Science.gov

Sample records for 64cucu-bisthiosemicarbazone radiopharmaceutical binding

  1. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  2. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  3. Radiopharmaceuticals

    SciTech Connect

    Theobald, A.E.

    1989-01-01

    This book is a review of the latest developments in radiopharmaceuticals. It covers the development of radiopharmaceutical compounds, the theory and practice of their synthesis, and examples of their application. Also covers safe handling of radiopharmaceuticals, legislation affecting their use, radiation monitoring, radiochromatography, and computer techniques.

  4. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    SciTech Connect

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-06-01

    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  5. Radiopharmaceutical bacteriostats

    SciTech Connect

    Flanagan, R.J.; Tartaglia, D.

    1993-07-13

    A radiopharmaceutical has been prepared with a composition comprising: (a) a radioactive iodine-based radiopharmaceutical; (b) an auto radiolytic decomposition-inhibiting antioxidant selected from: (i) ascorbic acid (ii) nicotinamide, (iii) nicotinic acid, and (iv) a mixture of ascorbic acid and nicotinamide; (c) a bacteriostat selected from: (i) benzalkonium chloride, and (ii) benzethonium chloride.

  6. Cu(II) Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumin: Further Definition of Species-Dependence and Associated Substituent Effects

    PubMed Central

    Basken, Nathan E.; Green, Mark A.

    2009-01-01

    Introduction The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) radiopharmaceutical appears to only exhibit non-specific binding to human and animal serum albumins. Methods To further probe the structural basis for the species-dependence of this albumin binding interaction, protein binding of these three radiopharmaceuticals was examined in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat, elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species-dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate. PMID:19520290

  7. 'Naked' radiopharmaceuticals

    SciTech Connect

    Wallner, Paul E. . E-mail: pwallner@rtsx.com

    2006-10-01

    The term 'naked' radiopharmaceuticals, more appropriately, 'unbound' radiopharmaceuticals, refers to any radioisotope used for clinical research or clinical purposes that is not attached to a chemical or biological carrier, and that localizes in various tissues because of a physiologic or chemical propensity/affinity, or secondary to focal anatomic placement. Although they remain useful in selected clinical circumstances, the available agents (except for Iodine-131) have been relegated to an unfortunate and somewhat secondary role. The agents remain useful and worthy of consideration for new clinical investigation and clinical use.

  8. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications.

    PubMed

    Aryal, Baikuntha P; Brugarolas, Pedro; He, Chuan

    2012-01-01

    Radiolabeled biomolecules are routinely used for clinical diagnostics. (99m)Tc is the most commonly used radioactive tracer in radiopharmaceuticals. (188)Re and (186)Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO(4)(-)) ion as a new way to label proteins. We found that a molybdate (MoO(4)(2-))-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO(4)(-) to be 541 nM and we solved a crystal structure of ModA with a bound ReO(4)(-). On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K(d) = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.

  9. Organometallic Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    Although molecular imaging agents have to be synthesized ultimately from aqueous solutions, organometallic complexes are becoming more and more important as flexible yet kinetically stable building blocks for radiopharmaceutical drug discovery. The diversity of ligands, targets, and targeting molecules related to these complexes is an essential base for finding novel, noninvasive imaging agents to diagnose and eventually treat widespread diseases such as cancer. This review article covers the most important findings toward these objectives accomplished during the past 3-4 years. The two major available organometallic building blocks will be discussed in the beginning together with constraints for market introduction as imposed by science and industry. Since targeting radiopharmaceuticals are a major focus of current research in molecular imaging, attempts toward so-called technetium essential radiopharmaceuticals will be briefly touched in the beginning followed by the main discussion about the labeling of targeting molecules such as folic acid, nucleosides, vitamins, carbohydrates, and fatty acids. At the end, some new strategies for drug discovery will be introduced together with results from organometallic chemistry in water. The majority of the new results have been achieved with the [99mTc(OH2)3(CO)3]+ complex which will, though not exclusively, be a focus of this review.

  10. Rhenium and technetium tricarbonyl, {M(CO)3} (+) (M = Tc, Re), binding to mammalian metallothioneins: new insights into chemical and radiopharmaceutical implications.

    PubMed

    Lecina, Joan; Palacios, Òscar; Atrian, Sílvia; Capdevila, Mercè; Suades, Joan

    2015-04-01

    This paper deals with the binding of the four mammalian metallothioneins (MTs) to the organometallic metal fragment {fac-M(CO)3}(+) (M = (99)Tc, Re), which is highly promising for the preparation of second-generation radiopharmaceuticals. The study of the transmetallation reaction between zinc and rhenium in Zn7-MT1 by means of UV-vis and CD spectroscopy demonstrated the incorporation of the {fac-Re(CO)3}(+) fragment to the MTs. This reaction should be performed at 70 °C to accelerate the reaction rate, a result that is consistent with the reported reactivity of the rhenium fragment. ESI-TOF MS demonstrated the formation of mixed-metal species as Zn6,{Re(CO)3}-MT, Zn6,{Re(CO)3}2-MT, and Zn5,{Re(CO)3}3-MT, as well as the different reactivity of the four MT isoforms. Hence, Zn-MT3 showed the highest reactivity, in agreement with its high Cu-thionein character, whereas Zn-MT2 exhibited the lowest reactivity, in line with its high Zn-thionein character. The reactivity of the Zn-loaded forms of MT1 and MT4 is intermediate between those of MT3 and MT2. The study of the binding of the {fac-(99)Tc(CO)3}(+) fragment to MTs showed a significant and very interesting different reactivity in relation to rhenium. The transmetallation reaction is much more effective with technetium than with rhenium and significant amounts of mixed Zn x ,{(99)Tc(CO)3} y -MT species were formed with the four MT isoforms whereas only MT3 rendered similar amounts of rhenium derivatives. The results obtained in this study support the possible use of technetium for labelling mammalian metallothioneins and also for possible radiopharmaceutical applications.

  11. Medicinal Radiopharmaceutical Chemistry of Metal Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Saw, Maung Maung

    2012-06-01

    Metal complexes have been used as medicinal compounds. Metals have advantageous features over organic compounds. Significant applications of metal complexes are in the field of nuclear medicine. Radiopharmaceuticals are drugs containing radioisotopes used for diagnostic and therapeutic purposes. The generalized targeting strategy for molecular imaging probe consists of three essential parts: (i) reporter unit or payload, (ii) carrier, and (iii) targeting system. Medicinal radiopharmaceutical chemistry pays special consideration to radioisotopes, as a reporter unit for diagnostic application or as a payload for therapeutic application. Targeting is achieved by a few approaches but the most common is the bifunctional chelator approach. While designing a radiopharmaceutical, a range of issues needs to be considered including properties of metal radioisotopes, bifunctional chelators, linkers, and targeting molecules. Designing radiopharmaceuticals requires consideration of two key words: "compounds of biological interest" and "fit for intended use." The ultimate goal is the development of new diagnostic methods and treatment. Diagnostic metal radiopharmaceuticals are used for SPECT and PET applications. Technetium chemistry constitutes a major portion of SPECT and gallium chemistry constitutes a major portion of PET. Therapeutic radiopharmaceuticals can be constructed by using alpha-, beta minus-, or Auger electron-emitting radiometals. Special uses of medicinal radiopharmaceuticals include internal radiation therapy, brachytherapy, immunoPET, radioimmunotherapy, and peptide receptor radionuclide imaging and therapy.

  12. γ-Tilmanocept, a New Radiopharmaceutical Tracer for Cancer Sentinel Lymph Nodes, Binds to the Mannose Receptor (CD206)

    PubMed Central

    Azad, Abul K.; Rajaram, Murugesan V. S.; Metz, Wendy L.; Cope, Frederick O.; Blue, Michael S.; Vera, David R.

    2015-01-01

    γ-Tilmanocept (99mTc-labeled-tilmanocept or [99mTc]-tilmanocept) is the first mannose-containing, receptor-directed, radiolabeled tracer for the highly sensitive imaging of sentinel lymph nodes in solid tumor staging. To elucidate the mannose-binding receptor that retains tilmanocept in this microenvironment, human macrophages were used that have high expression of the C-type lectin mannose receptor (MR; CD206). Cy3-labeled tilmanocept exhibited high specificity binding to macrophages that was nearly abolished in competitive inhibition experiments. Furthermore, Cy3-tilmanocept binding was markedly reduced on macrophages deficient in the MR by small interfering RNA treatment and was increased on MR-transfected HEK 293 cells. Finally, confocal microscopy revealed colocalization of Cy3-tilmanocept with the macrophage membrane MR and binding of labeled tilmanocept to MR+ cells (macrophages and/or dendritic cells) in human sentinel lymph node tissues. Together these data provide strong evidence that CD206 is a major binding receptor for γ-tilmanocept. Identification of CD206 as the γ-tilmanocept–binding receptor enables opportunities for designing receptor-targeted advanced imaging agents and therapeutics for cancer and other diseases. PMID:26202986

  13. Radiopharmaceuticals in cardiology.

    PubMed

    Mikołajczak, Renata; Garnuszek, Piotr

    2012-04-24

    Myocardial perfusion studies are among the most often performed investigations in Nuclear Medicine. However, the development of radiopharmaceuticals for cardiology is an emerging discipline and several other radiotracers have been proven to be useful. Although the myocardial perfusion studies have a well established role in the management of cardiac disorders, still a number of radiopharmaceuticals are under development for a variety of specific cardiac indications and their eventual clinical role remains to be seen. The paper provides a short overview of currently used radiopharmaceuticals and potential molecular imaging radiotracers applicable in cardiology.

  14. Binding of ReO[subscript 4];#8722; with an engineered MoO[subscript 4 superscript 2];#8722;-binding protein: towards a new approach in radiopharmaceutical applications

    SciTech Connect

    Aryal, Baikuntha P.; Brugarolas, Pedro; He, Chuan

    2012-05-25

    Radiolabeled biomolecules are routinely used for clinical diagnostics. {sup 99m}Tc is the most commonly used radioactive tracer in radiopharmaceuticals. {sup 188}Re and {sup 186}Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO{sub 4}{sup -}) ion as a new way to label proteins. We found that a molybdate (MoO{sub 4}{sup 2-})-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO{sub 4}{sup -} to be 541 nM and we solved a crystal structure of ModA with a bound ReO{sub 4}{sup -}. On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K{sub d} = 104 nM). High-resolution crystal structures of ModA (1.7 {angstrom}) and A11C/R153C mutant (2.0 {angstrom}) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.

  15. Radiopharmaceuticals for diagnosis and treatment

    SciTech Connect

    Kuhl, D.E.

    1991-01-01

    In this grant period we have continued our efforts in the areas of PE basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. A new synthetic sequence, consisting, of no-carrier-added fluorine-18 labeling of substituted benzaldehydes followed by reductive decarbonylation, has been developed. This new methodology can be applied to the fluorine-18 labeling of a wide variety of drugs not previously accessible through existing fluorine-18 labeling methods. Following up on a literature report that the ability to radiolabel aromatic rings can be predicted by {sup 13}C-NMR chemical shifts, we have examined the generality of this correlation in aromatic rings bearing a variety of substituents. Although the original correlation holds for nitro substituted anisaldehydes, it cannot be extended to other rings substitution patterns. We have examined the relationship of in vivo localization of various fluorine-18 labeled dopamine uptake inhibitors to their in vitro binding affinities and lipophilicities. We have found that remarkably small decreases in binding affinity result in dramatic losses of in vivo binding to the desired high affinity binding sites. In order to probe the effects of endogenous neurotransmitter on the in vivo binding of radiolabeled dopamine uptake inhibitors, we have examined the in vivo regional localization of (18{sub F}) GBR 13119 after acute and chronic drug treatments which alter the endogenous levels of dopamine. We have found that acute changes in dopamine levels do not affect the binding of this radioligand, but chronic depletion of neurotransmitter results in down-regulation of the in vivo binding sites. 16 refs., 2 figs., 1 tab.

  16. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  17. [Nuclear medicine and radiopharmaceuticals].

    PubMed

    Sopena Novales, P; Plancha Mansanet, M C; Martinez Carsi, C; Sopena Monforte, R

    2014-06-01

    Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). In Europe, radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The biggest problem associated with their use are the alterations in their biodistribution that may cause diagnostic errors. Nuclear Medicine is growing considerably influenced by the appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic fields and primarily to the impact of new multimodality imaging techniques (SPECT-CT, PET-CT, PET-MRI, etc.). It's mandatory to know the limitations of these techniques, distribution and eventual physiological alterations of radiopharmaceuticals, contraindications and adverse reactions of radiological contrasts, and the possible interference of both.

  18. Method for preparing radiopharmaceutical complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1989-05-02

    A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

  19. Process for preparing radiopharmaceuticals

    DOEpatents

    Barak, Morton; Winchell, Harry S.

    1977-01-04

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

  20. Radiopharmaceuticals: Progress and clinical perspectives. Volume I

    SciTech Connect

    Fritzberg, A.R.

    1986-01-01

    This volume examines the radiopharmaceuticals from both the clinical and pharmaceutical research viewpoints. Classes of radiopharmaceuticals are covered by organ type, including the heart, brain, liver, kidney, adrenal, blood, and bone. Also included are discussions of radiolabeled antibodies for cancer; cyclotron-produced radiopharmaceuticals; receptor agents; radiopharmaceutical design; and animal and human evaluation studies. VOLUME I: Contents include: Cationic Radiotracers as Myocardial Radiopharmaceuticals, Brain Radiopharmaceuticals, Antibody imaging and Therapy in Human Cancer, Advances in Renal Radiopharmaceuticals, Advances in the Development of Hepatobiliary Radiopharmaceuticals, Radiopharmaceutical Design, The Adrenal Medulla and its Diseases, and Index.

  1. Radiopharmaceuticals for diagnosis

    SciTech Connect

    Kuhl, D.E.

    1990-06-01

    During this grant period 1 January 1988--31 December 1990, we have successfully developed a number of new approaches to fluorine-18 labeled compounds, prepared several new radiotracers for both animal studies and eventual clinical trials, and explored the utility of a high-quality industrial robot in radiopharmaceutical applications. The progress during the last grant period is summarized briefly in the following sections. Publications arising from this research are listed below and can be found in Appendix I. 1 fig.

  2. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  3. Unconventional Nuclides for Radiopharmaceuticals

    PubMed Central

    Holland, Jason P.; Williamson, Matthew J.; Lewis, Jason S.

    2016-01-01

    Rapid and widespread growth in the use of nuclear medicine for both diagnosis and therapy of disease has been the driving force behind burgeoning research interests in the design of novel radiopharmaceuticals. Until recently, the majority of clinical and basic science research has focused on the development of 11C-, 13N-, 15O-, and 18F-radiopharmaceuticals for use with positron emission tomography (PET) and 99mTc-labeled agents for use with single-photon emission computed tomography (SPECT). With the increased availability of small, low-energy cyclotrons and improvements in both cyclotron targetry and purification chemistries, the use of “nonstandard” radionuclides is becoming more prevalent. This brief review describes the physical characteristics of 60 radionuclides, including β+, β−, γ-ray, and α-particle emitters, which have the potential for use in the design and synthesis of the next generation of diagnostic and/or radiotherapeutic drugs. As the decay processes of many of the radionuclides described herein involve emission of high-energy γ-rays, relevant shielding and radiation safety issues are also considered. In particular, the properties and safety considerations associated with the increasingly prevalent PET nuclides 64Cu, 68Ga, 86Y, 89Zr, and 124I are discussed. PMID:20128994

  4. Radiopharmaceuticals for diagnosis and treatment. Progress report

    SciTech Connect

    Kuhl, D.E.

    1991-12-31

    In this grant period we have continued our efforts in the areas of PE basic radiochemistry, radiopharmaceutical synthesis, and preclinical radiopharmaceutical evaluation. A new synthetic sequence, consisting, of no-carrier-added fluorine-18 labeling of substituted benzaldehydes followed by reductive decarbonylation, has been developed. This new methodology can be applied to the fluorine-18 labeling of a wide variety of drugs not previously accessible through existing fluorine-18 labeling methods. Following up on a literature report that the ability to radiolabel aromatic rings can be predicted by {sup 13}C-NMR chemical shifts, we have examined the generality of this correlation in aromatic rings bearing a variety of substituents. Although the original correlation holds for nitro substituted anisaldehydes, it cannot be extended to other rings substitution patterns. We have examined the relationship of in vivo localization of various fluorine-18 labeled dopamine uptake inhibitors to their in vitro binding affinities and lipophilicities. We have found that remarkably small decreases in binding affinity result in dramatic losses of in vivo binding to the desired high affinity binding sites. In order to probe the effects of endogenous neurotransmitter on the in vivo binding of radiolabeled dopamine uptake inhibitors, we have examined the in vivo regional localization of [18{sub F}] GBR 13119 after acute and chronic drug treatments which alter the endogenous levels of dopamine. We have found that acute changes in dopamine levels do not affect the binding of this radioligand, but chronic depletion of neurotransmitter results in down-regulation of the in vivo binding sites. 16 refs., 2 figs., 1 tab.

  5. Aptamers as radiopharmaceuticals for nuclear imaging and therapy.

    PubMed

    Gijs, Marlies; Aerts, An; Impens, Nathalie; Baatout, Sarah; Luxen, André

    2016-04-01

    Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers.

  6. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  7. Preparation of radiopharmaceuticals labeled with metal radionuclides

    SciTech Connect

    Welch, M.J.

    1992-06-01

    We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

  8. Bioinorganic Activity of Technetium Radiopharmaceuticals.

    ERIC Educational Resources Information Center

    Pinkerton, Thomas C.; And Others

    1985-01-01

    Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)

  9. Radiopharmaceuticals for diagnosis. Final report

    SciTech Connect

    Not Available

    1994-03-01

    In the period 1969-1986, this project was directed to the evolution of target-specific labeled chemicals useful for nuclear medical imaging, especially radioactive indicators suited to tracing adrenal functions and localizing tumors in the neuroendocrine system. Since 1986, this project research has focused on the chemistry of positron emission tomography (PET) ligands. This project has involved the evaluation of methods for radiochemical syntheses with fluorine-18, as well as the development and preliminary evaluation of new radiopharmaceuticals for positron emission tomography. In the radiochemistry area, the ability to predict fluorine-18 labeling yields for aromatic substitution reactions through the use of carbon-13 NMR analysis was studied. Radiochemical yields can be predicted for some structurally analogous aromatic compounds, but this correlation could not be generally applied to aromatic substrates for this reaction, particularly with changes in ring substituents or leaving groups. Importantly, certain aryl ring substituents, particularly methyl groups, appeared to have a negative effect on fluorination reactions. These observations are important in the future design of syntheses of complicated organic radiopharmaceuticals. In the radiopharmaceutical area, this project has supported the development of a new class of radiopharmaceuticals based on the monoamine vesicular uptake systems. The new radioligands, based on the tetrabenazine structure, offer a new approach to the quantification of monoaminergic neurons in the brain. Preliminary primate imaging studies support further development of these radioligands for PET studies in humans. If successful, such radiopharmaceuticals will find application in studies of the causes and treatment of neurodegenerative disorders such as Parkinson`s disease.

  10. Prospective of 68Ga-Radiopharmaceutical Development

    PubMed Central

    Velikyan, Irina

    2014-01-01

    Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515

  11. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, Mark A.; Tsang, Brenda W.

    1994-01-01

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  12. Radiopharmaceuticals for imaging the heart

    DOEpatents

    Green, M.A.; Tsang, B.W.

    1994-06-28

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  13. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  14. Matching chelators to radiometals for radiopharmaceuticals.

    PubMed

    Price, Eric W; Orvig, Chris

    2014-01-07

    Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

  15. Radioactive Ion Beams and Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  16. Harvard-MIT research program in short-lived radiopharmaceuticals. Progress report, March 1, 1983-February 29, 1984

    SciTech Connect

    Adelstein, S.J.; Brownell, G.L.

    1984-02-01

    This report describes research efforts towards the achievement of a clearer understanding of the solution chemistry of technetium in order to facilitate the design of future clinical agents labeled with Tc-99m, the development of new receptor binding radiopharmaceuticals for the in vivo assessment of insulin receptors and for imaging the adrenal medulla and the brain, the examination of the utility of monoclonal antibodies and liposomes in the design of radiopharmaceuticals for diagnosis and therapy, and the synthesis of short-lived positron-emitting radiopharmaceuticals for transverse imaging of regional physiological processes.

  17. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  18. Renal radiopharmaceuticals--an update

    SciTech Connect

    Chervu, L.R.; Blaufox, M.D.

    1982-07-01

    Noninvasive radionuclide procedures in the evaluation of renal disease have been accepted increasingly as effective and valuable alternatives to older clinical methods. The development of suitable radiopharmaceuticals labeled with high photon intensity radionuclides and with /sup 99m/Tc in particular has stimulated this modality during the last few years. Currently several nearly ideal agents are available for anatomical and functional studies of kidney imparting very low absorbed radiation doses. These include /sup 99m/Tc-GHA and /sup 99m/Tc-DMSA for renal morphology and differential function evaluation, /sup 99m/Tc-DTPA for GFR and /sup 123/I orthoiodohippurate for ERPF measurements. A suitable agent as a replacement for the latter labeled with /sup 99m/Tc is actively being sought. Computer-assisted processing of dynamic renal function studies enables the observer to obtain a wealth of information related to the renal extraction, uptake, parenchymal transit and pelvic transit parameters of the agent administered into the bloodstream. Each of these parameters either globally or differentially contributes to a detailed evaluation of renal disease states. Several of these procedures have been validated against classical techniques clinically but more detailed information is being sought with the recently introduced radiopharmaceuticals. With the detailed validation and increasing recognition of the clinical utility of several of the radionuclidic procedures at many centers, it is hoped that radionuclide assessment of renal disorders ultimately will be made available routinely at all medical facilities.

  19. Radiopharmaceuticals in PET, progress and promise

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters. 7 refs.

  20. Radiopharmaceuticals in PET, Progress and Promise

    DOE R&D Accomplishments Database

    Wolf, A. P.; Fowler, J. S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters.

  1. Astatine Radiopharmaceuticals: Prospects and Problems

    PubMed Central

    Vaidyanathan, Ganesan; Zalutsky, Michael R.

    2010-01-01

    For the treatment of minimum residual diseases such micrometastases and residual tumor margins that remain after debulking of the primary tumor, targeted radiotherapy using radiopharmaceuticals tagged with α-particle-emitting radionuclides is very attractive. In addition to the their short range in tissue, which helps minimize harmful effects on adjacent normal tissues, α-particles, being high LET radiation, have several radiobiological advantages. The heavy halogen, astatine-211 is one of the prominent α-particle-emitting radionuclides in practice. Being a halogen, it can often be incorporated into biomolecules of interest by adapting radioiodination chemistry. A wide spectrum of compounds from the simple [211At]astatide ion to small organic molecules, peptides, and large proteins labeled with 211At have been investigated with at least two reaching the stage of clinical evaluation. The chemistry, cytotoxic advantages, biodistribution studies, and microdosimetry/pharmacokinetic modeling of some of these agents will be reviewed. In addition, potential problems such as the harmful effect of radiolysis on the synthesis, lack of sufficient in vivo stability of astatinated compounds, and possible adverse effects when they are systemically administered will be discussed. PMID:20150978

  2. Astatine Radiopharmaceuticals: Prospects and Problems.

    PubMed

    Vaidyanathan, Ganesan; Zalutsky, Michael R

    2008-09-01

    For the treatment of minimum residual diseases such micrometastases and residual tumor margins that remain after debulking of the primary tumor, targeted radiotherapy using radiopharmaceuticals tagged with alpha-particle-emitting radionuclides is very attractive. In addition to the their short range in tissue, which helps minimize harmful effects on adjacent normal tissues, alpha-particles, being high LET radiation, have several radiobiological advantages. The heavy halogen, astatine-211 is one of the prominent alpha-particle-emitting radionuclides in practice. Being a halogen, it can often be incorporated into biomolecules of interest by adapting radioiodination chemistry. A wide spectrum of compounds from the simple [(211)At]astatide ion to small organic molecules, peptides, and large proteins labeled with (211)At have been investigated with at least two reaching the stage of clinical evaluation. The chemistry, cytotoxic advantages, biodistribution studies, and microdosimetry/pharmacokinetic modeling of some of these agents will be reviewed. In addition, potential problems such as the harmful effect of radiolysis on the synthesis, lack of sufficient in vivo stability of astatinated compounds, and possible adverse effects when they are systemically administered will be discussed.

  3. Applications of click chemistry in radiopharmaceutical development.

    PubMed

    Walsh, Joseph C; Kolb, Hartmuth C

    2010-01-01

    Click chemistry, a concept that employs only practical and reliable transformations for compound synthesis, has made a significant impact in several areas of chemistry, including material sciences and drug discovery. The present article describes the use of click chemistry for the development of radiopharmaceuticals. Target templated in situ click chemistry was used for lead generation. The 1,2,3-triazole moiety was found to improve the pharmacokinetic properties of certain radiopharmaceuticals. The reliable Cu(I)-catalyzed click reaction was employed for radiolabeling of peptidic compounds without the need for protecting groups. In summary, the click chemistry approach for the discovery, optimization and labeling of new radiotracers, represents a very powerful tool for radiopharmaceutical development.

  4. Eighth international symposium on radiopharmaceutical chemistry

    SciTech Connect

    Eckelman, W.C.

    1990-01-01

    The Eighth International Symposium on Radiopharmaceutical Chemistry was held on June 25--29, in Princeton, New Jersey. Topics covered in the meeting include: Technetium Chemistry; Perfusion Agents; Radionuclide Production; Synthetic Precursors; Analysis/Automation; Antibodies; Receptors; Metabolism, DOPA FDG; Receptors, D2 D1; Metabolism; and Metabolism, Cancer. Individual papers in each of these areas are abstracted separately. (MHB)

  5. Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)- and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N- ((1-ethyl-2-pyrrolidinyl)methyl)benzamide

    SciTech Connect

    Kung, H.F.; Kasliwal, R.; Pan, S.G.; Kung, M.P.; Mach, R.H.; Guo, Y.Z.

    1988-05-01

    In developing central nervous system (CNS) dopamine D-2 receptor imaging agents, enantiomers, R-(+) and S-(-) isomers, of 3-(/sup 125/I)iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2- pyrrolidinyl)methyl)benzamide, (/sup 125/I)IBZM, were synthesized, and their in vitro binding characteristics were evaluated in rat striatum tissue preparation. The (S)-(-)-(/sup 125/I)IBZM showed high specific dopamine D-2 receptor binding (Kd = 0.43 nM, Bmax = 0.48 pmol/mg of protein). Competition data of various ligands for IBZM binding displayed the following rank order of potency: spiperone greater than (S)-(-)-IBZM greater than (+)-butaclamol much greater than (R)-(+)-IBZM greater than (S)-(-)-BZM greater than dopamine greater than ketanserin greater than SCH23390 much greater than propanolol. The results indicate that (/sup 125/I)IBZM binds specifically to the dopamine D-2-receptor with stereospecificity. The (/sup 125/I)IBZM is potentially useful as an imaging agent for the investigation of dopamine D-2 receptors in humans.

  6. Simplification of Methods for PET Radiopharmaceutical Syntheses

    SciTech Connect

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  7. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  8. Diagnostic radiopharmaceuticals for localization in target tissues exhibiting a regional PH shift relative to surrounding tissues

    SciTech Connect

    Blau, M.; Kung, H. F.

    1984-10-02

    A radiopharmaceutical chemical compound comprising a radioactive isotope, other than an isotope of iodine, in chemical combination with at least one amine group. The compound has a lipophilicity sufficiently high at a pH of 7.6 to permit passage of the compound from the blood of a mammal into a target organ or tissue and sufficiently low at a pH of 6.6 to prevent rapid return of the compound from the target organ or tissue to the blood. The compound has a percent protein binding of less than ninety percent. A method for selectively depositing a radiopharmaceutical compound in at least one target tissue or organ of a mammal, which tissue or organ has a significantly different intracellular pH than the blood of the mammal, by introducing the compound of the invention into the bloodstream of the mammal.

  9. Radiopharmaceuticals for somatostatin receptor imaging.

    PubMed

    Mikołajczak, Renata; Maecke, Helmut R

    2016-01-01

    The aim of this review is to summarize the developments and briefly characterize the somatostatin analogs which are currently used for somatostatin receptor imaging in clinical routine or in early phase clinical trials. Somatostatin (sst) receptor targeting with radiolabeled peptides has become an integral part in nuclear oncology during the last 20 years. This integration process has been initiated in Europe with the introduction to the market of 111In-DTPA-DPhe1-octreotide [111In-pentetreotide]. Introducing 99mTc in somatostatin receptor targeting radiopeptides resulted in much better image quality, higher sensitivity of tumor detection and lower mean effective dose for the examined patient. The next generation are 68Ga labeled somatostatin analogs. Due to the spatial resolution of PET technique and increasing number of PET scanners, the PET or PET/CT technique became very important in somatostatin receptor imaging. Until up to a couple of years ago the analogs of somatostatin were constructed aiming at their agonistic behavior, expecting that their internalization with the receptor acti-vated by the radiolabeled ligand and its retention within the tumor cell are crucial for efficient imaging and therapy. Recently it has been shown that the antagonists recognize more binding sites at the tumor cell membrane and hence offer an improved diagnostic efficacy, especially when the density of sst receptors is low. This approach may in future improve diagnostic value of somatostatin receptor imaging techniques. The developments in tracer design are followed by the improvements in imaging techniques. The new SPECT scanners offer resolution close to that of PET, which might open a new era for 99mTc and other SPECT radiotracers.

  10. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the

  11. Placental transfer of radiopharmaceuticals and dosimetry in pregnancy

    SciTech Connect

    Russell, J.R.; Stabin, M.G.; Sparks, R.B.

    1999-01-01

    The calculation of radiation dose estimates to the fetus is often important in nuclear medicine. To obtain the best estimates of radiation dose to the fetus, the best biological and physical models should be employed. In this paper, after identification of radiopharmaceuticals often administered to women of childbearing age, the most recent data available on the placental crossover of these radiopharmaceuticals was used (with standard kinetic models describing the maternal distribution and retention and with the best available physical models) to obtain fetal dose estimates for these radiopharmaceuticals were identified as those most commonly administered to women of childbearing years. The literature yielded information on placental crossover of 15 radiopharmaceuticals, from animal or human data. Radiation dose estimates are presented in early pregnancy and at 3-, 6-, and 9-months gestation for these radiopharmaceuticals, as well as for many others used in nuclear medicine (the latter considering only maternal organ contributions to fetal dose). 46 refs., 1 fig., 5 tabs.

  12. Small Molecule Radiopharmaceuticals – A Review of Current Approaches

    PubMed Central

    Chaturvedi, Shubhra; Mishra, Anil K.

    2016-01-01

    Radiopharmaceuticals are an integral component of nuclear medicine and are widely applied in diagnostics and therapy. Though widely applied, the development of an “ideal” radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over time, strategies to address the issues have evolved by making use of new technological advances in the fields of biology and chemistry. This review presents the application of few advances in design and synthesis of radiopharmaceuticals. The topics covered are bivalent ligand approach and lipidization as part of design modifications for enhanced selectivity and sensitivity and novel synthetic strategies for optimized chemistry and radiolabeling of radiopharmaceuticals. PMID:26942181

  13. Radiopharmaceutical dosage selection for pediatric nuclear medicine

    SciTech Connect

    Shore, R.M.; Hendee, W.R.

    1986-02-01

    To identify the most rational method for adjusting adult radiopharmaceutical dosages for children, four methods of dosage computation were examined from the perspectives of diagnostic adequacy and radiation absorbed dose. For static imaging, information density is the most important factor in study quality, and adjustment of dosage by body weight (Wt) for thick organs, and body surface area (BSA) for thin organs is recommended. Compared with adults, small children receive less radiation exposure if radiopharmaceutical dosages are adjusted by Wt, and slightly greater exposure if dosages are adjusted by BSA. For dynamic imaging studies, dosage requirements are governed by the spatial resolution needed for region of interest assignment, and the statistical reliability of the time-activity data. For dynamic renal imaging, renograms of similar quality are obtained if dosages are adjusted by height (Ht). Dynamic cardiac studies might appear to require dosages even larger than those adjusted by Ht which would result in higher radiation absorbed doses to pediatric patients. However, smaller dosages can be used in children by prolonging the imaging time and accepting lower temporal resolution. Dosage requirements for dynamic studies depend on which physiologic characteristics are measured from the time-activity data. Since the measurements of some characteristics demand higher count rates than others, dosage requirements ultimately depend on which measurements are clinically necessary. Close attention to the factors that determine these requirements may yield significant reduction in dosages, and thus in radiation exposure, for patients of all ages.

  14. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    SciTech Connect

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.

  15. Stroma Targeting Nuclear Imaging and Radiopharmaceuticals

    PubMed Central

    Shetty, Dinesh; Jeong, Jae-Min; Shim, Hyunsuk

    2012-01-01

    Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy. PMID:22685650

  16. Receptor-specific positron emission tomography radiopharmaceuticals: /sup 75/Br-labeled butyrophenone neuroleptics

    SciTech Connect

    Moerlein, S.M.; Stoecklin, G.; Weinhard, K.; Pawlik, G.; Heiss, W.D.

    1985-11-01

    Cerebral dopaminergic D/sub 2/ receptors are involved in several common disease states, such as schizophrenia, Parkinson's disease, and Huntington's chorea. The use of radiolabeled D/sub 2/ receptor-binding ligands with positron emission tomography (PET) to noninvasively quantitate D/sub 2/ receptor densities thus has potential application in medicine. Butyrophenone neuroleptics have a high in vitro and in vivo binding affinity for cerebral D/sub 2/ receptors, and due to the useful chemical and nuclear decay properties of /sup 74/Br (76% ..beta../sup +/, half-life = 1.6 h), the authors have evaluated radiobrominated bromospiperone (BSP), brombenperidol (BBP), and bromperidol (BP) as radiopharmaceuticals for use with PET.

  17. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  18. Altered biodistribution of radiopharmaceuticals used in bone scintigraphy.

    PubMed

    Zuckier, Lionel S; Martineau, Patrick

    2015-01-01

    Bone scintigraphy has remained a mainstay of clinical nuclear medicine for more than 4 decades. Extensive medical literature has developed surrounding the etiology and significance of alterations in distribution of bone radiopharmaceuticals. Altered biodistribution may be of a global nature, reflecting altered partition of radiopharmaceutical between bone and soft tissues, or more focal, reflecting regional abnormalities, including those related to bone or soft tissues. A third category of alterations in the distribution of bone radiopharmaceuticals is those due to errors and blunders, colloquially termed "artifactual" in the medical imaging literature. Being cognizant of these unexpected abnormalities, and understanding their etiology, will prepare the reader to more readily appreciate the significance of these findings when encountered in clinical practice.

  19. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy

    PubMed Central

    Boschi, Alessandra; Martini, Petra; Uccelli, Licia

    2017-01-01

    The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188Re is readily available from an 188W/188Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications. PMID:28106830

  20. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  1. PET/Computed Tomography Using New Radiopharmaceuticals in Targeted Therapy.

    PubMed

    Sharma, Punit; Kumar, Rakesh; Alavi, Abass

    2015-10-01

    Targeted therapy is gaining prominence in the management of different cancers. Given different mechanism of action compared with traditional chemoradiotherapy, selection of patients for targeted therapy and monitoring response to these agents is difficult with conventional imaging. Various new PET radiopharmaceuticals have been evaluated for molecular imaging of these targets to achieve specific patient selection and response monitoring. These PET/computed tomography (CT) agents target the cell surface receptors, hormone receptors, receptor tyrosine kinases, or angiogenesis components. This article reviews the established and potential role of PET/CT with new radiopharmaceuticals for guiding targeted therapy.

  2. Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. [Baboons

    SciTech Connect

    Dischino, D.D.; Welch, M.J.; Kilbourn, M.R.; Raichle, M.E.

    1983-11-01

    The brain extraction of fifteen C-11-labeled compounds during a single capillary transit was studied in adult baboons by external detection of these tracers after injection into the internal carotid artery. The log P/sub oct/ (partition coefficient for octanol/water) values of these compounds range from -0.7 to greater than 4.0. A parabolic relationship was found between the log P/sub oct/value of the C-11-labeled compounds and the fraction of the radiopharmaceutical entering the brain. Compounds with log P/sub oct/ values between 0.9 and 2.5 were found to pass freely across the blood-brain barrier at a cerebral blood flow of 100 ml-min/sup -1/-hg/sup -1/. An apparently decreased extraction of very lipophilic compounds was shown to be related to binding of the tracer to blood components and macromolecules (red blood cells, albumin, etc.). These data suggest that a radiopharmaceutical designed to measure blood flow should have a log P/sub oct/ value of between 0.9 and 2.5.

  3. Preparation of radiopharmaceuticals labeled with metal radionuclides. Progress report, July 1, 1988--June 30, 1992

    SciTech Connect

    Welch, M.J.

    1992-06-01

    We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

  4. Process for producing astatine-211 for radiopharmaceutical use

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A process for reliably and consistently producing astatine-211 in small controlled volumes of a solution, which is selected from a choice of solvents that are useful in selected radiopharmaceutical procedures in which the At-211 activities are to be applied.

  5. Harvard-MIT research program in short-lived radiopharmaceuticals

    SciTech Connect

    Adelstein, S.J.

    1991-01-01

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  6. Progress in radiopharmaceutical development in the Australasia region

    SciTech Connect

    Lambrecht, R.M.; Katsifis, A.; Kassiou, M.; Smith, S.

    1994-12-31

    Recent progress in the development of reactor and cyclotron produced radionuclides, conversion to precursors, synthesis, quality control and biomedical applications are highlighted with examples of prospective radiopharmaceuticals applicable to major diseases of the Australasia region. The merits of cyclotrons and nuclear reactors for medical radioisotopes in the region are cited.

  7. Process for producing astatine-211 for radiopharmaceutical use

    DOEpatents

    Mirzadeh, S.; Lambrecht, R.M.

    1984-04-10

    A process is described for reliably and consistently producing astatine-211 in small controlled volumes of a solution, which is selected from a choice of solvents that are useful in selected radiopharmaceutical procedures in which the At-211 activities are to be applied. 4 figures, 1 table.

  8. Quantitative autoradiography with radiopharmaceuticals, Part 2: Applications in radiopharmaceutical research: concise communication

    SciTech Connect

    Som, P.; Yonekura, Y.; Oster, Z.H.; Meyer, M.A.; Pelletteri, M.L.; Fowler, J.S.; MacGregor, R.R.; Russell, J.A.; Wolf, A.P.; Fand, I.

    1983-03-01

    We describe the application of macroautoradiography, a relatively simple, quantifiable method for the evaluation of positron-emitting and gamma-emitting radiopharmaceuticals. We have investigated the response properties of two types of film to positron (F-18) and negatron (C-14) emitters. Variations in the response of film to increasing film-to-source distance are described, along with the effects of different intensifying screens and mounting tape. Digitization of whole-body autoradiograms (WBARG) in small animals was performed by using a videodensitometry system (videocamera interfaced to a computer). Quantitation was derived from analysis of a series of step-wedge standards that covered the range of radioactivities in the sample. By using a close-up lens on the videocamera, a 2- by 2-cm field is digitized as a 128 X 128 array, each pixel representing 156 X 156 micron. The effect of chlorpromazine (CPZ) on glucose metabolism in mice was studied by giving C-14 2DG followed by CPZ and F-18 FDG in the same animal. Muscle activity decreased and brown-fat activity increased. The high spatial resolution of this technique enables quantification in structures as small as the basal ganglia in mice. The use of dual-nuclide ARG permits each animal to be its own control, which greatly increases the utility of this method.

  9. Quantitative autoradiography with radiopharmaceuticals, Part 2: Applications in radiopharmaceutical research: concise communication.

    PubMed

    Som, P; Yonekura, Y; Oster, Z H; Meyer, M A; Pelletteri, M L; Fowler, J S; MacGregor, R R; Russell, J A; Wolf, A P; Fand, I; McNally, W P; Brill, A B

    1983-03-01

    We describe the application of macroautoradiography, a relatively simple, quantifiable method for the evaluation of positron-emitting and gamma-emitting radiopharmaceuticals. We have investigated the response properties of two types of film to positron (F-18) and negatron (C-14) emitters. Variations in the response of film to increasing film-to-source distance are described, along with the effects of different intensifying screens and mounting tape. Digitization of whole-body autoradiograms (WBARG) in small animals was performed by using a videodensitometry system (videocamera interfaced to a computer). Quantitation was derived from analysis of a series of step-wedge standards that covered the range of radioactivities in the sample. By using a close-up lens on the videocamera, a 2- by 2-cm field is digitized as a 128 X 128 array, each pixel representing 156 X 156 micron. The effect of chlorpromazine (CPZ) on glucose metabolism in mice was studied by giving C-14 2DG followed by CPZ and F-18 FDG in the same animal. Muscle activity decreased and brown-fat activity increased. The high spatial resolution of this technique enables quantification in structures as small as the basal ganglia in mice. The use of dual-nuclide ARG permits each animal to be its own control, which greatly increases the utility of this method.

  10. A simple liquid detector for radiopharmaceutical processing systems

    SciTech Connect

    Alexoff, D.L.; Hallaba, K.; Schlyer, D.; Ferrieri, R.

    1995-03-01

    Sensing the presence of liquids in tubing and vessels in radiochemical processing equipment provides information important to the remote or automatic control of the production of clinical doses of radiopharmaceuticals. Although modern commercial automated radiopharmaceutical synthesis machines do not usually include liquid presence as a measured process variable, earlier more complex automated synthesis devices did; and the inclusion of such feedback can increase system reliability and simplify trouble-shooting tasks carried out by computer software or human operators. Commercial liquid level detectors are often designed for large-scale industrial processes and are therefore too large or expensive to be useful in many radiochemical hardware systems. An inexpensive miniature optical liquid detector originally by Kramer and Fuchs has been duplicated here for use in monitoring the presence of liquids in teflon tubing (1/16 in. O.D.) in an enriched oxygen-18 water recovery system.

  11. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  12. Pharmacokinetics of SPECT radiopharmaceuticals for imaging hypoxic tissues.

    PubMed

    Wiebe, L I; Stypinski, D

    1996-09-01

    Although hypoxia has been known for decades to play an important role in the outcome of radiotherapy in oncology, and inspite of the contribution of hypoxia to a myriad of pathologies that involve vascular disease, the selective imaging of hypoxic tissue has attained prominence only within the past decade. Contemporary research in the hypoxia imaging field is based largely on radiosensitizer research of the 1960's and 1970's. Early sensitizer research identified a family of nitro-organic compounds, the N-1 substituted 2-nitroimidazoles as candidate drugs. The early champion, and still the reference standard for therapeutic radiosensitization of hypoxic tumor cells is misonidazole (MISO). Its peripheral neurotoxicity led to failure in clinical studies, but its biological, biophysical and biochemical properties have been investigated in detail and serve as a basis for further design, not only of sensitizers, but of diagnostic radiopharmaceuticals for imaging tissue hypoxia. Pharmacokinetic characterization of radiopharmaceuticals, specifically radiopharmaceuticals for imaging tissue hypoxia, has not been a central theme in their development. The advent of PET, through which quantitative determinations first became possible, opened the field for both descriptive and analytical radiopharmacokinetic studies. In SPECT, however, this approach is still undergoing refinement. This paper addresses some of the underlying issues in radiopharmaceutical pharmacokinetics. There is a paucity of published radiopharmacokinetic data for SPECT hypoxia imaging agents. Consequently, the pharmacokinetic issues for MISO are presented as a basis for development of pharmacokinetics for the chemically-related imaging agents. Properties of an hypoxia marker are described from a pharmacokinetic viewpoint, a theoretical model for descriptive pharmacokinetics is introduced and finally, recent pharmacokinetic studies from our laboratory are described.

  13. 68Ga-Based radiopharmaceuticals: production and application relationship.

    PubMed

    Velikyan, Irina

    2015-07-16

    The contribution of 68Ga to the promotion and expansion of clinical research and routine positron emission tomography (PET) for earlier better diagnostics and individualized medicine is considerable. The potential applications of 68Ga-comprising imaging agents include targeted, pre-targeted and non-targeted imaging. This review discusses the key aspects of the production of 68Ga and 68Ga-based radiopharmaceuticals in the light of the impact of regulatory requirements and endpoint pre-clinical and clinical applications.

  14. Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals

    PubMed Central

    Xu, Yu-Ping; Yang, Min

    2016-01-01

    Pancreatic cancer (PC) is a major health problem. Conventional imaging modalities show limited accuracy for reliable assessment of the tumor. Recent researches suggest that molecular imaging techniques with tracers provide more biologically relevant information and are benefit for the diagnosis of the cancer. In addition, radiopharmaceuticals also play more important roles in treatment of the disease. This review summaries the advancement of the radiolabeled compounds in the theranostics of PC. PMID:26909131

  15. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management.

  16. ORGAN DOSES AND EFFECTIVE DOSE FOR FIVE PET RADIOPHARMACEUTICALS.

    PubMed

    Andersson, Martin; Johansson, Lennart; Mattsson, Sören; Minarik, David; Leide-Svegborn, Sigrid

    2016-06-01

    Diagnostic investigations with positron-emitting radiopharmaceuticals are dominated by (18)F-fluorodeoxyglucose ((18)F-FDG), but other radiopharmaceuticals are also commercially available or under development. Five of them, which are all clinically important, are (18)F-fluoride, (18)F-fluoroethyltyrosine ((18)F-FET), (18)F-deoxyfluorothymidine ((18)F-FLT), (18)F-fluorocholine ((18)F-choline) and (11)C-raclopride. To estimate the potential risk of stochastic effects (mainly lethal cancer) to a population, organ doses and effective dose values were updated for all five radiopharmaceuticals. Dose calculations were performed using the computer program IDAC2.0, which bases its calculations on the ICRP/ICRU adult reference voxel phantoms and the tissue weighting factors from ICRP publication 103. The biokinetic models were taken from ICRP publication 128. For organ doses, there are substantial changes. The only significant change in effective dose compared with previous estimations was a 46 % reduction for (18)F-fluoride. The estimated effective dose in mSv MBq(-1) was 1.5E-02 for (18)F-FET, 1.5E-02 for (18)F-FLT, 2.0E-02 for (18)F-choline, 9.0E-03 for (18)F-fluoride and 4.4E-03 for (11)C-raclopride.

  17. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  18. Enantiopure bifunctional chelators for copper radiopharmaceuticals--does chirality matter in radiotracer design?

    PubMed

    Singh, Ajay N; Dakanali, Marianna; Hao, Guiyang; Ramezani, Saleh; Kumar, Amit; Sun, Xiankai

    2014-06-10

    It is well recognized that carbon chirality plays a critical role in the design of drug molecules. However, very little information is available regarding the effect of stereoisomerism of macrocyclic bifunctional chelators (BFC) on biological behaviors of the corresponding radiopharmaceuticals. To evaluate such effects, three enantiopure stereoisomers of a copper radiopharmaceutical BFC bearing two chiral carbon atoms were synthesized in forms of R,R-, S,S-, and R,S-. Their corresponding peptide conjugates were prepared by coupling with a model peptide sequence, c(RGDyK), which targets the αvβ3 integrin for in vitro and in vivo evaluation of their biological behaviors as compared to the racemic conjugate. Despite the chirality differences, all the conjugates showed a similar in vitro binding affinity profile to the αvβ3 integrin (106, 108, 85 and 100 nM for rac-H2-1, RR-H2-1, SS-H2-1, and RS-H2-1 respectively with all p values > 0.05) and a similar level of in vivo tumor uptake (2.72 ± 0.45, 2.60 ± 0.52, 2.45 ± 0.48 and 2.88 ± 0.59 for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 at 1 h p.i. respectively). Furthermore, they demonstrated a nearly identical biodistribution pattern in major organs (e.g. 2.07 ± 0.21, 2.13 ± 0.58, 1.70 ± 0.20 and 1.90 ± 0.46 %ID/g at 24 h p.i. in liver for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively; 1.80 ± 0.46, 2.30 ± 1.49, 1.73 ± 0.31 and 2.23 ± 0.71 at 24 h p.i. in kidneys for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively). Therefore we conclude that the chirality of BFC plays a negligible role in αvβ3-targeted copper radiopharmaceuticals. However, we believe it is still worthwhile to consider the chirality effects of BFCs on other targeted imaging or therapeutic agents.

  19. (99m)Tc-zolmitriptan: radiolabeling, molecular modeling, biodistribution and gamma scintigraphy as a hopeful radiopharmaceutical for lung nuclear imaging.

    PubMed

    Rashed, H M; Marzook, F A; Farag, H

    2016-12-01

    Lung imaging radiopharmaceuticals are helpful agents for measuring pulmonary blood flow and allow detection of pulmonary embolism and lung cancer. The goal of this study was to develop a novel potential radiopharmaceutical for lung imaging. Zolmitriptan (a selective serotonin receptor agonist) was successfully labeled with (99m)Tc via direct labeling method under reductive conditions studying different factors affecting the labeling efficiency. (99m)Tc-zolmitriptan was obtained with a maximum labeling yield of 92.5 ± 0.61 % and in vitro stability up to 24 h. Molecular modeling was done to predict the structure of (99m)Tc-zolmitriptan and ensure that radiolabeling did not affect binding ability of zolmitriptan to its receptor. Biodistribution studies showed that maximum lung uptake of (99m)Tc-zolmitriptan was 23.89 ± 1.2 % injected dose/g tissue at 15 min post-injection and retention in lungs remained high up to 1 h, whereas the clearance from mice appeared to proceed mainly via the renal pathway. Scintigraphic images confirmed the biodistribution results showing a high resolution lung image with low accumulation of radioactivity in other organs except kidneys and urinary bladder. (99m)Tc-zolmitriptan is not a blood product and so it is more safe than the currently available (99m)Tc-MAA, and its lung uptake is higher than that of the recently discovered (123)I-IPMPD, (99m)Tc(CO)5I and (99m)Tc-DHPM. So, (99m)Tc-zolmitriptan could be used as a hopeful radiopharmaceutical for lung scintigraphic imaging.

  20. Radiopharmaceutical preparation in-house vs. central radiopharmacy: a make/buy decision.

    PubMed

    Cope, R H

    1987-03-01

    Under DRG reimbursement it is essential that all operational costs be considered as targets for reduction. In this article, the author presents a methodology for determining whether to prepare radiopharmaceuticals in house or purchase them from a central radiopharmacy. By using this methodology, purchasing agents may find it possible to save up to 50% of the cost of radiopharmaceuticals.

  1. Molecular Engineering of Technetium and Rhenium Based Radiopharmaceuticals

    SciTech Connect

    Zubieta, J.

    2003-06-30

    The research was based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of N{sub 2}S{sub 2} and N{sub 3}S donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents.

  2. A Peltier thermal cycling unit for radiopharmaceutical synthesis.

    PubMed

    McKinney, C J; Nader, M W

    2001-01-01

    We have investigated the use of Peltier devices to rapidly cycle the temperature of reaction vessels in a radiopharmaceutical synthesis system. Peltier devices have the advantage that they can be actively cooled as well as heated, allowing precise and rapid control of vessel temperatures. Reaction vessel temperatures of between -6 degrees C and 110 degrees C have been obtained with commercially available devices with reasonable cycle times. Two devices have been used as the basis for a general purpose, two-pot synthesis system for production of [11C] compounds such as raclopride.

  3. ( sup 111 In-DTPA-D-Phe sup 1 )-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: Synthesis, radiolabeling and in vitro validation

    SciTech Connect

    Bakker, W.H.; Albert, R.; Bruns, C.; Breeman, W.A.P.; Hofland, L.J.; Marbach, P.; Pless, J.; Pralet, D.; Stolz, B.; Koper, J.W.; Lamberts, S.W.J.; Visser, T.J.; Krenning, E.P. Sandoz Pharma AG, Basel )

    1991-01-01

    As starting material for a potentially convenient radiopharmaceutical, a diethylenetriaminopentaacetic acid (DTPA) conjugated derivative of octreotide (SMS 201-995) was prepared. This peptide, (DTPA-D-Phe{sup 1})-octreotide (SDZ 215-811) binds more than 95% of added {sup 111}In in an easy, single-step labeling procedure without necessity of further purification. The specific somatostatin-like biologic effect of these analogues was proven by the inhibition of growth hormone secretion by cultured rat pituitary cells in a dose-dependent fashion by octreotide, (DTPA-D-Phe{sup 1})-octreotide and non-radioactive ({sup 115}In-DTPA-D-Phe{sup 1})-octreotide. The binding of ({sup 111}In-DTPA-D-Phe{sup 1})-octreotide to rat brain cortex membranes proved to be displaced similarly by natural somatosatin as well as by octreotide, suggesting specific binding of ({sup 111}In-DTPA-D-Phe{sup 1})-octreotide to somatostatin receptors. The binding of the indium-labeled compound showed a somewhat lower affinity when compared with the iodinated (Tyr{sup 3})-octreotide, but indium-labeled (DTPA-D-Phe{sup 1})-octreotide still binds with nanomolar affinity. In conjunction with in vivo studies, these results suggest that ({sup 111}In-DTPA-D-Phe{sup 1})-octreotide is a promising radiopharmaceutical for scintigraphic imaging of somatostatin receptor-positive tumors.

  4. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  5. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms

    PubMed Central

    Fani, Melpomeni; Kolenc Peitl, Petra; Velikyan, Irina

    2017-01-01

    Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors. PMID:28295000

  6. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  7. Process for producing astatine-211 for radiopharmaceutical use

    SciTech Connect

    Mirzadeh, S.; Lambrecht, R.M.

    1987-07-21

    A one-step chemical manipulation is described in combination with a distillation and collection process for producing At-211 comprising; a. providing a target of irradiated Bismuth coated to a predetermined thickness of a backing member, b. providing a vapor-producing still operably connected with a condenser that has a water cooled condensate collector formed of a dry silica gel mesh maintained at a temperature above the freezing point of water, and providing an effluent gas filter that is operably connected to receive effluent gas from the condenser, c. heating the target in the still at a temperature in the range of about 630/sup 0/-680/sup 0/C for a time period in the range of 50 to 80 minutes, to evole At-211 vapor from the target, c. providing a dry carrier gas having an oxygen concentration that is sufficient to form Bi/sub 2/O/sub 3/ thereby to essentially preclude vaporization of Bi metal, passing the carrier gas through the still to carry the At-211 vapor to the condenser, and to carry effluent from the condenser to the effluent gas filter, e. eluting At-211 from the condensate collector of the condenser with a controlled volume of eluent containing predetermined solvents that are compatible with a given desired radiopharmaceutical procedure, and f. collecting the At-211 in the controlled volume of eluent for use in the given radiopharmaceutical procedure.

  8. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  9. New selenium-75 labeled radiopharmaceuticals: selenonium analogues of dopamine

    SciTech Connect

    Sadek, S.A.; Basmadjian, G.P.; Hsu, P.M.; Rieger, J.A.

    1983-07-01

    Selenium-75 labeled selenonium analogues of dopamine, (2-(3,4-dimethoxyphenyl)ethyl)dimethylselenonium iodide and its dihydroxy analogue, were prepared by reducing (/sup 75/Se)selenious acid with sodium borohydride at pH 6.0 and reacting the NaSeH produced with 1-(3,4-dimethoxyphenyl)-2-(p-toluenesulfonyloxy)ethane. Tissue distribution studies in rats given the /sup 75/Se-labeled selenonium agents intravenously demonstrated high initial heart uptake. Prolonged adrenal retention and high adrenal to blood ratio of compound 4 were observed. The high uptake and adrenal to blood ratio suggest the potential use of compound 4 as a radiopharmaceutical for the adrenal gland.

  10. The NIST radioactivity measurement assurance program for the radiopharmaceutical industry.

    PubMed

    Cessna, Jeffrey T; Golas, Daniel B

    2012-09-01

    The National Institute of Standards and Technology (NIST) maintains a program for the establishment and dissemination of activity measurement standards in nuclear medicine. These standards are disseminated through Standard Reference Materials (SRMs), Calibration Services, radionuclide calibrator settings, and the NIST Radioactivity Measurement Assurance Program (NRMAP, formerly the NEI/NIST MAP). The MAP for the radiopharmaceutical industry is described here. Consolidated results show that, for over 3600 comparisons, 96% of the participants' results differed from that of NIST by less than 10%, with 98% being less than 20%. Individual radionuclide results are presented from 214 to 439 comparisons, per radionuclide, for (67)Ga, (90)Y, (99m)Tc, (99)Mo, (111)In, (125)I, (131)I, and (201)Tl. The percentage of participants results within 10% of NIST ranges from 88% to 98%.

  11. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in

  12. A rapid and efficient preparation of [123I]radiopharmaceuticals using a small HPLC (Rocket) column.

    PubMed

    Katsifis, Andrew; Papazian, Vahan; Jackson, Timothy; Loc'h, Christian

    2006-01-01

    A simplified method for the rapid and efficient preparation of [(123)I]radiopharmaceuticals is described. Three radiopharmaceuticals, [(123)I]beta-CIT, [(123)I]MIBG and [(123)I]clioquinol, were synthesised and purified as model compounds. The radiotracers were labelled with iodine-123 using electrophilic oxidative conditions and purified by a compact semi-preparative reverse phase column (C-18, 3 microm, 7 x 53 mm, Alltima Rocket, Alltech) using aqueous-ethanol as HPLC solvents that were directly used for radiopharmaceutical formulation. The radiochemical purity of the radioiodinated tracers as assessed by analytical HPLC was higher than 99% with specific activity higher than 3 GBq/nmol. The total preparation time of a radiotracer ranged from 40 to 60 min and, starting from 3.7 GBq of iodine-123, more than 2.5 GBq of formulated radiopharmaceuticals were available for clinical investigations.

  13. The Role of Non-Standard PET Radionuclides in the Development of New Radiopharmaceuticals

    SciTech Connect

    Avila-Rodriguez, M. A.; McQuarrie, S. A.

    2008-08-11

    This paper discusses the production methods of the most commonly used non-standard PET radionuclides, their decay characteristics and importance in the development of novel radiopharmaceuticals for PET-based molecular imaging and potential applications in therapy.

  14. USE OF RADIOPHARMACEUTICALS IN DIAGNOSTIC NUCLEAR MEDICINE IN THE UNITED STATES: 1960–2010

    PubMed Central

    Drozdovitch, Vladimir; Brill, Aaron B.; Callahan, Ronald J.; Clanton, Jeffrey A.; DePietro, Allegra; Goldsmith, Stanley J.; Greenspan, Bennett S.; Gross, Milton D.; Hays, Marguerite T.; Moore, Stephen C.; Ponto, James A.; Shreeve, Walton W.; Melo, Dunstana R.; Linet, Martha S.; Simon, Steven L.

    2014-01-01

    To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, we assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake, brain scan, brain blood flow, lung perfusion and ventilation, bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans, cardiac imaging procedures, tumor localization studies, localization of gastrointestinal bleeding, and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologist’s cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations. PMID:25811150

  15. Use of radiopharmaceuticals in diagnostic nuclear medicine in the United States: 1960-2010.

    PubMed

    Drozdovitch, Vladimir; Brill, Aaron B; Callahan, Ronald J; Clanton, Jeffrey A; DePietro, Allegra; Goldsmith, Stanley J; Greenspan, Bennett S; Gross, Milton D; Hays, Marguerite T; Moore, Stephen C; Ponto, James A; Shreeve, Walton W; Melo, Dunstana R; Linet, Martha S; Simon, Steven L

    2015-05-01

    To reconstruct reliable nuclear medicine-related occupational radiation doses or doses received as patients from radiopharmaceuticals over the last five decades, the authors assessed which radiopharmaceuticals were used in different time periods, their relative frequency of use, and typical values of the administered activity. This paper presents data on the changing patterns of clinical use of radiopharmaceuticals and documents the range of activity administered to adult patients undergoing diagnostic nuclear medicine procedures in the U.S. between 1960 and 2010. Data are presented for 15 diagnostic imaging procedures that include thyroid scan and thyroid uptake; brain scan; brain blood flow; lung perfusion and ventilation; bone, liver, hepatobiliary, bone marrow, pancreas, and kidney scans; cardiac imaging procedures; tumor localization studies; localization of gastrointestinal bleeding; and non-imaging studies of blood volume and iron metabolism. Data on the relative use of radiopharmaceuticals were collected using key informant interviews and comprehensive literature reviews of typical administered activities of these diagnostic nuclear medicine studies. Responses of key informants on relative use of radiopharmaceuticals are in agreement with published literature. Results of this study will be used for retrospective reconstruction of occupational and personal medical radiation doses from diagnostic radiopharmaceuticals to members of the U.S. radiologic technologists' cohort and in reconstructing radiation doses from occupational or patient radiation exposures to other U.S. workers or patient populations.

  16. AUTOMATION FOR THE SYNTHESIS AND APPLICATION OF PET RADIOPHARMACEUTICALS.

    SciTech Connect

    Alexoff, D.L.

    2001-09-21

    The development of automated systems supporting the production and application of PET radiopharmaceuticals has been an important focus of researchers since the first successes of using carbon-11 (Comar et al., 1979) and fluorine-18 (Reivich et al., 1979) labeled compounds to visualize functional activity of the human brain. These initial successes of imaging the human brain soon led to applications in the human heart (Schelbert et al., 1980), and quickly radiochemists began to see the importance of automation to support PET studies in humans (Lambrecht, 1982; Langstrom et al., 1983). Driven by the necessity of controlling processes emanating high fluxes of 511 KeV photons, and by the tedium of repetitive syntheses for carrying out these human PET investigations, academic and government scientists have designed, developed and tested many useful and novel automated systems in the past twenty years. These systems, originally designed primarily by radiochemists, not only carry out effectively the tasks they were designed for, but also demonstrate significant engineering innovation in the field of laboratory automation.

  17. Synthesis and biological studies of positron-emitting radiopharmaceuticals

    SciTech Connect

    Dischino, D.D.

    1983-01-01

    The development and clinical evaluation of two-positron emitting radiopharmaceuticals designed to image myelin in humans is reported. Carbon-11-labeled benzyl methyl ether was synthesized by the reaction of carbon-11-labeled methanol and benzyl chloride in dimethyl sulfoxide containing powdered potassium hydroxide in a radiochemical yield of 43% and a synthesis and purification time of 40 minutes. Carbon-11-labeled diphenylmethanol was synthesized by the reaction of carbon-11-labeled carbon dioxide and phenyllithium followed by the reduction of the carbon-11-labeled intermediate to diphenylmethanol via lithium aluminum hydride in a radiochemical yield of 71% and a synthesis and purification time of 38 minutes. Carbon-11-labeled benzyl methyl ether and diphenylmethanol were each evaluated as myelin imaging agents in three patients with multiple sclerosis via positron-emission tomography. In two out of three patients studied with carbon-11-labeled benzyl methyl ether, the distribution of activity in the brain was not consistent with local lipid content. A new synthesis of carbon-11-labeled-DL-phenylalanine labeled in the benzylic position and the synthesis of fluorine-18-labeled 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol, a potential in vivo marker of hypoxic tissue, are reported.

  18. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  19. In Vitro Assessment of the In Vivo Stability of Cu-64 Radiopharmaceuticals

    SciTech Connect

    Packard, Alan B

    2011-12-15

    Research Plans: The successful development of Cu-64 radiopharmaceuticals depends upon retention of the Cu-64 atom in the radiopharmaceutical. To date, the focus has been on the development of chelators that better retain Cu-64, but there has been no effort to develop an effective method by which improved retention may be measured. In the absence of a suitable analytical method, the stability of Cu-64 radiopharmaceuticals is estimated indirectly, with decreased liver uptake suggesting higher in vivo complex stability. But this approach is inadequate for radiopharmaceuticals, such as radiolabeled antibodies, that are expected to accumulate in the liver even when there is no free Cu-64 present. The absence of such a method has also hampered efforts to systematically evaluate the chemical factors that may give rise to improved retention. The objective of this project is to develop and validate such a method. Accomplishments: The two primary accomplishments of this project will be 1) the development and validation of a method to measure the stability of Cu-64 radiopharmaceuticals and 2) the determination of the chemical factors that define the in vivo stability of Cu 64 radiopharmaceuticals. Because Cu(II) is extremely labile, the in vivo stability of Cu-64 radiopharmaceuticals is not primarily determined by the amount of free Cu that is present at any given time or by the thermodynamic stability constants, but rather by the rate at which Cu is lost from the complex, the dissociation rate constant, kd. The dissociation rate constants of the Cu-64 complexes from a series of bifunctional chelators (BFCs) will be measured using Free Ion Selective Radiotracer Extraction (FISRE), a technique originally developed to measure bioavailable Cu in environmental samples. FISRE will also be applied to the determination of the kd's of a series of reference Cu-64 complexes to determine the chemical factors that define the in vivo stability of Cu-64 radiopharmaceuticals. Potential

  20. Intelligent portal monitor for fast suppression of false positives due to radiopharmaceuticals

    SciTech Connect

    Johnson, M.W.; Butterfield, K.B.

    1985-01-01

    Monitoring the movement of radioactive material through secure or sensitive areas may be complicated by the existence of unanticipated sources of radiation carried by individuals passing through the area. Typical of such sources are radiopharmaceuticals prescribed for a medical procedure. We report here on an apparatus designed to quickly discriminate between in-vivo radiopharmaceuticals and other nuclear materials, based on a pattern-recognition algorithm and a microcomputer. Principles of operation are discussed, and the data base for the pattern-recognition algorithm is displayed. Operating experience with the apparatus in a trial location is also discussed. Our apparatus correctly identifies in-vivo radiopharmaceuticals in over 80% of all trials; challenges with radioisotopes other than radiopharmaceuticals have led the apparatus, without exception, to reject the challenge isotope as incompatible with medical practice. The apparatus thus rapidly discriminates between individuals bearing radiopharmaceuticals and those bearing illicit sources, such as special nuclear materials. Examples of applications are presented. 7 refs., 4 figs., 1 tab.

  1. Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.

    PubMed

    Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J

    1999-11-01

    Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF.

  2. DOPASCAN Injection ([{sup 123}I]{beta}-CIT): A radiopharmaceutical with potential for the diagnosis of Parkinson's disease

    SciTech Connect

    Nowotnik, D. P.

    1999-06-10

    In conjunction with single photon emission computerized tomography (SPECT), the radiopharmaceutical [{sup 123}I]{beta}-CIT (DOPASCAN Injection) has demonstrated significant potential for the early diagnosis and monitoring of Parkinson's Disease. Well over 2000 patients worldwide have been studied with this product, which has completed phase II clinical studies. This review summarizes the development and clinical application of this new radiopharmaceutical product.

  3. Environmental effects on the structure of metal ion-DOTA complexes: An ab initio study of radiopharmaceutical metals.

    SciTech Connect

    Lau, E Y; Lightstone, F C; Colvin, M E

    2006-02-10

    Quantum mechanical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA; but, Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the coordination energy for the amide arm shows a large variation between the Y and In ions. Optimizations including water and guandinium moieties to approximate the effects of antibody binding indicate a large energy cost for the DOTA-chelated In to adopt the ideal conformation for antibody binding.

  4. Incorporation of radiohalogens via versatile organometallic reactions: applications in radiopharmaceutical chemistry

    SciTech Connect

    Srivastava, P.C.; Goodman, M.M.; Knapp, F.F. Jr.

    1985-01-01

    Factors that must be considered for the design of radiohalogenated radio-pharmaceuticals include the stability and availability of the substrate, the physical half-life of the radiohalogen and the in vivo stability of the radiolabel. Vinyl and phenyl radiohalogen bonds show more in vivo stability than the alkyl radiohalogen bonds. Consequently, a variety of methods suitable for the synthesis of tissue specific radiopharmaceuticals bearing a vinyl or phenyl radiohalogen have been developed involving the synthesis and halogenation of metallovinyl and phenyl intermediates. The halogens and metallation reactions include iodine and bromine and alanation, boronation, mercuration, stannylation, and thallation, respectively. 19 refs., 1 fig., 1 tab.

  5. Radiopharmaceuticals for diagnosis. [Final] report, 1 January 1991--31 December 1993

    SciTech Connect

    Kuhl, D.E.

    1993-06-01

    Since 1987, this grant has supported the development of new radiochemical methods for use with short-lived, positron-emitting radionuclides; new laboratory techniques for radiochemical syntheses; and development of new radiopharmaceuticals which will be of use in Positron Emission Tomography. For the period 1 January 1991 to 31 December 1993, the authors have continued their efforts in all of these areas, as they feel that an integrated approach to the synthesis and characterization of new PET Radiopharmaceuticals is crucial to the continued growth and application of this imaging technique in modern medicine. Progress in a number of these areas is described in this report.

  6. Lutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System

    PubMed Central

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Pavlakis, Nick; Roach, Paul J

    2015-01-01

    Objective(s): Peptide Receptor Radionuclide Therapy (PRRT) with yttrium-90 (90Y) and lutetium-177 (177Lu)-labelled SST analogues are now therapy option for patients who have failed to respond to conventional medical therapy. In-house production with automated PRRT synthesis systems have clear advantages over manual methods resulting in increasing use in hospital-based radiopharmacies. We report on our one year experience with an automated radiopharmaceutical synthesis system. Methods: All syntheses were carried out using the Eckert & Ziegler Eurotope’s Modular-Lab Pharm Tracer® automated synthesis system. All materials and methods used were followed as instructed by the manufacturer of the system (Eckert & Ziegler Eurotope, Berlin, Germany). Sterile, GMP-certified, no-carrier added (NCA) 177Lu was used with GMP-certified peptide. An audit trail was also produced and saved by the system. The quality of the final product was assessed after each synthesis by ITLC-SG and HPLC methods. Results: A total of 17 [177Lu]-DOTATATE syntheses were performed between August 2013 and December 2014. The amount of radioactive [177Lu]-DOTATATE produced by each synthesis varied between 10-40 GBq and was dependant on the number of patients being treated on a given day. Thirteen individuals received a total of 37 individual treatment administrations in this period. There were no issues and failures with the system or the synthesis cassettes. The average radiochemical purity as determined by ITLC was above 99% (99.8 ± 0.05%) and the average radiochemical purity as determined by HPLC technique was above 97% (97.3 ± 1.5%) for this period. Conclusions: The automated synthesis of [177Lu]-DOTATATE using Eckert & Ziegler Eurotope’s Modular-Lab Pharm Tracer® system is a robust, convenient and high yield approach to the radiolabelling of DOTATATE peptide benefiting from the use of NCA 177Lu and almost negligible radiation exposure of the operators. PMID:27408890

  7. Design of CGMP Production of 18F- and 68Ga-Radiopharmaceuticals

    PubMed Central

    Chu, Pei-Chun; Chao, Hao-Yu; Shieh, Wei-Chen; Chen, Chuck C.

    2014-01-01

    Objective. Radiopharmaceutical production process must adhere to current good manufacturing process (CGMP) compliance to ensure the quality of precursor, prodrug (active pharmaceutical ingredient, API), and the final drug product that meet acceptance criteria. We aimed to develop an automated system for production of CGMP grade of PET radiopharmaceuticals. Methods. The hardware and software of the automated synthesizer that fit in the hot cell under cGMP requirement were developed. Examples of production yield and purity for 68Ga-DOTATATE and 18F-FDG at CGMP facility were optimized. Analytical assays and acceptance criteria for cGMP grade of 68Ga-DOTATATE and 18F-FDG were established. Results. CGMP facility for the production of PET radiopharmaceuticals has been established. Radio-TLC and HPLC analyses of 68Ga-DOTATATE and 18F-FDG showed that the radiochemical purity was 92% and 96%, respectively. The products were sterile and pyrogenic-free. Conclusion. CGMP compliance of radiopharmaceuticals has been reviewed. 68Ga-DOTATATE and 18F-FDG were synthesized with high radiochemical yield under CGMP process. PMID:25276810

  8. Harvard-MIT research program in short-lived radiopharmaceuticals. Technical progress report, 1991

    SciTech Connect

    Adelstein, S.J.

    1991-12-31

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  9. A simple computer programme for biokinetic study of 99Tcm-radiopharmaceuticals.

    PubMed

    Imran, M B; Khurshid, S J; Anwar, K

    1994-02-01

    A simple programme has been written in GW BASIC to calculate the percentage activity of 99Tcm-radiopharmaceuticals in different tissues after biodistribution. The programme is efficient, easy to handle and produces a permanent record in terms of a final report.

  10. Counting Rate Characteristics and Image Distortion in Preclinical PET Imaging During Radiopharmaceutical Therapy.

    PubMed

    Mellhammar, Emma; Dahlbom, Magnus; Axelsson, Johan; Strand, Sven-Erik

    2016-12-01

    PET may provide important information on the response during radiopharmaceutical therapy (RPT). Emission of radiation from the RPT radionuclide may disturb coincidence detection and impair image resolution. In this study, we tested the feasibility of performing intratherapeutic PET on 3 preclinical PET systems.

  11. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  12. Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.

    2001-01-01

    Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.

  13. Development of a modular system for the synthesis of PET [(11)C]labelled radiopharmaceuticals.

    PubMed

    Boschi, Stefano; Lodi, Filippo; Cicoria, Gianfranco; Raul Ledesma, Jorge; Knopp, Roger; Rizzello, Anna; Di Pierro, Donato; Trespidi, Silvia; Marengo, Mario

    2009-10-01

    [((11))C]labelled radiopharmaceuticals as N-[(11)C]methyl-choline ([(11)C]choline), l-(S-methyl-[(11)C])methionine ([(11)C]methionine) and [(11)C]acetate have gained increasing importance in clinical PET and for the routine production of these radiopharmaceuticals, simple and reliable modules are needed to produce clinically relevant radioactivity. On the other hand, flexible devices are needed not only for the routine synthesis but also for more complex applications as the development of new tracers. The aim of this work was the adaptation of an Eckert Ziegler modular system for easy routine synthesis of [(11)C]choline, [(11)C]methionine and [(11)C]acetate using components that account for straightforward scaling up and upgrades.

  14. [Activities of administered radiopharmaceuticals and population dose from nuclear medicine in Czechoslovakia].

    PubMed

    Gushak, V; Rzhichkova, G

    1991-01-01

    The authors assessed by means of questionnaires the activities of radiopharmaceuticals administered in departments of nuclear medicine in Czechoslovakia. The mean activities of individual radiopharmaceuticals are roughly equal as in Great Britain but lower than in the Canadian province of Manitoba. The differences of activities used in different departments are approximately equal in all compared countries. In the Czech Republic the annual collective effective dose equivalent from nuclear medicine was 433 Sv in 1983 and 609 Sv in 1987. The mean effective dose equivalent per examination was 2.23 mSv in 1983 and 2.44 mSv in 1987. The mean effective dose equivalent per inhabitant of the Czech Republic was 0.042 mSv in 1983 and 0.059 mSv in 1987. The radiation dose of the Czech population from nuclear medicine amounts approximately to one tenth of the load from radiodiagnostics.

  15. [Computer simulated images of radiopharmaceutical distributions in anthropomorphic phantoms]. Performance report

    SciTech Connect

    Not Available

    1991-05-17

    We have constructed an anatomically correct human geometry, which can be used to store radioisotope concentrations in 51 various internal organs. Each organ is associated with an index number which references to its attenuating characteristics (composition and density). The initial development of Computer Simulated Images of Radiopharmaceuticals in Anthropomorphic Phantoms (CSIRDAP) over the first 3 years has been very successful. All components of the simulation have been coded, made operational and debugged.

  16. The role of exploratory investigational new drugs for translating radiopharmaceuticals into first-in-human studies.

    PubMed

    Schwarz, Sally W; Oyama, Reiko

    2015-04-01

    The Food and Drug Administration has provided a mechanism to reduce time and resources expended on new pharmaceuticals, including radiopharmaceuticals, in order to identify the most promising agents for further development. The exploratory investigational new drug guidance describes early phase 1 exploratory approaches involving microdoses of potential drug candidates that are consistent with regulatory requirements while maintaining the safety needed for human subjects, allowing sponsors to move ahead more quickly with the development of new agents.

  17. Development new radiopharmaceutical based on 5-thio-d- glucose labeled technetium-99m

    NASA Astrophysics Data System (ADS)

    Stasyuk, E. S.; Skuridin, V. S.; Ilina, E. A.; Rogov, A. S.; Nesterov, E. A.; Sadkin, V. L.; Larionova, L. A.; Varlamova, N. V.; Zelchan, R.

    2016-06-01

    The article considers the obtaining and possibility of using 5-thio-D-glucose labeled technetium-99m for the diagnosis of malignant tumors by single photon emission computed tomography. The analysis of the level of international developments of radiopharmaceuticals based on derivatives of glucose has been carried out. Also the article provides information on of using experimental batches of lyophilisate on the basis of 5-thio-D-glucose for preliminary biomedical testing on the mice.

  18. Quantitative studies in radiopharmaceutical science. Progress report, April 1-August 31, 1986

    SciTech Connect

    Cooper, M.

    1986-09-01

    This report covers progress made during the first reporting period since the redirection of the project. In radiochemistry, achievements in fluorine-18 tracer studies including purification and reaction kinetics of 2-fluorodeoxyglucose and production of 6-fluoroDOPA. Radiopharmaceuticals have been prepared and tested for studies on CNS dopaminergic systems. By use of dynamic positron emission tomography the cerebral transport and metabolism of glucose continues to be studied. 6 figs.

  19. Diagnostic and Therapeutic Radiopharmaceutical Agents for Selective Discrimination of Prostate Cancer

    DTIC Science & Technology

    2009-10-01

    Therapeutic Radiopharmaceutical Agents for Selective Discrimination of Prostate Cancer 5b. GRANT NUMBER W81XWH-05-1-0556 5c. PROGRAM ELEMENT NUMBER 6...Bottenus, Brienne N.∞; Fugate, Glenn A.†; Benny, Paul*. Actinides Separations, Conference Pacific Northwest National Lab 6/2006 In situ formation of...Bottenus, Brienne N.∞; Benny, Paul*. Actinides Separations, Conference Pacific Northwest National Lab 3/12/2006 S-functionalized cysteine ligands

  20. Internal dose assessment for 211At α-emitter in isotonic solution as radiopharmaceutical

    NASA Astrophysics Data System (ADS)

    Yuminov, O. A.; Fotina, O. V.; Priselkova, A. B.; Tultaev, A. V.; Platonov, S. Yu.; Eremenko, D. O.; Drozdov, V. A.

    2003-12-01

    The functional fitness of the α-emitter 211At for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for 211At in isotonic solution and for 123I as sodium iodide. Analysis of the 211At radiation dose to the thyroid gland suggests that this radiopharmaceutical may be predominantly used for the treatment of the thyroid cancer.

  1. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    SciTech Connect

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  2. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1977-October 31, 1980

    SciTech Connect

    Welch, M.J.

    1980-06-01

    Although the germanium-68 ..-->.. gallium-68 generator is probably the only source of positron-emitting radionuclides that could enable the widespread application of positron tomography, the commercially available /sup 68/Ga//sup 68/Ge generator system suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, which forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than /sup 68/Ga-EDTA, it is first necessary to break the stable EDTA complex and remove all traces of EDTA. This procedure adds several steps and a significant amount of time to procedures for preparing /sup 68/Ga-radiopharmaceuticals. We have developed a new generator using a solvent extraction system which will produce /sup 68/Ga-oxine (8-hydroxyquinoline), a weak chelate. Using this agent we have synthesized several /sup 68/Ga-radiopharmaceuticals and tested them in vitro and in vivo. We have also carried out some preliminary studies to compare generator systems which produce /sup 68/Ga in an ionic form. Attempts have been made using polarographic and chromatographic techniques, and in vivo distribution data to investigate the stability of radiogallium complexes with a series of potentially lipophilic complexing agents.

  3. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing.

    PubMed

    Belanger, Anthony P; Byrne, John F; Paolino, Justin M; DeGrado, Timothy R

    2009-11-01

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [(18)F]FDG and [(11)C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells).

  4. Synthetic techniques of radiopharmaceuticals production labeled with C-11 for PET in cardiology

    NASA Astrophysics Data System (ADS)

    Dyubkov, V. S.; Ekaeva, I. V.; Katunina, T. A.; Rumyantsev, A. S.; Silchenkov, A. V.; Tuflina, T. V.

    2017-01-01

    Positron emission tomography (PET) and PET-Computerised Tomography (CT) are unique, non-invasive diagnostic techniques, in which the local, temporal and quantitative distributions of radioactive labelled substances are measured to investigate physiological processes. It is well known that PET centre of Bakulev Scientific Centre for Cardiovascular Surgery is the oldest one in Moscow. During more than fifteen years a large number of patients have received PET scans. Due to main stream of Scientific Centre, emphasis is placed on examining the heart functioning. For the diagnosis innervation of the heart muscle a number of radiopharmaceuticals are used, including PET radiopharmaceuticals such as 11C-CGP 12177, 11C-meta-hydroxyephedrine as well as its synthetic analogues labelled with other PET radionuclides (18F, 68Ga). 11C-meta-hydroxyephedrine is one of the most perspective radiopharmaceutical for an investigation of cardiac receptors function due to required materials availability for a radio synthesis in Russia. The main advantage of proposed 11C-meta-hydroxyephedrine synthesis technique is the use of a catalyst which allows one decrease reaction time from 5 minutes to 30 seconds. Obtained results allow one decrease reaction time of methylation and increase radiochemical and technological yields.

  5. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223.

    PubMed

    Anderson, Peter M; Subbiah, Vivek; Rohren, Eric

    2014-01-01

    Osteosarcoma is a cancer characterized by formation of bone by malignant cells. Routine bone scan imaging with Tc-99m-MDP is done at diagnosis to evaluate primary tumor uptake and check for bone metastases. At time of relapse the Tc-99m-MDP bone scan also provides a specific means to assess formation of bone by malignant osteosarcoma cells and the potential for bone-seeking radiopharmaceuticals to deliver radioactivity directly into osteoblastic osteosarcoma lesions. This chapter will review and compare a bone-seeking radiopharmaceutical that emits beta-particles, samarium-153-EDTMP, with an alpha-particle emitter, radium-223. The charged alpha particles from radium-223 have far more mass and energy than beta particles (electrons) from Sm-153-EDTMP. Because radium-223 has less marrow toxicity and more radiobiological effectiveness, especially if inside the bone forming cancer cell than samarium-153-EDTMP, radium-223 may have greater potential to become widely used against osteosarcoma as a targeted therapy. Radium-223 also has more potential to be used with chemotherapy against osteosarcoma and bone metastases. Because osteosarcoma makes bone and radium-223 acts like calcium, this radiopharmaceutical could possibly become a new targeted means to achieve safe and effective reduction of tumor burden as well as facilitate better surgery and/or radiotherapy for difficult to resect large, or metastatic tumors.

  6. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons.

    PubMed

    Das, Tapas; Banerjee, Sharmila

    2017-01-01

    Bone pain arising due to skeletal metastases is one of the common complications experienced by the majority of patients suffering from prostate, breast and lung cancer at the advanced stage of the disease. These patients are subjected to palliative care in order to improve the quality of their remaining life. With the gradually increasing number of cancer cases, palliation of metastatic bone pain is gaining importance. Bone-seeking radiopharmaceuticals play a pivotal role in the management of cancer pain, particularly in patients with multiple metastases, as these agents are proven to be effective in controlling the bone pain with minimum side effects. Although a plethora of such radiopharmaceuticals have been developed and evaluated in animal models, only a few are regularly used in clinics while some of these agents are at different stages of clinical evaluations. The present article describes only those bone-seeking radiopharmaceuticals, which have been reported to be clinically administered till date, along with their relative merits and drawbacks.

  7. Traceability from governmental producers of radiopharmaceuticals in measuring (18)F in Brazil.

    PubMed

    Oliveira, A E; Iwahara, A; Silva, C J; Cruz, P A L; Poledna, R; Silva, R L; Laranjeira, A S; Delgado, J U; Tauhata, L; Loureiro, J S; Toledo, B C; Braghirolli, A M S; Andrade, E A L; Silva, J L; Hernandes, H O K; Valente, E S; Dalle, H M; Almeida, V M; Silva, T G; Fragoso, M C F; Oliveira, M L; Nascimento, E S S; Oliveira, E M; Herrerias, R; Souza, A A; Bambalas, E; Bruzinga, W A

    2016-03-01

    Since the inception of its proficiency test program to evaluate radionuclide measurement in hospitals and clinics, the National Metrology Laboratory of Ionizing Radiation-LNMRI, that represents Brazilian National Metrology Institute (NMI) for ionizing radiation has expanded its measurement and calibration capability. Requirements from the National Health Surveillance Agency from Ministry of Health (ANVISA), to producers of radiopharmaceuticals provided an opportunity to improve the full traceability chain to the highest level. Fluorodeoxyglucose (FDG-(18)F) is the only radiopharmaceutical simultaneously produced by all Brazilian radiopharmaceutical production centers (RPCs). By running this proficiency test, LNMRI began to provide them with the required traceability. For evaluation, the ratio of RPC to reference value results and ISO/IEC17043:2010 criteria were used. The reference value established as calibration factor on the secondary standard ionization chamber was obtained from three absolute measurements systems, and routinely confirmed in each round of proficiency test by CIEMAT/NIST liquid scintillation counting. The γ-emitting impurities were checked using a High-Purity Germanium (HPGe) detector. The results show that Brazilian RPCs are in accordance with (accuracy within ±10%) the Brazilian standard for evaluation of measurements with radionuclide calibrators (CNEN NN 3.05., 2013). Nevertheless, the RPCs should improve the methodology of uncertainty estimates, essential when using the statistical criteria of ISO/IEC 17043 standard, in addition to improving accuracy to levels consistent with their position in the national traceability chain.

  8. SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

    SciTech Connect

    Fernandes, F; Silva, D da; Rodrigues, L

    2015-06-15

    Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transport (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy is obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup

  9. Harvard--MIT research program in short-lived radiopharmaceuticals

    SciTech Connect

    Not Available

    1991-03-01

    This report describes progress on five projects. The first project showed a 1000 fold concentration of the cationic complex {sup 99m}Tc (MIBI) in heart cell mitochondria vs heart cell cytoplasm, as determined by high resolution electron probe microanalysis. Additional technetium-99m based complexes are being developed and tested. The second project involves evaluating technetium acetylacteonates as potential indicators of cerebral blood flow. An intermediate in the synthesis of a technetium porphyrin complex has been synthesized; an oxotechnetium(V)-2,4-pentanedione complex has been prepared and is currently being characterized. The third project involves using radio labelled antibodies for diagnosis and treatment of cancer. An early discovery was that chloramine-T based iodination protocols resulted in a reversal of the charge on mouse lgGs. Immunoperoxidase-labelled monoclonal antibody MOv 18 was shown to bind specifically to the most frequent ovarian aderon carcinomas, and not to healthy tissue, making this antibody a good candidate for immunotherapy or immunodetection. Work on a specific immunotherapy protocol suffered a setback when one reagent, a {sup 125}I-biotin complex, proved to be unstable in vivo. The fourth project involves labelling antibodies with positron emitting radionuclides. Radiofluorination was accomplished through reductive alkylation of {sup 18}F-aldehyde, or pentafluorophenyl esters. Radioiodination was accomplished using alkyl-tin derivation exchange. The fifth project examined antibody modification for use in radioimmune imaging. Technetium-99m-labelled lgG was shown to be biologically equivalent to Indium-III-labelled lgG for imaging focal sites of inflamation. Also, Indium III labelling of small bioactive peptides was examined as a means of imaging important physiological processes. 44 refs., 2 figs.

  10. Improving production of 11C to achieve high specific labelled radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Savio, E.; García, O.; Trindade, V.; Buccino, P.; Giglio, J.; Balter, H.; Engler, H.

    2012-12-01

    Molecular imaging is usually based on the recognition by the radiopharmaceuticals of specific sites which are present in limited number or density in the cells or biological tissues. Thus is of high importance to label the radiopharmaceuticals with high specific activity to be able to achieve a high target to non target ratio. The presence of carbon dioxide (CO2) from the air containing 98,88% of 12C and 1,12% 13C compete with 11CO2 produced at the cyclotron. In order to minimize the presence of these isotopes along the process of irradiation, transferring and synthesis of radiopharmaceuticals labelled with 11C, we applied this method: previous to the irradiation the target was 3-4 times flushed with He (5.7) as a cold cleaning, followed by a similar conditioning of the line, from the target up to the module, and finally a hot cleaning in order to desorb 12CO2 and 13CO2, this was performed by irradiation during 1 min at 5 uA (3 times). In addition, with the aim of improving quality of gases in the target and in the modules, water traps (Agilent) were incorporated in the inlet lines of the target and modules. Target conditioning process (cold and hot flushings) as well as line cleaning, allowing the desorption of unlabelled CO2, together with the increasing of gas purity in the irradiation and in the synthesis, were critical parameters that enable to achieve 11C-radiopharamaceuticals with high specific activity, mainly in the case of 11C-PIB.

  11. The Radiopharmaceuticals Production and Research Centre established by the Heavy Ion Laboratory of the University of Warsaw

    NASA Astrophysics Data System (ADS)

    Choiński, J.; Jastrzębskia, J.; Kilian, K.; Mazur, I.; Napiorkowski, P. J.; Pękal, A.; Szczepaniak, D.

    2014-03-01

    The Radiopharmaceuticals Production and Research Centre was recently installed on the premises of the Heavy Ion Laboratory, University of Warsaw. Equipped with a medical PETtrace p/d cyclotron , radiochemistry synthesis and dispensing units and a modern quality control laboratory the Centre is intended to produce regularly for commercial purposes the classic PET radiopharmaceuticals ( such -as e.g. FDG- ). Situated on the largest Warsaw scientific campus OCHOTA, an important part of the Centre's activities will also be devoted to the production of known species for preclinical studies and research into innovative radiopharmaceuticals in collaboration with other scientific units of this Campus as well as with members of the Warsaw Consortium for PET Collaboration. Research into the accelerator production route of 99mTc will also begin shortly.

  12. Quality control of 99mTc-radiopharmaceuticals. Evaluation of GCS minicolumns in routine clinical work with scintillation cameras.

    PubMed

    Darte, L; Persson, B R

    1980-12-01

    Gel chromatography columnm scanning (GCS) is a rapid and reliable method for the quality control of 99mTc-radiopharmaceuticals. With this method the labelled compound and various impurities such as free pertechnetate, hydrolyzed reduced technetium or other 99mTc-complexes are obtained in one testing procedure. Using minicolumns results can be obtained with a simple testing procedure within a few minutes after the sample is taken; this is significant in routine radiopharmaceutical work. The resolution of the recording system is important, so as to be able to utilize fully the good separation ability of the minicolumn. Minicolumns were studied with some commonly used radiopharmaceuticals. A scintillation camera was used to record minicolumn data under various conditions and the results were conpared to those obtained using a scanner to reveal optimal recording conditions for the scintillation camera.

  13. Current status of PET imaging of differentiated thyroid cancer with second generation radiopharmaceuticals.

    PubMed

    Lauri, C; Di Traglia, S; Galli, F; Pizzichini, P; Signore, A

    2015-03-01

    Although the prognosis of differentiated thyroid cancer (DTC) is favorable, some histotypes show worst clinical outcome and higher risk of recurrence. Serum thyroglobulin (Tg) levels and 131I-whole-body-scan (WBS), together with neck ultrasound (US), represent the golden standard for DTC follow-up. Nevertheless, the relatively high frequency of patients with high Tg levels and negative WBS requires further investigations by using new imaging modalities. The availability of whole body positron emission tomography (PET) methods, in parallel with the advances in radiochemistry, offer a wide substrate for many solutions. To this day ¹⁸F-fluoro-deoxy-glucose (¹⁸F-FDG) PET/CT still represents the imaging of choice in follow-up of patients with high serum Tg and negative ¹³¹I-WBS but in the last decades the research has focused on finding "second generation" radiopharmaceuticals for PET imaging, with both diagnostic and prognostic purposes, aiming to change the way to image thyroid cancer. Moreover, the use of various PET radiopharmaceuticals, that offer the possibility to explore different pathways involved in thyroid cancer, could find important applications in the near future for clinical decision making in order to program tailored treatments and follow-up. It would be desirable to use the same radiopharmaceutical for both imaging and dosimetric purpose to achieve a tailored therapy. Many efforts are focused in this direction and ¹²⁴I-PET/CT is now emerging as a valid tool in restaging and therapy management of DTC with promising results. Although the preliminary data available in literature require a confirmation in larger studies with longer follow-up, we think that in next future ¹²⁴I-PET/CT could gain an important role for management of DTC. The aim of this review was to perform a systematic analysis of literature describing the state of art of "second generation" PET-radiopharmaceuticals for imaging DTC. Discussion is focused on the utility of

  14. Radio-UHPLC: a tool for rapidly determining the radiochemical purity of technetium-99m radiopharmaceuticals?

    PubMed

    Kryza, David; Janier, Marc

    2013-08-01

    Determining the radiochemical purity (RCP) of technetium-99m ((99m)Tc) radiopharmaceuticals using the method described in the package insert is a time-consuming process, requiring particular attention in order to achieve accurate RCP results. The purpose of this study was to evaluate whether radio-ultra high performance liquid chromatography (radio-UHPLC) may be an alternative method for RCP testing of (99m)Tc-tetrofosmin, (99m)Tc-MAG3 and (99m)Tc-sestamibi. Results obtained using radio-UHPLC were in excellent agreement with the standard method, with total analysis time being reduced to less than 3 min.

  15. High--valent technetium chemistry-new opportunities for radiopharmaceutical developments.

    PubMed

    Braband, Henrik

    2014-04-01

    The rich coordination chemistry of (99m) Tc distinguishes this radiometal from other radiolabels applied for single-photon emission computed tomography (SPECT) or positron emission tomography (PET). This potential should be used to create novel opportunities for the development of effective imaging probes. In this context, the field of high-valent technetium chemistry has received much interest. It has been shown that fac-{(99m) TcO3 }(+) complexes are potential new synthons for radiopharmaceutical developments, due to their unique physicochemical properties and unprecedented reactivity. In this article, recent developments and the 'state of the art' in this field of technetium chemistry will be reviewed comprehensively.

  16. Refurbishing of a Freeze Drying Machine, used in Nuclear Medicine for Radiopharmaceuticals Production

    NASA Astrophysics Data System (ADS)

    Gaytán-Gallardo, E.; Desales-Galeana, G.

    2006-09-01

    The refurbishing of a freeze drying machine used in the radiopharmaceuticals production, applied in nuclear medicine in the Radioactive Materials Department of the Nuclear Research National Institute in México (ININ in Spanish), is presented. The freeze drying machine was acquired in the 80's decade and some components started having problems. Then it was necessary to refurbish this equipment by changing old cam-type temperature controllers and outdated recording devices, developing a sophisticated software system that substitutes those devices. The system is composed by a freeze drying machine by Hull, AC output modules for improved temperature control, a commercial data acquisition card, and the software system.

  17. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  18. A Generator-Produced Gallium-68 Radiopharmaceutical for PET Imaging of Myocardial Perfusion

    PubMed Central

    Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E.; Prior, Julie L.; Gu, Hannah; Rath, Nigam P.; Piwnica-Worms, David

    2014-01-01

    Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI. PMID:25353349

  19. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility.

    PubMed

    da Silva, Teógenes A; Guimarães, Margarete C; Meireles, Leonardo S; Teles, Luciana L D; Lacerda, Marco Aurélio S

    2016-11-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent Hp(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility.

  20. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    SciTech Connect

    Golas, D.B.

    1993-12-31

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented.

  1. [Reduction of radiation dose to the worker in preparing the radiopharmaceutical solution by a simple shielding equipment].

    PubMed

    Miyazaki, Y; Inoue, H; Shiozaki, J; Higuchi, Y; Fujioka, M; Kawaguchi, K; Miyanaga, M; Aburano, T

    1987-01-01

    In order to reduce radiation dose to the hands of examiners who prepare and aspirate radiopharmaceuticals, we made a prototype of simplified manually-operated dispense system, which the syringe and the vial shield with lead were set in the small box made of lead and lead glass. The result showed that our dispense system allowed substantial reduction of radiation dose to the hands and rapid preparation of radiopharmaceuticals compared with the conventional lead shield syringe system, and allowed closer operation, smaller dead volume and lower cost compared with the conventional automatic system.

  2. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals

    PubMed Central

    Elsinga, Philip; Todde, Sergio; Penuelas, Ivan; Meyer, Geerd; Farstad, Brit; Faivre-Chauvet, Alain; Mikolajczak, Renata; Westera, Gerrit; Gmeiner-Stopar, Tanja

    2010-01-01

    This guidance is meant as a guidance to Part B of the EANM “Guidelines on Good Radiopharmacy Practice (GRPP)” issued by the Radiopharmacy Committee of the EANM (see www.eanm.org), covering the small-scale “in house” preparation of radiopharmaceuticals which are not kit procedures. The aim is to provide more detailed and practice-oriented guidance to those who are involved in the small-scale preparation of, for example, PET, therapeutic or other radiopharmaceuticals which are not intended for commercial purposes or distribution. PMID:20306035

  3. Radiopharmaceuticals for radiation synovectomy: Evaluation of two yttrium-90 particulate agents

    SciTech Connect

    Davis, M.A.; Chinol, M.

    1989-06-01

    Radiation synovectomy, a noninvasive therapeutic alternative to surgical synovectomy, has not gained widespread acceptance in the United States because of the lack of a suitable radiopharmaceutical. Two new radioactive particles, (/sup 90/Y)Ca oxalate and (/sup 90/Y)ferric hydroxide macroaggregates (FHMA), were developed in our laboratory and evaluated for size, stability, and joint leakage. More than 90% of the (/sup 90/Y)Ca oxalate particles were in the optimal size range of 1-10 microns, and the unbound activity in serum and synovial fluid was 3.7% to 5.0%. Following injection in rabbit knees, leakage of (/sup 90/Y)Ca oxalate was 5 +/- 2%, with localization primarily in the bone and virtually no uptake by the lymph nodes or liver. Yttrium-90 FHMA particles were larger (95% greater than 10 microns), and at least on a microscopic level, appeared to distribute homogeneously over the articular surface. Leakage of (/sup 90/Y)FHMA was initially less but eventually slightly exceeded that of (/sup 90/Y)Ca oxalate. Nevertheless, both radiopharmaceuticals can provide a satisfactory therapeutic dose to the knee with less than half the leakage and a marked reduction in absorbed dose to nontarget tissues compared to previously tested agents. Ease of preparation, physical characteristics of the /sup 90/Y beta ray, and apparent lack of substantial leakage from the joint make these agents extremely attractive for clinical evaluation in rheumatoid arthritis patients who are unresponsive to medical therapy.

  4. Evaluation of a measurement system for Uranium electrodeposition control to radiopharmaceuticals production

    SciTech Connect

    Tufic Madi Filho; Adonis Marcelo Saliba Silva; Jose Patricio Nahuel Cardenas; Maria da Conceicao Costa Pereira; Valdir Maciel Lopes; Alexandre, P. S.; Diogo, F. S.; Rafael, T. P.; Vitor, O. A; Anderson, F. L.; Lucas, R. S.; Brianna, S.; Eduardo, L. C.

    2015-07-01

    For 2016, studies by international bodies forecast a crisis in the supply of Molybdenum ({sup 99}Mo), which is the generator of {sup 99m}Tc, widely used for medical diagnoses and treatments. As a result, many countries are making efforts to prevent this crisis. Brazil is developing the Brazilian Multipurpose Reactor (RMB) project, under the responsibility of the National Nuclear Energy Commission (CNEN). The RMB is a nuclear reactor for research and production of radioisotopes used in the production of radiopharmaceuticals and radioactive sources, broadly used in industrial and research areas in Brazil. Electrodeposition of uranium is a common practice to create samples for alpha spectrometry and this methodology may be an alternative way to produce targets of low enriched uranium (LEU) to fabricate radiopharmaceuticals, as {sup 99}Mo, used for cancer diagnosis. To study the electrodeposition, a solution of 10 mM uranyl nitrate, in 2-propanol, containing uranium enriched to 2.4% in {sup 235}U, with pH = 1, was prepared and measurements with an alpha spectrometer were performed. These studies are justified by the need to produce {sup 99}Mo since, despite using molybdenum in bulk, Brazil is totally dependent on its import. In this project, we intend to obtain a process that may be technologically feasible to control the radiation targets for {sup 99}Mo production. (authors)

  5. European regulatory framework on the use and development of pharmaceuticals and radiopharmaceuticals for pediatrics.

    PubMed

    Mensonides-Harsema, Marguérite; Otte, Andreas

    2011-01-01

    A survey in 2000 revealed that only about 30% of the prescriptions in the European pediatric population were on the basis of evidence-based medicine (EbM). Less for radiopharmaceuticals and principally for diagnostics, radiologists throughout Europe are referred to the pediatric guidelines of the European Association of Nuclear Medicine (EANM), as none of the frequently used tracers have been evaluated in clinical trials in the different pediatric subgroups. Following a resolution to address the lack of EbM in children, the European Commission published the Pediatric Regulation EC 1901/2006 and its amendment EC 1902/2006, effective from 2007. This regulation foresees the development of evidence-based medicine in the pediatric population. This is effected through a set of principles like the mandatory pediatric investigation plan (PIP) to be included with the market authorization application (MAA), and the pediatric use market authorization (PUMA) for off-patent pharmaceuticals, and to a very small part radiopharmaceuticals with funding possibilities for pediatric-specific research through the 7th Framework Programme (7FP) of the European Union.

  6. Technetium-99m-alendronate: a new radiopharmaceutical for bone scanning.

    PubMed

    Arteaga de Murphy, C; Meléndez-Alafort, L; Montoya-Molina, C; Sepúlveda-Méndez, J

    1996-01-01

    The purpose of this paper is to report the preparation of a new technetium-99m-radiopharmaceutical for bone scanning. The chelating agent for 99mTc is a new bisphosphonate, alendronate, 4-amino-1-hydroxy-butylidene-1, 1-bisphosphonate (ABP) used as a treatment for osteoporosis. ABP, because of its amino group, seems to be better suited to form a strong and stable complex with technetium-99m and therefore might be better than 99mTc-etidronate (HEDP) or 99mTc-medronate (MDP) for bone scanning. A sterile dry kit containing APB, a reducing agent and a stabilizer was prepared. The parameters studied were molar concentrations, pH, shelf life, labeling efficiency and radiochemical purity. The oven dried sterile kit was formulated with 5 mg ABP, 0.25 mg stannous fluoride and 0.025 mg gentisic acid at pH 2.5-3.5. The labeling efficiency with 20-1500 MBq of pertechnetate (99mTcO4-) was over 95% at room temperature and was stable for 5 h. Technetium-99m-alendronate was tested in two rabbits and it proved to be a promising new radiopharmaceutical for bone scanning. Work is underway to study 99mTc-ABP biodistribution in a statistically significant number of laboratory animals and, later on, to determine radiopharmacokinetic parameters in normal volunteers.

  7. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    PubMed Central

    Bernard-Gauthier, Vadim; Wängler, Carmen; Wängler, Bjoern; Schirrmacher, Ralf

    2014-01-01

    Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET). These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F) to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE) approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA) via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014) shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry. PMID:25157357

  8. Predicting the success of a radiopharmaceutical for in vivo imaging of central nervous system neuroreceptor systems.

    PubMed

    Wong, Dean F; Pomper, Martin G

    2003-01-01

    In vivo imaging of the central nervous system (CNS) neuroreceptors in humans began was used in the early 1980s. Now, some twenty years later, the success of radiopharmaceutical imaging is still often one based on empiricism and serendipity. Nevertheless, a number of factors can be identified based on the robot experience in developing these radiotracers. This article will describe some of the issues that may be useful in choosing approaches to radiolabel ligands as future imaging agents of neuroreceptors, transporters and intrasynaptic measures of neurotransmitters. A description of the current process from hypothesis to radiochemical preclinical development, non-human primate imaging development of quantitative procedures finally leading to toxicology, dosimetry and eventually human applications are provided. The role of important factors including metabolism and lipophilicity, affinity and other factors for optimizing radiolabeling strategies is dealt with. Furthermore, issues involving decision making of how far to extend efforts in developing a radiotracer and when might be an appropriate stopping place are discussed. Finally some typical examples of the use of these radiotracers, especially with emphasis on stable drug design and development, are provided. These include occupancy studies and mechanism of action studies. In summary, the prediction of tracer success includes: first, identification of appropriate targets and precursors, then systematic optimization of ligands with continuous feedback from pharmacokinetics and iterative improvement based on unsuccessful tracers. This article is intended to present a pragmatic overview of the radiopharmaceutical development process with emphasis on the CNS.

  9. 11C=O Bonds Made Easily for Positron Emission Tomography Radiopharmaceuticals

    PubMed Central

    Rotstein, Benjamin H.; Liang, Steven H.; Placzek, Michael S.; Hooker, Jacob M.; Gee, Antony D.; Dollé, Frédéric; Wilson, Alan A.; Vasdev, Neil

    2016-01-01

    The positron-emitting radionuclide carbon-11 (11C, t1/2 = 20.3 minutes) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [11C]methyl iodide or [11C]methyl triflate (generated from [11C]CO2). Consequently, small molecules that lack an easily substituted 11C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [11C]Carbon dioxide, [11C]carbon monoxide, [11C]cyanide, and [11C]phosgene represent alternative carbon-11 reactants to enable 11C-carbonylation. Methodologies developed for preparation of 11C-carbonyl groups have had a tremendous impact on the development of novel PET radiopharmaceuticals and provided key tools for clinical research. 11C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates, and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility, and practicality of the underlying radiochemistry. PMID:27276357

  10. Chemistry and biology of Tc-99m renal function radiopharmaceuticals. Final report, May 1, 1982-January 15, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Progress is reported on research conducted during the period May 1, 1982 to January 15, 1983. The chemistry and biology of two possible renal function radiopharmaceuticals, Tc-99m N, N'-bis (mercaptoacetyl)-2,3-diamino-propanoate (Tc-99m CO/sub 2/DADS, 1(X=OH)) and the Tc-99m complex of penicillamine. (ACR)

  11. Current activities in the ICRP concerning estimation of radiation doses to patients from radiopharmaceuticals for diagnostic use

    NASA Astrophysics Data System (ADS)

    Mattsson, S.; Johansson, L.; Leide-Svegborn, S.; Liniecki, J.; Nosske, D.; Riklund, K.; Stabin, M.; Taylor, D.

    2011-09-01

    A Task Group within the ICRP Committees 2 and 3 is continuously working to improve absorbed dose estimates to patients investigated with radiopharmaceuticals. The work deals with reviews of the literature, initiation of new or complementary studies of the biokinetics of a compound and dose estimates. Absorbed dose calculations for organs and tissues have up to now been carried out using the MIRD formalism. There is still a lack of necessary biokinetic data from measurements in humans. More time series obtained by nuclear medicine imaging techniques such as whole-body planar gamma-camera imaging, SPECT or PET are highly desirable for this purpose. In 2008, a new addendum to ICRP Publication 53 was published under the name of ICRP Publication 106 containing biokinetic data and absorbed dose information to organs and tissues of patients of various ages for radiopharmaceuticals in common use. That report also covers a number of generic models and realistic maximum models covering other large groups of substances (e.g. "123I-brain receptor substances"). Together with ICRP Publication 80, most radiopharmaceuticals in clinical use at the time of publication were covered except the radioiodine labeled compounds for which the ICRP dose estimates are still found in Publication 53. There is an increasing use of new radiopharmaceuticals, especially PET-tracers and the TG has recently finished its work with biokinetic and dosimetric data for 18F-FET, 18F-FLT and 18F-choline. The work continues now with new data for 11C-raclopride, 11C-PiB and 123I-ioflupan as well as re-evaluation of published data for 82Rb-chloride, 18F-fluoride and radioiodide. This paper summarises published ICRP-information on dose to patients from radiopharmaceuticals and gives some preliminary data for substances under review.

  12. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  13. A comparison of radiopharmaceutical agents used for the diagnosis of pulmonary embolism.

    PubMed

    Rizzo-Padoin, N; Farina, A; Le Pen, C; Duet, M; Mundler, O; Leverge, R

    2001-04-01

    Radioactive gas or technetium-99m aerosols are used to perform pulmonary ventilation scintigraphy. The aim of this study was to compare three radiopharmaceuticals, Kryptoscan, Technegas and Venticis II, in terms of their costs and user preferences rather than on the basis of diagnostic efficacy. For each radiopharmaceutical agent, an analysis questionnaire was sent to nuclear medicine departments setting out the criteria (and subcriteria) to be assessed: diagnosis quality: imaging quality, distribution homogeneity, examination procedures and capacity to examine particular patients (e.g. smokers); safety: for patient, paramedical and medical staff and the environment; use: availability in cases of emergency, ergonomics of the apparatus, simplicity and time of preparation. A score, ranging from 0 to 5, and a weighting (importance of one criterion with regard to the others) were assigned to each criterion. The direct cost of a ventilation (drugs, generator systems, disposable materials) was calculated for each radiopharmaceutical agent according to the number of patients examined per day (1-6) and the number of examination days per week (2-5). Fourteen questionnaires concerning at least two of the products were returned out of the 30 mailed. A 'preference score' was calculated using Pharma Decision software. The mean score of Kryptoscan was significantly higher than that of Venticis II (444 vs. 286, P < 0.001) and higher than the mean score of Technegas (444 vs. 344, P < 0.01). For Venticis II and Technegas, the changes in patient direct costs were minor and depended on the number of patients per day and the number of examination days per week. Respectively, they were: $US 117.66 (5 patients.day-1; 5 days.week-1) to $US 147.74 (2 patients.day-1; 2 days.week-1) and $US 56.60 (6 patients.day-1; 5 days.week-1) to $US 132.08 (2 patients.day-1; 2 days.week-1). The direct cost of ventilation using Kryptoscan varied only according to the number of patients examined per day

  14. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer.

    PubMed

    Eder, Matthias; Neels, Oliver; Müller, Miriam; Bauder-Wüst, Ulrike; Remde, Yvonne; Schäfer, Martin; Hennrich, Ute; Eisenhut, Michael; Afshar-Oromieh, Ali; Haberkorn, Uwe; Kopka, Klaus

    2014-06-30

    The detection of prostate cancer lesions by PET imaging of the prostate-specific membrane antigen (PSMA) has gained highest clinical impact during the last years. 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) represents a successful novel PSMA inhibitor radiotracer which has recently demonstrated its suitability in individual first-in-man studies. The radiometal chelator HBED-CC used in this molecule represents a rather rarely used acyclic complexing agent with chemical characteristics favourably influencing the biological functionality of the PSMA inhibitor. The simple replacement of HBED-CC by the prominent radiometal chelator DOTA was shown to dramatically reduce the in vivo imaging quality of the respective 68Ga-labelled PSMA-targeted tracer proving that HBED-CC contributes intrinsically to the PSMA binding of the Glu-urea-Lys(Ahx) pharmacophore. Owing to the obvious growing clinical impact, this work aims to reflect the properties of HBED-CC as acyclic radiometal chelator and presents novel preclinical data and relevant aspects of the radiopharmaceutical production process of [68Ga]Ga-PSMA-HBED-CC.

  15. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  16. Highway accident involving radiopharmaceuticals near Brookhaven, Mississippi on December 3, 1983

    SciTech Connect

    Mohr, P.B.; Mount, M.E.; Schwartz, M.W.

    1985-04-01

    A rear-end collision occurred between a passenger automobile and a luggage trailer carrying 84 packages, 76 of which contained radiopharmaceuticals, on US Highway 84 near Brookhaven, Mississippi on the afternoon of December 3, 1983. The purpose of this report is to document the mechanical circumstances of the accident, confirm the nature and quantity of radioactive materials involved, and assess the nature of the physical environment to which the packages were exposed and the response of the packages. The report consists of three major sections. The first deals wth the nature and circumstances of the accident and findings of fact. The second gives an accounting and description of the materials involved and the consequences of their exposure. The third gives an assessment and analysis of the mechanisms of damage and the conclusions which may be drawn from the investigation. 4 refs., 24 figs., 4 tabs.

  17. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals.

    PubMed

    Kluba, Christiane A; Mindt, Thomas L

    2013-03-12

    The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction) enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (bio)molecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  18. Evaluation of alternative rapid thin layer chromatography systems for quality control of technetium-99m radiopharmaceuticals.

    PubMed

    Mang'era, Kennedy; Wong, Derek; Douglas, David; Franz, Kellie; Biru, Taddese

    2014-04-01

    Whatman 3MM™ and Tec-Control™ systems were evaluated as ITLC-SG alternatives for 99mTc-radiopharmaceuticals. They compare well in accuracy and reproducibility, and are faster and more convenient than ITLC-SG. Tec-Control™ radiochemical purity values for 99mTc-sestamibi were more conservative than ITLC-SG. Full solvent migration was not reproduced for 99mTc-tetrofosmin in Tec-Control™, and for this Whatman 3MM™ is preferred. Developing times were 10-15 min, 7-9 min and ~1min for ITLC-SG, Whatman 3MM™ and Tec-Control™, respectively. Overall, Tec-Control™ strips are preferred due to speed and ease of use.

  19. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    SciTech Connect

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  20. Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with (177)Lu and Conjugated to Peptides.

    PubMed

    Ferro-Flores, Guillermina; Ocampo-García, Blanca E; Santos-Cuevas, Clara L; de María Ramírez, Flor; Azorín-Vega, Erika P; Meléndez-Alafort, Laura

    2015-01-01

    Gold nanoparticles (AuNPs) have been proposed for a variety of medical applications such as localized heat sources for cancer treatment and drug delivery systems. The conjugation of peptides to AuNPs produces stable multimeric systems with target-specific molecular recognition. Lutetium- 177 ((177)Lu) has been successfully used in peptide radionuclide therapy. Recently, (177)Lu-AuNPs conjugated to different peptides have been proposed as a new class of theranostic radiopharmaceuticals. These radioconjugates may function simultaneously as molecular imaging agents, radiotherapy systems and thermal-ablation systems. This article covers advancements in the design, synthesis, physicochemical characterization, molecular recognition assessment and preclinical therapeutic efficacy of gold nanoparticles radiolabeled with (177)Lu and conjugated to RGD (-Arg-Gly-Asp-), Lys(3)-Bombesin and Tat(49-57) peptides.

  1. Complexation study on no-carrier-added astatine with insulin: a candidate radiopharmaceutical.

    PubMed

    Lahiri, Susanta; Roy, Kamalika; Sen, Souvik

    2008-12-01

    No-carrier-added astatine radionuclides produced in the (7)Li-irradiated lead matrix were separated from bulk lead nitrate target by complexing At with insulin, followed by dialysis. The method offers simultaneous separation of At from lead as well as its complexation with insulin. The At-insulin complex might be a potential radiopharmaceutical in the treatment of hepatocellular carcinoma. The stability of At-insulin complex was checked by dialysis against deionized water and Ringer lactate (RL) solution. It has been found that the half-life of At-insulin complex is about approximately 12h, when dialyzed against deionized water and is only 6h, when dialyzed against RL solution having the same composition as blood serum. The 6h half-life of this Insulin-At complex is perfect for killing cancer cells from external cell surfaces as the half-life of internalization of insulin molecule inside the cell is 7-12h.

  2. Scaling animal to human biodistribution of the radiopharmaceutical [68Ga]Ga-PSMA-HBED-CC

    NASA Astrophysics Data System (ADS)

    Parra, Pamela Ochoa; Veloza, Stella

    2016-07-01

    The radiotracer called 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) is a novel radiophar-maceutical for the detection of prostate cancer lesions by positron emission tomography (PET) imaging. Setting up a cost-effective manual synthesis of this radiotracer and making its clinical translation in Colombia will require two important elements: the evaluation of the procedure to yield a consistent product, meeting standards of radio-chemical purity and low toxicity and then, the evaluation of the radiation dosimetry. In this paper a protocol to extrapolate the biokinetic model made in normal mice to humans by using the computer software for internal dose assessment OLINDA/EXM® is presented as an accurate and standardized method for the calculation of radiation dosimetry estimates.

  3. The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals.

    PubMed

    Donnelly, Paul S

    2011-02-07

    There are several isotopes of copper and rhenium that are of interest in the development of new molecular imaging or radiotherapeutic agents. This perspective article highlights the role of coordination chemistry in the design of copper and rhenium radiopharmaceuticals engineered to selectively target tissue of interest such as cancer cells or pathological features associated with Alzheimer's disease. The coordination chemistry of copper bis(thiosemicarbazone) derivatives and copper macrocyclic complexes is discussed in terms of their potential application as targeted positron emission tomography tracers for non-invasive diagnostic imaging. A range of rhenium complexes with different ligands with rhenium in different oxidation states are introduced and their potential to be translated to new radiotherapeutic agents discussed.

  4. Simple method to quantitate iodine-124 contamination in iodine-123 radiopharmaceuticals

    SciTech Connect

    Palmer, D.W.; Rao, S.A.

    1985-08-01

    Iodine-123 (/sup 123/I) produced by the /sup 124/Te(p,2n)/sup 123/I reaction contains several percent /sup 124/I radionuclidic contamination at the time of imaging. Since /sup 124/I degrades the quality of the images and causes unnecessary radiation absorbed dose to the patient, it is important to know the amount present in radiopharmaceuticals at the time of administration. A simple approach is described which uses a radionuclide dose calibrator and lead shield. The sample is assayed both shielded and unshielded and the ratio of readings depends uniquely upon the percent /sup 124/I present. The technique can be adopted for any type of dose calibrator, sample container, and Pb shield, but use of the numeric constants reported here should be restricted to the specified equipment.

  5. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Qu, Yawei; Wang, Kun; Zhang, Xiaojun; Zha, Jiali; Song, Tianming; Bao, Chengpeng; Liu, Haixiao; Wang, Zhongliang; Wang, Jing; Liu, Zhongyu; Liu, Haifeng; Tian, Jie

    2015-06-01

    Cerenkov luminescence imaging utilizes visible photons emitted from radiopharmaceuticals to achieve in vivo optical molecular-derived signals. Since Cerenkov radiation is weak, non-optimum for tissue penetration and continuous regardless of biological interactions, it is challenging to detect this signal with a diagnostic dose. Therefore, it is challenging to achieve useful activated optical imaging for the acquisition of direct molecular information. Here we introduce a novel imaging strategy, which converts γ and Cerenkov radiation from radioisotopes into fluorescence through europium oxide nanoparticles. After a series of imaging studies, we demonstrate that this approach provides strong optical signals with high signal-to-background ratios, an ideal tissue penetration spectrum and activatable imaging ability. In comparison with present imaging techniques, it detects tumour lesions with low radioactive tracer uptake or small tumour lesions more effectively. We believe it will facilitate the development of nuclear and optical molecular imaging for new, highly sensitive imaging applications.

  6. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals.

    PubMed

    Zeng, Dexing; Zeglis, Brian M; Lewis, Jason S; Anderson, Carolyn J

    2013-06-01

    Click chemistry has become a ubiquitous chemical tool with applications in nearly all areas of modern chemistry, including drug discovery, bioconjugation, and nanoscience. Radiochemistry is no exception, as the canonical Cu(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, inverse electron demand Diels-Alder reaction, and other types of bioorthogonal click ligations have had a significant impact on the synthesis and development of radiopharmaceuticals. This review will focus on recent applications of click chemistry ligations in the preparation of imaging agents for SPECT and PET, including small molecules, peptides, and proteins labeled with radionuclides such as (18)F, (64)Cu, (111)In, and (99m)Tc.

  7. Hydroxypyridinone Chelators: From Iron Scavenging to Radiopharmaceuticals for PET Imaging with Gallium-68

    PubMed Central

    Cusnir, Ruslan; Imberti, Cinzia; Hider, Robert C.; Blower, Philip J.; Ma, Michelle T.

    2017-01-01

    Derivatives of 3,4-hydroxypyridinones have been extensively studied for in vivo Fe3+ sequestration. Deferiprone, a 1,2-dimethyl-3,4-hydroxypyridinone, is now routinely used for clinical treatment of iron overload disease. Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations, and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the positron emitting radiometal, 68Ga3+, which is clinically used for molecular imaging in positron emission tomography (PET). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga3+ at ambient temperature, neutral pH and micromolar concentrations of ligand, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. 68Ga-labelled THP-peptides accumulate at target tissue in vivo, and are excreted largely via a renal pathway, providing high quality PET images. PMID:28075350

  8. Design Features Of Microfluidic Reactor For [18F]FDG Radiopharmaceutical Synthesis

    NASA Astrophysics Data System (ADS)

    Oh, J. H.; Lee, B. N.; Nam, K. R.; Attla, G. A.; Lee, K. C.; Cjai, J. S.

    2011-06-01

    Microfluidic reactor exhibits advantages for radiopharmaceutical synthesis. Microfluidic chips can reduce the time for radiosynthesis using tiny quantities of chemical compounds. It also has a good heat transfer, performance and provides an integrated system including synthesis, separation, and purification. These advantages make FDG production. So we have designed a microreactor chip which included the whole chemical processing; water evaporation, solvent exchange, radiofluorination and so on. It was designed by using a commercial 3D CAD modeling program CATIA V5, heat transfer performance was analyzed by ANSYS, and CFX was used for analyzing fluid performance. This paper described the design of FDG synthesis system on a microchip, the relevant locations of its parts, both heat and fluid performance efficiency analysis.

  9. Effect of altered thyroid status on the transport of hepatobiliary radiopharmaceuticals

    SciTech Connect

    Pahuja, D.N.; Noronha, O.P.

    1985-10-01

    The effect of induced hypothyroidism (by feeding an antithyroid drug-propylthiouracil) on the transport and clearance of the routinely used hepatobiliary radiopharmaceuticals--radioiodinated iodine- T (131I) rose bengal and technetium-99m-N-(4-n-butylphenylcarbamoylmethyl) iminodiacetate, was studied in the rats. Hypothyroidism was associated with depressed growth and retarded clearance of these radiotracers from the in vivo system. Treatment of the hypothyroid rats with thyroxine (2-5 micrograms/100 g b.w. day) for 6 wk, restored these parameters towards normal values. These data suggest that delayed clearance of these hepatobiliary tracers could be related to reduced metabolic rate accompanied with the hypotonia and hypomotility of intestine normally observed in the hypothyroid state.

  10. Generators and automated generator systems for production and on-line injections of pet radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Shimchuk, G.; Shimchuk, Gr; Pakhomov, G.; Avalishvili, G.; Zavrazhnov, G.; Polonsky-Byslaev, I.; Fedotov, A.; Polozov, P.

    2017-01-01

    One of the prospective directions of PET development is using generator positron radiating nuclides [1,2]. Introduction of this technology is financially promising, since it does not require expensive special accelerator and radiochemical laboratory in the medical institution, which considerably reduces costs of PET diagnostics and makes it available to more patients. POZITOM-PRO RPC LLC developed and produced an 82Sr-82Rb generator, an automated injection system, designed for automatic and fully-controlled injections of 82RbCl produced by this generator, automated radiopharmaceutical synthesis units based on generated 68Ga produced using a domestically-manufactured 68Ge-68Ga generator for preparing two pharmaceuticals: Ga-68-DOTA-TATE and Vascular Ga-68.

  11. Differential renal function in unilateral renal injury: possible effects of radiopharmaceutical choice. [Rats

    SciTech Connect

    Taylor, A. Jr.; Lallone, R.

    1985-01-01

    An abnormal filtration fraction or a significant divergence between a kidney's ability to extract Tc-99m dimercaptosuccinic acid (DMSA) and other function parameters, such as the glomerular filtration rate (GFR) or the effective renal plasma flow (ERPF, could lead to different estimates of relative or absolute renal function, depending on the radiopharmaceutical administered. To evaluate this possible divergence, the authors measured the relative GFR (I-125 iothalamate), ERPF (I-131 hippurate), and Tc-99m DMSA accumulation in adult male Sprague-Dawley rats with unilateral ureteral obstruction or unilateral ischemia at various times after renal injury. The relative ERPF of the obstructed kidney was significantly greater than the relative GFR at all time periods studied; significant but less dramatic differences were noted comparing DMSA with GFR in obstruction and DMSA and ERPF with GRF in ischemia.

  12. Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.

    PubMed

    Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud

    2015-10-21

    Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.

  13. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  14. Radiolabeling of new generation magnetic poly(HEMA-MAPA) nanoparticles with (131) I and preliminary investigation of its radiopharmaceutical potential using albino Wistar rats.

    PubMed

    Avcıbaşı, Uğur; Demiroğlu, Hasan; Ediz, Melis; Akalın, Hilmi Arkut; Özçalışkan, Emir; Şenay, Hilal; Türkcan, Ceren; Özcan, Yeşim; Akgöl, Sinan; Avcıbaşı, Nesibe

    2013-12-01

    In this study, N-methacryloyl-l-phenylalanine (MAPA) containing poly(2-hydroxyethylmethacrylate) (HEMA)-based magnetic poly(HEMA-MAPA) nanobeads [mag-poly(HEMA-MAPA)] were radiolabeled with (131) I [(131) I-mag-poly(HEMA-MAPA)], and the radiopharmaceutical potential of (131) I-mag-poly(HEMA-MAPA) was investigated. Quality control studies were carried out by radiochromatographic method to be sure that (131) I binded to mag-poly(HEMA-MAPA) efficiently. In this sense, binding yield of (131) I-mag-poly(HEMA-MAPA) was found to be about 95-100%. In addition to this, optimum radiodination conditions for (131) I-mag-poly(HEMA-MAPA) were determined by thin-layer radiochromatography studies. In addition to thin-layer radiochromatography studies, lipophilicity (partition coefficient) and stability studies for (131) I-mag-poly(HEMA-MAPA) were realized. It was determined that lipophilicities of mag-poly(HEMA-MAPA) and (131) I-mag-poly(HEMA-MAPA) were 0.12 ± 0.01 and 1.79 ± 0.76 according to ACD/logP algorithm program, respectively. Stability of the radiolabeled compound was investigated in time intervals given as 0, 30, 60, 180, and 1440 min. It was found that (131) I-mag-poly(HEMA-MAPA) existed as a stable complex in rat serum within 60 min. After that, biodistribution and scintigraphy studies were carried out by using albino Wistar rats. It was determined that the most important (131) I activity uptake was observed in the breast, the ovary, and the pancreas. Scintigraphy studies well supported biodistribution results.

  15. A new approach to the analysis of radiopharmaceuticals. Final technical report, January 15, 1987--June 30, 1991

    SciTech Connect

    Jones, A.G.; Davison, A.; Costello, C.E.

    1998-03-01

    The objective of this research was to investigate analytical techniques that could be used in the study of both the basic chemistry and the radiopharmaceutical chemistry of {sup 99m}Tc. First funded in 1981, the work focused initially upon the use of high performance liquid chromatography (HPLC) and various forms of mass spectrometry for the identification of technetium species. This funding allowed the authors to combine HPLC and mass spectrometry to identify radiopharmaceuticals which, although in clinical use, had not previously been characterized. Other techniques that have been examined include resonance Raman spectroscopy and, more significantly, {sup 99}Tc nuclear magnetic resonance spectroscopy (NMR), with the latter not only being used in purely chemical experiments but also in biologic studies. In 1985 a grant to the Department of Chemistry at MIT from DOE allowed the purchase of an X-ray diffractometer and access to this instrument has enabled them to broaden the analytical base with routine structural determinations.

  16. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    PubMed

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on

  17. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.

    PubMed

    Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad

    2016-07-01

    During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I

  18. New rhenium complexes with ciprofloxacin as useful models for understanding the properties of [99mTc]-ciprofloxacin radiopharmaceutical.

    PubMed

    Lecina, Joan; Cortés, Pilar; Llagostera, Montserrat; Piera, Carlos; Suades, Joan

    2014-07-01

    Rhenium complexes with the antibiotic ciprofloxacin have been prepared to be studied as models of technetium radiopharmaceuticals. With this aim, the new rhenium complexes 1 {[ReO(Cpf)2]Cl}, 2 {[ReO(CpfH)2]Cl3} and 3 {fac-[Re(CO)3(H2O)(Cpf)]} with ciprofloxacin (CpfH=ciprofloxacin; Cpf=conjugated base of ciprofloxacin) have been synthesised and characterised by elemental analyses, IR, NMR ((1)H, (19)F and (13)C CP-MAS) spectroscopy, as well as MS measurements. All spectroscopic data are consistent with the coordination of ciprofloxacin in all these complexes through the carbonyl and the carboxylate oxygen atoms with the formation of a six member chelate ring. The study of a Tc-ciprofloxacin solution by ESI-MS reveals the presence of [TcO(Cpf)2](+) cations, which agrees with the hypothesis that complexes 1 and 2 can be seen as model rhenium complexes of this radiopharmaceutical. Antimicrobial and DNA gyrase inhibition studies performed with complexes 2 and 3 have shown a very similar behaviour between complex 2 and the free antibiotic, whereas complex 3 exhibit a lower antimicrobial activity. Based on a joint analysis of the data reported in the literature and the chemical and biological results obtained in this study, a tentative proposal to explain some aspects of the behaviour of Tc-ciprofloxacin radiopharmaceutical has been made.

  19. Cardiac blood-pool scintigraphy in rats and hamsters: comparison of five radiopharmaceuticals and three pinhole collimator apertures

    SciTech Connect

    Pieri, P.; Fischman, A.J.; Ahmad, M.; Moore, R.H.; Callahan, R.J.; Strauss, H.W. )

    1991-05-01

    Preclinical evaluation of cardiac drugs may require evaluation of cardiac function in intact animals. To optimize the quality of radionuclide measurements of ventricular function in small animals, a comparison was made of gated blood-pool scans recorded with five blood-pool radiopharmaceuticals ({sup 99}mTc-labeled human polyclonal IgG, {sup 99}mTc-human serum albumin labeled by two methods, and red blood cells radiolabeled with {sup 99}mTc via in vivo and in vitro methods) in rats and three pinhole apertures in hamsters. The quality of the radiopharmaceuticals was evaluated by comparing count density ratios (LV/BACKGROUND and LV/LIVER) and ejection fractions recorded with each agent. The edge definition of the left ventricle and count rate performance of the 1-, 2-, and 3-mm apertures was evaluated in hamsters. In general, the images obtained with the radiolabeled cells were superior to those obtained with the labeled proteins and no significant differences between the protein preparations were detected. Left ventricular ejection fractions calculated with all five radiopharmaceuticals were not significantly different. The best quality images were obtained with the 1-mm pinhole collimator. Ejection fraction and acquisition time were inversely related to aperture size. A good compromise between resolution and sensitivity was obtained with the 2-mm pinhole collimator.

  20. Development of more efficacious [Tc]-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  1. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  2. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  3. Contribution of electrospray mass spectrometry for the characterization, design, and development of nitrido technetium and rhenium heterocomplexes as potential radiopharmaceuticals.

    PubMed

    Tisato, Francesco; Bolzati, Cristina; Porchia, Marina; Refosco, Fiorenzo

    2004-01-01

    Diagnostic nuclear medicine (NM) is among the imaging procedures (together with X-ray, computerized tomography, magnetic resonance, and echography) the clinicians can routinely adopt to image organs or tissues and related disorders. (99m)Tc-based agents are the radiopharmaceuticals of election in diagnostic NM because of the ideal physical properties of the 99mTc nuclide (t1/2 6.01 hr; Egamma 142 keV), low cost, and easy availability through the commercial 99Mo/99mTc generator, and chemical versatility of the element. In the last two decades the synergistic work of clinics, pharmacologists, and coordination chemists has had a tremendous impact in the development of new 99mTc-based radiopharmaceuticals through the recognition of the structure at the molecular level of the agent utilized. This has been achieved by studying the physico-chemical properties of the long-lived 99gTc (t1/2 2.11 x 10(5) year; Ebeta 292 keV) and third-row congener Re isostructural compounds. Electrospray ionization mass spectrometry (ESI-MS) and collision experiments (MS/MS) represent valuable analytical techniques suitable for the characterization of both technetium and rhenium complexes relevant to NM. Unequivocal structural identification of these bioinorganic compounds, either simple coordination complexes ("essential radiopharmaceuticals") or more sophisticated structures carrying bioactive fragments ("receptor-specific" radiopharmaceuticals), can be realized in combination with multinuclear NMR spectroscopy. MS/MS experiments provide useful information on the different metal-ligand bond strength, and comparison of the fragmentation profiles of isostructural technetium and rhenium compounds give additional details on the role played by the metal in determining preferred decomposition channels. The analysis of these data contribute to design novel synthetic strategies for the obtainment of technetium and rhenium compounds relevant to NM. The chemistry underlying the production of a new

  4. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals.

    PubMed

    Hashimoto, Kenji; Ishiwata, Kiichi

    2006-01-01

    Sigma receptors are classified into sigma(1) and sigma(2) subtypes. These subtypes display a different tissue distribution and a distinct physiological and pharmacological profile in the central and peripheral nervous system. The characterization of these subtypes and the discovery of new specific sigma receptor ligands demonstrated that sigma receptors are novel targets for the therapeutic treatment of neuropsychiatric diseases (schizophrenia, depression, and cognition), brain ischemia, and cocaine addiction. Furthermore, imaging of sigma(1) receptors in the human brain using specific PET radioligands has started. In addition, the two sigma receptor subtypes are also expressed on tumor cells, where they could be of prognostic relevance. The ability of sigma(2) receptor agonists to inhibit tumor cell proliferation through mechanisms that might involve apoptosis, intracellular Ca(2+), and sphingolipids has promoted the development of sigma(2) receptor agonists as novel therapeutic drugs for treating cancer. Consequently, sigma(2) receptor ligands have been demonstrated to be potentially useful tumor imaging ligands. In this article, we focus on the sigma receptor ligands as therapeutic agents and as radiopharmaceuticals.

  5. APTAMER DELIVERY OF siRNA, RADIOPHARMACEUTICS AND chemotherapy agents IN CANCER.

    PubMed

    de Almeida, Carlos E B; Alves, Lais Nascimento; Paulino, Enrique T; Cabral-Neto, Januário Bispo; Missailidis, Sotiris

    2017-03-31

    Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements.

  6. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  7. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography.

    PubMed

    Chacko, Ann-Marie; Divgi, Chaitanya R

    2011-09-01

    Positron emission tomography (PET) is a powerful molecular imaging technology with the ability to image and monitor molecular events in vivo and in real time. With the increased application of PET radiopharmaceuticals for imaging physiological and pathological processes in vivo, there is a demand for versatile positron emitters with longer physical and biological half-lives. Traditional PET radionuclides, such as carbon-11 ((11)C) and fluorine-18 ((18)F), have relatively short half-lives (20 min and 110 min, respectively). Among the currently available positron emitters, the non-standard radiohalogen iodine-124 ((124)I) has the longest physical half-life at 4.2 d. This, combined with the well characterized radiochemistry of radioiodine, is contributing to the increasing utility of (124)I in investigating slow and complex pharmacokinetic processes in clinical nuclear medicine and small animal PET imaging studies. This review will summarize the progress to date on the potential of (124)I as a positron emitting nuclide for molecular imaging purposes, beginning with the production of (124)I. Particular emphasis will be placed on the basic radiochemistry as it applies to the production of various (124)I-labeled compounds, from small molecules, to biomolecules such as peptides and proteins, and finally to macromolecules like nanoparticles. The review will conclude by highlighting promising future directions in using (124)I as a positron emitter in PET radiochemistry and molecular imaging.

  8. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence

    PubMed Central

    Lopci, Egesta; Grassi, Ilaria; Chiti, Arturo; Nanni, Cristina; Cicoria, Gianfranco; Toschi, Luca; Fonti, Cristina; Lodi, Filippo; Mattioli, Sandro; Fanti, Stefano

    2014-01-01

    Hypoxia is a pathological condition arising in living tissues when oxygen supply does not adequately cover the cellular metabolic demand. Detection of this phenomenon in tumors is of the utmost clinical relevance because tumor aggressiveness, metastatic spread, failure to achieve tumor control, increased rate of recurrence, and ultimate poor outcome are all associated with hypoxia. Consequently, in recent decades there has been increasing interest in developing methods for measurement of oxygen levels in tumors. Among the image-based modalities for hypoxia assessment, positron emission tomography (PET) is one of the most extensively investigated based on the various advantages it offers, i.e., broad range of radiopharmaceuticals, good intrinsic resolution, three-dimensional tumor representation, possibility of semiquantification/quantification of the amount of hypoxic tumor burden, overall patient friendliness, and ease of repetition. Compared with the other non-invasive techniques, the biggest advantage of PET imaging is that it offers the highest specificity for detection of hypoxic tissue. Starting with the 2-nitroimidazole family of compounds in the early 1980s, a great number of PET tracers have been developed for the identification of hypoxia in living tissue and solid tumors. This paper provides an overview of the principal PET tracers applied in cancer imaging of hypoxia and discusses in detail their advantages and pitfalls. PMID:24982822

  9. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  10. Development of dopamine receptor radiopharmaceuticals for the study of neurological and psychiatric disorders

    SciTech Connect

    Dr. Jogeshwar Mukherjee

    2009-01-02

    Our goals in this grant application are directed towards the development of radiotracers that may allow the study of the high-affinity state (functional state) of the dopamine receptors. There have been numerous reports on the presence of two inter-convertible states of these (G-protein coupled) receptors in vitro. However, there is no report that establishes the presence of these separate affinity states in vivo. We have made efforts in this direction in order to provide such direct in vivo evidence about the presence of the high affinity state. This understanding of the functional state of the receptors is of critical significance in our overall diagnosis and treatment of diseases that implicate the G-protein coupled receptors. Four specific aims have been listed in the grant application: (1). Design and syntheses of agonists (2). Radiosyntheses of agonists (3). In vitro pharmacology of agonists (4). In vivo distribution and pharmacology of labeled derivatives. We have accomplished the syntheses and radiosyntheses of three agonist radiotracers labeled with carbon-11. In vitro and in vivo pharmacological experiments have been accomplished in rats and preliminary PET studies in non-human primates have been carried out. Various accomplishments during the funded years, briefly outlined in this document, have been disseminated by several publications in various journals and presentations in national and international meetings (Society of Nuclear Medicine, Society for Neuroscience and International Symposium on Radiopharmaceutical Chemistry).

  11. Multi-scale hybrid models for radiopharmaceutical dosimetry with Geant4.

    PubMed

    Marcatili, S; Villoing, D; Garcia, M P; Bardiès, M

    2014-12-21

    The accuracy of radiopharmaceutical absorbed dose distributions computed through Monte Carlo (MC) simulations is mostly limited by the low spatial resolution of 3D imaging techniques used to define the simulation geometry. This issue also persists with the implementation of realistic hybrid models built using polygonal mesh and/or NURBS as they require to be simulated in their voxel form in order to reduce computation times. The existing trade-off between voxel size and simulation speed leads on one side, in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs walls and, on the other, to unnecessarily detailed voxelization of large, homogeneous structures.We developed a set of computational tools based on VTK and Geant4 in order to build multi-resolution organ models. Our aim is to use different voxel sizes to represent anatomical regions of different clinical relevance: the MC implementation of these models is expected to improve spatial resolution in specific anatomical structures without significantly affecting simulation speed. Here we present the tools developed through a proof of principle example. Our approach is validated against the standard Geant4 technique for the simulation of voxel geometries.

  12. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals.

    PubMed

    Taggart, Matthew P; Tarn, Mark D; Esfahani, Mohammad M N; Schofield, Daniel M; Brown, Nathaniel J; Archibald, Stephen J; Deakin, Tom; Pamme, Nicole; Thompson, Lee F

    2016-04-26

    The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate.

  13. Noninvasive measurement of radiopharmaceutical time–activity data using external thermoluminescent dosimeters (TLDs)

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Chang; Dong, Shang-Lung; Lin, Hsin-Hon; Ni, Yu-Ching; Jan, Meei-Ling; Chuang, Keh-Shih

    2017-02-01

    In this study, we present a new method for estimating the time–activity data using serial timely measurements of thermoluminescent dosimeters (TLDs). The approach is based on the combination of the measurement of surface dose using TLD and Monte Carlo (MC) simulation to estimate the radiopharmaceutical time–activity data. It involves four steps: (1) identify the source organs and outline their contours in computed tomography images; (2) compute the S values on the body surface for each source organ using a MC code; (3) obtain a serial measurement of the dose with numerous TLDs placed on the body surface; (4) solve the dose–activity equation to generate organ cumulative activity for each period of measurement. The activity of each organ at the time of measurement is simply the cumulative activity divided by the timespan between measurements. The usefulness of this method was studied using a MC simulation based on an Oak Ridge National Laboratory mathematical phantom with 18F-FDG filled in six source organs. Numerous TLDs were placed on different locations of the surface and were repeatedly read and replaced. The time–activity curves (TACs) of all organs were successfully reconstructed. Experiments on a physical phantom were also performed. Preliminary results indicate that it is an effective, robust, and simple method for assessing the TAC. The proposed method holds great potential for a range of applications in areas such as targeted radionuclide therapy, pharmaceutical research, and patient-specific dose estimation.

  14. Diagnostic and therapeutic potential of new radiopharmaceutical agents in medullary thyroid carcinoma

    SciTech Connect

    Troncone, L.; Rufini, V.; De Rosa, G.; Testa, A.

    1989-01-01

    Recently developed radiopharmaceuticals have been proposed for imaging medullary thyroid carcinoma (MTC) with some having therapeutic potential. This study compares the imaging results obtained with radioiodinated meta-iodo-benzylguanidine (MIBG), {sup 99m}Tc (V) DMSA, and {sup 131}I F(ab')2 anti-carcinoembryonic antigen (anti-CEA) in a group of MTC patients. In 23 patients {sup 131}I MIBG imaging showed a high specificity (no false-positive results) but a less satisfactory sensitivity (50%). In 12 patients {sup 99m}Tc (V) DMSA revealed a better sensitivity (77%) but a lower specificity (three false-positive results). Positive results were obtained in two of three patients studied with {sup 131}I F(ab')2 anti-CEA. These data suggest that the highly sensitive {sup 99m}Tc (V) DMSA should be considered as a first choice procedure followed by the highly specific radioiodinated MIBG to confirm the initial results. Since radioiodinated MIBG imaging may have therapeutic usefulness, {sup 131}I MIBG was evaluated in an integrated treatment protocol in four cases of proven MTC. The preliminary results obtained were encouraging.

  15. Evaluation of H2CHXdedpa, H2dedpa- and H2CHXdedpa-N,N'-propyl-2-NI ligands for (64)Cu(ii) radiopharmaceuticals.

    PubMed

    Ramogida, Caterina F; Boros, Eszter; Patrick, Brian O; Zeisler, Stefan K; Kumlin, Joel; Adam, Michael J; Schaffer, Paul; Orvig, Chris

    2016-08-16

    The chiral acyclic "pa" ligand (pa = picolinic acid) H2CHXdedpa (N4O2) and two NI-containing dedpa analogues (H2CHXdedpa-N,N'-propyl-2-NI, H2dedpa-N,N'-propyl-2-NI, NI = nitroimidazole) were studied as chelators for copper radiopharmaceuticals (CHX = cyclohexyl, H2dedpa = 1,2-[[carboxypyridin-2-yl]methylamino]ethane). The hexadentate ligand H2CHXdedpa was previously established as a superb system for (67/68)Ga radiochemistry. The solid state X-ray crystal structures of [Cu(CHXdedpa-N,N'-propyl-2-NI)] and [Cu(dedpa-N,N'-propyl-2-NI)] reveal the predicted hexadentate, distorted octahedral binding of the copper(ii) ion. Cyclic voltammetry of [Cu(dedpa-N,N'-propyl-2-NI)] shows that there is one reversible couple associated with the NI redox, and one irreversible but reproducible couple attributed to the Cu(ii)/Cu(i) redox cycle. Quantitative radiolabeling (>99%) of CHXdedpa(2-) and (dedpa-N,N'-propyl-2-NI)(2-) with (64)Cu was achieved under fast and efficient labeling conditions (10 min, RT, 0.5 M sodium acetate buffer, pH 5.5) at ligand concentrations as low as 10(-6) M. In vitro kinetic inertness studies of the (64)Cu labelled complexes were studied in human serum at 37 °C over 24 hours; [(64)Cu(CHXdedpa)] was found to be 98% stable compared to previously investigated [(64)Cu(dedpa)] which was only 72% intact after 24 hours.

  16. Risk assessment and economic impact analysis of the implementation of new European legislation on radiopharmaceuticals in Italy: the case of the new monograph chapter Compounding of Radiopharmaceuticals (PHARMEUROPA, Vol. 23, No. 4, October 2011).

    PubMed

    Chitto, Giuseppe; Di Domenico, Elvira; Gandolfo, Patrizia; Ria, Francesco; Tafuri, Chiara; Papa, Sergio

    2013-12-01

    An assessment of the new monograph chapter Compounding of Radiopharmaceuticals has been conducted on the basis of the first period of implementation of Italian legislation on Good Radiopharmaceuticals Practice (NBP) in the preparation of radiopharmaceuticals, in keeping with Decree by the Italian Ministry of Health dated March 30, 2005. This approach is well grounded in the several points of similarity between the two sets of regulations. The impact on patient risk, on staff risk, and on healthcare organization risk, has been assessed. At the same time, the actual costs of coming into compliance with regulations have been estimated. A change risk analysis has been performed through the identification of healthcare-associated risks, the analysis and measurement of the likelihood of occurrence and of the potential impact in terms of patient harm and staff harm, and the determination of the healthcare organization's controlling capability. In order to evaluate the economic impact, the expenses directly related to the implementation of the activities as per ministerial decree have been estimated after calculating the overall costs unrelated to NBP implementation. The resulting costs have then been averaged over the total number of patient services delivered. NBP implementation shows an extremely positive impact on risk management for both patients receiving Nuclear Medicine services and the healthcare organization. With regard to healthcare workers, instead, the implementation of these regulations has a negative effect on the risk for greater exposure and a positive effect on the defense against litigation. The economic impact analysis of NBP implementation shows a 34% increase in the costs for a single patient service. The implementation of the ministerial decree allows for greater detectability of and control over a number of critical elements, paving the way for risk management and minimization. We, therefore, believe that the proposed tool can provide basic

  17. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    Objective: It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. Materials and Methods: We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. Results: The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). Conclusion: The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. PMID:24163510

  18. cGMP Production of the Radiopharmaceutical [(18) F]MK-6240 for PET imaging of Human Neurofibrillary Tangles.

    PubMed

    Collier, Thomas Lee; Yokell, Daniel L; Livni, Eli; Rice, Peter A; Celen, Sofie; Serdons, Kim; Neelamegam, Ramesh; Bormans, Guy; Harris, Dawn; Walji, Abbas; Hostetler, Eric D; Bennacef, Idriss; Vasdev, Neil

    2017-02-09

    Fluorine-18 labelled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18) F]MK-6240) is a novel potent and selective PET radiopharmaceutical for detecting human neurofibrillary tangles, which are made up of aggregated tau protein. Herein, we report the fully automated two-step radiosynthesis of [(18) F]MK-6240 using a commercially available radiosynthesis module, GE Healthcare Tracerlab(TM) FXFN . Nucleophilic fluorination of the 5-diBoc-6-nitro precursor with potassium cryptand [(18) F]fluoride (K[(18) F]/K222 ) was carried out by conventional heating, followed by acid deprotection and semi-preparative HPLC under isocratic conditions. The isolated product was diluted with formulation solution and sterile filtered under Current Good Manufacturing Practices (cGMPs), and quality control procedures were established to validate this radiopharmaceutical for human use. At the end of synthesis, 6.3 - 9.3 GBq (170 - 250 mCi) of [(18) F]MK-6240 was formulated and ready for injection, in an uncorrected radiochemical yield of 7.5 ± 1.9% (relative to starting [(18) F]fluoride) with a specific activity of 222 ± 67 GBq/µmol (6.0 ± 1.8 Ci/µmol) at the end of synthesis (90 min; n = 3). [(18) F]MK-6240 was successfully validated for human PET studies meeting all FDA and USP requirements for a PET radiopharmaceutical. The present method can be easily adopted for use with other radiofluorination modules for widespread clinical research use.

  19. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  20. An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals.

    PubMed

    Andersson, M; Johansson, L; Minarik, D; Mattsson, S; Leide-Svegborn, S

    2014-12-01

    The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms.

  1. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy.

    PubMed

    Ljungberg, Michael; Celler, Anna; Konijnenberg, Mark W; Eckerman, Keith F; Dewaraja, Yuni K; Sjögreen-Gleisner, Katarina; Bolch, Wesley E; Brill, A Bertrand; Fahey, Frederic; Fisher, Darrell R; Hobbs, Robert; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Zanzonico, Pat; Bacher, Klaus; Chiesa, Carlo; Flux, Glenn; Lassmann, Michael; Strigari, Lidia; Walrand, Stephan

    2016-01-01

    The accuracy of absorbed dose calculations in personalized internal radionuclide therapy is directly related to the accuracy of the activity (or activity concentration) estimates obtained at each of the imaging time points. MIRD Pamphlet no. 23 presented a general overview of methods that are required for quantitative SPECT imaging. The present document is next in a series of isotope-specific guidelines and recommendations that follow the general information that was provided in MIRD 23. This paper focuses on (177)Lu (lutetium) and its application in radiopharmaceutical therapy.

  2. Determination of 125I impurities in [ 123I]labelled radiopharmaceuticals, by liquid scintillation counting: sensitivity of the method

    NASA Astrophysics Data System (ADS)

    Bonardi, M. L.; Birattari, C.; Groppi, F.; Gini, L.; Mainardi, C. H. S.; Menapace, E.

    2004-01-01

    Iodine-125 is a radioisotopic impurity "always" present in iodine-123, produced by nuclear reactions induced either on natural or "highly" enriched targets. Liquid scintillation counting is a very sensitive tool to determine low level impurities of both low energy electrons and photons in aqueous and organic solutions of radiopharmaceutical compounds. With this technique it was possible to determine, on commercial samples, that the content of 125I was of the order of not less than 0.1% for 123I produced via 127I(p,5n) reactions and not less than 0.01% for 123I produced via "highly" enriched 124Xe(p,X) nuclear reactions.

  3. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [11C ]-DTBZ, [11C ]-RAC, and [18F ]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  4. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    SciTech Connect

    Lara-Camacho, V. M. Ávila-García, M. C. Ávila-Rodríguez, M. A.

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  5. Untangling the web of European regulations for the preparation of unlicensed radiopharmaceuticals: a concise overview and practical guidance for a risk-based approach.

    PubMed

    Lange, Rogier; ter Heine, Rob; Decristoforo, Clemens; Peñuelas, Iván; Elsinga, Philip H; van der Westerlaken, Monique M L; Hendrikse, N Harry

    2015-05-01

    Radiopharmaceuticals are highly regulated, because they are controlled both as regular medicinal products and as radioactive substances. This can pose a hurdle for their development and clinical use. Radiopharmaceuticals are fundamentally different from other medicinal products and these regulations are not always adequate for their production. Strict compliance may have a huge resource impact, without further improving product quality. In this paper we give an overview of the applicable legislation and guidelines and propose a risk-based approach for their implementation. We focus on a few controversial Good Manufacturing Practice topics: cleanroom classification, air pressure regime, cleanroom qualification and microbiological monitoring. We have developed an algorithm to assess the combined risk of microbiological contamination of a radiopharmaceutical preparation process and propose corresponding Good Manufacturing Practice classification levels. In our opinion, the risk of carry-over of radiopharmaceuticals by individuals cannot be contained by pressure differences, and complicated regimes with underpressured rooms are not necessary in most situations. We propose a sterility assurance level of 10 for radiopharmaceuticals that are administered within a working day, irrespective of their use. We suggest the adoption of limits for environmental monitoring of microbial contamination, as proposed by Bruel and colleagues, on behalf of the French Society of Radiopharmacy. Recently launched regulatory documents seem to breathe a more liberal spirit than current legislation and recognize the need for the use of risk assessment. We argue that future legislation be further harmonized and state risk assessment as the gold standard for implementation of drug quality regulations for the preparation of unlicensed radiopharmaceuticals.

  6. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  7. Radiation absorbed dose estimates for oxygen-15 radiopharmaceuticals (H2( V)O, C VO, O VO) in newborn infants

    SciTech Connect

    Powers, W.J.; Stabin, M.; Howse, D.; Eichling, J.O.; Herscovitch, P.

    1988-12-01

    In preparation for measurement of regional cerebral oxygen metabolism by positron emission tomography, radiation absorbed dose estimates for 19 internal organs, blood, and total body were calculated for newborn infants following bolus intravenous administration of H2( V)O and brief inhalation of C VO and O VO. Cumulated activity for each radiopharmaceutical was calculated from a compartmental model based on the known biologic behavior of the compound. Values for mean absorbed dose/unit cumulated activity (S) for internal organs and total body were based on a newborn phantom. S was separately calculated for blood. Total radiopharmaceutical absorbed dose estimates necessary to measure cerebral oxygen metabolism in a 3.51-kg infant based on 0.7 mCi/kg H2( V)O and 1 mCi/kg C VO and O VO were determined to be 1.6 rad to the lung (maximum organ dose), 0.28 rad to the marrow, 0.46 rad to the gonads, and 0.22 rad to total body. These values are similar to those for current clinical nuclear medicine procedures employing /sup 99m/Tc in newborn infants.

  8. The effect of radiopharmaceutical choice on the determination of relative renal function in rats with unilateral renal obstruction

    SciTech Connect

    Taylor, A.; Lallone, R.

    1984-01-01

    A significant divergence of GFR and ERPF within a single kidney could lead to different estimates of relative renal function depending on which radiopharmaceutical is administered. To address this question, the authors studied adult male Sprague-Dawley rats with unilateral ureteral obstruction by giving each animal an intravenous injection of 10 ..mu..Ci of I-125 iothalamate (GFR), I-131 hippurate (ERPF), and TC-99m DMSA and measuring the 30 minute clearance (renal uptake and urine excretion) of each agent. Normal control animals were sham operated; 25 experimental animals were subjected to permanent unilateral ureteral occlusion and studied at 6 hours, 1, 3, 7 and 14 days. Acute ureteral obstruction impaired the clearance of iothalamate to a much greater degree than OIH or DMSA at 6 hours and 1 day (rho<.005) and 3 days (rho<.05). The decline in DMSA clearance reflected ERPF more closely than GFR. In evaluating renal disease, one should consider the functional parameter reflected by the radiopharmaceutical as well as the underlying disease state.

  9. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Holland, Jason P.; Giansiracusa, Jeffrey H.; Bell, Stephen G.; Wong, Luet-Lok; Dilworth, Jonathan R.

    2009-04-01

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 × 10-4 s-1 and k2 = 2.9 ± 0.17 × 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 × 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 × 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm

  10. The hydrazide/hydrazone click reaction as a biomolecule labeling strategy for M(CO)3 (M = Re, (99m)Tc) radiopharmaceuticals.

    PubMed

    Ganguly, Tanushree; Kasten, Benjamin B; Bučar, Dejan-Krešimir; MacGillivray, Leonard R; Berkman, Clifford E; Benny, Paul D

    2011-12-28

    Facile reactivity of hydrazides and aldehydes was explored as potential coupling partners for incorporation into M(CO)(3) (M = Re, (99m)Tc) based radiopharmaceuticals. Both 'click, then chelate' and 'prelabel, then click' synthetic routes produced identical products in high yields and lacked metal-hydrazide/-hydrazone interactions, highlighting the potential of this click strategy.

  11. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats.

    PubMed

    Rocha, G S; Pereira, M O; Benarroz, M O; Frydman, J N G; Rocha, V C; Pereira, M J; Fonseca, A S; Medeiros, A C; Bernardo-Filho, M

    2011-01-01

    Effects of sucralose sweetener on blood constituents labelled with technetium-99m ((99m)Tc) on red blood cell (RBC) morphology, sodium pertechnetate (Na(99m)TcO(4)) and diethylenetriaminepentaacetic acid labeled with (99m)Tc ((99m)Tc-DTPA) biodistribution in rats were evaluated. Radiolabeling on blood constituents from Wistar rats was undertaken for determining the activity percentage (%ATI) on blood constituents. RBC morphology was also evaluated. Na(99m)TcO(4) and (99m)Tc-DTPA biodistribution was used to determine %ATI/g in organs. There was no alteration on RBC blood constituents and morphology %ATI. Sucralose sweetener was capable of altering %ATI/g of the radiopharmaceuticals in different organs. These findings are associated to the sucralose sweetener in specific organs.

  12. Food and Drug Administration process for development and approval of drugs and radiopharmaceuticals: treatments in urologic oncology.

    PubMed

    Ning, Yang-Min; Maher, V Ellen

    2015-03-01

    Regulatory advice and assessment play an important role in the successful development of new drugs and radiopharmaceuticals for the treatment of urologic malignancies. Cooperation between the US Food and Drug Administration (FDA) and the pharmaceutical industry has led to the approval of more than 20 new urologic oncology products in the last 2 decades. Despite these advances, more effective treatments need to be developed and approved for the treatment of urologic malignancies. This review provides general information about the FDA's role in the development of investigational new drugs, with an emphasis on the regulatory process and the requirements for marketing approval. In addition, this review summarizes the products for the treatment of urologic malignancies that were approved by the FDA in the last 30 years and the key issues concerning urologic oncology products that were discussed publicly at Oncologic Drug Advisory Committee meetings in the past 10 years.

  13. Assessment of [125I]WYE-230949 as a Novel Histamine H3 Receptor Radiopharmaceutical

    PubMed Central

    Lewis, David Y.; Champion, Sue; Wyper, David; Dewar, Deborah; Pimlott, Sally

    2014-01-01

    Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding. PMID:25542008

  14. Assessment of [125I]WYE-230949 as a novel histamine H3 receptor radiopharmaceutical.

    PubMed

    Lewis, David Y; Champion, Sue; Wyper, David; Dewar, Deborah; Pimlott, Sally

    2014-01-01

    Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding.

  15. [In vitro comparative study of plasma protein binding of 99mTc-DTPA used in renal scintigraphy].

    PubMed

    Chemlal, L; Makram, S; Zoubir, B; Cherrah, Y; Faouzi, M A

    2013-11-01

    The radiopharmaceutical (99m)Tc-DTPA (diethylene-triamine-pentaacetic acid) is a tracer widely used in renal scintigraphy to assess glomerular filtration rate. The estimation of protein binding is very important due to its impact on clinical parameters biodistribution since only the free fraction is filtered by the kidney. A number of laboratory techniques have been developed to study protein binding. Precipitation and ultrafiltration are the mostly used techniques in pharmacology for studies of the binding between proteins and small molecules. The aim of this work is to apply and compare those two analytical methods in (99m)Tc-DTPA protein binding determination in vitro before in vivo application. The results obtained by precipitation with trichloroacetic acid are not enough reproducible, while those obtained by ultrafiltration seem more consistent and reproducible.

  16. Design of site specific radiopharmaceuticals for tumor imaging. (Parts I and II)

    SciTech Connect

    Van Dort, M.E.

    1983-01-01

    Part I. Synthetic methods were developed for the preparation of several iodinated benzoic acid hydrazides as labeling moieties for indirect tagging of carbonyl-containing bio-molecules and potential tumor-imaging agents. Biodistribution studies conducted in mice on the derivatives having the I-125 label ortho to a phenolic OH demonstrated a rapid in vivo deiodination. Part II. The reported high melanin binding affinity of quinoline and other heterocyclic antimalarial drugs led to the development of many analogues of such molecules as potential melanoma-imaging agents. Once such analogue iodochloroquine does exhibit high melanin binding, but has found limited clinical use due to appreciable accumulation in non-target tissues such as the adrenal cortex and inner ear. This project developed a new series of candidate melanoma imaging agents which would be easier to radio-label, could yield higher specific activity product, and which might demonstrate more favorable pharmacokinetic and dosimetric characteristics compared to iodochloroquine.

  17. Radiopharmaceuticals in the elderly cancer patient: Practical considerations, with a focus on prostate cancer therapy: A position paper from the International Society of Geriatric Oncology Task Force.

    PubMed

    Prior, John O; Gillessen, Silke; Wirth, Manfred; Dale, William; Aapro, Matti; Oyen, Wim J G

    2017-04-06

    Molecular imaging using radiopharmaceuticals has a clear role in visualising the presence and extent of tumour at diagnosis and monitoring response to therapy. Such imaging provides prognostic and predictive information relevant to management, e.g. by quantifying active tumour mass using positron emission tomography/computed tomography (PET/CT). As these techniques require only pharmacologically inactive doses, age and potential frailty are generally not important. However, this may be different for therapy involving radionuclides because the radiation can impact normal bodily function (e.g. myelosuppression). Since the introduction of Iodine-131 as a targeted therapy in thyroid cancer, several radiopharmaceuticals have been widely used. These include antibodies and peptides targeting specific epitopes on cancer cells. Among therapeutic bone seeking agents, radium-223 ((223)Ra) stands out as it results in survival gains in patients with castration-resistant prostate cancer and symptomatic bone metastases. The therapeutic use of radiopharmaceuticals in elderly cancer patients specifically has received little attention. In elderly prostate cancer patients, there may be advantages in radionuclides' ease of use and relative lack of toxicity compared with cytotoxic and cytostatic drugs. When using radionuclide therapies, close coordination between oncology and nuclear medicine is needed to ensure safe and effective use. Bone marrow reserve has to be considered. As most radiopharmaceuticals are cleared renally, dose adjustment may be required in the elderly. However, compared with younger patients there is less, if any, concern about adverse long-term radiation effects such as radiation-induced second cancers. Issues regarding the safety of medical staff, care givers and the wider environment can be managed by current precautions.

  18. A simple low-cost of liquid I-131 dispenser for routine radiopharmaceutical dispensing at nuclear medicine department, Institut Kanser Negara

    SciTech Connect

    Said, M. A.; Suhaimi, N. E. F.; Ashhar, Z. N.; Zainon, R.

    2016-01-22

    In routine radiopharmaceutical Iodine-131 ({sup 131}I) dispensing, the amount of radiation dose received by the personnel depends on the distance between the personnel and the source, the time spent manipulating the source and the amount of shielding used to reduce the dose rate from the source. The novel iRAD-I131 dispenser using recycle {sup 131}I liquid lead pot will lead into low cost production, less maintenance and low dose received by the personnel that prepared the {sup 131}I. The new fabricated of low cost {sup 131}I dispenser was tested and the dose received by personnel were evaluated. The body of lead material is made from 2.5 cm lead shielded coated with epoxy paint to absorb the radiation dose up to 7.4 GBq of {sup 131} I. The lead pot was supported with two stainless steel rod. The Optically Stimulated Luminescence (OSL) nanodot was used in this study to measure the dose rate at both extremities for every personnel who prepared the {sup 131}I. Each OSL nanodot was attached at the fingertip. Three different personnel (experienced between one to ten years above in preparing the radiopharmaceuticals) were participated in this study. The average equivalent dose at right and left hand were 122.694 ± 121.637 µSv/GBq and 77.281 ± 62.146 µSv/GBq respectively. This study found that the dose exposure received using iRAD-I131 was less up to seven times compared to the conventional method. The comparison of experimental data using iRAD-I131 and established radiopharmaceutical dispenser was also discussed. The innovation of {sup 131}I dispenser is highly recommended in a small radiopharmaceutical facility with limited budget. The novel iRAD-I131 enables implementation of higher output liquid dispensing with low radiation dose to the personnel.

  19. A simple low-cost of liquid I-131 dispenser for routine radiopharmaceutical dispensing at nuclear medicine department, Institut Kanser Negara

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Ashhar, Z. N.; Suhaimi, N. E. F.; Zainon, R.

    2016-01-01

    In routine radiopharmaceutical Iodine-131 (131I) dispensing, the amount of radiation dose received by the personnel depends on the distance between the personnel and the source, the time spent manipulating the source and the amount of shielding used to reduce the dose rate from the source. The novel iRAD-I131 dispenser using recycle 131I liquid lead pot will lead into low cost production, less maintenance and low dose received by the personnel that prepared the 131I. The new fabricated of low cost 131I dispenser was tested and the dose received by personnel were evaluated. The body of lead material is made from 2.5 cm lead shielded coated with epoxy paint to absorb the radiation dose up to 7.4 GBq of 131 I. The lead pot was supported with two stainless steel rod. The Optically Stimulated Luminescence (OSL) nanodot was used in this study to measure the dose rate at both extremities for every personnel who prepared the 131I. Each OSL nanodot was attached at the fingertip. Three different personnel (experienced between one to ten years above in preparing the radiopharmaceuticals) were participated in this study. The average equivalent dose at right and left hand were 122.694 ± 121.637 µSv/GBq and 77.281 ± 62.146 µSv/GBq respectively. This study found that the dose exposure received using iRAD-I131 was less up to seven times compared to the conventional method. The comparison of experimental data using iRAD-I131 and established radiopharmaceutical dispenser was also discussed. The innovation of 131I dispenser is highly recommended in a small radiopharmaceutical facility with limited budget. The novel iRAD-I131 enables implementation of higher output liquid dispensing with low radiation dose to the personnel.

  20. Investigation using an advanced extremity gamma instrumentation system of options for shielding the hand during the preparation and injection of radiopharmaceuticals.

    PubMed

    Whitby, M; Martin, C J

    2003-03-01

    Staff preparing and injecting radiopharmaceuticals in hospitals may receive significant radiation doses to their hands. These doses may be high enough to warrant that they be classified as radiation workers. The influence of local shielding on finger doses has been investigated. Staff preparing radioactive liquids in a radionuclide dispensary and drawing up and injecting radiopharmaceuticals in a nuclear medicine department have been studied. Measurements have been recorded with an electronic extremity dose monitor, an advanced extremity gamma instrumentation system (AEGIS), worn near to the finger tip. The electronic dosimeter allows the pattern of doses received during different procedures to be determined. Doses received for individual manipulations during many routine sessions have been recorded for different staff members. Dose distributions around shielded vials and syringes have also been measured using AEGIS. In the radionuclide dispensary the vials from which radioactive liquids are dispensed are held in tungsten shields, whereas in nuclear medicine simple lead pots are used. Syringe shields are employed for some parts of dispensing and patient injections. Data on dose distributions have been used in interpretation of results from monitoring. Use of syringe shields during dispensing reduced the finger dose by 75-85%. The peaks in dose rate were 60% lower, and periods of exposure to high dose rates were reduced in length by a third because of the restriction in the region of high dose rate. The extremity doses to staff dispensing and injecting radiopharmaceuticals in nuclear medicine were of similar magnitude. Doses received during dispensing varied from 10 to 555 microGy depending upon whether the vial containing the radiopharmaceutical was directly handled or not. Dose received from individual injections varied from 1 to 150 microGy depending on the degree of difficulty experienced during the injection.

  1. Radiolabeled tirofiban – a potential radiopharmaceutical for detection of deep venous thrombosis

    PubMed Central

    Darkovska-Serafimovska, Marija; Janevik-Ivanovska, Emilija; Djorgoski, Icko; Arsova-Sarafinovska, Zorica; Zdravkovska, Milka; Balkanov, Trajan; Ugresic, Nenad

    2016-01-01

    Aim The aim of this study was to investigate the possibility of using 99mtechnetium (99mTc)-labeled tirofiban (a reversible antagonist of glycoprotein IIb/IIIa) for detection of deep venous thrombosis (DVT) in rats without causing an antiplatelet effect. Methods The ability of in vitro tirofiban to inhibit adenosine 5′-diphosphate (ADP)-induced platelet aggregation was evaluated using optical aggregometer. Binding of 99mTc-tirofiban to platelets was evaluated. Serum levels of unlabeled (a validated high performance liquid chromatography method) and 99mTc-tirofiban after single intravenous injection were evaluated in male Wistar rats with or without induced DVT (femoral vein ligation model), and the rats were also subjected to whole body scintigraphy. Results Tirofiban in vitro inhibits ADP-induced aggregation of human platelets in a dose- and concentration-dependent manner (10 nM to 2 μM), but only if it is added before ADP and not after ADP. 99mTc labeling did not affect the ability of tirofiban to bind to either human or rat platelets, nor did it affect tirofiban pharmacokinetics in intact rats or in animals with induced DVT. When 99mTc-tirofiban was injected to rats after induction of DVT, at a molar dose lower than the one showing only a weak antiaggregatory effect in vitro, whole body scintigraphy indicated localization of 99mTc-tirofiban around the place of the induced DVT. Conclusion 99mTc labeling of tirofiban does not affect its ability to bind to glycoprotein IIb/IIIa or its in vivo pharmacokinetics in rats, either intact or with DVT. A low, nonantiaggregatory dose of 99mTc-tirofiban may be used to visualize DVT at an early stage. PMID:27713618

  2. Coordination chemistry of the sup 212 Pb/ sup 212 Bi nuclear transformation: Alpha-emitting radiopharmaceuticals

    SciTech Connect

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  3. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.

    PubMed

    Siegel, J A; Thomas, S R; Stubbs, J B; Stabin, M G; Hays, M T; Koral, K F; Robertson, J S; Howell, R W; Wessels, B W; Fisher, D R; Weber, D A; Brill, A B

    1999-02-01

    This report describes recommended techniques for radiopharmaceutical biodistribution data acquisition and analysis in human subjects to estimate radiation absorbed dose using the Medical Internal Radiation Dose (MIRD) schema. The document has been prepared in a format to address two audiences: individuals with a primary interest in designing clinical trials who are not experts in dosimetry and individuals with extensive experience with dosimetry-based protocols and calculational methodology. For the first group, the general concepts involved in biodistribution data acquisition are presented, with guidance provided for the number of measurements (data points) required. For those with expertise in dosimetry, highlighted sections, examples and appendices have been included to provide calculational details, as well as references, for the techniques involved. This document is intended also to serve as a guide for the investigator in choosing the appropriate methodologies when acquiring and preparing product data for review by national regulatory agencies. The emphasis is on planar imaging techniques commonly available in most nuclear medicine departments and laboratories. The measurement of the biodistribution of radiopharmaceuticals is an important aspect in calculating absorbed dose from internally deposited radionuclides. Three phases are presented: data collection, data analysis and data processing. In the first phase, data collection, the identification of source regions, the determination of their appropriate temporal sampling and the acquisition of data are discussed. In the second phase, quantitative measurement techniques involving imaging by planar scintillation camera, SPECT and PET for the calculation of activity in source regions as a function of time are discussed. In addition, nonimaging measurement techniques, including external radiation monitoring, tissue-sample counting (blood and biopsy) and excreta counting are also considered. The third phase, data

  4. Comparison of four technetium-99m radiopharmaceuticals for detection and localization of gastrointestinal bleeding in a sheep model

    SciTech Connect

    Owunwanne, A.; Al-Wafai, I.; Vallgren, S.; Sadek, S.; Abdel-Dayem, H.M.; Yacoub, T.

    1988-01-01

    Four Tc-99 radiopharmaceuticals, Tc-99m sulphur colloid, Tc-99m red blood cells (RBCs), Tc-99m mercaptoacetyltriglycine (MAG3), and Tc-99m DTPA, were studied in an experimental animal model for detection and localization of gastrointestinal (GI) bleeding site in both the upper and lower abdomen. With Tc-99m sulphur colloid and Tc-99m RBCs, it was possible to detect and localize the GI bleeding site in the lower abdomen. With Tc-99m MAG3, it was possible to visualize the bleeding site in both the upper and lower abdomen. However, Tc-99m MAG3 is partially excreted by the liver into the bile, hence it will be difficult to use Tc-99m MAG3 to localize the GI bleeding site in the lower abdomen. With Tc-99m DTPA, it was possible to detect and localize the GI bleeding site simultaneously in both upper and lower abdomen. The overall background radioactivity was reduced considerably by diuresis with frusemide and catheterization of the urinary bladder.

  5. 99mTc-imidodiphosphonate: a superior radio-pharmaceutical for in vivo positive myocardial infarct imaging. II: Clinical data.

    PubMed Central

    Joseph, S P; Ell, P J; Ross, P; Donaldson, R; Elliott, A T; Brown, N J; Williams, E S

    1978-01-01

    99mTc-Imidodiphosphonate was investigated as a new myocardial infarct imaging agent. In the acute phase, 50 patients admitted to the coronary care unit were serially scanned over a period of 7 days. A mobile gamma camera linked on line to a remote data processor was used. Because of higher uptake in infarcted myocardium and faster blood clearance, superior images than those recorded with 99mTc-pyrophosphate were obtained. Its ease of preparation, low cost, and favourable dosimetry (because of its label with conventional 99mTc) transforms this agent into the present radiopharmaceutical of choice for acute infarct imaging in particular if sizing and follow-up is intended versus time and type of treatment. In this series, no false positive cases were seen. The sensitivity of the method in the detection of full thickness myocardial infarction was 95%. It dropped to 70% in the detection of subendocardial infarction. However, some of these apparent false negative cases may reflect severe ischaemia without infarction. It is postulated that this discrimination may not always be realistic. Images PMID:637976

  6. Preparation and biological evaluation of (99m)Tc-ropinirole as a novel radiopharmaceutical for brain imaging.

    PubMed

    Motaleb, M A; Ibrahem, I T; Ayoub, V R; Geneidi, A S

    2016-04-01

    Noninvasive brain imaging is a process that allows scientists and physicians to view and monitor the areas of the brain. The aim of this study was to formulate a novel radiopharmaceutical for the detection of brain disorders at early stages in susceptible patients. (99m) Tc-ropinirole was prepared by the direct complexation of ropinirole with technetium-99m. The results showed that the radiochemical yield (99m) Tc-ropinirole was 92 ± 2.87% and the radiochemical yield was evaluated by paper chromatography and HPLC. In vitro studies showed that the formed complex was stable for up to 6 h. In vivo uptake of (99m) Tc-ropinirole in the brain was 4.87 ± 0.15% injected dose/g organ at 30 min post-injection, which cleared from the brain with time till it reaches 2.3% at 2 h post-injection indicating that the brain uptake of (99m) Tc-ropinirole is higher than that of the commercially available (99m) Tc-HMPAO, which is 2.25% at 30 min. Pre-dosing mice with cold ropinirole reduced the brain uptake to 0.26 ± 0.01% injected dose/g organ, so this confirms the high specificity and selectivity of this radiotracer for the assessment of the dopamine receptors.

  7. Molecular modeling in the development of metal radiopharmaceuticals. Final progress report, July 15, 1989--July 14, 1993

    SciTech Connect

    Green, M.A.

    1993-10-01

    We began this project with a compilation of a structural library to serve as a data base containing descriptions of the molecular features of metal-labeled radiopharmaceuticals known to efficiently cross the blood-brain barrier. Such a data base is needed in order to identify structural features (size, shape, molecular surface areas and volumes) that are critical in allowing blood-brain barrier penetration. Nine metal complexes have been added to this structural library. We have completed a detailed comparison of four molecular mechanics computer programs QUANTA, SYBYL, BOYD, and MM2DREW to assess their applicability to modeling the structures of low molecular weight metal complexes. We tested the ability of each program to reproduce the crystallographic structures of 38 complexes between nickel(II) and saturated N-donor ligands. The programs were evaluated in terns of their ability to reproduce structural features such as bond lengths, bond angles, and torsion angles. Recently, we investigated the synthesis and characterization of lipophilic cationic gallium complexes with hexadentate bis(salicylaldimine) ligands. This work identified the first gallium-68 radiopharrnaceuticals that can be injected intravenously and that subsequently exhibit significant myocardial uptake followed by prolonged myocardial retention of {sup 68}Ga radioactivity. Tracers of this type remain under investigation as agents for evaluation of myocardial perfusion with positron emission tomography.

  8. SU-C-303-03: Dosimetric Model of the Beagle Needed for Pre-Clinical Testing of Radiopharmaceuticals

    SciTech Connect

    Shang, M; Sands, M; Bolch, W

    2015-06-15

    Purpose: Large animal models, most popularly beagles, have been crucial surrogates to humans in determining radiation safety levels of radiopharmaceuticals. This study aims to develop a detailed beagle phantom to accurately approximate organ absorbed doses for therapy nuclear medicine preclinical studies. Methods: A 3D NURBS model was created subordinate to a whole body CT of an adult beagle. Bones were harvested and CT imaged to offer macroscopic skeletal detail. Samples of trabecular spongiosa were cored and imaged to offer microscopic skeletal detail for bone trabeculae and marrow volume fractions. Results: Organ masses in the model are typical of an adult beagle. Trends in volume fractions for skeletal dosimetry are fundamentally similar to those found in existing models of other canine species. Conclusion: This work warrants its use in further investigations of radiation transport calculation for electron and photon dosimetry. This model accurately represents the anatomy of a beagle, and can be directly translated into a useable geometry for a voxel-based Monte Carlo radiation transport program such as MCNP6. Work supported by a grant from the Hyundai Hope on Wheels Foundation for Pediatric Cancer Research.

  9. Click-chemistry reactions in radiopharmaceutical chemistry: fast & easy introduction of radiolabels into biomolecules for in vivo imaging.

    PubMed

    Wängler, C; Schirrmacher, R; Bartenstein, P; Wängler, B

    2010-01-01

    Today the term "click chemistry" is often used equivalent with the copper-catalyzed 1,3-dipolar Huisgen cycloaddition. Originally, the concept was introduced in 2001 to describe reactions fulfilling a set of criteria that are most useful for chemical syntheses in drug research. In radiopharmaceutical chemistry where short lived radioisotopes are introduced into various different substance classes for in vivo imaging of biochemical processes, the expanding field of radioactive bioconjugation has become predominant. Labeled biomolecules such as peptides, proteins and oligonucleotides generated via bioconjugation of chelators for radiometal introduction as well as novel valuable secondary precursors for (18)F labeling have enriched the growing field of molecular imaging substantially. When introducing radioactive nuclides with a very short half-life into biomolecules, some of the typical criteria defined by click-chemistry are more crucial than others. Time is always the most important issue, whereas avoiding the formation of by-products that have to be removed without chromatography is of minor importance. The short-lived radionuclide (11)C for example has a physical half-life of only 20 min so that the labeling procedure cannot exceed 40-60 minutes (2-3 half-lifes). In this contribution, we outline reactions and molecules which meet the requirements of click chemistry reactions and are suitable for radiosyntheses of short lived SPECT ((99m)Tc: t(1/2) = 6 h, (111)In: t(1/2) = 2.81 d) and PET ((11)C: t(1/2) = 20.3 min to (64)Cu: t(1/2) = 12.7 h) radiotracers for in vivo imaging of biological processes and review the contributions in the field of radiochemical "click-reactions" - 1,3-dipolar Huisgen cycloadditions and beyond.

  10. Radioprotective effect of the Barbados Cherry (Malpighia glabra L.) against radiopharmaceutical Iodine-131 in Wistar rats in vivo

    PubMed Central

    2014-01-01

    Background The increasing consumption of fruits and vegetables has contributed to the improvement of populational health, due in part, to the abundance of antioxidants in these foods. Antioxidants reduce the level of oxidative damage to DNA caused by free radicals and ionizing radiation, including the radioisotope iodine-131 (131I). This isotope is used for the diagnosis and treatment of thyroid injuries, such as hyperthyroidism and cancer. Methods This study aimed to evaluate the radioprotective and cytotoxic activity of acute and subchronic treatments with Barbados Cherry (BC) (Malpighia glabra L.) fruit juice (5 mg), which is rich in potent antioxidants such as vitamin C, phenols, carotenoids, anthocyanins and yellow flavonoids and its activity against the mutagenic activity of the therapeutic dose of 25 μCi of radioiodine for hyperthyroidism. The test system used was the bone marrow cells of Wistar rats (Rattus norvegicus) that were treated in vivo by gavage. Results BC showed radioprotective activity in acute treatments, which is most likely due to the joint action of its antioxidant components. In subchronic treatments, the continuous treatment presented an effective radioprotective activity, which was significantly different from treatment with the radiopharmaceutical only. Treatment with BC prior to (PRE) and simultaneous with (SIM) ionizing radiation decreased the number of induced chromosomal alterations, while post-treatment produced no protective effect. In addition, BC exhibited no cytotoxic activity. Conclusions These data serve as evidence that BC can be used as a preventive health measure to improve public health quality by countering the action of inevitable exposure to mutagens, such as 131I. PMID:24479389

  11. Evaluation of deoxyribonucleic acid toxicity induced by the radiopharmaceutical 99mTechnetium-Methylenediphosphonic acid and by stannous chloride in Wistar rats.

    PubMed

    Mattos, José Carlos Pelielo De; Matos, Vanessa Coutinho de; Rodrigues, Michelle Pinheiro; Oliveira, Marcia Betânia Nunes de; Dantas, Flavio José S; Santos-Filho, Sebastião David; Bernardo-Filho, Mario; Caldeira-de-Araujo, Adriano

    2012-11-01

    Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc) is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT) due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl(2)) being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT) and SnCl(2) were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control), cyclophosphamide 50 mg/kg b.w. (positive control), SnCl(2) 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay) and 36 h after, for micronucleus test. The data showed that both SnCl(2) and 99mTc-MDP-induced deoxyribonucleic acid (DNA) strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl(2) in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine.

  12. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    SciTech Connect

    Avendaño-Estrada, A. Lara-Camacho, V. M. Ávila-García, M. C. Ávila- Rodríguez, M. A.

    2014-11-07

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  13. ⁶⁸Ge content quality control of ⁶⁸Ge/⁶⁸Ga-generator eluates and ⁶⁸Ga radiopharmaceuticals--a protocol for determining the ⁶⁸Ge content using thin-layer chromatography.

    PubMed

    Eppard, Elisabeth; Loktionova, Natalia S; Rösch, Frank

    2014-09-01

    (68)Ge breakthrough from a (68)Ge/(68)Ga-generator appears to be one of the most critical parameters for the routine clinical application of this generator and (68)Ga-radiopharmaceuticals. We report a TLC-based (thin-layer chromatography) protocol which allows the (68)Ge breakthrough of a generator to be determined within 1 h post-initial elution. The protocol can also be adapted to allow the (68)Ge content of a (68)Ga-radiopharmaceutical preparation to be determined prior to in vivo application.

  14. An overview of translational (radio)pharmaceutical research related to certain oncological and non-oncological applications.

    PubMed

    Cona, Marlein Miranda; de Witte, Peter; Verbruggen, Alfons; Ni, Yicheng

    2013-12-26

    Translational medicine pursues the conversion of scientific discovery into human health improvement. It aims to establish strategies for diagnosis and treatment of diseases. Cancer treatment is difficult. Radio-pharmaceutical research has played an important role in multiple disciplines, particularly in translational oncology. Based on the natural phenomenon of necrosis avidity, OncoCiDia has emerged as a novel generic approach for treating solid malignancies. Under this systemic dual targeting strategy, a vascular disrupting agent first selectively causes massive tumor necrosis that is followed by iodine-131 labeled-hypericin ((123)I-Hyp), a necrosis-avid compound that kills the residual cancer cells by crossfire effect of beta radiation. In this review, by emphasizing the potential clinical applicability of OncoCiDia, we summarize our research activities including optimization of radioiodinated hypericin Hyp preparations and recent studies on the biodistribution, dosimetry, pharmacokinetic and, chemical and radiochemical toxicities of the preparations. Myocardial infarction is a global health problem. Although cardiac scintigraphy using radioactive perfusion tracers is used in the assessment of myocardial viability, searching for diagnostic imaging agents with authentic necrosis avidity is pursued. Therefore, a comparative study on the biological profiles of the necrosis avid (123)I-Hyp and the commercially available (99m)Tc-Sestamibi was conducted and the results are demonstrated. Cholelithiasis or gallstone disease may cause gallbladder inflammation, infection and other severe complications. While studying the mechanisms underlying the necrosis avidity of Hyp and derivatives, their naturally occurring fluorophore property was exploited for targeting cholesterol as a main component of gallstones. The usefulness of Hyp as an optical imaging agent for cholelithiasis was studied and the results are presented. Multiple uses of automatic contrast injectors may reduce

  15. Correction Factors Applied to Finger Dosimetry: A Theoretical Assessment of Appropriate Values for Use in Handling Radiopharmaceuticals

    SciTech Connect

    Sherbini, Sami; Ilas, Dan; Eckerman, Keith F; DeCicco, Joseph

    2011-01-01

    United States Nuclear Regulatory Commission (USNRC) regulations limit the dose to the skin to 500 mSv per year. This is also the dose limit recommended by the International Commission on Radiological Protection (ICRP). The operational quantity recommended by ICRP for quantifying dose to the skin is the personal dose equivalent, Hp(0.07) and is identical to NRC s shallow dose equivalent, Hs, also measured at a skin depth of 7 mg cm 2. However, whereas ICRP recommends averaging the dose to the skin over an area of 1 cm2 regardless of the size of the exposed area of skin, USNRC requires the shallow dose equivalent to be averaged over 10 cm2. To monitor dose to the skin of the hands of workers handling radioactive materials and particularly in radiopharmaceutical manufacturing facilities, which is the focus of this work, workers are frequently required to wear finger ring dosimeters. The dosimeters monitor the dose at the location of the sensitive element, but this is not the dose required to show compliance (i.e., the dose averaged over the highest exposed contiguous 10 cm2 of skin). Therefore, it may be necessary to apply a correction factor that enables estimation of the required skin dose from the dosimeter reading. This work explored the effects of finger ring placement and of the geometry of the radioactive materials being handled by the worker on the relationship between the dosimeter reading and the desired average dose. A mathematical model of the hand was developed for this purpose that is capable of positioning the fingers in any desired grasping configuration, thereby realistically modeling manipulation of any object. The model was then used with the radiation transport code MCNP to calculate the dose distribution on the skin of the hand when handling a variety of radioactive vials and syringes, as well as the dose to the dosimeter element. Correction factors were calculated using the results of these calculations and examined for any patterns that may be

  16. An overview of translational (radio)pharmaceutical research related to certain oncological and non-oncological applications

    PubMed Central

    Cona, Marlein Miranda; de Witte, Peter; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Translational medicine pursues the conversion of scientific discovery into human health improvement. It aims to establish strategies for diagnosis and treatment of diseases. Cancer treatment is difficult. Radio-pharmaceutical research has played an important role in multiple disciplines, particularly in translational oncology. Based on the natural phenomenon of necrosis avidity, OncoCiDia has emerged as a novel generic approach for treating solid malignancies. Under this systemic dual targeting strategy, a vascular disrupting agent first selectively causes massive tumor necrosis that is followed by iodine-131 labeled-hypericin (123I-Hyp), a necrosis-avid compound that kills the residual cancer cells by crossfire effect of beta radiation. In this review, by emphasizing the potential clinical applicability of OncoCiDia, we summarize our research activities including optimization of radioiodinated hypericin Hyp preparations and recent studies on the biodistribution, dosimetry, pharmacokinetic and, chemical and radiochemical toxicities of the preparations. Myocardial infarction is a global health problem. Although cardiac scintigraphy using radioactive perfusion tracers is used in the assessment of myocardial viability, searching for diagnostic imaging agents with authentic necrosis avidity is pursued. Therefore, a comparative study on the biological profiles of the necrosis avid 123I-Hyp and the commercially available 99mTc-Sestamibi was conducted and the results are demonstrated. Cholelithiasis or gallstone disease may cause gallbladder inflammation, infection and other severe complications. While studying the mechanisms underlying the necrosis avidity of Hyp and derivatives, their naturally occurring fluorophore property was exploited for targeting cholesterol as a main component of gallstones. The usefulness of Hyp as an optical imaging agent for cholelithiasis was studied and the results are presented. Multiple uses of automatic contrast injectors may reduce costs

  17. Rapid brain scanning radiopharmaceutical

    DOEpatents

    Sargent, III, Thornton W.; Shulgin, Alexander T.; Mathis, Chester A.

    1987-01-01

    A method for detecting the blood flow in animals, particularly in the brain, is provided wherein a detectable amount of a novel radioactive compound of the formula I is administered to one animal: ##STR1## wherein R.sub.1 and R.sub.2 are independently alkyl of 1 to 6 carbon atoms or benzyl; R.sub.3 is alkyl of 1 to 6 carbon atoms, benzyl, cyclopropylalkyl of 4 to 6 carbon atoms, or cyanoalkyl of 2 to 6 carbon atoms; R.sub.4 is hydrogen, benzyl or alkyl of 1 to 6 carbon atoms; with the provisos that R.sub.4 is not isopropyl and when R.sub.4 is methyl, R.sub.3 is not benzyl; and X is a radioactive halogen.

  18. Rapid brain scanning radiopharmaceutical

    DOEpatents

    Sargent, T.W. III; Shulgin, A.T.; Mathis, C.A.

    1987-03-03

    A method for detecting the blood flow in animals, particularly in the brain, is provided wherein a detectable amount of a novel radioactive compound of the formula 1 is administered to one animal: as given in figure in patent wherein R[sub 1] and R[sub 2] are independently alkyl of 1 to 6 carbon atoms or benzyl; R[sub 3] is alkyl of 1 to 6 carbon atoms, benzyl, cyclopropylalkyl of 4 to 6 carbon atoms, or cyanoalkyl of 2 to 6 carbon atoms; R[sub 4] is hydrogen, benzyl or alkyl of 1 to 6 carbon atoms; with the provisos that R[sub 4] is not isopropyl and when R[sub 4] is methyl, R[sub 3] is not benzyl; and X is a radioactive halogen. 2 figs.

  19. Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation.

    PubMed

    Hadid, Lama; Gardumi, Anna; Desbrée, Aurélie

    2013-09-01

    In diagnostic nuclear medicine, mean absorbed doses to patients' organs and effective doses are published for standard stylised anatomic models. To provide more realistic and detailed geometries of the human morphology, the International Commission on Radiological Protection (ICRP) has recently adopted male and female voxel phantoms to represent the reference adult. This work investigates the impact of the use of these new computational phantoms. The absorbed doses were calculated for 11 different radiopharmaceuticals currently used in diagnostic nuclear medicine. They were calculated for the ICRP 110 reference computational phantoms using the OEDIPE software and the MCNP extended Monte Carlo code. The biokinetic models were issued from ICRP Publications 53, 80 and 106. The results were then compared with published values given in these ICRP Publications. To discriminate the effect of anatomical differences on organ doses from the effect of the calculation method, the Monte Carlo calculations were repeated for the reference adult stylised phantom. The voxel effect, the influence of the use of different densities and nuclear decay data were also investigated. Effective doses were determined for the ICRP 110 adult reference computational phantom with the tissue weighting factor of ICRP Publication 60 and the tissue weighting factors of ICRP Publication 103. The calculation method and, in particular, the simulation of the electron transport have a significant influence on the calculated doses, especially, for small and walled organs. Overestimates of >200 % were observed for the urinary bladder wall of the stylised phantom compared with the computational phantoms. The unrealistic organ topology of the stylised phantom leads to important dose differences, sometimes by an order of magnitude. The effective doses calculated using the new computational phantoms and the new tissue weighting factors are globally lower than the published ones, except for some

  20. Synthesis and Characterization of a Tetramethyl Furanone Functionalized Diiminedioxime, A Potential Ligand for 64Cu Radiopharmaceuticals, and its Copper(II) and Nickel(II) Complexes

    PubMed Central

    Kiani, Salma; Staples, Richard J.; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    As part of our on-going effort to develop 64Cu-based radiopharmaceuticals for PET (positron emission tomography) imaging of multidrug resistance in cancer, we prepared a tetramethylfuranone-functionalized diiminedioxime ligand, TMFPreH (TMFPreH = 4-[3-(4-Hydroxyimino-2,2,5,5-dimethyl-dihydro-furan-3-ylideneamino)-propylimino]-2,2,5,5-tetramethyl-dihydro-furan-3-one oxime) and its Cu(II) and Ni(II) complexes. When the copper(II) complex was prepared from Cu(ClO4)2 in ethanol, it was isolated as a Cu(II)-bridged dimer, but when it was prepared from Cu(OAc)2 and heated in acetone, an unusual example of an acetone adduct of the ligand is formed by reduction of one of the imine double bonds by the solvent. The Ni(II) complex is square pyramidal with the perchlorate counterion at the apex. PMID:20161333

  1. Development of a rhenium-186-labeled MAG3-conjugated bisphosphonate for the palliation of metastatic bone pain based on the concept of bifunctional radiopharmaceuticals.

    PubMed

    Ogawa, Kazuma; Mukai, Takahiro; Arano, Yasushi; Ono, Masahiro; Hanaoka, Hirofumi; Ishino, Seigo; Hashimoto, Kazuyuki; Nishimura, Hiroshi; Saji, Hideo

    2005-01-01

    Rhenium-186-1-hydroxyethylidene-1,1-diphosphonate (186Re-HEDP) has been used for the palliation of metastatic bone pain. Delayed blood clearance and high gastric uptake of radioactivity have been observed upon injection, due to the instability of (186)Re-HEDP in vivo. In this study, on the basis of the concept of bifunctional radiopharmaceuticals, we designed a stable 186Re-mercaptoacetylglycylglycylglycine (MAG3) complex-conjugated bisphosphonate, [[[[(4-hydroxy-4,4-diphosphonobutyl)carbamoylmethyl]carbamoylmethyl]carbamoylmethyl]carbamoylmethanethiolate]oxorhenium(V) (186Re-MAG3-HBP). As a precursor, [1-hydroxy-1-phosphono-4-[2-[2-[2-(2-tritylmercaptoacetylamino)acetylamino]acetylamino]acetylamino]butyl]phosphonic acid (Tr-MAG3-HBP) was synthesized by the conjugation of N-[(tritylmercapto)acetyl]glycylglycylglycine (Tr-MAG3) with the bisphosphonate analogue. After deprotection of the trityl group of Tr-MAG3-HBP, 186Re-labeling was performed by reacting 186ReO4- with SnCl2 in citrate buffer. After purification by HPLC, 186Re-MAG3-HBP showed a radiochemical purity of over 95%. To compare the stability of 186Re-MAG3-HBP and 186Re-HEDP, these (186)Re complexes were incubated in phosphate buffer. No measurable decomposition of 186Re-MAG3-HBP occurred over a 24-h period, while only approximately 30% of 186Re-HEDP remained intact 24 h postincubation. In biodistribution experiments, the radioactivity level of 186Re-MAG3-HBP in bone was significantly higher than that of (186)Re-HEDP. Blood clearance of 186Re-MAG3-HBP was faster than that of 186Re-HEDP. In addition, the gastric accumulation of 186Re-MAG3-HBP radioactivity was lower than that of 186Re-HEDP. In conclusion, 186Re-MAG3-HBP is expected to be a useful radiopharmaceutical for the palliation of metastatic bone pain.

  2. Comparative evaluation of glutamate-sensitive radiopharmaceuticals: Technetium-99m-glutamic acid and technetium-99m-diethylenetriaminepentaacetic acid-bis(glutamate) conjugate for tumor imaging.

    PubMed

    Kakkar, Dipti; Tiwari, Anjani K; Chuttani, Krishna; Kaul, Ankur; Singh, Harpal; Mishra, Anil K

    2010-12-01

    Single-photon emission computed tomography has become a significant imaging modality with huge potential to visualize and provide information of anatomic dysfunctions that are predictive of future diseases. This imaging tool is complimented by radiopharmaceuticals/radiosubstrates that help in imaging specific physiological aspects of the human body. The present study was undertaken to explore the utility of technetium-99m (⁹⁹(m)Tc)-labeled glutamate conjugates for tumor scintigraphy. As part of our efforts to further utilize the application of chelating agents, glutamic acid was conjugated with a multidentate ligand, diethylenetriaminepentaacetic acid (DTPA). The DTPA-glutamate conjugate [DTPA-bis(Glu)] was well characterized by IR, NMR, and mass spectroscopy. The biological activity of glutamic acid was compared with its DTPA conjugate by radiocomplexation with ⁹⁹(m)Tc (labeling efficiency ≥98%). In vivo studies of both the radiolabeled complexes ⁹⁹(m)Tc-Glu and ⁹⁹(m)Tc-DTPA-bis(Glu) were then carried out, followed by gamma scintigraphy in New Zealand albino rabbits. Improved serum stability of ⁹⁹(m)Tc-labeled DTPA conjugate indicated that ⁹⁹(m)Tc remained bound to the conjugate up to 24 hours. Blood clearance showed a relatively slow washout of the DTPA conjugate when compared with the labeled glutamate. Biodistribution characteristics of the conjugate in Balb/c mice revealed that DTPA conjugation of glutamic acid favors less accumulation in the liver and bone and rapid renal clearance. Tumor scintigraphy in mice showed increasing tumor accumulation, stable up to 4 hours. These preliminary studies show that ⁹⁹(m)Tc-DTPA-bis(Glu) can be a useful radiopharmaceutical for diagnostic applications in single-photon emission computed tomography imaging.

  3. A unique alpha dosimetry technique using Gafchromic EBT3® film and feasibility study for an activity calibrator for alpha-emitting radiopharmaceuticals

    PubMed Central

    Gholami, Yaser H; Bhonsle, Uday; Hentschel, Reinhard; Khachan, Joseph

    2015-01-01

    Objective: To develop an alpha dosimetry technique for activity calibration of alpha-emitting radiopharmaceuticals using the Gafchromic® EBT3 (Gaf-EBT3) radiochromic film (International Speciality product, Wayne, NJ). Methods: The Gaf-EBT3 has a tissue equivalent radiosensitive layer (approximately 28 μm) sandwiched between two 100-μm thick polyester sheaths, thereby making it insensitive to alpha particles. We have split a Gaf-EBT3 sheet using a surgical scalpel to remove one of the polyester protective layers and covered the radiosensitive layer with thin Mylar® foil (Goodfellow Cambridge Limited, Huntingdon, UK) (2.5 μm). Small pieces of modified film were exposed at contact with a 560-Bq thin 241Am source for 5, 10, 24 and 94 h. The optical density of the films was evaluated using an optical densitometer. The alpha energy spectra of the 241Am source were recorded using a Si(Li) surface barrier detector. Results: Time-integrated specific alpha surface activity (kBq cm−2 h) was represented as a function of optical density. Conclusion: By removing one of the 100 μm thick polyester protective layers, the authors have modified the Gaf-EBT3 film to a sensitive alpha dosemeter. The calibration function relevant to a 241Am reference source was evaluated from the optical densities of the dosemeter foils. Furthermore, calibration functions for important alpha emitters such as 223Ra, 225Ac or 210Bi were parameterized from the 241Am reference data. Advances in knowledge: The authors have developed and tested the principle of a clinical alpha dosemeter using Gaf-EBT3 radiochromic films originally developed for photon dosimetry. This novel, user-friendly technique could be implemented in quality assurance and calibration procedures of important alpha-emitting radiopharmaceuticals prior to their clinical applications. PMID:26440547

  4. Modular syntheses of H₄octapa and H₂dedpa, and yttrium coordination chemistry relevant to ⁸⁶Y/⁹⁰Y radiopharmaceuticals.

    PubMed

    Price, Eric W; Cawthray, Jacqueline F; Adam, Michael J; Orvig, Chris

    2014-05-21

    The ligands H2dedpa, H4octapa, p-SCN-Bn-H2dedpa, and p-SCN-Bn-H4octapa were synthesized using a new protection chemistry approach, with labile tert-butyl esters replacing the previously used methyl esters as protecting groups for picolinic acid moieties. Additionally, the ligands H2dedpa and p-SCN-Bn-H2dedpa were synthesized using nosyl protection chemistry for the first time. The use of tert-butyl esters allows for deprotection at room temperature in trifluoroacetic acid (TFA), which compares favorably to the harsh conditions of refluxing HCl (6 M) or LiOH that were previously required for methyl ester cleavage. H4octapa has recently been shown to be a very promising (111)In and (177)Lu ligand for radiopharmaceutical applications; therefore, coordination chemistry studies with Y(3+) are described to assess its potential for use with (86)Y/(90)Y. The solution chemistry of H4octapa with Y(3+) is shown to be suitable via solution NMR studies of the [Y(octapa)](-) complex and density functional theory (DFT) calculations of the predicted structure, suggesting properties similar to those of the analogous In(3+) and Lu(3+) complexes. The molecular electrostatic potential (MEP) was mapped onto the molecular surface of the DFT-calculated coordination structures, suggesting very similar and even charge distributions between both the Lu(3+) and Y(3+) complexes of octapa(4-), and coordinate structures between 8 (ligand only) and 9 (ligand and one H2O). Potentiometric titrations determined H4octapa to have a formation constant (log K(ML)) with Y(3+) of 18.3 ± 0.1, revealing high thermodynamic stability. This preliminary work suggests that H4octapa may be a competent ligand for future (86)Y/(90)Y radiopharmaceutical applications.

  5. Ureaplasma urealyticum binds mannose-binding lectin.

    PubMed

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  6. Recombinant Complement Receptor 2 Radiolabeled with [99mTc(CO)3]+ : A Potential New Radiopharmaceutical for Imaging Activated Complement

    PubMed Central

    McDonnell, James M.; Yahya, Norhakim; Thakor, David; Razavi, Reza; Smith, Richard; Sacks, Steven; Mullen, Gregory E. D.

    2011-01-01

    We describe the design and synthesis of a new Tc-99m labeled bioconjugate for imaging activated complement, based on Short Consensus Repeats 1 and 2 of Complement Receptor 2 (CR2), the binding domain for C3d. To avoid non specific modification of CR2 and the potential for modifying lysine residues critical to the CR2/C3d contact surface, we engineered a new protein, recombinant CR2 (rCR2), to include the C-terminal sequence VFPLECHHHHHH, a hexahistidine tag (for site-specific radiolabeling with [99mTc(CO)3(OH2)3]+). The protein was characterized by N-terminal sequencing, SDS-PAGE and size exclusion chromatography. To test the function of the recombinant CR2, binding to C3d was confirmed by enzyme-linked immunosorbent assay (ELISA). The function was further confirmed by binding of rCR2 to C3d+ red blood cells (RBC) which were generated by deposition of human or rat C3d and analyzed by fluorescence microscopy and flow cytometry. The affinity of rCR2 for C3d+, in presence of 150 mM NaCl, was measured using surface plasma resonance giving rise to a KD≈500 nM. Radiolabeling of rCR2 or an inactive mutant of rCR2 (K41E CR2) or an unrelated protein of a similar size (C2A) with [99mTc(CO)3(OH2)3]+ at gave radiochemical yields >95%. Site-specifically radiolabeled rCR2 bound to C3d to C3d+ RBC. Binding of radiolabeled rCR2 to C3d was inhibited by anti-C3d and the radiolabeled inactive mutant K41E CR2 and C2A did not bind to C3d+ RBCs. We conclude that rCR2-Tc99m has excellent radiolabeling, stability and C3d binding characteristics and warrants in vivo evaluation as an activated complement imaging agent. PMID:21494666

  7. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  8. Accelerator production of {sup 122}Xe(20.1&hthinsp;h) as a source of {sup 122}I(3.6&hthinsp;m) labeled radiopharmaceuticals for applications in positron emission tomography

    SciTech Connect

    Lagunas-Solar, M.C.; Zeng, N.X.; Castaneda, C.M.; Carvacho, O.F.; O`Neil, J.P.; Padgett, H.C.; Budinger, T.F.

    1999-06-01

    Iodine-122 (3.6 m) radiopharmaceuticals have a proven potential for accelerator-free PET studies, including brain and heart perfusion, using a {sup 122}Xe{r_arrow}{sup 122}I transportable generator. Nuclear reactions with up to 70 MeV proton beams were studied to produce the parent {sup 122}Xe(20.1&hthinsp;h) radionuclide. Theoretical and experimental measurements indicated that {sup 122}Xe can be produced in high yields allowing for an extensive use of a {sup 122}Xe{r_arrow}{sup 122}I generator capable of producing multiple doses of {sup 122}I radiopharmaceuticals. Other lower energy reactions were studied and the results indicated the possibility of developing new methods that could be available to a larger number of commercial and research accelerators operating worldwide. {copyright} {ital 1999 American Institute of Physics.}

  9. Accelerator production of [sup 122]Xe(20. 1 hthinsp; h) as a source of [sup 122]I(3. 6 hthinsp; m) labeled radiopharmaceuticals for applications in positron emission tomography

    SciTech Connect

    Lagunas-Solar, M.C.; Zeng, N.X.; Castaneda, C.M.; Carvacho, O.F. ); O'Neil, J.P.; Padgett, H.C.; Budinger, T.F. )

    1999-06-01

    Iodine-122 (3.6 m) radiopharmaceuticals have a proven potential for accelerator-free PET studies, including brain and heart perfusion, using a [sup 122]Xe[r arrow][sup 122]I transportable generator. Nuclear reactions with up to 70 MeV proton beams were studied to produce the parent [sup 122]Xe(20.1 hthinsp;h) radionuclide. Theoretical and experimental measurements indicated that [sup 122]Xe can be produced in high yields allowing for an extensive use of a [sup 122]Xe[r arrow][sup 122]I generator capable of producing multiple doses of [sup 122]I radiopharmaceuticals. Other lower energy reactions were studied and the results indicated the possibility of developing new methods that could be available to a larger number of commercial and research accelerators operating worldwide. [copyright] [ital 1999 American Institute of Physics.

  10. A Monte Carlo approach to small-scale dosimetry of solid tumour microvasculature for nuclear medicine therapies with (223)Ra-, (131)I-, (177)Lu- and (111)In-labelled radiopharmaceuticals.

    PubMed

    Amato, Ernesto; Leotta, Salvatore; Italiano, Antonio; Baldari, Sergio

    2015-07-01

    The small-scale dosimetry of radionuclides in solid-tumours is directly related to the intra-tumoral distribution of the administered radiopharmaceutical, which is affected by its egress from the vasculature and dispersion within the tumour. The aim of the present study was to evaluate the combined dosimetric effects of radiopharmaceutical distribution and range of the emitted radiation in a model of tumour microvasculature. We developed a computational model of solid-tumour microenvironment around a blood capillary vessel, and we simulated the transport of radiation emitted by (223)Ra, (111)In, (131)I and (177)Lu using the GEANT4 Monte Carlo. For each nuclide, several models of radiopharmaceutical dispersion throughout the capillary vessel were considered. Radial dose profiles around the capillary vessel, the Initial Radioactivity (IR) necessary to deposit 100 Gy of dose at the edge of the viable tumour-cell region, the Endothelial Cell Mean Dose (ECMD) and the Tumour Edge Mean Dose (TEMD), i.e. the mean dose imparted at the 250-μm layer of tissue, were computed. The results for beta and Auger emitters demonstrate that the photon dose is about three to four orders of magnitude lower than that deposited by electrons. For (223)Ra, the beta emissions of its progeny deliver a dose about three orders of magnitude lower than that delivered by the alpha emissions. Such results may help to characterize the dose inhomogeneities in solid tumour therapies with radiopharmaceuticals, taking into account the interplay between drug distribution from vasculature and range of ionizing radiations.

  11. Development of more efficacious {Tc}-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceuticals. Annual technical progress report, September 1, 1992--August 31, 1993

    SciTech Connect

    Heineman, W.R.

    1993-05-03

    This research program is detailed at development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents to provide diagnostic information concerning a given pathological condition. Analytical techniques are being developed to enable complete analysis of radiopharmaceutical preparations so that individual complexes can be characterized with respect to imaging efficacy and to enable a radiopharmaceutical to be monitored after injection into a test animal to determine the species that actually accumulates in an organ to provide the image. Administration of the isolated, single most effective imaging complex, rather than a mixture of technetium-containing complexes, wi-11 minimize radiation exposure to the patient and maximize diagnostic information available to the clinician. This report specifically describes the development of capillary electrophoresis (CE) for characterizating diphosphonate skeletal imaging agents. Advances in the development of electrochemical and fiber optic sensors for Tc and Re imaging agents are described. These sensors will ultimately be capable of monitoring a specific chemical state of an imaging agent in vivo after injection into a test animal by implantation in the organ of interest.

  12. Coordination chemistry of the {sup 212}Pb/{sup 212}Bi nuclear transformation: Alpha-emitting radiopharmaceuticals. Final technical report

    SciTech Connect

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  13. Development of additive [11C]CO2 target system in the KOTRON-13 cyclotron and its application for [11C]radiopharmaceutical production

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seok; Lee, Hong Jin; Lee, Won Kyung; Hur, Min Goo; Yang, Seung Dae; Lee, Byung Chul; Kim, Sang Eun

    2015-08-01

    The KOTRON-13 cyclotron, which was developed in South Korea for the production of medical radioisotopes, has the structural limitation of only one beam-output port, restricting the production of the carbon-11 isotope. In the present study, we investigate the design of a switchable target system and develop an effective carbon-11 target in the KOTRON-13 cyclotron, for combination with the fluorine-18 target. The target system was designed by introducing a sliding-type element between the fluorine-18 and carbon-11 targets, a tailor-made C-11 target and its cooling system. For the efficient production of [11C]CO2, the desirable target shape and internal volume were determined by a Stopping and Range of Ions in Matter (SRIM) simulation program, and the target grid was modified to resist the cavity pressure during beam irradiation. We evaluated the [11C]CO2 production while varying the material and thickness of the target foil, oxygen content of the nitrogen gas, and target loading pressure. Using sliding-type equipment including an additional gate valve and a high vacuum in a beam line, the bi-directional conversion between the fluorine-18 and carbon-11 targets was efficient regarding the accurate beam irradiation on both targets. The optimal [11C]CO2 production for 30 min irradiation at 60 μA (86.6 ± 1.7 GBq in the target at EOB) was observed at a thickness of 19 μm with HAVAR® material as a target foil and a target loading pressure of 24 bar with nitrogen plus 300 ppb of oxygen gas. Additionally, the coolant cavity system in the target grid and target chamber is useful to remove the heat transferred to the target body by the internal convection of water and thereby ensure the stability of the [11C]CO2 production under a high beam current. In the application of C-11 labeled radiopharmaceuticals such as [11C]PIB, [11C]DASB, [11C]PBR28, [11C]Methionine and [11C]Clozapine, the radiochemical yields were shown to be 25-38% (decay corrected) with over 166 GBq/μmol of

  14. Labeling and Biological Evaluation of 99mTc-HYNIC-Trastuzumab as a Potential Radiopharmaceutical for In Vivo Evaluation of HER2 Expression in Breast Cancer

    PubMed Central

    Calzada, Victoria; Garcia, Fernanda; Fernández, Marcelo; Porcal, Williams; Quinn, Thomas; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo

    2013-01-01

    The amplification of HER2 gene has been described in several tumor types, mainly breast cancer with a subsequent increase in HER2 protein expression. Trastuzumab is a humanized monoclonal antibody that recognizes selectively the HER2 extracellular domain. The objective of the present work was to standardize the conjugation of Trastuzumab with Succinimidyl-hydrazinonicotinamide (HYNIC) and labeling with 99mTc to obtain 99mTc-HYNIC-Trastuzumab for use as in vivo tracer of the HER2 expression in breast cancer. The labeling procedure involved derivatization of 0.067 μmol of Trastuzumab with 0.33 μmols of HYNIC in dimethyl sulfoxide (DMSO). The mixture was incubated for 30 min. A mixture of Tricine and SnCl2.2H2O was prepared by add a solution of 44.6 μmols Tricine in 0.05 mL HCl 2.0 M and a similar volume of another solution containing 44.3 μmols SnCl2.2H2O in 0.5 mL HCl 2.0 M. Then, 0.05 mL of this mixed was added to the conjugated with 296 MBq of 99mTcO-4. The final mixture was incubated at room temperature (18-25°C) for 30 min. Radiochemical purity of the labeled solution was studied by chromatography, to evaluate 99mTc-Tricine, 99mTcO2.H2O, and free 99mTcO4−. Radiochemical purity was also evaluated by HPLC. Stability studies were tested in solution at 4°C and lyophilized at 4°C. Biodistribution studies were performed in healthy CD-1 female mice at 2, 5, and 24 h (n = 3) and CD-1 female mice spontaneous breast adenocarcinoma (n = 3). Scintigraphic images of spontaneous breast adenocarcinoma in female CD-1 mice were acquired in a gamma camera at 2, 5, and 24 h post-injection. Labeling was easily performed with high yields (>90%) and radiopharmaceutical stability for 24 h post-labeling. Stability studies revealed that antibody derivative must be lyophilized for undamaged storage. Biodistribution studies and imaging revealed excellent uptake in the tumor. Based on the results it was concluded that 99mTc-HYNIC-Trastuzumab could be a promising

  15. Evaluation of Tc-99m (V) DMSA binding to human plasma proteins.

    PubMed

    Lee, Bi-Fang; Yeh, Jwu-Lai; Chiu, Nan-Tsing; Liu, Gin-Chung; Yu, Hsin-Su; Wang, Mei-Hui; Shen, Lie-Hang

    2008-01-01

    As a critical step toward elucidating the mechanism of localization of Tc-99m (V) dimercaptosuccinic acid (DMSA), we investigated its binding and transport in blood in comparison with Ga-67 citrate. The studies were performed in vitro by incubating Tc-99m (V) DMSA with blood (one sample at 4 degrees Celcius and another at 37 degrees Celcius) to assess its binding to plasma proteins using ultrafiltration, dialysis, electrophoresis, gel filtration chromatography and affinity chromatography. A parallel experiment for determining the blood binding of Ga-67 citrate was performed using the same procedures. Using ultrafiltration, dialysis, electrophoresis and gel filtration chromatography, labeled plasma samples showed that protein binding for Tc-99m (V) DMSA was 45-54% at 37 degrees Celcius and 73-80% at 4 degrees Celcius. The figures for Ga-67 citrate were 43-53% at 37 degrees Celcius and 75-81% at 4 degrees Celcius. Electrophoresis showed that Tc-99m (V) DMSA was mostly bound to plasma albumin (36.05 +/- 2.48% at 37 degrees Celcius and 60.04 +/- 1.87% at 4 degrees Celcius), and that the proportion of Ga-67 radioactivity associated with beta-globulin was 34.23 +/- 1.37% at 37 degrees Celcius and 55.71 +/- 3.69% at 4 degrees Celcius. In affinity chromatography experiments, Tc-99m (V) DMSA did not bind to transferrin, unlike Ga-67 citrate. This study demonstrates that, at the radiopharmaceutical tracer level, most Tc-99m (V) DMSA in blood is protein-bound, primarily to albumin, but not to transferrin. In contrast, Ga-67 citrate was bound primarily to transferrin. The knowledge that albumin is the main transport protein of Tc-99m (V) DMSA may contribute to a better understanding of its biodistribution and pharmacokinetics.

  16. A comparative analysis of pharmacokinetics properties of diagnostic bone-seeking radiopharmaceuticals on the basis of phosphonic acids and technetium-99m

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. K.; Petriev, V. M.; Smoryzanova, O. A.; Zavestovskaya, I. N.

    2017-01-01

    This work is devoted to comparative research of pharmacokinetics properties of four bone-seeking radiopharmaceuticals (RPP) on the basis of bi- tetra- and penta-phosphonic acids. Biodistribution studies were performed in intact rats after intravenous injections of 99mTc-hydroxyethylidenediphosphonic acid (99mTc-HEDP), 99mTc-oxabiphor (99mTc-OXB), 99mTc-ethylenediaminetetramethylenephosphonic acid (99mTc-EDTMP) or 99mTc-diethylenetriaminopentakis(methylphosphonic acid) (99mTc-PPA). In the structure of the HEDP contains two phosphonic groups, OENTMP and EDTMP – four phosphonic groups, PPA – five phosphonic groups. Radiochemical yield of labeled 99mTc HEDP, OENTMP, EDTMP, PPA is not less than 95%, the radiochemical impurities does not exceed 5%. The investigated compounds have high stability in vivo and selective accumulation in osseous tissue. The highest concentrations of labeled compounds is reached in 3–24 hours after their intravenous injections. The investigated compounds are rapidly excreted from blood and soft organs and tissues mainly through the urinary routes. So present study has showed that these RPP have properties, which making them promising candidates as a diagnostic pharmaceuticals of bone metastases.

  17. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA

    PubMed Central

    Pereira, Edgar; do Quental, Letícia; Palma, Elisa; Oliveira, Maria Cristina; Mendes, Filipa; Raposinho, Paula; Correia, Isabel; Lavrado, João; Di Maria, Salvatore; Belchior, Ana; Vaz, Pedro; Santos, Isabel; Paulo, António

    2017-01-01

    A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners. PMID:28211920

  18. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA

    NASA Astrophysics Data System (ADS)

    Pereira, Edgar; Do Quental, Letícia; Palma, Elisa; Oliveira, Maria Cristina; Mendes, Filipa; Raposinho, Paula; Correia, Isabel; Lavrado, João; di Maria, Salvatore; Belchior, Ana; Vaz, Pedro; Santos, Isabel; Paulo, António

    2017-02-01

    A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners.

  19. Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation protection.

    PubMed

    Cheetham, Philippa J; Petrylak, Daniel P

    2012-04-01

    Approximately 85% to 90% of men with castration-resistant prostate cancer (CRPC) have radiological evidence of bone metastases. To date, however, therapies to manage bone metastases have been primarily palliative. Among CRPC patients with bone metastases, there is a significant unmet need for active antitumor treatment options that are highly efficacious and have a favorable safety profile. This article will present current information about alpha-pharmaceuticals, a new class of targeted cancer therapy for the treatment of patients with CRPC and bone metastases. It will review preclinical and clinical studies of the experimental radiopharmaceutical radium-223 chloride (Alpharadin), a first-in-class, highly targeted and well-tolerated alpha-pharmaceutical under development to improve survival in patients with bone metastases from advanced prostate cancer. Alpharadin kills cancer cells via alpha radiation from the decay of radium-223, a calcium mimetic that naturally self-targets to bone metastases. The mechanism of action of Alpharadin and specifics of administration, radiation protection, and patient management will be discussed.

  20. The first experience of using 99mTc-Al2O3-based radiopharmaceutical for the detection of sentinel lymph nodes in cervical cancer patients

    NASA Astrophysics Data System (ADS)

    Sinilkin, I. G.; Chernov, V. I.; Lyapunov, A. Yu.; Medvedeva, A. A.; Zelchan, R. V.; Chernyshova, A. L.; Kolomiets, L. A.

    2016-08-01

    The purpose of the study was to evaluate the feasibility of using 99mTc-Al2O3-based radiopharmaceutical, a novel molecular imaging agent for sentinel lymph node detection in patients with invasive cervical cancer. The study included 23 cervical cancer patients (T1aNxMx-T2bNxMx) treated at the Tomsk Cancer Research Institute. In the 18 hours before surgery, 80 MBq of the 99mTc-Al2O3 in peritumoral injected, followed by single-photon emission computed tomography (SPECT) of the pelvis and intraoperative SLN identification. Twenty-seven SLNs were detected by SPECT, and 34 SLNs were identified by intraoperative gamma probe. The total number of identified SLNs per patient ranged from 1 to 3 (the mean number of SLNs was 1.4 per patient). The most common site for SLN detection was the external iliac region (57.2%), followed by the internal iliac (14%), obturator (14%), presacral and retrosacral regions (14%), and the parametrial region (1%). Sensitivity in detecting SLNs was 100% for intraoperative SLN identification and 79% for SPECT image.

  1. A novel device for automatic withdrawal and accurate calibration of 99m-technetium radiopharmaceuticals to minimise radiation exposure to nuclear medicine staff and patient.

    PubMed

    Nazififard, Mohammad; Mahdizadeh, Simin; Meigooni, A S; Alavi, M; Suh, Kune Y

    2012-09-01

    A Joint Automatic Dispenser Equipment (JADE) has been designed and fabricated for automatic withdrawal and calibration of radiopharmaceutical materials. The thermoluminescent dosemeter procedures have shown a reduction in dose to the technician's hand with this novel dose dispenser system JADE when compared with the manual withdrawal of (99m)Tc. This system helps to increase the precision of calibration and to minimise the radiation dose to the hands and body of the workers. This paper describes the structure of this device, its function and user-friendliness, and its efficacy. The efficacy of this device was determined by measuring the radiation dose delivered to the hands of the nuclear medicine laboratory technician. The user-friendliness of JADE has been examined. The automatic withdrawal and calibration offered by this system reduces the dose to the technician's hand to a level below the maximum permissible dose stipulated by the international protocols. This research will serve as a backbone for future study about the safe use of ionising radiation in medicine.

  2. High Yield Production and Radiochemical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Labeling Strategies for the Development of Theranostic Radiopharmaceuticals

    PubMed Central

    Ellison, Paul A.; Barnhart, Todd E.; Chen, Feng; Hong, Hao; Zhang, Yin; Theuer, Charles P.; Cai, Weibo; Nickles, Robert J.; DeJesus, Onofre T.

    2016-01-01

    Radioisotopes of arsenic are of considerable interest to the field of nuclear medicine with unique nuclear and chemical properties making them well-suited for use in novel theranostic radiopharmaceuticals. However, progress must still be made in the production of isotopically pure radioarsenic and in its stable conjugation to biological targeting vectors. This work presents the production and irradiation of isotopically enriched 72Ge(m) discs in an irrigation-cooled target system allowing for the production of isotopically pure 72As with capability on the order of 10 GBq. A radiochemical separation procedure isolated the reactive trivalent radioarsenic in a small volume buffered aqueous solution, while reclaiming 72Ge target material. The direct thiol-labeling of a monoclonal antibody resulted in a conjugate exhibiting exceptionally poor in vivo stability in a mouse model. This prompted further investigations to alternative radioarsenic labeling strategies, including the labeling of the dithiol-containing chelator dihydrolipoic acid, and thiol-modified mesoporous silica nanoparticles (MSN-SH). Radioarsenic-labeled MSN-SH showed exceptional in vivo stability toward dearsenylation. PMID:26646989

  3. Metallochaperones: bind and deliver

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Metallochaperones deliver metal ions directly to target proteins via specific protein-protein interactions. Recent research has led to a molecular picture of how some metallochaperones bind metal ions, recognize their partner proteins, and accomplish metal ion transfer.

  4. SHBG (Sex Hormone Binding Globulin)

    MedlinePlus

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  5. Sigma Receptor Binding Assays.

    PubMed

    Chu, Uyen B; Ruoho, Arnold E

    2015-12-08

    Sigma receptors, both Sigma-1(S1R) and Sigma-2 (S2R), are small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated sites. A number of drugs bind to sigma receptors, including the antipsychotic haloperidol and (+)-pentazocine, an opioid analgesic. Sigma receptors are implicated in many central nervous system disorders, in particular Alzheimer's disease and conditions associated with motor control, such as Amyotrophic Lateral Sclerosis (ALS). Described in this unit are radioligand binding assays used for the pharmacological characterization of S1R and S2R. Methods detailed include a radioligand saturation binding assay for defining receptor densities and a competitive inhibition binding assay employing [³H]-(+)-pentazocine for identifying and characterizing novel ligands that interact with S1R. Procedures using [³H]-1,3-di(2-tolyl)guanidine ([³H]-DTG), a nonselective sigma receptor ligand, are described for conducting a saturation binding and competitive inhibition assays for the S2R site. These protocols are of value in drug discovery in identifying new sigma ligands and in the characterization of these receptors.

  6. Aluminum binding by humus

    SciTech Connect

    Benedetti, M.F.; Hiemstra, T.; Riemsdijk, W. van; Kinniburgh, D.

    1996-10-01

    The need for qualitative and quantitative description of the chemical speciation of Al, in particular and other metal ions in general, is stressed by the increased mobilization of metal ions in water and soils due to acid rain deposition. In this paper we present new data of Al binding to two humic acids. These new data sets and the some previously published data will be analyzed with the NICA-Donnan model using one set of parameters to describe the Al binding to the different humic substances. Once the experimental data is described with the NICA-Donnan approach, we will show the effect of Ca on Al binding and surface speciation as well as the effect of Al on the charge of the humic particles. The parameters derived from the laboratory experiments will be used to describe the variation of the field based Al partition coefficient.

  7. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  8. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  9. Inhibition of selectin binding

    DOEpatents

    Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  10. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    PubMed

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  11. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  12. MD-2 binds cholesterol

    PubMed Central

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I.

    2016-01-01

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  13. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  15. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  16. SIGMA RECEPTOR BINDING ASSAYS

    PubMed Central

    CHU, UYEN B.; RUOHO, ARNOLD E.

    2016-01-01

    Sigma receptors belong to a class of small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated receptors, of which there are two subtypes: the Sigma-1 receptor (S1R) and the Sigma-2 receptor (S2R). Both S1R and S2R bind to a number of drugs including antipsychotic, haloperidol, and the opioid analgesic, (+)-pentazocine. Sigma receptors are implicated in multiple disease pathologies associated with the nervous system including diseases affecting motor control such as Amyotrophic Lateral Sclerosis (ALS) and Alzeimher's disease. This unit describes methods for the pharmacological characterization of S1R and S2R using radioligand-binding assays. In the first section, radioligand saturation binding assay to determine receptor densities and competitive inhibition assays to characterize affinities of novel compounds are presented for S1R using the selective S1R ligand, [3H]-(+)-pentazocine. The second section describes radioligand saturation binding assay and competitive inhibition assays for the S2R using a non-selective S1R and S2R ligand, [3H]-1,3-di(2-tolyl)guanidine ([3H]-DTG). PMID:26646191

  17. Conciliating binding efficiency and polypharmacology.

    PubMed

    Mestres, Jordi; Gregori-Puigjané, Elisabet

    2009-09-01

    The association between molecular size and risk of failure has promoted the use of binding efficiency as a prioritization metric in lead selection. Even though by extension it is often referred to as "ligand efficiency", the concept was originally conceived to be strictly applicable to comparing the binding efficiencies of ligands for a single target. With current trends in designing drugs to bind efficiently to multiple targets, a revision of the original binding efficiency definition is carried out. To this aim, the dependency of binding efficiency on polypharmacology is highlighted in a retrospective analysis of a set of antipsychotic drugs. Statistical standardization of target binding efficiencies relative to basal values obtained from a large background of medicinal chemistry compounds is proposed as a means to conciliate the concepts of binding efficiency and polypharmacology. Finally, the interplay between binding efficiency and therapeutic efficacy for optimizing natural products, random hits, and fragments is discussed.

  18. Library Binding Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Lakhanpal, S. K.

    This procedural manual is designed to be used in bindery sections in public, university and special libraries. It briefly discusses these general matters: administrative control; selection of a binder; when and what to bind; conventional binding; routines; missing issues; schedule for shipments; temporary binding; rare books, maps and newspapers;…

  19. Americium binding to humic acid.

    PubMed

    Peters, A J; Hamilton-Taylor, J; Tipping, E

    2001-09-01

    The binding of americium (Am) by peat humic acid (PHA) has been investigated at Am concentrations between 10(-1) and 10(-7) M at pH approximately 2.6 in the presence and absence of Cu as a competing ion. Cu-PHA binding was also investigated in order to derive independent binding constants for use in modeling the competitive binding studies. Humic ion-binding model VI was used to compare the acquired data with previously published binding data and to investigate the importance of high-affinity binding sites in metal-PHA binding. Am was not observed to bind to high-affinity, low-concentration binding sites. The model VI parameter deltaLK2 takes into accountthe small number of strong sites in PHA and was found to be important for Cu-PHA binding but not for Am-PHA binding, regardless of whether Cu was present. Analysis of the PHA sample revealed that it contained a considerable quantity of Fe not removed by the extraction procedure, much of which is believed to be present as Fe(III). Model VI was then used to investigate the possible importance of the presence of Fe(III) in the Am-PHA binding experiments. When Fe(III) was assumed to be present, improved descriptions of the data by model VI were obtained by assuming that all of the metals [Am, Cu, and Fe(III)] undergo strong binding. This highlights the importance of Fe(III) competition in metal-PHA binding studies and possible shortcomings in the extraction procedure used to extract PHA.

  20. Carboplatin binding to histidine

    SciTech Connect

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.; Levy, Colin; Schreurs, Antoine M. M.; Helliwell, John R.

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  1. Collagen binding to Staphylococcus aureus

    SciTech Connect

    Holderbaum, D.; Hall, G.S.; Ehrhart, L.A.

    1986-11-01

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar.

  2. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  3. The clinical application of radiopharmaceuticals

    SciTech Connect

    Leeds, N.E. )

    1990-11-01

    This article highlights the choices and the arguments in the selection of appropriate contrast materials in radiological examinations--nonionic versus ionic contrast material--and aims to assist the physician in decision-making. Various authors have raised questions concerning the proposed advantages of nonionic contrast material. However, studies in low risk patients have shown more complications with the use of ionic contrast than nonionic contrast materials; this is the important group of patients since in high risk patients nonionics are used almost exclusively. The important factor that increases the controversy is cost, which is significant since nonionic agents cost 10 to 15 times more than ionic agents in the USA. Thus, cost-benefit considerations are important because price sensitivity and cost may determine fund availability for equipment or materials that also may be necessary or important in improving patient care. In magnetic resonance imaging (MRI), as in computed tomography (CT), the use of contrast material has improved diagnostic accuracy and the ability to reveal lesions not otherwise easily detected in brain and spinal cord imaging. These include separating scan from disc, meningitis, meningeal spread of tumour, tumour seeding, small metastases, intracanalicular tumours, separating major mass from oedema, determining bulk tumour size and ability to demonstrate blood vessels so dynamic circulatory changes may be revealed. 33 refs.

  4. SU-E-CAMPUS-I-05: Internal Dosimetric Calculations for Several Imaging Radiopharmaceuticals in Preclinical Studies and Quantitative Assessment of the Mouse Size Impact On Them. Realistic Monte Carlo Simulations Based On the 4D-MOBY Model

    SciTech Connect

    Kostou, T; Papadimitroulas, P; Kagadis, GC; Loudos, G

    2014-06-15

    Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PET studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known

  5. Multipose binding in molecular docking.

    PubMed

    Atkovska, Kalina; Samsonov, Sergey A; Paszkowski-Rogacz, Maciej; Pisabarro, M Teresa

    2014-02-14

    Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.

  6. Synthesis and evaluation of Lys¹(α,γ-Folate)Lys³(¹⁷⁷Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer.

    PubMed

    Aranda-Lara, Liliana; Ferro-Flores, Guillermina; Azorín-Vega, Erika; Ramírez, Flor de María; Jiménez-Mancilla, Nallely; Ocampo-García, Blanca; Santos-Cuevas, Clara; Isaac-Olivé, Keila

    2016-01-01

    The aim of this work was to synthesize Lys(1)(α,γ-Folate)-Lys(3)((177)Lu-DOTA)-Bombesin (1-14) ((177)Lu-Folate-BN), as well as to assess its potential for molecular imaging and targeted radiotherapy of breast tumors expressing folate receptors (FR) and gastrin-releasing peptide receptors (GRPR). Radiation absorbed doses of (177)Lu-Folate-BN (74 MBq, i.v.) estimated in athymic mice with T47D-induced breast tumors (positive to FR and GRPR), showed tumor doses of 23.9±2.1 Gy. T47D-tumors were clearly visible (Micro-SPECT/CT images). (177)Lu-Folate-BN demonstrated properties suitable as a theranostic radiopharmaceutical.

  7. Potential pitfalls in the nuclear medicine imaging: Experimental models to evaluate the effect of natural products on the radiolabeling of blood constituents, bioavailability of radiopharmaceutical and on the survival of Escherichia coli strains submitted to the treatment with stannous ion

    NASA Astrophysics Data System (ADS)

    Soares, Scheila F.; Brito, Lavínia C.; Souza, Deise E.; Bernardo, Luciana C.; Oliveira, Joelma F.; Bernardo-Filho, Mario

    2006-12-01

    Single photon emission computed tomography (SPECT) allows studies of physiological or pathological processes. Red blood cells labeled with technetium-99m ( 99mTc-RBC) are used as a radiopharmaceutical in several evaluations. The radiolabeling efficiency and bioavailability of radiopharmaceuticals can be altered by natural/synthetic drugs and may induce pitfalls in the analysis of the nuclear medicine imaging. The labeling with 99mTc requires a reducing agent and stannous chloride (SnCl 2) is widely utilized. However, SnCl 2 presents a citotoxic and/or genotoxic potential in Escherichia coli ( E. coli) strains. The aim of this work was to evaluate the influence of aqueous extracts of Baccharis genistelloides (BG), Terminalia chebula (TC), Maytenus ilicifolia (MI), Cassia angustifolia (CA) and Equisetum arvense (EA) on (i) radiolabeling of blood constituents, (ii) bioavailability of sodium pertechnetate(Na 99mTcO 4) radiopharmaceutical, (iii) survival of E. coli. In vitro labeling of RBC was performed with blood ( Wistar rats) incubated with each extract, SnCl 2 and Na 99mTcO 4. Plasma (P) and blood cells (BC) were isolated, another aliquots precipitated and soluble (SF) and insoluble (IF) fractions isolated and counted. In the bioavailability of Na 99mTcO 4, Wistar rats were treated (7 days) with aqueous extract or with 0.9%NaCl, the radiopharmaceutical was administered, the animals sacrificed, the organs isolated, weighted and radioactivity counted. To evaluate the effect on the bacterial survival, E. coli was treated with: (a) SnCl 2; (b) 0.9% NaCl; (c) vegetal extract; or (d) SnCl 2 and vegetal extract. Radiolabeling efficiency showed a significantly decrease (ANOVA/Tukey post-test, p<0.05) after treatment with BG, TC, MI and CA extracts. The bioavailability results showed that the uptake of Na 99mTcO 4 was altered significantly (unpaired t-student test, p<0.05) in blood, lungs (CA/TC extracts), bone, heart, ovary (EA /TC), spleen, kidney (TC) , pancreas, thyroid

  8. Study of the production yields of 18F, 11C, 13N and 15O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Margarone, Daniele; Pagano, Benedetta; Baldari, Sergio; Korn, Georg

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. 18F, 11C, 13N and 15O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of 18F-, 11C- and 13N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  9. Guidelines for brain radionuclide imaging. Perfusion single photon computed tomography (SPECT) using Tc-99m radiopharmaceuticals and brain metabolism positron emission tomography (PET) using F-18 fluorodeoxyglucose. The Belgian Society for Nuclear Medicine.

    PubMed

    Vander Borght, T; Laloux, P; Maes, A; Salmon, E; Goethals, I; Goldman, S

    2001-12-01

    The purpose of these guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of brain perfusion SPECT studies using Tc-99m radiopharmaceuticals and brain metabolism PET studies using F-18 fluorodeoxyglucose (FDG). These guidelines have been adapted and extended from those produced by the Society of Nuclear Medicine (Juni et al., 1998) and the European Association of Nuclear Medicine by a Belgian group of experts in the field trained in neurology and/or nuclear medicine. Some indications are not universally approved (e.g. brain death), but largely supported by the literature. They have been included in these guidelines in order to provide recommendations and a standardised protocol.

  10. A simple method for preparation of pure (68) Ga-acetate precursor for formulation of radiopharmaceuticals: Physicochemical characteristics of the (68) Ga eluate of the SnO2 based-(68) Ge/(68) Ga column generator.

    PubMed

    Chattopadhyay, Sankha; Alam, Md Neyar; Smita, Madhu; Kumar, Umesh; Das, Sujata Saha; Barua, Luna

    2017-01-01

    Gallium-68 radioisotope is an excellent source in clinical positron emission tomography application due to its ease of availability from germanium-68 ((68) Ge)/gallium-68 ((68) Ga) generator having a shelf life of 1 year. In this paper, a modified method for purification of the primary eluate of (68) Ge-(68) Ga generator by using a small cation exchange resin (Dowex-50) column has been described. The breakthrough of (68) Ge before and after purification of (68) Ga eluate was 0.014% and 0.00027%, respectively. The average recovery yield of (68) Ga after purification was 84% ± 8.6% (SD, n = 335). The results of the physiochemical studies confirmed that the (68) Ga-acetate obtained is suitable for labeling of radiopharmaceuticals.

  11. In vitro and in vivo studies of an aqueous extract of Matricaria recutita (German chamomile) on the radiolabeling of blood constituents, on the morphology of red blood cells and on the biodistribution of the radiopharmaceutical sodium pertechnetate

    PubMed Central

    Garcia-Pinto, Angélica B.; Santos-Filho, Sebastião D.; Carvalho, Jorge J.; Pereira, Mário J. S.; Fonseca, Adenilson S.; Bernardo-Filho, Mário

    2013-01-01

    Background: Natural products might alter the labeling of blood constituents with technetium-99m (99mTc) and these results may be correlated with modifications of the shape of the red blood cells (RBC). The biodistribution of radiopharmaceuticals can be also altered. Objective: This investigation aimed to determine biological effects of an aqueous extract of chamomile (CE). Materials and Methods: To study the effect of the CE on the labeling of blood constituents with 99mTc, in vitro and in vivo assays were performed. The effect of the CE on the morphology of RBC was observed under light microscope. The images were acquired, processed, and the perimeter/area ratio of the RBC determined. To analyze the effect of the CE on biodistribution of the sodium pertechnetate (Na99mTcO4) in Wistar rats, these animals were treated or not with a CE. Na99mTcO4 was injected, the rats were sacrificed, the organs were removed, weighted and percentage of radioactivity/gram calculated. Result: In the in vitro experiment, the radioactivity on blood cells compartment and on insoluble fractions of plasma was diminished. The shape and the perimeter/area ratio of the RBC were altered in in vitro assays. An increase of the percentage of radioactivity of Na99mTcO4 was observed in stomach after in vivo treatment. Conclusion: These results could be due to substances of the CE or by the products of the metabolism of this extract in the animal organism. These findings are examples of drug interaction with a radiopharmaceutical, which could lead to misdiagnosis in clinical practice with unexpected consequences. PMID:24143045

  12. Lactoperoxidase binding to streptococci.

    PubMed Central

    Pruitt, K M; Adamson, M; Arnold, R

    1979-01-01

    There have been conflicting reports regarding the binding of lactoperoxidase to bacterial cell surfaces. We describe here the effects of cell-bound lactoperoxidase on acid production by suspensions of Streptococcus mutans (NCTC 10449) in the presence of hydrogen peroxide and thiocyanate. Saline suspensions of log-phase bacteria were treated with 0.1 mg of lactoperoxidase per ml and were then washed thoroughly. The addition of hydrogen peroxide and thiocyanate markedly reduced the acid production of these lactoperoxidase-treated bacteria but had no effect on the acid production of untreated controls. After a 3-h incubation in saline, the lactoperoxidase-treated bacteria produced acid in the presence of hydrogen peroxide and thiocyanate at the same rate as untreated bacteria. These observations suggest that lactoperoxidase is initially bound to the cell surface in an enzymatically active form at a concentration sufficient to inhibit acid production. The lactoperoxidase is slowly degraded or desorbed as the bacteria stand in saline suspension. PMID:39032

  13. Managing a Library Binding Program.

    ERIC Educational Resources Information Center

    Merrill-Oldham, Jan

    Library binding is one of the activities typically included in newly created preservation departments, but librarians continue to discover that transforming a traditional binding program into one that better meets preservation objectives requires considerable investment of time. This resource guide is intended to help libraries review their…

  14. Binding Energy and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  15. Empirically Unbinding the Double Bind.

    ERIC Educational Resources Information Center

    Olson, David H.

    The theoretical concept of the double bind and the possibilities for researching it are discussed. The author has observed that theory and research, which should be reciprocal and mutually beneficial, have been working, as concerns the double bind, at odds with one another. Two approaches to empirically investigating the concept are considered via…

  16. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  17. Superresolution microscopy with transient binding.

    PubMed

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution.

  18. Chiral discrimination in optical binding

    NASA Astrophysics Data System (ADS)

    Forbes, Kayn A.; Andrews, David L.

    2015-05-01

    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed "optical binding." Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported.

  19. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  20. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  1. Binding of cellulose binding modules reveal differences between cellulose substrates

    PubMed Central

    Arola, Suvi; Linder, Markus B.

    2016-01-01

    The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act. PMID:27748440

  2. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  3. Synthesis and characterization of a novel series of agonist compounds as potential radiopharmaceuticals for imaging dopamine D₂/₃ receptors in their high-affinity state.

    PubMed

    van Wieringen, Jan-Peter; Shalgunov, Vladimir; Janssen, Henk M; Fransen, P Michel; Janssen, Anton G M; Michel, Martin C; Booij, Jan; Elsinga, Philip H

    2014-01-23

    Imaging of dopamine D2/3 receptors (D2/3R) can shed light on the nature of several neuropsychiatric disorders in which dysregulation of D2/3R signaling is involved. Agonist D2/3 tracers for PET/SPECT imaging are considered to be superior to antagonists because they are more sensitive to dopamine concentrations and may selectively label the high-affinity receptor state. Carbon-11-labeled D2/3R agonists have been developed, but these short-lived tracers can be used only in centers with a cyclotron. Here, we report the development of a series of novel D2R agonist compounds based on the 2-aminomethylchromane (AMC) scaffold that provides ample opportunities for the introduction of longer-lived [(18)F] or [(123)I]. Binding experiments showed that several AMC compounds have a high affinity and selectivity for D2/3R and act as agonists. Two fluorine-containing compounds were [(18)F]-labeled, and both displayed specific binding to striatal D2/3R in rat brain slices in vitro. These findings encourage further in vivo evaluations.

  4. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  5. Water binding in legume seeds

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

  6. Galectin-3-Binding and Metastasis

    PubMed Central

    Nangia-Makker, Pratima; Balan, Vitaly; Raz, Avraham

    2013-01-01

    i. Summary Galectin-3 is a member of a family of carbohydrate-binding proteins. It is present in the nucleus, the cytoplasm and also extracellular matrix of many normal and neoplastic cell types. Arrays of reports show an upregulation of this protein in transformed and metastatic cell lines (1, 2). Moreover, in many human carcinomas, an increased expression of galectin-3 correlates with progressive tumor stages (3–6). Several lines of analysis have demonstrated that the galectins participate in cell-cell and cell-matrix interactions by recognizing and binding complimentary glycoconjugates and thereby play a crucial role in normal and pathological processes. Elevated expression of the protein is associated with an increased capacity for anchorage-independent growth, homotypic aggregation, and tumor cell lung colonization (7–9). In this chapter we describe the methods of purification of galectin-3 from transformed E. coli and some of the commonly used functional assays for analyzing galectin-3 binding. PMID:22674139

  7. Computational Prediction of RNA-Binding Proteins and Binding Sites

    PubMed Central

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053

  8. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  9. Allosteric Dynamic Control of Binding

    PubMed Central

    Sumbul, Fidan; Acuner-Ozbabacan, Saliha Ece; Haliloglu, Turkan

    2015-01-01

    Proteins have a highly dynamic nature and there is a complex interrelation between their structural dynamics and binding behavior. By assuming various conformational ensembles, they perform both local and global fluctuations to interact with other proteins in a dynamic infrastructure adapted to functional motion. Here, we show that there is a significant association between allosteric mutations, which lead to high-binding-affinity changes, and the hinge positions of global modes, as revealed by a large-scale statistical analysis of data in the Structural Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI). We further examined the mechanism of allosteric dynamics by conducting studies on human growth hormone (hGH) and pyrin domain (PYD), and the results show how mutations at the hinge regions could allosterically affect the binding-site dynamics or induce alternative binding modes by modifying the ensemble of accessible conformations. The long-range dissemination of perturbations in local chemistry or physical interactions through an impact on global dynamics can restore the allosteric dynamics. Our findings suggest a mechanism for the coupling of structural dynamics to the modulation of protein interactions, which remains a critical phenomenon in understanding the effect of mutations that lead to functional changes in proteins. PMID:26338442

  10. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  12. Protein binding assay for hyaluronate

    SciTech Connect

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  13. Melanoma targeting with [(99m)Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analogs: Effects of cyclization on the radiopharmaceutical properties.

    PubMed

    Carta, Davide; Salvarese, Nicola; Morellato, Nicolò; Gao, Feng; Sihver, Wiebke; Pietzsch, Hans Jurgen; Biondi, Barbara; Ruzza, Paolo; Refosco, Fiorenzo; Carpanese, Debora; Rosato, Antonio; Bolzati, Cristina

    2016-12-01

    The purpose of this study was to evaluate the effect of cyclization on the biological profile of a [(99m)Tc(N)(PNP3)]-labeled α-melanocyte stimulating hormone peptide analog. A lactam bridge-cyclized H-Cys-Ahx-βAla(3)-c[Lys(4)-Glu-His-D-Phe-Arg-Trp-Glu(10)]-Arg(11)-Pro-Val-NH2 (NAP-NS2) and the corresponding linear H-Cys-Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2 (NAP-NS1) peptide were synthetized, characterized by ESI-MS spectroscopy and their melanocortin-1 receptor (MC1R) binding affinity was determined in B16/F10 melanoma cells. The consistent [(99m)Tc(N)(PNP3)]-labeled compounds were readily obtained in high specific activity and their stability and biological properties were assessed. As an example, the chemical identity of [(99m)Tc(N)(NAP-NS1)(PNP3)](+) was confirmed by carrier added experiments supported by radio/UV HPLC analysis combined with ESI(+)-MS. Compared with the linear peptide, cyclization negatively affected the biological properties of NAP-NS2 peptide by reducing its binding affinity for MC1R and by decreasing the overall excretion rate of the corresponding [(99m)Tc(N)(PNP3)]-labeled peptide from the body as well as its in vivo stability. [(99m)Tc(N)(NAP-NS1)(PNP3)](+) was evaluated for its potential as melanoma imaging probe in murine melanoma model. Data from in vitro and in vivo studies on B16/F10 melanoma model of [(99m)Tc(N)(NAP-NS1)(PNP3)](+) clearly evidenced that the radiolabeled linear peptide keeps its biological properties up on the conjugation to the [(99m)Tc(N)(PNP3)]-building block. The progressive increase of the tumor-to-nontarget ratios over the time indicates a quite stable interaction between the radio-complex and the MC1R.

  14. Mixed tridentate π -donor and monodentate π -acceptor ligands as chelating systems for rhenium-188 and technetium-99m nitrido radiopharmaceuticals.

    PubMed

    Boschi, Alessandra; Uccelli, Licia; Pasquali, Micol; Pasqualini, Roberto; Guerrini, Remo; Duatti, Adriano

    2013-09-01

    A new molecular metallic fragment for labeling biologically active molecules with 99mTc and 188Re is described. This system is composed of a combination of tridentate π-donor and monodentate π-acceptor ligands bound to a [M Ξ N]2+ group (M = (99m)Tc, 188Re) in a pseudo square-pyramidal geometry. A simple structural model of the new metallic fragment was obtained by reacting the ligand 2, 2'-iminodiethanethiol [H2NS2 = NH(CH2CH2SH)2] and monodentate tertiary phosphines with the [M Ξ N]2+ group (M = (99m)Tc, (188)Re). In the resulting complexes (dubbed3+1complexes), the tridentate ligand binds the [M Ξ N]2+ core through the two deprotonated, negatively charged, thiol sulfur atoms and the neutral, protonated, amine nitrogen atom. The residual fourth position of the five-coordinated arrangement is occupied by a phosphine ligand. The chemical identity of these model (99m)Tc and (188)Re compounds was established by comparison with the chromatographic properties of the corresponding complexes obtained at the macroscopic level with the long-lived (99)Tc and natural Re isotopes. The investigation was further extended to comprise a series of ligands formed by simple combinations of two basic amino acids or pseudo-amino acids to yield potential tridentate chelating systems having [S, N, S] and [N, N, S] as sets of π-donor atoms. Labeling yields and in vitro stability were investigated using different ancillary ligands. Results showed that SNS-type ligands afforded the highest labeling yields and the most robust 3+1 nitrido complexes with both (99m)Tc and (188)Re. Thus, the new chelating system can be conveniently employed for labeling peptides and other biomolecules with the [M Ξ N]2+ group.

  15. Temporal binding of interval markers

    PubMed Central

    Derichs, Christina; Zimmermann, Eckart

    2016-01-01

    How we estimate the passage of time is an unsolved mystery in neuroscience. Illusions of subjective time provide an experimental access to this question. Here we show that time compression and expansion of visually marked intervals result from a binding of temporal interval markers. Interval markers whose onset signals were artificially weakened by briefly flashing a whole-field mask were bound in time towards markers with a strong onset signal. We explain temporal compression as the consequence of summing response distributions of weak and strong onset signals. Crucially, temporal binding occurred irrespective of the temporal order of weak and strong onset markers, thus ruling out processing latencies as an explanation for changes in interval duration judgments. If both interval markers were presented together with a mask or the mask was shown in the temporal interval center, no compression occurred. In a sequence of two intervals, masking the middle marker led to time compression for the first and time expansion for the second interval. All these results are consistent with a model view of temporal binding that serves a functional role by reducing uncertainty in the final estimate of interval duration. PMID:27958311

  16. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  17. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  18. Cooperative Ligand Binding to Linear Chain Molecules

    ERIC Educational Resources Information Center

    Applequist, Jon

    1977-01-01

    Summarizes the Ising model of ligand binding as it applies to cooperative binding to long chain molecules. Also presents some illustrations which help to visualize the connection between the interaction parameters and the shape of the binding isotherm. (Author/MR)

  19. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  20. Feature-Based Binding and Phase Theory

    ERIC Educational Resources Information Center

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  1. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  2. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity.

  3. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  4. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  5. Leukotriene B4 binding to human neutrophils

    SciTech Connect

    Lin, A.H.; Ruppel, P.L.; Gorman, R.R.

    1984-12-01

    (/sup 3/H) Leukotriene B4 (LTB4) binds concentration dependently to intact human polymorphonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4 degrees C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of (/sup 3/H) LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 X 10(-9)M and Bmax of 1.96 X 10(4) sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 X 10(-9)M and a Bmax of 45.16 X 10(4) sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25 degrees C (/sup 3/H) LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific (/sup 3/H) LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.

  6. Engineering RNA-binding proteins for biology.

    PubMed

    Chen, Yu; Varani, Gabriele

    2013-08-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.

  7. Specific gonadotropin binding to Pseudomonas maltophilia.

    PubMed

    Richert, N D; Ryan, R J

    1977-03-01

    Binding of 125I-labeled human chorionic gonadotropin to Pseudomonas maltophilia is dependent on time, temperature, and pH and the binding to this procaryotic species is hormone-specific and saturable. The equilibrium dissociation constant is 2.3 X 10(-9) M. There are no cooperative interactions between binding sites (Hill coefficient, 1.05). The number of sites is estimaated as 240 fmol/100 mug of protein. NaCl and KCl, at concentrations from 1 to 10 mM, have no effect on binding. Divalent cations (Mg2+ and Ca2+) and 1 mM EDTA inhibit hormone binding. Binding is destroyed by heat or by treatment with Pronase of alpha-chymotrypsin and is increased by phospholipase C. Binding of the labeled gonadotropin is not observed with other gram-negative organisms--e.g., Escherichia coli, Pseudomonas testosteroni, Pseudomonas aeruginosa, Enterobacter aerogenes, or Enterobacter cloacae.

  8. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  9. Infinite sets and double binds.

    PubMed

    Arden, M

    1984-01-01

    There have been many attempts to bring psychoanalytical theory up to date. This paper approaches the problem by discussing the work of Gregory Bateson and Ignacio Matte-Blanco, with particular reference to the use made by these authors of Russell's theory of logical types. Bateson's theory of the double bind and Matte-Blanco's bilogic are both based on concepts of logical typing. It is argued that the two theories can be linked by the idea that neurotic symptoms are based on category errors in thinking. Clinical material is presented from the analysis of a middle-aged woman. The intention is to demonstrate that the process of making interpretations can be thought of as revealing errors in thinking. Changes in the patient's inner world are then seen to be the result of clarifying childhood experiences based on category errors. Matte-Blanco's theory of bilogic and infinite experiences is a re-evaluation of the place of the primary process in mental life. It is suggested that a combination of bilogic and double bind theory provides a possibility of reformulating psychoanalytical theory.

  10. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  11. Gamma Oscillations and Visual Binding

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  12. Synthetic LPS-Binding Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  13. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  14. Binding mode and affinity studies of DNA-binding agents using topoisomerase I DNA unwinding assay.

    PubMed

    McKnight, Ruel E; Gleason, Aaron B; Keyes, James A; Sahabi, Sadia

    2007-02-15

    A topoisomerase I DNA unwinding assay has been used to determine the relative DNA-binding affinities of a model pair of homologous naphthalene diimides. Binding affinity data were corroborated using calorimetric (ITC) and spectrophotometric (titration and T(m)) studies, with substituent size playing a significant role in binding. The assay was also used to investigate the mode of binding adopted by several known DNA-binding agents, including SYBR Green and PicoGreen. Some of the compounds exhibited unexpected binding modes.

  15. Binding of TH-iloprost to rat gastric mucosa: a pitfall in performing radioligand binding assays

    SciTech Connect

    Beinborn, M.; Kromer, W.; Staar, U.; Sewing, K.F.

    1985-09-01

    Binding of TH-iloprost was studied in a 20,000 x g sediment of the rat gastric mucosa. When pH in both test tubes for total and non-specific binding was kept identical, no displaceable binding of iloprost could be detected. When no care was taken to keep the pH identical in corresponding test tubes of the binding assay, changes in pH simulated specific and displaceable binding of iloprost. Therefore it is concluded that - in contrast to earlier reports - it is not possible to demonstrate specific iloprost binding using the given method.

  16. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  17. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  18. FCA does not bind abscisic acid.

    PubMed

    Risk, Joanna M; Macknight, Richard C; Day, Catherine L

    2008-12-11

    The RNA-binding protein FCA promotes flowering in Arabidopsis. Razem et al. reported that FCA is also a receptor for the phytohormone abscisic acid (ABA). However, we find that FCA does not bind ABA, suggesting that the quality of the proteins assayed and the sensitivity of the ABA-binding assay have led Razem et al. to erroneous conclusions. Because similar assays have been used to characterize other ABA receptors, our results indicate that the ABA-binding properties of these proteins should be carefully re-evaluated and that alternative ABA receptors are likely to be discovered.

  19. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  20. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  1. Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module.

    PubMed

    Cicortas Gunnarsson, Lavinia; Montanier, Cedric; Tunnicliffe, Richard B; Williamson, Mike P; Gilbert, Harry J; Nordberg Karlsson, Eva; Ohlin, Mats

    2007-09-01

    Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.

  2. Elasticity and Binding of Adenovirus

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Negishi, Atsuko; Seeger, Adam; McCarty, Doug; Taylor, Russell; Samulshi, Jude; Superfine, Richard

    1999-11-01

    Adenovirus was the first human virus found to cause the transformation of cells and is one of the more common vectors being used for the development of gene therapy. As such, much is known about the viral structure and genome; however, the events of the early infection cycle, such as binding of the virus to the cell membrane and the release of genetic material from the capsid, for this and other nonenveloped viruses, are not fully understood. With the atomic force microscope (AFM) we are able to image the virus in both air and liquids, allowing us to change the surrounding environment, varying such physiologically relevant parameters as osmolality or pH. We additionally have the ability to do manipulations on single virus particles in these environments using the nanoManipulator. The nanoManipulator is an advanced interface for AFM that allows real time three dimensional rendering of the topographical data, allows the sample surface to be non-destructively felt using a hand held stylus that responds to the information being sensed at the tip, and allows controlled modification of the surface. Using this tool we have translated single virions over various surfaces, allowing us to measure the adhesion between the capsid and these surfaces. Additionally, we are able to place the tip directly atop individual viruses and measure their elasticity under a compressive load being supplied by that tip. We can explore how this property changes as a function of the properties of the surrounding liquid.

  3. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  4. Binding Principle for Long-Distance Anaphors.

    ERIC Educational Resources Information Center

    Choi, Dong-Ik

    1997-01-01

    An analysis of long-distance anaphora, a binding phenomenon in which reflexives find their antecedents outside their local domain, is presented, using data from English, Chinese, Japanese, Korean, Russian, Icelandic, and Italian. It is found that no approach deals with long-distance anaphors exclusively and elegantly. The binding domain…

  5. A citrate-binding site in calmodulin.

    PubMed

    Neufeld, T; Eisenstein, M; Muszkat, K A; Fleminger, G

    1998-01-01

    Calmodulin (CaM) is a major Ca2+ messenger which, upon Ca2+ activation, binds and activates a number of target enzymes involved in crucial cellular processes. The dependence on Ca2+ ion concentration suggests that CaM activation may be modulated by low-affinity Ca2+ chelators. The effect on CaM structure and function of citrate ion, a Ca2+ chelator commonly found in the cytosol and the mitochondria, was therefore investigated. A series of structural and biochemical methods, including tryptic mapping, immunological recognition by specific monoclonal antibodies, CIDNP-NMR, binding to specific ligands and association with radiolabeled citrate, showed that citrate induces conformational modifications in CaM which affect the shape and activity of the protein. These changes were shown to be associated with the C-terminal lobe of the molecule and involve actual binding of citrate to CaM. Analyzing X-ray structures of several citrate-binding proteins by computerized molecular graphics enabled us to identify a putative citrate-binding site (CBS) on the CaM molecule around residues Arg106-His107. Owing to the tight proximity of this site to the third Ca(2+)-binding loop of CaM, binding of citrate is presumably translated into changes in Ca2+ binding to site III (and indirectly to site IV). These changes apparently affect the structural and biochemical properties of the conformation-sensitive protein.

  6. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  7. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  8. Estrogen binding by leukocytes during phagocytosis,

    PubMed Central

    1977-01-01

    Estradiol binds covalently to normal leukocytes during phagocytosis. The binding involves three cell types, neutrophils, eosinophils, and monocytes and at least two reaction mechanisms, one involving the peroxidase of neutrophils and monocytes (myeloperoxidase [MPO]) and possibly the eosinophil peroxidase, and the second involving catalase. Binding is markedly reduced when leukocytes from patients with chronic granulomatous disease (CGD), severe leukocytic glucose 6-phosphate dehydrogenase deficiency, and familial lipochrome histiocytosis are employed and two populations of neutrophils, one which binds estradiol and one which does not, can be demonstrated in the blood of a CGD carrier. Leukocytes from patients with hereditary MPO deficiency also bind estradiol poorly although the defect is not as severe as in CGD. These findings are discussed in relation to the inactivation of estrogens during infection and the possible role of estrogens in neutrophil function. PMID:858996

  9. Precursors to radiopharmaceutical agents for tissue imaging

    DOEpatents

    Srivastava, Prem C.; Knapp, Jr., Furn F.

    1988-01-01

    A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.

  10. Recent developments in cyclotron-produced radiopharmaceuticals

    SciTech Connect

    Friedman, A.M.

    1981-01-01

    The major areas of interest over the past two years are briefly reviewed. These include: (1) tracers for in vivo measurements of blood flow; (2) tracers for in vivo measurements of regional metabolism; (3) tracers for the measurement of receptor sensitivities; and (4) radioisotope generator systems. (ACR)

  11. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    SciTech Connect

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  12. Enhancement of radiopharmaceutical excretion by chemical interventions

    SciTech Connect

    Oster, Z.H.; Som, P.; Brill, A.B.; Sacker, D.F.; Atkins, H.L.

    1982-01-01

    The goal was to find methods of decreasing the radiation dose after radionuclide studies, by giving a compound that will increase the rate of excretion of the radionuclide. Sprague - 1 Dawley rats were given Tc-99m pertechnetate, Ga-67 citrate or Tl-201 chloride intravenously followed at intervals of 1 to 24 hours by one of the following compounds: desferroxamine (DFO), 2,3-dimercapto-1-propanol (BAL), triethylene tetraamine hexaacetic acid (TETHA), stannous tartarate, bleomycin (BLEO), 2,3-dimercaptosuccinic acid (DMSA), diethylene-triaminepentaacetic acid (DTPA), DTPA+SnCl.2H/sub 2/O, dihydroxybenzoic acid (DHB), and ferric-cyanoferrate (IT)(Prussian blue, PB). All the agents except PB are chelators. Some of these agents enhance excretion through the urinary tract (DFO), while most are excreted through the bile. PB was shown to increase Cs excrection through the G.I. tract. (ACR)

  13. [PET radiopharmaceuticals: novelties and new possibilities].

    PubMed

    Környei, József; Mikecz, Pál; Tóth, Gyula

    2014-12-01

    18F-fluoro-deoxyglucose (FDG) can be considered as the "work-horse" of PET/CT and PET/MR imaging modalities. FDG provides insight in the pathophysiology of tumors and metastases from the point of view of sugar consumption. On the other hand, amino acid metabolism, expression of various receptors in the cells or on the surface of the cells, angiogenesis, appearance of hypoxic cells/tissues and apoptosis also participate in the pathophysiological processes and may have importance in determining the treatment strategy for patients or in monitoring the chosen therapy. Many molecules involved can be labeled by (18)F radionuclide but certain metabolisms require (11)C-labelled agents. Molecular imaging is of key importance in cancer research and various metal complexes containing (44)Sc, (64)Cu, (68)Ga, (86)Y, (89)Zr positron emitters can be very useful in this activity.

  14. Radiopharmaceutical Tracers for Neural Progenitor Cells

    SciTech Connect

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  15. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  16. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay.

    PubMed

    Romaniuk, Paul J

    2016-01-01

    Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.

  17. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  18. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  19. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  20. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  1. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  2. [Binding to chicken liver lactatedehydrogenase (author's transl)].

    PubMed

    Lluís, C; Bozal, J

    1976-06-01

    Some information about the lactate dehydrogenase NAD binding site has been obtained by working with coenzymes analogs of incomplete molecules. 5'AMP, 5'-ADP, ATP, 5'-c-AMP and 3'(2)-AMP inhibit chicken liver LDH activity competitively with NADH. 5"-AMP and 5'-ADP show a stronger inhibition power than ATP, suggesting that the presence of one or two phosphate groups at the 5' position of adenosine, is essential for the binding of the coenzyme analogs at the enzyme binding site. Ribose and ribose-5'-P do not appear to inhibit the LDH activity, proving that purine base lacking mononucleotides do not bind to the enzyme. 5"-ADPG inhibits LDH activity in the exactly as 5'-ADP, showing that ribose moiety may be replaced by glucose, without considerable effects on the coenzyme analog binding. 2'-desoxidenosin-5'-phosphate proves to be a poorer inhibitor of the LDH activity than 5'-AMP, indicating that an interaction between the--OH groups and the amino-acids of the LDH active center takes place. Nicotinamide does not produce any inhibition effect, while NMN and CMP induce a much weaker inhibition than the adenine analogues, thus indicating a lesser binding capacity to the enzyme. Therefore, the LDH binding site seems to show some definite specificity towards the adenina groups of the coenzyme.

  3. Druggability of methyl-lysine binding sites

    NASA Astrophysics Data System (ADS)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  4. Kinetics of ligand binding to nucleic acids.

    PubMed

    Arakelyan, V B; Babayan, S Y; Tairyan, V I; Arakelyan, A V; Parsadanyan, M A; Vardevanyan, P O

    2006-02-01

    Ligand binding to nucleic acids (NA) is considered as a stationary Markov process. It is shown that the probabilistic description of ligand-NA binding allows one to describe not only the kinetics of the change of number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. The general analysis of absorption isotherms and kinetics of ligand binding to NA make it possible to determine of rate constants of ligand-NA complex formation and dissociation.

  5. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  6. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  7. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein

    PubMed Central

    Schumacher, Maria A; Miller, Marshall C; Brennan, Richard G

    2004-01-01

    The structural basis of simultaneous binding of two or more different drugs by any multidrug-binding protein is unknown and also how this can lead to a noncompetitive, uncompetitive or cooperative binding mechanism. Here, we describe the crystal structure of the Staphylococcus aureus multidrug-binding transcription repressor, QacR, bound simultaneously to ethidium (Et) and proflavin (Pf). The structure underscores the plasticity of the multidrug-binding pocket and reveals an alternative, Pf-induced binding mode for Et. To monitor the simultaneous binding of Pf and Et to QacR, as well as to determine the effects on the binding affinity of one drug when the other drug is prebound, a novel application of near-ultraviolet circular dichroism (UVCD) was developed. The UVCD equilibrium-binding studies revealed identical affinities of Pf for QacR in the presence or absence of Et, but significantly diminished affinity of Et for QacR when Pf is prebound, findings that are readily explicable by their structures. The principles for simultaneous binding of two different drugs discerned here are likely employed by the multidrug efflux transporters. PMID:15257299

  8. FACS binding assay for analysing GDNF interactions.

    PubMed

    Quintino, Luís; Baudet, Aurélie; Larsson, Jonas; Lundberg, Cecilia

    2013-08-15

    Glial cell-line derived neurotrophic factor (GDNF) is a secreted protein with great therapeutic potential. However, in order to analyse the interactions between GDNF and its receptors, researchers have been mostly dependent of radioactive binding assays. We developed a FACS-based binding assay for GDNF as an alternative to current methods. We demonstrated that the FACS-based assay using TGW cells allowed readily detection of GDNF binding and displacement to endogenous receptors. The dissociation constant and half maximal inhibitory concentration obtained were comparable to other studies using standard binding assays. Overall, this FACS-based, simple to perform and adaptable to high throughput setup, provides a safer and reliable alternative to radioactive methods.

  9. Saturation of color forces and nuclear binding

    NASA Astrophysics Data System (ADS)

    Matsuoka, Hiroshi; Sivers, Dennis

    1986-03-01

    We discuss an approach to understanding the saturation of forces in chromodynamics. Our formulation is suggested by the observation that many lattice-gauge-theory calculations give results well approximated by considering the dynamics of stringlike flux tubes. By looking at multiquark Green's functions in the strong-coupling, quenched, approximations of lattice chromodynamics we find examples of configuration mixing which can allow the binding of color-singlet hadrons into larger composite systems. We surmise that this configuration mixing is crucial to the understanding of nuclear binding. As a simple example we discuss the binding of two mesons composed of heavy, static, quarks into a deuteronlike object. Our results suggest that the magnitude of nuclear binding can be deduced by measuring a finite number of Wilson-loop configurations in lattice QCD.

  10. Overlearned responses hinder S-R binding.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-01-01

    Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record

  11. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  12. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  13. Binding agent for molding ceramic items

    NASA Technical Reports Server (NTRS)

    Beshentsev, B. D.; Vityuk, N. P.; Volkov, A. V.; Yevdokimov, A. I.; Novikov, M. N.; Piskunov, Y. G.; Pobortsev, E. P.; Sadovnichaya, L. M.

    1983-01-01

    The invention refers to the fabrication of ceramic items by the molding method. It can be used to produce items of complicated configuration, in particular composition of binding agent for electroceramic items.

  14. Weak binding gases as modulators of hemoglobin function

    SciTech Connect

    Schoenborn, B P; Saxena, A; North, B E

    1980-01-01

    Studies are reported in which the mechanisms of binding of inert gaseous agents to hemoglobin and myoglobin are investigated. Specific binding sites are mapped. Possible effects on sickle cell formation and oxygen binding are discussed. (ACR)

  15. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  16. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed.

  17. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  18. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    DTIC Science & Technology

    2013-03-01

    screened also displayed discriminatory binding to pathogenic E. coli O157:H7 relative to non -pathogenic E. coli ML35. The three fragments that were...screened for binding to pathogenic and non -pathogenic Escherichia coli (a Gram- negative bacterium) as well as Staphylococcus aureus (a Gram-positive...strain-specific (pathogenic vs. non -pathogenic E. coli). Several of the peptide fragments demonstrated the ability to discriminate between

  19. The readiness potential reflects intentional binding

    PubMed Central

    Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo; Schmidt, Stefan

    2014-01-01

    When a voluntary action is causally linked with a sensory outcome, the action and its consequent effect are perceived as being closer together in time. This effect is called intentional binding. Although many experiments were conducted on this phenomenon, the underlying neural mechanisms are not well understood. While intentional binding is specific to voluntary action, we presumed that preconscious brain activity (the readiness potential, RP), which occurs before an action is made, might play an important role in this binding effect. In this study, the brain dynamics were recorded with electroencephalography (EEG) and analyzed in single-trials in order to estimate whether intentional binding is correlated with the early neural processes. Moreover, we were interested in different behavioral performance between meditators and non-meditators since meditators are expected to be able to keep attention more consistently on a task. Thus, we performed the intentional binding paradigm with 20 mindfulness meditators and compared them to matched controls. Although, we did not observe a group effect on either behavioral data or EEG recordings, we found that self-initiated movements following ongoing negative deflections of slow cortical potentials (SCPs) result in a stronger binding effect compared to positive potentials, especially regarding the perceived time of the consequent effect. Our results provide the first direct evidence that the early neural activity within the range of SCPs affects perceived time of a sensory outcome that is caused by intentional action. PMID:24959135

  20. Surface-Based Protein Binding Pocket Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Jain, Ajay N.

    2011-01-01

    Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local 3D method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all-by-all comparisons two sets of human protein kinases, a very diverse set of ATP-bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence-based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. PMID:21769944

  1. Cross-modal binding in developmental dyslexia.

    PubMed

    Jones, Manon W; Branigan, Holly P; Parra, Mario A; Logie, Robert H

    2013-11-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based on a single exposure to pairs of visual and phonological features. Reading groups were therefore compared on the very early stages of associative learning. We used a working memory framework-including experimental designs used to investigate cross-modal binding. Two change-detection experiments showed a group discrepancy in binding that was dependent on spatial location encoding: Whereas group performance was similar when location was an inconsistent cue (Experiment 1), nondyslexic readers showed higher accuracy in binding than dyslexics when location was a consistent cue (Experiment 2). A cued-recall task confirmed that location information discriminates binding ability between reading groups in a more explicit memory recall task (Experiment 3). Our results show that recall for ephemeral cross-modal bindings is supported by location information in nondyslexics, but this information cannot be used to similar effect in dyslexic readers. Our findings support previous demonstrations of cross-modal association difficulty in dyslexia and show that a group discrepancy exists even in a single, initial presentation of visual-phonological pairs. Effective use of location information as a retrieval cue is one mechanism that discriminates reading groups, which may contribute to the longer term cross-modal association problems characteristic of dyslexia.

  2. Selective peptide binding using facially amphiphilic dendrimers.

    PubMed

    Gomez-Escudero, Andrea; Azagarsamy, Malar A; Theddu, Naresh; Vachet, Richard W; Thayumanavan, S

    2008-08-20

    Amphiphilic dendrimers, which contain both hydrophobic and hydrophilic groups in every repeat unit, exhibit environment-dependent assemblies both in hydrophilic solvent, water, and in lipophilic solvent, toluene. Upon investigating the status of these assemblies in a mixture of immiscible solvents, these dendrimers were found to be kinetically trapped in the solvent in which they are initially assembled. This property has been exploited to selectively extract peptides from aqueous solution into an organic phase, where the peptides bind to the interior functionalities of the dendritic inverse micelles. While the corresponding small molecule surfactant does not exhibit any selective binding toward peptides, all dendrons (G1-G3) are capable of this selective binding. We show that the inverse micelle-type assembly itself is crucial for the binding event and that the assembly formed by the G1 dendron has a greater capability for binding compared to the G2 or G3 dendrons. We have also shown that the average apparent pKa of the carboxylic acid functionalities varies with generation, and this could be the reason for the observed differences in binding capacity.

  3. Anion binding to the ubiquitin molecule.

    PubMed Central

    Makhatadze, G. I.; Lopez, M. M.; Richardson, J. M.; Thomas, S. T.

    1998-01-01

    Effects of different salts (NaCl, MgCl2, CaCl2, GdmCl, NaBr, NaClO4, NaH2PO4, Na2SO4) on the stability of the ubiquitin molecule at pH 2.0 have been studied by differential scanning calorimetry, circular dichroism, and Tyr fluorescence spectroscopies. It is shown that all of the salts studied significantly increase the thermostability of the ubiquitin molecule, and that this stabilization can be interpreted in terms of anion binding. Estimated thermodynamic parameters of binding for Cl- show that this binding is relatively weak (Kd = 0.15 M) and is characterized by a negative enthalpy of -15 kJ/mol per site. Particularly surprising was the observed stabilizing effect of GdmCl through the entire concentration range studied (0.01-2 M), however, to a lesser extent than stabilization by NaCl. This stabilizing effect of GdmCl appears to arise from the binding of Cl- ions. Analysis of the observed changes in the stability of the ubiquitin molecule in the presence of GdmCl can be adequately described by combining the thermodynamic model of denaturant binding with Cl- binding effects. PMID:9541401

  4. Comparative serum protein binding of anthracycline derivatives.

    PubMed

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1996-01-01

    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  5. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  6. Human ocular carotenoid-binding proteins†

    PubMed Central

    Li, Binxing; Vachali, Preejith

    2014-01-01

    Two dietary carotenoids, lutein and zeaxanthin, are specifically delivered to the human macula at the highest concentration anywhere in the body. Whenever a tissue exhibits highly selective uptake of a compound, it is likely that one or more specific binding proteins are involved in the process. Over the past decade, our laboratory has identified and characterized several carotenoid-binding proteins from human retina including a pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein, a member of the steroidogenic acute regulatory domain (StARD) family as a lutein-binding protein, and tubulin as a less specific, but higher capacity site for carotenoid deposition. In this article, we review the purification and characterization of these carotenoid-binding proteins, and we relate these ocular carotenoid-binding proteins to the transport and uptake role of serum lipoproteins and scavenger receptor proteins in a proposed pathway for macular pigment carotenoid delivery to the human retina. PMID:20820671

  7. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  8. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  9. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  10. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  11. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  12. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  13. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  14. Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites

    SciTech Connect

    Bolger, G.T.; Skolnick, P.; Kempner, E.S. )

    1989-08-01

    In low ionic strength buffer (5 mM Tris.HCl), the binding of (3H) nitrendipine to dihydropyridine calcium antagonist binding sites of mouse forebrain membranes is increased by both Na{sup +} and Ca{sup 2+}. Radiation inactivation was used to determine the target size of ({sup 3}H)nitrendipine binding sites in 5 mM Tris.HCl buffer, in the presence and absence of these cations. After irradiation, ({sup 3}H) nitrendipine binding in buffer with or without Na+ was diminished, due to a loss of binding sites and also to an increase in Kd. After accounting for radiation effects on the dissociation constant, the target size for the nitrendipine binding site in buffer was 160-170 kDa and was 170-180 kDa in the presence of sodium. In the presence of calcium ions, ({sup 3}H)nitrendipine binding showed no radiation effects on Kd and yielded a target size of 150-170 kDa. These findings suggest, as in the case of opioid receptors, the presence of high molecular weight membrane components that modulate cation-induced alterations in radioligand binding to dihydropyridine binding sites.

  15. Alpine ski bindings and injuries. Current findings.

    PubMed

    Natri, A; Beynnon, B D; Ettlinger, C F; Johnson, R J; Shealy, J E

    1999-07-01

    In spite of the fact that the overall incidence of alpine ski injuries has decreased during the last 25 years, the incidence of serious knee sprains usually involving the anterior cruciate ligament (ACL) has risen dramatically since the late 1970s. This trend runs counter to a dramatic reduction in lower leg injuries that began in the early 1970s and to date has lowered the risk of injury below the knee by almost 90%. One of the primary design objectives of modern ski boots and bindings has been to protect the skier from tibia and ankle fractures. So, in that sense, they have done an excellent job. However, despite advances in equipment design, modern ski bindings have not protected the knee from serious ligament trauma. At the present time, we are unaware of any binding design, settings or function that can protect both the knee and lower extremities from serious ligament sprains. No innovative change in binding design appears to be on the horizon that has the potential to reduce the risk of these severe knee injuries. Indeed, only 1 study has demonstrated a means to help reduce this risk of serious knee sprains, and this study involved education of skiers, not ski equipment. Despite the inability of bindings to reduce the risk of severe knee injuries there can be no doubt that improvement in ski bindings has been the most important factor in the marked reduction in incidence of lower leg and ankle injuries during the last 25 years. The authors strongly endorse the application of present International Standards Organisation (ISO) and American Society for Testing and Materials (ASTM) standards concerning mounting, setting and maintaining modern 'state of the art' bindings.

  16. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  17. Flavor binding: Its nature and cause.

    PubMed

    Stevenson, Richard J

    2014-03-01

    The brain binds inputs from multiple senses to enhance our ability to identify key events in the environment. Understanding this process is based mainly on data from the major senses (vision and audition), yet compelling examples of binding occur in other domains. When we eat, in fact taste, smell, and touch combine to form flavor. This process can be so complete that most people fail to recognize that smell contributes to flavor. The flavor percept has other features: (a) it feels located in the mouth, even though smell is detected in the nose and taste on the tongue, and (b) it feels continuous, yet smell is delivered in pulses to the nose during eating. Furthermore, tastes can modify smell perception and vice versa. Current explanations of these binding-related phenomena are explored. Preattentive processing provides a well-supported account of taste-to-tongue binding. Learning between taste and smell can explain perceptual interactions between these senses and perhaps localization of smell to the mouth. Attentional processes may also be important, especially given their role in binding the major senses. Two are specifically examined. One claims that the failure to recognize smell's role in flavor stems from the role of involuntary attention's "defaulting" to the mouth and taste (i.e., binding by ignoring). Another claims that taste and smell form a common attentional channel in the mouth, in effect becoming one sense. Except for preattentive processing, the mechanisms involved in flavor binding differ markedly from those proposed for the major senses. This distinction may result from functional differences, with flavor supporting future food choice but not current identification.

  18. Exploring the binding dynamics of BAR proteins.

    PubMed

    Kabaso, Doron; Gongadze, Ekaterina; Jorgačevski, Jernej; Kreft, Marko; Van Rienen, Ursula; Zorec, Robert; Iglič, Aleš

    2011-09-01

    We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

  19. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  20. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site

    PubMed Central

    Kimura, Atsuko; Tyacke, Robin J.; Robinson, James J.; Husbands, Stephen M.; Minchin, Michael C.W.; Nutt, David J.; Hudson, Alan L.

    2009-01-01

    Drugs that bind to imidazoline binding proteins have major physiological actions. To date, three subtypes of such proteins, I1, I2 and I3, have been proposed, although characterisations of these binding proteins are lacking. I2 binding sites are found throughout the brain, particularly dense in the arcuate nucleus of the hypothalamus. Selective I2 ligands demonstrate antidepressant-like activity and the identity of the proteins that respond to such ligands remained unknown until now. Here we report the isolation of a ∼ 45 kDa imidazoline binding protein from rabbit and rat brain using a high affinity ligand for the I2 subtype, 2-BFI, to generate an affinity column. Following protein sequencing of the isolated ∼ 45 kDa imidazoline binding protein, we identified it to be brain creatine kinase (B-CK). B-CK shows high binding capacity to selective I2 ligands; [3H]-2-BFI (5 nM) specifically bound to B-CK (2330 ± 815 fmol mg protein− 1). We predicted an I2 binding pocket near the active site of B-CK using molecular modelling. Furthermore, B-CK activity was inhibited by a selective I2 irreversible ligand, where 20 μM BU99006 reduced the enzyme activity by 16%, confirming the interaction between B-CK and the I2 ligand. In summary, we have identified B-CK to be the ∼ 45 kDa imidazoline binding protein and we have demonstrated the existence of an I2 binding site within this enzyme. The importance of B-CK in regulating neuronal activity and neurotransmitter release may well explain the various actions of I2 ligands in brain and the alterations in densities of I2 binding sites in psychiatric disorders. PMID:19410564

  1. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  2. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  3. Resveratrol binding to human serum albumin.

    PubMed

    N' soukpoe-Kossi, C N; St-Louis, C; Beauregard, M; Subirade, M; Carpentier, R; Hotchandani, S; Tajmir-Riahi, H A

    2006-12-01

    Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419-426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclooxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents (microM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure. Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of K(Res) = 2.56 x 10(5) M(-1). The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of alpha-helix from 57% (free HSA) to 62% and a decrease of beta-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.

  4. Conformational heterogeneity of the calmodulin binding interface

    PubMed Central

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-01-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention. PMID:27040077

  5. DNA binding studies of tartrazine food additive.

    PubMed

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  6. Binding of dissolved strontium by Micrococcus luteus

    SciTech Connect

    Faison, B.D.; Cancel, C.A.; Lewis, S.N.; Adler, H.I. )

    1990-12-01

    Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl{sub 2} at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H{sup +}. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity.

  7. Optical binding between dielectric nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Simon; Simpson, Stephen H.

    2016-09-01

    Optical binding occurs when micron-sized particles interact through the exchange of scattered photons. It has been observed both in systems of colloidal dielectric particles and between metallic nanoparticles, and can result in the formation of clusters and coupled dynamical behaviour. Optical binding between spherical particles has been studied in some detail, but little work has appeared in the literature to describe binding effects in lower symmetry systems. In the present paper we discuss recent theoretical work and computer simulations of optical binding effects operating between dielectric nanowires in counter propagating beams. The reduction in symmetry from simple spheres introduces new opportunities for binding, including different types of orientational ordering and anisotropies in the spatial arrangements that are possible for the bound particles. Various ordered configurations are possible, including ladder-like structures and oriented lattices. The stability of these structures to thermal perturbations will be discussed. Asymmetric arrangements of the nanowires are also possible, as a consequence of interactions between the nanowires and the underlying counter-propagating laser field. These configurations lead to a diversity of non-conservative effects, including uniform translation in linearly polarised beams and synchronous rotations in circularly polarised beams, suggesting potential applications of such bound structures in micro-machines.

  8. Endocytosis of Integrin-Binding Human Picornaviruses

    PubMed Central

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses. PMID:23227048

  9. Binding in agrammatic aphasia: Processing to comprehension

    PubMed Central

    Janet Choy, Jungwon; Thompson, Cynthia K.

    2010-01-01

    Background Theories of comprehension deficits in Broca’s aphasia have largely been based on the pattern of deficit found with movement constructions. However, some studies have found comprehension deficits with binding constructions, which do not involve movement. Aims This study investigates online processing and offline comprehension of binding constructions, such as reflexive (e.g., himself) and pronoun (e.g., him) constructions in unimpaired and aphasic individuals in an attempt to evaluate theories of agrammatic comprehension. Methods & Procedures Participants were eight individuals with agrammatic Broca’s aphasia and eight age-matched unimpaired individuals. We used eyetracking to examine online processing of binding constructions while participants listened to stories. Offline comprehension was also tested. Outcomes & Results The eye movement data showed that individuals with Broca’s aphasia were able to automatically process the correct antecedent of reflexives and pronouns. In addition, their syntactic processing of binding was not delayed compared to normal controls. Nevertheless, offline comprehension of both pronouns and reflexives was significantly impaired compared to the control participants. This comprehension failure was reflected in the aphasic participants’ eye movements at sentence end, where fixations to the competitor increased. Conclusions These data suggest that comprehension difficulties with binding constructions seen in agrammatic aphasic patients are not due to a deficit in automatic syntactic processing or delayed processing. Rather, they point to a possible deficit in lexical integration. PMID:20535243

  10. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  11. ACRIDINE ORANGE BINDING BY MICROCOCCUS LYSODEIKTICUS

    PubMed Central

    Beers, Roland F.

    1964-01-01

    Beers, Roland F., Jr. (Johns Hopkins University, Baltimore, Md). Acridine orange binding by Micrococcus lysodeikticus. J. Bacteriol. 88:1249–1256. 1964.—Micrococcus lysodeikticus cells bind acridine orange (AO) reversibly. The adsorption isotherm is consistent with a highly cooperative-type binding similar to that observed with polyadenylic acid. The cells exhibit a strong buffering action on the concentration of free AO which remains constant (1 μg/ml) over a range from 5 to 95% saturation of the cells by AO. The cells stain either fluorescent orange or green. The fraction stained orange is directly proportional to the quantity of dye adsorbed, indicating that these cells bind a fixed amount of AO (10% of dry weight). The green-stained cells contain less than 1% of the AO bound to orange-stained cells. The results suggest that the abrupt increase in amount of AO bound by the orange-stained cells occurs when the concentration of free AO reaches a threshold concentration. Similar results were obtained with Bacillus cereus. Mg increases the free AO concentration and the extent of binding capacity of the cells. PMID:14234778

  12. Conformational heterogeneity of the calmodulin binding interface

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  13. Engineering Escherichia coli to bind to cyanobacteria.

    PubMed

    Zhang, Zijian; Meng, Liuyi; Ni, Congjian; Yao, Lanqiu; Zhang, Fengyu; Jin, Yuji; Mu, Xuelang; Zhu, Shiyu; Lu, Xiaoyu; Liu, Shiyu; Yu, Congyu; Wang, Chenggong; Zheng, Pu; Wu, Jie; Kang, Li; Zhang, Haoqian M; Ouyang, Qi

    2017-03-01

    We engineered Escherichia coli cells to bind to cyanobacteria by heterologously producing and displaying lectins of the target cyanobacteria on their surface. To prove the efficacy of our approach, we tested this design on Microcystis aeruginosa with microvirin (Mvn), the lectin endogenously produced by this cyanobacterium. The coding sequence of Mvn was C-terminally fused to the ice nucleation protein NC (INPNC) gene and expressed in E. coli. Results showed that E. coli cells expressing the INPNC::Mvn fusion protein were able to bind to M. aeruginosa and the average number of E. coli cells bound to each cyanobacterial cell was enhanced 8-fold. Finally, a computational model was developed to simulate the binding reaction and help reconstruct the binding parameters. To our best knowledge, this is the first report on the binding of two organisms in liquid culture mediated by the surface display of lectins and it may serve as a novel approach to mediate microbial adhesion.

  14. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  15. On the Orientation Problem in Korean 'CAKI' Binding and the Typology of X Reflexive Binding.

    ERIC Educational Resources Information Center

    Cho, Mi-Hui

    1994-01-01

    The purpose of this paper is to demonstrate the existence of nonsubject binding of the so-called long distance anaphor in languages like Korean and Japanese and to give a principled account of why and when it happens. The Korean reflexive pronoun "caki" ('self') is bound by local and long-distance antecedents. Nonsubject binding occurs…

  16. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    PubMed

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-06

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers.

  17. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules

    PubMed Central

    Lehtiö, Janne; Sugiyama, Junji; Gustavsson, Malin; Fransson, Linda; Linder, Markus; Teeri, Tuula T.

    2003-01-01

    Cellulose binding modules (CBMs) potentiate the action of cellulolytic enzymes on insoluble substrates. Numerous studies have established that three aromatic residues on a CBM surface are needed for binding onto cellulose crystals and that tryptophans contribute to higher binding affinity than tyrosines. However, studies addressing the nature of CBM–cellulose interactions have so far failed to establish the binding site on cellulose crystals targeted by CBMs. In this study, the binding sites of CBMs on Valonia cellulose crystals have been visualized by transmission electron microscopy. Fusion of the CBMs with a modified staphylococcal protein A (ZZ-domain) allowed direct immuno-gold labeling at close proximity of the actual CBM binding site. The transmission electron microscopy images provide unequivocal evidence that the fungal family 1 CBMs as well as the family 3 CBM from Clostridium thermocellum CipA have defined binding sites on two opposite corners of Valonia cellulose crystals. In most samples these corners are worn to display significant area of the hydrophobic (110) plane, which thus constitutes the binding site for these CBMs. PMID:12522267

  18. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  19. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  20. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    SciTech Connect

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. )

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  1. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  2. Arsenic binding to Fucus vesiculosus metallothionein.

    PubMed

    Merrifield, Maureen E; Ngu, Thanh; Stillman, Martin J

    2004-11-05

    The seaweed Fucus vesiculosus is a member of the brown algae family. Kille and co-workers [Biochem. J. 338 (1999) 553] reported that this species contains the gene for metallothionein. Metallothionein is a metalloprotein having low molecular weight, and high cysteine content, which binds a range of metals. F. vesiculosus bioaccumulates arsenic from the aquatic environment [Mar. Chem. 18 (1986) 321]. In this paper we describe arsenic binding to F. vesiculosus metallothionein, characterized by electrospray ionization mass spectrometry. Five arsenic-MT species were detected with increasing As to protein ratios. These results provide important information about the metal-chelation behaviour of this novel algal metallothionein which is a putative model for arsenic binding to F. vesiculosus in vivo.

  3. Conformation-controlled binding kinetics of antibodies

    PubMed Central

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines. PMID:26755272

  4. DNA Origami Seesaws as Comparative Binding Assay

    PubMed Central

    Nickels, Philipp C.; Høiberg, Hans C.; Simmel, Stephanie S.; Holzmeister, Phil; Tinnefeld, Philip

    2016-01-01

    Abstract The application of commonly used force spectroscopy in biological systems is often limited by the need for an invasive tether connecting the molecules of interest to a bead or cantilever tip. Here we present a DNA origami‐based prototype in a comparative binding assay. It has the advantage of in situ readout without any physical connection to the macroscopic world. The seesaw‐like structure has a lever that is able to move freely relative to its base. Binding partners on each side force the structure into discrete and distinguishable conformations. Model experiments with competing DNA hybridisation reactions yielded a drastic shift towards the conformation with the stronger binding interaction. With reference DNA duplexes of tuneable length on one side, this device can be used to measure ligand interactions in comparative assays. PMID:27038073

  5. A review of albumin binding in CKD.

    PubMed

    Meijers, Björn K I; Bammens, Bert; Verbeke, Kristin; Evenepoel, Pieter

    2008-05-01

    Hypoalbuminemia is associated with excess mortality in patients with kidney disease. Albumin is an important oxidant scavenger and an abundant carrier protein for numerous endogenous and exogenous compounds. Several specific binding sites for anionic, neutral, and cationic ligands were described. Overall, the extent of binding depends on the ligand and albumin concentration, albumin-binding affinity, and presence of competing ligands. Chronic kidney disease affects all these determinants. This may result in altered pharmacokinetics and increased risk of toxicity. Renal clearance of albumin-bound solutes mainly depends on tubular clearance. Dialytic clearance by means of conventional hemodialysis/hemofiltration and peritoneal dialysis is limited. Other epuration techniques combining hemodialysis with adsorption have been developed. However, the benefit of these techniques remains to be proved.

  6. ABP: a novel AMPA receptor binding protein.

    PubMed

    Srivastava, S; Ziff, E B

    1999-04-30

    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  7. Heavy quark interactions and quarkonium binding

    NASA Astrophysics Data System (ADS)

    Satz, Helmut

    2009-06-01

    We consider heavy quark interactions in quenched and unquenched lattice QCD. In a region just above the deconfinement point, non-Abelian gluon polarization leads to a strong increase in the binding. Comparing quark-antiquark and quark-quark interaction, the dependence of the binding on the separation distance r is found to be the same for the colorless singlet Q{\\skew3\\bar{Q}} and the colored anti-triplet QQ state. In a potential model description of in-medium J/ψ behavior, this enhancement of the binding leads to a survival up to temperatures of 1.5 Tc or higher; it could also result in J/ψ flow. Based on joint work with O Kaczmarek and F Karsch.

  8. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  9. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    SciTech Connect

    Balcar, V.J. )

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  10. Competition between LIM-binding domains.

    PubMed

    Matthews, Jacqueline M; Bhati, Mugdha; Craig, Vanessa J; Deane, Janet E; Jeffries, Cy; Lee, Christopher; Nancarrow, Amy L; Ryan, Daniel P; Sunde, Margaret

    2008-12-01

    LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1). In an attempt to understand the molecular mechanisms behind the LIM code, we have determined the molecular basis of binding of LMO and LIM-HD proteins for Ldb1(LID) through a series of structural, mutagenic and biophysical studies. These studies provide an explanation for why Ldb1 binds the LIM domains of the LMO/LIM-HD family, but not LIM domains from other proteins. The LMO/LIM-HD family exhibit a range of affinities for Ldb1, which influences the formation of specific functional complexes within cells. We have also identified an additional LIM interaction domain in one of the LIM-HD proteins, Isl1. Despite low sequence similarity to Ldb1(LID), this domain binds another LIM-HD protein, Lhx3, in an identical manner to Ldb1(LID). Through our and other studies, it is emerging that the multiple layers of competitive binding involving LMO and LIM-HD proteins and their partner proteins contribute significantly to cell fate specification and development.

  11. Lipid binding capacity of spider hemocyanin.

    PubMed

    Cunningham, M; Gómez, C; Pollero, R

    1999-09-01

    The spider hemocyanin capacity to bind different lipid classes was evaluated by measuring some binding kinetic parameters. A very high lipoprotein (VHDL) which contains hemocyanin, was isolated from Polybetes pythagoricus hemolymph plasma and delipidated. Hemocyanin was bound separately to labelled palmitic acid, phosphatidylcholine, cholesterol, and triolein resulting in several artificial lipoprotein structures. It was possible to corroborate in vitro the lipid-hemocyanin interactions which had been previously observed and, consequently, the apolipoprotein role played by the respiratory pigment of spiders. Lipoproteins were analysed by gel filtration chromatography, and three subfractions with different hemocyanin structures were obtained. The four lipid classes were only bound to the hexameric structure (420 Kda), possibly to low polarity sites. Upon radioactivity measurements of the protein-associated lipids, maximal binding ratios (Mr), dissociation constants (Kd), and the maximal binding effectiveness at low lipid concentrations (Eo) were calculated. Lipid/protein ratios were increased proportionally to each available lipid concentration, following a hyperbolic binding model. Values of saturation, affinity, and maximal binding efficiency to hemocyanin were found to be different for each lipid class assayed. The highest lipid/protein ratio (41.5) was obtained with the free fatty acid and the lowest (7.2) with triolein. Phosphatidylcholine and cholesterol showed the highest relative affinities for hemocyanin (Kd = 63 x 10(-5) M and 74 x 10(-5) M, respectively). Phosphatidylcholine at low concentrations, similar to the physiological ones, presented the highest Eo value. Maximal lipid/protein ratios reached in vitro, were greater than those in P. pythagoricus VHDL, pointing out that hemocyanin could play the apolipoprotein role even under physiological conditions with a very high plasma lipid concentration. J. Exp. Zool. 284:368-373, 1999.

  12. Mucin Binding Reduces Colistin Antimicrobial Activity

    PubMed Central

    Huang, Johnny X.; Blaskovich, Mark A. T.; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G.; Butler, Mark S.

    2015-01-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  13. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.

  14. Potential of goat probiotic to bind mutagens.

    PubMed

    Apás, Ana Lidia; González, Silvia Nelina; Arena, Mario Eduardo

    2014-08-01

    The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers.

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  17. Receptor binding domain based HIV vaccines.

    PubMed

    Liu, Huan; Bi, Wenwen; Wang, Qian; Lu, Lu; Jiang, Shibo

    2015-01-01

    This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.

  18. Binding energies of hypernuclei and hypernuclear interactions

    SciTech Connect

    Bodmer, A.R. |; Murali, S.; Usmani, Q.N.

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  19. Free-radical-mediated DNA binding.

    PubMed Central

    O'Brien, P J

    1985-01-01

    Free-radical metabolites can be generated metabolically by a one-electron reductase-catalyzed reaction or a "peroxidase" catalyzed oxidation or by photoactivation of a wide variety of aromatic xenobiotics. Radicals may also be generated during lipid peroxidation. Some radicals can react with DNA or bind covalently or noncovalently as a dismutation product or as a dimer, trimer or polymeric product. Modification to the DNA can result in single-strand breaks, loss of template activity, and crosslinking. The binding can prevent enzymic digestion. In some cases, the radicals react with oxygen, resulting before conversion to DNA reactive oxygen species. Most radicals probably do not interact with DNA. PMID:3007090

  20. Tight-Binding study of Boron structures

    NASA Astrophysics Data System (ADS)

    McGrady, Joseph W.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.

    2014-10-01

    We have performed Linearized Augmented Plane Wave (LAPW) calculations for five crystal structures (alpha, dhcp, sc, fcc, bcc) of Boron which we then fitted to a non-orthogonal tight-binding model following the Naval Research Laboratory Tight-Binding (NRL-TB) method. The predictions of the NRL-TB approach for complicated Boron structures such as R105 (or β-rhombohedral) and T190 are in agreement with recent first-principles calculations. Fully utilizing the computational speed of the NRL-TB method we calculated the energy differences of various structures, including those containing vacancies using supercells with up to 5000 atoms.

  1. Lateral optical binding between two colloidal particles

    PubMed Central

    Wei, Ming-Tzo; Ng, Jack; Chan, C. T.; Ou-Yang, H. Daniel

    2016-01-01

    An optical binding force between two nearby colloidal particles trapped by two coherent laser beams is measured by phase-sensitive detection. The binding force is long-range and spatially oscillatory. For identical linearly-polarized incident beams, the oscillation period is equal to the optical wavelength. For mutually perpendicular polarizations, a new force appears with half-wavelength periodicity, caused by double inter-particle scattering. This force is observable only with cross-polarized incident beams, for which the stronger single-scattering forces are forbidden by parity. PMID:27982052

  2. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex

    PubMed Central

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-01-01

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel ‘recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4–Met28–Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity. PMID:22146299

  3. Novel DNA-binding properties of the RNA-binding protein TIAR.

    PubMed

    Suswam, Esther A; Li, Yan Yan; Mahtani, Harry; King, Peter H

    2005-01-01

    TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR-RNP complex formation with IL-8 and VEGF 3'-untranslated regions (3'-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3'-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (K(d)app = 1.6x10(-9) M versus 9.4 x 10(-9) M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.

  4. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  5. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-05-26

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.

  6. Oxytocin binding sites in bovine mammary tissue

    SciTech Connect

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  7. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  9. Binding Hydrated Anions with Hydrophobic Pockets.

    PubMed

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  10. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  11. Substrate binding to mammalian 15-lipoxygenase

    NASA Astrophysics Data System (ADS)

    Toledo, Lea; Masgrau, Laura; Lluch, José M.; González-Lafont, Àngels

    2011-09-01

    Lipoxygenases (LOs) are implicated in the regulation of metabolic processes and in several human diseases. Revealing their exact role is hindered by an incomplete understanding of their activity, including substrate specificity and substrate alignment in the active site. Recently, it has been proposed that the change in substrate specificity for arachidonic acid (AA) or linoleic acid (LA) could be part of an auto-regulatory mechanism related to cancer grow. Kinetic differences between reactions of 15-hLO with AA and LA have also led to the suggestion that the two substrates could present mechanistic differences. In the absence of a crystal structure for the substrate:15-LO complex, here we present an atomic-level study of catalytically competent binding modes for LA to rabbit 15-LO (15-rLO-1) and compare the results to our previous work on AA. Docking calculations, molecular dynamics simulations, re-docking and cross-docking calculations are all used to analyze the differences and similarities between the binding modes of the two substrates. Interestingly, LA seems to adapt more easily to the enzyme structure and differs from AA on some dynamical aspects that could introduce kinetic differences, as observed experimentally. Still, our study concludes that, despite the different chain lengths and number of insaturations between these two physiological substrates of 15-rLO-1, the enzyme seems to catalyze their hydroperoxidation by binding them with a common binding mode that leads to similar catalytically competent complexes.

  12. Ada To X-Window Bindings

    NASA Technical Reports Server (NTRS)

    Souleles, Dean

    1993-01-01

    Ada to X-Window Bindings computer program developed to provide Ada programmers with complete interfaces to Xt Intrinsics and OSF Motif toolkits. Provides "Ada view" of some mostly C-language programming libraries. Package of software written in Ada and C languages.

  13. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  14. The Case against Binding Interest Arbitration.

    ERIC Educational Resources Information Center

    Ecker, Charles I.

    1984-01-01

    The author contends that districts should reject binding interest arbitration as a means of resolving an impasse in contract negotiations, charging that it hampers good faith bargaining, adversely affects fiscal and operational management of the school system, and diminishes the governing role of the board of education. (MJL)

  15. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  16. Binding of fibronectin to Staphylococcus strains.

    PubMed Central

    Switalski, L M; Rydén, C; Rubin, K; Ljungh, A; Höök, M; Wadström, T

    1983-01-01

    Fibronectin, a major protein component of plasma and loose connective tissue has previously been shown to bind to several strains of Staphylococcus aureus. We examined a large number of strains of different species of Staphylococcus with respect to their ability to bind fibronectin. The relative numbers of strains defined as fibronectin-binders among the different species were as follows: S. aureus (22 of 23), S. haemolyticus (5 of 5), S. warneri (8 of 11), S. hyicus (5 of 6), S. hominis (13 of 17), S. saprophyticus (11 of 20), S. epidermidis (4 of 7), and S. simulans (8 of 10). Only three species showed a predominance of nonbinders over binders: S. capitis (4 of 14), S. xylosus (0 of 4), and S. cohnii (3 of 11). These data indicate that staphylococcal species isolated from soft tissue infections frequently have the ability to bind fibronectin and suggest that the ability to bind to this protein may contribute to the virulence of coagulase-positive and coagulase-negative staphylococci. PMID:6315582

  17. Binding of flavonoids to staphylococcal enterotoxin B.

    PubMed

    Benedik, Evgen; Skrt, Mihaela; Podlipnik, Crtomir; Ulrih, Nataša Poklar

    2014-12-01

    Staphylococcal enterotoxins are metabolic products of Staphylococcus aureus that are responsible for the second-most-commonly reported type of food poisoning. Polyphenols are known to interact with proteins to form complexes, the properties of which depend on the structures of both the polyphenols and the protein. In the present study, we investigated the binding of four flavonoid polyphenols to Staphylococcal enterotoxin B (SEB) at pH 7.5 and 25 °C: (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC), kaempferol-3-glucoside (KAM-G) and kaempferol (KAM). Fluorescence emission spectrometry and molecular docking were applied to compare experimentally determined binding parameters with molecular modeling. EGCG showed an order of magnitude higher binding constant (1.4 × 10(5) M(-1)) than the other studied polyphenols. Our blind-docking results showed that EGCG and similar polyphenolic ligands is likely to bind to the channel at the surface of SEB that is responsible for the recognition of the T-cell beta chain fragment and influence the adhesion of SEB to T cells.

  18. The Cultural Bind on the American Male

    ERIC Educational Resources Information Center

    Chenoweth, Gene

    2012-01-01

    In this article, the author talks about the cultural bind on the American male. The process starts with conception. If the spermatozoid that fertilizes the egg contains only X chromosomes a girl will be produced. If a single Y chromosome out of the 24 produced by the father is included, the baby will be a boy. From this point on the girls have a…

  19. Selenium binding to human hemoglobin via selenotrisulfide.

    PubMed

    Haratake, Mamoru; Fujimoto, Katsuyoshi; Ono, Masahiro; Nakayama, Morio

    2005-05-25

    Selenotrisulfide (e.g., glutathione selenotrisulfide (GSSeSG)) is an important intermediate in the metabolism of selenite. However, its reactivity with biological substances such as peptides and proteins in the subsequent metabolism is still far from clearly understood, because of its chemical instability under physiological conditions. Penicillamine (Pen) is capable of generating a chemically stable and isolatable selenotrisulfide, PenSSeSPen. To explore the metabolic fate of selenite in red blood cells (RBC), we investigated the reaction of selenotrisulfide with human hemoglobin (Hb) using PenSSeSPen as a model. PenSSeSPen rapidly reacted with Hb under physiological conditions. From the analysis of selenium binding using the Langmuir type binding equation, the apparent binding number of selenium per Hb tetramer almost corresponded to the number of reactive thiol groups of Hb. The thiol group blockade of Hb by iodoacetamide treatment completely inhibited the reaction of PenSSeSPen with Hb. In addition, MALDI-TOF mass spectrometric analysis of the selenium-bound Hb revealed that PenSSe moiety binds to the beta subunits of Hb. Overall, the reaction of PenSSeSPen with Hb appears to involve the thiol exchange between Pen and the cysteine residues on the beta subunit of Hb.

  20. Metal binding components in human amniotic fluid

    SciTech Connect

    Paterson, P.G.; Zlotkin, S.H.; Sarkar, B. )

    1990-02-26

    Amniotic fluid is a potential source of both nutritionally essential and toxic metals for the fetus. As the binding pattern of these metals in amniotic fluid may be one of the determining factors in their availability to the fetus, the objective of this study was to investigate metal binding in vitro. The binding of six trace metals, Mn(II), Ni(II), Zn(II), Cu(II), Cd(II), and Fe(III), to components of human amniotic fluid was studied by Sephadex G-100 gel filtration at physiological pH, using radioisotopes as tracers and 50 mM TRIS/HCl as the elution buffer. The amniotic fluid was collected at 16-16.5 weeks gestation by amniocentesis and pooled for analysis. Extensive amounts of Fe, Cu, Zn, and Cd and small amounts of Mn and Ni were bound to high molecular weight proteins with elution patterns similar to those seen for the binding of these metals in serum. In addition, large amounts of Fe, Mn, Ni and Cd and small amounts of Zn and Cu were associated with low molecular weight component(s). The identity of these latter components is unknown, but they play an important biological role in amniotic fluid.

  1. The Double Bind: The next Generation

    ERIC Educational Resources Information Center

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  2. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  3. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  4. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  5. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors.

    PubMed

    Cameron, Krasnodara; Bartle, Emily; Roark, Ryan; Fanelli, David; Pham, Melissa; Pollard, Beth; Borkowski, Brian; Rhoads, Sarah; Kim, Joon; Rocha, Monica; Kahlson, Martha; Kangala, Melinda; Gentile, Lisa

    2012-06-01

    The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.

  6. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    PubMed

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  7. Electrostatic interactions in hirudin-thrombin binding.

    PubMed

    Sharp, K A

    1996-08-30

    Hirudin is a good anticoagulant owing to potent inhibition of the serine protease thrombin. An aspartate- and glutamate-rich portion of hirudin plays an important part in its tight binding to thrombin through a ladder of salt bridges, and these residues have previously been mutated to asparagine or glutamine. Detailed calculations of the electrostatic contribution to changes in binding from these mutations have been performed using the finite-difference Poisson-Boltzmann method which include charge--charge interactions, solvation interactions, the residual electrostatic interaction of mutant residues, pKa shifts, and ionic strength. Single mutant effects on binding energy were close to experimental values, except for the D55N mutant whose effect is overestimated, perhaps because of displacement of a bound chloride ion from the site where it binds. Multiple mutation values were generally overestimated. The effect of pKa shifts upon the binding is significant for one hirudin residue E58, but this appears to be due to a poor salt bridge with thrombin caused by crystal contacts. Electrostatic interaction between the acidic residues is unfavorable. However, analysis of experimental multiple mutation/single mutation data shows apparently negative interactions between these residues, from which it is concluded that structural changes can occur in the complex to relieve an unfavorable interaction when more than one acidic residue is mutated. In all cases, there is a loss in stability of the complex from mutations due to loss of favorable charge--charge interactions with thrombin, but this is largely compensated for by reduced unfavorable desolvation interactions, and by residual polar interactions in the Asn/Gln mutants.

  8. Changes in biodistribution of radiopharmaceuticals due to impurities - Tc-99m radiopharmaceuticals

    SciTech Connect

    Yokoyama, A.; Horiuchi, K.

    1981-06-01

    In this review the influence of impurities in RP such as Tc-99m complexes of bleomycin, pyridoxylidene-glutamate, DMSA, phosphate derivatives, and Ga-67 citrate will be further discussed from the point of view of their preparation as a way to understanding the labeling reaction of the useful form of a given RP.

  9. Isothermal titration calorimetry: general formalism using binding polynomials.

    PubMed

    Freire, Ernesto; Schön, Arne; Velazquez-Campoy, Adrian

    2009-01-01

    The theory of the binding polynomial constitutes a very powerful formalism by which many experimental biological systems involving ligand binding can be analyzed under a unified framework. The analysis of isothermal titration calorimetry (ITC) data for systems possessing more than one binding site has been cumbersome because it required the user to develop a binding model to fit the data. Furthermore, in many instances, different binding models give rise to identical binding isotherms, making it impossible to discriminate binding mechanisms using binding data alone. One of the main advantages of the binding polynomials is that experimental data can be analyzed by employing a general model-free methodology that provides essential information about the system behavior (e.g., whether there exists binding cooperativity, whether the cooperativity is positive or negative, and the magnitude of the cooperative energy). Data analysis utilizing binding polynomials yields a set of binding association constants and enthalpy values that conserve their validity after the correct model has been determined. In fact, once the correct model is validated, the binding polynomial parameters can be immediately translated into the model specific constants. In this chapter, we describe the general binding polynomial formalism and provide specific theoretical and experimental examples of its application to isothermal titration calorimetry.

  10. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  11. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  12. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  13. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

  14. Specific binding of phorbol ester tumor promoters

    PubMed Central

    Driedger, Paul E.; Blumberg, Peter M.

    1980-01-01

    [20-3H]Phorbol 12,13-dibutyrate bound to particulate preparations from chicken embryo fibroblasts in a specific, saturable, reversible fashion. Equilibrium binding occurred with a Kd of 25 nM; this value is very close to the 50% effective dose (ED50), 50 nM, previously determined for the biological response (induction of fibronectin loss) in growing chicken embryo fibroblasts. At saturation, 1.4 pmol of [20-3H]phorbol 12,13-dibutyrate was bound per mg of protein (approximately 7 × 104 molecules per cell). Binding was inhibited by phorbol 12-myristate 13-acetate (Ki = 2 nM), mezerein (Ki = 180 nM), phorbol 12,13-dibenzoate (Ki = 180 nM), phorbol 12,13-diacetate (Ki = 1.7 μM), phorbol 12,13,20-triacetate (Ki = 39 μM), and phorbol 13-acetate (Ki = 120 μM). The measured Ki values are all within a factor of 3.5 of the ED50 values of these derivatives for inducing loss of fibronectin in intact cells. Binding was not inhibited by the inactive compounds phorbol (10 μg/ml) and 4α-phorbol 12,13-didecanoate (10 μg/ml) or by the inflammatory but nonpromoting phorbol-related diterpene esters resiniferatoxin (100 ng/ml) and 12-deoxyphorbol 13-isobutyrate 20-acetate (100 ng/ml). These data suggest that biological responses to the phorbol esters in chicken embryo fibroblasts are mediated by this binding activity and that the binding activity corresponds to the phorbol ester target in mouse skin involved in tumor promotion. Binding was not inhibited by the nonphorbol promoters anthralin (1 μM), phenol (1 mM), iodoacetic acid (1.7 μM), and cantharidin (75 μM), or by epidermal growth factor (100 ng/ml), dexamethasone acetate (2 μM), retinoic acid (10 μM), or prostaglandin E2 (1 μM). These agents thus appear to act at a target distinct from that of the phorbol esters. PMID:6965793

  15. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    PubMed Central

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues. PMID:22558341

  16. Binding of transition metals to S100 proteins

    PubMed Central

    Gilston, Benjamin A.; Skaar, Eric P.; Chazin, Walter J.

    2016-01-01

    The S100 proteins are a unique class of EF-hand Ca2+ binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn2+, Cu2+ and Mn2+ ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  17. Is there a link between selectivity and binding thermodynamics profiles?

    PubMed

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding.

  18. Being a binding site: characterizing residue composition of binding sites on proteins.

    PubMed

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  19. Universal protein binding microarrays for the comprehensive characterization of the DNA binding specificities of transcription factors

    PubMed Central

    Berger, Michael F.; Bulyk, Martha L.

    2010-01-01

    Protein binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF binding specificities at high resolution using such ‘all 10-mer’ universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray, and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day. PMID:19265799

  20. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand.

    PubMed

    Olah, G A; Trakhanov, S; Trewhella, J; Quiocho, F A

    1993-08-05

    Small-angle x-ray scattering and computer modeling have been used to study the effects of ligand binding to the leucine/isoleucine/valine-binding protein, an initial component of the high-affinity active transport system for branched-chain aliphatic amino acids in Escherichia coli. Measurements were made with no ligand present and with either L-leucine or L-valine present. Upon binding of either leucine or valine, there is a decrease in the radius of gyration, from 23.2 +/- 0.2 to 22.2 +/- 0.2 A, and in the maximum particle dimension, from 82 +/- 3 to 73 +/- 3 A. The x-ray structure of the unbound form has been determined and gives a radius of gyration and a maximum dimension consistent with the values found for the solution structure in this study (Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989) J. Mol. Biol. 206, 171-191). The reduction in the radius of gyration and maximum dimension upon ligand binding can be accounted for by a substrate-induced cleft closure in a combined "hinge-twist" motion. Modeling of the substrate-bound state was done by comparison of this protein with another periplasmic binding protein (L-arabinose-binding protein), which possesses a similar two-lobe structure and for which the x-ray structure is known in its ligand-bound form.

  1. Fucosyl neoglycoprotein binds to mouse epididymal spermatozoa and inhibits sperm binding to the egg zona pellucida.

    PubMed

    Oh, Y S; Ahn, H S; Gye, M C

    2013-12-01

    Glycan epitopes of cellular glycoconjugates act as versatile biochemical signals, and this sugar coding plays an important role in cell-to-cell recognition processes. In this study, our aims were to determine the distribution of sperm receptors with activity for fucosyl- and galactosyl glycans and to address whether monosugar neoglycoproteins functionally mimic the binding between zona pellucida (ZP) glycoproteins and spermatozoa. In mouse epididymal spermatozoa with intact acrosomes, fucopyranosyl bovine serum albumin (BSA-Fuc) bound to the segment of the acrosome, the equatorial segment, and the postacrosome region of the sperm head. Galactosyl BSA (BSA-Gal) binding activity was similar to that of BSA-Fuc, but was weaker. In acrosome-reacted spermatozoa treated with the Ca(2+) ionophore A23187, BSA-zuc binding was lost in the apical segment of the acrosome but remained in the equatorial segment and postacrosome regions. BSA-Gal binding to the equatorial region was increased. In the presence of 2.5 μg ml(-1) BSA-Fuc, in vitro sperm-ZP binding was significantly decreased, indicating that fucosyl BSA functionally mimics ZP glycoproteins during sperm-egg ZP interactions. At the same concentration, BSA-Gal was not effective. Fucosyl BSA that efficiently inhibited the sperm-ZP binding can mimic the ZP glycoconjugate and has potential for use as a sperm fertility control agent in mouse.

  2. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.

    PubMed

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy

    2002-12-03

    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  3. Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms.

    PubMed

    Li, Xiangrong; Ni, Tianjun

    2016-03-01

    Glutathione is a hydrophilic antioxidant and melatonin is a hydrophobic antioxidant, thus, the binding mechanism of the two antioxidants interacting with protease may be different. In this study, binding of glutathione and melatonin to pepsin has been studied using isothermal titration calorimetry (ITC), equilibrium microdialysis, UV-Vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. Thermodynamic investigations reveal that the binding of glutathione/melatonin to pepsin is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bond and van der Waals force. ITC, equilibrium microdialysis, and molecular modeling reveal that the binding of glutathione to pepsin is characterized by a high number of binding sites. For melatonin, one molecule of melatonin combines with one molecule of pepsin. These results confirm that glutathione/melatonin interact with pepsin through two different binding mechanisms. In addition, the UV-Vis absorption and CD experiments indicate that glutathione and melatonin may induce conformational and microenvironmental changes of pepsin. The conformational changes of pepsin may affect its biological function as protease.

  4. Fibrinogen and Fibronectin Binding Activity and Immunogenic Nature of Choline Binding Protein M

    PubMed Central

    AFSHAR, Davoud; POURMAND, Mohammad Reza; JEDDI-TEHRANI, Mahmood; SABOOR YARAGHI, Ali Akbar; AZARSA, Mohammad; SHOKRI, Fazel

    2016-01-01

    Background: Choline-binding proteins (CBPs) are a group of surface-exposed proteins, which play crucial and physiological roles in Streptococcus pneumoniae. The novel member of CBPs, choline-binding protein M (CbpM) may have binding activity to plasma proteins. This study aimed to clone and express CbpM and demonstrate its interaction with plasma proteins and patients’ sera. Methods: The total length of cbpM gene was cloned in pET21a vector and expressed in BL21 expression host. Verification of recombinant protein was evaluated by Western blot using anti-His tag monoclonal antibody. Binding ability of the recombinant protein to plasma proteins and the interaction with patients’ sera were assessed by Western blot and ELISA methods. Results: The cbpM gene was successfully cloned into pET21a and expressed in BL21 host. Binding activity to fibronectin and fibrinogen and antibody reaction of CbpM to patients’ sera was demonstrated by Western blot and ELISA methods, respectively. Conclusion: CbpM is one of the pneumococcal surface-exposed proteins, which mediates pneumococcal binding to fibronectin and fibrinogen proteins. PMID:28053927

  5. Specific binding of GM1-binding peptides to high-density GM1 in lipid membranes.

    PubMed

    Matsubara, Teruhiko; Iijima, Kazutoshi; Nakamura, Miwa; Taki, Takao; Okahata, Yoshio; Sato, Toshinori

    2007-01-16

    The ganglioside Galbeta1-3GalNAcbeta1-4(Neu5Acalpha2-3)Galbeta1-4Glcbeta1-1'Cer (GM1) is an important receptor. We have previously identified GM1-binding peptides based on affinity selection from a random peptide library. In the present study, we determined the amino acids essential for binding GM1 and investigated the specific interaction with GM1 in the lipid membrane. Arginines and aromatic amino acids in the consensus sequence (W/F)RxL(xP/Px)xFxx(Rx/xR)xP contributed to the ability of the peptides to bind GM1. The peptide p3, VWRLLAPPFSNRLLP, having the consensus sequence, showed high affinity for GM1 with a dissociation constant of 1.2 microM. Furthermore, the density-dependent binding of p3 was investigated using mixed monolayers of GM1 and Glcbeta1-1'Cer (GlcCer). p3 binds preferentially to high-density GM1, and its interaction with GM1 was found to be cooperative based on a Hill plot. These results indicated that a lateral assembly of GM1 molecules was required for the recognition of carbohydrates by p3. The GM1-binding peptide played a role as a unique anti-GM1 probe differing from the cholera toxin B subunit or antibodies.

  6. Direct DNA binding by Brca1

    PubMed Central

    Paull, Tanya T.; Cortez, David; Bowers, Blair; Elledge, Stephen J.; Gellert, Martin

    2001-01-01

    The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein–DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription. PMID:11353843

  7. Autologous antibodies that bind neuroblastoma cells.

    PubMed

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  8. Folding, Binding, Misfolding and Aggregation with AWSEM

    NASA Astrophysics Data System (ADS)

    Schafer, Nicholas P.

    This thesis discusses our recent results using the Associative-memory, Water-mediated, Structure and Energy Model (AWSEM), an optimized, coarse-grained molecular dynamics protein folding model, to fold, bind, and predict the misfolding behavior of proteins. AWSEM is capable of performing de novo structure prediction on small alpha-helical protein domains and predict the binding interfaces of homo- and hetero-dimers. More recent work demonstrates how the misfolding behavior of tandem constructs in AWSEM is consistent with crucial aspects of ensemble and single molecule experiments on the aggregation and misfolding of these constructs. The first chapter is a review of the energy landscape theory of protein folding as it applies to the problem of protein structure prediction, and more specifically how energy landscape theory and the principle of minimal frustration can be used to optimize parameters of coarse-grained protein folding simulation models. The subsequent four chapters are reports of novel research performed with one such model.

  9. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  10. Causal binding of actions to their effects.

    PubMed

    Buehner, Marc J; Humphreys, Gruffydd R

    2009-10-01

    According to widely held views in cognitive science harking back to David Hume, causality cannot be perceived directly, but instead is inferred from patterns of sensory experience, and the quality of these inferences is determined by perceivable quantities such as contingency and contiguity. We report results that suggest a reversal of Hume's conjecture: People's sense of time is warped by the experience of causality. In a stimulus-anticipation task, participants' response behavior reflected a shortened experience of time in the case of target stimuli participants themselves had generated, relative to equidistant, equally predictable stimuli they had not caused. These findings suggest that causality in the mind leads to temporal binding of cause and effect, and extend and generalize beyond earlier claims of intentional binding between action and outcome.

  11. The Sunscreen Octyl Methoxycinnamate Binds to DNA

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes; Vohra, Shikhar; Nordlund, T. M.

    2000-03-01

    Sunscreens are designed to prevent skin cancer by absorbing ultraviolet radiation from the sun before it gets to the DNA in skin cells. The purpose of this work is to determine whether or not octyl methoxycinnamate, an active ingredient in many sunscreens, will bind to DNA. If so, the sunscreen could transfer the energy it absorbed from the sun to the DNA and cause damage. To determine this, we prepared samples with varying concentrations of cinnamate added to herring sperm DNA, sonicating the mixture to disperse the hydrophobic sunscreen into solution. Absorption and fluorescence spectra of the mixtures showed (i) much more sunscreen was dispersed into solution when DNA was present, and (ii) the spectra of both DNA and sunscreen differed from those of the separate solutions. We conclude that the octyl methoxycinnamate can indeed bind to DNA in aqueous solution. Energy transfer experiments from DNA to sunscreen and from sunscreen to 2-aminopurine- (a fluorescent DNA base) labeled DNA will be presented.

  12. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  13. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  14. Novel retinoid-binding proteins from filarial parasites.

    PubMed Central

    Sani, B P; Vaid, A; Comley, J C; Montgomery, J A

    1985-01-01

    The present study deals with the discovery and partial characterization of specific binding proteins for retinol and retinoic acid from filarial parasites (worms of the superfamily Filarioidea), including those from two species of Onchocerca. These binding proteins, which are distinct in their physicochemical properties and in the mode of ligand interactions from the host-tissue retinoid-binding proteins, may be involved in the mediation of the putative biological roles of retinoids in the control of parasitic growth, differentiation and reproduction. Parasite retinol-binding protein and retinoic acid-binding protein exhibited specificity for binding retinol and retinoic acid respectively. Both the binding proteins showed an s20,w value of 2.0 S. On gel filtration, both proteins were retarded to a position corresponding to the same molecular size (19.0 kDa). On preparative columns, the parasite binding proteins exhibited isoelectric points at pH 5.7 and 5.75. Unlike the retinoid-binding proteins of mammalian and avian origin, the parasite retinoid-binding proteins showed a lack of mercurial sensitivity in ligand binding. The comparative amounts of retinoic acid-binding protein in five parasites, Onchocerca volvulus, Onchocerca gibsoni, Dipetalonema viteae, Brugia pahangi and Dirofilaria immitis, were between 2.7 and 3.1 pmol of retinoic acid bound/mg of extractable protein. However, the levels of parasite retinol-binding protein were between 4.8 and 5.8 pmol/mg, which is considerably higher than the corresponding levels of cellular retinol-binding protein of mammalian and avian origin. Both retinol- and retinoic acid-binding-protein levels in O. volvulus-infected human nodules and O. gibsoni-infected bovine nodules were similar to their levels in mammalian tissues. Also, these nodular binding proteins, like the host-binding proteins, exhibited mercurial sensitivity to ligand interactions. PMID:3004410

  15. Binding Pose Flip Explained via Enthalpic and Entropic Contributions

    PubMed Central

    2017-01-01

    The anomalous binding modes of five highly similar fragments of TIE2 inhibitors, showing three distinct binding poses, are investigated. We report a quantitative rationalization for the changes in binding pose based on molecular dynamics simulations. We investigated five fragments in complex with the transforming growth factor β receptor type 1 kinase domain. Analyses of these simulations using Grid Inhomogeneous Solvation Theory (GIST), pKA calculations, and a tool to investigate enthalpic differences upon binding unraveled the various thermodynamic contributions to the different binding modes. While one binding mode flip can be rationalized by steric repulsion, the second binding pose flip revealed a different protonation state for one of the ligands, leading to different enthalpic and entropic contributions to the binding free energy. One binding pose is stabilized by the displacement of entropically unfavored water molecules (binding pose determined by solvation entropy), ligands in the other binding pose are stabilized by strong enthalpic interactions, overcompensating the unfavorable water entropy in this pose (binding pose determined by enthalpic interactions). This analysis elucidates unprecedented details determining the flipping of the binding modes, which can elegantly explain the experimental findings for this system. PMID:28079371

  16. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  17. Curcumin binding to DNA and RNA.

    PubMed

    Nafisi, Shohreh; Adelzadeh, Maryam; Norouzi, Zeinab; Sarbolouki, Mohammad Nabi

    2009-04-01

    Curcumin, the yellow pigment from the rhizoma of Curcuma longa, is a widely studied phytochemical with a variety of biological activities. The ongoing research and clinical trials have proved that this natural phenolic compound has great and diverse pharmacological potencies. Beside its effective antioxidant, antiinflammatory, and antimicrobial/antiviral properties, curcumin is also considered as a cancer chemopreventive agent. While the antioxidant activity of curcumin is well documented, its interaction with DNA and RNA is not fully investigated. This study was designed to examine the interactions of curcumin with calf thymus DNA and yeast RNA in aqueous solution at physiological conditions, using constant DNA and RNA concentration (6.25 mM) and various curcumin/polynucleotide (phosphate) ratios of 1/120, 1/80, 1/40, 1/20, and 1/10. Fourier transform infrared (FTIR) and UV-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of curcumin-DNA and curcumin-RNA complexes in aqueous solution. Spectroscopic evidence showed that curcumin binds to the major and minor grooves of DNA duplex and to RNA bases as well as to the back bone phosphate group with overall binding constants of K(curcumin-DNA) = 4.255 x 10(4) M(-1) and K(curcumin-RNA) = 1.262 x 10(4) M(-1). Major DNA and RNA aggregation occurred at high pigment concentration. No conformational changes were observed upon curcumin interaction with these biopolymers; that is, DNA remains in the B, and RNA retains its A-family structure.

  18. Characterization of MIPs Using Heterogeneous Binding Models

    DTIC Science & Technology

    2002-04-05

    properties than by previous methods such as the limiting slopes analysese of curved Scatchard plots INTRODUCTION Molecularly imprinted polymers ( MIPs ...properties of molecularly imprinted polymers ( MiPs ) are their most important characteristic. The comparison of the binding properties of MIPs ... imprinted EA9A polymers . The imprinted polymers differ in the concentration of EA9A in the polymerization mixture: 2.5 mM (gray), 5.0 mM (broken), and 12.5

  19. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  20. Shiga toxin binds to activated platelets.

    PubMed

    Ghosh, S A; Polanowska-Grabowska, R K; Fujii, J; Obrig, T; Gear, A R L

    2004-03-01

    Hemolytic uremic syndrome (HUS) is associated with acute renal failure in children and can be caused by Shiga toxin (Stx)-producing Escherichia coli. Thrombocytopenia and formation of renal thrombi are characteristic of HUS, suggesting that platelet activation is involved in its pathogenesis. However, whether Shiga toxin directly activates platelets is controversial. The present study evaluates if potential platelet sensitization during isolation by different procedures influences platelet interaction with Shiga toxin. Platelets isolated from sodium citrate anticoagulated blood were exposed during washing to EDTA and higher g forces than platelets prepared from acid-citrate-dextrose (ACD) plasma. Platelet binding of Stx was significantly higher in EDTA-washed preparations relative to ACD-derived platelets. Binding of Stx was also increased with ACD-derived platelets when activated with thrombin (1 U mL-1) and exposure of the Gb3 Stx receptor was detected only on platelets subjected to EDTA, higher g forces or thrombin. EDTA-exposed platelets lost their normal discoid shape and were larger. P-selectin (CD62P) exposure was significantly increased in EDTA-washed preparations relative to ACD-derived platelets, suggesting platelet activation. Taken together, these results suggest that direct binding of Stx occurs only on 'activated' platelets rather than on resting platelets. The ability of Stx to interact with previously activated platelets may be an important element in understanding the pathogenesis of HUS.