration algorithms. Thus any erreonous translation or rotation can be detected and quantified. The registration process involves the interpolation of the volumetric data, the calculation of an energy function, and the minimization of this energy function. Several data interpolation functions as well as minimization algorithms were compared. CT studies with a head phantom were performed in which defined translations and rotations were simulated by moving a motor-driven treatment chair. Different slice thicknesses and anatomical sites were studied to investigate their potential influence on the registration accuracy. The accuracy of the registration was found to be a fraction of a voxel size for suitable combinations of algorithms (typically better than 0.16 mm/deg). A significant dependancy of the registration accuracy on the CT slice thickness and the anatomical site was found (the accuracy ranges from 0.05 mm/deg to 0.16 mm/deg depending on the site). The calculation time is dependant on the used algorithms and the magnitude of the setup error. For the standard combination of algorithms as proposed by the authors (Downhill Simplex minimization with Trilinear interpolation) the typical calculation time is about 20 s for a Sun UltraSPARC processor. Taking into account the mechanical accuracy of the setup device (motor-driven chair) the registration of CT images is thus a useful tool for detecting and quantifying any significant error in the patient position.

  11. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  12. CT image visualization: a conceptual introduction.

    PubMed

    Furlow, Bryant

    2014-01-01

    Computed tomography (CT) postprocessing produces information-rich diagnostic images, transforming enormous amounts of x-ray attenuation data into clinical information that can assist in diagnosis and treatment. This article briefly reviews the history of the technological evolution of CT imaging equipment and provides a conceptual overview of scan data visualization processes. Trends in and examples of image postprocessing, segmentation, registration and fusion techniques, and computer-aided detection are described. Finally, the uses of these visualization algorithms in selected diagnostic imaging applications are discussed.

  13. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  14. CT Cystography Following a Scrotal Gunshot Wound.

    PubMed

    Eby, Peter R

    2008-01-01

    We present the case of a 22-year-old man who sustained a gunshot wound to the scrotum. The imaging findings and management of the patient are described and discussed in the context of prior research pertaining to traumatic bladder rupture. Non-pressurized antegrade 10-minute delayed CT may result in unnecessary radiation exposure, delayed diagnosis and is not adequate to exclude bladder rupture. Retrograde pressurized CT cystography should be performed to exclude bladder rupture in patients with high-risk imaging results, clinical findings or injury mechanisms.

  15. Intracerebral pneumatoceles following facial trauma: CT findings

    SciTech Connect

    Mendelsohn, D.B.; Hertzanu, Y.

    1985-01-01

    Three patients with delayed frontal intracerebral pneumatoceles following facial injury are presented. In one patient an unusual appearance of bilateral and symmetrical frontal lobe pneumatoceles was demonstrated. While diagnosis is not difficult on routine radiographs, CT is valuable for determining effects on the brain and clearly delineating the fracture site; CT shows the location of the pneumatocele and may show an associated air-fluid level, mass effect or surrounding edema, or rim enhancement following administration of contrast material. The radiological appearances in conjunction with the clinical findings are highly characteristic and should not be mistaken for gas-forming cerebral abscesses.

  16. Mesentery neurilemmoma: CT, MRI and angiographic findings.

    PubMed

    Lao, Wilson T; Yang, Shih-Hung; Chen, Chi-Long; Chan, Wing P

    2011-01-01

    Mesenteric neurilemmoma is extremely rare. We present a case of a 45-year-old man with mesenteric neurilemmoma, with CT, MRI and angiographic findings. The patient was healthy and had had no symptoms previously. CT and MRI images revealed a 2.2-cm well-defined, soft-tissue mass adjacent to the posterior border of the left lobe of the liver. The tumor mass displayed a heterogenous low signal on T2-weighted image and peripheral enhancement after gadolinium administration. Angiography showed a hypervascular mass beneath the tail of pancreas, which was supplied by small branches of middle splenic artery. Histopathology revealed a mesentery neurilemmoma composed of spindle tumor cells.

  17. Choroidal detachment and ocular hypotony: CT evaluation

    SciTech Connect

    Mafee, M.F.; Peyman, G.A.

    1984-12-01

    The computed tomographic (CT) findings in 20 patients with hemorrhagic choroidal detachment, serous choroidal detachment and/or ocular hypotony are described. Hemorrhagic choroidal detachment appeared as an area of high attenuation that was usually localized, uniformly hyperdense, and not position-dependent. Serous choroidal detachment appeared as a convex, thick line of increased density within the vitreous cavity. Inflammatory choroidal detachment produces a diffuse intrauveal and suprachoroidal accumulation of high-density, position-dependent fluid, and uveoscleral thickening and enhancement, which in cross section resembles a ring. CT has proved valuable in localizing and differentiating serous or hemorrhagic choroidal detachment and uveoscleral infolding.

  18. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    SciTech Connect

    Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui; Du, Yipeng; Shen, Ning; He, Bei

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

  19. [Performance evaluation for CT-AEC(CT automatic exposure control)systems].

    PubMed

    Muramatsu, Yoshihisa; Ikeda, Shu; Osawa, Kazuaki; Sekine, Ryo; Niwa, Nobuyuki; Terada, Masami; Keat, Nicholas; Miyazaki, Shigeru

    2007-05-20

    Although many current CT scanners incorporate CT-AEC, performance evaluation is not standardized. This study evaluates the performance of the latest CT-AEC of each manufacturer with the aim of establishing a standard CT-AEC performance evaluation method. The design of the phantoms was based upon the operation characteristics of different CT-AECs. A cone, an ellipse, a variable-shaped ellipse, stepped phantoms, and their analysis software were devised and carried out the field test. The targets were LightSpeed VCT 64 with 2D and 3D Auto mA(GE), Aquilion 64M with Real-EC and Volume-EC(Toshiba), Sensation 64 with CARE Dose and CARE Dose 4D(Siemens), and Bulliance 16P with Dose Right(Philips). Data was acquired while varying the typical abdominal CT(with CT-AEC)scanning conditions (120 kV, 5 mm slice, standard function for abdomen, scanning range 200 mm). The acquired images were converted to the DICOM format and image noise(SD) was calculated using dedicated software. All 4 CT-AECs reduced exposure dose. For GE and Toshiba, image noise was constant and met the target. For Siemens, noise was independent of phantom shape but varied uniformly with phantom size. For Philips, noise varied with phantom size and shape, and variation degree depended on phantom thickness in scanogram direction. The results reflect the basic concept and performance characteristics of the methods. Standardization of CT-AEC performance evaluation is possible using these phantoms.

  20. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies.

  1. Estimation of skull table thickness with clinical CT and validation with microCT

    PubMed Central

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. PMID:25441171

  2. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  3. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  4. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect

    Maletz, Kristina L.; Ennis, Ronald D.; Ostenson, Jason; Pevsner, Alexander; Kagen, Alexander; Wernick, Iddo

    2012-04-01

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  5. MR to CT Registration of Brains using Image Synthesis.

    PubMed

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L; Lee, Junghoon

    2014-03-21

    Computed tomography (CT) is the standard imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  6. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  7. Coronary CT angiography: Beyond morphological stenosis analysis.

    PubMed

    Sun, Zhonghua

    2013-12-26

    Rapid technological developments in computed tomography (CT) imaging technique have made coronary CT angiography an attractive imaging tool in the detection of coronary artery disease. Despite visualization of excellent anatomical details of the coronary lumen changes, coronary CT angiography does not provide hemodynamic changes caused by presence of plaques. Computational fluid dynamics (CFD) is a widely used method in the mechanical engineering field to solve complex problems through analysing fluid flow, heat transfer and associated phenomena by using computer simulations. In recent years, CFD is increasingly used in biomedical research due to high performance hardware and software. CFD techniques have been used to study cardiovascular hemodynamics through simulation tools to assist in predicting the behaviour of circulatory blood flow inside the human body. Blood flow plays a key role in the localization and progression of coronary artery disease. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of vascular geometry, thus, identifying risk factors for development of coronary artery disease. The purpose of this article is to provide an overview of the coronary CT-derived CFD applications in coronary artery disease.

  8. Acute small bowel ischemia: CT imaging findings.

    PubMed

    Segatto, Enrica; Mortelé, Koenraad J; Ji, Hoon; Wiesner, Walter; Ros, Pablo R

    2003-10-01

    Small bowel ischemia is a disorder related to a variety of conditions resulting in interruption or reduction of the blood supply of the small intestine. It may present with various clinical and radiologic manifestations, and ranges pathologically from localized transient ischemia to catastrophic necrosis of the intestinal tract. The primary causes of insufficient blood flow to the small intestine are various and include thromboembolism (50% of cases), nonocclusive causes, bowel obstruction, neoplasms, vasculitis, abdominal inflammatory conditions, trauma, chemotherapy, radiation, and corrosive injury. Computed tomography (CT) can demonstrate changes because of ischemic bowel accurately, may be helpful in determining the primary cause of ischemia, and can demonstrate important coexistent findings or complications. However, common CT findings in acute small bowel ischemia are not specific and, therefore, it is often a combination of clinical, laboratory and radiologic signs that may lead to a correct diagnosis. Understanding the pathogenesis of various conditions leading to mesenteric ischemia and being familiar with the spectrum of diagnostic CT signs may help the radiologist recognize ischemic small bowel disease and avoid delayed diagnosis. The aim of this article is to provide a review of the pathogenesis and various causes of acute small bowel ischemia and to demonstrate the contribution of CT in the diagnosis of this complex disease.

  9. Pulmonary nodule, solitary - CT scan (image)

    MedlinePlus

    ... a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.

  10. 78 FR 11724 - Connecticut Disaster #CT-00030

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... ADMINISTRATION Connecticut Disaster CT-00030 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Connecticut dated 02/08/2013. Incident: Gateway Estates Condominium Complex Fire. Incident Period: 01/15/2013. Effective...

  11. Maxillary sinus hemangioma: MR and CT studies.

    PubMed

    Kulkarni, M V; Bonner, F M; Abdo, G J

    1989-01-01

    A maxillary sinus hemangioma was detected as an incidental finding during magnetic resonance imaging of the head. The CT findings are more characteristic for the diagnosis of this lesion. Preoperative diagnosis of maxillary sinus hemangioma is important since these lesions can frequently cause a large amount of hemorrhage during surgery.

  12. CT and MRI of the thorax

    SciTech Connect

    Zerhouni, E.A.

    1990-01-01

    This book addresses a variety of topics in thoracic imaging, including magnetic resonance (MR) imaging in thoracic lymphoma; focal and high-resolution computed tomography (CT) of diffuse lung disease; imaging and disorders of the pleura, diaphragm, and mediastinum; and the increasingly important topic of the immunocompromised patient. Eight case studies close out the volume.

  13. ctDNA DLBCL Detection Lancet Oncology

    Cancer.gov

    Measurement of circulating tumor DNA in blood can be used to detect disease recurrence in patients with a curable form of cancer known as diffuse large B-cell lymphoma (DLBCL). In most patients, measurement of ctDNA enabled detection of microscopic diseas

  14. 96. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  15. 98. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  16. 101. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  17. 97. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  18. 102. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  19. 99. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  20. 100. Connecticut River Bridge. Old Lyme, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Connecticut River Bridge. Old Lyme, New London Co., CT. Sec. 4209, MP 106.89. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  1. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  2. 117. Thames River Bridge. New London, New London Co., CT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Thames River Bridge. New London, New London Co., CT. Sec. 4215, MP 124.09. - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  3. Papillary carcinoma of the pancreas: findings of US and CT

    SciTech Connect

    Kim, S.Y.; Lim, J.H.; Lee, J.D.

    1985-02-01

    Two cases of papillary carcinoma of the pancreas were evaluated by ultrasound and CT. The sonographic and CT findings were those of a well-defined oval mass with partial cystic change. There was radiologic-pathologic correlation.

  4. Anatomy of the ethmoid: CT, endoscopic, and macroscopic

    SciTech Connect

    Terrier, F.; Weber, W.; Ruefenacht, D.; Porcellini, B.

    1985-03-01

    The authors illustrate the normal CT anatomy of the ethmoid region and correlate it with the endoscopic and macroscopic anatomy to define landmarks that can be recognized on CT and during endoscopically controlled transnasal ethmoidectomy.

  5. Lymphoepithelial cyst of the pancreas--evaluation with multidetector CT.

    PubMed

    Neyman, Edward G; Georgiades, Christos S; Horton, Karen H; Lillemoe, Keith D; Fishman, Elliot K

    2005-01-01

    Lymphoepithelial cyst of the pancreas is a rare cystic pancreatic tumor. In this case report we provide the imaging perspective of the lesion including the role of multidetector CT (MDCT) and CT angiography and 3D imaging.

  6. Diagnostic value of CT numbers in pelvocalyceal flling defects

    SciTech Connect

    Parienty, R.A.; Ducellier, R.; Pradel, J.; Lubrano, J.M.; Coquille, F.; Francois, R.

    1982-12-01

    Thirty-seven patients, found to have a nonopaque pelvocalyceal filling defect on excretory urograhy, were shown to have an intrapelvic mass on computed tomography (CT). There were 20 nonopaque stones, 14 cases of transitionalcell carcinoma, 1 benign papilloma, and 2 blood clots. All had a sufficiently specific range of CT numbers and differences in contrast enhancement to allow the correct diagnosis on plain CT scans, or, if necessary, a dynamic CT study following a rapid intravenous bolus of contrast medium.

  7. 12. Riverside Avenue Bridge. Riverside, Fairfield Co., CT. Sec. 9108, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Riverside Avenue Bridge. Riverside, Fairfield Co., CT. Sec. 9108, MP 30.26. (See HAER No. CT-13 for further documentation on this structure). - Northeast Railroad Corridor, Amtrak Route between New York/Connecticut & Connecticut/Rhode Island State Lines, New Haven, New Haven County, CT

  8. Systematic scanner variability of patient CT attenuation measurements

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Nawfel, Richard D.; Silverman, Stuart G.

    2009-02-01

    CT numbers of the spleen, liver, and trachea air were measured from non-contrast images obtained from 4-channel and 64-channel scanners from the same vendor. Image sections of 1 mm and 5 mm were reconstructed using smooth and sharp kernels. For spleen and liver, no significant differences associated with the variations in kernels or slice thickness could be demonstrated. The increase of the number of channels from 4 to 64 lowered the spleen CT numbers from 53 HU to 43 HU (p <0.00001). The 4-channel spleen CT numbers slightly increased as function of patient size, while the 64-channel CT numbers decreased as function of patient size. Linear regressions predicted for 40-cm patients the spleen 64-channel CT values were 23 HU lower than 4-channel CT numbers. The smooth kernel, 4-channel trachea air CT numbers had mean of -1004 +/-4.8 HU and the 64-channel trachea air CT numbers had a mean of -989+/-4.5 HU. The patient-size dependencies suggest that the CT attenuation variation is associated with increased scatter in 64-channel MSCT. Using CT number to distinguish solid lesions from cysts or quantitative evaluation of COPD disease using CT images may be complicated by inconsistencies between CT scanners.

  9. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paragraphs (b), (c)(1), and (c)(2) are applicable as specified herein to CT x-ray systems manufactured or... applicable to CT x-ray systems manufactured or remanufactured on or after November 29, 1984. (b) Definitions... selectable parameters governing the operation of a CT x-ray system including nominal tomographic...

  10. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paragraphs (b), (c)(1), and (c)(2) are applicable as specified herein to CT x-ray systems manufactured or... applicable to CT x-ray systems manufactured or remanufactured on or after November 29, 1984. (b) Definitions... selectable parameters governing the operation of a CT x-ray system including nominal tomographic...

  11. The numerical stability of transformation-based CT ventilation.

    PubMed

    Castillo, Edward; Castillo, Richard; Vinogradskiy, Yevgeniy; Guerrero, Thomas

    2017-04-01

    Computed tomography (CT)-derived ventilation imaging utilizes deformable image registration (DIR) to recover respiratory-induced tissue volume changes from inhale/exhale 4DCT phases. While current strategies for validating CT ventilation rely on analyzing its correlation with existing functional imaging modalities, the numerical stability of the CT ventilation calculation has not been characterized.

  12. Hemodialysis fistula occlusion: demonstration with 64-slice CT angiography.

    PubMed

    Neyman, Edward G; Johnson, Pamela T; Fishman, Elliot K

    2006-01-01

    The speed and resolution of 64-slice CT have resulted in new applications for CT angiography (CTA) owing to rapid data acquisition during the arterial phase, improved visualization of small vessels, and lengthened anatomic coverage. Extremity CT angiography is one such region. This case report shows the utility of multislice CTA for the evaluation of hemodialysis graft dysfunction.

  13. [Is ceCT necessary beyond FDG-PET/CT for primary staging in Hodgkin lymphoma?].

    PubMed

    Kajáry, Kornélia; Molnár, Zsuzsa; Szakáll, Szabolcs; Molnár, Péter; Lengyel, Zsolt

    2014-02-09

    Bevezetés: Nemzetközi tanulmányok igazolták, hogy Hodgkin-lymphoma kezelés előtti stádiummeghatározásában a natív, alacsony dózisú komputertomográfiával (CT) végzett, 18-F-fluorodeoxiglükóz (FDG) alkalmazásával készült pozitronemissziós tomográfia/komputertomográfia (standard PET/CT) pontosabb, mint az intravénás kontrasztanyag adásával végzett, normáldózisú CT-vizsgálat (konvencionális CT). Célkitűzés: A szerzők összehasonlították saját beteganyagukban a fenti indikációban külön-külön a két vizsgálat pontosságát, valamint megvizsgálták, hogy szükséges-e a standard PET/CT mellett konvencionális CT-vizsgálat elvégzése is. Módszer: Huszonnyolc beteg stádiumbesorolását végezték el a konvencionális CT-vizsgálat, majd a standard PET/CT vizsgálat alapján, végül a két vizsgálatot együttesen értékelték. Eredmények: Mindhárom módszerrel azonos stádiumot találtak 24 betegben. Négy betegnél a standard PET/CT-vel magasabb stádiumot észleltek, mint a konvencionális CT-vel. A csak standard PET/CT-vel meghatározott stádiumon nem változtatott a vizsgálatok együttes értékelése. Következtetések: A Hodgkin-lymphoma kezelés előtti stádiummeghatározásában a standard PET/CT vizsgálat pontosabb, mint az önállóan végzett konvencionális CT-vizsgálat. Emellett megállapítható, hogy ebben az indikációban nem indokolható a standard PET/CT konvencionális CT-vel való kiegészítése. Orv. Hetil., 2014, 155(6), 226–230.

  14. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT

    SciTech Connect

    Pan Tinsu; Mawlawi, Osama; Luo, Dershan; Liu, Hui H.; Chi Paichun, M.; Mar, Martha V.; Gladish, Gregory; Truong, Mylene; Erasmus, Jeremy Jr.; Liao Zhongxing; Macapinlac, H. A.

    2006-10-15

    We proposed a low-dose average computer tomography (ACT) for attenuation correction (AC) of the PET cardiac data in PET/CT. The ACT was obtained from a cine CT scan of over one breath cycle per couch position while the patient was free breathing. We applied this technique on four patients who underwent tumor imaging with {sup 18}F-FDG in PET/CT, whose PET data showed high uptake of {sup 18}F-FDG in the heart and whose CT and PET data had misregistration. All four patients did not have known myocardiac infarction or ischemia. The patients were injected with 555-740 MBq of {sup 18}F-FDG and scanned 1 h after injection. The helical CT (HCT) data were acquired in 16 s for the coverage of 100 cm. The PET acquisition was 3 min per bed of 15 cm. The duration of cine CT acquisition per 2 cm was 5.9 s. We used a fast gantry rotation cycle time of 0.5 s to minimize motion induced reconstruction artifacts in the cine CT images, which were averaged to become the ACT images for AC of the PET data. The radiation dose was about 5 mGy for 5.9 s cine duration. The selection of 5.9 s was based on our analysis of the respiratory signals of 600 patients; 87% of the patients had average breath cycles of less than 6 s and 90% had standard deviations of less than 1 s in the period of breath cycle. In all four patient studies, registrations between the CT and the PET data were improved. An increase of average uptake in the anterior and the lateral walls up to 48% and a decrease of average uptake in the septal and the inferior walls up to 16% with ACT were observed. We also compared ACT and conventional slow scan CT (SSCT) of 4 s duration in one patient study and found ACT was better than SSCT in depicting average respiratory motion and the SSCT images showed motion-induced reconstruction artifacts. In conclusion, low-dose ACT improved registration of the CT and the PET data in the heart region in our study of four patients. ACT was superior than SSCT for depicting average respiration

  15. Evaluation of CT-based SUV normalization

    NASA Astrophysics Data System (ADS)

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van de Wiele, Christophe; Pottel, Hans

    2016-09-01

    The purpose of this study was to determine patients’ lean body mass (LBM) and lean tissue (LT) mass using a computed tomography (CT)-based method, and to compare standardized uptake value (SUV) normalized by these parameters to conventionally normalized SUVs. Head-to-toe positron emission tomography (PET)/CT examinations were retrospectively retrieved and semi-automatically segmented into tissue types based on thresholding of CT Hounsfield units (HU). The following HU ranges were used for determination of CT-estimated LBM and LT (LBMCT and LTCT):  -180 to  -7 for adipose tissue (AT), -6 to 142 for LT, and 143 to 3010 for bone tissue (BT). Formula-estimated LBMs were calculated using formulas of James (1976 Research on Obesity: a Report of the DHSS/MRC Group (London: HMSO)) and Janmahasatian et al (2005 Clin. Pharmacokinet. 44 1051-65), and body surface area (BSA) was calculated using the DuBois formula (Dubois and Dubois 1989 Nutrition 5 303-11). The CT segmentation method was validated by comparing total patient body weight (BW) to CT-estimated BW (BWCT). LBMCT was compared to formula-based estimates (LBMJames and LBMJanma). SUVs in two healthy reference tissues, liver and mediastinum, were normalized for the aforementioned parameters and compared to each other in terms of variability and dependence on normalization factors and BW. Comparison of actual BW to BWCT shows a non-significant difference of 0.8 kg. LBMJames estimates are significantly higher than LBMJanma with differences of 4.7 kg for female and 1.0 kg for male patients. Formula-based LBM estimates do not significantly differ from LBMCT, neither for men nor for women. The coefficient of variation (CV) of SUV normalized for LBMJames (SUVLBM-James) (12.3%) was significantly reduced in liver compared to SUVBW (15.4%). All SUV variances in mediastinum were significantly reduced (CVs were 11.1-12.2%) compared to SUVBW (15.5%), except SUVBSA (15.2%). Only SUVBW and SUVLBM-James show

  16. Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging

    SciTech Connect

    Hulme, K. W.; Kappadath, S. C.

    2014-04-15

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because

  17. Prior CT imaging history for patients who undergo PAN CT for acute traumatic injury

    PubMed Central

    Kenter, Jeremy; Blow, Osbert; Krall, Scott P.; Gest, Albert; Smith, Cynthia

    2015-01-01

    Objective. A single PAN scan may provide more radiation to a patient than is felt to be safe within a one-year period. Our objective was to determine how many patients admitted to the trauma service following a PAN scan had prior CT imaging within our six-hospital system. Methods. We performed a secondary analysis of a prospectively collected trauma registry. The study was based at a level-two trauma center and five affiliated hospitals, which comprise 70.6% of all Emergency Department visits within a twelve county region of southern Texas. Electronic medical records were reviewed dating from the point of trauma evaluation back to December 5, 2005 to determine evidence of prior CT imaging. Results. There were 867 patients were admitted to the trauma service between January 1, 2012 and December 31, 2012. 460 (53%) received a PAN scan and were included in the study group. The mean age of the study group was 37.7 ± 1.54 years old, 24.8% were female, and the mean ISS score was 13.4 ± 1.07. The most common mechanism of injury was motor vehicle collision (47%). 65 (14%; 95% CI [11–18]%) of the patients had at least one prior CT. The most common prior studies performed were: CT head (29%; 19–42%), CT Face (29%; 19–42%) and CT Abdomen and Pelvis (18%; 11–30%). Conclusion. Within our trauma registry, 14% of patients had prior CT imaging within our hospital system before their traumatic event and PAN scan. PMID:26056616

  18. [CT and MRI of hip arthroplasty].

    PubMed

    Agten, C A; Sutter, R; Pfirrmann, C W A

    2014-07-01

    Metal-induced artifacts impair image quality of computed tomography (CT) and magnetic resonance imaging (MRI) in patients with hip prostheses. Due to new developments in metal artifact reduction both methods can now be used for evaluation of a painful hip prosthesis. Iterative reconstruction algorithms and dual-energy scans are among the newer CT techniques for artifact reduction, while slice-encoding for metal artifact correction (SEMAC) and multi-acquisition variable-resonance image combination (MAVRIC) have introduced substantial improvements for MRI. Loosening of the hip prosthesis, osteolysis from small wear particles and pseudotumors in metal-on-metal prostheses are specific pathologies in patients with total hip arthroplasty. Other causes of painful hip prostheses are infections, fractures, tendinopathies, tendon ruptures, muscle and nerve alterations and heterotopic ossifications.

  19. Pathological calcifications studied with micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rajamannan, Nalini M.; Brooks, Ellen R.; Langman, Craig B.; Pachman, Lauren M.

    2004-10-01

    The microstructure of pathological biomineral deposits has received relatively little attention, perhaps, in part because of the difficulty preparing samples for microscopy. MicroCT avoids these difficulties, and laboratory microCT results are reviewed for aortic valve calcification (human as well as a rabbit model), for human renal calculi (stones) and for calcinoses formed in juvenile dermatomyositis (JDM). In calcified aortic valves of rabbits, numerical analysis of the data shows statistically significant correlation with diet. In a large kidney stone the pattern of mineralization is clearly revealed and may provide a temporal blueprint for stone growth. In JDM calcified deposits, very different microstructures are observed and may be related to processes unique to this disease.

  20. CT Image Processing Using Public Digital Networks

    PubMed Central

    Rhodes, Michael L.; Azzawi, Yu-Ming; Quinn, John F.; Glenn, William V.; Rothman, Stephen L.G.

    1984-01-01

    Nationwide commercial computer communication is now commonplace for those applications where digital dialogues are generally short and widely distributed, and where bandwidth does not exceed that of dial-up telephone lines. Image processing using such networks is prohibitive because of the large volume of data inherent to digital pictures. With a blend of increasing bandwidth and distributed processing, network image processing becomes possible. This paper examines characteristics of a digital image processing service for a nationwide network of CT scanner installations. Issues of image transmission, data compression, distributed processing, software maintenance, and interfacility communication are also discussed. Included are results that show the volume and type of processing experienced by a network of over 50 CT scanners for the last 32 months.

  1. High resolution CT of Meckel's cave.

    PubMed

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  2. Use of computed tomography (CT) for urolithiasis in pediatric patients.

    PubMed

    Gupta, Angela; Castellan, Miguel

    2015-01-01

    Numbers of annual CT examinations have been increasing incrementally each year during the last 10-20 years. Use of unenhanced CT has been increasingly used for evaluation of urolithiasis, and concerned had been raised about the risks of increased radiation exposure in pediatric patients. Sensitivities and specificity for ureteral stones on conventional CT have been reported up to 98-100%, respectively. Low dose protocols have been developed with the goal of reducing radiation dose with adequate image quality. Although the sensitivity and the specificity of CT is the highest, many can be diagnosed with combination of KUB and ultrasound. CT can be utilized in equivocal cases. Low-dose radiation CT protocols have been reported with high sensitivity and specificity and should be used in pediatric patients when a CT scan is needed.

  3. Use of computed tomography (CT) for urolithiasis in pediatric patients

    PubMed Central

    Gupta, Angela

    2015-01-01

    Numbers of annual CT examinations have been increasing incrementally each year during the last 10-20 years. Use of unenhanced CT has been increasingly used for evaluation of urolithiasis, and concerned had been raised about the risks of increased radiation exposure in pediatric patients. Sensitivities and specificity for ureteral stones on conventional CT have been reported up to 98-100%, respectively. Low dose protocols have been developed with the goal of reducing radiation dose with adequate image quality. Although the sensitivity and the specificity of CT is the highest, many can be diagnosed with combination of KUB and ultrasound. CT can be utilized in equivocal cases. Low-dose radiation CT protocols have been reported with high sensitivity and specificity and should be used in pediatric patients when a CT scan is needed. PMID:26835357

  4. Patient doses from hybrid SPECT-CT procedures.

    PubMed

    Avramova-Cholakova, S; Dimcheva, M; Petrova, E; Garcheva, M; Dimitrova, M; Palashev, Y; Vassileva, J

    2015-07-01

    The aim of this work is to estimate patient doses from hybrid single-photon emission computed tomography (SPECT) and computed tomography (CT) procedures. The study involved all four SPECT-CT systems in Bulgaria. Effective dose was estimated for about 100 patients per system. Ten types of examinations were considered, representing all diagnostic procedures performed in the SPECT-CT systems. Effective doses from the SPECT component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index and dose length product were retrospectively obtained from the archives of the systems, and effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the National Radiological Protection Board (NRPB) conversion coefficients was performed where applicable. Large variations were found in the current practice of SPECT-CT imaging. Optimisation actions and diagnostic reference levels were proposed.

  5. Cardiac CT Angiography in Congestive Heart Failure.

    PubMed

    Levine, Avi; Hecht, Harvey S

    2015-06-01

    Cardiac CT angiography has become an important tool for the diagnosis and treatment of congestive heart failure. Differentiation of ischemic from nonischemic cardiomyopathy; evaluation of myocardial perfusion; characterization of hypertrophic cardiomyopathy, left ventricular noncompaction, and arrhythmogenic right ventricular dysplasia; and delineation of congenital heart defects and valvular abnormalities are the primary diagnostic applications. Therapeutic use includes visualization of the coronary venous anatomy for optimal implementation of cardiac resynchronization therapy and evaluation of left ventricular assist devices and transplant vasculopathy.

  6. CT appearances of external ear canal cholesteatoma.

    PubMed

    Malcolm, P N; Francis, I S; Wareing, M J; Cox, T C

    1997-09-01

    External ear canal cholesteatoma (EECC) is rare in ear, nose and throat (ENT) practice. Two cases, one bilateral, are described. Computed tomography demonstrates the extent of bony involvement. Erosion of the external canal should not be overlooked when reviewing CT of the petrous bone in cases of discharge from the ear. EECC may necessitate surgery and delay in the diagnosis of EECC can result in progressive bony destruction.

  7. CT of gastro-duodenal obstruction.

    PubMed

    Millet, I; Doyon, F Curros; Pages, E; Faget, C; Zins, M; Taourel, P

    2015-10-01

    Gastro-duodenal obstruction encompasses a spectrum of benign and malignant disease. Historically, chronic peptic ulcer disease was the main cause of gastro-duodenal obstruction, whereas now malignant cause with gastric carcinomas for gastric obstruction and pancreatic tumors for duodenal obstruction predominate. This paper reviews the role of CT in diagnosing gastro-duodenal obstruction, its level, its cause by identifying intraluminal, parietal, or extrinsic process, and the presence of complication.

  8. Can clinical CT data improve forensic reconstruction?

    PubMed

    Schuh, P; Scheurer, E; Fritz, K; Pavlic, M; Hassler, E; Rienmüller, R; Yen, K

    2013-05-01

    In accidents resulting in severe injuries, a clinical forensic examination is generally abandoned in the initial phase due to high-priority clinical needs. However, in many cases, data from clinical computed tomography (CT) examinations are available. The goals of this prospective study were (a) to evaluate clinical CT data as a basis for forensic reconstruction of the sequence of events, (b) to assess if forensic radiological follow-up reading improves the forensic diagnostic benefit compared to the written clinical radiological reports, and (c) to evaluate if full data storage including additional reconstructed 0.6-mm slices enhances forensic analysis. Clinical CT data of 15 living individuals with imaging of at least the head, thorax, and abdomen following polytrauma were examined regarding the forensic evaluation of the sequence of events. Additionally, 0.6-mm slices and 3D images were reconstructed for forensic purposes and used for the evaluation. At the forensic radiological readings, additional traumatic findings were observed in ten of the 15 patients. The main weakness of the clinical reports was that they were not detailed enough, particularly regarding the localization of injuries and description of wound morphology. In seven cases, however, forensic conclusions were possible on the basis of the written clinical reports, whereas in five cases forensic reconstruction required specific follow-up reading. The additional 0.6-mm slices were easily available and with improved 3D image quality and forensic diagnostics. In conclusion, the use of clinical CT data can considerably support forensic expertise regarding reconstruction issues. Forensic follow-up reading as well as the use of additional thin slices for 3D analysis can further improve its benefit for forensic reconstruction purposes.

  9. CT guided interstitial therapy of pancreatic carcinoma

    SciTech Connect

    Haaga, J.R.; Owens, D.B.; Kellermeyer, R.W.; Shina, D.; Pilai, K.; Began, N.

    1987-11-01

    We describe the use of percutaneous CT guidance for localization and placement of /sup 192/Ir sources into a patient with pancreatic carcinoma. We have shown the feasibility of this procedure and the lack of complications which are probably due to minimal damage to tissue involved. Computed tomography is ideally suited for percutaneous implantation because it provides the most accurate method for needle placement within the abdomen.

  10. A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

    2012-07-01

    This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of

  11. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  12. CT Findings in Temporal Bone Osteoradionecrosis

    PubMed Central

    Ahmed, Salmaan; Gupta, Nakul; Hamilton, Jackson D.; Garden, Adam S.; Gidley, Paul W.; Ginsberg, Lawrence E.

    2014-01-01

    Purpose The goal of this study is to describe CT findings in patients with clinically proven temporal bone osteoradionecrosis (TB-ORN). Methods and materials CT scans of twenty patients were retrospectively evaluated for bony and soft tissue abnormalities. Clinical severity was graded based on level of therapy administered: mild (observation), moderate (antibiotics/hyperbaric oxygen), or severe (surgery). Results Radiation dose to the primary tumor ranged from 30 to 75.6 Gy. Time to onset of ORN from completion of radiation therapy was 2 to 22 years (median=7yrs). Clinical findings: Exposed bone=20/20, otorrhea=17/20, hearing loss=11/20, otalgia=10/20, facial nerve paralysis=2/20, gait imbalance=2/20. CT findings: EAC erosions=18/20, mastoid effusion=18/20, mastoid bony coalescence=5/20, enhancing soft tissue=6/20, soft tissue gas=6/20, temporomandibular joint/condylar erosion=3/20. 3 patients developed an abscess. Conclusion Mastoid effusion and EAC erosions are commonly seen with TB-ORN. Clinically moderate or severe cases of TB-ORN are more likely to demonstrate enhancing soft tissue (p=0.002), soft tissue gas (p=0.002), and temporomandibular joint involvement (p=0.07). PMID:24834883

  13. Functional CT imaging of prostate cancer

    NASA Astrophysics Data System (ADS)

    Henderson, Elizabeth; Milosevic, Michael F.; Haider, Masoom A.; Yeung, Ivan W. T.

    2003-09-01

    The purpose of this paper is to investigate the distribution of blood flow (F), mean capillary transit time (Tc), capillary permeability (PS) and blood volume (vb) in prostate cancer using contrast-enhanced CT. Nine stage T2-T3 prostate cancer patients were enrolled in the study. Following bolus injection of a contrast agent, a time series of CT images of the prostate was acquired. Functional maps showing the distribution of F, Tc, PS and vb within the prostate were generated using a distributed parameter tracer kinetic model, the adiabatic approximation to the tissue homogeneity model. The precision of the maps was assessed using covariance matrix analysis. Finally, maps were compared to the findings of standard clinical investigations. Eight of the functional maps demonstrated regions of increased F, PS and vb, the locations of which were consistent with the results of standard clinical investigations. However, model parameters other than F could only be measured precisely within regions of high F. In conclusion functional CT images of cancer-containing prostate glands demonstrate regions of elevated F, PS and vb. However, caution should be used when applying a complex tracer kinetic model to the study of prostate cancer since not all parameters can be measured precisely in all areas.

  14. CT features of nonfunctioning islet cell carcinoma

    SciTech Connect

    Eelkema, E.A.; Stephens, D.H.; Ward, E.M.; Sheedy, P.F. II

    1984-11-01

    To determine the computed tomographic (CT) characteristics of nonfunctioning islet cell carcinoma of the pancreas, the CT scans of 27 patients with that disease were reviewed. The pancreatic tumor was identified as a mass in 26 patients (96%) Of the 25 tumors evaluated with contrast enhancement, 20 became partially diffusely hyperdense relative to nearby normal pancreatic tissue. Hepatic metastases were identified in 15 patients (56%), regional lymphadenopathy in 10 (37%), atrophy of the gland proximal to the tumor in six (22%), dilatation of the biliary ducts in five (19%), and dilatation of the pancreatic duct in four (15%). The CT appearances of the nonfunctioning islet cell tumors were compared with those of 100 ordinary (ductal) pancreatic adenocarcinomas. Although the two types of tumors were sometimes indistinguishable, features found to be more characteristic of islet cell carcinoma included a pancreatic mass of unusually large size, calcification within the tumor, and contrast enhancement of either the primary tumor or hepatic metastases. Involvement of the celiac axis or proximal superior mesenteric artery was limited to ductal carcinoma.

  15. Automatic Synthesis of Anthropomorphic Pulmonary CT Phantoms

    PubMed Central

    Jimenez-Carretero, Daniel; San Jose Estepar, Raul; Diaz Cacio, Mario; Ledesma-Carbayo, Maria J.

    2016-01-01

    The great density and structural complexity of pulmonary vessels and airways impose limitations on the generation of accurate reference standards, which are critical in training and in the validation of image processing methods for features such as pulmonary vessel segmentation or artery–vein (AV) separations. The design of synthetic computed tomography (CT) images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image is differentiated unequivocally. This work demonstrates a complete framework to generate computational anthropomorphic CT phantoms of the human lung automatically. Starting from biological and image-based knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. A dataset of 24 labeled anthropomorphic pulmonary CT phantoms were synthesized with the proposed system. Visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems show good correspondence between real and synthetic lungs (p > 0.05 with low Cohen’s d effect size and AUC values), supporting the potentiality of the tool and the usefulness of the generated phantoms in the biomedical image processing field. PMID:26731653

  16. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  17. Fabrication and control of CT number through polymeric composites based on coronary plaque CT phantom applications

    PubMed Central

    Hoy, Carlton F. O.; Naguib, Hani E.; Paul, Narinder

    2016-01-01

    Abstract. Biomedical phantoms are commonly used for various medical imaging modalities to improve imaging quality and procedures. Current biomedical phantoms fabricated commercially are high in cost and limited in the specificity of human environments and structures that can be mimicked. This study aimed to control the measurable computed tomography (CT) number in Hounsfield units through polymeric biomedical phantom materials using controlled amounts of hydroxyapatite (hA). The purpose was to fabricate CT phantoms capable of mimicking various coronary plaque types while introducing a fabrication technique and basis for a numerical model to which the technique may be applied. The CT number is tunable based on the controlled material properties of electron density and atomic numbers. Three different polymeric matrices of polyethylene (PE), thermoplastic polyurethane (TPU), and polyvinylidene fluoride (PVDF) were selected due to their varied specific densities and ease of fabrication acting as integral properties for CT phantom fabrication. These polymers were processed together with additions of hA in mass percentages of 2.5, 5, 10, and 20% hA as well as a 0% hA as a control for each polymeric material. By adding hA to PE, TPU, and PVDF an increasing trend was exhibited between CT number and weight percent of hA. PMID:26958580

  18. Fabrication and control of CT number through polymeric composites based on coronary plaque CT phantom applications.

    PubMed

    Hoy, Carlton F O; Naguib, Hani E; Paul, Narinder

    2016-01-01

    Biomedical phantoms are commonly used for various medical imaging modalities to improve imaging quality and procedures. Current biomedical phantoms fabricated commercially are high in cost and limited in the specificity of human environments and structures that can be mimicked. This study aimed to control the measurable computed tomography (CT) number in Hounsfield units through polymeric biomedical phantom materials using controlled amounts of hydroxyapatite (hA). The purpose was to fabricate CT phantoms capable of mimicking various coronary plaque types while introducing a fabrication technique and basis for a numerical model to which the technique may be applied. The CT number is tunable based on the controlled material properties of electron density and atomic numbers. Three different polymeric matrices of polyethylene (PE), thermoplastic polyurethane (TPU), and polyvinylidene fluoride (PVDF) were selected due to their varied specific densities and ease of fabrication acting as integral properties for CT phantom fabrication. These polymers were processed together with additions of hA in mass percentages of 2.5, 5, 10, and 20% hA as well as a 0% hA as a control for each polymeric material. By adding hA to PE, TPU, and PVDF an increasing trend was exhibited between CT number and weight percent of hA.

  19. CT volumetry of the skeletal tissues

    SciTech Connect

    Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.; Myers, Scott L.; Shah, Amish P.; Bolch, Wesley E.

    2006-10-15

    Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was explored and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate

  20. Design of respiration averaged CT for attenuation correction of the PET data from PET/CT

    SciTech Connect

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Nehmeh, Sadek A.; Erdi, Yusuf E.; Balter, Peter A.; Luo, Dershan; Mohan, Radhe; Pan Tinsu

    2007-06-15

    Our previous patient studies have shown that the use of respiration averaged computed tomography (ACT) for attenuation correction of the positron emission tomography (PET) data from PET/CT reduces the potential misalignment in the thorax region by matching the temporal resolution of the CT to that of the PET. In the present work, we investigated other approaches of acquiring ACT in order to reduce the CT dose and to improve the ease of clinical implementation. Four-dimensional CT (4DCT) data sets for ten patients (17 lung/esophageal tumors) were acquired in the thoracic region immediately after the routine PET/CT scan. For each patient, multiple sets of ACTs were generated based on both phase image averaging (phase approach) and fixed cine duration image averaging (cine approach). In the phase approach, the ACTs were calculated from CT images corresponding to the significant phases of the respiratory cycle: ACT{sub 050phs} from end-inspiration (0%) and end-expiration (50%), ACT{sub 2070phs} from mid-inspiration (20%) and mid-expiration (70%), ACT{sub 4phs} from 0%, 20%, 50% and 70%, and ACT{sub 10phs} from all ten phases, which was the original approach. In the cine approach, which does not require 4DCT, the ACTs were calculated based on the cine images from cine durations of 1 to 6 s at 1 s increments. PET emission data for each patient were attenuation corrected with each of the above mentioned ACTs and the tumor maximum standard uptake value (SUV{sub max}), average SUV (SUV{sub avg}), and tumor volume measurements were compared. Percent differences were calculated between PET data corrected with various ACTs and that corrected with ACT{sub 10phs}. In the phase approach, the ACT{sub 10phs} can be approximated by the ACT{sub 4phs} to within a mean percent difference of 2% in SUV and tumor volume measurements. In cine approach, ACT{sub 10phs} can be approximated to within a mean percent difference of 3% by ACTs computed from cine durations {>=}3 s. Acquiring CT

  1. The effects of CT drift on xenon/CT measurement of regional cerebral blood flow.

    PubMed

    Kearfott, K J; Lu, H C; Rottenberg, D A; Deck, M D

    1984-01-01

    A systematic increase in computed tomography (CT) number of approximately 0.13 Hounsfield unit per scan (HU/scan) was observed when serial DeltaScan 2020 CT scans of a uniform water phantom were equally spaced at 0.5, 1.0, or 2.0 min and a shaped aluminum beam-hardening filter was employed. Much smaller drifts (less than 0.06 HU/scan) were observed with flat aluminum or shaped beryllium oxide filters. This machine drift, which was not associated with a rise in water phantom temperature and did not consistently correlate with estimated x-ray tube heat, could result in a significant overestimation of regional cerebral blood flow (rCBF) for a xenon/CT rCBF protocol involving 5-7 sequential scans obtained at 1-min interscan intervals.

  2. An Open Library of CT Patient Projection Data.

    PubMed

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-02-27

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  3. Impact of new technologies on dose reduction in CT.

    PubMed

    Lee, Ting-Yim; Chhem, Rethy K

    2010-10-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold.

  4. An open library of CT patient projection data

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-03-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.

  5. An Open Library of CT Patient Projection Data

    PubMed Central

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia

    2016-01-01

    Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms. PMID:27239087

  6. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect

    Nattenmüller, Johanna Filsinger, Matthias Bryant, Mark Stiller, Wolfram Radeleff, Boris Grenacher, Lars Kauczor, Hans-Ullrich Hosch, Waldemar

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  7. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  8. Flat-detector computed tomography (FD-CT).

    PubMed

    Kalender, Willi A; Kyriakou, Yiannis

    2007-11-01

    Flat-panel detectors or, synonymously, flat detectors (FDs) have been developed for use in radiography and fluoroscopy with the defined goal to replace standard X-ray film, film-screen combinations and image intensifiers by an advanced sensor system. FD technology in comparison to X-ray film and image intensifiers offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. Respective efforts date back a few years only, but FD-CT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. FD-CT provides a very efficient way of combining two-dimensional (2D) radiographic or fluoroscopic and 3D CT imaging. In addition, FD technology made its way into a number of dedicated CT scanner developments, such as scanners for the maxillo-facial region or for micro-CT applications. This review focuses on technical and performance issues of FD technology and its full range of applications for CT imaging. A comparison with standard clinical CT is of primary interest. It reveals that FD-CT provides higher spatial resolution, but encompasses a number of disadvantages, such as lower dose efficiency, smaller field of view and lower temporal resolution. FD-CT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations; but it has already proven unique for a number of dedicated CT applications, offering distinct practical advantages, above all the availability of immediate CT imaging in the interventional suite or the operating room.

  9. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    2017-01-12

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  10. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT

    SciTech Connect

    Manduca, Armando; Yu Lifeng; Trzasko, Joshua D.; Khaylova, Natalia; Kofler, James M.; McCollough, Cynthia M.; Fletcher, Joel G.

    2009-11-15

    Purpose: To investigate a novel locally adaptive projection space denoising algorithm for low-dose CT data. Methods: The denoising algorithm is based on bilateral filtering, which smooths values using a weighted average in a local neighborhood, with weights determined according to both spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus maintaining high spatial resolution. A CT noise model that takes into account the bowtie filter and patient-specific automatic exposure control effects is also incorporated into the denoising process. The authors evaluated the noise-resolution properties of bilateral filtering incorporating such a CT noise model in phantom studies and preliminary patient studies with contrast-enhanced abdominal CT exams. Results: On a thin wire phantom, the noise-resolution properties were significantly improved with the denoising algorithm compared to commercial reconstruction kernels. The noise-resolution properties on low-dose (40 mA s) data after denoising approximated those of conventional reconstructions at twice the dose level. A separate contrast plate phantom showed improved depiction of low-contrast plates with the denoising algorithm over conventional reconstructions when noise levels were matched. Similar improvement in noise-resolution properties was found on CT colonography data and on five abdominal low-energy (80 kV) CT exams. In each abdominal case, a board-certified subspecialized radiologist rated the denoised 80 kV images markedly superior in image quality compared to the commercially available reconstructions, and denoising improved the image quality to the point where the 80 kV images alone were considered to be of diagnostic quality. Conclusions: The results demonstrate that bilateral filtering incorporating a CT noise model can achieve a significantly better noise-resolution trade

  11. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    SciTech Connect

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm

  12. Renal infarction: CT diagnosis and correlation between CT findings and etiologies

    SciTech Connect

    Wong, W.S.; Moss, A.A.; Federle, M.P.; Cochran, S.T.; London, S.S.

    1984-01-01

    The CT scans and the clinical records of 12 patients who had renal infarction were reviewed. The renal infarcts were classified as either focal or global. The CT findings were correlated with the etiologies of renal infarction. Embolism was the most common cause of renal infarcts that were multifocal with involvement of both kidneys. Trauma caused a unilateral global type of infract. A case of sickle cell anemia presented with multiple ''slit-like'' focal infarcts and enlarged kidneys. Forty-seven per cent of infarcts demonstrated the cortical rim sign, 11% were acapsular fluid collection, and 6% had an abnormally thickened renal fascia.

  13. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.

    PubMed

    Karçaaltıncaba, Muşturay; Aktaş, Aykut

    2011-09-01

    Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of

  14. Intra-abdominal desmoplastic small round cell tumors: CT and FDG-PET/CT findings with histopathological association.

    PubMed

    Chen, Jingjing; Wu, Zengjie; Sun, Binbin; Li, Dacheng; Wang, Zhenguang; Liu, Fangjun; Hua, Hui

    2016-05-01

    Desmoplastic small round cell tumors (DSRCTs) are rare and aggressive malignant tumors. The aim of the present study was to analyze computed tomography (CT) and fluorodeoxyglucose positron emission tomography (FDG-PET)/CT imaging features of intra-abdominal desmoplastic DSRCT, and investigate the association of these features with histopathological results. The present study was a retrospective investigation of 4 patients with DSRCT. All patients underwent CT and dynamic CT, and 1 additionally underwent FDG-PET/CT scanning. Following a tumor resection, routine hematoxylin and eosin staining, and immunostaining, were performed and evaluated. Multiple large abdominopelvic masses were identified in all 4 patients; however, no indications of their site of origin were demonstrated. CT revealed soft-tissue masses with patchy foci of hypodense lesions. Contrast-enhanced CT revealed slightly or moderately heterogeneous enhancement of the lesions. Other observations from these patients included calcification (n=2), peritoneal seeding (n=3), hepatic metastasis (n=3), retroperitoneal lymphadenopathy (n=3) and ascites (n=2). FDG-PET/CT revealed multiple nodular increased FDG uptake in the abdominopelvic masses, and in the liver and peritoneum in 1 case. Intra-abdominal DSRCT demonstrated significant diagnostic characteristics on plain and contrast-enhanced CT. Multiple, bulky soft-tissue masses inside the peritoneal cavity, particularly in male adolescents and young adults, should be considered as potential cases of DSRCT. FDG-PET/CT techniques may be utilized to aid the staging of tumors.

  15. Implementation of interior micro-CT on a carbon nanotube dynamic micro-CT scanner for lower radiation dose

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Lu, Jianping; Zhou, Otto; Cao, Guohua

    2015-03-01

    Micro-CT is a high-resolution volumetric imaging tool that provides imaging evaluations for many preclinical applications. However, the relatively high cumulative radiation dose from micro-CT scans could lead to detrimental influence on the experimental outcomes or even the damages of specimens. Interior micro-computed tomography (micro- CT) produces exact tomographic images of an interior region-of-interest (ROI) embedded within an object from truncated projection data. It holds promises for many biomedical applications with significantly reduced radiation doses. Here, we present our first implementation of an interior micro-CT system using a carbon nanotube (CNT) field-emission microfocus x-ray source. The system has two modes - interior micro-CT mode and global micro-CT mode, which is realized with a detachable x-ray beam collimator at the source side. The interior mode has an effective field-of-view (FOV) of about 10mm in diameter, while for the global mode the FOV is about 40mm in diameter. We acquired CT data in these two modes from a mouse-sized phantom, and compared the reconstructed image qualities and the associated radiation exposures. Interior ROI reconstruction was achieved by using our in-house developed reconstruction algorithm. Overall, interior micro-CT demonstrated comparable image quality to the conventional global micro-CT. Radiation doses measured by an ion chamber show that interior micro-CT yielded significant dose reduction (up to 83%).

  16. CT-guided percutaneous needle placement in forensic medicine.

    PubMed

    Hyodoh, Hideki; Shimizu, Jyunya; Mizuo, Keisuke; Okazaki, Shunichiro; Watanabe, Satoshi; Inoue, Hiromasa

    2015-03-01

    We have developed a technique of CT-guided needle placement in the destructed human body in forensic practice. A sixty-year-old male was found in a burned car and he was also destructed severely. Although blood was needed for the external examination, it was difficult to approach the vessels because of the severely burned condition of the cadaver. Thus, we attempted to obtain a blood sample from a vessel using a CT-guided technique. Postmortem CT demonstrated the presence of blood-containing vessels in the pelvis. Indeed, CT-guided needle placement had no difficulty with surface markers, table location, or depth measurement from the surface. CT-guide needle placement is a feasible and reliable technique, so that when the tissue/blood sample is at risk of being spoiled, CT-guided needle placement could be a substitute for conventional sampling techniques.

  17. Statistical atlas based extrapolation of CT data

    NASA Astrophysics Data System (ADS)

    Chintalapani, Gouthami; Murphy, Ryan; Armiger, Robert S.; Lepisto, Jyri; Otake, Yoshito; Sugano, Nobuhiko; Taylor, Russell H.; Armand, Mehran

    2010-02-01

    We present a framework to estimate the missing anatomical details from a partial CT scan with the help of statistical shape models. The motivating application is periacetabular osteotomy (PAO), a technique for treating developmental hip dysplasia, an abnormal condition of the hip socket that, if untreated, may lead to osteoarthritis. The common goals of PAO are to reduce pain, joint subluxation and improve contact pressure distribution by increasing the coverage of the femoral head by the hip socket. While current diagnosis and planning is based on radiological measurements, because of significant structural variations in dysplastic hips, a computer-assisted geometrical and biomechanical planning based on CT data is desirable to help the surgeon achieve optimal joint realignments. Most of the patients undergoing PAO are young females, hence it is usually desirable to minimize the radiation dose by scanning only the joint portion of the hip anatomy. These partial scans, however, do not provide enough information for biomechanical analysis due to missing iliac region. A statistical shape model of full pelvis anatomy is constructed from a database of CT scans. The partial volume is first aligned with the statistical atlas using an iterative affine registration, followed by a deformable registration step and the missing information is inferred from the atlas. The atlas inferences are further enhanced by the use of X-ray images of the patient, which are very common in an osteotomy procedure. The proposed method is validated with a leave-one-out analysis method. Osteotomy cuts are simulated and the effect of atlas predicted models on the actual procedure is evaluated.

  18. Chest CT Features of North American Paragonimiasis

    PubMed Central

    Henry, Travis S.; Lane, Michael A.; Weil, Gary J.; Bailey, Thomas C.; Bhalla, Sanjeev

    2013-01-01

    OBJECTIVE The purpose of this study was to characterize the chest CT findings of North American paragonimiasis due to Paragonimus kellicotti in the largest (to our knowledge) case series reported to date and to compare the findings with those reported for paragonimiasis infections in other regions. MATERIALS AND METHODS A retrospective review was performed of chest CT examinations of eight patients with North American paragonimiasis treated at our institution between 2006 and 2010. Findings were characterized by site of involvement, including lungs and pleura, heart and pericardium, lymph nodes, and upper abdomen. RESULTS The most common chest CT findings in this case series were pleural effusions and internal mammary and cardiophrenic lymphadenopathy. Pulmonary parenchymal findings included peripheral lung nodules of 1–3.5 cm in size with surrounding ground-glass opacity; many nodules had a linear track to the pleural surface that may correspond to the worm’s burrow tunnel. Pericardial involvement (5/8 patients) and omental inflammation (5/7 patients), which are uncommon in Asian paragonimiasis, were common in this series. CONCLUSION Pleural and pulmonary features of North American paragonimiasis are generally similar to those reported from Asia. The presence of a track between a pulmonary nodule and the pleura may help distinguish paragonimiasis from mimickers, including chronic eosinophilic pneumonia, tuberculosis, fungal infection, or malignancy. Pericarditis, lymphadenopathy, and omental inflammation were more common in our series than in reports on paragonimiasis from other regions. These differences may be related to the infecting parasite species or to the fact that radiologic examinations in the present series were performed relatively early in the course of infection. PMID:22528896

  19. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  20. CT scan correlates of gesture recognition.

    PubMed

    Ferro, J M; Martins, I P; Mariano, G; Caldas, A C

    1983-10-01

    The ability to recognise gestures was studied in 65 left-hemispheric stroke patients whose lesions were located by CT scan. In the acute stage (first month) frontal lobe and basal ganglia were frequently involved in patients showing inability to recognise gestures. In the later (third to fourth month) and chronic stages (greater than 6 months) parietal lobe involvement was important; lesions causing gesture recognition impairment were larger, had more extensive and frequent parietal involvement and produced less temporal lobe damage than those causing aural comprehension defects. These findings are discussed in the light of recent models of cerebral localisation of complex functions.

  1. CT of sarcomatous degeneration in neurofibromatosis

    SciTech Connect

    Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.

    1983-02-01

    Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents.

  2. Fast parallel algorithm for CT image reconstruction.

    PubMed

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  3. Porcelain gallbladder: ultrasound and CT appearance

    SciTech Connect

    Kane, R.A.; Jacobs, R.; Katz, J.; Costello, P.

    1984-07-01

    Nine patients with calcification of the gallbladder wall (porcelain gallbladder) were analyzed by ultrasound and the appearance correlated with the CT, radiographic, clinical, and surgical findings. Three distinct patterns were identified: (a) a hyperechoic similunar structure with acoustic shadowing posteriorly, simulating a stone-filled gallbladder devoid of bile, which was seen in 5 patients; (b) a biconvex, curvilinear echogenic structure with variable acoustic shadowing, seen in all 3 patients with carcinoma of the gallbladder; and (c) an irregular clump of echoes with posterior acoustic shadowing, seen in 1 patient. Potential pitfalls in the diagnosis of gallbladder calcification are presented, and the association between calcification and cancer is emphasized.

  4. Superior sinus of the pericardium: CT appearance

    SciTech Connect

    Aronberg, D.J.; Peterson, R.R.; Glazer, H.S.; Sagel, S.S.

    1984-11-01

    On computed tomography, a mass-like density is often observed, just posterior to the ascending aorta, that occasionally has been mistaken for mediastinal lymph node enlargement. Cadaver studies confirmed this retroaortic structure to be an extension of the periocardial cavity, the superior sinus. Anatomic studies revealed the presence of a superior sinus in all of the 28 cadavers studied. Retrospective review of 116 consecutive adult chest computed tomographic examinations disclosed its presence in 49%. This normal variant has a characteristic location, shape, and attenuation value by CT that should allow recognition and prevent misinterpretation.

  5. CT and MRI in the Evaluation of Thoracic Aortic Diseases

    PubMed Central

    2013-01-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are the most commonly used imaging examinations to evaluate thoracic aortic diseases because of their high spatial and temporal resolutions, large fields of view, and multiplanar imaging reconstruction capabilities. CT and MRI play an important role not only in the diagnosis of thoracic aortic disease but also in the preoperative assessment and followup after treatment. In this review, the CT and MRI appearances of various acquired thoracic aortic conditions are described and illustrated. PMID:24396601

  6. CT of benign cystic abdominal masses in children

    SciTech Connect

    Haney, P.J.; Whitley, N.O.

    1984-06-01

    Computed tomography (CT) correctly portrayed the gross anatomic features of six mesenteric, omental, and ovarian cysts and diagnosed two pancreatic pseudocysts in children. Large, well defined, low-density masses were found, often containing septa and filling most of the abdomen and pelvis. CT displayed the size and extent of the mass and showed extrinsic compression of displacement of surrounding structures. Different pathologic entities may have similar CT appearances, particularly with very large cystic masses.

  7. [Tietze's syndrome: importance of differential diagnosis and role of CT].

    PubMed

    Pulcini, A; Drudi, F M; Porcelli, C; Gagliarducci, E; Gallinacci, E; Minocchi, L; Granai, A V; Giacomelli, L

    1994-04-01

    A case of Tietze's syndrome is reported. A 55-year-old woman had experienced left anterior chest pain and tender swelling of the left second costosternal junction for one month. CT showed a focal enlargement of the left second costal cartilage with partial calcification. Six months later a complete recovery was registered and a second CT scan was negative. These clinical and CT findings are consistent with Tietze's syndrome.

  8. Current CT/MRI examination of the upper intestinal tract.

    PubMed

    Taourel, P; Pradel, J; Bruel, J M

    1994-12-01

    When properly performed, CT of the abdomen can provide valuable information about mural diseases of the alimentary tract. It can demonstrate the digestive origin of an abdominal mass, categorize a given lesion on the basis of its specific CT appearance and any associated CT findings, assess the extramural spread of gastrointestinal lesion, guide various interventional procedures (biopsy, drainage) and follow a patient's response to therapy.

  9. Pancreatic changes in cystic fibrosis: CT and sonographic appearances

    SciTech Connect

    Daneman, A.; Gaskin, K.; Martin, D.J.; Cutz, E.

    1983-10-01

    The computed tomographic (CT) and sonographic appearances of the late stages of pancreatic damage in three patients with cystic fibrosis are illustrated. All three had severe exocrine pancreatic insufficiency with steatorrhea. In two patients CT revealed complete fatty replacement of the entire pancreas. In the third, increased echogenicity of the pancreas on sonography and the inhomogeneous attenuation on CT were interpreted as being the result of a combination of fibrosis, fatty replacement, calcification, and probable cyst formation.

  10. Pulmonary embolism findings on chest radiographs and multislice spiral CT.

    PubMed

    Coche, Emmanuel; Verschuren, Franck; Hainaut, Philippe; Goncette, Louis

    2004-07-01

    Multislice spiral CT is becoming an increasingly important tool for diagnosing pulmonary embolism. However, in many instances, a chest radiograph is usually performed as a first-line examination. Many parenchymal, vascular, and other ancillary findings may be observed on both imaging modalities with a highly detailed depiction of abnormalities on multislice CT. A comprehensive review of chest radiograph findings is presented with side-by-side correlations of CT images reformatted mainly in the frontal plane.

  11. CT in children--dose protection and general considerations when planning a CT in a child.

    PubMed

    Sorantin, E; Weissensteiner, S; Hasenburger, G; Riccabona, M

    2013-07-01

    Today CT represents about 10% of all ionizing radiation based imaging modalities, but delivers more than 50% of the total collective dose for diagnostic imaging. Compared to adults the radiation sensitivity of children is considerable higher than in adults. Additionally children differ from adults--factors like body size, mass, density, proportions as well as metabolism have to be mentioned. Children grow and mature--all this components have to be mapped in examination protocols by Pediatric Radiology. The total dose of a CT examination depends on the settings of several factors such as the scout view, the scan length, exposure settings including automated exposure control, type of scanning (single slice, helical, volume mode), slice thickness, pitch values as well as on image reconstruction parameters. If intravenous contrast media injection is needed bolus tracking or timing represents another source of radiation. The aim of the paper is to present and discuss all aspects of defining a pediatric age and query adapted CT protocol particularly concerning all dose relevant factors in pediatric CT and their adjustment in children. Moreover hints are given concerning optimization of intravenous contrast media injection as well as special (low dose) imaging protocols.

  12. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  13. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  14. Deformable Image Registration of CT and Truncated Cone-beam CT for Adaptive Radiation Therapy*

    PubMed Central

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-01-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between CT and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. PMID:24169817

  15. Application of curvelet transform for denoising of CT images

    NASA Astrophysics Data System (ADS)

    Ławicki, Tomasz; Zhirnova, Oxana

    2015-09-01

    The paper presents a method of noise reduction in CT images by the curvelet transform. Noise affects the ability to visualize pathologic qualities and the living tissues structure in CT. Noise in CT images depends on the amount of discrete x-ray photons reaching the detector. In the CT images, noise is responsible for visibility reduction the low contrast areas and objects. Noisy picture may not be properly interpreted by a physician, especially for the case of detection of pathological changes in tissues. The tests were performed with the Shepp-Logan test image with additive Gaussian noise.

  16. CT angiography in the abdomen: a pictorial review and update.

    PubMed

    Liu, Peter S; Platt, Joel F

    2014-02-01

    The development of multidetector CT technology and helical scanning techniques has revolutionized the use of CT for primary diagnostic evaluation of the abdominal vasculature, particularly the arterial system. CT angiography has numerous benefits relative to conventional catheter angiography, and has largely replaced catheter-based techniques in many clinical algorithms. This pictorial review and update will cover important technical principles related to modern CT angiography (including contrast delivery and dose considerations), discuss relevant anatomy and variants, and illustrate numerous arterial conditions related to the abdominal aorta and branch vessels.

  17. Neural network and its application to CT imaging

    SciTech Connect

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  18. [Application of computed tomography (CT) examination for forensic medicine].

    PubMed

    Urbanik, Andrzej; Chrzan, Robert

    2013-01-01

    The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.

  19. Multi-detector CT in the paediatric urinary tract.

    PubMed

    Damasio, M B; Darge, K; Riccabona, M

    2013-07-01

    The use of paediatric multi-slice CT (MSCT) is rapidly increasing worldwide. As technology advances its application in paediatric care is constantly expanding with an increasing need for radiation dose control and appropriate utilization. Recommendations on how and when to use CT for assessment of the paediatric urinary tract appear to be an important issue. Therefore the European Society of Paediatric Radiology (ESPR) uroradiology task force and European Society of Urogenital Radiology (ESUR) paediatric working groups created a proposal for performing renal CT in children that has recently been published. The objective of this paper is to discuss paediatric urinary tract CT (uro-CT) in more detail and depth. The specific aim is not only to offer general recommendations on clinical indications and optimization processes of paediatric CT examination, but also to address various childhood characteristics and phenomena that facilitate understanding the different approach and use of uro-CT in children compared to adults. According to ALARA principles, paediatric uro-CT should only be considered for selected indications provided high-level comprehensive US is not conclusive and alternative non-ionizing techniques such as MR are not available or appropriate. Optimization of paediatric uro-CT protocols (considering lower age-adapted kV and mAs) is mandatory, and the number of phases and acquisition series should be kept as few as possible.

  20. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    PubMed

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  1. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  2. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors

    PubMed Central

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  3. Localization of islet cell tumors by dynamic CT: comparison with plain CT, arteriography, sonography, and venous sampling

    SciTech Connect

    Krudy, A.G.; Doppman, J.L.; Jensen, R.T.; Norton, J.A.; Collen, M.J.; Shawker, T.H.; Gardner, J.D.; McArthur, K.; Gorden, P.

    1984-09-01

    Ten patients with suspected islet cell tumors (seven with possible gastrinomas, three with insulinomas) underwent diagnostic evaluation with dynamic CT scanning, routine CT scanning, angiography, and sonography. Venous sampling was also performed in selected instances. Nine sites of gastrinoma and three insulinomas were confirmed surgically in eight patients. Two patients had negative surgical explorations. Routine CT demonstrated five of the nine gastrinomas and one of two insulinomas. Angiography was positive in six of nine gastrinomas and all three insulinomas. Sonography showed only two of the nine gastrinomas and two of the three insulinomas. Dynamic CT scanning demonstrated three additional lesions (two gastrinomas, on insulinoma) not visible on routine CT scanning. Although most of these lesions were visible arteriographically, dynamic CT scans at the appropriate level localized the pathology in the transverse plane and greatly aided in surgical resection of these lesions.

  4. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  5. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  6. Adaptive sampling of CT data for myocardial blood flow estimation from dose-reduced dynamic CT

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Bindschadler, Michael D.; Alessio, Adam M.; La Rivière, Patrick J.

    2015-03-01

    Quantification of myocardial blood flow (MBF) can aid in the diagnosis and treatment of coronary artery disease (CAD). However, there are no widely accepted clinical methods for estimating MBF. Dynamic CT holds the promise of providing a quick and easy method to measure MBF quantitatively, however the need for repeated scans has raised concerns about the potential for high radiation dose. In our previous work, we explored techniques to reduce the patient dose by either uniformly reducing the tube current or by uniformly reducing the number of temporal frames in the dynamic CT sequence. These dose reduction techniques result in very noisy data, which can give rise to large errors in MBF estimation. In this work, we seek to investigate whether nonuniformly varying the tube current or sampling intervals can yield more accurate MBF estimates. Specifically, we try to minimize the dose and obtain the most accurate MBF estimate through addressing the following questions: when in the time attenuation curve (TAC) should the CT data be collected and at what tube current(s). We hypothesize that increasing the sampling rate and/or tube current during the time frames when the myocardial CT number is most sensitive to the flow rate, while reducing them elsewhere, can achieve better estimation accuracy for the same dose. We perform simulations of contrast agent kinetics and CT acquisitions to evaluate the relative MBF estimation performance of several clinically viable adaptive acquisition methods. We found that adaptive temporal and tube current sequences can be performed that impart an effective dose of about 5 mSv and allow for reductions in MBF estimation RMSE on the order of 11% compared to uniform acquisition sequences with comparable or higher radiation doses.

  7. MR and CT image fusion of the cervical spine: a noninvasive alternative to CT-myelography

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Mirza, Sohail K.; Jarvik, Jeffrey G.; Heagerty, Patrick J.; Haynor, David R.

    2005-04-01

    CT-Myelography (CTM) is routinely used for planning surgery for degenerative disease of the spine, but its invasive nature, significant potential morbidity, and high costs make a noninvasive substitute desirable. We report our work on evaluating CT and MR image fusion as an alternative to CTM. Because the spine is only piecewise rigid, a multi-rigid approach to the registration of spinal CT and MR images was developed (SPIE 2004), in which the spine on CT images is first segmented into separate vertebrae, each of which is then rigidly registered with the corresponding vertebra on MR images. The results are then blended to obtain fusion images. Since they contain information from both modalities, we hypothesized that fusion images would be equivalent to CTM. To test this we selected 34 patients who had undergone MRI and CTM for degenerative disease of the cervical spine, and used the multi-rigid approach to produce fused images. A clinical vignette for each patient was created and presented along with either CT/MR fusion images or CTM images. A group of spine surgeons are asked to formulate detailed surgical plans based on each set of images, and the surgical plans are compared. A similar study assessing diagnostic agreement is being performed with neuroradiologists, who also assess the accuracy of registration. Our work to date has demonstrated the feasibility of segmentation and multi-rigid fusion in clinical cases and the acceptability of the questionnaire to physicians. Preliminary analysis of one surgeon's and one neuroradiologist"s evaluation has been performed.

  8. Periosteal ganglia: CT and MR imaging features.

    PubMed

    Abdelwahab, I F; Kenan, S; Hermann, G; Klein, M J; Lewis, M M

    1993-07-01

    The imaging features of four cases of periosteal ganglia were studied. Three lesions were located over the proximal shaft of the tibia, in proximity to the pes anserinus. The fourth lesion involved the distal shaft of the ulna. Three lesions had different degrees of external cortical erosion, scalloping, and thick spicules of periosteal bone on plain radiographs. The bone adjacent to the fourth lesion was not involved. Computed tomography (CT) showed these lesions to be sharply defined soft-tissue masses abutting the periosteum. All of the lesions had the same attenuation as fluid. Magnetic resonance (MR) imaging revealed the ganglia to be sharply defined masses that were isointense compared with neighboring muscles on T1-weighted images. There was markedly increased signal intensity compared with that of fat on T2-weighted images. The signal intensity on both types of images was homogeneous. The MR imaging features were consistent with the fluid nature of the lesions. Under the appropriate clinical circumstances, the MR imaging and CT features of periosteal ganglia are diagnostic.

  9. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  10. Racial Differences in CT Phenotypes in COPD

    PubMed Central

    Hansel, Nadia N.; Washko, George R.; Foreman, Marilyn G.; Han, MeiLan K.; Hoffman, Eric A.; DeMeo, Dawn L.; Barr, R. Graham; Van Beek, Edwin J.R.; Kazerooni, Ella A.; Wise, Robert A.; Brown, Robert H.; Black-Shinn, Jennifer; Hokanson, John E.; Hanania, Nicola A.; Make, Barry; Silverman, Edwin K.; Crapo, James D.; Dransfield, Mark T.

    2015-01-01

    Background Whether African Americans (AA) are more susceptible to COPD than non-Hispanic Whites (NHW) and whether racial differences in disease phenotype exist is controversial. The objective is to determine racial differences in the extent of emphysema and airway remodeling in COPD. Methods First, 2,500 subjects enrolled in the COPDGene study were used to evaluate racial differences in quantitative CT (QCT) parameters of % emphysema, air trapping and airway wall thickness. Independent variables studied included race, age, gender, education, BMI, pack-years, smoking status, age at smoking initiation, asthma, previous work in dusty job, CT scanner and center of recruitment. Results Of the 1,063 subjects with GOLD Stage II-IV COPD, 200 self-reported as AA. AAs had a lower mean % emphysema (13.1 % vs. 16.1%, p = 0.005) than NHW and proportionately less emphysema in the lower lung zones. After adjustment for covariates, there was no statistical difference by race in air trapping or airway wall thickness. Measured QCT parameters were more predictive of poor functional status in NHWs compared to AAs. Conclusions AAs have less emphysema than NHWs but the same degree of airway disease. Additional factors not easily assessed by current QCT techniques may account for the poor functional status in AAs. PMID:23413893

  11. Musculoskeletal interventional radiology: ultrasound and CT.

    PubMed

    Martel Villagrán, J; Bueno Horcajadas, Á; Agrela Rojas, E

    2016-05-01

    We aim to describe imaging-guided (ultrasound and CT) interventional techniques in the musculoskeletal system that can be performed by general radiologists, whether in hospitals, primary care clinics, private offices, or other settings. The first requirement for doing these procedures is adequate knowledge of the anatomy of the musculoskeletal system. The second requirement is to inform the patient thoroughly about the technique, the risks involved, and the alternatives available in order to obtain written informed consent. The third requirement is to ensure that the procedure is performed in accordance with the principles of asepsis in relation to the puncture zone and to all the material employed throughout the procedure. The main procedures that can be done under ultrasound guidance are the following: fine needle aspiration cytology (FNAC), core needle biopsy (CNB), diagnostic and/or therapeutic arthrocentesis, drainage of juxta-articular fluid collections, drainage of abscesses, drainage of hematomas, treatment of Baker's cyst, treatment of ganglia, treatment of bursitis, infiltrations and treatment of plantar fasciitis, plantar fibrosis, epicondylitis, Achilles tendinopathy, and Morton's neuroma, puncture and lavage of calcifications in calcifying tendinopathy. We also review the following CT-guided procedures: diagnosis of spondylodiscitis, FNAC of metastases, arthrography, drainages. Finally, we also mention more complex procedures that can only be done in appropriate settings: bone biopsies, treatment of facet joint pain, radiofrequency treatment.

  12. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  13. Explosive Detection in Aviation Applications Using CT

    SciTech Connect

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

  14. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  15. Comparison of cerebral blood flow data obtained by computed tomography (CT) perfusion with that obtained by xenon CT using 320-row CT.

    PubMed

    Takahashi, Satoshi; Tanizaki, Yoshio; Kimura, Hiroaki; Akaji, Kazunori; Kano, Tadashige; Suzuki, Kentaro; Takayama, Youhei; Kanzawa, Takao; Shidoh, Satoka; Nakazawa, Masaki; Yoshida, Kazunari; Mihara, Ban

    2015-03-01

    Cerebral blood flow (CBF) data obtained by computed tomography perfusion (CTP) imaging have been shown to be qualitative data rather than quantitative, in contrast with data obtained by other imaging methods, such as xenon CT (XeCT) imaging. Thus, interpatient comparisons of CBF values themselves obtained by CTP may be inaccurate. In this study, we have compared CBF ratios as well as CBF values obtained from CTP-CBF data to those obtained from XeCT-CBF data for the same patients to determine CTP-CBF parameters that can be used for interpatient comparisons. The data used in the present study were obtained as volume data using 320-row CT. The volume data were applied to an automated region of interest-determining software (3DSRT, version 3.5.2 ) and converted to 59 slices of 2 mm interval standardized images. In the present study, we reviewed 10 patients with occlusive cerebrovascular diseases (CVDs) undergoing both CTP and XeCT in the same period. Our study shows that ratios of CBF measurements, such as hemodynamic stress distribution (perforator-to-cortical flow ratio of middle cerebral artery [MCA] region) or the left/right ratio for the region of the MCA, calculated using CTP data have been shown to correlate well with the same ratios calculated using XeCT data. These results suggest that such CBF ratios could be useful for generating interpatient comparisons of CTP-CBF data obtained by 320-row CT among patients with occlusive CVD.

  16. Internal noise in channelized Hotelling observer (CHO) study of detectability index-differential phase contrast CT vs. conventional CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi

    2014-03-01

    The channelized Hotelling observer (CHO) model, wherein internal noise plays an important role to account for the psychophysiological uncertainty in human's visual perception, has found extensive applications in the assessment of image quality in nuclear medicine, mammography and conventional CT. Recently, we extended its application to investigating the detectability index of differential phase contrast (DPC) CT-an emerging CT technology with the potential of increasing the capability in soft tissue differentiation. We found that the quantitative determination of internal noise in the CHO study of DPC-CT's detectability index should differ from that in the conventional CT. It is believed that the root cause of such a difference lies in the distinct noise spectra between the DPC-CT and conventional CT. In this paper, we present the preliminary results and investigate the adequate strategies to quantitatively determine the internal noise of CHO model for its application in the assessment of image quality in DPC-CT and its comparison with that of the conventional CT.

  17. Iterative CT shading correction with no prior information

    NASA Astrophysics Data System (ADS)

    Wu, Pengwei; Sun, Xiaonan; Hu, Hongjie; Mao, Tingyu; Zhao, Wei; Sheng, Ke; Cheung, Alice A.; Niu, Tianye

    2015-11-01

    Shading artifacts in CT images are caused by scatter contamination, beam-hardening effect and other non-ideal imaging conditions. The purpose of this study is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT images (e.g. cone-beam CT, low-kVp CT) without relying on prior information. The method is based on the general knowledge of the relatively uniform CT number distribution in one tissue component. The CT image is first segmented to construct a template image where each structure is filled with the same CT number of a specific tissue type. Then, by subtracting the ideal template from the CT image, the residual image from various error sources are generated. Since forward projection is an integration process, non-continuous shading artifacts in the image become continuous signals in a line integral. Thus, the residual image is forward projected and its line integral is low-pass filtered in order to estimate the error that causes shading artifacts. A compensation map is reconstructed from the filtered line integral error using a standard FDK algorithm and added back to the original image for shading correction. As the segmented image does not accurately depict a shaded CT image, the proposed scheme is iterated until the variation of the residual image is minimized. The proposed method is evaluated using cone-beam CT images of a Catphan©600 phantom and a pelvis patient, and low-kVp CT angiography images for carotid artery assessment. Compared with the CT image without correction, the proposed method reduces the overall CT number error from over 200 HU to be less than 30 HU and increases the spatial uniformity by a factor of 1.5. Low-contrast object is faithfully retained after the proposed correction. An effective iterative algorithm for shading correction in CT imaging is proposed that is only assisted by general anatomical information without relying on prior knowledge. The proposed method is thus practical

  18. Iterative CT shading correction with no prior information.

    PubMed

    Wu, Pengwei; Sun, Xiaonan; Hu, Hongjie; Mao, Tingyu; Zhao, Wei; Sheng, Ke; Cheung, Alice A; Niu, Tianye

    2015-11-07

    Shading artifacts in CT images are caused by scatter contamination, beam-hardening effect and other non-ideal imaging conditions. The purpose of this study is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT images (e.g. cone-beam CT, low-kVp CT) without relying on prior information. The method is based on the general knowledge of the relatively uniform CT number distribution in one tissue component. The CT image is first segmented to construct a template image where each structure is filled with the same CT number of a specific tissue type. Then, by subtracting the ideal template from the CT image, the residual image from various error sources are generated. Since forward projection is an integration process, non-continuous shading artifacts in the image become continuous signals in a line integral. Thus, the residual image is forward projected and its line integral is low-pass filtered in order to estimate the error that causes shading artifacts. A compensation map is reconstructed from the filtered line integral error using a standard FDK algorithm and added back to the original image for shading correction. As the segmented image does not accurately depict a shaded CT image, the proposed scheme is iterated until the variation of the residual image is minimized. The proposed method is evaluated using cone-beam CT images of a Catphan©600 phantom and a pelvis patient, and low-kVp CT angiography images for carotid artery assessment. Compared with the CT image without correction, the proposed method reduces the overall CT number error from over 200 HU to be less than 30 HU and increases the spatial uniformity by a factor of 1.5. Low-contrast object is faithfully retained after the proposed correction. An effective iterative algorithm for shading correction in CT imaging is proposed that is only assisted by general anatomical information without relying on prior knowledge. The proposed method is thus practical

  19. Calibration free beam hardening correction for cardiac CT perfusion imaging

    NASA Astrophysics Data System (ADS)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  20. Strategies to reduce radiation dose in cardiac PET/CT

    NASA Astrophysics Data System (ADS)

    Wu, Tung Hsin; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Jay; S. P. Mok, Greta; Yang, Ching-Ching; Huang, Tzung-Chi

    2011-08-01

    Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications.MaterialsImage quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan.ResultsRadiation dose in RGH technique was 22.2±4.0 mSv. It was reduced to 10.95±0.82 and 4.13±0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53±0.5 to 0.16±0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols.ConclusionThe proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  1. Accuracy of CT-based attenuation correction in PET/CT bone imaging.

    PubMed

    Abella, Monica; Alessio, Adam M; Mankoff, David A; MacDonald, Lawrence R; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E

    2012-05-07

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a (68)Ga/(68)Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  2. Accuracy of CT-Based Attenuation Correction in PET/CT Bone Imaging

    PubMed Central

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-01-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well-tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9±0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers range from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important. PMID:22481547

  3. CT findings of small cell lung carcinoma

    PubMed Central

    Lee, Dongjun; Rho, Ji Young; Kang, Seunghun; Yoo, Koun Joy; Choi, Hye Jeong

    2016-01-01

    Abstract The purpose of this study was to clarify the recognizable computed tomography (CT) features of small cell lung carcinoma (SCLC). Contrast enhanced CT scans were reviewed retrospectively for mass location, mediastinal extension, and other concomitant findings in 142 patients with pathologically proven SCLC. SCLC was classified into hilar mass only (type I), hilar mass with ipsilateral mediastinal extension (type II), hilar mass with bilateral mediastinal extension (type III), and peripheral mass (type IV). When mediastinal lymphadenopathy (m-LAP) was indistinguishable from a hilar mass, we defined it as a mediastinal conglomerate mass (m-CM). Type IIa or IIIa had ipsilateral or bilateral m-LAP and type IIb, IIIb or IIIc had ipsilateral or bilateral m-CM. Type I (n = 8, 5.6%), type II (n = 58, 40.8%), type III (n = 55, 38.8%), and type IV (n = 21, 14.8%) were manifested. The combination of a hilar mass and m-CM was found in 68 patients (47.9%). Type IV masses showed lobulation in 11, microlobulation in 4, both lobulated and irregular margins in 4, and spiculation in 2. A total of 120 patients (84.5%) had a bronchial stenosis/obstruction; single (n = 52) and 2 or more (n = 68). Ninety-five patients (67.0%) had vascular invasion including main/lobar pulmonary artery and superior vena cava, and 55 (38.7%) had pleural effusion and/or pleural nodules. Concomitant parenchymal findings (n = 92, 64.8%) were noted: contiguous consolidation/nodule (n = 45), hematogeneous spread (n = 32), lymphangitic spread (n = 21), obstructive pneumonia (n = 22), and obstructive atelectasis (n = 14). In conclusion, the recognizable CT features of SCLC were a hilar mass with m-CM. Most of the hilar masses showed 2 or more bronchial stenoses/obstructions. Most cases of peripheral SCLC manifested as a lobulated mass rather than a spiculated mass. Vascular invasion and concomitant parenchymal findings were observed commonly. PMID:27893684

  4. WebCT Can Benefit You and Your Students

    ERIC Educational Resources Information Center

    Hagler, Barbara E.

    2004-01-01

    Teachers should consider using web-based platform, such as WebCT, to enhance their regular face-to-face classes. WebCT and other similar systems offer many benefits to teachers and students in traditional settings. Students can benefit by being able view slides or notes they missed in the regular classroom. They can also benefit from the increased…

  5. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography (CT) equipment. 1020.33 Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body...

  6. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography (CT) equipment. 1020.33 Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body...

  7. Role of Cardiac CT Before Transcatheter Aortic Valve Implantation (TAVI).

    PubMed

    Marwan, Mohamed; Achenbach, Stephan

    2016-02-01

    Catheter-based aortic valve implantation is increasingly being performed in high-risk patients with symptomatic aortic valve stenosis. For successful planning of the procedure, CT has been shown to provide crucial information concerning the aortic root as well as the peripheral access vessels. This article illustrates the increasing role of CT before transcatheter aortic valve implantation.

  8. Adrenal pseudotumors on CT due to dilated portosystemic veins

    SciTech Connect

    Mitty, H.M.; Cohen, B.A.; Sprayregen, S.; Schwartz, K.

    1983-10-01

    The adrenal and periadrenal venous systems are part of the portosystemic collateral pathways that may enlarge in portal hypertension. The cross-sectional image of the resulting enlarged venous channels may simulate an adrenal msss. Three examples of such computed tomographic (CT) scans are presented with selective venographic correlation. Patients with portal hypertension and suspected adrenal pathology may require enhanced or dynamic CT scans.

  9. CT of the heart: principles, advances, clinical uses.

    PubMed

    Schoenhagen, Paul; Stillman, Arthur E; Halliburton, Sandra S; White, Richard D

    2005-02-01

    Computed tomography (CT) has become a standard test for many cardiovascular conditions (eg, aortic dissection and pulmonary embolism), and it has great potential in assessing other common diseases, including coronary artery disease. We review the principles of CT and its uses in cardiovascular medicine.

  10. 11. Whitney's Armory, Near New Haven, Ct., 1842 Photocopied from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Whitney's Armory, Near New Haven, Ct., 1842 Photocopied from a woodcut in Henry Howe, Memoirs of the Most Eminent American Mechanics (New York, 1842), p. 124. The best early view of the filing shop and its raceway. See footnote 58. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  11. Gallbladder opacification on gadoxetate disodium-enhanced CT scan.

    PubMed

    Karam, Adib R; Scortegagna, Eduardo; Chen, Byron Y; Dupuis, Carolyn S; Coughlin, Dennis D

    2017-04-01

    This study aimed to evaluate the radiologist's ability to identify excreted gadoxetate disodium within the gallbladder on CT scan. Thirty three healthy adults underwent imaging of the liver during work-up for potential liver donation. Three patients had undergone prior cholecystectomy and therefore were excluded. Imaging consisted of gadoxetate disodium-enhanced magnetic resonance cholangiography (MRC) and multiphase contrast-enhanced CT scan of the abdomen and pelvis. Two fellowship-trained abdominal imaging radiologists, who were blinded to the MRC images and the contrast agent used during MRC, independently reviewed the CT scans of the 30 patients that were included. The scans were evaluated for the presence or absence of abnormal hyperdensity within the gallbladder. Three patients did not receive intravenous gadoxetate disodium, 4 patients had their MRC after the CT scan, and 1 patient had the CT scans 5 days following the MRC. Twenty two patients had the CT scan within 24 h following the gadoxetate disodium-enhanced MRC. Of the 22 patients expected to have gadolinium in the gallbladder, both reviewers identified hyperdensity in the same 20 patients (90%). Both reviewers reported no abnormal hyperdensity within the gallbladder in the remaining 10 patients. CT scan can reveal excreted gadoxetate disodium within the gallbladder lumen and therefore gadoxetate disodium-enhanced CT scan can potentially play a role in the evaluation of cystic duct patency and work-up of acute cholecystitis.

  12. Preduodenal portal vein in an adult--angiography and CT.

    PubMed

    Sasai, K; Sano, A; Nishizawa, S; Imanaka, K; Kuroda, Y

    1985-01-01

    We report on an adult case of preduodenal portal vein illustrated by computed tomography (CT) and angiography. These diagnostic modalities were initially performed to evaluate a coexisting pancreatic cancer. Contrast-enhanced CT demonstrated unusual positioning of the portal vein ventral to the duodenum. The superior mesenteric-portal vein, which was L-shaped and convexly caudad, strongly suggested this anomalous condition.

  13. [COSMOS motion design optimization in the CT table].

    PubMed

    Shang, Hong; Huang, Jian; Ren, Chao

    2013-03-01

    Through the CT Table dynamic simulation by COSMOS Motion, analysis the hinge of table and the motor force, then optimize the position of the hinge of table, provide the evidence of selecting bearing and motor, meanwhile enhance the design quality of the CT table and reduce the product design cost.

  14. Prolactin-secreting pituitary adenomas: CT appearance in diffuse invasion

    SciTech Connect

    Virapongse, C.; Bhimani, S.; Sarwar, M.; Greenberg, A.; Jung, K.

    1984-08-01

    The authors describe 2 diffusely invasive prolactin-secreting pituitary adenomas which produced marked destruction of the base of the skull thought to be diagnostic of chordoma on computed tomography (CT). Failure to recognize this pattern led to biopsy, which was diagnostic. The authors emphasize the need to recognize this rare growth pattern of diffusely invasive pituitary adenoma on CT.

  15. WebCT: A Major Shift of Emphasis

    ERIC Educational Resources Information Center

    Morningstar, Barbara; Schubert, Jeremy; Thibeault, Kristine

    2004-01-01

    The evaluation reports in this series usually feature several products at once. The current review, however, comes at a time when one of the most widely used (and expensive) online learning management systems is undergoing a major change in its marketing strategy and corporate focus. "WebCT" is currently evolving to a new version ("WebCT Vista"),…

  16. [CT perfusion for assessment of brain stem ischemic lesions].

    PubMed

    Saifullina, E I; Iksanova, G R

    2007-01-01

    Modern neurovisualization modalities - CT and MRI with cerebral circulation assessment was used for diagnosis of cerebrovascular disturbances in patients admitted to the Emergency Care Hospital of Ufa. CT and MRI perfusion methods appeared to be highly effective both in diagnosis and treatment efficacy monitoring of acute stroke.

  17. Potential pitfall in CT and sonographic evaluation of suspected lymphoma

    SciTech Connect

    Creed, L.; Reger, K.; Pond, G.D.; Aapro, M.

    1982-09-01

    Radiographic imaging of the retroperitoneum was limited until the advent of sonography and computed tomography (CT). They are efficacious for detecting retroperitoneal adenopathy, previously evaluated only by lymphangiography. A patient is discussed who, by the clinical picture, sonography, and CT, was believed to have lymphoma. Surgery, however, demonstrated the retroperitoneal masses were retroperitoneal varices.

  18. [Minimally invasive intraoperative CT-guided correction of calcaneal osteosynthesis].

    PubMed

    Mayr, E; Häuser, H; Rüter, A; Bohndorf, K

    1999-03-01

    This article describes the CT-guided osteosynthesis of calcaneus fractures. This procedure is minimal invasive and offers the opportunity to reduce and to stabilize such fractures very exactly under intraoperative CT-controll only by stab-incisions. A running study will define the ranking of this method.

  19. Neurosarcoidosis on FET and FDG PET/CT.

    PubMed

    Chan, Mico; Hsiao, Edward

    2017-03-01

    O-(2-fluoroethyl)-L-tyrosine (FET) PET/CT is a promising imaging modality for brain tumor imaging because of its reported high sensitivity for biologically active tumor tissue. We present a case of biopsy-proven neurosarcoidosis showing FET uptake. It is an important cause of false-positive uptake on FET PET/CT.

  20. Thoracic cancer imaging with PET/CT in radiation oncology

    NASA Astrophysics Data System (ADS)

    Chi, Pai-Chun Melinda

    Significance. Respiratory motion has been shown to cause artifacts in PET/CT imaging. This breathing artifact can have a significant impact on PET quantification and it can lead to large uncertainties when using PET for radiation therapy planning. We have demonstrated a promising solution to resolve the breathing artifact by acquiring respiration-averaged CT (ACT) for PET/CT. The purpose of this work was to optimize the ACT acquisition for clinical implementation and to evaluate the impact of ACT on PET/CT quantification. The hypothesis was that ACT is an effective method in removing the breathing artifact when compared to our current clinical protocol. Methods. Phase and cine approaches for acquiring ACT were investigated and the results of these two approaches were compared to the ACT generated from clinical 4DCT data sets (abbreviated as ACT10phs ). In the phase approach, ACT was generated based on combinations of selected respiratory phases; in the cine approach, ACT was generated based on cine images acquired over a fixed cine duration. The phase combination and cine duration that best approximated the ACT10phs were determined to be the optimized scanning parameters. 216 thoracic PET/CT patients were scanned with both current clinical and the ACT protocols. The effects of ACT on PET/CT quantification were assessed by comparing clinical PET/CT and ACT PET/CT using 3 metrics: PET/CT image alignment, maximum standardized uptake value (SUVmax), and threshold segmented gross tumor volume (GTV). Results. ACT10phs can be best approximated to within 2% of SUV variation by phase averaging based on 4 representative phases, and to within 3% by cine image averaging based on >3s of cine duration. We implemented the cine approach on the PET/CT scanners and acquired 216 patient data sets. 68% of patients had breathing artifacts in their clinical PET/CT and the artifacts were removed/reduced in all corresponding ACT PET/CT. PET/CT quantification for lesions <50 cm3 and

  1. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  2. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    SciTech Connect

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  3. Primary hyperaldosteronism: comparison of CT, adrenal venography, and venous sampling

    SciTech Connect

    Geisinger, M.A.; Zelch, M.G.; Bravo, E.L.; Risius, B.F.; O'Donovan, P.B.; Borkowski, G.P.

    1983-08-01

    Twenty-nine patients with primary hyperaldosteronism were evaluated with computed tomography (CT), adrenal venous sampling, and adrenal venography. Twenty-three patients had aldosteronomas and six had bilateral adrenocortical hyperplasia. Sixteen (70%) of the adenomas were accurately located by CT. All nodules of 1.5 cm or larger diameter and 50% of nodules 1.0 to 1.4 cm in diameter were demonstrated. Nodules of less than 1.0 cm in diameter generally were not detected. High-resolution CT appeared more sensitive than standard CT (75% vs 58%). Adrenal venous sampling for aldosterone assay was the most sensitive of the three methods, localizing 22 (96%) of the 23 adenomas. Eighteen (78%) of the adenomas were identified by adrenal venography, although two patients with bilateral cortical hyperplasia were mistakenly diagnosed as having a small adenoma. No such false-positive studies were encountered with CT or adrenal venous sampling.

  4. CT in the diagnosis of interstitial lung disease

    SciTech Connect

    Bergin, C.J.; Mueller, N.L.

    1985-09-01

    The computed tomographic (CT) appearance of interstitial lung disease was assessed in 23 patients with known interstitial disease. These included seven patients with fibrosing alveolitis, six with silicosis, two with hypersensitivity pneumonitis, three with lymphangitic spread of tumor, two with sarcoidosis, one with rheumatoid lung disease, and two with neurofibromatosis. The CT appearance of the interstitial changes in the different disease entities was assessed. Nodules were a prominent CT feature in silicosis, sarcoidosis, and lymphangitic spread of malignancy. Distribution of nodules and associated interlobular septal thickening provided further distinguishing features in these diseases. Reticular densities were the predominant CT change in fibrosing alveolitis, rheumatoid lung disease, and extrinsic allergic alveolitis. CT can be useful in the investigation of selected instances of interstitial pulmonary disease.

  5. CT appearance of focal fatty infiltration of the liver

    SciTech Connect

    Halvorsen, R.A.; Korobkin, M.; Ram, P.C.; Thompson, W.M.

    1982-08-01

    Focal fatty infiltration of the liver is an entity that may be confused with liver metastasis on computed tomography (CT). The imaging results and medical records of 16 patients with CT appearance suggestive of focal fatty liver were reviewed, three of whom had the simultaneous presence of metastitic liver disease. Focal fatty liver often has a distinctive appearance with CT, usually with a nonspherical shape, absence of mass effect, and density close to water. Liver metastases are usually round or oval, and unless cystic or necrotic, they have CT attenuation values closer to normal liver parenchyma than water. A radionuclide liver scan almost always resolves any confusion about the differential diagnosis of focal fatty liver: a well defined focus of photon deficiency is due to neoplasm rather than focal fatty infiltration. Sonography sometimes helps to confirm the CT impression, but may be misleading if the diagnosis of focal or diffuse fatty infiltration is not suspected before the examination.

  6. CT findings in ulcerative, granulomatous, and indeterminate colitis.

    PubMed

    Gore, R M; Marn, C S; Kirby, D F; Vogelzang, R L; Neiman, H L

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall (mean, 7.8 mm), which was characterized by inhomogeneous attenuation and a "target" appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening (mean, 13 mm) with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonic changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.

  7. 18F-FDG PET/CT in Bladder Cancer.

    PubMed

    Tagliabue, Luca; Russo, Giovanna; Lucignani, Giovanni

    2016-12-01

    Urinary clearance of F-FDG and variability in bladder wall FDG uptake may hamper the interpretation and limit the use of FDG-PET/CT for imaging bladder tumors. Nevertheless, careful combined evaluation of both CT and FDG-PET images of the urinary tract can provide useful findings. We present 2 cases of bladder cancer detected by FDG-PET/CT. These cases suggest that FDG uptake can be indicative of malignancy in bladder cancer when viewed in conjunction with CT scans and that whole-body FDG-PET/CT scans should always be reviewed with particular attention to the urinary tract because abnormalities suggestive of bladder cancer can be found unexpectedly.

  8. CT findings in ulcerative, granulomatous, and indeterminate colitis

    SciTech Connect

    Gore, R.M.; Marn, C.S.; Kirby, D.F.; Vogelzang, R.L.; Neiman, H.L.

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall, which was characterized by inhomogeneous attenuation and a target appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonic changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.

  9. Diagnostic reference level of computed tomography (CT) in Japan.

    PubMed

    Fukushima, Yasuhiro; Tsushima, Yoshito; Takei, Hiroyuki; Taketomi-Takahashi, Ayako; Otake, Hidenori; Endo, Keigo

    2012-08-01

    Optimisation of computed tomography (CT) parameters is important in avoiding excess radiation exposure. The aim of this study is to establish the diagnostic reference levels (DRL) of CT in Japan by using dose-length product (DLP). Datasheets were sent to all hospitals/clinics which had CT scanner(s) in Gunma prefecture. Data were obtained for all patients who underwent CT during a single month (June 2010), and the distributions of DLP were evaluated for eight anatomical regions and five patient age groups. The DRL was defined as the 25th and 75th percentiles of DLP. Datasheets were collected from 80 of 192 hospitals/clinics (26 090 patients). DLP for head CT of paediatric patients tended to be higher in Japan compared with DRLs of paediatric head CTs reported from the EU or Syria. Although this study was performed with limited samples, DLP for adult patients were at comparable levels for all anatomical regions.

  10. Thyroid CT number and its relationship to iodine concentration

    SciTech Connect

    Iida, Y.; Konishi, J.; Harioka, T.; Misaki, T.; Endo, K.; Torizuka, K.

    1983-06-01

    Sixty-seven patients with thyroid disease and 24 normal controls were examined with computed tomography (CT). The mean CT number (Hounsfield units +/- SD) in the normal controls (118.1 +/- 12.2) was significantly higher (p < 0.001) than the mean CT number in patients with diseased thyroids, except for 2 cases of simple goiter (CT numbers 113, 132). The Graves disease (69.5 +/- 17.6) amd Hishimoto thyroiditis (61.4 +/- 9.1) were significaantly higher than those in patients with adenoma (41.7 +/- 10.6, p < 0.001), cyst (33.1 +/- 14.8, p < 0.001), or cancer (48.7 +/- 13, p < 0.01). In 14 patients studied, a significant correlation was observed between thyroid CT numbers and the iodine concentration of the tissue (r = 0.889; p < 0.001).

  11. Patient exposure levels in radiotherapy CT simulations in Finland.

    PubMed

    Toroi, P; Kaijaluoto, S; Bly, R

    2015-12-01

    Computed tomography (CT)-based simulation is an essential part of the radiotherapy treatment process. Patient exposure levels in CT simulations were collected from 15 CT systems from all 13 Finnish radiation therapy centres. A large standard deviation up to 56 % in dose levels between CT systems was noticed. Average volumetric CT dose indexes (in body phantom) were 24, 18 and 29 mGy for prostate, resection breast and head and neck treatment targets, respectively, and 70 mGy (in head phantom) for whole brain. These average dose indexes were much higher than those in corresponding diagnostic imaging in Finland. Dose levels in simulations with some devices were even over 3-fold higher than the diagnostic reference level for the same area of interest. Moreover, large variations in other exposure parameters, such as pitch and slice thickness, were seen. The results were discussed nationally, and general guidance to optimise dose levels was shared.

  12. 77 FR 39505 - Notice of Inventory Completion: Wesleyan University, Middleton, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... National Park Service Notice of Inventory Completion: Wesleyan University, Middleton, CT AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Wesleyan University, Middleton, CT, has completed... contact Wesleyan University, Middleton, CT. Repatriation of the human remains to the Indian tribes...

  13. Pulmonary nodule classification based on CT density distribution using 3D thoracic CT images

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiki; Niki, Noboru; Ohamatsu, Hironobu; Kusumoto, Masahiko; Kakinuma, Ryutaro; Mori, Kiyoshi; Yamada, Kozo; Nishiyama, Hiroyuki; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2004-04-01

    Computer-aided diagnosis (CAD) has been investigated to provide physicians with quantitative information, such as estimates of the malignant likelihood, to aid in the classification of abnormalities detected at screening of lung cancers. The purpose of this study is to develop a method for classifying nodule density patterns that provides information with respect to nodule statuses such as lesion stage. This method consists of three steps, nodule segmentation, histogram analysis of CT density inside nodule, and classifying nodules into five types based on histogram patterns. In this paper, we introduce a two-dimensional (2-D) joint histogram with respect to distance from nodule center and CT density inside nodule and explore numerical features with respect to shape and position of the joint histogram.

  14. CT detector evaluation with complex random backgrounds

    NASA Astrophysics Data System (ADS)

    Fan, Helen; Barrett, Harrison H.

    2012-02-01

    Modern computed tomography (CT) uses detector arrays consisting of large numbers of photodiodes with scintil- lator crystals. The number of pixels in the array can play an important role in system performance. Considerable research has been performed on signal detection in flat backgrounds under various conditions, but little has been done with complex, random backgrounds in CT; our work investigates in particular the effect of the number of detector elements on signal detection by a channelized Hotelling observer in a complex background. For this project, a simulated three-dimensional phantom is generated with its attenuation equal to that of water. The phantom contains a smaller central section with random variations to simulate random anatomical structures. Cone-beam projections of the phantom are acquired at different angles and used to calculate the covariance matrix of the raw projection data. Laguerre-Gauss channels are used to reduce the dimensionality of each 2D projection and hence the size of the covariance matrix, but the covariance is still a function of two projection angles. A strong cross-channel correlation is observed as a function of the difference between the angles. A signal with known location and size is used, and the performance of the observer is calculated from the channel outputs at multiple projection angles. A contrast-detail diagram is computed for different variables such as signal size, number of incident x-ray photons, pixel size, etc. At a fixed observer signal-to-noise ratio (SNR), the contrast required to detect a signal increases dramatically as the signal size decreases.

  15. Medipix3 CT for material sciences

    NASA Astrophysics Data System (ADS)

    Procz, S.; Wartig, K.-A.; Fauler, A.; Zwerger, A.; Luebke, J.; Ballabriga, R.; Blaj, G.; Campbell, M.; Mix, M.; Fiederle, M.

    2013-01-01

    Innovative detector systems for non-destructive material analysis and for medical diagnosis are an important development to improve the performance and the quality of examination methods. For a number of years now photon-counting X-ray detectors are being developed to process incoming X-ray photons as single events. These detectors facilitate a higher signal-to-noise ratio (SNR) than conventional, non-photon-counting, scintillator based detector systems, which detect X-ray photons indirectly through conversion into visible light. The Medipix is a pixelated photon counting semiconductor detector which features adjustable energy thresholds allowing energy selective, multispectral X-ray imaging. The Medipix chip is under continued development by the ``Medipix2 Collaboration'' and ``Medipix3 Collaboration'' at CERN [1]. The Medipix electronic offers 256 × 256 pixels with a pixel pitch of 55 × 55 μm2 and can be hybridized with different sensor materials like Si, CdTe or GaAs. The newest member of the Medipix family is the Medipix3 (ASIC in 0.13 μm CMOS technology) providing up to eight separate 12-bit counters per pixel. It offers a couple of different working modes [2], which are useful for X-ray imaging applications. A Medipix3 CT X-ray measuring station was built up for small animal X-ray imaging and non-destructive material analysis [3]. The combination of the low energy threshold ( ~ 4 keV) of the Medipix3 with its multispectral capability enables tomographic investigations on objects with low absorption contrast. The advantage of photon counting, multispectral detectors like Medipix3 for material sciences will be presented here as well as a comparison with a scintillator based CT.

  16. Using SNOMED CT to Represent Two Interface Terminologies

    PubMed Central

    Rosenbloom, S. Trent; Brown, Steven H.; Froehling, David; Bauer, Brent A.; Wahner-Roedler, Dietlind L.; Gregg, William M.; Elkin, Peter L.

    2009-01-01

    Objective Interface terminologies are designed to support interactions between humans and structured medical information. In particular, many interface terminologies have been developed for structured computer based documentation systems. Experts and policy-makers have recommended that interface terminologies be mapped to reference terminologies. The goal of the current study was to evaluate how well the reference terminology SNOMED CT could map to and represent two interface terminologies, MEDCIN and the Categorical Health Information Structured Lexicon (CHISL). Design Automated mappings between SNOMED CT and 500 terms from each of the two interface terminologies were evaluated by human reviewers, who also searched SNOMED CT to identify better mappings when this was judged to be necessary. Reviewers judged whether they believed the interface terms to be clinically appropriate, whether the terms were covered by SNOMED CT concepts and whether the terms' implied semantic structure could be represented by SNOMED CT. Measurements Outcomes included concept coverage by SNOMED CT for study terms and their implied semantics. Agreement statistics and compositionality measures were calculated. Results The SNOMED CT terminology contained concepts to represent 92.4% of MEDCIN and 95.9% of CHISL terms. Semantic structures implied by study terms were less well covered, with some complex compositional expressions requiring semantics not present in SNOMED CT. Among sampled terms, those from MEDCIN were more complex than those from CHISL, containing an average 3.8 versus 1.8 atomic concepts respectively, p<0.001. Conclusion Our findings support using SNOMED CT to provide standardized representations of information created using these two terminologies, but suggest that enriching SNOMED CT semantics would improve representation of the external terms. PMID:18952944

  17. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  18. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    NASA Astrophysics Data System (ADS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  19. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  20. CT image quality over time: comparison of image quality for six different CT scanners over a six-year period.

    PubMed

    Roa, Ana Maria A; Andersen, Hilde K; Martinsen, Anne Catrine T

    2015-03-08

    UNSCEAR concluded that increased use of CT scanning caused dramatic changes in population dose. Therefore, international radiation protection authorities demand: 1) periodical quality assurance tests with respect to image quality and radiation dose, and 2) optimization of all examination protocols with respect to image quality and radiation dose. This study aimed to evaluate and analyze multiple image quality parameters and variability measured throughout time for six different CT scanners from four different vendors, in order to evaluate the current methodology for QA controls of CT systems. The results from this study indicate that there is minor drifting in the image noise and uniformity and in the spatial resolution over time for CT scanners, independent of vendors. The HU for different object densities vary between different CT scanner models from different vendors, and over time for one specific CT scanner. Future tests of interphantom and intraphantom variations, along with inclusion of more CT scanners, are necessary to establish robust baselines and recommendations of methodology for QA controls of CT systems, independent of model and vendor.

  1. Efficacy of Computed Tomography (CT) Attenuation Values and CT Findings in the Differentiation of Pleural Effusion

    PubMed Central

    Yalçin-Şafak, Kadihan; Umarusman-Tanju, Neslihan; Ayyıldız, Muhammet; Yücel, Nihal; Baysal, Tamer

    2017-01-01

    Summary Background The aim of this study was to investigate the efficacy of computed tomography (CT) findings for characterizing pleural effusions with the use of attenuation values. Material/Methods One hundred and twenty eight patients with pleural effusions on thoracic CT who underwent thoracentesisis within two weeks were studied. Pleural effusions were classified as exudates or transudates according to the Light’s criteria. A region of interest was placed for the measurement of Hounsfield Unit (HU) values in the area of the greatest amount of effusion on each slice of the three slices used. CT features that were evaluated for distinguishing pleural exudates from transudates included pleural nodules, pleural thickening and loculation. Results Thirty three (26%) of the 128 pleural effusions were transudates and 95 (74%) were exudates. The mean HU values of the exudates (8.82±7.04) were significantly higher than those of the transudates (2.91±8.53), (p<0.001). No statistically significant difference was found between transudate and exudate patients in terms of pleural thickness, pleural nodules and loculation (p>0.05). Conclusions HU values can help in differentiating exudative pleural effusions from transudative pleural effusions. Because of overlapping HU values, correlation with clinical findings is essential. PMID:28289482

  2. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  3. Correlation Between SUVmax and CT Radiomic Analysis Using Lymph Node Density in PET/CT-Based Lymph Node Staging.

    PubMed

    Giesel, Frederik L; Schneider, Florian; Kratochwil, Clemens; Rath, Daniel; Moltz, Jan; Holland-Letz, Tim; Kauczor, Hans-Ulrich; Schwartz, Lawrence H; Haberkorn, Uwe; Flechsig, Paul

    2017-02-01

    In patients with lung cancer (LC), malignant melanoma (MM), gastroenteropancreatic neuroendocrine tumors (GEP NETs), and prostate cancer (PCA), lymph node (LN) staging is often performed by (18)F-FDG PET/CT (LC and MM), (68)Ga-DOTATOC PET/CT (GEP NET), and (68)Ga-labeled prostate-specific membrane antigen PET/CT (PCA) but is sometimes not accurate because of indeterminate PET findings. To better evaluate malignant LN infiltration, additional surrogate parameters, especially in cases with indeterminate PET findings, would be helpful. The purpose of this study was to evaluate whether SUVmax in the PET examination might correlate with semiautomated density measurements of LNs in the CT component of the PET/CT examination.

  4. Organ doses to adult patients for chest CT

    SciTech Connect

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer; Schoepf, U. Joseph

    2010-02-15

    Purpose: The goal of this study was to estimate organ doses for chest CT examinations using volume computed tomography dose index (CTDI{sub vol}) data as well as accounting for patient weight. Methods: A CT dosimetry spreadsheet (ImPACT CT patient dosimetry calculator) was used to compute organ doses for a 70 kg patient undergoing chest CT examinations, as well as volume computed tomography dose index (CTDI{sub vol}) in a body CT dosimetry phantom at the same CT technique factors. Ratios of organ dose to CTDI{sub vol} (f{sub organ}) were generated as a function of anatomical location in the chest for the breasts, lungs, stomach, red bone marrow, liver, thyroid, liver, and thymus. Values of f{sub organ} were obtained for x-ray tube voltages ranging from 80 to 140 kV for 1, 4, 16, and 64 slice CT scanners from two vendors. For constant CT techniques, we computed ratios of dose in water phantoms of differing diameter. By modeling patients of different weights as equivalent water cylinders of different diameters, we generated factors that permit the estimation of the organ doses in patients weighing between 50 and 100 kg who undergo chest CT examinations relative to the corresponding organ doses received by a 70 kg adult. Results: For a 32 cm long CT scan encompassing the complete lungs, values of f{sub organ} ranged from 1.7 (thymus) to 0.3 (stomach). Organs that are directly in the x-ray beam, and are completely irradiated, generally had f{sub organ} values well above 1 (i.e., breast, lung, heart, and thymus). Organs that are not completely irradiated in a total chest CT scan generally had f{sub organ} values that are less than 1 (e.g., red bone marrow, liver, and stomach). Increasing the x-ray tube voltage from 80 to 140 kV resulted in modest increases in f{sub organ} for the heart (9%) and thymus (8%), but resulted in larger increases for the breast (19%) and red bone marrow (21%). Adult patient chests have been modeled by water cylinders with diameters between

  5. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    SciTech Connect

    Wood, Bradford J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kam, A.; Li, K. C. P.; Yanof, J.; Bauer, C.; Kruecker, J.; Seip, R.

    2006-05-08

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  6. Clinical application of CT and CT-guided percutaneous transthoracic needle biopsy in patients with indeterminate pulmonary nodules*

    PubMed Central

    Cardoso, Luciana Vargas; Souza, Arthur Soares

    2014-01-01

    OBJECTIVE: To investigate the clinical application of CT and CT-guided percutaneous transthoracic needle biopsy (CT-PTNB) in patients with indeterminate pulmonary nodules (IPNs). METHODS: We retrospectively studied 113 patients with PNs undergoing CT and CT-PTNB. Variables such as gender, age at diagnosis, smoking status, CT findings, and CT-PTNB techniques were analyzed. Data analysis was performed with the Student's t-test for independent samples the chi-square test, and normal approximation test for comparison of two proportions. RESULTS: Of the 113 patients studied, 68 (60.2%) were male and 78 (69%) were smokers. The diameter of malignant lesions ranged from 2.6 cm to 10.0 cm. Most of the IPNs (85%) were located in the peripheral region. The biopsied IPNs were found to be malignant in 88 patients (77.8%) and benign in 25 (22.2%). Adenocarcinoma was the most common malignant tumor, affecting older patients. The IPN diameter was significantly greater in patients with malignant PNs than in those with benign IPNs (p < 0.001). Having regular contour correlated significantly with an IPN being benign (p = 0.022), whereas spiculated IPNs and bosselated IPNs were more often malignant (in 50.7% and 28.7%, respectively). Homogeneous attenuation and necrosis were more common in patients with malignant lesions (51.9% and 26.9%, respectively) CONCLUSIONS: In our sample, CT and CT-PTNB were useful in distinguishing between malignant and benign IPNs. Advanced age and smoking were significantly associated with malignancy. Certain CT findings related to IPNs (larger diameter, spiculated borders, homogeneous attenuation, and necrosis) were associated with malignancy. PMID:25210960

  7. A MRI-CT prostate registration using sparse representation technique

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Jani, Ashesh B.; Rossi, Peter J.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    Purpose: To develop a new MRI-CT prostate registration using patch-based deformation prediction framework to improve MRI-guided prostate radiotherapy by incorporating multiparametric MRI into planning CT images. Methods: The main contribution is to estimate the deformation between prostate MRI and CT images in a patch-wise fashion by using the sparse representation technique. We assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. Specifically, there are two stages in our proposed framework, i.e., the training stage and the application stage. In the training stage, each prostate MR images are carefully registered to the corresponding CT images and all training MR and CT images are carefully registered to a selected CT template. Thus, we obtain the dense deformation field for each training MR and CT image. In the application stage, for registering a new subject MR image with the same subject CT image, we first select a small number of key points at the distinctive regions of this subject CT image. Then, for each key point in the subject CT image, we extract the image patch, centered at the underlying key point. Then, we adaptively construct the coupled dictionary for the underlying point where each atom in the dictionary consists of image patches and the respective deformations obtained from training pair-wise MRI-CT images. Next, the subject image patch can be sparsely represented by a linear combination of training image patches in the dictionary, where we apply the same sparse coefficients to the respective deformations in the dictionary to predict the deformation for the subject MR image patch. After we repeat the same procedure for each subject CT key point, we use B-splines to interpolate a dense deformation field, which is used as the initialization to allow the registration algorithm estimating the remaining small segment of deformations from MRI to CT image

  8. Tensor decomposition and nonlocal means based spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Yu, Hengyong

    2016-10-01

    As one of the state-of-the-art detectors, photon counting detector is used in spectral CT to classify the received photons into several energy channels and generate multichannel projection simultaneously. However, the projection always contains severe noise due to the low counts in each energy channel. How to reconstruct high-quality images from photon counting detector based spectral CT is a challenging problem. It is widely accepted that there exists self-similarity over the spatial domain in a CT image. Moreover, because a multichannel CT image is obtained from the same object at different energy, images among channels are highly correlated. Motivated by these two characteristics of the spectral CT, we employ tensor decomposition and nonlocal means methods for spectral CT iterative reconstruction. Our method includes three basic steps. First, each channel image is updated by using the OS-SART. Second, small 3D volumetric patches (tensor) are extracted from the multichannel image, and higher-order singular value decomposition (HOSVD) is performed on each tensor, which can help to enhance the spatial sparsity and spectral correlation. Third, in order to employ the self-similarity in CT images, similar patches are grouped to reduce noise using the nonlocal means method. These three steps are repeated alternatively till the stopping criteria are met. The effectiveness of the developed algorithm is validated on both numerically simulated and realistic preclinical datasets. Our results show that the proposed method achieves promising performance in terms of noise reduction and fine structures preservation.

  9. CT enteroclysis in the diagnostics of small bowel diseases

    PubMed Central

    Kołodziej, Marian; Annabhani, Abdulhabib; Sąsiadek, Marek

    2010-01-01

    Summary Background: The role of CT enteroclysis is gaining on importance in the diagnostics of small bowel diseases. The aim of the study was to present own experiences in CT enteroclysis application, with the use of a 64-detector CT unit. Material/Methods: CT enteroclyses were performed in 60 patients: 53 with the suspicion of the Crohn’s disease, 2 suspected for carcinoid, 1 with suspicion of the fistula between the small bowel and the bladder, 2 suspected for the tumor of the ileo-caecal region, and in 1 case, the aim of examination was to carry out an evaluation of the postsurgical state of the bowel-bowel anastomosis. We used own endoscopic technique of catheter insertion into the bowel, which shortens the examination time and improves patient’s comfort. Results: The catheter was correctly introduced into the small bowel in 58 patients (endoscopy had to be repeated in 4 cases). Only 2 examinations failed, because patients refused repeated endoscopy. Radiological signs of the Crohn’s disease were found in 50 out of 53 patients. In the 3 remaining patients, the appearance of the small bowel was normal. In 5 non-Crohn’s disease patients, CT enteroclysis enabled a good visualization of the pathology (tumors, fistula). Conclusions: CT enteroclysis with the use of the 64-detector CT unit is a valuable method in the diagnostics of small bowel diseases. It could supplement or precede capsule endoscopy. PMID:22802779

  10. Multidetector CT Findings of Bowel Transection in Blunt Abdominal Trauma

    PubMed Central

    Cho, Hyun Suk; Hong, Hye-Suk; Park, Mee Hyun; Ha, Hong Il; Yang, Ik; Lee, Yul; Jung, Ah Young; Hwang, Ji-Young

    2013-01-01

    Objective Though a number of CT findings of bowel and mesenteric injuries in blunt abdominal trauma are described in literature, no studies on the specific CT signs of a transected bowel have been published. In the present study we describe the incidence and new CT signs of bowel transection in blunt abdominal trauma. Materials and Methods We investigated the incidence of bowel transection in 513 patients admitted for blunt abdominal trauma who underwent multidetector CT (MDCT). The MDCT findings of 8 patients with a surgically proven complete bowel transection were assessed retrospectively. We report novel CT signs that are unique for transection, such as complete cutoff sign (transection of bowel loop), Janus sign (abnormal dual bowel wall enhancement, both increased and decreased), and fecal spillage. Results The incidence of bowel transection in blunt abdominal trauma was 1.56%. In eight cases of bowel transection, percentage of CT signs unique for bowel transection were as follows: complete cutoff in 8 (100%), Janus sign in 6 (100%, excluding duodenal injury), and fecal spillage in 2 (25%). The combination of complete cutoff and Janus sign were highly specific findings in patients with bowel transection. Conclusion Complete cut off and Janus sign are the unique CT findings to help detect bowel transection in blunt abdominal trauma and recognition of these findings enables an accurate and prompt diagnosis for emergency laparotomy leading to reduced mortality and morbidity. PMID:23901318

  11. Flat-panel volume CT: fundamental principles, technology, and applications.

    PubMed

    Gupta, Rajiv; Cheung, Arnold C; Bartling, Soenke H; Lisauskas, Jennifer; Grasruck, Michael; Leidecker, Christianne; Schmidt, Bernhard; Flohr, Thomas; Brady, Thomas J

    2008-01-01

    Flat-panel volume computed tomography (CT) systems have an innovative design that allows coverage of a large volume per rotation, fluoroscopic and dynamic imaging, and high spatial resolution that permits visualization of complex human anatomy such as fine temporal bone structures and trabecular bone architecture. In simple terms, flat-panel volume CT scanners can be thought of as conventional multidetector CT scanners in which the detector rows have been replaced by an area detector. The flat-panel detector has wide z-axis coverage that enables imaging of entire organs in one axial acquisition. Its fluoroscopic and angiographic capabilities are useful for intraoperative and vascular applications. Furthermore, the high-volume coverage and continuous rotation of the detector may enable depiction of dynamic processes such as coronary blood flow and whole-brain perfusion. Other applications in which flat-panel volume CT may play a role include small-animal imaging, nondestructive testing in animal survival surgeries, and tissue-engineering experiments. Such versatility has led some to predict that flat-panel volume CT will gain importance in interventional and intraoperative applications, especially in specialties such as cardiac imaging, interventional neuroradiology, orthopedics, and otolaryngology. However, the contrast resolution of flat-panel volume CT is slightly inferior to that of multidetector CT, a higher radiation dose is needed to achieve a comparable signal-to-noise ratio, and a slower scintillator results in a longer scanning time.

  12. An alternative approach to computerized tomography (CT) in forensic pathology.

    PubMed

    Thomsen, Asser H; Jurik, Anne Grethe; Uhrenholt, Lars; Vesterby, Annie

    2009-01-10

    Computerized Tomography (CT) is used by some forensic pathology departments as a supplement to the forensic autopsy. Departments with a limited number of autopsies may find it relatively expensive to acquire and operate a CT-scanner. Furthermore, it requires a great deal of training and experience to interpret the radiological data. We are currently evaluating CT in order to decide whether the benefits match the efforts. In selected death-investigations the Department of Radiology at Aarhus University Hospital performs CT of the body on behalf of the Institute of Forensic Medicine at Aarhus University and a skilled radiologist interprets the data. We present our radiological findings in the 20 cases where we have used CT and compare them to the autopsy findings. The cases include fatalities from beatings, stabbings, gunshots, fires and traffic accidents. CT is an excellent tool for documenting and illustrating certain lesions, such as gunshot wounds and bone fractures, where we can obtain information that possibly would have been missed at the autopsy. We believe, however, that further research is required before we can recommend CT as a part of a standard forensic autopsy. The cooperation between forensic and radiological departments is a good approach for smaller forensic departments that insures a skilled interpretation without having to divert a lot of resources to equipment and training.

  13. CT features of alveolitis and sinusitis in horses.

    PubMed

    Henninger, Wolfgang; Frame, E Mairi; Willmann, Michael; Simhofer, Hubert; Malleczek, Dieter; Kneissl, Sibylle M; Mayrhofer, Elisabeth

    2003-01-01

    Sinusitis is a common disorder in horses and may result from trauma, dental diseases, or space-occupying lesions. Radiography can only provide a limited amount of information. Computed tomography (CT) has been documented as an alternative imaging method. Eighteen horses (mostly Warmblood) with signs of chronic sinusitis were examined preoperatively with CT to assist in diagnosis of the underlying cause. There was a group of common CT features in horses with dental disease and sinusitis. The first molar was the most frequently affected maxillary cheek tooth. Hypoattenuation of the cementum, destruction of the enamel, and filling of the infundibular cavity with gas were the most frequent CT findings associated with caries. Gas bubbles within the bulging root area or fragmentation of the root in combination with swelling of the adjacent sinus lining were the most important CT features of dental decay. CT findings associated with sinusitis included excessive thickening of the respiratory epithelium in the rostral maxillary sinus; the caudal maxillary sinus was less often involved. The infraorbital canal, the nasomaxillary duct, and the frontomaxillary aperture were usually involved. The maxillary bone, however, especially the facial crest, was involved in nearly every horse, being characterized by endosteal sclerosis, thickening, periosteal reaction, and deformation leading to facial swelling in chronic infections. CT images allowed identification of involvement of individual teeth more clearly to reveal the diseased one for treatment. Three-dimensional imaging allowed improved understanding of the extent and severity of the pathologic change.

  14. PET/CT imaging in lung cancer: indications and findings*

    PubMed Central

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  15. Principles of CT: radiation dose and image quality.

    PubMed

    Goldman, Lee W

    2007-12-01

    This article discusses CT radiation dose, the measurement of CT dose, and CT image quality. The most commonly used dose descriptor is CT dose index, which represents the dose to a location (e.g., depth) in a scanned volume from a complete series of slices. A weighted average of the CT dose index measured at the center and periphery of dose phantoms provides a convenient single-number estimate of patient dose for a procedure, and this value (or a related indicator that includes the scanned length) is often displayed on the operator's console. CT image quality, as in most imaging, is described in terms of contrast, spatial resolution, image noise, and artifacts. A strength of CT is its ability to visualize structures of low contrast in a subject, a task that is limited primarily by noise and is therefore closely associated with radiation dose: The higher the dose contributing to the image, the less apparent is image noise and the easier it is to perceive low-contrast structures. Spatial resolution is ultimately limited by sampling, but both image noise and resolution are strongly affected by the reconstruction filter. As a result, diagnostically acceptable image quality at acceptable doses of radiation requires appropriately designed clinical protocols, including appropriate kilovolt peaks, amperages, slice thicknesses, and reconstruction filters.

  16. The contribution of PET/CT to improved patient management.

    PubMed

    Ell, P J

    2006-01-01

    With the introduction of both SPET/CT and PET/CT, multimodality imaging has truly entered routine clinical practice. Multiple slice spiral CT scanners have been incorporated with multiple detector gamma cameras or PET systems, such that the benefit of these modalities can be achieved in one patient sitting. The subject of this manuscript is PET/CT and its impact on patient management. Applications of PET/CT span the whole field of medical and surgical oncology since very few cancers do not take up the labelled glucose tracer, (18)F-FDG. Given the contrast achieved, high-quality data can be obtained with FDG PET/CT. This technology has now spread worldwide and has been the subject of intense interest, as witnessed by the vast body of published evidence. In this short overview, only a brief discussion of the main clinical applications is possible. Novel applications of PET/CT outside the field of oncology are expected in the near future.

  17. The need for skull radiography in patients presenting for CT

    SciTech Connect

    Tress, B.M.

    1983-01-01

    One thousand patients had both CT of the head and a conventional skull series of radiographs. Radiographic findings were abnormal in 250 patients (25%), but only 64 patients (6.4%) had diagnostically significant abnormalities at radiography that were not detected by CT. If the 163 patients who presented after acute trauma were excluded from the series, only 39 (4.7%) of the remaining patients had radiographically significant abnormal findings that were not seen at CT, and only two (0.2%) of these abnormalities could not be diagnosed by a lateral skull radiograph alone. In only five patients (0.5%) was the management actively changed because an abnormaltiy that was detected at skull radiography was not detected at CT. Thus, in nontrauma patients who have stroke, epilepsy, dementia, or non-specific symptoms without focal signs, or have recently undergone craniotomy, and who have been referred for CT, skull radiographs are not justified. In the patient with a history and findings that are strongly suggestive of a pathological disorder anywhere other than in the sella turcica, cerebello-pontine angle, and paranasal sinuses, only the lateral skull radiograph should be obtained after CT, and only if CT is equivocal.

  18. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  19. Selecting children for head CT following head injury

    PubMed Central

    Kemp, A; Nickerson, E; Trefan, L; Houston, R; Hyde, P; Pearson, G; Edwards, R; Parslow, RC; Maconochie, I

    2016-01-01

    Objective Indicators for head CT scan defined by the 2007 National Institute for Health and Care Excellence (NICE) guidelines were analysed to identify CT uptake, influential variables and yield. Design Cross-sectional study. Setting Hospital inpatient units: England, Wales, Northern Ireland and the Channel Islands. Patients Children (<15 years) admitted to hospital for more than 4 h following a head injury (September 2009 to February 2010). Interventions CT scan. Main outcome measures Number of children who had CT, extent to which NICE guidelines were followed and diagnostic yield. Results Data on 5700 children were returned by 90% of eligible hospitals, 84% of whom were admitted to a general hospital. CT scans were performed on 30.4% of children (1734), with a higher diagnostic yield in infants (56.5% (144/255)) than children aged 1 to 14 years (26.5% (391/1476)). Overall, only 40.4% (984 of 2437 children) fulfilling at least one of the four NICE criteria for CT actually underwent one. These children were much less likely to receive CT if admitted to a general hospital than to a specialist centre (OR 0.52 (95% CI 0.45 to 0.59)); there was considerable variation between healthcare regions. When indicated, children >3 years were much more likely to have CT than those <3 years (OR 2.35 (95% CI 2.08 to 2.65)). Conclusion Compliance with guidelines and diagnostic yield was variable across age groups, the type of hospital and region where children were admitted. With this pattern of clinical practice the risks of both missing intracranial injury and overuse of CT are considerable. PMID:27449674

  20. Comparison of CT scanning and radionuclide imaging in liver disease

    SciTech Connect

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient.

  1. A Neonatal Bimodal MR-CT Head Template

    PubMed Central

    Mohtasebi, Mehrana; Abrishami Moghaddam, Hamid; Grebe, Reinhard; Gity, Masoumeh; Wallois, Fabrice

    2017-01-01

    Neonatal MR templates are appropriate for brain structural analysis and spatial normalization. However, they do not provide the essential accurate details of cranial bones and fontanels-sutures. Distinctly, CT images provide the best contrast for bone definition and fontanels-sutures. In this paper, we present, for the first time, an approach to create a fully registered bimodal MR-CT head template for neonates with a gestational age of 39 to 42 weeks. Such a template is essential for structural and functional brain studies, which require precise geometry of the head including cranial bones and fontanels-sutures. Due to the special characteristics of the problem (which requires inter-subject inter-modality registration), a two-step intensity-based registration method is proposed to globally and locally align CT images with an available MR template. By applying groupwise registration, the new neonatal CT template is then created in full alignment with the MR template to build a bimodal MR-CT template. The mutual information value between the CT and the MR template is 1.17 which shows their perfect correspondence in the bimodal template. Moreover, the average mutual information value between normalized images and the CT template proposed in this study is 1.24±0.07. Comparing this value with the one reported in a previously published approach (0.63±0.07) demonstrates the better generalization properties of the new created template and the superiority of the proposed method for the creation of CT template in the standard space provided by MR neonatal head template. The neonatal bimodal MR-CT head template is freely downloadable from https://www.u-picardie.fr/labo/GRAMFC. PMID:28129340

  2. Spectral optimization for micro-CT

    SciTech Connect

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2012-06-15

    Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of

  3. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  4. Cholesterol granuloma of the petrous apex: CT diagnosis

    SciTech Connect

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  5. [Prognostic significance of helical CT in patients with destructive pancreatitis].

    PubMed

    Bulanova, T V

    2000-01-01

    Spiral scanning computed tomography (CT) is able not only to image the pancreas and to evaluate its structure, but to interpret the status of the adjacent organs and tissues. CT symptoms of pancreatic necrotic changes and multiorgan failure were studied in the prospective follow-up of 47 patients with prior destructive pancreatitis (158 studies). CT differentially substantiated indications for choosing treatment policy for different forms of pancreatic lesions. The paper gives a quantitative assessment of necrotic pancreatic parencymatous areas and shows its prognostic value.

  6. A simple method for labeling CT images with respiratory states

    SciTech Connect

    Berlinger, Kajetan; Sauer, Otto; Vences, Lucia; Roth, Michael

    2006-09-15

    A method is described for labeling CT images with their respiratory state by a needle, connected to the patient's chest/abdomen. By means of a leverage the needle follows the abdominal respiratory motion. The needle is visible as a blurred spot in every CT slice. The method was tested with nine patients. A series of volume scans during free breathing was performed. The detected positions of the moving needle in every single slice were compared to each other thus enabling respiratory state assignment. The tool is an inexpensive alternative to complex respiratory measuring tools for four dimensional (4D) CT and was greatly accepted in the clinic due to its simplicity.

  7. Could contrast-enhanced CT detect STEMI prior to electrocardiogram?

    PubMed

    Sabbagh, Chadi; Rahi, Mayda; Baz, Maria; Haddad, Fadi; Helwe, Omar; Aoun, Noel; Ibrahim, Tony; Abdo, Lynn

    2015-01-01

    We present here a case in which contrast-enhanced computed tomography (CT) was the first diagnostic tool to detect myocardial hypoperfusion in a patient with atypical symptoms and normal electrocardiogram (ECG) on admission. An ST-segment elevation was detected thereafter on a second ECG realized several minutes after CT with raised troponin levels. Percutaneous coronary intervention was performed after failure of thrombolysis and confirmed occlusion of the left anterior descending artery. Further studies are needed to evaluate the role of high-resolution contrast-enhanced CT with or without coronary angiography in the workup of suspected myocardial infarction in the setting of a normal ECG.

  8. MR Evaluation of the Nontraumatic Acute Abdomen with CT Correlation.

    PubMed

    Bannas, Peter; Pickhardt, Perry J

    2015-11-01

    Cross-sectional imaging plays a crucial role in the triage of patients with acute abdominal pain. Ionizing radiation exposure is a recognized drawback of computed tomography (CT), the primary imaging technique. MR imaging is a promising alternative to CT; it provides excellent image quality with high-contrast resolution without the disadvantages of ionizing radiation and iodinated contrast. This article provides a basic overview of the typical MR findings of the most frequent disease entities encountered in the setting of the nontraumatic acute abdomen, including direct comparison with CT findings to familiarize the readers with these same findings on MR.

  9. Classification of CT-brain slices based on local histograms

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  10. Use of CT in the evaluation of cochlear otosclerosis

    SciTech Connect

    Mafee, M.F.; Valvassori, G.E.; Deitch, R.L.; Norouzi, P.; Henrikson, G.C.; Capek, V.; Applebaum, E.L.

    1985-09-01

    Otosclerosis (otospongiosis) occurs when the hard endochondral bone of the otic capsule is replaced by spongy vascular foci of haversian bone. Using computed tomography (CT), the authors studied the ears of 32 selected patients with mixed or sensorineural hearing loss; 24 were suspected of having otosclerosis. CT proved valuable in detecting cochlear otosclerosis, foci of demineralization, and changes in bony texture and enables the easy recognition of subtle radiographic findings. This paper also reports the CT findings of temporal bones in osteogenesis imperfecta and Paget disease.

  11. Cervical neural foramina: Correlation of microtomy and CT anatomy

    SciTech Connect

    Pech, P.; Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1985-04-01

    The CT appearance of the cervical neural foramina and contents is described in detail. Nineteen cervical spine specimens were studied with CT and corresponding cryomicrotomy in direct axial, sagittal, coronal, and oblique planes. Both ventra and dorsal nerve roots can be identified in the foramen's lower portion at or below the disk level. The dorsal nerve roots and ganglion contact the superior facet. The ventral nerve roots contact the uncinate process and bottom of the neural foramen. The ventral nerve roots, dorsal nerve roots and ganglion, and vertebral artery are resolved with current high-resolution CT.

  12. Correlative CT and anatomic study of the sciatic nerve

    SciTech Connect

    Pech, P.; Haughton, V.

    1985-05-01

    Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.

  13. FDG PET/CT findings of common bile duct tuberculosis.

    PubMed

    Dong, Aisheng; Wang, Yang; Gong, Jing; Zuo, Changjing

    2014-01-01

    Common bile duct (CBD) tuberculosis is rare. A 39-year-old woman was referred because of a 5-month history of abdominal pain. Abdominal enhanced MRI and CT showed dilatation of the distal CBD with irregularly thickened wall. Enhanced CT revealed enlarged retroperitoneal lymph nodes. FDG PET/CT showed increased FDG uptake of the CBD lesion and several retroperitoneal lymph nodes with slight FDG uptake. CBD cholangiocarcinoma with retroperitoneal lymph node metastasis was suspected. CBD tuberculosis was confirmed by endoluminal biopsy. Tuberculosis should be considered in the differential diagnosis of abnormal biliary FDG accumulation, particularly in tuberculosis endemic areas.

  14. CT versus FDG-PET/CT response evaluation in patients with metastatic colorectal cancer treated with irinotecan and cetuximab

    PubMed Central

    Skougaard, Kristin; Johannesen, Helle Hjorth; Nielsen, Dorte; Schou, Jakob Vasehus; Jensen, Benny Vittrup; Høgdall, Estrid V S; Hendel, Helle Westergren

    2014-01-01

    We compared morphologic computed tomography (CT)-based to metabolic fluoro-deoxy-glucose (FDG) positron emission tomography (PET)/CT-based response evaluation in patients with metastatic colorectal cancer and correlated the findings with survival and KRAS status. From 2006 to 2009, patients were included in a phase II trial and treated with cetuximab and irinotecan every second week. They underwent FDG-PET/CT examination at baseline and after every fourth treatment cycle. Response evaluation was performed prospectively according to Response Evaluation Criteria in Solid Tumors (RECIST 1.0) and retrospectively according to Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST). Best overall responses were registered. Sixty-one patients were eligible for response evaluation. Partial response (PR) rate was 18%, stable disease (SD) rate 64%, and progressive disease (PD) rate 18%. Partial metabolic response (PMR) rate was 56%, stable metabolic disease rate 33%, and progressive metabolic disease (PMD) rate 11%. Response agreement was poor, κ-coefficient 0.19. Hazard ratio for overall survival for responders (PR/PMR) versus nonresponders (PD/PMD) was higher for CT- than for FDG-PET/CT evaluation. Within patients with KRAS mutations, none had PR but 44% had PMR. In conclusion, morphologic and metabolic response agreement was poor primarily because a large part of the patients shifted from SD with CT evaluation to PMR when evaluated with FDG-PET/CT. Furthermore, a larger fraction of the patients with KRAS mutations had a metabolic treatment response. PMID:24941936

  15. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  16. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  17. {sup 18}F-FDG PET-CT Simulation for Non-Small-Cell Lung Cancer: Effect in Patients Already Staged by PET-CT

    SciTech Connect

    Hanna, Gerard G.; McAleese, Jonathan; Carson, Kathryn J.; Stewart, David P.; Cosgrove, Vivian P.; Eakin, Ruth L.; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H.; Young, V.A. Linda D.C.R.; O'Sullivan, Joe M.

    2010-05-01

    Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV{sub CT} to GTV{sub FUSED} was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  18. Automatic Lumbar Spondylolisthesis Measurement in CT Images.

    PubMed

    Liao, Shu; Zhan, Yiqiang; Dong, Zhongxing; Yan, Ruyi; Gong, Liyan; Zhou, Xiang Sean; Salganicoff, Marcos; Fei, Jun

    2016-07-01

    Lumbar spondylolisthesis is one of the most common spinal diseases. It is caused by the anterior shift of a lumbar vertebrae relative to subjacent vertebrae. In current clinical practices, staging of spondylolisthesis is often conducted in a qualitative way. Although meyerding grading opens the door to stage spondylolisthesis in a more quantitative way, it relies on the manual measurement, which is time consuming and irreproducible. Thus, an automatic measurement algorithm becomes desirable for spondylolisthesis diagnosis and staging. However, there are two challenges. 1) Accurate detection of the most anterior and posterior points on the superior and inferior surfaces of each lumbar vertebrae. Due to the small size of the vertebrae, slight errors of detection may lead to significant measurement errors, hence, wrong disease stages. 2) Automatic localize and label each lumbar vertebrae is required to provide the semantic meaning of the measurement. It is difficult since different lumbar vertebraes have high similarity of both shape and image appearance. To resolve these challenges, a new auto measurement framework is proposed with two major contributions: First, a learning based spine labeling method that integrates both the image appearance and spine geometry information is designed to detect lumbar vertebrae. Second, a hierarchical method using both the population information from atlases and domain-specific information in the target image is proposed for most anterior and posterior points positioning. Validated on 258 CT spondylolisthesis patients, our method shows very similar results to manual measurements by radiologists and significantly increases the measurement efficiency.

  19. Dynamic bowtie for fan-beam CT.

    PubMed

    Liu, Fenglin; Wang, Ge; Cong, Wenxiang; Hsieh, Scott S; Pelc, Norbert J

    2013-01-01

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy discriminating photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. With a mechanical rotation of a dynamic bowtie and an adaptive adjustment of an x-ray source flux, an x-ray beam intensity profile can be modulated. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dynamic range of detected signals inside the field of view. Although our design is optimized for an elliptical phantom, the resultant dynamic bowtie can be applied to a real fan-beam scan if the underlying cross-section can be approximated as an ellipse. Furthermore, our design methodology can be applied to specify an optimized dynamic bowtie for any cross-section of a patient, preferably using rapid prototyping technology.

  20. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  1. Automated vertebra identification in CT images

    NASA Astrophysics Data System (ADS)

    Ehm, Matthias; Klinder, Tobias; Kneser, Reinhard; Lorenz, Cristian

    2009-02-01

    In this paper, we describe and compare methods for automatically identifying individual vertebrae in arbitrary CT images. The identification is an essential precondition for a subsequent model-based segmentation, which is used in a wide field of orthopedic, neurological, and oncological applications, e.g., spinal biopsies or the insertion of pedicle screws. Since adjacent vertebrae show similar characteristics, an automated labeling of the spine column is a very challenging task, especially if no surrounding reference structures can be taken into account. Furthermore, vertebra identification is complicated due to the fact that many images are bounded to a very limited field of view and may contain only few vertebrae. We propose and evaluate two methods for automatically labeling the spine column by evaluating similarities between given models and vertebral objects. In one method, object boundary information is taken into account by applying a Generalized Hough Transform (GHT) for each vertebral object. In the other method, appearance models containing mean gray value information are registered to each vertebral object using cross and local correlation as similarity measures for the optimization function. The GHT is advantageous in terms of computational performance but cuts back concerning the identification rate. A correct labeling of the vertebral column has been successfully performed on 93% of the test set consisting of 63 disparate input images using rigid image registration with local correlation as similarity measure.

  2. Gastrohepatic ligament: normal and pathologic CT anatomy

    SciTech Connect

    Balfe, D.M.; Mauro, M.A.; Koehler, R.E.; Lee, J.K.T.; Weyman, P.J.; Picus, D.; Peterson, R.R.

    1984-02-01

    In a review of 200 consecutive CT scans of the upper abdomen, the structures within the gastrohepatic ligament (GHL) were well seen in 182 (91%). In 85% of these 182 patients, the largest structure visible within the GHL was 6mm or smaller. A total of 27 patients had a structure larger than 6 mm within the GHL;this finding could be explained in 13 by the presence of a normal anatomic variant. Of the 14 others, 12 had known tumor arising in or known to have spread to the upper abdomen. Two patients had no obvious explanation. Fourteen patients with cancers of the stomach (9 patients), pancreas (3 patients), and esophagus (2 patients) had 57 intact nodes that were evaluated pathologically. Of these 40/40 benign nodes and 10/17 malignant nodes were less than or equal to 8 mm in size. When anatomic variants are excluded, the finding of rounded structures greater than 8 mm in the GHL is a reliable indicator of left gastric node involvement by carcinoma or lymphoma or of coronary venous dilatation.

  3. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT.

    PubMed

    McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I

    2012-08-01

    This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.

  4. Concurrent Diffuse Pyelonephritis and Prostatitis: Discordant Findings on Sequential FDG PET/CT and 67Ga SPECT/CT Imaging.

    PubMed

    Lucaj, Robert; Achong, Dwight M

    2017-01-01

    A 45-year-old man underwent FDG PET/CT for initial imaging evaluation of recurrent Escherichia coli urinary tract infections, which demonstrated no significant FDG uptake in either kidney and subtle FDG uptake in the right prostate lobe. Subsequent Ga SPECT/CT demonstrated abnormal intense gallium uptake throughout the right kidney and entire prostate gland, clearly discordant with PET/CT findings and consistent with unexpected concurrent pyelonephritis and prostatitis. Although FDG has effectively replaced Ga in everyday clinical practice, the current case serves as a reminder that there is still a role for Ga in the evaluation of genitourinary infections.

  5. A one year experience with the multislice helical CT.

    PubMed

    Rigauts, H

    1999-12-01

    New detector morphology and increased computer power have led to a second leap in CT technology. With multislice helical CT, four slices per rotation are reconstructed resulting in a 3 to 6 times reduction of the examination time. During our one-year experience with the multislice CT, we have learnt that the major advantage of the technique is the possibility to cover a large volume with thin slices. Combination of both makes it possible to scan an entire anatomic region during the optimal enhancement phase (after i.v. contrast injection) with a high spatial resolution. New diagnostic possibilities can be explored by CT together with improved and more detailed post-processing tools.

  6. Development of lung cancer CT screening operating support system

    NASA Astrophysics Data System (ADS)

    Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2009-02-01

    In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.

  7. Tracking the Remodeling of SNOMED CT's Bacterial Infectious Diseases.

    PubMed

    Ochs, Christopher; Case, James T; Perl, Yehoshua

    2016-01-01

    SNOMED CT's content undergoes many changes from one release to the next. Over the last year SNOMED CT's Bacterial infectious disease subhierarchy has undergone significant editing to bring consistent modeling to its concepts. In this paper we analyze the stated and inferred structural modifications that affected the Bacterial infectious disease subhierarchy between the Jan 2015 and Jan 2016 SNOMED CT releases using a two-phased approach. First, we introduce a methodology for creating a human readable list of changes. Next, we utilize partial-area taxonomies, which are compact summaries of SNOMED CT's content and structure, to identify the "big picture" changes that occurred in the subhierarchy. We illustrate how partial-area taxonomies can be used to help identify groups of concepts that were affected by these editing operations and the nature of these changes. Modeling issues identified using our two-phase methodology are discussed.

  8. CT of the normal and abnormal parametria in cervical cancer

    SciTech Connect

    Vick, C.W.; Walsh, J.W.; Wheelock, J.B.; Brewer, W.H.

    1984-09-01

    To evaluate CT criteria for differentiating a cervical cancer confined to the cervix from a lesion that invades the parametria, 16 patients with newly diagnosed, untreated cervical cancer were studied with CT. Twenty-five parameria were confined by radical hysterectomy, transvaginal parametrial fine-needle aspiration cytology, or excretory urography. In 17 tumor-positive parametria, CT findings associated with parametrial tumor invasion were: 1) irregularity or poor definition of the lateral cervical margins; 2) prominent parametrial soft-tissue strands; 3) obliteration of the periureteral fat plane; and 4) an eccentric parametrial soft-tissue mass. Irregularity of the cervical margins and prominent parametrial strands were seen most commonly with parametrial tumor invasion, but were also occasionally seen with parametrial inflammation. On the basis of the criteria developed in this report, CT may be used as an adjunct to the physical examination in differentiating stage I cervical cancer from more advanced disease in selected patients.

  9. Perforation of the mesenteric small bowel: etiologies and CT findings.

    PubMed

    Hines, John; Rosenblat, Juliana; Duncan, Dameon R; Friedman, Barak; Katz, Douglas S

    2013-04-01

    The purpose of this article is to illustrate and discuss the various etiologies of perforation of the mesenteric small bowel and associated findings on abdominal CT. Perforation of the mesenteric small bowel is an uncommon cause of an acute abdomen and can be due to various etiologies. In underdeveloped countries, infection is probably the most common cause, while in industrialized nations, perforation may be due to Crohn disease, diverticulitis, foreign body, trauma, tumor, mechanical obstruction, primary ischemic event, or iatrogenic causes. CT is usually the initial imaging examination in patients with an acute abdomen and is sensitive in diagnosing small bowel perforation. CT findings in the setting of small bowel perforation are often subtle, but when present, may help the radiologist determine a specific cause of perforation. The aims of this pictorial essay are to review the various causes of mesenteric small bowel perforation and to discuss and illustrate the CT findings that can help arrive at the diagnosis.

  10. Data Correction for Gantry-tilted Local CT.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming; Zhou, Jiayin

    2005-01-01

    Gantry-tilted helical multi-slice computed tomography (CT) refers to the helical scanning CT system equipped with multi-row detector operating at some gantry tilting angle. Its purpose is to avoid the area which is vulnerable to the X-ray radiation. The local tomography is to reduce the total radiation dose by only scanning the region of interest for image reconstruction. In this paper we consider the scanning scheme, and incorporate the local tomography technique with the gantry-tilted helical multi-slice CT. The image degradation problem caused by gantry tilting is studied, and a new error correction method is proposed to deal with this problem in the local CT. Computer simulation shows that the proposed method can enhance the local imaging performance in terms of image sharpness and artifacts reduction.

  11. How we read FCH-PET/CT for prostate cancer.

    PubMed

    Beauregard, Jean-Mathieu; Beaulieu, Alexis

    2016-12-06

    Over the last decade, (18)F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) has gained in popularity for the staging and restaging of patients with prostate cancer (PCa). However, despite abundant literature on the topic, there is a lack of publications on how to actually interpret FCH-PET/CT in a clinical setting. Here we propose a practical, TNM-oriented approach to read FCH-PET/CT, with notes on procedure technique, image display, review sequence and report structure. The purpose of this article is to provide guidance to radiologists, nuclear medicine physicians and residents who are new to FCH-PET/CT, as well as to propose an alternate approach to more experienced physicians.

  12. RadNet Air Data From Hartford, CT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Hartford. CT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. 78 FR 7848 - Connecticut Disaster Number CT-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Connecticut Disaster Number CT-00028 AGENCY: U.S. Small Business Administration. ACTION: Amendment...: U.S. Small Business Administration, Processing and Disbursement Center, 14925 Kingsport Road,...

  14. [CT findings of the temporal bones in Waardenburg's syndrome].

    PubMed

    Irie, K; Ogata, H; Mitsudome, A

    1990-05-01

    We reported three cases of Waardenburg's syndrome and discussed CT findings of the temporal bones. Two cases of these patients were mother and daughter. Case 1, a two-year-old girl, had lateral displacement of the medial canthi, a broad nasal root, hetero-chromic iridis, left ptosis, albinotic fundus, and bilateral congenital deafness. CT findings of the temporal bones showed enlarged vestibules, short lateral semicircular canal, and absent right posterior semicircular canal. The mother had congenital deafness, heterochromia iridis, and a white forelock and showed similar abnormal CT findings of the temporal bones. Case 2, a one-year-old boy, had lateral displacement of the medial canthi, a broad nasal root, partial heterochromia iridis, albinotic fundus, and bilateral congenital deafness. CT findings of the temporal bones showed enlarged vestibules and absence of semicircular canals except the right lateral semicircular canal. These cases were diagnosed as Waardenburg's syndrome on the basis of the characteristic features.

  15. Noninvasive Physiologic Assessment of Coronary Stenoses Using Cardiac CT

    PubMed Central

    Fan, Zhanming

    2015-01-01

    Coronary CT angiography (CCTA) has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD). CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive “one-stop-shop” diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT), and transluminal attenuation gradient (TAG), CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD. PMID:25685790

  16. Comparison of FDG-PET/CT and CT for Delineation of Lumpectomy Cavity for Partial Breast Irradiation

    SciTech Connect

    Ford, Eric C. Lavely, William C.; Frassica, Deborah A.; Myers, Lee T.; Asrari, Fariba; Wahl, Richard L.; Zellars, Richard C.

    2008-06-01

    Purpose: The success of partial breast irradiation critically depends on proper target localization. We examined the use of fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) for improved lumpectomy cavity (LC) delineation and treatment planning. Methods and Materials: Twelve breast cancer patients underwent FDG-PET/CT on a GE Discovery scanner with a median time from surgery to PET/CT of 49 days. The LC was contoured on the CT scan by a radiation oncologist and, together with a nuclear medicine physician, on the PET/CT scan. The volumes were calculated and compared in each patient. Treatment planning target volumes (PTVs) were calculated by expanding the margin 2 cm beyond the LC, maintaining a 5-mm margin from the skin and chest wall, and the treatment plans were evaluated. In addition, a study with a patient-like phantom was conducted to evaluate the effect that the window/level settings might have on contouring. Results: The margin of the LC was well visualized on all FDG-PET images. The phantom results indicated that the difference between the known volume and the FDG-PET-delineated volume was <10%, regardless of the window/level settings. The PET/CT volumes were larger than the CT volumes in all cases (median volume ratio, 1.68; range, 1.24-2.45; p = 0.004). The PET/CT-based PTVs were also larger than the CT-based PTV (median volume ratio, 1.16; range, 1.08-1.64; p = 0.006). In 9 of 12 patients, a CT-based treatment plan did not provide adequate coverage of the PET/CT-based PTV (99% of the PTV received <95% of the prescribed dose), resulting in substantial cold spots in some plans. In these cases, treatment plans were generated which were specifically designed to cover the larger PET/CT-based PTV. Although these plans showed an increased dose to the normal tissues, the increases were modest: the non-target breast volume receiving {>=}50 Gy, lung volume receiving {>=}30 Gy, and heart volume receiving {>=}5 Gy increased by 5

  17. CT and MRI of aortic coarctation: pre- and postsurgical findings.

    PubMed

    Karaosmanoglu, Ali Devrim; Khawaja, Ranish Deedar Ali; Onur, Mehmet Ruhi; Kalra, Mannudeep K

    2015-03-01

    OBJECTIVE. The purpose of this article is to summarize the roles of CT and MRI in the diagnosis and follow-up of patients with aortic coarctation. CONCLUSION. Aortic coarctation is a common congenital heart disease accounting for approximately 6-8% of congenital heart defects. Despite its deceptively simple anatomic presentation, it is a complex medical problem with several associated anatomic and physiologic abnormalities. CT and MRI may provide very accurate information of the coarctation anatomy and other associated cardiac abnormalities.

  18. Spleen in Hodgkin disease: diagnostic value of CT

    SciTech Connect

    Strijk, S.P.; Wagener, D.J.T.; Bogman, M.J.J.T.; de Pauw, B.E.; Wobbes, T.

    1985-03-01

    Findings of CT of the spleen were compared with those of histologic examination in 35 patients who had Hodgkin disease. CT provides a simple way to calculate splenic size. This index is also of value in the assessment of the histologic state of the spleen. An accuracy rate of 91%, specificity of 94%, and a sensitivity of 89% in diagnosing splenic localization of lymphoma was found in this study.

  19. Adrenal glands in patients with cogenital renal anomalies: CT appearance

    SciTech Connect

    Kenney, P.J.; Robbins, G.L.; Ellis, D.A.; Spirt, B.A.

    1985-04-01

    The CT appearance of the adrenal glands was investigated in 30 patients with congenital renal anomalies. The ipsilateral adrenal was clearly identified in 83% of these patients; in all of them, the adrenal was a paraspinal disk-shaped organ, which appeared linear on CT. Conversely, the adrenals retained their normal shape in a control group of 20 patients with acquired renal atrophy or prior simple nephrectomy.

  20. Estimating cancer risks to adults undergoing body CT examinations.

    PubMed

    Huda, Walter; He, Wenjun

    2012-06-01

    The purpose of the study is to estimate cancer risks from the amount of radiation used to perform body computed tomography (CT) examination. The ImPACT CT Patient Dosimetry Calculator was used to compute values of organ doses for adult body CT examinations. The radiation used to perform each examination was quantified by the dose-length product (DLP). Patient organ doses were converted into corresponding age and sex dependent cancer risks using data from BEIR VII. Results are presented for cancer risks per unit DLP and unit effective dose for 11 sensitive organs, as well as estimates of the contribution from 'other organs'. For patients who differ from a standard sized adult, correction factors based on the patient weight and antero-posterior dimension are provided to adjust organ doses and the corresponding risks. At constant incident radiation intensity, for CT examinations that include the chest, risks for females are markedly higher than those for males, whereas for examinations that include the pelvis, risks in males were slightly higher than those in females. In abdominal CT scans, risks for males and female patients are very similar. For abdominal CT scans, increasing the patient age from 20 to 80 resulted in a reduction in patient risks of nearly a factor of 5. The average cancer risk for chest/abdomen/pelvis CT examinations was ∼26 % higher than the cancer risk caused by 'sensitive organs'. Doses and radiation risks in 80 kg adults were ∼10 % lower than those in 70 kg patients. Cancer risks in body CT can be estimated from the examination DLP by accounting for sex, age, as well as patient physical characteristics.

  1. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  2. Query Expansion Using SNOMED-CT and Weighing Schemes

    DTIC Science & Technology

    2014-11-01

    1 Query Expansion Using SNOMED-CT and Weighing Schemes Dawit Girmay, Afshin Deroie York University, Toronto Canada Abstract Despite all the...Query Expansion , Ontology, relevance score Keywords Weighing Methods, SNOMED-CT 1. Introduction and Motivation The Clinical Track is instituted to...control number. 1. REPORT DATE NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Query Expansion Using

  3. Review of congenital inner ear abnormalities on CT temporal bone.

    PubMed

    Yiin, R S Z; Tang, P H; Tan, T Y

    2011-09-01

    The aetiology of profound hearing loss in children is complex and multifactorial. Congenital inner ear abnormality is a major cause of hearing loss in children. CT temporal bone imaging is the modality of choice in the investigation of hearing loss. Recognising the congenital abnormalities of the inner ear guides the clinician's management of the condition. This pictorial essay illustrates the congenital abnormalities of the inner ear on high resolution CT temporal bone images and correlation with developmental arrest during embryology.

  4. CT in congenitally-corrected transposition of the great vessels.

    PubMed

    Takasugi, J E; Godwin, J D; Chen, J T

    1987-01-01

    Congenitally-corrected transposition of the great vessels (CTGV) may be detected de novo in adulthood and the plain radiographic findings may be ambiguous or they may be mimicked by a mediastinal mass. CT readily shows the malposition of the aorta and pulmonary artery, and may also show associated congenital heart lesions. The following cases demonstrate the CT findings in CTGV and the distinction of CTGV from conditions resembling it on radiographs.

  5. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  6. Assessment of lung tumor response by perfusion CT.

    PubMed

    Coche, E

    2013-01-01

    Perfusion CT permits evaluation of lung cancer angiogenesis and response to therapy by demonstrating alterations in lung tumor vascularity. It is advocated that perfusion CT performed shortly after initiating therapy may provide a better evaluation of physiological changes rather than the conventional size assessment obtained with RECIST. The radiation dose,the volume of contrast medium delivered to the patient and the reproducibility of blood flow parameters remain an issue for this type of investigation.

  7. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    SciTech Connect

    Ireland, Rob H. . E-mail: r.ireland@sheffield.ac.uk; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-07-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 {+-} 0.80 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 {+-} 1.22 mm and 4.96 {+-} 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy.

  8. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  9. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  10. Cardiopulmonary manifestations of isolated pulmonary valve infective endocarditis demonstrated with cardiac CT.

    PubMed

    Passen, Edward; Feng, Zekun

    2015-01-01

    Right-sided infective endocarditis involving the pulmonary valve is rare. This pictorial essay discusses the use and findings of cardiac CT combined with delayed chest CT and noncontrast chest CT of pulmonary valve endocarditis. Cardiac CT is able to show the full spectrum of right-sided endocarditis cardiopulmonary features including manifestations that cannot be demonstrated by echocardiography.

  11. Skills of Cognitive Therapy (SoCT): A New Measure of Patients' Comprehension and Use

    ERIC Educational Resources Information Center

    Jarrett, Robin B.; Vittengl, Jeffrey R.; Clark, Lee Anna; Thase, Michael E.

    2011-01-01

    The authors describe the development and psychometric properties of a new measure called the Skills of Cognitive Therapy (SoCT) in depressed adults and their cognitive therapists. The 8-item SoCT assesses patients' understanding and use of basic cognitive therapy (CT) skills rated from the perspectives of both observers (SoCT-O; therapists in this…

  12. Brain Imaging Using Mobile CT: Current Status and Future Prospects.

    PubMed

    John, Seby; Stock, Sarah; Cerejo, Russell; Uchino, Ken; Winners, Stacey; Russman, Andrew; Masaryk, Thomas; Rasmussen, Peter; Hussain, Muhammad S

    2016-01-01

    Computed tomography (CT) is an invaluable tool in the diagnosis of many clinical conditions. Several advancements in biomedical engineering have achieved increase in speed, improvements in low-contrast detectability and image quality, and lower radiation. Portable or mobile CT constituted one such important advancement. It is especially useful in evaluating critically ill, intensive care unit patients by scanning them at bedside. A paradigm shift in utilization of mobile CT was its installation in ambulances for the management of acute stroke. Given the time sensitive nature of acute ischemic stroke, Mobile stroke units (MSU) were developed in Germany consisting of an ambulance equipped with a CT scanner, point of care laboratory system, along with teleradiological support. In a radical reconfiguration of stroke care, the MSU would bring the CT scanner to the stroke patient, without waiting for the patient at the emergency room. Two separate MSU projects in Saarland and Berlin demonstrated the safety and feasibility of this concept for prehospital stroke care, showing increased rate of intravenous thrombolysis and significant reduction in time to treatment compared to conventional care. MSU also improved the triage of patients to appropriate and specialized hospitals. Although multiple issues remain yet unanswered with the MSU concept including clinical outcome and cost-effectiveness, the MSU venture is visionary and enables delivery of life-saving and enhancing treatment for ischemic and hemorrhagic stroke. In this review, we discuss the development of mobile CT and its applications, with specific focus on its use in MSUs along with our institution's MSU experience.

  13. Volumetric applications for spiral CT in the thorax

    NASA Astrophysics Data System (ADS)

    Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.

    1994-05-01

    Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.

  14. Effectiveness of CT for clinical stratification of occupational lung edema.

    PubMed

    Masaki, Yoshinori; Sugiyama, Keisaku; Tanaka, Hiroyuki; Uwabe, Yasuhide; Takayama, Masanori; Sakai, Masao; Hayashi, Takuya; Otsuka, Masayuki; Suzuki, Shinya

    2007-01-01

    We treated two occupational lung diseases in different situations during military training. The purpose of this study is to investigate the availability of CT scanning for the evaluation of inhalation pulmonary edema. Two soldiers suffered severe lung edema after using a spray for the daily maintenance of their firearms. Four soldiers suffered severe dyspnea after undertaking drills in a narrow zone where numerous smoke bombs had been used. We evaluated these patients from several aspects. CT scans of the chest of spray-induced patients revealed bilateral infiltration predominantly in the upper lung fields. The patients received steroid pulse treatment and gradually recovered. CT scans of the chest of smoke-induced patients revealed bilateral ground-glass attenuation with peripheral lung sparing. The patients gradually recovered with steroid therapy. In accordance with previous studies, CT scans of the chest in our patients demonstrated that the periphery of the lungs remained normal, except in cases of serious injury. When differential diagnosis is required, we consider that CT scans of the chest are particularly useful; CT findings are useful in determining the severity of lung injury as well as the diagnosis of inhalation pulmonary edema.

  15. Estimating radiation risk induced by CT screening for Korean population

    NASA Astrophysics Data System (ADS)

    Yang, Won Seok; Yang, Hye Jeong; Min, Byung In

    2017-02-01

    The purposes of this study are to estimate the radiation risks induced by chest/abdomen computed tomography (CT) screening for healthcare and to determine the cancer risk level of the Korean population compared to other populations. We used an ImPACT CT Patient Dosimetry Calculator to compute the organ effective dose induced by CT screening (chest, low-dose chest, abdomen/pelvis, and chest/abdomen/pelvis CT). A risk model was applied using principles based on the BEIR VII Report in order to estimate the lifetime attributable risk (LAR) using the Korean Life Table 2010. In addition, several countries including Hong Kong, the United States (U.S.), and the United Kingdom, were selected for comparison. Herein, each population exposed radiation dose of 100 mSv was classified according to country, gender and age. For each CT screening the total organ effective dose calculated by ImPACT was 6.2, 1.5, 5.2 and 11.4 mSv, respectively. In the case of Korean female LAR, it was similar to Hong Kong female but lower than those of U.S. and U.K. females, except for those in their twenties. The LAR of Korean males was the highest for all types of CT screening. However, the difference of the risk level was negligible because of the quite low value.

  16. Dual-source CT for chest pain assessment

    PubMed Central

    Nikolaou, Konstantin; Becker, Alexander; Leber, Alexander W.; Rist, Carsten; Wintersperger, Bernd J.; Reiser, Maximilian F.; Becker, Christoph R.

    2007-01-01

    Comprehensive CT angiography protocols offering a simultaneous evaluation of pulmonary embolism, coronary stenoses and aortic disease are gaining attractiveness with recent CT technology. The aim of this study was to assess the diagnostic accuracy of a specific dual-source CT protocol for chest pain assessment. One hundred nine patients suffering from acute chest pain were examined on a dual-source CT scanner with ECG gating at a temporal resolution of 83 ms using a body-weight-adapted contrast material injection regimen. The images were evaluated for the cause of chest pain, and the coronary findings were correlated to invasive coronary angiography in 29 patients (27%). The files of patients with negative CT examinations were reviewed for further diagnoses. Technical limitations were insufficient contrast opacification in six and artifacts from respiration in three patients. The most frequent diagnoses were coronary stenoses, valvular and myocardial disease, pulmonary embolism, aortic aneurysm and dissection. Overall sensitivity for the identification of the cause of chest pain was 98%. Correlation to invasive coronary angiography showed 100% sensitivity and negative predictive value for coronary stenoses. Dual-source CT offers a comprehensive, robust and fast chest pain assessment. PMID:18034246

  17. PET/CT for radiotherapy: image acquisition and data processing.

    PubMed

    Bettinardi, V; Picchio, M; Di Muzio, N; Gianolli, L; Messa, C; Gilardi, M C

    2010-10-01

    This paper focuses on acquisition and processing methods in positron emission tomography/computed tomography (PET/CT) for radiotherapy (RT) applications. The recent technological evolutions of PET/CT systems are described. Particular emphasis is dedicated to the tools needed for the patient positioning and immobilization, to be used in PET/CT studies as well as during RT treatment sessions. The effect of organ and lesion motion due to patient's respiration on PET/CT imaging is discussed. Breathing protocols proposed to minimize PET/CT spatial mismatches in relation to respiratory movements are illustrated. The respiratory gated (RG) 4D-PET/CT techniques, developed to measure and compensate for organ and lesion motion, are then introduced. Finally a description is provided of different acquisition and data processing techniques, implemented with the aim at improving: i) image quality and quantitative accuracy of PET images, and ii) target volume definition and treatment planning in RT, by using specific and personalised motion information.

  18. Iterative reconstruction methods in X-ray CT.

    PubMed

    Beister, Marcel; Kolditz, Daniel; Kalender, Willi A

    2012-04-01

    Iterative reconstruction (IR) methods have recently re-emerged in transmission x-ray computed tomography (CT). They were successfully used in the early years of CT, but given up when the amount of measured data increased because of the higher computational demands of IR compared to analytical methods. The availability of large computational capacities in normal workstations and the ongoing efforts towards lower doses in CT have changed the situation; IR has become a hot topic for all major vendors of clinical CT systems in the past 5 years. This review strives to provide information on IR methods and aims at interested physicists and physicians already active in the field of CT. We give an overview on the terminology used and an introduction to the most important algorithmic concepts including references for further reading. As a practical example, details on a model-based iterative reconstruction algorithm implemented on a modern graphics adapter (GPU) are presented, followed by application examples for several dedicated CT scanners in order to demonstrate the performance and potential of iterative reconstruction methods. Finally, some general thoughts regarding the advantages and disadvantages of IR methods as well as open points for research in this field are discussed.

  19. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  20. [PET/CT in breast cancer: an update].

    PubMed

    Groheux, D; Moretti, J-L; Giacchetti, S; Hindié, E; Teyton, P; Cuvier, C; Bousquet, G; Misset, J-L; Boin, C; Espié, M

    2009-11-01

    The authors discuss the various roles of 18F-FDG PET/CT in the management of breast cancer. Roles of new tracers such as F-18 fluoro-L-thymidine (a marker of cell proliferation), 18-fluoro-17-B-estradiol (marker of estrogen receptor) and sodium fluoride (marker of bone matrix) are also mentioned. There is little justification for the use of FDG-PET/CT in patient with clinically T1 (< or = 2 cm) N0 tumours. Notably, it cannot be used as a substitute to SLNB "sentinel lymph node biopsy" for axillary staging due to limited sensitivity for the detection of small metastases. The case is different in higher risk patients, and especially so in patients with locally advanced disease. FDG-PET/CT in these patients might depict lymph node involvement in the level III of Berg or in supraclavicular or internal mammary basins. It might also uncover occult distant metastases, notably, early osteomedullary infiltration. Thus, for these tumors, initial PET/CT can enable better intramodality treatment planning or a change in treatment. PET/CT as a whole-body examination is also very efficient in case of suspicion of recurrence. On the other hand, many studies show that this functional imaging could be used to assess early response to neoadjuvant chemotherapy or to chemotherapy of metastatic disease. 18FDG-PET/CT could thus become an unavoidable modality to answer various clinical situations.

  1. CT and MR imaging of the thoracic aorta

    PubMed Central

    Splendiani, Alessandra; Barile, Antonio; Squillaci, Ettore; Di Cesare, Annamaria; Brunese, Luca; Masciocchi, Carlo

    2016-01-01

    Abstract At present time, both CT and MRI are valuable techniques in the study of the thoracic aorta. Nowadays, CT represents the most widely employed technique for the study of the thoracic aorta. The new generation CTs show sensitivities up to 100% and specificities of 98-99%. Sixteen and wider row detectors provide isotropic pixels, mandatory for the ineludible longitudinal reconstruction. The main limits are related to the X-ray dose expoure and the use of iodinated contrast media. MRI has great potential in the study of the thoracic aorta. Nevertheless, if compared to CT, acquisition times remain longer and movement artifact susceptibility higher. The main MRI disadvantages are claustrophobia, presence of ferromagnetic implants, pacemakers, longer acquisition times with respect to CT, inability to use contrast media in cases of renal insufficiency, lower spatial resolution and less availability than CT. CT is preferred in the acute aortic disease. Nevertheless, since it requires iodinated contrast media and X-ray exposure, it may be adequately replaced by MRI in the follow up of aortic diseases. The main limitation of MRI, however, is related to the scarce visibility of stents and calcifications. PMID:28352783

  2. Creating an outpatient center of excellence in CT.

    PubMed

    Itri, Jason N; Bakow, Eric; Woods, Jordan

    2014-12-01

    CT examinations represent a substantial portion of the workload for many radiology departments, and optimizing service delivery is a critical function to ensure customer satisfaction. This article describes how the Six Sigma methodology was used in the radiology department at a large academic hospital to improve the patient experience and increase CT capacity while reducing waste and improving staff satisfaction. The 5 distinct phases of Six Sigma are reviewed as they apply to our CT Center of Excellence project: define, measure, analyze, improve, and control. Process metrics used in this project include the percentage of outpatient CT exams started within 5 minutes of the scheduled appointment time, and the number of studies with protocols selected >48 hours before the CT exam is performed. Outcome metrics include monthly department expense per scan and CT Press Ganey "standard test and treatment" mean scores. An approach to developing interventions is described based on identifying critical sources of variation, ranking these by creating risk prioritization numbers, performing root cause analysis, and utilizing the failure mode and effects analysis tool to prioritize possible solutions. Finally, the key features of action plans and a control plan are reviewed.

  3. Visualisation of the Bonebridge by means of CT and CBCT

    PubMed Central

    2013-01-01

    Background With the Bonebridge, a new bone-anchored hearing aid has been available since March 2012. The objective of the study was to analyse the visualisation of the implant itself as well as its impact on the representation of the bony structures of the petrosal bone in CT, MRI and cone beam CT (CBCT). Methods The Bonebridge was implanted unilaterally in two completely prepared human heads. The radiological imaging by means of CBCT, 64-slice CT, 1.5-T and 3.0-T MRI was conducted both preoperatively and postoperatively. The images were subsequently evaluated from both the ENT medical and nd radiological perspectives. Results As anticipated, no visualisation of the implant or of the petrosal bones could be realised on MRI because of the interactive technology and the magnet artefact. In contrast, an excellent evaluability of the implant itself as well as of the surrounding neurovascular structures (sinus sigmoideus, skull base, middle ear, inner ear, inner auditory canal) was exhibited in both the CT and in the CBCT. Conclusion The Bonebridge can be excellently imaged with the radiological imaging technologies of CT and CBCT. In the process, CBCT shows discrete advantages in comparison with CT. No relevant restrictions in image quality in the evaluation of the bony structures of the petrosal bones could be seen. PMID:24004903

  4. CT characteristics of primary retroperitoneal neoplasms in children.

    PubMed

    Xu, Yufeng; Wang, Jichen; Peng, Yun; Zeng, Jinjin

    2010-09-01

    Primary retroperitoneal neoplasms are uncommon in children. Retroperitoneal neoplasms are either mesodermal, neurogenic, germ cell ectodermal or lymphatic in origin. In general, primary retroperitoneal neoplasms in children have different spectrum and prevalence compared to those in adults. Neuroblastoma, rhabdomyosarcoma, benign teratoma and lymphoma are the common retroperitoneal neoplasms. In this review, the clinical and CT futures of common retroperitoneal neoplasms in children are described. Coarse, amorphous, and mottled calcification are very common in neuroblastoma. Paraganglioma tends to show marked and early enhancement and may present with clinical symptoms associated with the excess catecholamine. Sarcomas are often very large and have heterogeneous appearance. Imaging cannot be reliably used to identify the type of retroperitoneal sarcomas due to overlapped radiographic features. In children, lipoblastoma is the most common lipomatous tumor in the retroperitoneum. The percentage of visible fat in tumor varies depending on the cellular composition of the lesion. The CT characteristics of teratoma are quite variable, which may be cystic, solid, on a combination of both. Typically teratoma appears as a large complex mass containing fluid, fat, fat-fluid level, and calcifications. Lymphoma is often homogeneous on both enhanced and unenhanced CT scans. Necrosis and calcification are rare on CT. In conclusion, making a final histological diagnosis of retroperitoneal tumor base on CT features is not often possible; however, CT can help to develop a differential diagnosis and determine the size and extent of the retroperitoneal neoplasms.

  5. Expression of MAGE-C1/CT7 and MAGE-C2/CT10 Predicts Lymph Node Metastasis in Melanoma Patients

    PubMed Central

    Mihic-Probst, Daniela; Seifert, Burkhardt; Soldini, Davide; Dummer, Reinhard; Knuth, Alexander; van den Broek, Maries; Moch, Holger

    2011-01-01

    MAGE-C1/CT7 and MAGE-C2/CT10 are members of the large MAGE family of cancer-testis (CT) antigens. CT antigens are promising targets for immunotherapy in cancer because their expression is restricted to cancer and germ line cells and a proportion of cancer patients presents with immune responses against CT antigens, which clearly demonstrates their immunogenicity. This study investigates the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary and metastatic melanoma. Immunohistochemical staining of tissue microarrays that consisted of 59 primary malignant melanomas of the skin, 163 lymph node and distant melanoma metastases and 68 melanoma cell lines was performed. We found MAGE-C1/CT7 expression in 15 out of 50 (24%) primary melanomas and 15 out of 50 (24%) cell lines, whereas MAGE-C2/CT10 was detected in 17 out of 51 (33%) primary melanomas and 14 out of 68 (17%) cell lines. MAGE-C1/CT7 and MAGE-C2/CT10 were both detected in 40% of melanoma metastases. Patients with MAGE-C1/CT7 or MAGE-C2/CT10 positive primary melanoma had significantly more lymph node metastases (p = 0.005 and p<0.001, resp.). Prediction of lymph node metastasis by MAGE-C1/CT7 and MAGE-C2/CT10 was independent of tumor cell proliferation rate (Ki67 labeling index) in a multivariate analysis (p = 0.01). Our results suggest that the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary melanoma is a potent predictor of sentinel lymph node metastasis. PMID:21738656

  6. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    SciTech Connect

    Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.

  7. CoNNeCT Baseband Processor Module

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  8. An implementation of dual energy CT scanning.

    PubMed

    Marshall, W; Hall, E; Doost-Hoseini, A; Alvarez, R; Macovski, A; Cassel, D

    1984-08-01

    We have described a prereconstruction method for dual energy (PREDECT) analysis of CT scans. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. Our implementation proves these statements and eliminates some of the objectionable noise. We constructed a phantom with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, we fabricated a beam filter changer containing erbium, tungsten, aluminum, and steel. We used erbium, tungsten, and steel at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. We found a decrease in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing.

  9. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-11-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  10. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    PubMed Central

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-01-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  11. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    SciTech Connect

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  12. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  13. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  14. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  15. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  16. CT differentiation between tubo-ovarian and appendiceal origin of right lower quadrant abscess: CT, clinical, and laboratory correlation.

    PubMed

    Hiller, Nurith; Fux, Tal; Finkelstein, Anna; Mezeh, Haggi; Simanovsky, Natalia

    2016-04-01

    To investigate which clinical, laboratory, and CT findings potentially facilitate the differential diagnosis between tubo-ovarian abscess (TOA) and periappendicular abscess (PAA), we retrospectively reviewed abdominal CT examinations and medical records for all women who presented to our medical center with unilateral right pelvic abscess formation who underwent CT evaluation from 2004-2014. A wide spectrum of clinical data and imaging findings were recorded. CT diagnoses were made in consensus by two experienced body radiologists blinded to the final diagnosis. Findings associated with the infections were compared using the chi-square (χ(2)) or the Fisher exact test. Ninety-one patients were included; 58 with PAA (mean age 46 years) and 33 with TOA (mean age 37 years). Pain on cervical motion (67 %) and vaginal discharge (21 %) were significantly more common in TOA; other clinical signs were similar. The presence of right ovarian vein entering the mass on CT had 100 % specificity and 94 % sensitivity to TOA. Distended right fallopian tube (79 %), mass posterior to mesovarium (76 %), contralateral pelvic fat stranding (55 %), and thickening of sacrouterine ligaments (55 %) were significantly more common in TOA. Positive "arrowhead sign" (91 %), mesenteric lymphadenopathy (85 %), small bowel wall thickening (55 %), fluid in the right paracolic gutter (50 %), and cecal wall thickening (48 %) were significantly more common in PAA;internal gas was revealed only in PAA (33 %). Distinct CT features can increase diagnostic certainty regarding the origin of right lower quadrant abscess in women.

  17. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  18. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  19. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    PubMed

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-07

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  20. Analysis of patient CT dose data using virtualdose

    NASA Astrophysics Data System (ADS)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT

  1. Cerebellar Transcranial Direct Current Stimulation (ctDCS)

    PubMed Central

    Grimaldi, Giuliana; Argyropoulos, Georgios P.; Bastian, Amy; Cortes, Mar; Davis, Nicholas J.; Edwards, Dylan J.; Ferrucci, Roberta; Fregni, Felipe; Galea, Joseph M.; Hamada, Masahi; Manto, Mario; Miall, R. Chris; Morales-Quezada, Leon; Pope, Paul A.; Priori, Alberto; Rothwell, John; Tomlinson, S. Paul; Celnik, Pablo

    2016-01-01

    The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar–motor cortex connectivity, likely via cerebellar–thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. PMID:25406224

  2. Ring artifacts removal from synchrotron CT image slices

    NASA Astrophysics Data System (ADS)

    Wei, Zhouping; Wiebe, Sheldon; Chapman, Dean

    2013-06-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  3. Purulent lupus panniculitis unmasked by FDG-PET/CT scan

    PubMed Central

    van der Geest, Kornelis S.M.; Moerman, Rada V.; Koopmans, Klaas P.; Holman, Nicole D.; Janssen, Wilbert M.T.

    2016-01-01

    Abstract Rationale: Lupus panniculitis (LP) is a unique variant of cutaneous lupus erythematosus. Clinical manifestations are typically mild and include erythema, nodules, and small ulcers. In certain cases, diagnosing LP may be challenging. Skin overlying the typical subcutaneous inflammation may appear normal, and bacterial superinfections of the skin sometimes mask the underlying LP. It has been suggested that a computed tomography (CT) scan may help to identify obscure LP lesions. Here, we report a case of a 54-year-old woman with an unusually severe form of LP, in which the full disease extent was only revealed by a fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scan. Patient concerns/Diagnoses/Interventions/Outcomes: Our patient initially presented with a bacterial infection of the skin. After initial improvement with antibiotic treatment, new erythematous lesions and sterile subcutaneous pus collections developed. An FDG-PET/CT scan revealed extensive subcutaneous inflammation at sites that had appeared normal during physical examination and on CT scan. As the subcutaneous lesions showed a remarkably linear pattern on FDG-PET/CT scan, the patient was suspected of having LP. After confirmation of this diagnosis by a deep-skin biopsy, our patient was treated with systemic glucocorticoids. Eventually, our patient succumbed to complications of LP and its treatment. Lessons: Our case demonstrates that clinical manifestations of LP are not always mild and that timely diagnosis is needed. Furthermore, we show that obscure LP lesions are more readily identified on an FDG-PET/CT scan than CT scan. PMID:27902603

  4. Interior micro-CT with an offset detector

    SciTech Connect

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge

    2014-06-15

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three

  5. PET/CT and radiotherapy in prostate cancer.

    PubMed

    De Jong, I J; De Haan, T D; Wiegman, E M; Van Den Bergh, A C M; Pruim, J; Breeuwsma, A J

    2010-10-01

    Radiotherapy is one of the corner stone treatments for patients with prostate cancer. Especially for locally advanced tumors radiotherapy +/- adjuvant androgen deprivation treatment is standard of care. This brings up the need for accurate assessment of extra prostatic tumor growth and/or the presence of nodal metastases for selection of the optimal radiation dose and treatment volume. Morphological imaging like transrectal ultra sound, computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used but are limited in their accuracy in detecting extra prostatic extension and nodal metastases. In this article we present a structured review of the literature on positron emission tomography (PET)/CT and radiotherapy in prostate cancer patients with emphasis on: 1) the pretreatment assessment of extra prostatic tumor extension, nodal and distant metastases; 2) the intraprostatic tumor characterization and radiotherapy treatment planning; and 3) treatment evaluation and the use of PET/CT in guidance of salvage treatment. PET/CT is not an appropriate imaging technique for accurate T-staging of prostate cancer prior to radiotherapy. Although macroscopic disease beyond the prostatic capsule and into the periprostatic fat or in seminal vesicle is often accurately detected, the microscopic extension of prostate cancer remains undetected. Choline PET/CT holds a great potential as a single step diagnostic procedure of lymph nodes and skeleton, which could facilitate radiotherapy treatment planning. At present the use of PET/CT for treatment planning in radiotherapy is still experimental. Choline PET based tumor delineation is not yet standardized and different segmentation-algorithms are under study. However, dose escalation using dose-painting is feasible with only limited increases of the doses to the bladder and rectum wall. PET/CT using either acetate or choline is able to detect recurrent prostate cancer after radiotherapy but stratification of patients

  6. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  7. Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Dedes, George; Zöllner, Christoph; Handrack, Josefine; Janssens, Guillaume; Orban de Xivry, Jonathan; Reiner, Michael; Paganelli, Chiara; Riboldi, Marco; Kamp, Florian; Söhn, Matthias; Wilkens, Jan J.; Baroni, Guido; Belka, Claus; Parodi, Katia

    2015-01-01

    The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region. The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation. Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom

  8. Diagnostic Performance of Resting CT Myocardial Perfusion in Patients With Possible Acute Coronary Syndrome

    PubMed Central

    Branch, Kelley R.; Busey, Janet; Mitsumori, Lee M.; Strote, Jared; Caldwell, James H.; Busch, Joshua H.; Shuman, William P.

    2014-01-01

    OBJECTIVE Coronary CT angiography has high sensitivity, but modest specificity, to detect acute coronary syndrome. We studied whether adding resting CT myocardial perfusion imaging improved the detection of acute coronary syndrome. SUBJECTS AND METHODS Patients with low-to-intermediate cardiac risk presenting with possible acute coronary syndrome received both the standard of care evaluation and a research thoracic 64-MDCT examination. Patients with an obstructive (> 50%) stenosis or a nonevaluable coronary segment on CT were diagnosed with possible acute coronary syndrome. CT perfusion was determined by applying gray and color Hounsfield unit maps to resting CT angiography images. Adjudicated patient diagnoses were based on the standard of care and 3-month follow-up. Patient-level diagnostic performance for acute coronary syndrome was calculated for coronary CT, CT perfusion, and combined techniques. RESULTS A total of 105 patients were enrolled. Of the nine (9%) patients with acute coronary syndrome, all had obstructive CT stenoses but only three had abnormal CT perfusion. CT perfusion was normal in all other patients. To detect acute coronary syndrome, CT angiography had 100% sensitivity, 89% specificity, and a positive predictive value of 45%. For CT perfusion, specificity and positive predictive value were each 100%, and sensitivity was 33%. Combined cardiac CT and CT perfusion had similar specificity but a higher positive predictive value (100%) than did CT angiography. CONCLUSION Resting CT perfusion using CT angiographic images may have high specificity and may improve CT positive predictive value for acute coronary syndrome without added radiation and contrast. However, normal resting CT perfusion cannot exclude acute coronary syndrome. PMID:23617513

  9. CT-1-CP-induced ventricular electrical remodeling in mice.

    PubMed

    Chen, Shu-fen; Wei, Tao-zhi; Rao, Li-ya; Xu, Ming-guang; Dong, Zhan-ling

    2015-02-01

    The chronic effects of carboxyl-terminal polypeptide of Cardiotrophin-1 (CT-1-CP) on ventricular electrical remodeling were investigated. CT-1-CP, which contains 16 amino acids in sequence of the C-terminal of Cardiotrophin-1, was selected and synthesized, and then administered to Kunming mice (aged 5 weeks) by intraperitoneal injection (500 ng·g⁻¹·day⁻¹) (4 groups, n=10 and female: male=1:1 in each group) for 1, 2, 3 and 4 weeks, respectively. The control group (n=10, female: male=1:1) was injected by physiological saline for 4 weeks. The epicardial monophasic action potential (MAP) was recorded by using a contact-type MAP electrode placed vertically on the left ventricular (LV) epicardium surface, and the electrocardiogram (ECG) signal in lead II was monitored synchronously. ECG intervals (RR, PR, QRS and QT) and the amplitude of MAP (Am), the maximum upstroke velocity (Vmax), as well as action potential durations (APDs) at different repolarization levels (APD30, APD50, APD70, and APD90) of MAP were determined and analyzed in detail. There were no significant differences in RR and P intervals between CT-1-CP-treated groups and control group, but the PR segment and the QRS complex were greater in the former than in the latter (F=2.681 and 5.462 respectively, P<0.05). Though QT interval and the corrected QT interval (QTc) were shorter in CT-1-CP-treated groups than in control group, the QT dispersion (QTd) of them was greater in the latter than in the former (F=3.090, P<0.05) and increased with the time. The ECG monitoring synchronously with the MAP showed that the compression of MAP electrode on the left ventricular epicardium induced performance similar to myocardium ischemia. As compared with those before chest-opening, the PR segment and QT intervals remained basically unchanged in control group, but prolonged significantly in all CT-1-CP-treated groups and the prolongation of QT intervals increased gradually along with the time of exposure to CT-1-CP

  10. Characterization of the nanoDot OSLD dosimeter in CT

    SciTech Connect

    Scarboro, Sarah B.; Cody, Dianna; Followill, David; Court, Laurence; Stingo, Francesco C.; Kry, Stephen F.; Alvarez, Paola; Zhang, Di; McNitt-Gray, Michael

    2015-04-15

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  11. Characterization of the nanoDot OSLD dosimeter in CT

    PubMed Central

    Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  12. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our

  13. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    PubMed

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2016-09-07

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm(3) . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm(3) while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm(3) compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm(3) . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  14. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning

    SciTech Connect

    Yoo, Sua . E-mail: sua.yoo@duke.edu; Yin, F.-F.

    2006-12-01

    Purpose: Cone-beam computed tomography (CBCT) images are currently used for positioning verification. However, it is yet unknown whether CBCT could be used in dose calculation for replanning in adaptive radiation therapy. This study investigates the dosimetric feasibility of CBCT-based treatment planning. Methods and Materials: Hounsfield unit (HU) values and profiles of Catphan, homogeneous/inhomogeneous phantoms, and various tissue regions of patients in CBCT images were compared to those in CT. The dosimetric consequence of the HU variation was investigated by comparing CBCT-based treatment plans to conventional CT-based plans for both phantoms and patients. Results: The maximum HU difference between CBCT and CT of Catphan was 34 HU in the Teflon. The differences in other materials were less than 10 HU. The profiles for the homogeneous phantoms in CBCT displayed reduced HU values up to 150 HU in the peripheral regions compared to those in CT. The scatter and artifacts in CBCT became severe surrounding inhomogeneous tissues with reduced HU values up to 200 HU. The MU/cGy differences were less than 1% for most phantom cases. The isodose distributions between CBCT-based and CT-based plans agreed very well. However, the discrepancy was larger when CBCT was scanned without a bowtie filter than with bowtie filter. Also, up to 3% dosimetric error was observed in the plans for the inhomogeneous phantom. In the patient studies, the discrepancies of isodose lines between CT-based and CBCT-based plans, both 3D and IMRT, were less than 2 mm. Again, larger discrepancy occurred for the lung cancer patients. Conclusion: This study demonstrated the feasibility of CBCT-based treatment planning. CBCT-based treatment plans were dosimetrically comparable to CT-based treatment plans. Dosimetric data in the inhomogeneous tissue regions should be carefully validated.

  15. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  16. Strategies for reduction of radiation dose in cardiac multislice CT.

    PubMed

    Paul, Jean-François; Abada, Hicham T

    2007-08-01

    Because cardiac computed tomography (CT) (mainly coronary CT angiography) is a very promising technique, used more and more for coronary artery evaluation, the benefits and risks of this new low-invasive technique must be balanced. Radiation dose is a major concern for coronary CT angiography, especially in case of repeated examinations or in particular subgroups of patients (for example young female patients). Radiation dose to patient tends to increase from 16- to 64-slice CT. Radiation exposure in ECG-gated acquisitions may reach up to 40 mSv; considerable differences are attributable to the performance of CT machines, to technical dose-sparing tools, but also to radiological habits. Setting radiation dose at the lowest level possible should be a constant goal for the radiologist. Current technological tools are detailed in regard to their efficiency. Optimisation is necessary, by a judicious use of technological tools and also by individual adaptation of kV or mAs. This paper reviews the different current strategies for radiation dose reduction, keeping image quality constant. Data from the literature are discussed, and future technological developments are considered in regards to radiation dose reduction. The particular case of paediatric patients with congenital heart disease is also addressed.

  17. Metrology, applications and methods with high energy CT systems

    SciTech Connect

    Uhlmann, N.; Voland, V.; Salamon, M.; Hebele, S.; Boehnel, M.; Reims, N.; Schmitt, M.; Kasperl, S.

    2014-02-18

    The increase of Computed Tomography (CT) as an applicable metrology and Non Destructive Testing (NDT) method raises interest on developing the application fields to larger objects, which were rarely used in the past due to their requirements on the imaging system. Especially the classical X-ray generation techniques based on standard equipment restricted the applications of CT to typical material penetration lengths of only a few cm of steel. Even with accelerator technology that offers a suitable way to overcome these restrictions just the 2D radioscopy technique found a widespread application. Beside the production and detection of photons in the MeV range itself, the achievable image quality is limited using standard detectors due to the dominating absorption effect of Compton Scattering at high energies. Especially for CT reconstruction purposes these effects have to be considered on the development path from 2D to 3D imaging. Most High Energy CT applications are therefore based on line detectors shielding scattered radiation to a maximum with an increase in imaging quality but with time consuming large volume scan capabilities. In this contribution we present the High-Energy X-ray Imaging project at the Fraunhofer Development Centre for X-ray Technology with the characterization and the potential of the CT-system according to metrological and other application capabilities.

  18. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  19. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  20. Structural measures to track the evolution of SNOMED CT hierarchies.

    PubMed

    Wei, Duo; Helen Gu, Huanying; Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-10-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users' needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy's structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy's structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it.

  1. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  2. Structural Measures to Track the Evolution of SNOMED CT Hierarchies

    PubMed Central

    Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-01-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003

  3. An atypical sarcoidosis involvement in FDG PET/CT

    PubMed Central

    Robin, Philippe; Benigni, Paolo; Feger, Benoit; Salaun, Pierre-Yves; Abgral, Ronan

    2016-01-01

    Abstract Rationale: Sarcoidosis is an idiopathic systemic inflammatory granulomatous disorder comprised of epithelioid and multinucleated giant cells with little necrosis which involve various organs. Laryngeal involvement is extremely rare, with a prevalence of about 0.5 to 1%. Diagnoses: Here we present a case of laryngeal involvement of sarcoidosis demonstrated on 18F-Fluorodesoxyglucose Positron-Emission Tomography/Computed Tomography (FDG PET/CT). Patient concerns: A 63 year-old man suffering from dysphonia was referred to our department for characterization of laryngeal lesion suspicious for cancer with non-informative biopsy, the sample was not sufficient for diagnosis. Interventions: FDG PET/CT showed a pathological uptake on the right vocal cord, but also highlighted a bilateral uptake in intrathoracic hilar lymphadenopathy areas, typically found in several inflammatory diseases. Outcomes: New laryngeal targeted biopsies revealed non-caseating epithelioid granulomas suggesting sarcoidosis involvement. After 6 months of systemic steroid treatment, FDG PET/CT showed a significant decrease of the laryngeal uptake. Lessons: This case shows the usefulness of FDG PET/CT to accurately assess inflammatory activity in rare extra-pulmonary sarcoidosis involvement. Moreover, this case emphasizes that FDG PET/CT is an interesting tool for assessing therapeutic efficacy of inflammatory diseases such as sarcoidosis. PMID:28033265

  4. CT Imaging of Coronary Stents: Past, Present, and Future

    PubMed Central

    Mahnken, Andreas H.

    2012-01-01

    Coronary stenting became a mainstay in coronary revascularization therapy. Despite tremendous advances in therapy, in-stent restenosis (ISR) remains a key problem after coronary stenting. Coronary CT angiography evolved as a valuable tool in the diagnostic workup of patients after coronary revascularization therapy. It has a negative predictive value in the range of 98% for ruling out significant ISR. As CT imaging of coronary stents depends on patient and stent characteristics, patient selection is crucial for success. Ideal candidates have stents with a diameter of 3 mm and more. Nevertheless, even with most recent CT scanners, about 8% of stents are not accessible mostly due to blooming or motion artifacts. While the diagnosis of ISR is currently based on the visual assessment of the stent lumen, functional information on the hemodynamic significance of in-stent stenosis became available with the most recent generation of dual source CT scanners. This paper provides a comprehensive overview on previous developments, current techniques, and clinical evidence for cardiac CT in patients with coronary artery stents. PMID:22997590

  5. Cardiac calcified amorphous tumors: CT and MRI findings

    PubMed Central

    Yılmaz, Ravza; Demir, Ali Aslan; Önür, İmran; Yılbazbayhan, Dilek; Dursun, Memduh

    2016-01-01

    PURPOSE We aimed to evaluate computed tomography (CT) and magnetic resonance imaging (MRI) findings of cardiac calcified amorphous tumors (CATs). METHODS CT and MRI findings of cardiac CATs in 12 patients were included. We retrospectively examined patient demographics, location, size, shape configuration, imaging features, calcification distribution of tumors, and accompanying medical problems. RESULTS There was a female predominance (75%), with a mean age at presentation of 65 years. Patients were mostly asymptomatic on presentation (58.3%). The left ventricle of the heart was mostly involved (91%). CT findings of CATs were classified as partial calcification with a hypodense mass in four patients or a diffuse calcified form in eight. Calcification was predominant with large foci appearance as in partially calcified masses. On T1- and T2-weighted magnetic resonance images, CATs appeared hypointense and showed no contrast enhancement. CONCLUSION The shape and configuration of cardiac CATs are variable with a narrow spectrum of CT and MRI findings, but large foci in a partially calcified mass or diffuse calcification of a mass on CT is very important in the diagnosis of cardiac CATs. Masses show a low signal intensity on T1- and T2-weighted images with no contrast enhancement on MRI. PMID:27705878

  6. Validation of 3D ultrasound: CT registration of prostate images

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Karangelis, Grigoris; Dold, Christian

    2003-05-01

    All over the world 20% of men are expected to develop prostate cancer sometime in his life. In addition to surgery - being the traditional treatment for cancer - the radiation treatment is getting more popular. The most interesting radiation treatment regarding prostate cancer is Brachytherapy radiation procedure. For the safe delivery of that therapy imaging is critically important. In several cases where a CT device is available a combination of the information provided by CT and 3D Ultrasound (U/S) images offers advantages in recognizing the borders of the lesion and delineating the region of treatment. For these applications the CT and U/S scans should be registered and fused in a multi-modal dataset. Purpose of the present development is a registration tool (registration, fusion and validation) for available CT volumes with 3D U/S images of the same anatomical region, i.e. the prostate. The combination of these two imaging modalities interlinks the advantages of the high-resolution CT imaging and low cost real-time U/S imaging and offers a multi-modality imaging environment for further target and anatomy delineation. This tool has been integrated into the visualization software "InViVo" which has been developed over several years in Fraunhofer IGD in Darmstadt.

  7. Adaptively Tuned Iterative Low Dose CT Image Denoising.

    PubMed

    Hashemi, SayedMasoud; Paul, Narinder S; Beheshti, Soosan; Cobbold, Richard S C

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.

  8. Automatic nonrigid registration of whole body CT mice images.

    PubMed

    Li, Xia; Yankeelov, Thomas E; Peterson, Todd E; Gore, John C; Dawant, Benoit M

    2008-04-01

    Three-dimensional intra- and intersubject registration of image volumes is important for tasks that include quantification of temporal/longitudinal changes, atlas-based segmentation, computing population averages, or voxel and tensor-based morphometry. While a number of methods have been proposed to address this problem, few have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the majority of registration algorithms have been applied. This article presents a new method for the automatic registration of whole body computed tomography (CT) volumes, which consists of two main steps. Skeletons are first brought into approximate correspondence with a robust point-based method. Transformations so obtained are refined with an intensity-based nonrigid registration algorithm that includes spatial adaptation of the transformation's stiffness. The approach has been applied to whole body CT images of mice, to CT images of the human upper torso, and to human head and neck CT images. To validate the authors method on soft tissue structures, which are difficult to see in CT images, the authors use coregistered magnetic resonance images. They demonstrate that the approach they propose can successfully register image volumes even when these volumes are very different in size and shape or if they have been acquired with the subjects in different positions.

  9. A research prototype system for quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Kappler, S.; Glasser, F.; Janssen, S.; Kraft, E.; Reinwand, M.

    2010-04-01

    Recent publications emphasize the benefits of quantum-counting applied to the field of Computed Tomography (CT). We present a research prototype scanner with a CdTe-based quantum-counting detector and 20 cm field-of-view (FOV). As of today there is no direct converter material on the market able to operate reliably in the harsh high-flux regime of clinical CT scanners. Nevertheless, we investigate the CT imaging performance that could be expected with high-flux capable material. Therefore we chose pixel sizes of 0.05 mm2, a good compromise between high-flux counting ability and energy resolution. Every pixel is equipped with two energy threshold counters, enabling contrast-optimization and dual-energy scans. We present a first quantitative analysis of contrast measurements, in which we limit ourselves to a low-flux scenario. Using an Iodine-based contrast agent, we find 17% contrast enhancement at 120 kVp, compared to energy-integrating CT. In addition, the general dual-energy capability was confirmed in first measurements. We conclude our work by demonstrating good agreement of measurement results and detailed CT-system simulations.

  10. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  11. Brain CT image similarity retrieval method based on uncertain location graph.

    PubMed

    Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin

    2014-03-01

    A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.

  12. Reconstruction of 4D-CT from a Single Free-Breathing 3D-CT by Spatial-Temporal Image Registration

    PubMed Central

    Wu, Guorong; Wang, Qian; Lian, Jun; Shen, Dinggang

    2011-01-01

    In the radiation therapy of lung cancer, a free-breathing 3D-CT image is usually acquired in the treatment day for image-guided patient setup, by registering with the free-breathing 3D-CT image acquired in the planning day. In this way, the optimal dose plan computed in the planning day can be transferred onto the treatment day for cancer radiotherapy. However, patient setup based on the simple registration of the free-breathing 3D-CT images of the planning and the treatment days may mislead the radiotherapy, since the free-breathing 3D-CT is actually the mixed-phase image, with different slices often acquired from different respiratory phases. Moreover, a 4D-CT that is generally acquired in the planning day for improvement of dose planning is often ignored for guiding patient setup in the treatment day. To overcome these limitations, we present a novel two-step method to reconstruct the 4D-CT from a single free-breathing 3D-CT of the treatment day, by utilizing the 4D-CT model built in the planning day. Specifically, in the first step, we proposed a new spatial-temporal registration algorithm to align all phase images of the 4D-CT acquired in the planning day, for building a 4D-CT model with temporal correspondences established among all respiratory phases. In the second step, we first determine the optimal phase for each slice of the free-breathing (mixed-phase) 3D-CT of the treatment day by comparing with the 4D-CT of the planning day and thus obtain a sequence of partial 3D-CT images for the treatment day, each with only the incomplete image information in certain slices; and then we reconstruct a complete 4D-CT for the treatment day by warping the 4D-CT of the planning day (with complete information) to the sequence of partial 3D-CT images of the treatment day, under the guidance of the 4D-CT model built in the planning day. We have comprehensively evaluated our 4D-CT model building algorithm on a public lung image database, achieving the best registration

  13. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    SciTech Connect

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-15

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  14. Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology

    PubMed Central

    Kirschner, Stefanie; Mürle, Bettina; Felix, Manuela; Arns, Anna; Groden, Christoph; Wenz, Frederik; Hug, Andreas; Glatting, Gerhard; Kramer, Martin

    2016-01-01

    Purpose There is an increasing need for small animal in vivo imaging in murine orthotopic glioma models. Because dedicated small animal scanners are not available ubiquitously, the applicability of a clinical CT scanner for visualization and measurement of intracerebrally growing glioma xenografts in living mice was validated. Materials and Methods 2.5x106 U87MG cells were orthotopically implanted in NOD/SCID/ᵞc-/- mice (n = 9). Mice underwent contrast-enhanced (300 μl Iomeprol i.v.) imaging using a micro-CT (80 kV, 75 μAs, 360° rotation, 1,000 projections, scan time 33 s, resolution 40 x 40 x 53 μm) and a clinical CT scanner (4-row multislice detector; 120 kV, 150 mAs, slice thickness 0.5 mm, feed rotation 0.5 mm, resolution 98 x 98 x 500 μm). Mice were sacrificed and the brain was worked up histologically. In all modalities tumor volume was measured by two independent readers. Contrast-to-noise ratio (CNR) and Signal-to-noise ratio (SNR) were measured from reconstructed CT-scans (0.5 mm slice thickness; n = 18). Results Tumor volumes (mean±SD mm3) were similar between both CT-modalities (micro-CT: 19.8±19.0, clinical CT: 19.8±18.8; Wilcoxon signed-rank test p = 0.813). Moreover, between reader analyses for each modality showed excellent agreement as demonstrated by correlation analysis (Spearman-Rho >0.9; p<0.01 for all correlations). Histologically measured tumor volumes (11.0±11.2) were significantly smaller due to shrinkage artifacts (p<0.05). CNR and SNR were 2.1±1.0 and 1.1±0.04 for micro-CT and 23.1±24.0 and 1.9±0.7 for the clinical CTscanner, respectively. Conclusion Clinical CT scanners may reliably be used for in vivo imaging and volumetric analysis of brain tumor growth in mice. PMID:27829015

  15. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    SciTech Connect

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia; Halaweish, Ahmed

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  16. 68Gallium-DOTATATE PET/CT Scanning Results in Patients with MEN1

    PubMed Central

    Sadowski, Samira M; Millo, Corina; Cottle-Delisle, Candice; Merkel, Roxanne; Yang, Lily A; Herscovitch, Peter; Pacak, Karel; Simonds, William F; Marx, Stephen J; Kebebew, Electron

    2015-01-01

    Background Screening for neuroendocrine tumors (NETs) in patients with multiple endocrine neoplasia type 1 (MEN1) is recommended to detect primary and metastatic tumors, which can result in significant morbidity and mortality. The utility of somatostatin receptor imaging 68Gallium-DOTATATE PET/CT in patients with MEN1 is not known. The aim of this study was to prospectively determine the accuracy of 68Gallium-DOTATATE PET/CT versus 111In-pentetreotide SPECT/CT and anatomic imaging in patients with MEN1. Study design Prospective study comparing 68Gallium-DOTATATE PET/CT, 111In-pentetreotide SPECT/CT, and triphasic CT scan to clinical, biochemical and pathological data in 26 patients with MEN1. Results 68Gallium-DOTATATE PET/CT detected 107 lesions; 111In- pentetreotide SPECT/CT detected 33 lesions; and CT scan detected 48 lesions. Lesions detected on 68Gallium-DOTATATE PET/CT had high SUVmax (median SUVmax = 72.8 [range 19–191]). In 7 of the 26 patients (27%), 68Gallium-DOTATATE PET/CT was positive with a negative 111In-pentetreotide SPECT/CT, and in 10 patients (38.5%), additional metastases were detected (range 0.3 cm to 1.5 cm). In 8 of the 26 patients (31%), there was a change in management recommendations as a result of the findings on 68Gallium-DOTATATE PET/CT that were not seen on 111In- pentetreotide SPECT/CT and CT scan. Conclusions 68Gallium-DOTATATE PET/CT is more sensitive for detecting NETs than 111In-pentetreotide SPECT/CT and CT scan in patients with MEN1. This imaging technique should be integrated into radiologic screening and surveillance of patients with MEN1, as it can significantly alter management recommendations. PMID:26206648

  17. Limited-view Neutron CT Reconstruction with Sample Boundary

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Lu, Yuanrong; Guo, Zhiyu

    Reconstruction of limited-view CT is an ill-posed inversion problem. In order to suppress the artefacts and improve the image quality, it has been proved to be a good method toincorporatesome aprioriinformation of the sample(refers to as constraint in this paper) to the iterative process. In this paper, sample boundary is considered as a constraint and SART algorithm is chosen to test the performance of the constraint. Reconstructions from different number of projections of the famous Shepp-Logan head phantom with different levels of noise were simulated; projection data of a spark plug was acquired on the cold neutron CT platform of China Advanced Research Reactor (CARR) and the spark plug was reconstructed as well. Both the simulation and experimental results show that SART algorithm with sample boundary constraint leads to remarkable improvement of image quality and convergence speed for limited-view CT reconstruction when the noise level of projection data is less than 5%.

  18. PET/CT in paediatric malignancies - An update

    PubMed Central

    Padma, Subramanyam; Sundaram, Palaniswamy Shanmuga; Tewari, Anshu

    2016-01-01

    18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging modality in adult oncological practice. Its role in childhood malignancies needs to be discussed as paediatric malignancies differ from adults in tumor subtypes and they have different tumor biology and FDG uptake patterns. This is also compounded by smaller body mass, dosimetric restrictions, and physiological factors that can affect the FDG uptake. It calls for careful planning of the PET study, preparing the child, the parents, and expertise of nuclear physicians in reporting pediatric positron emission tomography/computed tomography (PET/CT) studies. In a broad perspective, FDG-PET/CT has been used in staging, assessment of therapy response, identifying metastases and as a follow-up tool in a wide variety of pediatric malignancies. This review outlines the role of PET/CT in childhood malignancies other than hematological malignancies such as lymphoma and leukemia. PMID:27688605

  19. Normal sacroiliac joint: a CT study of asymptomatic patients

    SciTech Connect

    Vogler, J.B. III; Brown, W.H.; Helms, C.A.; Genant, H.K.

    1984-05-01

    The sacroiliac (SI) joints of 45 asymptomatic subjects were prospectively studied to define better the normal appearance of SI joints on CT scans and therby attach appropriate significance to CT signs of sacroiliitis. Joint space narrowing, subchondral sclerosis, erosions, ankylosis, osteophytes, subchondral cysts, and symmetry were evaluted. The results indicate that the SI joints demonstrate symmetry in patients under the age of 30 (100% of subjects in this age group). Those CT findings of sacroiliitis that occurred infrequently in the asymptomatic population, and hence may represent good indicators of sacroiliac disease, include increased sacral subchondral sclerosis in subjects under the age of 40 (11%), bilateral or unilateral uniform joint space of less than 2 mm (2% or 0%, respectively), erosions (2%), and intraarticular ankylosis (0%).

  20. Low-dose CT via convolutional neural network

    PubMed Central

    Chen, Hu; Zhang, Yi; Zhang, Weihua; Liao, Peixi; Li, Ke; Zhou, Jiliu; Wang, Ge

    2017-01-01

    In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods. PMID:28270976

  1. A model for clubfoot based on micro-CT data

    PubMed Central

    Windisch, Gunther; Salaberger, Dietmar; Rosmarin, Walter; Kastner, Johann; Exner, Gerhard Ulrich; Haldi-Brändle, Verena; Anderhuber, Friedrich

    2007-01-01

    The pathological anatomy of idiopathic clubfoot has been investigated for more than 180 years using anatomy, computed tomography (CT), histology and microscopy. Seven idiopathic clubfeet and two normal feet of aborted fetuses were dissected in the present study, with special emphasis on the shape of the cartilage and bones. A three-dimensional (3D) micro-CT system, which generates a series of X-ray attenuation measurements, was used to produce computed reconstructed 3D data sets of each of the separated bones. Based on the micro-CT data scans a high-definition 3D colour printing system was used to make a four times enlarged clubfoot model, precisely presenting all the bony malformations. This model reflects the complexity of the anatomy of this disease and is designed to be used in the workshops of orthopaedic surgeons and physiotherapists, for training in new surgical and manipulation techniques. PMID:17504271

  2. CT of lumbar spine disk herniation: correlation with surgical findings

    SciTech Connect

    Firooznia, H.; Benjamin, V.; Kricheff, I.I.; Rafii, M.; Golimbu, C.

    1984-03-01

    Computed tomography (CT) of the lumbar spine was performed with selectively positioned 5-mm-thick axial cross sections to examine each disk level from the top of the neural foramen to the pedicle of the next caudad vertebra. One hundred consecutive patients with 116 surgical disk explorations were reviewed. There was agreement between the CT and surgical findings in 89 patients (104 explorations) in determination of presence or absence of a herniated nucleus pulposus (HNP). Discrepancy occurred in 12 instances (11 patients): two because of incorrect interpretations, five in previously operated patients, three in spondylolisthesis, and two in spinal stenosis. There were 97 true-positives, eight false-negatives, seven true-negatives, and four false-positives. If nine previously operated patients are excluded from the study, then CT was accurate in detection of presence or absence of an HNP in 93% of the disk explorations.

  3. Experimental characterization of extra-focal radiation in CT scanners

    NASA Astrophysics Data System (ADS)

    Whiting, Bruce R.; Porras-Chaverri, Mariela A.; Evans, Joshua D.; Williamson, Jeffrey F.

    2016-03-01

    Quantitative computed tomography (CT) applications based on statistical iterative reconstruction algorithms require accurate models of the CT acquisition process, with a key component being the x-ray fan beam intensity. We present a method to experimentally determine the extra-focal radiation profile incident on individual CT detectors. Using a tungsten cylinder as a knife edge, a super-sampled signal was created from sinogram data, which traced the "occlusion" of the x-ray source as seen by a detector. By differentiating this signal and correcting for finite detector size and motion blur, the effective source profile can be recovered. Extra-focal scatter was found to be on the order of 1-3 percent of the focal beam intensity, with lower relative magnitude at the isocenter and increasing towards the edge of the fan beam, with its profile becoming asymmetric at large angles. The implications for reconstruction algorithms and QCT applications will be discussed.

  4. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  5. Histoplasmosis of the adrenal glands studied by CT

    SciTech Connect

    Wilson, D.A.; Muchmore, H.G.; Tisdal, R.G.; Fahmy, A.; Pitha, J.V.

    1984-03-01

    Computed tomography (CT) of the adrenal glands was performed on seven patients who had histologically proved disseminated histoplasmosis. All seven patients showed some degree of adrenal gland abnormality. The range of CT findings included minimal enlargement with faint flecks of calcium, moderate enlargement with focal low attenuation nodules, and massive enlargement with large areas of necrosis or dense calcification. The changes in each patient were bilateral and symmetrical. Adrenal gland shape was usually preserved. Finding of percutaneous adrenal biopsy, which was performed under CT guidance, made the diagnosis in one patient. Five of seven patients had adrenal insufficiency. It is concluded that the diagnosis of disseminated histoplasmosis should be considered in any patient who has bilateral adrenal gland enlargement and who resides in an endemic area, especially if there is evidence of adrenal insufficiency.

  6. CT of splenic and perisplenic abnormalities in septic patients

    SciTech Connect

    Balthazar, E.J.; Hilton, S.; Naidich, D.; Megibow, A.; Levine, R.

    1985-01-01

    Splenic and perisplenic pathology, demonstrated by CT examination in 14 septic patients, was correlated with the clinical course and with surgical and pathologic findings available. Twelve patients were intravenous drug addicts and two patients developed bacteremia associated with bacterial endocarditis. The CT fingings were divided into three groups: (1) Single wedge-shaped peripherally located defects were seen in five patients; there was good response to medical therapy without other complications. (2) Larger and/or multiple, rounded or oval lesions were present in five patients; two of these patients had splenic abscesses proven on subsequent splenectomy. (3) Multiple splenic lesions and fissures associated with perisplenic and subphrenic fluid collections were seen in four patients; infected splenic infarcts, splenic fractures, and infected perisplenic hemorrhagic fluid collections were found in this group of patients. The CT examination in septic patients can reliably demonstrate splenic and perisplenic pathology, and its appearance contributes greatly to the overall clinical assessment and surgical approach.

  7. Systemic Immune Response to Vaccination on FDG-PET/CT.

    PubMed

    Mingos, Mark; Howard, Stephanie; Giacalone, Nicholas; Kozono, David; Jacene, Heather

    2016-12-01

    A patient with newly diagnosed right lung cancer had transient (18)F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan.

  8. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  9. Diagnosis demystified: CT as diagnostic tool in endodontics.

    PubMed

    Shruthi, Nagaraja; Murthy, B V Sreenivasa; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-06-27

    Diagnosis in endodontics is usually based on clinical and radiographical presentations, which are only empirical methods. The role of healing profession is to apply knowledge and skills towards maintaining and restoring the patient's health. Recent advances in imaging technologies have added to correct interpretation and diagnosis. CT is proving to be an effective tool in solving endodontic mysteries through its three-dimensional visualisation. CT imaging offers many diagnostic advantages to produce reconstructed images in selected projection and low-contrast resolution far superior to that of all other X-ray imaging modalities. This case report is an endeavour towards effective treatment planning of cases with root fracture, root resorption using spiral CT as an adjuvant diagnostic tool.

  10. CT guided percutaneous needle biopsy of the chest: initial experience

    PubMed Central

    Lazguet, Younes; Maarouf, Rachid; Karrou, Marouan; Skiker, Imane; Alloubi, Ihsan

    2016-01-01

    The objective of this article is to report our first experience of CT guided percutaneous thoracic biopsy and to demonstrate the accuracy and safety of this procedure. This was a retrospective study of 28 CT-Guided Percutaneous Needle Biopsies of the Chest performed on 24 patients between November 2014 and April 2015. Diagnosis was achieved in 18 patients (75%), negative results were found in 3 patients (12,5%). Biopsy was repeated in these cases with two positive results. Complications were seen in 7 patients (29%), Hemoptysis in 5 patients (20%), Pneumothorax in 1 patient (4,1%) and vaso-vagal shock in 1 patient (4,1%). CT Guided Percutaneous Needle Biopsy of the Chest is a safe, minimally invasive procedure with high sensitivity, specificity and accuracy for diagnosis of lung lesions. PMID:27347300

  11. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

    PubMed Central

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  12. CT evaluation of complications of abdominal aortic surgery

    SciTech Connect

    Mark, A.; Moss, A.A.; Lusby, R.; Kaiser, J.A.

    1982-11-01

    The authors conducted a retrospective analysis of the CT findings in 29 consecutive patients being studied to detect complications of aortofemoral bypass surgery. Presenting symptoms included fever in 22 (76%), gastrointestinal bleeding in 2 (7%), a pulsating mass in 3 (10%), jaundice in 1 (3%), and back pain in 1 (3%). The complications observed most frequently were groin infection in 7 (24%), abdominal perigraft abscess in 11 (38%), pseudoaneurysm in 6 (21%), aorto-enteric fistula in 3 (10%), and lymphocystic hematoma in 3 (10%). There were no false negatives, and overall accuracy and sensitivity of CT in detecting complications was 100%. The authors recommend that CT be performed prior to angiography or surgery whenever an abscess, pseudoaneurysm, or aorto-enteric fistula is suspected.

  13. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  14. Physical and clinical performance of the mCT time-of-flight PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Jakoby, B. W.; Bercier, Y.; Conti, M.; Casey, M. E.; Bendriem, B.; Townsend, D. W.

    2011-04-01

    Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

  15. Automated liver segmentation for whole-body low-contrast CT images from PET-CT scanners.

    PubMed

    Wang, Xiuying; Li, Changyang; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2009-01-01

    Accurate objective automated liver segmentation in PET-CT studies is important to improve the identification and localization of hepatic tumor. However, this segmentation is an extremely challenging task from the low-contrast CT images captured from PET-CT scanners because of the intensity similarity between liver and adjacent loops of bowel, stomach and muscle. In this paper, we propose a novel automated three-stage liver segmentation technique for PET-CT whole body studies, where: 1) the starting liver slice is automatically localized based on the liver - lung relations; 2) the "masking" slice containing the biggest liver section is localized using the ratio of liver ROI size to the right half of abdomen ROI size; 3) the liver segmented from the "masking" slice forms the initial estimation or mask for the automated liver segmentation. Our experimental results from clinical PET-CT studies show that this method can automatically segment the liver for a range of different patients, with consistent objective selection criteria and reproducible accurate results.

  16. A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.

    SciTech Connect

    Hartman, C W; Reisman, D B; McLean, H S; Thomas, J

    2007-05-30

    A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal field opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.

  17. Low-Dose PET/CT and Full-Dose Contrast-Enhanced CT at the Initial Staging of Localized Diffuse Large B-Cell Lymphomas

    PubMed Central

    Sabaté-Llobera, Aida; Cortés-Romera, Montserrat; Mercadal, Santiago; Hernández-Gañán, Javier; Pomares, Helena; González-Barca, Eva; Gámez-Cenzano, Cristina

    2016-01-01

    Computed tomography (CT) has been used as the reference imaging technique for the initial staging of diffuse large B-cell lymphoma until recent days, when the introduction of positron emission tomography (PET)/CT imaging as a hybrid technique has become of routine use. However, the performance of both examinations is still common. The aim of this work was to compare the findings between low-dose 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) PET/CT and full-dose contrast-enhanced CT (ceCT) in 28 patients with localized diffuse large B-cell lymphoma according to PET/CT findings, in order to avoid the performance of ceCT. For each technique, a comparison in the number of nodal and extranodal involved regions was performed. PET/CT showed more lesions than ceCT in both nodal (41 vs. 36) and extranodal localizations (16 vs. 15). Disease staging according to both techniques was concordant in 22 patients (79%) and discordant in 6 patients (21%), changing treatment management in 3 patients (11%). PET/CT determined a better staging and therapeutic approach, making the performance of an additional ceCT unnecessary. PMID:27559300

  18. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  19. CT maxillary sinus evaluation-A retrospective cohort study

    PubMed Central

    Vaz, Paula; Faria-Almeida, Ricardo; Braga, Ana-Cristina; Felino, António

    2015-01-01

    Background Proximity of the dental roots to the sinus floor makes dental disease a probable cause of maxillary sinusitis. The aim of this study was to find out if maxillary sinus pathologic changes were more prevalent in patients with dental disease and to evaluate the performance of computed tomography (CT) in analyzing and detecting apical periodontitis and other odontogenic causes on the maxillary sinusitis etiology in a Portuguese Caucasian population. Material and Methods Retrospective cohort study. The total sample of 504 patients and their CT was included in this study. The patients were from a private dental clinic, specializing in oral surgery, where the first complaint was not directly related to sinus disease, but with dental pathology. For each patient, the etiological factors of maxillary sinusitis and the imaging CT findings were analyzed. All the axial, coronal and sagittal CT slices were evaluated and general data were registered. The latter was selected based on the maxillary sinus CT published literature. Results 32.40% of patients presented normal sinus (without any etiological factor associated), 29.00% showed presence of etiological and imaging findings in the maxillary sinus, 20.60% had only imaging changes in the maxillary sinus and 18.00% of patients presented only etiological factors and no change in the maxillary sinus. Conclusions Radiological imaging is an important tool for establishing the diagnosis of maxillary sinus pathology. These results indicate that the CT scan should be an excellent tool for complement the odontogenic sinusitis diagnosis. Key words: Maxillary sinusitis/etiology, odontogenic, computed tomography, maxillary sinus. PMID:25858084

  20. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  1. Measurement of cardiac output from dynamic pulmonary circulation time CT

    SciTech Connect

    Yee, Seonghwan; Scalzetti, Ernest M.

    2014-06-15

    Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA, which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.

  2. Hybrid detection of lung nodules on CT scan images

    SciTech Connect

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-09-15

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithms were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.

  3. GMctdospp: Description and validation of a CT dose calculation system

    SciTech Connect

    Schmidt, Ralph Wulff, Jörg; Zink, Klemens

    2015-07-15

    Purpose: To develop a Monte Carlo (MC)-based computed tomography (CT) dose estimation method with a graphical user interface with options to define almost arbitrary simulation scenarios, to make calculations sufficiently fast for comfortable handling, and to make the software free of charge for general availability to the scientific community. Methods: A framework called GMctdospp was developed to calculate phantom and patient doses with the MC method based on the EGSnrc system. A CT scanner was modeled for testing and was adapted to half-value layer, beam-shaping filter, z-profile, and tube-current modulation (TCM). To validate the implemented variance reduction techniques, depth-dose and cross-profile calculations of a static beam were compared against DOSXYZnrc/EGSnrc. Measurements for beam energies of 80 and 120 kVp at several positions of a CT dose-index (CTDI) standard phantom were compared against calculations of the created CT model. Finally, the efficiency of the adapted code was benchmarked against EGSnrc defaults. Results: The CT scanner could be modeled accurately. The developed TCM scheme was confirmed by the dose measurement. A comparison of calculations to DOSXYZnrc showed no systematic differences. Measurements in a CTDI phantom could be reproduced within 2% average, with a maximal difference of about 6%. Efficiency improvements of about six orders of magnitude were observed for larger organ structures of a chest-examination protocol in a voxelized phantom. In these cases, simulations took 25 s to achieve a statistical uncertainty of ∼0.5%. Conclusions: A fast dose-calculation system for phantoms and patients in a CT examination was developed, successfully validated, and benchmarked. Influences of scan protocols, protection method, and other issues can be easily examined with the developed framework.

  4. Quantification with a dedicated breast PET/CT scanner

    PubMed Central

    Bowen, Spencer L.; Ferrero, Andrea; Badawi, Ramsey D.

    2012-01-01

    Purpose: Dedicated breast PET/CT is expected to have utility in local staging, surgical planning, monitoring of therapy response, and detection of residual disease for breast cancer. Quantitative metrics will be integral to several such applications. The authors present a validation of fully 3D data correction schemes for a custom built dedicated breast PET/CT (DbPET/CT) scanner via 18F-FDG phantom scans. Methods: A component-based normalization was implemented, live-time was estimated with a multicomponent model, and a variance reduced randoms estimate was computed from delayed coincidences. Attenuation factors were calculated by using a CT based segmentation scheme while scatter was computed using a Monte Carlo (MC) simulation method. As no performance standard currently exists for breast PET systems, custom performance tests were created based on prior patient imaging results. Count-rate linearity for live-time and randoms corrections was measured with a decay experiment for a solid polyethylene cylinder phantom with an offset line source. A MC simulation was used to validate attenuation correction, a multicompartment phantom with asymmetric activity distribution provided an assessment of scatter correction, and image uniformity after geometric and detector normalization was measured from a high count scan of a uniform cylinder phantom. Raw data were reconstructed with filtered back projection (FBP) after Fourier rebinning. To quantify performance absolute activity concentrations, contrast recovery coefficients and image uniformity were calculated through region of interest analysis. Results: The most significant source of error was attributed to mispositioning of events due to pile-up, presenting in count-related axial and transaxial nonuniformities that were not corrected for with the normalization method used here. Within the range of singles counts observed during clinical trials residual error after applying all corrections was comparable to that of a

  5. Predicting stroke outcome using DCE-CT measured blood velocity

    NASA Astrophysics Data System (ADS)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  6. Fast X-ray micro-CT for real-time 4D observation

    NASA Astrophysics Data System (ADS)

    Takano, H.; Yoshida, K.; Tsuji, T.; Koyama, T.; Tsusaka, Y.; Kagoshima, Y.

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  7. 4D micro-CT using fast prospective gating

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  8. Imaging of inflammatory bowel disease: CT and MR.

    PubMed

    Zalis, Michael; Singh, Ajay K

    2004-01-01

    Cross-sectional imaging has come to play a central role in the imaging of the abdomen. Concurrent to this, the role of CT and MRI in the imaging of inflammatory bowel disease has also increased in importance. These modalities offer numerous advantages over more traditional methods of radiologic diagnosis, and provide essential information not only for initial diagnosis, but for management, follow-up and detection of potential complications. On the horizon are several derivative techniques involving CT and MRI, potentially in combination with PET imaging; these may further improve the specificity and sensitivity of imaging modalities for diagnosis of inflammatory bowel disease.

  9. 4D micro-CT using fast prospective gating.

    PubMed

    Guo, Xiaolian; Johnston, Samuel M; Qi, Yi; Johnson, G Allan; Badea, Cristian T

    2012-01-07

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml(-1) delivered via a tail vein catheter in a dose of 0.01 ml g(-1) body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 μm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  10. New insights on COPD imaging via CT and MRI

    PubMed Central

    Sverzellati, N; Molinari, F; Pirronti, T; Bonomo, L; Spagnolo, P; Zompatori, M

    2007-01-01

    Multidetector-row computed tomography (MDCT) can be used to quantify morphological features and investigate structure/function relationship in COPD. This approach allows a phenotypical definition of COPD patients, and might improve our understanding of disease pathogenesis and suggest new therapeutical options. In recent years, magnetic resonance imaging (MRI) has also become potentially suitable for the assessment of ventilation, perfusion and respiratory mechanics. This review focuses on the established clinical applications of CT, and novel CT and MRI techniques, which may prove valuable in evaluating the structural and functional damage in COPD. PMID:18229568

  11. Congenital left ventricular aneurysm diagnosed by spiral CT angiography

    SciTech Connect

    Beregi, J.P.; Coulette, J.M.; Ducloux, G.

    1996-05-01

    We report a rare case of congenital left ventricular aneurysm, diagnosed by spiral CT angiography. Despite 1 s time acquisition, spiral CT, with adequate acquisition parameters and bolus injection of contrast medium, produced sufficiently good images to permit visualization of the aneurysm. Subsequently, reconstructions (shaded surface display and multiplanar reformation) were performed to demonstrate the relationship of the aneurysm with the remainder of the left ventricle, the wide neck of the aneurysm, and the absence of contractility, therein permitting differentiation from a congenital diverticulum. 6 refs., 3 figs.

  12. Innovative advanced occlusion planning with superimposed CT and optical scans.

    PubMed

    Tremblay, Gilbert

    2011-04-01

    In order to increase the likelihood of a successful treatment plan outcome, it is critical to be able to effectively view the patient's underlying bony skeletal relationship of his or her TMJ. An innovative approach suggested to achieve this is to use the CT scan, optical scan, and Kois deprogrammer. Once the vertical dimension has been increased, the novelty of this approach is the ability to superimpose both scans along with the Kois deprogrammer and, using computer software, evaluate the TMJ position in three dimensions. This case presentation describes how TMJ CT scan evaluation is used in planning a complex rehabilitation case, given that the occlusion structures can be visualized independently and interactively.

  13. PET/CT in renal, bladder and testicular cancer

    PubMed Central

    Bouchelouche, Kirsten; Physician, Chief; Choyke, Peter L.

    2015-01-01

    Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/CT is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in uro-oncology as well. In both bladder and renal cancer there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with only limited renal excretion. Thus, new tracers are being introduced in these malignancies. This review focuses on the clinical role of FDG and other PET agents in renal, bladder and testicular cancer. PMID:26099672

  14. CT scan diagnosis of bleeding peptic ulcer after gastric bypass.

    PubMed

    Husain, Syed; Ahmed, Ahmed R; Johnson, Joseph; Boss, Thad; O'Malley, William

    2007-11-01

    Investigation of the bypassed stomach in patients with suspected peptic ulcer disease presents a major challenge to bariatric surgeons. Various methods have been suggested for visualization of the duodenum and bypassed stomach. These include endoscopy via percutaneous gastrostomy access, retrograde endoscopy and virtual gastroscopy using CT scan. We present a case of peptic ulcer bleeding diagnosed with the help of conventional CT scan. To the best of our knowledge, this is the second such case reported in the literature and the first in the bariatric population.

  15. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging

    PubMed Central

    Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.

    2017-01-01

    Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737

  16. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect

    Li, Hua Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa; Yu, Lifeng; Anastasio, Mark A.; Low, Daniel A.

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  17. Daily Bone Alignment With Limited Repeat CT Correction Rivals Daily Ultrasound Alignment for Prostate Radiotherapy

    SciTech Connect

    O'Daniel, Jennifer C.; Dong Lei Zhang Lifei; Wang He; Tucker, Susan L.; Kudchadker, Rajat J.; Lee, Andrew K.; Cheung, Rex; Cox, James D.; Kuban, Deborah A.; Mohan, Radhe

    2008-05-01

    Purpose: To compare the effectiveness of daily ultrasound (US)- and computed tomography (CT)-guided alignments with an off-line correction protocol using daily bone alignment plus a correction factor for systematic internal prostate displacement (CF{sub ID}). Methods and Materials: Ten prostate cancer patients underwent CT scans three times weekly using an integrated CT-linear accelerator system, followed by alignment using US for daily radiotherapy. Intensity-modulated radiotherapy plans were designed with our current clinical margins. The treatment plan was copied onto the repeat CT images and aligned using several methods: (1) bone alignment plus CF{sub ID} after three off-line CT scans (bone+3CT), (2) bone alignment plus CF{sub ID} after six off-line CT scans (bone+6CT), (3) US alignment, and (4) CT alignment. The accuracy of the repeated US and CT measurements to determine the CF{sub ID} was compared. The target dosimetric effect was quantified. Results: The CF{sub ID} for internal systematic prostate displacements was more accurately measured with limited repeat CT scans than with US (residual error, 0.0 {+-} 0.7 mm vs. 2.0 {+-} 3.2 mm). Bone+3CT, bone+6CT, and US provided equivalent prostate and seminal vesicle dose coverage, but bone+3CT and bone+6CT produced more precise daily alignments. Daily CT alignment provided the greatest target dose coverage. Conclusion: Daily bone alignment plus CF{sub ID} for internal systematic prostate displacement provided better daily alignment precision and equivalent dose coverage compared with daily US alignment. The CF{sub ID} should be based on at least three repeat CT scans, which could be collected before the start of treatment or during the first 3 treatment days. Daily bone alignment plus CF{sub ID} provides another option for accurate prostate cancer patient positioning.

  18. Can nontriggered thoracic CT be used for coronary artery calcium scoring? A phantom study

    SciTech Connect

    Xie, Xueqian; Greuter, Marcel J. W.; Groen, Jaap M.; Bock, Geertruida H. de; Oudkerk, Matthijs; Jong, Pim A. de; Vliegenthart, Rozemarijn

    2013-08-15

    Purpose: Coronary artery calcium score, traditionally based on electrocardiography (ECG)-triggered computed tomography (CT), predicts cardiovascular risk. However, nontriggered CT is extensively utilized. The study-purpose is to evaluate the in vitro agreement in coronary calcium score between nontriggered thoracic CT and ECG-triggered cardiac CT.Methods: Three artificial coronary arteries containing calcifications of different densities (high, medium, and low), and sizes (large, medium, and small), were studied in a moving cardiac phantom. Two 64-detector CT systems were used. The phantom moved at 0–90 mm/s in nontriggered low-dose CT as index test, and at 0–30 mm/s in ECG-triggered CT as reference. Differences in calcium scores between nontriggered and ECG-triggered CT were analyzed by t-test and 95% confidence interval. The sensitivity to detect calcification was calculated as the percentage of positive calcium scores.Results: Overall, calcium scores in nontriggered CT were not significantly different to those in ECG-triggered CT (p > 0.05). Calcium scores in nontriggered CT were within the 95% confidence interval of calcium scores in ECG-triggered CT, except predominantly at higher velocities (≥50 mm/s) for the high-density and large-size calcifications. The sensitivity for a nonzero calcium score was 100% for large calcifications, but 46%± 11% for small calcifications in nontriggered CT.Conclusions: When performing multiple measurements, good agreement in positive calcium scores is found between nontriggered thoracic and ECG-triggered cardiac CT. Agreement decreases with increasing coronary velocity. From this phantom study, it can be concluded that a high calcium score can be detected by nontriggered CT, and thus, that nontriggered CT likely can identify individuals at high risk of cardiovascular disease. On the other hand, a zero calcium score in nontriggered CT does not reliably exclude coronary calcification.

  19. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  20. Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations

    SciTech Connect

    Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung; Lee, Jong Min; Kim, Kil Joong; Lee, Kyoung Ho; Kim, Tae Ki

    2013-10-15

    Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique was developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.

  1. Radiation Doses of Various CT Protocols: a Multicenter Longitudinal Observation Study

    PubMed Central

    2016-01-01

    Emerging concerns regarding the hazard from medical radiation including CT examinations has been suggested. The purpose of this study was to observe the longitudinal changes of CT radiation doses of various CT protocols and to estimate the long-term efforts of supervising radiologists to reduce medical radiation. Radiation dose data from 11 representative CT protocols were collected from 12 hospitals. Attending radiologists had collected CT radiation dose data in two time points, 2007 and 2010. They collected the volume CT dose index (CTDIvol) of each phase, number of phases, dose length product (DLP) of each phase, and types of scanned CT machines. From the collected data, total DLP and effective dose (ED) were calculated. CTDIvol, total DLP, and ED of 2007 and 2010 were compared according to CT protocols, CT machine type, and hospital. During the three years, CTDIvol had significantly decreased, except for dynamic CT of the liver. Total DLP and ED were significantly decreased in all 11 protocols. The decrement was more evident in newer CT scanners. However, there was substantial variability of changes of ED during the three years according to hospitals. Although there was variability according to protocols, machines, and hospital, CT radiation doses were decreased during the 3 years. This study showed the effects of decreased CT radiation dose by efforts of radiologists and medical society. PMID:26908984

  2. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    SciTech Connect

    Yang, Xiaofeng Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian; Mao, Hui

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  3. Comparative evaluation of target volumes defined by deformable and rigid registration of diagnostic PET/CT to planning CT in primary esophageal cancer

    PubMed Central

    Guo, Yanluan; Li, Jianbin; Zhang, Peng; Shao, Qian; Xu, Min; Li, Yankang

    2017-01-01

    Abstract Background: To evaluate the geometrical differences of target volumes propagated by deformable image registration (DIR) and rigid image registration (RIR) to assist target volume delineation between diagnostic Positron emission tomography/computed tomography (PET/CT) and planning CT for primary esophageal cancer (EC). Methods: Twenty-five patients with EC sequentially underwent a diagnostic 18F-fluorodeoxyglucose (18F-FDG) PET/CT scan and planning CT simulation. Only 19 patients with maximum standardized uptake value (SUVmax) ≥ 2.0 of the primary volume were available. Gross tumor volumes (GTVs) were delineated using CT and PET display settings. The PET/CT images were then registered with planning CT using MIM software. Subsequently, the PET and CT contours were propagated by RIR and DIR to planning CT. The properties of these volumes were compared. Results: When GTVCT delineated on CT of PET/CT after both RIR and DIR was compared with GTV contoured on planning CT, significant improvements using DIR were observed in the volume, displacements of the center of mass (COM) in the 3-dimensional (3D) direction, and Dice similarity coefficient (DSC) (P = 0.003; 0.006; 0.014). Although similar improvements were not observed for the same comparison using DIR for propagated PET contours from diagnostic PET/CT to planning CT (P > 0.05), for DSC and displacements of COM in the 3D direction of PET contours, the DIR resulted in the improved volume of a large percentage of patients (73.7%; 68.45%; 63.2%) compared with RIR. For diagnostic CT-based contours or PET contours at SUV2.5 propagated by DIR with planning CT, the DSC and displacements of COM in 3D directions in the distal segment were significantly improved compared to the upper and middle segments (P > 0.05). Conclusion: We observed a trend that deformable registration might improve the overlap for gross target volumes from diagnostic PET/CT to planning CT. The distal EC might benefit more from DIR

  4. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning.

    PubMed

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-12-01

    Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2-5 years), 23.5 to 44.1 (6-10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2-5 years), 3.9 to 9.3 (6-10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2-5 years), 5.7 to 12.4 (6-10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in

  5. Optimizing spectral CT parameters for material classification tasks

    NASA Astrophysics Data System (ADS)

    Rigie, D. S.; La Rivière, P. J.

    2016-06-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  6. CT Features of Colorectal Schwannomas: Differentiation from Gastrointestinal Stromal Tumors

    PubMed Central

    Kang, Ji Hee; Kim, Se Hyung; Kim, Young Hoon; Rha, Sung Eun; Hur, Bo Yun; Han, Joon Koo

    2016-01-01

    Purpose To find differential CT features of colorectal schwannomas from gastrointestinal stromal tumors (GISTs). Materials and Methods CT features of 13 pathologically proven colorectal schwannomas and 21 GISTs were retrospectively reviewed. The following CT items were analyzed: size, longitudinal and transverse location, shape, margin, homogeneity, necrosis, surface ulceration, calcification, degree of attenuation, the presence of enlarged lymph node (LN), and metastasis. Among the features, significant variables were evaluated using univariate statistical tests. The optimal cut-off point of tumor size was obtained by ROC analysis. Binary logistic regression analysis was used to find the most independent CT variables. Results Small size, non-rectum location, smooth margin, homogeneous high attenuation without necrosis, and the presence of enlarged LNs were found to be significant variables to differentiate schwannomas from GISTs (P<0.05). The optimized cut-off point for tumor size in distinguishing GISTs from schwannomas was 3.9 cm (AUC = 0.808, sensitivity = 66.7%, specificity = 92.3%, P<0.0001). Binary regression analysis revealed that only non-rectum location remained independent predictor for schwannomas differentiated from GISTs (odds ratio = 31.667, P = 0.001). Conclusion Colorectal schwannomas usually located in non-rectum and appear as small subepithelial nodules showing homogeneous high attenuation and smooth margin. Schwannomas exclusively accompany with enlarged LNs. PMID:28005903

  7. Performance benchmarking of liver CT image segmentation and volume estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Zhou, Jiayin; Tian, Qi; Liu, Jimmy J.; Qi, Yingyi; Leow, Wee Kheng; Han, Thazin; Wang, Shih-chang

    2008-03-01

    In recent years more and more computer aided diagnosis (CAD) systems are being used routinely in hospitals. Image-based knowledge discovery plays important roles in many CAD applications, which have great potential to be integrated into the next-generation picture archiving and communication systems (PACS). Robust medical image segmentation tools are essentials for such discovery in many CAD applications. In this paper we present a platform with necessary tools for performance benchmarking for algorithms of liver segmentation and volume estimation used for liver transplantation planning. It includes an abdominal computer tomography (CT) image database (DB), annotation tools, a ground truth DB, and performance measure protocols. The proposed architecture is generic and can be used for other organs and imaging modalities. In the current study, approximately 70 sets of abdominal CT images with normal livers have been collected and a user-friendly annotation tool is developed to generate ground truth data for a variety of organs, including 2D contours of liver, two kidneys, spleen, aorta and spinal canal. Abdominal organ segmentation algorithms using 2D atlases and 3D probabilistic atlases can be evaluated on the platform. Preliminary benchmark results from the liver segmentation algorithms which make use of statistical knowledge extracted from the abdominal CT image DB are also reported. We target to increase the CT scans to about 300 sets in the near future and plan to make the DBs built available to medical imaging research community for performance benchmarking of liver segmentation algorithms.

  8. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  9. 78 FR 34893 - Drawbridge Operation Regulations; Saugatuck River, Westport, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... . Type the docket number in the ``SEARCH'' box and click ``SEARCH.'' Click on Open Docket Folder on the... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Saugatuck River, Westport, CT...

  10. Cochlear anatomy using micro computed tomography (μCT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil

    2008-02-01

    A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.

  11. CT imaging with a mobile C-arm prototype

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  12. Dual energy iodine contrast CT with monochromatic x-rays

    SciTech Connect

    Dilmanian, F.A.; Wu, X.Y.; Kress, J.

    1995-12-31

    Computed tomography (CT) with monochromatic x-ray beams was used to image phantoms and a live rabbit using the preclinical Multiple Energy Computed Tomography (MECT) system at the National Synchrotron Light Source. MECT has a horizontal fan beam with a subject apparatus rotating about a vertical axis. Images were obtained at 43 keV for single-energy studies, and at energies immediately below and above the 33.17 keV iodine K-edge for dual-energy subtraction CT. Two CdWO{sub 4}-photodiode array detectors were used. The high-resolution detector (0.5 mm pitch, uncollimated) provided 14 line pair/cm in-plane spatial resolution, with lower image noise than conventional CT. Images with the low-resolution detector (1.844-mm pitch, collimated to 0.922 mm detector elements) had a sensitivity for iodine of {approx} 60 {micro}g/cc in 11-mm channels inside a 135 mm-diameter acrylic cylindrical phantom for a slice height of 2.5 mm and a surface does of {approx} 4 cGy. The image noise was {approx} 1 Hounsfield Unit (HU); it was {approx} 3 HU for the same phantom imaged with conventional CT at approximately the same dose, slice height, and spatial resolution ({approx} 7 lp/cm). These results show the potential advantage of MECT, despite present technical limitations.

  13. Myocardial Scar Detection by Standard CT Coronary Angiography

    PubMed Central

    Jeevarethinam, Anand; Venuraju, Shreenidhi; Mehta, Vishal Shahil; Atwal, Satvir; Raval, Usha; Rakhit, Roby; Davar, Joseph; Lahiri, Avijit

    2014-01-01

    We have described a myocardial infarct scar identified by a standard dual source CT coronary angiography (CTCA). We were able to detect the scar during the routine coronary assessment without contrast late enhancement and without additional radiation exposure. It is therefore feasible to assess chronic scar using a standard CTCA technique.

  14. Standardization and optimization of CT protocols to achieve low dose.

    PubMed

    Trattner, Sigal; Pearson, Gregory D N; Chin, Cynthia; Cody, Dianna D; Gupta, Rajiv; Hess, Christopher P; Kalra, Mannudeep K; Kofler, James M; Krishnam, Mayil S; Einstein, Andrew J

    2014-03-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities, and various indications require unique protocols, but there remains room for standardization and optimization. In this paper, the authors summarize approaches to reduce dose, as discussed in lectures constituting the first session of the 2013 UCSF Virtual Symposium on Radiation Safety and Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose.

  15. Algebraic reconstruction techniques in CT and their implementation

    NASA Astrophysics Data System (ADS)

    Sun, Fengrong; Liu, Jiren; Zhu, Benren

    2001-09-01

    In the paper, we analyze comprehensively the mathematics of the Algebraic Reconstruction Techniques (ART) in the Computerized Tomography (CT), obtain some illumining conclusions, and then we design the procedure of ART simulation. The experiment result is also presented in the paper.

  16. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... that required under § 1020.30(h), to purchasers and, upon request, to others at a cost not to exceed the cost of publication and distribution of such information. This information shall be identified and... measurements shall be performed with the CT dosimetry phantom placed on the patient couch or support...

  17. Scout-view Assisted Interior Micro-CT

    PubMed Central

    Sen Sharma, Kriti; Holzner, Christian; Vasilescu, Dragoş M.; Jin, Xin; Narayanan, Shree; Agah, Masoud; Hoffman, Eric A.; Yu, Hengyong; Wang, Ge

    2013-01-01

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without a significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms. PMID:23732478

  18. Evaluation of segmentation using lung nodule phantom CT images

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Jacobson, Francine L.

    2001-07-01

    Segmentation of chest CT images has several purposes. In lung-cancer screening programs, for nodules below 5mm, growth measured from sequential CT scans is the primary indication of malignancy. Automatic segmentation procedures have been used as a means to insure a reliable measurement of lung nodule size. A lung nodule phantom was developed to evaluate the validity and reliability of size measurements using CT images. Thirty acrylic spheres and cubes (2-8 mm) were placed in a 15cm diameter disk of uniform-material that simulated the lung. To demonstrate the use of the phantom, it was scanned using out hospital's lung-cancer screening protocol. A simple, yet objective threshold technique was used to segment all of the images in which the objects were visible. All the pixels above a common threshold (the mean of the lung material and the acrylic CT numbers) were considered within the nodule. The relative bias did not depend on the shape of the objects and ranged from -18% for the 2 mm objects to -2.5% for 8-mm objects. DICOM image files of the phantom are available for investigators with an interest in using the images to evaluate and compare segmentation procedures.

  19. Image analysis of pulmonary nodules using micro CT

    NASA Astrophysics Data System (ADS)

    Niki, Noboru; Kawata, Yoshiki; Fujii, Masashi; Kakinuma, Ryutaro; Moriyama, Noriyuki; Tateno, Yukio; Matsui, Eisuke

    2001-07-01

    We are developing a micro-computed tomography (micro CT) system for imaging pulmonary nodules. The purpose is to enhance the physician performance in accessing the micro- architecture of the nodule for classification between malignant and benign nodules. The basic components of the micro CT system consist of microfocus X-ray source, a specimen manipulator, and an image intensifier detector coupled to charge-coupled device (CCD) camera. 3D image reconstruction was performed by the slice. A standard fan- beam convolution and backprojection algorithm was used to reconstruct the center plane intersecting the X-ray source. The preprocessing of the 3D image reconstruction included the correction of the geometrical distortions and the shading artifact introduced by the image intensifier. The main advantage of the system is to obtain a high spatial resolution which ranges between b micrometers and 25 micrometers . In this work we report on preliminary studies performed with the micro CT for imaging resected tissues of normal and abnormal lung. Experimental results reveal micro architecture of lung tissues, such as alveolar wall, septal wall of pulmonary lobule, and bronchiole. From the results, the micro CT system is expected to have interesting potentials for high confidential differential diagnosis.

  20. CT of xanthogranulomatous pyelonephritis: radiologic-pathologic correlation

    SciTech Connect

    Goldman, S.M.; Hartman, D.S.; Fishman, E.K.; Finizio, J.P.; Gatewood, O.M.B.; Siegelman, S.S.

    1984-05-01

    A clinical-radiologic-patholoigc correlation study was performed in 18 (17 female) patients with xanthogranulomatous pyelonephritis (XGP) with CT scans available for analysis. In 14 patients, the disease was diffuse; the kidney was enlarged with preservation of the reniform outline in 13. The renal pelvis, lined with sheets of lipid-laden macrophages and surrounded by a marked fibrotic reaction, was contracted in 11 and contained pelvic calculi in 12. There was CT identification of unsuspected extension through the renal capsule with involvement of the perirenal space in 11 patients, the pararenal spaces in 13, and the psoas muscle in six. There were four cases of focal XGP that appeared on CT as low-density mass lesions with wall enhancement surrounding dilated, stone-filled calices or as focal masses occupying one pole of a duplication. The preoperative diagnosis of XGP was suspected in only 44% of cases. It is concluded that CT should play a role in diagnosis and preoperative planning to demonstrate the extent of extrarenal disease that is poorly depicted by other means.