Science.gov

Sample records for 65nm cmos technology

  1. Experimental characterization of peripheral photocurrent in CMOS photodiodes down to 65 nm technology

    NASA Astrophysics Data System (ADS)

    Blanco-Filgueira, B.; López, P.; Roldán, J. B.

    2013-04-01

    In this work, an in-depth experimental characterization of submicron CMOS p-n+ junction photodiodes operating under uniform illumination in the visible range is performed. The experimental measurements are used to validate a previous two-dimensional analytical model for the photoresponse estimation of these structures, which pays special attention to the lateral collection and was verified by means of device simulations. To do so, square p-n+ junction photodiodes with different sizes down to an active area of 0.56 μm wide have been fabricated in 180 and 65 nm technological nodes and characterized under blue, green and red light sources. As a result, the importance of the lateral collection in the overall response for small photodiodes that was previously theoretically reported is confirmed. The experimentally validated two-dimensional analytical model is a powerful tool that can be employed for the design of CMOS imagers and related electronics circuits.

  2. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Rui, He; Jianfei, Xu; Na, Yan; Jie, Sun; Liqian, Bian; Hao, Min

    2014-10-01

    A high speed inductorless limiting amplifier (LA) in an optical communication receiver with the working speed up to 20 Gb/s is presented. The LA includes an input matching network, a four-stage 3rd order amplifier core, an output buffer for the test and a DC offset cancellation (DCOC). It uses the active interleaving feedback technique both to broaden the bandwidth and achieve the flatness response. Based on our careful analysis of the DCOC and stability, an error amplifier is added to the DCOC loop in order to keep the offset voltage reasonable. Fabricated in the 65 nm CMOS technology, the LA only occupies an area of 0.45 × 0.25 mm2 (without PAD). The measurement results show that the LA achieves a differential voltage gain of 37 dB, and a 3-dB bandwidth of 16.5 GHz. Up to 26.5 GHz, the Sdd11 and Sdd22 are less than -16 dB and -9 dB. The chip excluding buffer is supplied by 1.2 V VDD and draws a current of 50 mA.

  3. 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades

    NASA Astrophysics Data System (ADS)

    Menouni, M.; Barbero, M.; Bompard, F.; Bonacini, S.; Fougeron, D.; Gaglione, R.; Rozanov, A.; Valerio, P.; Wang, A.

    2015-05-01

    The radiation tolerance of 65 nm bulk CMOS devices was investigated using 10 keV X-rays up to a Total Ionizing Dose (TID) of 1 Grad. Irradiation tests were performed at room temperature (25°C) as well as at low temperature (-15°C). The implications on the DC performance of n and p channel transistors are presented. For small size devices, a strong performance degradation is observed from a dose of 100 Mrad. Irradiations made at room temperature up to 1 Grad show a complete drive loss in PMOS devices, due to decreasing transconductance. When the irradiation is conducted at -15°C, the devices show less radiation damage. Annealing helps recovering a small part of the drive capabilities of the small size devices, but the threshold voltage shift is still high and might compromise the operation in some digital applications.

  4. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGESBeta

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  5. A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ryuichi; Motoyoshi, Mizuki; Takano, Kyoya; Yodprasit, Uroschanit; Fujishima, Minoru

    The design and measured results of a 120-GHz transmitter and receiver chipset are described in this paper. A simple on-off keying (OOK) modulation is adopted for low power consumption. The proposed transmitter and receiver are fabricated using 65-nm CMOS technology. The current consumption of the transmitter and receiver are 19.2mA and 48.2mA respectively. A 9-Gbps PRBS is successfully transferred from the transmitter to the receiver with the bit error rate less than 10-9.

  6. A 3 Gb/s multichannel transceiver in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Feng, Zhang; Yusong, Qiu

    2015-01-01

    This paper describes a 65 nm 16-bit parallel transceiver IP macro, whose rate is 3 Gb/s with a 5 pF load including the HBM 2000 V ESD protection. Equalizers and clock data recovery modules, CRC checkers and 8 b/10 b encoders are not added in the design for reducing the latency, and the whole latency is 7 ns without cables. Since the transceiver has many robust features including a process, voltage and temperature independent phase-locked loop with calibrations, the low skew differential clock tree, and a stable current mode driver with common mode feedback, the transceiver can work properly at different process corners and extreme temperatures, and also can tolerate 20% power supply variations. The transceiver can be applied for the interface of sub-100 nm high performance processors, which require low latency and high stability. The transceiver shows a bitter error ratio of less than 10-15 at 3 Gbps.

  7. A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Yumei, Huang; Zhiliang, Hong

    2013-03-01

    A gated ring oscillator (GRO) based time-to-digital converter (TDC) is presented. To enhance the resolution of the TDC, a multi-path structure for the GRO is used to achieve a higher oscillation frequency and an input stage is also presented to equivalently amplify the input time difference with a gain of 2. The GRO based TDC circuit is fabricated in TSMC 65 nm CMOS technology and the core area is about 0.02 mm2. According to the measurement results, the effective resolution of this circuit is better than 4.22 ps under a 50 MHz clock frequency. With a 1 ns input range, the maximum clock frequency of this circuit is larger than 200 MHz. Under a 1 V power supply, with a 200-800 ps input time difference, the measured power consumption is 1.24 to 1.72 mW at 50 MHz clock frequency and 1.73 to 2.20 mW at 200 MHz clock frequency.

  8. Design and performance of a custom ASIC digitizer for wire chamber readout in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Lee, M. J.; Brown, D. N.; Chang, J. K.; Ding, D.; Gnani, D.; Grace, C. R.; Jones, J. A.; Kolomensky, Y. G.; von der Lippe, H.; Mcvittie, P. J.; Stettler, M. W.; Walder, J.-P.

    2015-06-01

    We present the design and performance of a prototype ASIC digitizer for integrated wire chamber readout, implemented in 65 nm commercial CMOS technology. Each channel of the 4-channel prototype is composed of two 16-bit Time-to-Digital Converters (TDCs), one 8-bit Analog-to-Digital Converter (ADC), a front-end preamplifier and shaper, plus digital and analog buffers that support a variety of digitization chains. The prototype has a multiplexed digital backend that executes a state machine, distributes control and timing signals, and buffers data for serial output. Laboratory bench tests measure the absolute TDC resolution between 74 ps and 480 ps, growing with the absolute delay, and a relative time resolution of 19 ps. Resolution outliers due to cross-talk between clock signals and supply or reference voltages are seen. After calibration, the ADC displays good linearity and noise performance, with an effective number of bits of 6.9. Under normal operating conditions the circuit consumes 32 mW per channel. Potential design improvements to address the resolution drift and tails are discussed.

  9. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  10. Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments

    SciTech Connect

    Hoff, James R.; Deptuch, G. W.; Wu, Guoying; Gui, Ping

    2015-06-04

    The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This, then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.

  11. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  12. A 1.36μW 312-315MHz synchronized-OOK receiver for wireless sensor networks using 65nm SOTB CMOS technology

    NASA Astrophysics Data System (ADS)

    Hoang, Minh-Thien; Sugii, Nobuyuki; Ishibashi, Koichiro

    2016-03-01

    The paper presents a receiver design operating at 312-315 MHz frequency band for wireless sensor networks. The proposed architecture uses synchronized on-off-keying (S-OOK) modulation scheme, which includes clock information together with data, providing self-synchronization ability for the receiver without a separate clock and data recovery circuit. In addition, a new technique is also proposed to reduce active time of the RF font-end for better energy efficiency. The receiver architecture is verified by using discrete RF modules and FPGAs, then VLSI design is carried out on 65 nm Silicon-On-Thin-Buried-Oxide (SOTB) CMOS technology and simulated using SPICE models to illustrate effectiveness of the proposed architecture. Post-layout simulation shows -58.5 dBm sensitivity with 1.36 μW and 8.39 μW power consumption corresponding to 10 kbps and 100 kbps data rate, respectively.

  13. Design of a 10-bit segmented current-steering digital-to-analog converter in CMOS 65 nm technology for the bias of new generation readout chips in high radiation environment

    NASA Astrophysics Data System (ADS)

    De Robertis, G.; Loddo, F.; Mattiazzo, S.; Pacher, L.; Pantano, D.; Tamma, C.

    2016-01-01

    A new pixel front end chip for HL-LHC experiments in CMOS 65nm technology is under development by the CERN RD53 collaboration together with the Chipix65 INFN project. This work describes the design of a 10-bit segmented current-steering Digital-to-Analog Converter (DAC) to provide a programmable bias current to the analog blocks of the circuit. The main requirements are monotonicity, good linearity, limited area consumption and radiation hardness up to 10 MGy. The DAC was prototyped and electrically tested, while irradiation tests will be performed in Autumn 2015.

  14. Design and implementation of IEEE 802.11ac MAC controller in 65 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Bin, Wu; Yong, Hei

    2016-02-01

    An IEEE-802.11ac-1*1 wireless LAN system-on-a-chip (SoC) that integrates an analog front end, a digital base-band processor and a media access controller has been implemented in 65 nm CMOS technology. It can provide significantly increased throughput, high efficiency rate selection, and fully backward compatibility with the existing 802.11a/n WLAN protocols. Especially the measured maximum throughput of UDP traffic can be up to 267 Mbps. Project supported by the National Great Specific Project of China (No. 2012ZX03004004_001).

  15. Taking the X Architecture to the 65-nm technology node

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Smayling, Michael C.; Arora, Narain; Nagata, Toshiyuki; Duane, Michael P.; Shah, Santosh; Keston, Harris J.; Oemardani, Shiany

    2004-05-01

    The X Architecture is a new way of orienting the interconnect on an integrated circuit using diagonal pathways, as well as the traditional right-angle, or Manhattan, configuration. By enabling designs with significantly less wire and fewer vias, the X Architecture can provide substantial improvements in chip performance, power consumption and cost. Members of the X Initiative semiconductor supply chain consortium have demonstrated the production worthiness of the X Architecture at the 130-nm and 90-nm process technology nodes. This paper presents an assessment of the manufacturing readiness of the X Architecture for the 65-nm technology node. The extent to which current production capabilities in mask writing, lithography, wafer processing, inspection and metrology can be used is discussed using the results from a 65-nm test chip. The project was a collaborative effort amongst a number of companies in the IC fabrication supply chain. Applied Materials fabricated the 65-nm X Architecture test chip at its Maydan Technology Center and leveraged the technology of other X Initiative members. Cadence Design Systems provided the test structure design and chip validation tools, Dai Nippon Printing produced the masks and Canon"s imaging system was employed for the photolithography.

  16. Single event transient pulse width measurement of 65-nm bulk CMOS circuits

    NASA Astrophysics Data System (ADS)

    Suge, Yue; Xiaolin, Zhang; Xinyuan, Zhao

    2015-11-01

    Heavy ion results of a 65-nm CMOS SET pulse width testchip are given. The influences of device threshold voltage, temperature and well separation on pulse width are discussed. Experimental data implied that the low device threshold, high temperature and well speraration would contribute to wider SET. The multi-peak phenomenon in the distribution of SET pulse width was first observed and its dependence on various factors is also discussed.

  17. A low-power time-domain VCO-based ADC in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Chenluan, Wang; Shengxi, Diao; Fujiang, Lin

    2014-10-01

    A low-power, high-FoM (figure of merit), time-domain VCO (voltage controlled oscillator)-based ADC (analog-to-digital converter) in 65 nm CMOS technology is proposed. An asynchronous sigma—delta modulator (ASDM) is used to convert the voltage input signal to a square wave time signal, where the information is contained in its pulse-width. A time-domain quantizer, which uses VCO to convert voltage to frequency, is adopted, while the XOR (exclusive-OR) gate circuits convert the frequency information to digital representatives. The ASDM does not need an external clock, so there is no quantization noise. At the same time, the ASDM applies a harmonic-distortion-cancellation technique to its transconductance stage, which increases the SNDR (signal to noise and distortion ratio) performance of the ASDM. Since the output of the ASDM is a two-level voltage signal, the VCO's V—F (voltage to frequency) conversion curve is always linear. The XOR phase quantizer has an inherent feature of first-order noise-shaping. It puts the ADC's low-frequency output noise to high-frequency which is further filtered out by a low-pass filter. The proposed ADC achieves an SNR/SNDR of 54. dB/54.3 dB in the 8 MHz bandwidth, while consuming 2.8 mW. The FoM of the proposed ADC is a 334 fJ/conv-step.

  18. A PUFs-based hardware authentication BLAKE algorithm in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejun; Wang, Pengjun; Zhang, Xuelong; Weng, Xinqian; Yu, Zhiyi

    2016-06-01

    This paper presents a hardware authentication BLAKE algorithm based on physical unclonable functions (PUFs) in Taiwan Semiconductor Manufacturing Company low-power 65 nm CMOS. To support hardware authentication feature, PUFs have been organised in BLAKE algorithm as the salt value. The trials table method is used to improve the robust of PUFs, resulting in approximately 100% stability against supply voltage variations form 0.7 V to 1.6 V. By discussing the G-function of BLAKE algorithm, the hardware implementation is considered for acceleration, resulting in significant performance improvements. The die occupies 2.62 mm2 and operates maximum frequency 1.0 GHz at 1.6 V. Measured results show that PUFs have great random characteristic and the authentication chip dissipates an average power of 91 mW under typical condition at 1.2 V and 780 MHz. In comparison with other works, the PUFs-based BLAKE algorithm has hardware authentication feature and improves throughput about 45%.

  19. Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout

    SciTech Connect

    Grace, Carl; Walder, Jean-Pierre; von der Lippe, Henrik

    2012-04-10

    A digitizer designed to read out column-parallel charge-coupled devices (CCDs) used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling (HIPPO) integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined Analog-to-Digital Converter (ADC) and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The ADC multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the CCD. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The ADC exhibits 188 ?V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65 nm CMOS process. The digitizer will lead to a proof-of-principle 2D 10 Gigapixel/s X-ray detector.

  20. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Tong, Tian

    2013-07-01

    A 50 GHz cross-coupled voltage controlled oscillator (VCO) considering the coupling effect of inductors based on a 65 nm standard complementary metal oxide semiconductor (CMOS) technology is reported. A pair of inductors has been fabricated, measured and analyzed to characterize the coupling effects of adjacent inductors. The results are then implemented to accurately evaluate the VCO's LC tank. By optimizing the tank voltage swing and the buffer's operation region, the VCO achieves a maximum efficiency of 11.4% by generating an average output power of 2.5 dBm while only consuming 19.7 mW (including buffers). The VCO exhibits a phase noise of -87 dBc/Hz at 1 MHz offset, leading to a figure of merit (FoM) of -167.5 dB/Hz and a tuning range of 3.8% (from 48.98 to 50.88 GHz).

  1. The effect of layout topology on single-event transient pulse quenching in a 65 nm bulk CMOS process.

    SciTech Connect

    Ball, D. R.; Ahlbin, Jonathan R.; Gadlage, Matthew J.; Massengill, Lloyd W.; Witulski, A. W.; Reed, R. A.; Vizkelethy, Gyorgy; Bhuva, Bharat L.

    2010-07-01

    Heavy-ion microbeam and broadbeam data are presented for a 65 nm bulk CMOS process showing the existence of pulse quenching at normal and angular incidence for designs where the pMOS transistors are in common n-wells or isolated in separate n-wells. Experimental data and simulations show that pulse quenching is more prevalent in the common n-well design than the separate n-well design, leading to significantly reduced SET pulsewidths and SET cross-section in the common n-well design.

  2. A broadband 47-67 GHz LNA with 17.3 dB gain in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Chong, Wang; Zhiqun, Li; Qin, Li; Yang, Liu; Zhigong, Wang

    2015-10-01

    A broadband 47-67 GHz low noise amplifier (LNA) with 17.3 dB gain in 65-nm CMOS technology is proposed. The features of millimeter wave circuits are illustrated first and design methodologies are discussed. The wideband input matching of the LNA was achieved by source inductive degeneration, which is narrowband in the low-GHz range but wideband at millimeter-wave frequencies due to the existence of gate-drain capacitance, Cgd. In order to minimize the noise figure (NF), the LNA used a common-source (CS) structure rather than cascode in the first stage, and the noise matching principle is explored. The last two stages of the LNA used a cascode structure to increase the power gain. Analysis of the gain boost effect of the gate inductor at the common-gate (CG) transistor is also performed. T-shape matching networks between stages are intended to enlarge the bandwidth. All on-chip inductors and transmission lines are modeled and simulated with a 3-dimensional electromagnetic (EM) simulation tool to guarantee the success of the design. Measurement results show that the LNA achieves a maximum gain of 17.3 dB at 60 GHz, while the 3-dB bandwidth is 20 GHz (47-67 GHz), including the interested band of 59-64 GHz, and the minimum noise figure is 4.9 dB at 62 GHz. The LNA absorbs a current of 19 mA from a 1.2 V supply and the chip occupies an area of 900 × 550 μm2 including pads. Project supported by the National High Technology Research and Development Program of China (No. 2011AA010202).

  3. EBDW technology for EB shuttle at 65nm node and beyond

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Takakuwa, M.; Kojima, Y.; Takahashi, Y.; Yamada, K.; Kon, J.; Miyajima, M.; Shimizu, A.; Machida, Y.; Hoshino, H.; Takita, H.; Sugatani, S.; Tsuchikawa, H.

    2008-03-01

    When manufacturing prototype devices or low volume custom logic LSIs, the products are being less profitable because of the skyrocketing mask and design costs recent technology node. For 65nm technology node and beyond, the reduction of mask cost becomes critical issue for logic devices especially. We attempt to apply EBDW mainly to critical interconnect layers to reduce the mask expenditure for the reason of technical output reusability. For 65nm node production, new 300mm EB direct writer had been installed. The process technologies have also been developing to meet sufficient qualities and productivities.

  4. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  5. A 0.7 V, 40 nW Compact, Current-Mode Neural Spike Detector in 65 nm CMOS.

    PubMed

    Yao, Enyi; Chen, Yi; Basu, Arindam

    2016-04-01

    In this paper, we describe a novel low power, compact, current-mode spike detector circuit for real-time neural recording systems where neural spikes or action potentials (AP) are of interest. Such a circuit can enable massive compression of data facilitating wireless transmission. This design can generate a high signal-to-noise ratio (SNR) output by approximating the popularly used nonlinear energy operator (NEO) through standard analog blocks. We show that a low pass filter after the NEO can be used for two functions-(i) estimate and cancel low frequency interference and (ii) estimate threshold for spike detection. The circuit is implemented in a 65 nm CMOS process and occupies 200 μm × 150 μ m of chip area. Operating from a 0.7 V power supply, it consumes about 30 nW of static power and 7 nW of dynamic power for 100 Hz input spike rate making it the lowest power consuming spike detector reported so far. PMID:26168445

  6. 65nm RadSafe™ Technology for RC64 and Advanced SOCs

    NASA Astrophysics Data System (ADS)

    Liran, Tuvia; Ginosar, Ran; Lange, Fredy; Mandler, Alberto; Aviely, Peleg; Meirov, Henri; Goldberg, Michael; Meister, Zeev; Oliel, Mickey

    2015-09-01

    The trend of scaling of microelectronic provides certain advantages for space components, as well as some challenges. It enables implementing highly integrated and high performance ASICs, reducing power, area and weight. Scaling also improves the immunity to TID and SEL in most cases, but increases soft error rate significantly. Ramon Chips adopted the 65nm technology for implementing RC64 [1,2], a 64 core DSP for space applications, and for making other future products. The 65nm process node is widely used, very mature, and supported by wide range of IP providers. Thus the need for full custom design of cores and IPs is minimized, and radiation hardening is achievable by mitigating the radiation effects on the available IPs, and developing proprietary IPs only for complementing the available IPs. The RadSafe_65TM technology includes hardened standard cells and I/O libraries, methods for mitigation of radiation effects in COTS IP cores (SRAM, PLL, SERDES, DDR2/3 interface) and adding unique cores for monitoring radiation effects and junction temperature. We had developed RADIC6, a technology development vehicle, for verification of all hard cores and verification of the methodologies and design flow required for RC64. RADIC6 includes the test structures for characterizing the IP cores for immunity to all radiation effects. This paper describes the main elements and IP cores of RadSafe_65TM, as well as the contents of RADIC6 test chip.

  7. Manufacturing of ArF chromeless hard shifter for 65-nm technology

    NASA Astrophysics Data System (ADS)

    Park, Keun-Taek; Dieu, Laurent; Hughes, Greg P.; Green, Kent G.; Croffie, Ebo H.; Taravade, Kunal N.

    2003-12-01

    For logic design, Chrome-less Phase Shift Mask is one of the possible solutions for defining small geometry with low MEF (mask enhancement factor) for the 65nm node. There have been lots of dedicated studies on the PCO (Phase Chrome Off-axis) mask technology and several design approaches have been proposed including grating background, chrome patches (or chrome shield) for applying PCO on line/space and contact pattern. In this paper, we studied the feasibility of grating design for line and contact pattern. The design of the grating pattern was provided from the EM simulation software (TEMPEST) and the aerial image simulation software. AIMS measurements with high NA annular illumination were done. Resist images were taken on designed pattern in different focus. Simulations, AIMS are compared to verify the consistency of the process with wafer printed performance.

  8. Low-frequency noise characteristics in the MOSFETs processed in 65 nm technology

    NASA Astrophysics Data System (ADS)

    Yuan, Liu; Yurong, Liu; Yujuan, He; Bin, Li; Yunfei, En; Wenxiao, Fang

    2016-06-01

    Low-frequency noise behavior in the MOSFETs processed in 65 nm technology is investigated in this paper. Low-frequency noise for NMOS transistors agrees with McWhorter's theory (carrier number fluctuation), low-frequency noise in the sub-threshold regime agrees with McWhorter's theory for PMOS transistors while it agree with Hooge's theory (carrier mobility fluctuation) in the channel strong inversion regime. According to carrier number fluctuation model, the extracted trap densities near the interface between channel and gate oxide for NMOS and PMOS transistor are 3.94 × 1017 and 3.56 × 1018 cm‑3/eV respectively. According to carrier mobility fluctuation model, the extracted average Hooge's parameters are 2.42 × 10‑5 and 4 × 10‑4. By consideration of BSIM compact model, it is shown that two noise parameters (NOIA and NOIB) can model the intrinsic channel noise. The extracted NOIA and NOIB are constants for PMOS and their values are equal to 3.94 × 1017 cm‑3/eV and 9.31 × 10‑4 V‑1. But for NMOS, NOIA is also a constant while NOIB is inversely proportional to the effective gate voltage. The extracted NOIA and NOIB for NMOS are equal to 3.56 × 1018 cm‑3/eV and 1.53 × 10‑2 V‑1. Good agreement between simulation and experimental results is achieved. Project supported by the National Natural Science Foundation of China (Nos. 61574048, 61204112) and the Guangdong Natural Science Foundation (No. 2014A030313656).

  9. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  10. Model-based scattering bars implementation for 65nm and 45nm nodes using IML technology

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Van Den Broeke, Doug; Laidig, Tom; Wampler, Kurt E.; Hollerbach, Uwe; Socha, Robert; Chen, J. F.; Hsu, Stephen; Shi, Xuelong

    2005-06-01

    Scattering Bars (SB) OPC, together with optimized illumination, is no doubt one of the critical enablers for low k1 lithography manufacturing. The manufacturing implementation of SB so far has been mainly based on rule-based approach. While this has been working well, a more effective model-based approach is much more desired lithographically for manufacturing at 65nm and 45nm nodes. This is necessary to ensure sufficient process margin using hyper NA for patterning random IC design. In our model-based SB (M-SB) OPC implementation, we have based on the patented IML Technology from ASML MaskTools. In this report, we use both dark field contact hole and clear field poly gate mask to demonstrate this implementation methodology. It is also quite applicable for dark field trench masks, such as local interconnect mask with damascene metal. For our full-chip implementation flow, the first step is to determine the critical design area and then to proceed with NA and illumination optimization. We show that, using LithoCruiser, we are able to select the best NA in combination with optimum illumination via a Diffraction Optical Element (DOE). The decision to use a custom DOE or one from the available DOE library from ASML can be made based on predicted process performance and cost effectiveness. With optimized illumination, it is now possible to construct an interference map for the full-chip mask pattern. Utilizing the interference map, M-SB OPC is generated. Next, model OPC can be applied with the presence of M-SB for the entire chip. It is important to note here, that from our experience, the model OPC must be calibrated with the presence of SB in order to achieve the desired accuracy. We report the full-chip processing benchmark using MaskWeaver to apply both M-SB and model OPC. For actual patterning performance, we have verified the full chip OPC treatment using SLiC, a DFM tool from Cadence. This implementation methodology can be applied to binary chrome mask

  11. Resolution enhancement technology for ArF dry lithography at 65 nm node

    NASA Astrophysics Data System (ADS)

    Gao, Songbo; Li, Yanqui

    2007-12-01

    The performance of ArF dry lithography at 65 nm node was studied together with RET. Commercial software Prolith 9.0 and in-house-software MicroCruiser 5.0 were used for simulation and mass data process. The combination of different phase shift mask (PSM), off axis illumination and patterns were chosen for this research. The image contrast, nominal image log-slope (NILS), depth of focus (DOF) and resist profile were considered to judge the lithography performance. The results show that the combination of small sigma conventional illumination and alternating phase shift mask (alt- PSM) is the best choice for Line/Space (L/S) patterns of different pitches. The isolate L/S pattern can be imaged with a large image contrast and DOF if alt-PSM and several kinds of illumination (such as small sigma, annular, and quasar illumination) are joined together. For semi-dense and dense L/S pattern, good lithography performance can be reached by using only small sigma illumination and alt-PSM. The impact of polarization illumination was also considered. Y-polarization illumination enhances the image contrast, NILS and the DOF for most conditions. The Z-orientation resist image fidelity was studied by optimization of the double bottom anti-reflection coating (DBARC) and resist thickness. This research predicts that 65 nm L/S pattern can be fabricated by current ArF dry lithography system.

  12. Evaluation of SCAA mask technology as a pathway to the 65-nm node

    NASA Astrophysics Data System (ADS)

    Beach, James V.; Petersen, John S.; Maslow, Mark J.; Gerold, David J.; McCafferty, Diane C.

    2003-06-01

    This study takes an integrated approach utilizing a combination of high NA 193 nm lithography, a sidewall chrome alternating aperture (SCAA) phase shift mask, optical proximity correction (OPC) and customized illumination in an attempt to demonstrate the feasibility of using 193 nm lithography to support the 65 nm node. A SCAA mask was designed and built with line/space patterns ranging in pitch from 300 nm down to 140 nm. A range of mask biases were applied to the zero and pi spaces in order to examine to response of the lithography to a combination of the SCAA approach and asymmetric biasing. In combination to the asymmetric biasing, overlay bracketing was applied in order to measure the chrome overlay tolerances of the mask. Simulations suggested that an unconventionally small sigma of 0.15 would be the optimum coherence for a high 193 nm optical system. A custom 0.15 sigma partial coherence illuminator was, therefore, built and installed in the experimental ASML Micrascan V 0.75 NA 193 nm scanner. Wafers were exposed using 190 nm of 193 nm resist and an organic BARC. The 70 nm 1:1 line/space patterns resolved with a depth of focus of about 0.2 μm. The 75 nm 1:1 line/space patterns showed a 0.3-0.4 μm depth of focus. Both of these process windows were limited by pattern collapse. Addressing the pattern collapse may improve the depth of focus. Comparing mask measurements to wafer measurements show that little or no asymmetric biasing in necessary to balance the pitch. Moreover, the measured pitch was stable over a focus range of at least 0.4 microns demonstrating that any phase imbalance present was not significantly affecting the observed lithography.

  13. A 2-mW 50-dB DR wideband hybrid AGC for a GNSS receiver in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Baoyong, Chi; Yang, Xu; Nan, Qi; Zhihua, Wang

    2012-07-01

    A low-power wideband hybrid automatic gain control (AGC) loop for a GNSS receiver is presented. Single AGC in the I/Q path is composed of four-stage programmable gain amplifiers (PGAs), a differential peak detector, two comparators, a control algorithm logic, a decoder and the reference voltage source. Besides being controlled by an AGC loop, the gain of PGAs could alternatively be controlled by an off-chip digital baseband processor through the SPI interface. To obtain low power consumption and noise, an improved source degenerated amplifier is adopted, and the I/Q path phase mismatch within the ±5° range is calibrated with 0.2° accuracy. Implemented in 65 nm CMOS, the measured PGA total gains range from 9.8 to 59.5 dB with an average step of 0.95 dB and simulated bandwidth of more than 110 MHz. The settling time is about 180 μs with 80% AM input with measured signal power from -76.7 to -56.6 dBm from a radio-frequency amplifier (RFA) input port, and also reduces to 90 μs with clock frequency doubling. The single AGC consumes almost 0.8 mA current from the 2.5-V supply and occupies an area of 750 × 300 μm2.

  14. Lithography manufacturing implementation for 65 nm and 45 nm nodes with model-based scattering bars using IML technology

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Van Den Broeke, Doug; Laidig, Tom; Wampler, Kurt E.; Hollerbach, Uwe; Socha, Robert; Chen, J. F.; Hsu, Stephen; Shi, Xuelong

    2005-05-01

    Scattering Bars (SB) OPC, together with optimized illumination, is no doubt one of the critical enablers for low k1lithography manufacturing. (1) The manufacturing implementation of SB so far has been mainly based on rule-based approach. While thiis has been working well, a more effective model-based approach is much more desired lithographically for manufacturing at 65nm and 45nm nodes. This is necessary to ensure sufficient process margin using hyper NA for patterning random IC design. In our model-based SB (M-SB) OPC implementation, we have based on the patented IML. Technology from ASML MaskTools.(2,3) In this report, we use both dark field contact hole and clear field poly gate mask to demonstrate this implementation methodology. It is also quite applicable for dark field trench masks, such as local interconnect mask with damascene metal. For our full-chip implementation flow, the first step is to determine the critical design area and then to proceed with NA and illumination optimization. We show that, using LithoCruiser, we are able to select the best NA in combination with optimum illumination via a Diffraction Optical Element (DOE). The decision to use a custom DOE or one from the available DOE library from ASML can be made based on predicted process performance and cost effectiveness. With optimized illumination, it is now possible for MaskWeaver to construct an interference map for the full-chip mask pattern. Utilizing the interference map, M-SB OPC is generated. Next, model OPC can be applied with the presence of M-SB for the entire chip. It is important to note here, that from our experience, the model OPC must be calibrated with the presence of SB in order to achieve the desired accuracy. We report the full-chip processing benchmark using MaskWeaver to apply both M-SB and model OPC. For actual patterning performance, we have verified the full chip OPC treatment using SLiC, a DFM tool from Cadence. This implementation methodology can be applied to

  15. Total dose responses and reliability issues of 65 nm NMOSFETs

    NASA Astrophysics Data System (ADS)

    Dezhao, Yu; Qiwen, Zheng; Jiangwei, Cui; Hang, Zhou; Xuefeng, Yu; Qi, Guo

    2016-06-01

    In this paper, total dose responses and reliability issues of MOSFETs fabricated by 65 nm CMOS technology were examined. “Radiation-induced narrow channel effect” is observed in a narrow channel device. Similar to total dose responses of NMOSFETs, narrow channel NMOSFEs have larger hot-carrier-induced degradation than wide channel devices. Step Time-Dependent Dielectric Breakdown (TDDB) stresses are applied, and narrow channel devices have higher breakdown voltage than wide channel devices, which agree with “weakest link” theory of TDDB. Experimental results show that linear current, transconductance, saturated drain current and subthreshold swing are superposed degenerated by total dose irradiation and reliability issues, which may result in different lifetime from that considering total dose irradiation reliability issues separately. Project supported by “Light of West China” Program of CAS (No. XBBS201219).

  16. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  17. On-chip polarizer on image sensor using advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Wakama, Norimitsu; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2014-03-01

    The structures in advanced complementary metal-oxide-semiconductor (CMOS) integrated circuit technology are in the range of deep-submicron. It allows designing and integrating nano-photonic structures for the visible to near infrared region on a chip. In this work, we designed and fabricated an image sensor with on-pixel metal wire grid polarizers by using a 65-nm standard CMOS technology. It is known that the extinction ratio of a metal wire grid polarizer is increased with decrease in the grid pitch. With the metal wire layers of the 65-nm technology, the grid pitch sufficiently smaller than the wavelengths of visible light can be realized. The extinction ratio of approximately 20 dB has been successfully achieved at a wavelength of 750 nm. In the CMOS technologies, it is usual to include multiple metal layers. This feature is also useful to increase the extinction ratio of polarizers. We designed dual layer polarizers. Each layer partially reflects incident light. Thus, the layers form a cavity and its transmission spectrum depends on the layer position. The extinction ratio of 19.2 dB at 780 nm was achieved with the grid pitch greater than the single layer polarizer. The high extinction ratio is obtained only red to near infrared region because the fine metal layers of deepsubmicron standard CMOS process is usually composed of Cu. Thus, it should be applied for measurement or observation where wide spectrum is not required such as optical rotation measurement of optically active materials or electro-optic imaging of RF/THz wave.

  18. Full phase-shifting methodology for 65-nm node lithography

    NASA Astrophysics Data System (ADS)

    Pierrat, Christophe; Driessen, Frank A. J. M.; Vandenberghe, Geert

    2003-06-01

    A new methodology for completely phase-shifting a poly layout without creating local phase conflicts was proposed for lithographic techniques combining one phase-shifting mask and one binary mask exposure1. Critical and non-critical areas of the layout are identified and phase conflicts are avoided by splitting the shifter regions from non-critical areas to non-critical areas without crossing critical areas. The out-of-phase splits of the shifter regions are removed using the binary exposure. Simulation results and experimental data collected for 90nm technology node show no sign of process latitude loss around the areas where the shifters are split. The overlay latitude is commensurate with 90nm technology scanner requirements (tool to itself). Simulation work shows that the two exposures are balancing each other out of focus in the 45-degree cut regions thus ensuring large focus latitude. The focus latitude reported is larger than the main feature process latitude; this result was confirmed experimentally. A set of phase-shifting design rules commensurate with an aggressive 65nm node technology (140nm pitch) was put together. Under these conditions, we have identified certain types of cuts that should be avoided during the generation of the phase-shifting layout; this is primarily the case for cuts in "elbow" structures which exhibit limited process latitude. Other cuts like line-end cuts will have to be modified. In this case we have proposed a side cut when the line-end is facing a perpendicular line with a minimum spacing. Despite these restrictions, test structures for the 65nm technology node were successfully converted with no phase conflicts. Experimental verification done on test structures using a 0.75 NA, 193nm scanner demonstrates 0.33 k1 capability using the full phase methodology.

  19. A Three-Stage Inverter-Based Stacked Power Amplifier in 65 nm Complementary Metal Oxide Semiconductor Process

    NASA Astrophysics Data System (ADS)

    Kiumarsi, Hamid; Mizuochi, Yutaka; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2012-02-01

    A three-stage inverter-based stacked power amplifier (PA) in complementary metal oxide semiconductor (CMOS) process is proposed to overcome low breakdown voltage problem of scaled CMOS technologies. Unlike previous reported stacked PAs which radio frequency choke (RFC) was inevitable, we proposed stacked nMOS and pMOS transistors which effectively eliminates use of RFC. By properly setting self-biased circuits' and transistors' parameters, output impedance could reach up to 50 Ω which together with not employing the RFC makes this topology very appealing for the scalable PA realization. As a proof of concept, a three-stage PA using 65 nm CMOS technology is implemented. With a 6 V power supply for the third stage, the fabricated PA shows a small-signal gain of 36 dB, a saturated output power of 16 dBm and a maximum power added efficiency of 10% at 1 GHz. Using a 7.5 V of power supply, saturated output power reaches 18 dBm. To the best of our knowledge, this is the first reported inverter-based stacked PA.

  20. Predictions for proton and heavy ions induced SEUs in 65 nm SRAMs

    NASA Astrophysics Data System (ADS)

    Shougang, Du; Suge, Yue; Hongxia, Liu; Long, Fan; Hongchao, Zheng

    2015-11-01

    We report on irradiation induced single event upset (SEU) by high-energy protons and heavy ions. The experiments were performed at the Paul Scherer Institute, and heavy ions at the SEE irradiating Facility on the HI-13 Tandem Accelerator in China's Institute of Atomic Energy, Beijing and the Heavy Ion Research Facility in Lanzhou in the Institute of Modern Physics, Chinese Academy of Sciences. The results of proton and heavy ions induced (SEU) in 65 nm bulk silicon CMOS SRAMS are discussed and the prediction on several typical orbits are presented.

  1. 65-nm full-chip implementation using double dipole lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank

    2003-06-01

    Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.

  2. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  3. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  4. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  5. A 65-nm low-noise low-cost ΣΔ modulator for audio applications

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Lu, Liao; Hao, Luo; Xiaopeng, Liu; Xiaoxia, Han; Yan, Han

    2012-02-01

    This paper introduces a low-noise low-cost ΣΔ modulator for digital audio analog-to-digital conversion. By adopting a low-noise large-output swing operation amplifier, not only is the flicker noise greatly inhibited, but also the power consumption is reduced. Also the area cost is relatively small. The modulator was implemented in a SMIC standard 65-nm CMOS process. Measurement results show it can achieve 96 dB peak signal-to-noise plus distortion ratio (SNDR) and 105 dB dynamic range (DR) over the 22.05-kHz audio band and occupies 0.16 mm2. The power consumption of the proposed modulator is 4.9 mW from a 2.5 V power supply, which is suitable for high-performance, low-cost audio codec applications.

  6. A 65 nm pixel readout ASIC with quick transverse momentum discrimination capabilities for the CMS Tracker at HL-LHC

    NASA Astrophysics Data System (ADS)

    Ceresa, D.; Kaplon, J.; Francisco, R.; Caratelli, A.; Kloukinas, K.; Marchioro, A.

    2016-01-01

    A readout ASIC for the hybrid pixel detector with the capability of performing quick recognition of particles with high transverse momentum has been designed for the requirements of the CMS Outer Tracker at the High Luminosity LHC . The particle momentum dicrimination capability represents the main challenge for this design together with the low power requirement: the constraint of low mass for the new tracker dictates a total power budget of less than 100 mW/cm2. The choice of a 65 nm CMOS technology has made it possible to satisfy this power requirement despite the fairly large amount of logic necessary to perform the momentum discrimination and the continuous operation at 40 MHz. Several techniques for low power have been used to implement this logic that performs cluster reduction, position offset correction and coordinate encoding. A prototype chip including a large part of the final functionality and the full front-end has been realized and comprises a matrix of 16 by 3 rectangular pixels of 100 μm × 1446 μm, providing 7.65 mm2 of segmented active area. Measurements of the analog front-end characteristics closely match the simulations and confirm the consumption of < 30 μA per pixel. Front-end characterization and irradiation results up to 150 MRad are also reported.

  7. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  8. Advancement of CMOS Doping Technology in an External Development Framework

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  9. Impact of technology trends on SEU in CMOS SRAMs

    SciTech Connect

    Dodd, P.E.; Sexton, F.W.; Hash, G.L.; Shaneyfelt, M.R.; Draper, B.L.; Farino, A.J.; Flores, R.S.

    1996-12-01

    The impact of technology trends on the SEU hardness of epitaxial CMOS SRAMs is investigated using three-dimensional simulation. The authors study trends in SEU susceptibility with parameter variations across and within technology generations. Upset mechanisms for various strike locations and their dependence on gate-length scaling are explored. Such studies are useful for technology development and providing input for process and design decisions. An application of SEU simulation to the development of a 0.5-{micro}m radiation-hardened CMOS SRAM is presented.

  10. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  11. Meeting critical gate linewidth control needs at the 65 nm node

    NASA Astrophysics Data System (ADS)

    Mahorowala, Arpan; Halle, Scott; Gabor, Allen; Chu, William; Barberet, Alexandra; Samuels, Donald; Abdo, Amr; Tsou, Len; Yan, Wendy; Iseda, Seiji; Patel, Kaushal; Dirahoui, Bachir; Nomura, Asuka; Ahsan, Ishtiaq; Azam, Faisal; Berg, Gary; Brendler, Andrew; Zimmerman, Jeffrey; Faure, Tom

    2006-03-01

    With the nominal gate length at the 65 nm node being only 35 nm, controlling the critical dimension (CD) in polysilicon to within a few nanometers is essential to achieve a competitive power-to-performance ratio. Gate linewidths must be controlled, not only at the chip level so that the chip performs as the circuit designers and device engineers had intended, but also at the wafer level so that more chips with the optimum power-to-performance ratio are manufactured. Achieving tight across-chip linewidth variation (ACLV) and chip mean variation (CMV) is possible only if the mask-making, lithography, and etching processes are all controlled to very tight specifications. This paper identifies the various ACLV and CMV components, describes their root causes, and discusses a methodology to quantify them. For example, the site-to-site ACLV component is divided into systematic and random sub-components. The systematic component of the variation is attributed in part to pattern density variation across the field, and variation in exposure dose across the slit. The paper demonstrates our team's success in achieving the tight gate CD tolerances required for 65 nm technology. Certain key challenges faced, and methods employed to overcome them are described. For instance, the use of dose-compensation strategies to correct the small but systematic CD variations measured across the wafer, is described. Finally, the impact of immersion lithography on both ACLV and CMV is briefly discussed.

  12. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  13. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; French, M.; Manolopoulos, S.; Tyndel, M.; Allport, P.; Bates, R.; O'Shea, V.; Hall, G.; Raymond, M.

    2003-03-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to tape. Because of the large number of pixels, data reduction is needed on the sensor itself or just outside. This brings in stringent requirements on the temporal noise as well as to the sensor uniformity, expressed as a Fixed Pattern Noise (FPN). A pixel architecture with an additional transistor is proposed. This architecture, coupled to correlated double sampling of the signal will allow cancellation of the two dominant noise sources, namely the reset or kTC noise and the FPN. A prototype has been designed in a standard 0.25 μm CMOS technology. It has also a structure for electrical calibration of the sensor. The prototype is functional and detailed tests are under way.

  14. A dual redundancy radiation-hardened flip—flop based on a C-element in a 65 nm process

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bo, Gao; Min, Gong

    2013-09-01

    A radiation-hardened flip—flop is proposed to mitigate the single event upset (SEU) effect. Immunity was achieved through the use of C-elements and redundant storage elements. It takes advantage of the property of a C-element in which it enters a high impedance mode when its inputs are of different logic values. Redundant storage nodes are then used to drive the C-elements so that a single upset pulse in any storage will be prevented from altering the state of the output of the flip—flop. The flip—flop was implemented using 48 transistors and occupied an area of 30.78 μm2, using 65 nm CMOS process. It consumed 22.6% fewer transistors as compared to the traditional SEU resilient TMR flip—flop.

  15. Scaled CMOS Technology Reliability Users Guide

    NASA Technical Reports Server (NTRS)

    White, Mark

    2010-01-01

    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is

  16. High total dose effects on CMOS/SOI technology

    SciTech Connect

    Flament, O.; Dupont-Nivet, E.; Leray, J.L.; Pere, J.F.; Delagnes, E. ); Auberton-Herve, A.J.; Giffard, B. ); Borel, G.; Ouisse, T. )

    1992-06-01

    This paper reports that, CMOS silicon on insulator technology has shown its ability to process hardened components which remain functional after irradiation with a total dose of several tens of Megarads. New tests on elementary transistors and 29101 microprocessor have been made at doses up to 100 Mrad (SiO{sub 2}) and above. Results of irradiation at these total doses are presented for different biases, together with the post-irradiation behavior of the components. All the observations show that new parameters must be taken into account for hardness insurance at a high level of total dose.

  17. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  18. Scatterometry based 65nm node CDU analysis and prediction using novel reticle measurement technique

    NASA Astrophysics Data System (ADS)

    van Ingen Schenau, Koen; Vanoppen, Peter; van der Laan, Hans; Kiers, Ton; Janssen, Maurice

    2005-05-01

    Scatterometry was selected as CD metrology for the 65nm CDU system qualification. Because of the dominant reticle residuals component in the 65nm CD budget for dense lines, significant improvements in reticle CD metrology were required. SEM is an option but requires extensive measurements due to the scatterometry grating modules. Therefore a new technique was developed and called SERUM (Spot sensor Enabled Reticle Uniformity Measurements). It uses the on board exposure system metrology sensors to measure transmission that is converted to reticle CD. It has the advantage that an entire reticle is measured within two minutes with good repeatability. The reticle fingerprints correlate well to the SEM measurements. With the improvements in reticle CD metrology offered by SEM and SERUM the reticle residuals component no longer dominates the 65nm budget for CDU system qualification.

  19. Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction

    SciTech Connect

    Zhang, Peng; Istratov, Andrei A.; Weber, Eicke R.; Kisielowski, Christian; He, Haifeng; Nelson, Chris; Spence, John C.H

    2006-01-01

    Using the energy-filtered convergent-beam electron diffraction !CBED" technique in a transmission electron microscope, the authors report here a direct measurement of the lattice parameters of uniaxially strained silicon as close as 25 nm below the gate in a 65 nm node p-type metal-oxide-semiconductor field-effect transistor with SiGe source and drain. It is found that the dominant strain component (0.58%) is compressive along the source-drain direction. The compressive stress is 1.1 GPa along this direction. These findings demonstrate that CBED can serve as a strain metrology technique for the development of strained silicon device technology

  20. Single donor electronics and quantum functionalities with advanced CMOS technology.

    PubMed

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-16

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature. PMID:26871255

  1. Single donor electronics and quantum functionalities with advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-01

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature.

  2. Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.; Gorelick, Jerry L.; Berg, M. D.; Kim, H.; LaBel, K.; Friendlich, M.; Koga, R.; George, J.; Crain, S.; Yu, P.; Reed, R. A.

    2006-01-01

    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer.

  3. Failure analysis of a half-micron CMOS IC technology

    SciTech Connect

    Liang, A.Y.; Tangyunyong, P.; Bennett, R.S.; Flores, R.S.

    1996-08-01

    We present the results of recent failure analysis of an advanced, 0.5 {mu}m, fully planarized, triple metallization CMOS technology. A variety of failure analysis (FA) tools and techniques were used to localize and identify defects generated by wafer processing. These include light (photon) emission microscopy (LE), fluorescent microthermal imaging (FMI), focused ion beam cross sectioning, SEM/voltage contrast imaging, resistive contrast imaging (RCI), and e-beam testing using an IDS-5000 with an HP 82000. The defects identified included inter- and intra-metal shorts, gate oxide shorts due to plasma processing damage, and high contact resistance due to the contact etch and deposition process. Root causes of these defects were determined and corrective action was taken to improve yield and reliability.

  4. Future directions for CMOS device technology development from a system application perspective

    NASA Astrophysics Data System (ADS)

    Ning, Tak H.

    2007-03-01

    The development of CMOS technology has been, and will remain, driven by system needs. Traditionally, these needs have been met quite satisfactorily by simply reducing the physical size of the transistors as guided by the MOSFET scaling theory and increasing the chip-level integration density as anticipated from "Moore's Law." Now that CMOS has reached its scaling limits, continued progress has to come from innovations beyond the traditional development paths, guided by anticipating and addressing system designers' concerns and needs. In this talk, we examine several opportunities for extending current CMOS technology to continue satisfying the needs of system designers.

  5. Double exposure for the contact layer of the 65-nm node

    NASA Astrophysics Data System (ADS)

    Owe-Yang, Dah-Chung; Yu, S. S.; Chen, Harrison; Chang, C. Y.; Ho, Bang-Chein; Lin, John C.; Lin, Burn J.

    2005-05-01

    The critical dimension (CD) of contact holes for the 65-nm application specific integrated circuit (ASIC) is 100 nm according to the 2002 update of the International Technology Roadmap for Semiconductors. The common through-pitch depth of focus (DOF) of such contact holes is very small using the current ArF exposure tool. High-numerical-aperture (NA) ArF exposure tools are not expected to improve the common DOF that scales by the square of the numerical half aperture. High-transmission attenuated phase-shifting masks increase the DOF of isolated contact holes. Off-axis illumination such as annular or quadrupole illumination improves the DOF of dense contact holes. Nonetheless, both the isolated and the dense contact holes need to be printed within spec on logic circuit. To delineate 100-nm contact holes at several different pitches, we proposed the pack-and-unpack (PAU) process which employs double exposures. First, dummy holes are added to the surroundings of isolated contact holes facilitating the patterning of the resultant dense pattern with a resolution enhancement technique that favors dense contact holes. For example, dense holes are packed to 180-nm pitch and imaged with high-NA lens setting and quadrupole illumination. Then, the second image is used to open the desired holes or block the dummy contact holes. The purpose of this study was to develop new methods and new materials for the patterning of the second image. Three approaches were investigated. The first approach was forming an isolation layer to protect the first image; second, applying UV curing to harden the first image; third, using alcohol-based resists to pattern the second image. Among those three approaches of printing the second image, using resist in alcohols is the most convenient method. Even though the CD control of the second image is not so critical, resolution and process window of resists may need further improvement for 45-nm node and below. Using the second approach allows

  6. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    SciTech Connect

    Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

  7. Long term ionization response of several BiCMOS VLSIC technologies

    SciTech Connect

    Pease, R.L. ); Combs, W.; Clark, S. )

    1992-06-01

    BiCMOS is emerging as a strong competitor to CMOS for gate arrays and memories because of its performance advantages for the same feature size. In this paper, the authors examine the long term ionization response of five BiCMOS technologies by characterizing test structures which emphasize the various failure modes of CMOS and bipolar. The primary failure modes are found to be associated with the recessed field oxide isolation; edge leakage in the n channel MOSFETs and buried layer to buried layer leakage in the bipolar. The ionization failure thresholds for worst case bias were in the range of 5-20 Krad(Si) for both failure modes in all five technologies.

  8. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  9. 1.2-17.6 GHz Ring-Oscillator-Based Phase-Locked Loop with Injection Locking in 65 nm Complementary Metal Oxide Semiconductor

    NASA Astrophysics Data System (ADS)

    Lee, Sang-yeop; Ito, Hiroyuki; Amakawa, Shuhei; Tanoi, Satoru; Ishihara, Noboru; Masu, Kazuya

    2012-02-01

    A wide-frequency-range phase-locked loop (PLL) with subharmonic injection locking is proposed. The PLL is equipped with a wide tunable ring-type voltage-controlled oscillator (ring VCO), frequency dividers, and a doubler in order to the widen injection-locked tuning range (ILTR). In addition, high-frequency injection signals are used to improve phase noise, which is supposed to be generated by a reference PLL. The proposed circuit is fabricated by using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. The measured frequency tuning range is from 1.2 to 17.6 GHz with a frequency doubler and dividers. The phase noise at 14.4 GHz (=32×450 MHz) with injection locking was -109 dBc/Hz, which shows a 21-dB reduction compared with that in the case without injection locking.

  10. Overcoming scaling concerns in a radiation-hardening CMOS technology

    SciTech Connect

    Maimon, J.; Haddad, N.

    1999-12-01

    Scaling efforts to develop an advanced radiation-hardened CMOS process to support a 4M SRAM are described. Issues encountered during scaling of transistor, isolation, and resistor elements are discussed, as well as the solutions used to overcome these issues. Transistor data, total dose radiation results, and the performance of novel resistors for prevention of single event upsets (SEU) are presented.

  11. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  12. P-well or N-well CMOS technology for advanced SEU-hard SRAMs

    SciTech Connect

    Fu, J.S.

    1988-01-01

    The decoupling resistances required for SEU hardening CMOS SRAMs of the 2..mu..m p-well and n-well technologies are compared. An advanced device-plus-circuit simulator has been used to illuminate the underpinings of why one technology is intrinsically more SEU tolerant than the other. 3 refs., 5 figs.

  13. Implementation of reflected light die-to-die inspection and ReviewSmart to improve 65nm DRAM mask fabrication

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Cho, Won Il; Park, Jin Hyung; Chung, Dong Hoon; Cha, Byung Chul; Choi, Seong Woon; Han, Woo Sung; Park, Ki Hun; Kim, Nam Wook; Hess, Carl; Ma, Weimin; Kim, David

    2005-11-01

    As the design rule continues to shrink towards 65nm size and beyond the defect criteria are becoming ever more challenging. Pattern fidelity and reticle defects that were once considered as insignificant or nuisance are now becoming significant yield impacting defects. The intent of this study is to utilize the new generation DUV system to compare Die-to-Die Reflected Light inspection and Die-to-Die Transmitted Light Inspection to increase defect detection for optimization of the 65nm node process. In addition, the ReviewSmart will be implemented to help categorically identify systematic tool and process variations and thus allowing user to expedite the learning process to develop a production worthy 65nm node mask process. The learning will be applied to Samsung's pattern inspection strategy, complementing Transmitted Light Inspection, on critical layers of 65 nm node to gain ability to find defects that adversely affect process window.

  14. Integration of GMR-based spin torque oscillators and CMOS circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Tingsu; Eklund, Anders; Sani, Sohrab; Rodriguez, Saul; Malm, B. Gunnar; Åkerman, Johan; Rusu, Ana

    2015-09-01

    This paper demonstrates the integration of giant magnetoresistance (GMR) spin torque oscillators (STO) with dedicated high frequency CMOS circuits. The wire-bonding-based integration approach is employed in this work, since it allows easy implementation, measurement and replacement. A GMR STO is wire-bonded to the dedicated CMOS integrated circuit (IC) mounted on a PCB, forming a (GMR STO + CMOS IC) pair. The GMR STO has a lateral size of 70 nm and more than an octave of tunability in the microwave frequency range. The proposed CMOS IC provides the necessary bias-tee for the GMR STO, as well as electrostatic discharge (ESD) protection and wideband amplification targeting high frequency GMR STO-based applications. It is implemented in a 65 nm CMOS process, offers a measured gain of 12 dB, while consuming only 14.3 mW and taking a total silicon area of 0.329 mm2. The measurement results show that the (GMR STO + CMOS IC) pair has a wide tunability range from 8 GHz to 16.5 GHz and improves the output power of the GMR STO by about 10 dB. This GMR STO-CMOS integration eliminates wave reflections during the signal transmission and therefore exhibits good potential for developing high frequency GMR STO-based applications, which combine the features of CMOS and STO technologies.

  15. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 μm technology

    NASA Astrophysics Data System (ADS)

    Pellion, D.; Jradi, K.; Brochard, N.; Prêle, D.; Ginhac, D.

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 μm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1

  16. Three-dimensional confocal imaging for breast cancer detection using CMOS Gaussian monocycle pulse transmitter and 4 × 4 ultra wideband antenna array with impedance matching layer

    NASA Astrophysics Data System (ADS)

    Sugitani, Takumi; Kubota, Shinichi; Hafiz, Mohiuddin; Xiao, Xia; Kikkawa, Takamaro

    2014-01-01

    A time-domain reflectometry breast cancer detection system was developed, which was composed of a Gaussian monocycle pulse (GMP) transmitter circuit fabricated by complementary metal oxide semiconductor (CMOS) 65 nm technology and an ultra wide-band (UWB) planar slot antenna array. The center frequency and bandwidth of the antenna were 6 and 9.2 GHz, respectively. The GMP train having the pulse width of 160 ps was generated by the 65 nm CMOS logic circuit with a core area of 0.0017 mm2 and was emitted by the 4 × 4 planar slot antenna array. The fabricated planar 4 × 4 antenna array with the matching layer could resolve the two separate 5 × 5 × 5 mm3 breast tumor phantoms, which were located at the depth of 22 mm with the spacing of 8 mm.

  17. Nano-electromechanical switch-CMOS hybrid technology and its applications.

    PubMed

    Lee, B H; Hwang, H J; Cho, C H; Lim, S K; Lee, S Y; Hwang, H

    2011-01-01

    Si-based CMOS technology is facing a serious challenge in terms of power consumption and variability. The increasing costs associated with physical scaling have motivated a search for alternative approaches. Hybridization of nano-electromechanical (NEM)-switch and Si-based CMOS devices has shown a theoretical feasibility for power management, but a huge technical gap must be bridged before a nanoscale NEM switch can be realized due to insufficient material development and the limited understanding of its reliability characteristics. These authors propose the use of a multilayer graphene as a nanoscale cantilever material for a nanoscale NEM switchwith dimensions comparable to those of the state-of-the-art Si-based CMOS devices. The optimal thickness for the multilayer graphene (about five layers) is suggested based on an analytical model. Multilayer graphene can provide the highest Young's modulus among the known electrode materials and a yielding strength that allows more than 15% bending. Further research on material screening and device integration is needed, however, to realize the promises of the hybridization of NEM-switch and Si-based CMOS devices. PMID:21446436

  18. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  19. Automation of CMOS technology migration illustrated by RGB to YCrCb analogue converter

    NASA Astrophysics Data System (ADS)

    Naumowicz, M.; Melosik, M.; Katarzynski, P.; Handkiewicz, A.

    2013-09-01

    The paper illustrates a practical example of technology migration applied to the colour space converter realized in CMOS technology. The element has analogue excitation and response signals expressed in current mode. Such converter may be incorporated into an integrated vision sensor for preconditioning acquired image data. The idea of a computer software tool supporting the automated migration and design reuse is presented as the major contribution. The mentioned tools implement the Hooke-Jeeves direct search method for performing the multivariable optimization. Our purpose is to ensure transferring the circuit between usable fabrication technologies and preserving its functional properties. The colour space converter is treated as the case study for performance evaluation of the proposed tool in cooperation with HSPICE simulation software. The original CMOS technology files for Taiwan semiconductor (TSMC) plant were utilized for the research. The automated design migration from 180 nm into 90 nm resulted with obtaining compact IC layout characterized by a smaller area and lower power consumption. The paper is concluded with a brief summary that proves the usability of the proposed tool in designing CMOS cells dedicated for low power image processing.

  20. Advanced simulation technology for etching process design for CMOS device applications

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki; Fukasawa, Masanaga; Tatsumi, Tetsuya

    2016-07-01

    Plasma etching is a critical process for the realization of high performance in the next generation of CMOS devices. To predict and control fluctuations in the etching properties accurately during mass production, it is essential that etching process simulation technology considers fluctuations in the plasma chamber wall conditions, the effects of by-products on the critical dimensions, the Si recess dependence on the wafer open area ratio and local pattern structure, and the time-dependent plasma-induced damage distribution associated with the three-dimensional feature scale profile at the 100 nm level. This consideration can overcome the issues with conventional simulations performed under the assumed ideal conditions, which are not accurate enough for practical process design. In this article, these advanced process simulation technologies are reviewed, and, from the results of suitable process simulations, a new etching system that automatically controls the etching properties is proposed to enable stable CMOS device fabrication with high yields.

  1. SEU testing of a novel hardened register implemented using standard CMOS technology

    SciTech Connect

    Monnier, T.; Roche, F.M.; Cosculluela, J.; Velazco, R.

    1999-12-01

    A novel memory structure, designed to tolerate SEU perturbations, has been implemented in registers and tested. The design was completed using a standard submicron nonradiation hardened CMOS technology. This paper presents the results of heavy ions tests which evidence the noticeable improvement of the SEU-robustness with an increased LET threshold and reduced cross-section, without significant impact to die real estate, write time, or power consumption.

  2. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.

    PubMed

    Hussain, Aftab M; Hussain, Muhammad M

    2016-06-01

    Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. PMID:26607553

  3. Integrated pressure-sensing microsystem by CMOS IC technology for barometal applications

    NASA Astrophysics Data System (ADS)

    Zhou, Minxin; Huang, Qing-An

    2001-10-01

    Most currently integrated silicon microsystems available for pressure sensing are based on preprocessing before CMOS IC technology. These microsystems are generally very sensitive to parasitism effect and not available for IC-compatible process. This limits the accuracy of the microsystem and batch-fabrication. Calibration cost is also increased. To overcome these problems, a new generation of pressure microsystems without preprocessing CMOS IC technology has been proposed. This pressure-sensing system consists of a miniature silicon capacitive sensor, fabricated with silicon-silicon bonding technique, and a detection integrated circuit. Only the standard layers of CMOS process are used to build the system and only several photolithography steps are necessary to achieve the micromachined structure in postprocessing, so a high long-term stability could be assured. The entire system converts absolute pressure changes, in the pressure range useful for barometal applications, to frequency changes. A reference capacitor is used in the system and a (delta) C model is applied to cancel out temperature dependence and to compensate non-linearity. The pressure range of the sensor is from 0.5 bar to 1.5bar and the temperature varies between -25 degree(s)C and -60 degree(s)C. A sensitivity of 50Hz/Torr could be achieved.

  4. Development of a low power Delay-Locked Loop in two 130 nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2016-02-01

    The design and measurement results of two low power DLL prototypes for applications in particle physics readout systems are presented. The DLLs were fabricated in two different 130 nm CMOS technologies, called process A and process B, giving the opportunity to compare these two CMOS processes. Both circuits generate 64 uniform clock phases and operate at similar frequency range, from 20 MHz up to 60 MHz (10 MHz - 90 MHz in process B). The period jitter of both DLLs is in the range 2.5 ps - 12.1 ps (RMS) and depends on the selected output phase. The complete DLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption of around 0.7 mW at typical 40 MHz input. The DLL prototype, designed in process A, occupies 680 μm × 210 μm, while the same circuit designed in process B occupies 430 μm × 190 μm.

  5. A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology.

    PubMed

    Huang, C-W; Huang, Y-J; Yen, P-W; Tsai, H-H; Liao, H-H; Juang, Y-Z; Lu, S-S; Lin, C-T

    2013-11-21

    As developments of modern societies, an on-field and personalized diagnosis has become important for disease prevention and proper treatment. To address this need, in this work, a polysilicon nanowire (poly-Si NW) based biosensor system-on-chip (bio-SSoC) is designed and fabricated by a 0.35 μm 2-Poly-4-Metal (2P4M) complementary metal-oxide-semiconductor (CMOS) process provided by a commercialized semiconductor foundry. Because of the advantages of CMOS system-on-chip (SoC) technologies, the poly-Si NW biosensor is integrated with a chopper differential-difference amplifier (DDA) based analog-front-end (AFE), a successive approximation analog-to-digital converter (SAR ADC), and a microcontroller to have better sensing capabilities than a traditional Si NW discrete measuring system. In addition, an on-off key (OOK) wireless transceiver is also integrated to form a wireless bio-SSoC technology. This is pioneering work to harness the momentum of CMOS integrated technology into emerging bio-diagnosis technologies. This integrated technology is experimentally examined to have a label-free and low-concentration biomolecular detection for both Hepatitis B Virus DNA (10 fM) and cardiac troponin I protein (3.2 pM). Based on this work, the implemented wireless bio-SSoC has demonstrated a good biomolecular sensing characteristic and a potential for low-cost and mobile applications. As a consequence, this developed technology can be a promising candidate for on-field and personalized applications in biomedical diagnosis. PMID:24080725

  6. Prototype Active Silicon Sensor in 150 nm HR-CMOS technology for ATLAS Inner Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Rymaszewski, P.; Barbero, M.; Breugnon, P.; Godiot, S.; Gonella, L.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Liu, J.; Pangaud, P.; Peric, I.; Rozanov, A.; Wang, A.; Wermes, N.

    2016-02-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  7. Total-dose characterization of CMOS/SOI-ZMR technology

    SciTech Connect

    Coumar, O.; Gaillard, R. )

    1992-06-01

    In this paper the authors present the total dose radiation characterization of an unhardened SOI/ZMR technology of CNET/CNS (Centre National d'Etudes des Telecommunications - France). Various bias conditions are applied on front gate oxide and buried oxide during gamma irradiation in order to define the worst and best case configurations for different devices: transistors, capacitors and ring oscillator. The authors compare the radiation responses of transistors with different structures to allow clear separation of device conduction on top channel, back channel and edge channel along the sidewalls of the island. A good correlation is observed between n-substrate capacitor and p-channel transistors irradiated at {minus}5V back-gate bias. Radiation induced kink effects are observed on PMOS transistors for a positive back gate bias (+5V) during irradiation.

  8. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  9. Tunable single hole regime of a silicon field effect transistor in standard CMOS technology

    NASA Astrophysics Data System (ADS)

    Turchetti, Marco; Homulle, Harald; Sebastiano, Fabio; Ferrari, Giorgio; Charbon, Edoardo; Prati, Enrico

    2016-01-01

    The electrical properties of a Single Hole Field Effect Transistor (SH-FET) based on CMOS technology are analyzed in a cryogenic environment. Few electron-hole Coulomb diamonds are observed using quantum transport spectroscopy measurements, down to the limit of single hole transport. Controlling the hole filling of the SH-FET is made possible by biasing the top gate, while the bulk contact is employed as a back gate that tunes the hole state coupling with the contacts and their distance from the interface. We compare the cryogenic Coulomb blockade regime with the room temperature regime, where the device operation is similar to that of a standard p-MOSFET.

  10. Device oriented statistical modeling method for process variability in 45nm analog CMOS technology

    NASA Astrophysics Data System (ADS)

    Ajayan, K. R.; Bhat, Navakanta

    2012-10-01

    With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.

  11. Radiation hardness tests and characterization of the CLARO-CMOS, a low power and fast single-photon counting ASIC in 0.35 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2014-12-01

    The CLARO-CMOS is a prototype ASIC that allows fast photon counting with 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. This chip is capable of single-photon counting with multi-anode photomultipliers and finds applications also in the read-out of silicon photomultipliers and microchannel plates. The prototype is realized in AMS 0.35 micron CMOS technology. In the LHCb RICH environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade in Long Shutdown 2 (LS2), the ASIC must withstand a total fluence of about 6×1012 1 MeV neq /cm2 and a total ionizing dose of 400 krad. A systematic evaluation of the radiation effects on the CLARO-CMOS performance is therefore crucial to ensure long term stability of the electronics front-end. The results of multi-step irradiation tests with neutrons and X-rays up to the fluence of 1014 cm-2 and a dose of 4 Mrad, respectively, are presented, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step.

  12. Finding the right way: DFM versus area efficiency for 65 nm gate layer lithography

    NASA Astrophysics Data System (ADS)

    Sarma, Chandra S.; Scheer, Steven; Herold, Klaus; Fonseca, Carlos; Thomas, Alan; Schroeder, Uwe P.

    2006-03-01

    DFM (Design for Manufacturing) has become a buzzword for lithography since the 90nm node. Implementing DFM intelligently can boost yield rates and reliability in semiconductor manufacturing significantly. However, any restriction on the design space will always result in an area loss, thus diminishing the effective shrink factor for a given technology. For a lithographer, the key task is to develop a manufacturable process, while not sacrificing too much area. We have developed a high performing lithography process for attenuated gate level lithography that is based on aggressive illumination and a newly optimized SRAF placement schemes. In this paper we present our methodology and results for this optimization, using an anchored simulation model. The wafer results largely confirm the predictions of the simulations. The use of aggressive SRAF (Sub Resolution Assist Features) strategy leads to reduction of forbidden pitch regions without any SRAF printing. The data show that our OPC is capable of correcting the PC tip to tip distance without bridging between the tips in dense SRAM cells. SRAF strategy for various 2D cases has also been verified on wafer. We have shown that aggressive illumination schemes yielding a high performing lithography process can be employed without sacrificing area. By carefully choosing processing conditions, we were able develop a process that has very little restrictions for design. In our approach, the remaining issues can be addressed by DFM, partly in data prep procedures, which are largely area neutral and transparent to the designers. Hence, we have shown successfully, that DFM and effective technology shrinks are not mutually exclusive.

  13. Depleted Monolithic Active Pixel Sensors (DMAPS) implemented in LF-150 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Krüger, H.; Wermes, N.

    2015-03-01

    We present the recent development of Depleted Monolithic Active Pixel Sensors (DMAPS), implemented with an LFoundry (LF) 150 nm CMOS process. MAPS detectors based on an epi-layer have been matured in recent years and have attractive features in terms of reducing material budget and handling cost compared to conventional hybrid pixel detectors. However, the obtained signal is relatively small (~1000 e-) due to the thin epi-layer, and charge collection time is relatively slow, e.g., in the order of 100 ns, because charges are mainly collected by diffusion. Modern commercial CMOS technology, however, offers advanced process options to overcome such difficulties and enable truly monolithic devices as an alternative to hybrid pixel sensors and charge coupled devices. Unlike in the case of the standard MAPS technologies with epi-layers, the LF process provides a high-resistivity substrate that enables large signal and fast charge collection by drift in a ~50 μm thick depleted layer. Since this process also enables the use of deep n- and p-wells to isolate the collection electrode from the thin active device layer, PMOS and NMOS transistors are available for the readout electronics in each pixel cell. In order to evaluate the sensor and transistor characteristics, several collection electrodes variants and readout architectures have been implemented. In this report, we focus on its design aspect of the LF-DMAPS prototype chip.

  14. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    PubMed Central

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as Computed Tomography (CT), the Water-Equivalent-Path-Length (WEPL) that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS Active Pixel Sensor (APS) technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. PMID:24785680

  15. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  16. CMOS VCSEL driver circuit for 25+Gbps/channel short-reach parallel optical links

    NASA Astrophysics Data System (ADS)

    Shibata, Masumi

    This thesis proposes a new CMOS driver for Vertical Cavity Surface Emitting LASER (VCSEL) diode arrays. A VCSEL is a promising light source for optical communication. However, its threshold voltage (1.5V for a 850-nm VCSEL) exceeds the rated supply voltage of nanoscale CMOS technologies. This makes difficult designing a driver sourcing a modulated current to a VCSELs anode directly, an arrangement suitable for low-cost parallel optical links. To overcome this problem, a combination of analog circuit techniques is proposed including a novel pad shield driving technique. A prototype fabricated in a 65-nm CMOS technology achieved 26-Gb/s bit-rate and 1.80-pJ/b power efficiency with an optical modulation amplitude (OMA) of +1.8dBm and 3.1ps-rms jitter when driving a 850-nm 14Gb/s commercial VCSEL. This is the highest-speed anode-driving CMOS VCSEL driver reported to date. Also it has the best power efficiency and the smallest area (0:024 mm2) amongst anode-driving drivers in any process technology.

  17. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    NASA Astrophysics Data System (ADS)

    Miucci, A.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; La Rosa, A.; Muenstermann, D.; George, M.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J. C.; Liu, J.; Barbero, M.; Rozanov, A.; HV-CMOS Collaboration

    2014-05-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown.

  18. First tests of CHERWELL, a Monolithic Active Pixel Sensor: A CMOS Image Sensor (CIS) using 180 nm technology

    NASA Astrophysics Data System (ADS)

    Mylroie-Smith, James; Kolya, Scott; Velthuis, Jaap; Bevan, Adrian; Inguglia, Gianluca; Headspith, Jon; Lazarus, Ian; Lemon, Roy; Crooks, Jamie; Turchetta, Renato; Wilson, Fergus

    2013-12-01

    The Cherwell is a 4T CMOS sensor in 180 nm technology developed for the detection of charged particles. Here, the different test structures on the sensor will be described and first results from tests on the reference pixel variant are shown. The sensors were shown to have a noise of 12 e- and a signal to noise up to 150 in 55Fe.

  19. A 23 GHz low power VCO in SiGe BiCMOS technology

    NASA Astrophysics Data System (ADS)

    Yinkun, Huang; Danyu, Wu; Lei, Zhou; Fan, Jiang; Jin, Wu; Zhi, Jin

    2013-04-01

    A 23 GHz voltage controlled oscillator (VCO) with very low power consumption is presented. This paper presents the design and measurement of an integrated millimeter wave VCO. This VCO employs an on-chip inductor and MOS varactor to form a high Q resonator. The VCO RFIC was implemented in a 0.18 μm 120 GHz ft SiGe hetero-junction bipolar transistor (HBT) BiCMOS technology. The VCO oscillation frequency is around 23 GHz, targeting at the ultra wideband (UWB) and short range radar applications. The core of the VCO circuit consumes 1 mA current from a 2.5 V power supply and the VCO phase noise was measured at around -94 dBc/Hz at a 1 MHz frequency offset. The FOM of the VCO is -177 dBc/Hz.

  20. BIMOS transistor solutions for ESD protection in FD-SOI UTBB CMOS technology

    NASA Astrophysics Data System (ADS)

    Galy, Philippe; Athanasiou, S.; Cristoloveanu, S.

    2016-01-01

    We evaluate the Electro-Static Discharge (ESD) protection capability of BIpolar MOS (BIMOS) transistors integrated in ultrathin silicon film for 28 nm Fully Depleted SOI (FD-SOI) Ultra Thin Body and BOX (UTBB) high-k metal gate technology. Using as a reference our measurements in hybrid bulk-SOI structures, we extend the BIMOS design towards the ultrathin silicon film. Detailed study and pragmatic evaluations are done based on 3D TCAD simulation with standard physical models using Average Current Slope (ACS) method and quasi-static DC stress (Average Voltage Slope AVS method). These preliminary 3D TACD results are very encouraging in terms of ESD protection efficiency in advanced FD-SOI CMOS.

  1. Analysis of Interlayer Shorts in a 0.5 {micro}m CMOS IC Technology

    SciTech Connect

    Cole, E.I.; Henderson, C.L.; Soden, J.M.

    1999-03-12

    Sandia is manufacturing CMOS ICs with 0.5 {micro}m LOCOS and shallow trench isolation (STI) technologies and is developing a 0.35 {micro}m SOI technology. A program based on burn-in and life tests is being used to qualify the 0.5 {micro}m technologies for delivery of high reliability ICs to customers for military and space applications. Representative ICs from baseline wafer lots are assembled using a high reliability process with multilayer hermetic, ceramic packages. These ICs are electrically tested before, during, and after burn-in and subsequent 1000 hour dynamic and static life tests. Two types of ICS are being used for this qualification, a 256K bit SRAM and a Microcontroller Core (MCC). Over 600 ICs have successfully completed these qualification tests, resulting in a failure rate estimate of less than 4 FITS for satellite applications. Recently, a group of SRAMS from a development wafer lot incorporating nonqualified processes of the 0.5 {micro}m LOCOS technology had an unusually high number of failures during the initial electrical test after packaging. The investigation of these failures is described.

  2. 1/f noise in deep-submicron CMOS technology for RF and analog applications

    NASA Astrophysics Data System (ADS)

    Mercha, Abdelkarim; Simoen, Eddy; Decoutere, Stefaan; Claeys, Cor

    2004-05-01

    As further enhanced functionalities of mobile equipment are predicted, the development of a CMOS technology that provides low-power, high-speed, and low-noise performance has become an urgent and hot issue. For these application driven technologies the complexity must be tackled at different levels to insure the optimisation of the area, the power consumption, the speed and the reliability. Therefore this paper present a review of the solutions implemented at different levels from system down to technology in order to reduce the contribution of the low frequency noise. These achievements are illustrated by experimental results from literature and are inserted in the general context of system design strategies for reducing the 1/f noise contribution. In a first part dedicated to high-level system and circuit design, we introduce the noise reduction by switching techniques and the methodology for including the noise dispersion in scaled devices for the early design of analogue/RF circuits. In the second part, the 1/f noise is tackled at its origins i.e. the choice of the gate oxide and other critical process steps.

  3. Reducing flicker noise up-conversion in a 65nm CMOS VCO in the 1.6 to 2.6 GHz band

    NASA Astrophysics Data System (ADS)

    Pepe, Federico; Bonfanti, Andrea; Levantino, Salvatore; Samori, Carlo; Lacaita, Andrea Leonardo

    2013-05-01

    The demand of voltage-controlled oscillators (VCOs) with a broad tuning range can lead to unacceptable degradation of the 1/f3 phase-noise component if traditional voltage-biased topologies are implemented. In this paper, a novel VCO architecture is proposed, where a segmented transconductor tailors the negative-gm depending on the operating range to ensure that flicker noise up-conversion remains minimal. The implemented oscillator covers both 4G and WiMAX 2.5-GHz operation modes and achieves a 10-dB reduction of the 1/f3 phase noise without impairing the 1/f2 phase-noise performance.

  4. Calibration of CD mask standards for the 65-nm node: CoG and MoSi

    NASA Astrophysics Data System (ADS)

    Richter, J.; Heins, T.; Liebe, R.; Bodermann, B.; Diener, A.; Bergmann, D.; Frase, C. G.; Bosse, H.

    2007-02-01

    We report on the traceable calibration of linewidth (CD) photomask standards which are used as reference standards for production masks of the 65 nm node. Two different types of masks with identical layout were produced and calibrated, namely a binary mask (CoG) and a half-tone phase shifting mask (193MoSi PSM). We will in particular describe the applied calibration procedures and cross-correlate the results from different high resolution metrology tools, like SEM, UV microscopy and AFM. The layout of the CD photomask standard contains isolated as well as dense line features in both tones with nominal CD down to 100 nm. Calibration of the standards was performed at PTB by UV microscopy and LV-SEM, supported by additional AFM measurements. For analysis of the measured high resolution microscopy images and the deduced profiles appropriate signal modeling was applied for every metrology tool, which allows a meaningful comparison of geometrical parameters of the measured calibration structures. By this approach, e.g. the deduced feature widths at the top of the structures and the widths at 50% height of the structures can be related to the measured edge angles. The linearity e. g. of the measured top CD on different type of structures on the CoG CD standard was determined to be below 5 nm down to line feature dimensions well below 200 nm.

  5. Characterizing the 65nm through-pitch sensitivity to scanner parameters by CD SEM and scatterometry metrologies

    NASA Astrophysics Data System (ADS)

    Shieh, Jason; Chen, Alek

    2009-12-01

    Processes of 65nm node are applied on a scanner (TWINSCAN XT1700i) for this experiment. The five adjustable scanner parameters investigated are dose, focus scan range, NA, σ_width, and σ_center of the illumination pupil. The test reticle contains a range of pitches, each with a variety of biases sufficient for selecting the target CD at each pitch. It can be used for exposing patterns for both CD SEM and scatterometry. The minimum and maximum pitches of the 1D line/space pattern are 135 and 500nm, respectively, and no assist feature is added for the isolated pitches. Seventeen pitches are selected for generating the through-pitch curve, and they are the most sensitive ones to this illumination setting. Two metrology tools are used to measure the printed features, i.e. CD SEM and scatterometry. MCD (Middle CD) measured by scatterometry is compared with CD SEM data for the OPE curve. A very consistent offset between two metrologies is presented through the pitches; the R2 value is greater than 0.98 for point to point of CD SEM versus MCD correlation. In addition to the CD measurements, scatterometry provides SWA information, which is verified to correlate linearly with focus variations. Based on the metrology data, results of this study demonstrate that the OCD data are as reliable as the CD SEM measurements.

  6. Advances with the new AIMS fab 193 2nd generation: a system for the 65 nm node including immersion

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Poortinga, E.; Doornmalen, H. v.; Schmid, R.; Scherubl, T.; Harnisch, W.

    2005-06-01

    The Aerial Image Measurement System, AIMS, for 193nm lithography emulation is established as a standard for the rapid prediction of wafer printability for critical structures including dense patterns and defects or repairs on masks. The main benefit of AIMS is to save expensive image qualification consisting of test wafer exposures followed by wafer CD-SEM resist or wafer analysis. By adjustment of numerical aperture (NA), illumination type and partial coherence (σ) to match any given stepper/ scanner, AIMS predicts the printability of 193nm reticles such as binary with, or without OPC and phase shifting. A new AIMS fab 193 second generation system with a maximum NA of 0.93 is now available. Improvements in field uniformity, stability over time, measurement automation and higher throughput meet the challenging requirements of the 65nm node. A new function, "Global CD Map" can be applied to automatically measure and analyse the global CD uniformity of repeating structures across a reticle. With the options of extended depth-of-focus (EDOF) software and the upcoming linear polarisation capability in the illumination the new AIMS fab 193 second generation system is able to cover both dry and immersion requirements for NA < 1. Rigorous simulations have been performed to study the effects of polarisation for imaging by comparing the aerial image of the AIMS to the resist image of the scanner.

  7. Dc characterization of lateral bipolar devices in standard CMOS technology: a new model for base current partitioning

    NASA Astrophysics Data System (ADS)

    Corsi, F.; Di Ciano, M.; Marzocca, C.

    1999-05-01

    As is generally known, compared with MOSFETs bipolar transistors provide better performance in terms of small signal transconductance, intrinsic cut-off frequency and noise characteristics, at the cost of a more expensive technology. A good compromise between the low costs proper of standard CMOS technology and the excellent performance typical of bipolar devices can be achieved by using bipolar transistors derived from MOS structures. Naturally suitable models combined with efficient parameter extraction techniques are mandatory to provide designers with reliable simulation tools. A dc parameter extraction procedure for a PNP lateral transistor realized in a standard CMOS technology based on an existing composite circuit model is presented here. The extraction results provide accurate fitting between measured and simulated data for different operating regions without resort to numerical optimization, thus preserving the physical meaning of the extracted parameters and retaining a good correlation with process variations.

  8. Characterization of Depleted Monolithic Active Pixel detectors implemented with a high-resistive CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Rymaszewski, P.; Hirono, T.; Krüger, H.; Wermes, N.

    2016-07-01

    We present the recent development of DMAPS (Depleted Monolithic Active Pixel Sensor), implemented with a Toshiba 130 nm CMOS process. Unlike in the case of standard MAPS technologies which are based on an epi-layer, this process provides a high-resistive substrate that enables larger signal and faster charge collection by drift in a 50 - 300 μm thick depleted layer. Since this process also enables the use of deep n-wells to isolate the collection electrodes from the thin active device layer, NMOS and PMOS transistors are available for the readout electronics in each pixel cell. In order to characterize the technology, we implemented a simple three transistor readout with a variety of pixel pitches and input FET sizes. This layout variety gives us a clue on sensor characteristics for future optimization, such as the input detector capacitance or leakage current. In the initial measurement, the radiation spectra were obtained from 55Fe with an energy resolution of 770 eV (FWHM) and 90Sr with the MVP of 4165 e-.

  9. Facet engineering for SiGe/Si stressors in advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Kasim, Johnson; Reichel, Carsten; Dilliway, Gabriela; Bai, Bo; Zakowsky, Nadja

    2015-08-01

    A two-layer SiGe stressor was introduced for our CMOS technology containing a bottom layer with high Ge content to induce more stress to the channel and a top layer with lower Ge content for better nickel silicidation. However, even with the top lower Ge layer, defects were found after silicidation causing contact punch through. Since it is well known that the silicidation improves for Si, the SiGe top layer was replaced by a Si layer (Si-cap). Evaluation on 750 °C and 850 °C grown Si-cap was done. Different temperature grown Si-caps showed different growth behavior with morphology of the Si-cap grown at 850 °C completely different than that of the Si cap grown at 750 °C. There was a clear {3 1 1} facet formation for the higher temperature Si-cap resulting in a pinning effect to the spacer edge similar to that observed for the SiGe-cap. The faceted Si-cap improved silicidation and device parameters enabling the extension of this integration approach for SiGe/Si stressors to the more advanced technology nodes.

  10. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  11. Ultrathin DPN STI SiON liner for 40 nm low-power CMOS technology

    NASA Astrophysics Data System (ADS)

    Hu, Chan-Yuan; Chen, Jone F.; Chen, Shih-Chih; Chang, Shoou-Jinn; Lee, Kay-Ming; Lee, Chih-Ping

    2010-05-01

    At sub-40 nm CMOS technology nodes, the implementation of shallow trench isolation (STI) becomes more challenging due to shrinking geometries and stricter device leakage requirements. As device geometries are shrinking, STI liner is also becoming thinner and plays an important role for the minimal consumption of device active area while effectively rounding the STI corner and minimizing stress-induced defects. Consequently, STI stress is enhanced by the scaling of STI-pitch, the volume expansion induced by STI liner and film stress of filling materials. This paper discusses the benefits of SiON liner growth by decoupled-plasma-nitridation (DPN) and SiON liner induced stress compared to conventional pure oxide liner growth by in situ steam generation (ISSG). Thin STI SiON liner offers lower sub-threshold leakage current without drive current loss for transistor performance. Moreover, junction leakage current is also reduced with scaling device active area. Thus, better device performance results in better minimum operation voltage (Vcc_min) of low-power 6T-SRAM. This paper demonstrates the influences of thin STI SiON liner growth by DPN in STI manufacture.

  12. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  13. IC design of low power, wide tuning range VCO in 90 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Zhigong, Wang; Zhiqun, Li; Qin, Li; Faen, Liu

    2014-12-01

    A low power VCO with a wide tuning range and low phase noise has been designed and realized in a standard 90 nm CMOS technology. A newly proposed current-reuse cross-connected pair is utilized as a negative conductance generator to compensate the energy loss of the resonator. The supply current is reduced by half compared to that of the conventional LC-VCO. An improved inversion-mode MOSFET (IMOS) varactor is introduced to extend the capacitance tuning range from 32.8% to 66%. A detailed analysis of the proposed varactor is provided. The VCO achieves a tuning range of 27-32.5 GHz, exhibiting a frequency tuning range (FTR) of 18.4% and a phase noise of -101.38 dBc/Hz at 1 MHz offset from a 30 GHz carrier, and shows an excellent FOM of -185 dBc/Hz. With the voltage supply of 1.5 V, the core circuit of VCO draws only 2.1 mA DC current.

  14. 15158A SP6T RF switch based on IBM SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Zhiqun, Cheng; Guoguo, Yan; Wayne, Ni; Dandan, Zhu; Hannah, Ni; Jin, Li; Shuai, Chen; Guohua, Liu

    2016-05-01

    This paper presents the design of single-pole six-throw (SP6T) RF switch with IBM 0.18 μm SOI CMOS technology, which can be widely used in a wireless communication system with its high performance and low cost. The circuit is designed and simulated by using an idea that the total load is divided into six branches and SOI special structures. The insertion loss is less than 0.6 dB, isolation is more than 30 dB, the input power P0.1dB for 0.1 dB compression point is more than 37.5 dBm, IIP3 is more than 70 dBm, the 2nd and the 3rd harmonic compressions are more than 96 dBc, and the control voltage is (+2.46 V, 0, ‑2.46 V) in the frequency from 0.1 to 2.7 GHz. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001).

  15. Shallow-trench-isolation bounded single-photon avalanche diodes in commercial deep submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Finkelstein, Hod

    This dissertation describes the first single-photon detection device to be manufactured in a commercial deep-submicron CMOS technology. It also describes novel self-timed peripheral circuits which optimize the performance of the new device. An extension of the new device for dual-color single-photon detection is investigated. Finally, an area- and power-efficient method for single-photon frequency upconversion is presented, analyzed, and experimentally examined. Single-photon avalanche diodes have been used in diverse applications, including three-dimensional laser radar, three-dimensional facial mapping, fluorescence-correlation techniques and time-domain tomography. Due to the high electric fields which these devices must sustain, they have traditionally been manufactured in custom processes, severely limiting their speed and the ability to integrate them in high-resolution imagers. By utilizing a process module originally designed to enhance the performance of CMOS transistors, we achieve highly planar junctions in an area-efficient manner. This results in SPADs exhibiting high fill factors, small pitch and ultrafast operation. Device miniaturization is accompanied by excessive noise, which was shown to emanate from trapped avalanche charges. Due to the fast recharging of the device, these charges are released in a subsequent charged phase of the device, causing correlated after-pulses. We present electrostatic and electrical simulation results, as well as a comprehensive characterization of the new device. We also show for the first time that by utilizing the two junctions included in the device, we can selectively detect photons of different wavelengths in the same pixel, as is desirable in cross-correlation experiments. This dissertation also describes an efficient new method for single-photon frequency upconversion. This is desirable for applications including quantum-key distribution and high-resolution near-infrared imaging. The new technique is based on

  16. First measurement of the in-pixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept

    NASA Astrophysics Data System (ADS)

    Brugière, Timothée; Mayer, Fréderic; Fereyre, Pierre; Guérin, Cyrille; Dominjon, Agnés; Barbier, Rémi

    2015-07-01

    Scientific low light imaging devices benefit today from designs for pushing the mean noise to the single electron level. When readout noise reduction reaches its limit, signal-to-noise ratio improvement can be driven by an electron multiplication process, driven by impact ionization, before adding the readout noises. This concept already implemented in CCD structures using extra-pixel shift registers can today be integrated inside each pixel in CMOS technology. The EBCMOS group at IPNL is in charge of the characterization of new prototypes developed by E2V using this concept: the electron multiplying CMOS (EMCMOS). The CMOS technology enables electron multiplication inside the photodiode itself, and thus, an overlap of the charge integration and multiplication. A new modeling has been developed to describe the output signal mean and variance after the impact ionization process in such a case. In this paper the feasibility of impact ionization process inside a 8 μm-pitch pixel is demonstrated. The new modeling is also validated by data and a value of 0.32% is obtained for the impact ionization parameter α with an electric field intensity of 24 V / μm.

  17. A new high speed thermal imaging concept based on a logarithmic CMOS imager technology

    NASA Astrophysics Data System (ADS)

    Hutter, Franz X.; Brosch, Daniel; Burghartz, Joachim N.; Graf, Heinz-Gerd; Strobel, Markus

    2008-04-01

    HDRC (high dynamic range CMOS) allows for more than 120 dB signal range in image processing. Scene details with both very high and extremely low radiant flux may thus appear within the same image. Color constancy over the entire signal range and good high speed performance are further aspects of this logarithmic imager technology. These features qualify HDRC cameras for thermography, since the signal range of Planck's temperature radiation in a two dimensional array is comparable to HDRC's intensity range. Especially in material welding and laser cutting processes, in high power light sources and in high temperature material processing, fast monitoring of the spacial and dynamic temperature distributions present a challenge to conventional thermal imaging and thus call for innovative concepts. A particular challenge is in the compensation of the emissivity of the radiating surface. Here, we present a new concept based on a modified HDRC VGA color camera, allowing for visualization and measurement of temperatures from about 800 °C up to 2300 °C. The modifications include an optical filter for minimizing UV and IR straylight and a notch filter for clipping off the green optical range in order to separate the blue and red RGB regions. An enhanced and adapted software provides a division of the neighboured red and blue pixel signals by means of simply subtracting the HDRC signals. As a result the local temperature information of the visualized scene spot is independent of emissivity. This is, to our knowledge, the first demonstration of a high speed thermal imager to date.

  18. From 120 to 32 nm CMOS technology: development of OPC and RET to rescue optical lithography

    NASA Astrophysics Data System (ADS)

    Trouiller, Yorick

    2006-10-01

    Starting from the 120 nm CMOS technology node down to the 32 nm node, we have entered into a new lithographic regime. The wavelength has not changed (only 193 nm), and we move closer and closer to the theoretical optical resolution limit. Therefore, Resolution Enhancement Techniques (RET) have been developed in order to print all shapes properly and close the resolution gap. The primary RET developed are off-axis illumination, sub-resolution assist features and a phase shift mask. Moreover, working closer to the resolution limit implies bigger image distortion between the mask and the silicon. For this purpose OPC (Optical Proximity Correction) has been widely used by making mask pre-compensation of all non linear effects, optical diffraction and interference effects, resist and etch. RET and OPC are also fundamentally linked. RET such as off-axis illumination generates more distortion, and therefore justifies the need of more aggressive OPC, and RET techniques like Alt PSM and sub-resolution assist features are generated through the OPC infrastructure. From its first industrial utilization for 120 nm node to 32 nm prospectively, many evolutions have been seen for OPC. These include the generalisation to all lithographic layers, moving to pixel based simulation, usage of full chip simulation and verification, the incorporation of process window effects like Energy Latitude or Depth of Focus into the OPC algorithm, and inverse lithography approach. For RET, we have seen huge differentiation depending on the type of application, such as logic or memory. In conclusion, we need to consider design as a third party that is playing a key role in this RET-OPC synergy. To use more aggressive RET and reduce the cycle time of OPC recipe development, more regular designs are considered as a key enabler for the future: they will allow logic makers to consider RET options that are pushed as far as those used by memory makers. To cite this article: Y. Trouiller, C. R. Physique 7

  19. Development of III-Sb based technologies for p-channel MOSFET in CMOS applications

    NASA Astrophysics Data System (ADS)

    Madisetti, Shailesh Kumar

    The continuous scaling of silicon CMOS predicts the end of roadmap due to the difficulties such as that arise from electrostatic integrity, design complexities, and power dissipation. These fundamental and practical limitations bring the need for innovative design architectures or alternate materials with higher carrier transport than current Si based materials. New device designs such as multigate/gate-all-around architectures improve electrostatics while alternate materials like III-Vs such as III-As for electrons and III-Sbs for holes increase operational speed, lower power dissipation and thereby improve performance of the transistors due to their low effective mass and faster transport properties. Further, application of compressive strain on InxGa1-xSb modifies band structure enhancing hole mobility on par with its rival Germanium. This band structure modification lowers in plane hole meff* improving carrier transport thereby lowering power dissipation and increasing operational speed of future CMOS technology. This work studies optimization of thick GaSb layers grown on GaAs with the goal of improvement of growth, surface quality and achieve high hole mobility. Quality of growth is evaluated using atomic force microscopy (AFM) and electrically assessed using Van der Pauw (VdP) Hall method and capacitance-voltage measurements. After optimizing, the best top surface with average roughness (Ra) of ˜0.37 nm and spiral type ''step-flow'' growth mode in MBE was observed on the GaSb structure where initial 0.5 mum grown at 410°C and the top 0.5 mum grown at 485°C obtaining hole mobility of 737 cm2/V-s and 3.2 kO/sq at 2.7x1016 cm-3. N- and p-type GaSb MOSCaps with reasonable capacitance--voltage (C--V) characteristics at room temperature (RT) were demonstrated using all in-situ 0.5 nm a-Si interface passivation layer (IPL) and 10 nm Al2O3/HfO2 or Al 2O3. Amorphous-Si IPL was found essential for n-MOSCaps but not in the case of p-MOSCaps where comparable C

  20. High-performance 0.25-um CMOS technology for fast SRAMs

    NASA Astrophysics Data System (ADS)

    Hayden, James D.; McNelly, T. F.; Perera, Asanga H.; Pfiester, Jim R.; Subramanian, C. K.; Thompson, Matthew A.

    1996-09-01

    A high performance 0.25 micrometers CMOS process has been developed for fast static RAMs. This technology features retrograde wells, shallow trench isolation scalable to a 0.45 micrometers active pitch, surface channel 0.25 micrometers NMOS and PMOS transistors with a 55 angstroms nitrided gate oxide providing drive currents of 630 and 300 (mu) A/micrometers respectively at off-leakages of 10 pA/micrometers , overgated TFTs with an on/off ratio greater than 6(DOT)105, stacked capacitors for improved SER protection, five levels of polysilicon planarized by chemical-mechanical polishing with two self-aligned interpoly contacts, 0.35 micrometers contacts and a 0.625 metal pitch. In this technology, a triple well structure was used for SER protection. High energy retrograde wells were integrated with shallow trench isolation and epi providing excellent interwell isolation for both leakage and latch-up down to n+/p+ spaces of 0.60 micrometers . PMOS transistors were scaled to a physical gate length of 0.1 micrometers while maintaining excellent short channel characteristics. A split word-line bitcell was scaled to 1.425 micrometers X 2.625 micrometers equals 3.74 micrometers 2 using 0.25 micrometers rules. A tungsten interpoly plug was used to connect the PMOS TFT loads to the underlying NMOS latch gates without a parasitic diode or dopant interdiffusion, connecting 3 polysilicon layers with self-aligned isolation from an intervening polysilicon layer used as a local interconnect. With this plug, TFT drive currents were greatly improved, particularly at low voltages and the memory nodes pulled to the fully supply voltage. Functional 0.25 micrometers bitcells were demonstrated and with an LDD resistor it was possible to double the cell stability. Bitcell simulation was used to demonstrate that a 4T bitcell will be stable at 2.5 V but that a word-line boost will be required for 1.8 V operation.

  1. Low temperature selective silicon-germanium-boron alloy technology for nanoscale CMOS junctions and contacts

    NASA Astrophysics Data System (ADS)

    Gannavaram, Shyam Akshay

    As device dimensions continue to scale down into the sub-100 nm CMOS (Complimentary Metal-Oxide-Semiconductor) regime, enormous challenges with respect to formation of advanced junctions and contacts are encountered. These challenges come in the form of the need for ultra-shallow extension junctions (<20 nm) with very low sheet resistances (<400 O/sq.), with near-perfect, laterally abrupt profiles (<2 nm/decade) and process compatibility with respect to ultra-low resistivity metal (silicide) contact formation. In this work, a novel junction formation method was developed to address the above-mentioned problems simultaneously. In order to achieve above-equilibrium activation at low temperatures, a diffusion-free junction process based on in-situ activated Silicon-Germanium-Boron ternary alloy as-deposited junctions was proposed as potential solutions for end-of-the-roadmap ultra-shallow p +/n junctions. These films were grown at 500°C by Ultra-High Vacuum Rapid Thermal Chemical Vapor Deposition (UHV-RTCVD). In order to achieve above-equilibrium stable dopant activation, a novel idea that allowed for the substitutional incorporation of very high levels of boron in a strained SiGe lattice was employed. The reverse junction leakage of the as-deposited and annealed junctions satisfied a stringent budget of 1% of the device off-state leakage for both, the high performance and low power designs. Temperature dependent leakage current measurements indicated a generation-dominated current for temperatures in the range of device operation ( VR = -1 V, 25--100°C) and band-to-band tunneling only at high biases (>4 V). The nominal slope of the junction doping profile decay from SIMS was estimated to be less than 4 nm/decade. Subsequent improvements in determining the actual junction abruptness by reducing the SIMS primary beam energy were incremental owing to nonelimination of other artifacts. To overcome these limitations, the junction abruptness was quantified using the

  2. Macromodel for exact computation of propagation delay time in GaAs and CMOS technologies

    NASA Astrophysics Data System (ADS)

    Garcia, Jose C.; Montiel-Nelson, Juan A.; Sosa, Javier; Navarro, Hector; Sarmiento, Roberto

    2003-04-01

    A new transient macromodel for the cells used in DCFL GaAs and CMOS digital design is introduced in this paper. The numerical solution determines accurate propagation delay times. The macromodel is based on the differential equation for the output voltage in terms of currents and capacitances. An straightforward treatment of the differential equation for an inverter in DCFL GaAs and CMOS has been obtained. It could be resolved numerically by a 4th order Runge Kutta method. Good agreement is obtained between the HSPICE simulation and the computation of the propagation delays for DCFL GaAs and CMOS basic gates: INV, NOR, OR and NAND. There is no error between HSPICE and our computation of propagation delay time for the high to low (tphl) and low to high (tplh) transitions. The propagation delay times for two types of transition were measured and compared with HSPICE. The results demonstrate that our approach matches with HSPICE with no error. The numerical method was programmed in C language. In addition, computation time analysis is provided and numerical solution is several orders of magnitude faster than HSPICE. Work is in progress to obtain the macromodel of a standard cell library for digital application both for a 0.6 microns E/D GaAs process (H-GaAsIV) from Vitesse Semiconductor and for a 0.18 microns logic/mixed-signal CMOS process (1P6M) from TSMC Corp.

  3. Strained SOI/SGOI dual-channel CMOS technology based on the Ge condensation technique

    NASA Astrophysics Data System (ADS)

    Tezuka, Tsutomu; Nakaharai, Shu; Moriyama, Yoshihiko; Hirashita, Norio; Toyoda, Eiji; Numata, Toshinori; Irisawa, Toshifumi; Usuda, Koji; Sugiyama, Naoharu; Mizuno, Tomohisa; Takagi, Shin-ichi

    2007-01-01

    Ge-rich strained SiGe-on-insulator (SGOI) pMOSFETs were fabricated by oxidizing strained SiGe layers on SOI substrates at high temperatures. It was found that strain was accumulated in the SGOI channels during this process, called Ge condensation, associated with the increase in the Ge fraction. Significant hole-mobility enhancements up to a factor of 10 were observed due to the high Ge fractions over 0.5 and large strain values over 1%. The SGOI pMOSFETs were also co-integrated with strained SOI nMOSFETs or ultra-thin SOI nMOSFETs to form dual-channel CMOS devices. The dual-channel structures were fabricated by conventional CMOS processes combined with the Ge condensation process and selective epitaxial growth processes. High hole mobility was observed in the SGOI pMOSFETs of the CMOS devices, whereas an enhancement or no degradation of electron mobility was observed in the strained or the unstrained SOI nMOSFETs. Based on the measured carrier mobility of the long-channel nMOSFETs and pMOSFETs, short-channel CMOS performance enhancement of around 30% was estimated.

  4. OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology.

    PubMed

    Milovančev, Dinka; Jukić, Tomislav; Brandl, Paul; Steindl, Bernhard; Zimmermann, Horst

    2016-01-25

    A lens-less receiver with a monolithically integrated avalanche photodiode (APD) in 0.35 µm BiCMOS technology has been developed for establishing an indoor 2 Gb/s optical wireless communication (OWC) over a distance of 6.5 m with a receiving angle of 22°. Immunity toward background light was demonstrated up to 6000 lux. Four additional PIN photodiodes with highly sensitive differential nonlinear transimpedance amplifiers (TIA) were implemented on the receiver chip for centering the highly collimated transmitter beam position. PMID:26832475

  5. CMOS compatible on-chip decoupling capacitor based on vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Saleem, A. M.; Göransson, G.; Desmaris, V.; Enoksson, P.

    2015-05-01

    On-chip decoupling capacitor of specific capacitance 55 pF/μm2 (footprint area) which is 10 times higher than the commercially available discrete and on-chip (65 nm technology node) decoupling capacitors is presented. The electrodes of the capacitor are based on vertically aligned carbon nanofibers (CNFs) capable of being integrated directly on CMOS chips. The carbon nanofibers employed in this study were grown on CMOS chips using direct current plasma enhanced chemical vapor deposition (DC-PECVD) technique at CMOS compatible temperature. The carbon nanofibers were grown at temperature from 390 °C to 550 °C. The capacitance of the carbon nanofibers was measured by cyclic voltammetry and thus compared. Futhermore the capacitance of decoupling capacitor was measured using different voltage scan rate to show their high charge storage capability and finally the cyclic voltammetry is run for 1000 cycles to assess their suitability as electrode material for decoupling capacitor. Our results show the high specific capacitance and long-term reliability of performance of the on-chip decoupling capacitors. Moreover, the specific capacitance shown is larger for carbon nanofibers grown at higher temperature.

  6. Gate-leakage-tolerant circuits in deep sub-100-nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Mo; Yang, Ge; Wang, Zhongda

    2004-03-01

    The leakage power consumption in deep sub-100nm CMOS systems is projected to become a significant part of the total power dissipation. Although the dual Vt CMOS process helps reduce the subthreshold leakage current, the gate leakage problem poses a significant design challenge. We introduce gate leakage tolerant circuits. We describe two new circuit techniques to suppress gate leakage currents in dual Vt Domino circuits. In standby mode, proposed circuits generate low inputs and low outputs for all Domino stages to suppress gate leakage currents in the NMOS logic tree. Simulation results using 45nm BSIM4 SPICE models for 32-bit adders show that adders using the two proposed circuits can reduce the standby gate leakage by 66% and 90%, respectively. Proposed adders have 7% active power overhead to achieve the same speed as single Vt domino adder and the area penalty is minimal with careful layout.

  7. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tielert, R.

    2005-05-01

    Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0). Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR) - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  8. Spin blockade in a triple silicon quantum dot in CMOS technology

    NASA Astrophysics Data System (ADS)

    Prati, E.; Petretto, G.; Belli, M.; Mazzeo, G.; Cocco, S.; de Michielis, M.; Fanciulli, M.; Guagliardo, F.; Vinet, M.; Wacquez, R.

    2012-02-01

    We study the spin blockade (SB) phenomenon by quantum transport in a triple quantum dot made of two single electron transistors (SET) on a CMOS platform separated by an implanted multiple donor quantum dot [1]. Spin blockade condition [2] has been used in the past to realize single spin localization and manipulation in GaAs quantum dots [3]. Here, we reproduce the same physics in a CMOS preindustrial silicon quantum device. Single electron quantum dots are connected via an implanted quantum dot and exhibit SB in one current direction. We break the spin blockade by applying a magnetic field of few tesla. Our experimental results are explained by a theoretical microscopic scheme supported by simulations in which only some of the possible processes through the triple quantum dot are spin blocked, according to the asymmetry of the coupling capacitances with the control gates and the central dot. Depending on the spin state, the SB may be both lifted and induced. Spin control in CMOS quantum dots is a necessary condition to realize large fabrication of spin qubits in some solid state silicon quantum device architectures.[0pt] [1] Pierre et al., Appl. Phys. Lett., 95, 24, 242107 (2009); [2] Liu et al., Phys. Rev. B 77, 073310 (2008); [3] Koppens et al., Nature 442, 766-771 (2006)

  9. Low voltage surface transverse wave oscillators for the next generation CMOS technology.

    PubMed

    Avramov, Ivan D

    2005-08-01

    The design and performance of voltage controlled surface transverse wave oscillators (VCSTWO) in the lower gigahertz frequency range, operating on supply and tuning voltages in the 1.2 to 3.3 V range, and suitable for direct interfacing with the next generation CMOS circuits are presented. By applying the "boost" principle, as used in direct current (DC)-DC converters, to the design of the sustaining amplifier, the VCSTWO outputs are switched between 0 V and a positive peak value, exceeding the supply voltage Us, to provide safe CMOS-circuit switching while keeping the radio frequency (RF)/DC efficiency to a maximum for low DC power consumption. The investigated 1.0 and 2.5 GHz VCSTWO are varactor tuned feedback-loop oscillators stabilized with two-port surface transverse wave (STW) resonators. Each VCSTWO has a DC-coupled, high-impedance switched output to drive the CMOS circuit directly, and an additional sinusoidal 50 ohmz high-power reference output available for other low-noise system applications. Phase noise levels in the -103 to -115 dBc/Hz range at 1 kHz carrier offset are achieved with 1.0 GHz VCSTWO at a RF/DC efficiency in the 21 to 29% range. The 2.5 GHz prototypes demonstrate phase noise levels in the -97 to -102 dBc/Hz range at 1 kHz carrier offset, and efficiencies range between 8 and 15%. PMID:16245594

  10. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    NASA Astrophysics Data System (ADS)

    Perić, Ivan; Fischer, Peter; Kreidl, Christian; Hanh Nguyen, Hong; Augustin, Heiko; Berger, Niklaus; Kiehn, Moritz; Perrevoort, Ann-Kathrin; Schöning, André; Wiedner, Dirk; Feigl, Simon; Heim, Timon; Meng, Lingxin; Münstermann, Daniel; Benoit, Mathieu; Dannheim, Dominik; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Fougeron, Denis; Liu, Jian; Pangaud, Patrick; Rozanov, Alexandre; Barbero, Marlon; Backhaus, Malte; Hügging, Fabian; Krüger, Hans; Lütticke, Florian; Mariñas, Carlos; Obermann, Theresa; Garcia-Sciveres, Maurice; Schwenker, Benjamin; Dierlamm, Alexander; La Rosa, Alessandro; Miucci, Antonio

    2013-12-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq/cm2, nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  11. 200-Mbps optical integrated circuit design and first iteration realizations in 1.2- and 0.8-micron Bi-CMOS technology

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Chaing, C.-T.; Bogalecki, Alfons; Du Plessis, Monuko; Aharoni, Herzl

    2004-07-01

    A prototype Silicon CMOS Optical Integrated Circuit (Si CMOS OEIC) was designed and simulated using standard 0.8 micron Bi-CMOS silicon integrated circuit technology. The circuit consisted of an integrated silicon light emitting source, an optical wave-guiding structure, two integrated optical detectors and two high-gain CMOS transimpedance analogue amplifiers. Simulations with MicroSim PSpice software predict a utilizable bandwidth capability of up to 220 MHz for the trans-impedance amplifier for detected photo-currents at the input of the amplifier in the range of 1 nA to 100 nA and driving a 10mV to 1 V signal into a 100 kΩ load. First iteration OEIC structures were realised in 1.2 micron CMOS technology for various source-waveguide-detector arrangements. Current signal ranging from 1nA to 1 micro-amp was detected at detectors. The technology seems favorable for first-iteration implementation for digital communications on chip up to 200Mbps.

  12. Low-noise low-power readout electronics circuit development in standard CMOS technology for 4 K applications

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Souverijns, Tim; Putzeys, Jan; Creten, Ybe; Van Hoof, Chris

    2006-06-01

    In the framework of the Photodetector Array Camera and Spectrometer (PACS) project IMEC designed the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for this circuit were high linearity, low power consumption and low noise at an operating temperature of 4.2K. We have implemented this circuit in a standard CMOS technology which guarantees high yield and uniformity, and design portability. A drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K. These cryogenic phenomena disturb the normal functionality of commonly used circuits. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. We will present the design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance. We will show how the library that was developed for PACS served as a baseline for the designs used in the Darwin-far-infrared detector array, where a cryogenic 180 channel, 30μm pitch, Readout Integrated Circuit (ROIC) for flip-chip integration was developed. Other designs and topologies for low noise and low power applications will be equally presented.

  13. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device.

    PubMed

    Lee, Myung-Jae; Sun, Pengfei; Charbon, Edoardo

    2015-05-18

    This paper reports on the first implementation of a single-photon avalanche diode (SPAD) in standard silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The SPAD is realized in a circular shape, and it is based on a P(+)/N-well junction along with a P-well guard-ring structure formed by lateral diffusion of two closely spaced N-well regions. The SPAD electric-field profile is analyzed by means of simulation to predict the breakdown voltage and the effectiveness of premature edge breakdown. Measurements confirm these predictions and also provide a complete characterization of the device, including current-voltage characteristics, dark count rate (DCR), photon detection probability (PDP), afterpulsing probability, and photon timing jitter. The SOI CMOS SPAD has a PDP above 25% at 490-nm wavelength and, thanks to built-in optical sensitivity enhancement mechanisms, it is as high as 7.7% at 850-nm wavelength. The DCR is 244 Hz/μm2, and the afterpulsing probability is less than 0.1% for a dead time longer than 200 ns. The SPAD exhibits a timing response without exponential tail and provides a remarkable timing jitter of 65 ps (FWHM). The new device is well suited to operate in backside illumination within complex three-dimensional (3D) integrated circuits, thus contributing to a great improvement of fill factor and jitter uniformity in large arrays. PMID:26074572

  14. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    PubMed

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display. PMID:26726359

  15. Radiation hardness evaluations of 65 nm fully depleted silicon on insulator and bulk processes by measuring single event transient pulse widths and single event upset rates

    NASA Astrophysics Data System (ADS)

    Furuta, Jun; Sonezaki, Eiji; Kobayashi, Kazutoshi

    2015-04-01

    We measure single event transient (SET) pulse widths on inverter chains and single event upset (SEU) rates on flip-flops (FFs) fabricated in 65 nm fully depleted silicon on insulator (FD-SOI) and bulk processes. The layout designs of test chips are strictly identical between their processes besides buried oxide (BOX) layers. Experimental results show that neutron-induced SEU and SET rates in the FD-SOI process are 230× and 450× lower than those in the bulk process, respectively.

  16. Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150-nm technology

    NASA Astrophysics Data System (ADS)

    Xu, Hesong; Pancheri, Lucio; C. Braga, Leo H.; Betta, Gian-Franco Dalla; Stoppa, David

    2016-06-01

    Cross-talk characterization results of high-fill-factor single-photon avalanche diode (SPAD) arrays in CMOS 150-nm technology are reported and discussed. Three different SPAD structures were designed with two different sizes (15.6 and 25.6 μm pitch) and three guard ring widths (0.6, 1.1, and 1.6 μm). Each SPAD was implemented in an array, composed of 25 (5×5) devices, which can be separately activated. Measurement results show that the average cross-talk probability is well below 1% for the shallow-junction SPAD structure with 15.6 μm pitch and 39.9% fill factor, and 1.45% for the structure with 25.6 μm pitch and 60.6% fill factor. An increase of cross-talk probability with the excess bias voltage is observed.

  17. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Dong, Yan; Luhong, Mao; Qiujie, Su; Sheng, Xie; Shilin, Zhang

    2014-01-01

    This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (fT), and realizes a much higher oscillation than fT. Measurement results show that the LS oscillator produces a calibrated -37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is -10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is -112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density.

  18. Comprehensive procedural approach for transferring or comparative analysis of analogue IP building blocks towards different CMOS technologies

    NASA Astrophysics Data System (ADS)

    Gevaert, Dorine M.

    2009-05-01

    The challenges for the next generation of integrated circuit design of analogue and mixed-signal building blocks in standard CMOS technologies for signal conversion demand research progress in the emerging scientific fields of device physics and modelling, converter architectures, design automation, quality assurance and cost factor analysis. Estimation of mismatch for analogue building blocks at the conceptual level and the impact on active area is not a straightforward calculation. The proposed design concepts reduce the over-sizing of transistors, compared with the existing methods, with 15 to 20% for the same quality specification. Besides the reduction of the silicon cost also the design time cost for new topologies is reduced considerably. Comparison has been done for current mode converters (ADC and DAC) and focussing on downscaling technologies. The developed method offers an integrated approach on the estimation of architecture performances, yield and IP-reuse. Matching energy remains constant over process generations and will be the limiting factor for current signal processing. The comprehensive understanding of all sources of mismatches and the use of physical based mismatch modelling in the prediction of mismatch errors, more adequate and realistic sizing of all transistors will result in an overall area reduction of analogue IP blocks. For each technology the following design curves are automatically developed: noise curves for a specified signal bandwidth, choice of overdrive voltage versus lambda and output resistance, physical mismatch error modelling on target current levels. The procedural approach shares knowledge of several design curves and speeds up the design time.

  19. A low-power integrated humidity CMOS sensor by printing-on-chip technology.

    PubMed

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A; Wu, Wen-Jung; Lin, Chih-Ting

    2014-01-01

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems. PMID:24859027

  20. A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology

    PubMed Central

    Lee, Chang-Hung; Chuang, Wen-Yu; Cowan, Melissa A.; Wu, Wen-Jung; Lin, Chih-Ting

    2014-01-01

    A low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, poly(3,4-ethylene-dioxythiophene)/polystyrene sulfonate that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The sensor shows a sensitivity of 0.98% to humidity in the atmosphere. The maximum dynamic range of the readout circuit is 9.8 MΩ, which can be further tuned by the frequency of input signal to fit the requirement of the resistance of printed sensor. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an ultra-small integrated sensor for the applications in miniaturized sensing systems. PMID:24859027

  1. A Retinal Prosthesis Technology Based on CMOS Microelectronics and Microwire Glass Electrodes.

    PubMed

    Scribner, D; Johnson, L; Skeath, P; Klein, R; Ilg, D; Wasserman, L; Fernandez, N; Freeman, W; Peele, J; Perkins, F K; Friebele, E J; Bassett, W E; Howard, J G; Krebs, W

    2007-03-01

    A very large format neural stimulator device, to be used in future retinal prosthesis experiments, has been designed, fabricated, and tested. The device was designed to be positioned against a human retina for short periods in an operating room environment. Demonstrating a very large format, parallel interface between a 2-D microelectronic stimulator array and neural tissue would be an important step in proving the feasibility of high resolution retinal prosthesis for the blind. The architecture of the test device combines several novel components, including microwire glass, a microelectronic multiplexer, and a microcable connector. The array format is 80 times 40 array pixels with approximately 20 microwire electrodes per pixel. The custom assembly techniques involve indium bump bonding, ribbon bonding, and encapsulation. The design, fabrication, and testing of the device has resolved several important issues regarding the feasibility of high-resolution retinal prosthesis, namely, that the combination of conventional CMOS electronics and microwire glass provides a viable approach for a high resolution retinal prosthesis device. Temperature change from power dissipation within the device and maximum electrical output current levels suggest that the device is acceptable for acute human tests. PMID:23851523

  2. Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips

    NASA Astrophysics Data System (ADS)

    Drozd, A.; Szczygiel, R.; Maj, P.; Satlawa, T.; Grybos, P.

    2014-12-01

    The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results.

  3. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    PubMed

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications. PMID:27391136

  4. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology

    PubMed Central

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator’s high motion losses due to the possibility of their ‘system-on-chip’ integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design’s applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications. PMID:27391136

  5. 3D integration approaches for MEMS and CMOS sensors based on a Cu through-silicon-via technology and wafer level bonding

    NASA Astrophysics Data System (ADS)

    Hofmann, L.; Dempwolf, S.; Reuter, D.; Ecke, R.; Gottfried, K.; Schulz, S. E.; Knechtel, R.; Geßner, T.

    2015-05-01

    Technologies for the 3D integration are described within this paper with respect to devices that have to retain a specific minimum wafer thickness for handling purposes (CMOS) and integrity of mechanical elements (MEMS). This implies Through-Silicon Vias (TSVs) with large dimensions and high aspect ratios (HAR). Moreover, as a main objective, the aspired TSV technology had to be universal and scalable with the designated utilization in a MEMS/CMOS foundry. Two TSV approaches are investigated and discussed, in which the TSVs were fabricated either before or after wafer thinning. One distinctive feature is an incomplete TSV Cu-filling, which avoids long processing and complex process control, while minimizing the thermomechanical stress between Cu and Si and related adverse effects in the device. However, the incomplete filling also includes various challenges regarding process integration. A method based on pattern plating is described, in which TSVs are metalized at the same time as the redistribution layer and which eliminates the need for additional planarization and patterning steps. For MEMS, the realization of a protective hermetically sealed capping is crucial, which is addressed in this paper by glass frit wafer level bonding and is discussed for hermetic sealing of MEMS inertial sensors. The TSV based 3D integration technologies are demonstrated on CMOS like test vehicle and on a MEMS device fabricated in Air Gap Insulated Microstructure (AIM) technology.

  6. SEU critical charge and sensitive area in a submicron CMOS technology

    SciTech Connect

    Detcheverry, C.; Dachs, C.; Lorfevre, E.; Sudre, C.; Bruguier, G.; Palau, J.M.; Gasiot, J.; Ecoffet, R.

    1997-12-01

    This work presents SEU phenomena in advanced SRAM memory cells. Using mixed-mode simulation, the effects of scaling on the notions of sensitive area and critical charge is shown. Specifically, the authors quantify the influence of parasitic bipolar action in cells fabricated in a submicron technology.

  7. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.

    PubMed

    Wang, Jing; Sheng, Zhen; Li, Le; Pang, Albert; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Qi, Minghao; Gan, Fuwan

    2014-04-21

    Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of -20.5~-24.5 dB (resp. -16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices. PMID:24787827

  8. A low-power 20 GSps track-and-hold amplifier in 0.18 μm SiGe BiCMOS technology

    NASA Astrophysics Data System (ADS)

    Kai, Tang; Qiao, Meng; Zhigong, Wang; Yi, Zhang; Kuai, Yin; Ting, Guo

    2013-09-01

    An open-loop 20 GSps track-and-hold amplifier (THA) using fully-differential architecture to mitigate common-mode noise and suppress even-order harmonics is presented. CMOS switch and dummy switches are adopted to achieve high speed and good linearity. A cross-coupled pair is used in the input buffer to suppress the charge injection and clock feedthrough. Both the input and output buffers use an active inductor load to achieve high signal bandwidth. The THA is realized with 0.18 μm SiGe BiCMOS technology using only CMOS devices at a 1.8 V voltage supply and with a core area of 0.024 mm2. The measurement results show that the SFDR is 32.4 dB with a 4 GHz sine wave input at a 20 GSps sampling rate, and the third harmonic distortion is -48 dBc. The effective resolution bandwidth of the THA is 12 GHz and the figure of merit is only 0.028 mW/GHz.

  9. DC-DC converters in 0.35μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Michelis, S.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Orlandi, S.; Saggini, S.; Cengarle, S.; Ongaro, F.

    2012-01-01

    In view of the upgrade of the LHC experiments, we are developing custom DC/DC converters for a more efficient power distribution scheme. A new prototype have been integrated in ASICs in the selected 0.35μm commercial high voltage technology that has been successfully tested for all radiation effects: TID, displacement damage and Single Event Burnout. This converter has been optimized for high efficiency and improved radiation tolerance. Amongst the new features the most relevant are the presence of internal linear regulators, protection circuits with a state-machine and a new pinout for a modified assembly in package in order to reduce conductive losses. This paper illustrates the design of the prototype followed by functional and radiation tests.

  10. CCD and CMOS sensors

    NASA Astrophysics Data System (ADS)

    Waltham, Nick

    The charge-coupled device (CCD) has been developed primarily as a compact image sensor for consumer and industrial markets, but is now also the preeminent visible and ultraviolet wavelength image sensor in many fields of scientific research including space-science and both Earth and planetary remote sensing. Today"s scientific or science-grade CCD will strive to maximise pixel count, focal plane coverage, photon detection efficiency over the broadest spectral range and signal dynamic range whilst maintaining the lowest possible readout noise. The relatively recent emergence of complementary metal oxide semiconductor (CMOS) image sensor technology is arguably the most important development in solid-state imaging since the invention of the CCD. CMOS technology enables the integration on a single silicon chip of a large array of photodiode pixels alongside all of the ancillary electronics needed to address the array and digitise the resulting analogue video signal. Compared to the CCD, CMOS promises a more compact, lower mass, lower power and potentially more radiation tolerant camera.

  11. Cryogenic analog-to-digital converters using spread spectrum technology for coherent receivers

    NASA Astrophysics Data System (ADS)

    Shiao, Yu-Shao Jerry; Chiueh, Tzihong; Hu, Robert

    2012-09-01

    We propose analog-to-digital converters (ADCs) using spread spectrum technology in cryogenic receivers or at warm room temperature for coherent receiver backend systems. As receiver signals are processed and stored digitally, ADCs play a critical role in backend read-out systems. To minimize signal distortion, the down-converted signals should be digitized without further transportation. However, digitizing the signals in or near receivers may cause radio frequency interference. We suggest that spread spectrum technology can reduce the interference significantly. Moreover, cryogenic ADCs at regulated temperature in receiver dewars may also increase the bandwidth usage and simplify the backend digital signal process with fewer temperature-dependant components. While industrial semiconductor technology continuously reduces transistor power consumption, low power high speed cryogenic ADCs may become a better solution for coherent receivers. To examine the performance of cooled ADCs, first, we design 4 bit 65 nm and 40 nm CMOS ADCs specifically at 10 K temperature, which commonly is the second stage temperature in dewars. While the development of 65 nm and 40 nm CMOS ADCs are still on-going, we estimate the ENOB is 2.4 at 10 GSPS, corresponding to the correlation efficiency, 0.87. The power consumption is less than 20 mW.

  12. Quantitative prediction of junction leakage in bulk-technology CMOS devices

    NASA Astrophysics Data System (ADS)

    Duffy, R.; Heringa, A.; Venezia, V. C.; Loo, J.; Verheijen, M. A.; Hopstaken, M. J. P.; van der Tak, K.; de Potter, M.; Hooker, J. C.; Meunier-Beillard, P.; Delhougne, R.

    2010-03-01

    Junction leakage becomes more significant as metal-oxide-semiconductor (MOS) technologies scale down in bulk-silicon. In this work we quantify the four key elements to junction leakage generation through a combination of experiment and device simulation. These elements are: (i) ultra-shallow junction steepness, (ii) channel and pocket concentrations, (iii) junction curvature, and (iv) the presence of residual defects. We first characterize n +/p and p +/n diodes to quantify how changes in doping profiles affect reverse bias leakage. Diodes with end-of-range (EOR) silicon defects intentionally located in the junction depletion region are also characterized to quantify their contribution. This feeds into a device simulation study to gain insight in the experimental results and in the capabilities of available physical models. Thereafter simulation is used to predict leakage in future generation bulk-silicon MOS devices. In summary, band-to-band tunneling (BBT) due to aggressively scaled doping profiles and trap-assisted tunneling (TAT) due to the increased presence of defects make off-state low-standby-power leakage targets difficult to meet. With the increase of junction leakage from aggressively scaled ultra-shallow junctions, the assumption that the subthreshold leakage component dominates off-state current is no longer valid.

  13. Analog Programmable Distance Calculation Circuit for Winner Takes All Neural Network Realized in the CMOS Technology.

    PubMed

    Talaśka, Tomasz; Kolasa, Marta; Długosz, Rafał; Pedrycz, Witold

    2016-03-01

    This paper presents a programmable analog current-mode circuit used to calculate the distance between two vectors of currents, following two distance measures. The Euclidean (L2) distance is commonly used. However, in many situations, it can be replaced with the Manhattan (L1) one, which is computationally less intensive, whose realization comes with less power dissipation and lower hardware complexity. The presented circuit can be easily reprogrammed to operate with one of these distances. The circuit is one of the components of an analog winner takes all neural network (NN) implemented in the complementary metal-oxide-semiconductor 0.18- [Formula: see text] technology. The learning process of the realized NN has been successfully verified by the laboratory tests of the fabricated chip. The proposed distance calculation circuit (DCC) features a simple structure, which makes it suitable for networks with a relatively large number of neurons realized in hardware and operating in parallel. For example, the network with three inputs occupies a relatively small area of 3900 μm(2). When operating in the L2 mode, the circuit dissipates 85 [Formula: see text] of power from the 1.5 V voltage supply, at maximum data rate of 10 MHz. In the L1 mode, an average dissipated power is reduced to 55 [Formula: see text] from 1.2 V voltage supply, while data rate is 12 MHz in this case. The given data rates are provided for the worst case scenario, where input currents differ by 1%-2% only. In this case, the settling time of the comparators used in the DCC is quite long. However, that kind of situation is very rare in the overall learning process. PMID:26087501

  14. Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification

    NASA Astrophysics Data System (ADS)

    Oria, Lorea; Ruiz de Luzuriaga, Alaitz; Chevalier, Xavier; Alduncin, Juan A.; Mecerreyes, David; Tiron, Raluca; Gaugiran, Stephanie; Perez-Murano, Francesc

    2011-04-01

    Recent progress in Block Copolymer lithography has shown that guided self-assembly is a viable alternative for pushing forward the resolution limits of optical lithography. The main two self assembly methods considered so far have been the surface chemical modification, which is based on the chemical modification of a brush grafted to the silicon, and the grapho-epitaxy, which is based on creating topographic patterns on the surface. We have tested these two approaches for the 22 nm node and beyond CMOS technology, using PS-PMMA block copolymers synthesized by RAFT (Reversible Addition-Fragmentation Chain Transfer) polymerization.

  15. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  16. Effect of coupling parasitics and CMOS driver width on transition time for dynamic inputs

    NASA Astrophysics Data System (ADS)

    Sharma, Devendra Kumar; Kaushik, Brajesh Kumar; Sharma, R. K.

    2014-05-01

    This article analyses the effect of coupling parasitics and CMOS gate driver width on transition time delay of coupled interconnects driven by dynamically switching inputs. Propagation delay through an interconnect is dependent not only on the technology/topology but also on many other factors such as input transition time, load characteristic, driving gate dimensions and so on. The delay is affected by rise/fall time of the signal, which in turn is dependent on the driving gate and the load presented to it. The signal transition time is also a strong function of wire parasitics. This article addresses the different issues of signal transition time. The impact of inter-wire parasitics and driver width on signal transition time are presented in this article. Furthermore, the effect of unequal transition time of the inputs to interconnect lines on crosstalk noise and delay is analysed. To demonstrate these effects, two distributed RLC lines coupled capacitively and inductively are taken into consideration. The simulations are run at three different technology nodes, viz. 65 nm, 90 nm and 130 nm.

  17. A low-noise low-power readout electronics circuit at 4 K in standard CMOS technology for PACS/Herschel

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Creten, Ybe; Putzeys, Jan; Souverijns, Tim; Van Hoof, Chris

    2004-10-01

    IMEC has designed, in the framework of the PACS project (for the European Herschel Space Observatory) the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for the CRE were high linearity (3 %), low power consumption (80 μW for an 18 channel array), and very low noise (200 e-) at an operating temperature of 4.2 K (LHT - Liquid Helium Temperature). IMEC has implemented this circuit in a standard CMOS technology (AMIS 0.7 μm), which guarantees high production yield and uniformity, relatively easy availability of the technology and portability of the design. However, the drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K, known as kink and hysteresis effects and under certain conditions the presence of excess noise. These cryogenic phenomena disturb the normal functionality of commonly used circuits or building blocks like buffer amplifiers and opamps. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. These techniques have been validated in an automated cryogenic test set-ups developed at IMEC. We will present here in detail the full design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance and demonstrate that all major specifications at 4.2 K were met. Future designs and implementations will be equally presented.

  18. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.

    PubMed

    Mandai, Shingo; Fishburn, Matthew W; Maruyama, Yuki; Charbon, Edoardo

    2012-03-12

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4 V, with 30 % PDP at wavelengths from 520 nm to 720 nm. Dark count rates (DCR) are at most 5 kHz, which is 30 Hz/μm2, at an excess bias of 4V when we measure 10 μm diameter active area structure. Afterpulsing probability, timing jitter, and temperature effects on DCR are also presented. PMID:22418462

  19. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  20. A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Le Normand, Jean-Pierre; Zint, Virginie; Dumas, Norbert; Dadouche, Foudil; Malasse, Imane; Scholz, Jeremy

    2012-04-01

    Several works have demonstrated the successfully integration of Single-photon avalanche photodiodes (SPADs) operating in Geiger mode in a standard CMOS circuit for the last 10 years. These devices offer an exceptional temporal resolution as well as a very good optical sensitivity. Nevertheless, it is difficult to predict the expected performances of such a device. Indeed, for a similar structure of SPAD, some parameter values can differ by two orders of magnitude from a technology to another. We proposed here a procedure to identify in just one or two runs the optimal structure of SPAD available for a given technology. A circuit with an array of 64 SPAD has been realized in the Tower-Jazz 0.18 μm CMOS image sensor process. It encompasses an array of 8 different structures of SPAD reproduced in 8 diameters in the range from 5 μm up to 40 μm. According to the SPAD structures, efficient shallow trench insulator and/or P-Well guard ring are used for preventing edge breakdown. Low dark count rate of about 100 Hz are expected thanks to the use of buried n-well layer and a high resistivity substrate. Each photodiode is embedded in a pixel which includes a versatile quenching circuitry and an analog output of its cathode voltage. The quenching system is configurable in four operation modes; the SPAD is disabled, the quenching is completely passive, the reset of the photodiode is active and the quenching is fully active. The architecture of the array makes possible the characterization of every single photodiode individually. The parameters to be measured for a SPAD are the breakdown avalanche voltage, the dark count rate, the dead time, the timing jitter, the photon detection probability and the after-pulsing rate.

  1. A 180-Vpp Integrated Linear Amplifier for Ultrasonic Imaging Applications in a High-Voltage CMOS SOI Technology

    PubMed Central

    Sun, Kexu; Gao, Zheng; Gui, Ping; Wang, Rui; Oguzman, Ismail; Xu, Xiaochen; Vasanth, Karthik; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This brief presents a monolithically integrated fully differential linear HV amplifier as the driver of an ultrasonic transducer. The linear amplifier is capable of transmitting HV arbitrary signals with a very low harmonic distortion, which is suitable for tissue harmonic imaging and other ultrasonic modes for enhanced imaging quality. The amplifier is designed and implemented using the 0.7-μm CMOS silicon-on-insulator process with 120-V devices. The amplifier, when driving a load of 300 pF in parallel with 100 Ω, is capable of transmitting a sine-wave signal with a frequency of up to 4.4 MHz, a maximum signal swing of 180 Vpp, and a second-order harmonic distortion (HD2) of −56 dBc but only dissipating an average power of 62 mW with a 0.1% duty cycle. PMID:25914609

  2. Single event effects in static and dynamic registers in a 0.25{micro}m CMOS technology

    SciTech Connect

    Faccio, F.; Kloukinas, K.; Marchioro, A.; Calin, T.; Cosculluela, J.; Nicolaidis, M.; Velazco, R.

    1999-12-01

    The authors have studied Single Event Effects in static and dynamic registers designed in a quarter micron CMOS process. In the design, they systematically used guard rings and enclosed (edgeless) transistor geometry to improve the total dose tolerance. This design technique improved both the SEL and SEU sensitivity of the circuits. Using SPICE simulations, the measured smooth transition of the cross-section curve between LET threshold and saturation has been traced to the presence of four different upset modes, each corresponding to a different critical charge and sensitive area. A new architecture to protect the content of storage cells has been developed, and a threshold LET around 89 MeVcm{sup 2}mg{sup {minus}1} has been measured for this cell at a power supply voltage of 2 V.

  3. Carbon Nanotube Integration with a CMOS Process

    PubMed Central

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  4. Design considerations for integration of Horizontal Current Bipolar Transistor (HCBT) with 0.18 μm bulk CMOS technology

    NASA Astrophysics Data System (ADS)

    Koričić, Marko; Suligoj, Tomislav; Mochizuki, Hidenori; Morita, So-ichi; Shinomura, Katsumi; Imai, Hisaya

    2010-10-01

    Design issues associated with integration of Horizontal Current Bipolar Transistor (HCBT) with 0.18 μm bulk CMOS process are examined and the effects of fabrication parameters on transistor performance analyzed. HCBT is fabricated on a sidewall of a silicon hill defined by shallow trench isolation (STI). Height of the transistor is limited by the STI depth of 350 nm. Impact of vertical and horizontal dimensions on electrical performance of the transistor are analyzed by simulations with emphasis on extrinsic base design. Base current is reduced by high extrinsic base concentration and increased link-base length. Current gain is increased from 16 to 67 for transistor processed with the optimized extrinsic base profile. High-frequency performance is degraded by the collector charge sharing effect and can be improved by the larger separation between the extrinsic base and emitter, which is achieved with a small thickness of emitter polysilicon region. Misalignment tolerances of the extrinsic base implantation mask show no great impact on transistor's AC performance.

  5. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Xurui, Mao; Beiju, Huang; Hongda, Chen

    2014-12-01

    A 900 MHz fractional-N synthesizer is designed for the UHF transceiver. The VCO with a 4 bits capacitor bank covers 823-1061 MHz that implements 16 (24) sub-bands. A 7/8 dual-modulus prescaler is implemented with a phase-switching circuit and high-speed flip—flops, which are composed of source coupled logic. The proposed synthesizer phase-locked loop is demonstrated with a 50 kHz band width by a low 12.95 MHz reference clock, and offers a better phase noise and band width tradeoff. To reduce the out-band phase noise, a 4-levels 3-order single-loop sigma—delta modulator is applied. When its relative frequency resolution is settled to 10-6, the testing results show that the phase noises are -120.6 dBc/Hz at 1 MHz and -95.0 dBc/Hz at 100 kHz. The chip is 2.1 mm2 in UMC 0.18 μm CMOS. The power is 36 mW at a 1.8 V supply.

  6. A Standard CMOS Humidity Sensor without Post-Processing

    PubMed Central

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 μW power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023–10 humidity-sensitive layer, and a CMOS capacitance to voltage converter. PMID:22163949

  7. A 16 b 2 GHz digital-to-analog converter in 0.18 μm CMOS with digital calibration technology

    NASA Astrophysics Data System (ADS)

    Weidong, Yang; Jiandong, Zang; Tiehu, Li; Pu, Luo; Jie, Pu; Ruitao, Zhang; Chao, Chen

    2015-10-01

    This paper presents a 16-bit 2 GSPS digital-to-analog converter (DAC) in 0.18 μm CMOS technology. This DAC is implemented using time division multiplex access system architecture in the digital domain. The input data is received with a two-channel LVDS interface. The DLL technology is introduced to meet the timing requirements between phases of the LVDS data and the data sampling clock. A FIFO is designed to absorb the phase difference between the data clock and DAC system clock. A delay controller is integrated to adjust the phase relationship between the high speed digital clock and analog clock, obtaining a sampling rate of 2 GSPS. The current source mismatch at higher bits is calibrated in the digital domain. Test results show that the DAC achieves 74.02 dBC SFDR at analog output of 36 MHz, and DNL less than ±2.1 LSB & INL less than ±4.3 LSB after the chip is calibrated.

  8. Commercially developed mixed-signal CMOS process features for application in advanced ROICs in 0.18μm technology node

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Hurwitz, Paul; Mann, Richard; Qamar, Yasir; Chaudhry, Samir; Zwingman, Robert; Howard, David; Racanelli, Marco

    2012-06-01

    Increasingly complex specifications for next-generation focal plane arrays (FPAs) require smaller pixels, larger array sizes, reduced power consumption and lower cost. We have previously reported on the favorable features available in the commercially available TowerJazz CA18 0.18μm mixed-signal CMOS technology platform for advanced read-out integrated circuit (ROIC) applications. In his paper, new devices in development for commercial purposes and which may have applications in advanced ROICs are reported. First, results of buried-channel 3.3V field effect transistors (FETs) are detailed. The buried-channel pFETs show flicker (1/f) noise reductions of ~5X in comparison to surface-channel pFETs along with a significant reduction of the body constant parameter. The buried-channel nFETs show ~2X reduction of 1/f noise versus surface-channel nFETs. Additional reduced threshold voltage nFETs and pFETs are also described. Second, a high-density capacitor solution with a four-stacked linear (metal-insulator-metal) MIM capacitor having capacitance density of 8fF/μm2 is reported. Additional stacking with MOS capacitor in a 5V tolerant process results in >50fC/μm2 charge density. Finally, one-time programmable (OTP) and multi-time programmable (MTP) non-volatile memory options in the CA18 technology platform are outlined.

  9. Digital standard cells and operational amplifiers for operation up to 250 degrees C using low-cost CMOS technology

    NASA Astrophysics Data System (ADS)

    Stemmer, Jens; Ackermann, Joerg; Uffmann, Dirk; Aderhold, Jochen

    1996-09-01

    There is an increasing demand from automotive, aircraft and space industry for reliable high temperature resistant electronics. Circuits with reliable functionality up to temperatures of 250 degree(s)C would be sufficient for most of these applications. Digital standard cells and operational amplifiers are the basic building blocks of these circuits. Commercially available digital standard cell libraries and operational amplifiers are normally specified for operation up to a maximum temperature of 125 degree(s)C. Hence, the purpose of this work was the design and characterization of digital standard cells and operational amplifiers for operation up to 250 degree(s)C using a low-cost 1.0 micrometers epi-CMOS process. Several design measures were applied to the cells in order to further improve latch-up resistivity and to limit leakage currents, respectively. The transfer curves of all digital cells for all input signal combinations have been recorded in the temperature range from 30 to 250 degree(s)C. Significant results are very low temperature shifts of the noise margins and of the switching point, respectively. Furthermore, the low (0 V) and high (5 V) levels are reached exactly over the entire temperature range. Outstanding characteristics of the operational amplifier comprise low open-loop gain temperature drift as well as low offset and offset temperature drift, respectively. The open-loop gain was greater than 83 dB at room temperature with a drift of less than 0.02 dB/ degree(s)C. The offset voltage amounted to -1 mV at room temperature and 1 mV at 250 degree(s)C, respectively. The long-term behavior of these cells is currently under investigation.

  10. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal-metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm×70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  11. Search strategy for relevant parasitic elements and reduction of their influence on the operation of SC FIR filters realized in CMOS technology

    NASA Astrophysics Data System (ADS)

    Dlugosz, Rafal

    2005-06-01

    Parasitic capacities pose a serious problem in switched capacitor finite impulse response (SC FIR) filters realized as VLSI systems in CMOS submicron technologies. The influence of these parasitic elements is especially visible in the stopband of the filter frequency response. To design mixed digital-analog SC FIR filters is a difficult task. Filters of this class have to be designed using full-custom method. SC FIR filters of high orders N are very complex systems with thousands of transistors, capacitors, which, in turn, make the basis for many active elements, switches, delay elements, memories and other circuitry. One of the most important stages during the design process is post-layout HSPICE verification. However, the simulation of separated blocks does not suffice to have enough knowledge of the operation of the whole system. Optimization requires netlist simulations of the entire system, with presence of typically between 5000-30000 of parasitic capacities, where only about hundred of them are critical ones. Analysis which aims at finding these elements, in practice, is not possible because of the complexity of the entire system. The heuristic method of searching for relevant parasitic elements presented in this paper is based on the assumption that all parasitic elements create a set. The main task is to divide this set into subareas. In order to do this particular groups of nets in the layout must be labeled using unique names. Then particular groups of parasitic elements are filtered out from the netlist. Each filtering stage generates two netlists with separate areas of parasitic elements. After the analysis of the simulation results has been done there remains to make the decision concerning subsequent filtering operations. The iteration method is very quick, convenient, efficient and does not require deep knowledge of the simulated system. Many stages of this method can be easy implemented with CAD tools. In realized projects, after no more than 15

  12. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  13. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  14. TOT01, a time-over-threshold based readout chip in 180nm CMOS technology for silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Szczygiel, R.; Gryboś, P.

    2011-01-01

    This work is focused on the development of the TOT01 prototype front-end ASIC for the readout of long silicon strip detectors in the STS (Silicon Tracking System) of the CBM experiment at FAIR - GSI. The deposited charge measurement is based on the Time-over-Threshold method which allows integration of a low-power ADC into each channel. The TOT01 chip comprises 30 identical channels and 1 test channel which is supplied with additional test pads. The major blocks of each channel are the CSA (charge sensitive amplifier) with two switchable constant-current discharge circuits and additional test features. The architecture of the CSA core is based on the folded cascode. The input p-channel MOSFET device, biased at a drain current 500 μA, was optimized for 30 pF detector capacitance while keeping in mind the area constraints — W/L = 1800 μm / 0.180 μm. The main advantage of this solution is high gain (GBW = 1.2 GHz) and low power consumption at the same time. The amplifier is followed by the discriminator circuit. The discriminator allows for a global (multi-channel) differential threshold setting and independent compensation for the CSA output DC-level deviations in each channel by means of a 6-bit digital to analog converter (DAC). The output pulse of this processing chain is fed through a 31:1 multiplexer structure to the output of the chip for further processing. The TOT01 chip has been fabricated in the UMC 0.18 μm CMOS process (Europractice mini@sic). It has 78 pads, measures approximately 1.5x3.2 mm2 and dissipates 33 mW. The channels have 50 μm pitch and each consumes 1.05 mW of power. The chip has been successfully tested. Charge sensitivity parameters, noise performance and first X-ray acquisitions are presented.

  15. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter

    NASA Astrophysics Data System (ADS)

    Anlin, He; Gang, Guo; Shuting, Shi; Dongjun, Shen; Jiancheng, Liu; Li, Cai; Hui, Fan

    2015-11-01

    This paper tested and analyzed heavy ion and proton induced single event effects (SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients (SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer (LET) and proton energy has been measured. The main study conclusions are: (1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size (600 nm), and threshold LET is about 0.06 MeV·mg/cm2 (2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model; (3) on-orbit soft error rate (SER) prediction showed, on GEO orbit, proton induced SERs calculated by the heavy ion derived model are 4-5 times larger than those calculated by proton test data.

  16. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-07-01

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  17. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  18. Fabrication of CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Malinovich, Yacov; Koltin, Ephie; Choen, David; Shkuri, Moshe; Ben-Simon, Meir

    1999-04-01

    In order to provide its customers with sub-micron CMOS fabrication solutions for imaging applications, Tower Semiconductor initiated a project to characterize the optical parameters of Tower's 0.5-micron process. A special characterization test chip was processed using the TS50 process. The results confirmed a high quality process for optical applications. Perhaps the most important result is the process' very low dark current, of 30-50 pA/cm2, using the entire window of process. This very low dark current characteristic was confirmed for a variety of pixel architectures. Additionally, we have succeeded to reduce and virtually eliminate the white spots on large sensor arrays. As a foundry Tower needs to support fabrication of many different imaging products. Therefore we have developed a fabrication methodology that is adjusted to the special needs of optical applications. In order to establish in-line process monitoring of the optical parameters, Tower places a scribe line optical test chip that enables wafer level measurements of the most important parameters, ensuring the optical quality and repeatability of the process. We have developed complementary capabilities like in house deposition of color filter and fabrication of very large are dice using sub-micron CMOS technologies. Shellcase and Tower are currently developing a new CMOS image sensor optical package.

  19. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    SciTech Connect

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  20. Emulation of high-frequency substrate noise generation in CMOS digital circuits

    NASA Astrophysics Data System (ADS)

    Shimazaki, Shunsuke; Taga, Shota; Makita, Tetsuya; Azuma, Naoya; Miura, Noriyuki; Nagata, Makoto

    2014-01-01

    A noise emulator is based on the capacitor charging modeling and generates power and substrate noises expected in a CMOS digital integrated circuit. An off-chip near-magnetic-field sensor indirectly characterizes the distribution of clock timing and the adjustability of skews within on-chip digital circuits. An on-chip noise monitor captures power and substrate noise waveforms and evaluates noise frequency components in a wide frequency bandwidth. A 65 nm CMOS prototype demonstrated power and substrate noise generation in a variety of operating scenarios of digital integrated circuits. Power noise generation emulated at 125 MHz exhibits the enhancements of high-order harmonic components after deskewing at a timing resolution of 37.8 ps, as is specifically seen in more than 10 dB enlargement of the substrate noise component at 2.1 GHz.

  1. Evaluation of MOBILE-based gate-level pipelining augmenting CMOS with RTDs

    NASA Astrophysics Data System (ADS)

    Nuñez, Juan; Avedillo, María J.; Quintana, José M.

    2011-05-01

    The incorporation of Resonant Tunnel Diodes (RTDs) into III/V transistor technologies has shown an improved circuit performance: higher circuit speed, reduced component count, and/or lowered power consumption. Currently, the incorporation of these devices into CMOS technologies (RTD-CMOS) is an area of active research. Although some works have focused the evaluation of the advantages of this incorporation, additional work in this direction is required. We compare RTD-CMOS and pure CMOS realizations of a network of logic gates which can be operated in a gate-level pipeline. Significant lower average power is obtained for RTD-CMOS implementations.

  2. Fundamentals and technology for monolithically integrated RF MEMS switches with ultra-nanocrystaline diamond dielectric/CMOS devices.

    SciTech Connect

    Auciello, O.; Sumant, A.; Goldsmith, C.; O'Brien, S.; Sampath, S.; Gudeman, C; Wang, W.; Hwang, J.; Swonger, J.; Carlisle, J.; Balachandran, S.; MEMtronics Corp.; Innovative Micro Technology; Lehigh Univ.; Peregrine Semiconductor; Advanced Diamond Technologies

    2010-01-01

    Most current capacitive RF-MEMS switch technology is based on conventional dielectric materials such as SiO{sub 2} and Si{sub 3}N{sub 4}. However, they suffer not only from charging problems but also stiction problems leading to premature failure of an RF-MEMS switch. Ultrananocrystalline diamond (UNCD{sup (R)}) (2-5 nm grains) and nanocrystalline diamond (NCD) (10-100 nm grains) films exhibit one of the highest Young's modulus ({approx} 980-1100 GPa) and demonstrated MEMS resonators with the highest quality factor (Q {ge} 10,000 in air for NCD) today, they also exhibit the lowest force of adhesion among MEMS/NEMS materials ({approx}10 mJ/m{sup 2}-close to van der Waals attractive force for UNCD) demonstrated today. Finally, UNCD exhibits dielectric properties (fast discharge) superior to those of Si and SiO{sub 2}, as shown in this paper. Thus, UNCD and NCD films provide promising platform materials beyond Si for a new generation of important classes of high-performance MEMS/NEMS devices.

  3. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  4. Low energy CMOS for space applications

    NASA Astrophysics Data System (ADS)

    Panwar, Ramesh; Alkalaj, Leon

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  5. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  6. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  7. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  8. IR CMOS: infrared enhanced silicon imaging

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Haddad, Homayoon; Vineis, C.; Sickler, J.; Li, X.; Jiang, J.; Sahebi, F.; Palsule, C.; McKee, J.

    2013-06-01

    SiOnyx has developed visible and infrared CMOS image sensors leveraging a proprietary ultrafast laser semiconductor process technology. This technology demonstrates 10 fold improvements in infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Furthermore, these sensitivity enhancements are achieved on a focal plane with state of the art noise performance of 2 electrons/pixel. By capturing light in the visible regime as well as infrared light from the night glow, this sensor technology provides imaging in daytime through twilight and into nighttime conditions. The measured 10x quantum efficiency at the critical 1064 nm laser node enables see spot imaging capabilities in a variety of ambient conditions. The spectral sensitivity is from 400 to 1200 nm.

  9. Ultra low power CMOS technology

    NASA Technical Reports Server (NTRS)

    Burr, J.; Peterson, A.

    1991-01-01

    This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation.

  10. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  11. Ink-Jet Printed CMOS Electronics from Oxide Semiconductors.

    PubMed

    Garlapati, Suresh Kumar; Baby, Tessy Theres; Dehm, Simone; Hammad, Mohammed; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-08-01

    Complementary metal oxide semiconductor (CMOS) technology with high transconductance and signal gain is mandatory for practicable digital/analog logic electronics. However, high performance all-oxide CMOS logics are scarcely reported in the literature; specifically, not at all for solution-processed/printed transistors. As a major step toward solution-processed all-oxide electronics, here it is shown that using a highly efficient electrolyte-gating approach one can obtain printed and low-voltage operated oxide CMOS logics with high signal gain (≈21 at a supply voltage of only 1.5 V) and low static power dissipation. PMID:25867029

  12. Cmos spdt switch for wlan applications

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.

    2015-04-01

    WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.

  13. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  14. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  15. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  16. A low-phase-noise Ka-band push-push voltage-controlled oscillator using CMOS/glass-integrated passive device technologies.

    PubMed

    Wang, Sen

    2014-09-01

    In this paper, a Ka-band CMOS push-push voltage- controlled oscillator (VCO) integrated into a glass-integrated passive device (GIPD) process is presented. The transformer, λ/4 transmission line, and inductors of the VCO are realized in the GIPD process, achieving superior performances, and therefore improve the phase noise of the VCO. Moreover, the transformer-based VCO is a differential Hartley topology to further reduce the phase noise and chip area. Operating at 1.8 V supply voltage, the VCO core consumes merely 3.8 mW of dc power. The measured phase noise is -109.18 dBc/Hz at 1 MHz offset from the 30.84 GHz oscillation frequency. The push-push VCO also demonstrates a 24.5 dB fundamental rejection, and exhibits an 8.4% tuning range. Compared with recently published CMOS-based VCOs, it is observed that the proposed VCO exhibits excellent performance under low power consumption. PMID:25167145

  17. A saw-less direct conversion long term evolution receiver with 25% duty-cycle LO in 130 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Siyuan, He; Changhong, Zhang; Liang, Tao; Weifeng, Zhang; Longyue, Zeng; Wei, Lü; Haijun, Wu

    2013-03-01

    A CMOS long-term evolution (LTE) direct convert receiver that eliminates the interstage SAW filter is presented. The receiver consists of a low noise variable gain transconductance amplifier (TCA), a quadrature passive current commutating mixer with a 25% duty-cycle LO, a trans-impedance amplifier (TIA), a 7th-order Chebyshev filter and programmable gain amplifiers (PGAs). A wide dynamic gain range is allocated in the RF and analog parts. A current commutating passive mixer with a 25% duty-cycle LO improves gain, noise, and linearity. An LPF based on a Tow-Thomas biquad suppresses out-of-band interference. Fabricated in a 0.13 μm CMOS process, the receiver chain achieves a 107 dB maximum voltage gain, 2.7 dB DSB NF (from PAD port), -11 dBm IIP3, and > +65 dBm IIP2 after calibration, 96 dB dynamic control range with 1 dB steps, less than 2% error vector magnitude (EVM) from 2.3 to 2.7 GHz. The total receiver (total I Q path) draws 89 mA from a 1.2-V LDO on chip supply.

  18. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  19. Self-Calibrated Humidity Sensor in CMOS without Post-Processing

    PubMed Central

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry. PMID:22368466

  20. Scale down of p-n junction diodes of an uncooled IR-FPA for improvement of the sensitivity and thermal time response by 0.13-µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ikuo; Sasaki, Keita; Suzuki, Kazuhiro; Yagi, Hitoshi; Kwon, Honam; Honda, Hiroto; Ishii, Koichi; Ogata, Masako; Atsuta, Masaki; Ueno, Risako; Kobayashi, Mitsuyoshi; Funaki, Hideyuki

    2011-06-01

    We have developed an uncooled infrared radiation focal plane array (IR-FPA) with 22 μm pitch and 320 × 240 pixels utilizing silicon p-n junction diodes, which were fabricated by 0.13 μm CMOS technology and bulk-micromachining. The thermal time response of cells was lowered to be 16msec by reduction of thermal capacity of cells. In addition to increase the sensitivity of cells by extending the length of supporting beams, p-n junction diode was scaled down as small as 20% in area compared to previous one. Micro-holes were formed in the cell to reduce only thermal capacity, which were negligibly small compared to incident IR wavelength. This method needs no additional process step and is considered as suitable for low cost and mass-productive IR-FPA.

  1. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  2. Performance of capacitively coupled active pixel sensors in 180 nm HV-CMOS technology after irradiation to HL-LHC fluences

    NASA Astrophysics Data System (ADS)

    Feigl, S.

    2014-03-01

    In this ATLAS upgrade R&D project, we explore the concept of using a deep-submicron HV-CMOS process to produce a drop-in replacement for traditional radiation-hard silicon sensors. Such active sensors contain simple circuits, e.g. amplifiers and discriminators, but still require a traditional (pixel or strip) readout chip. This approach yields most advantages of MAPS (improved resolution, reduced cost and material budget, etc.), without the complication of full integration on a single chip. After outlining the basic design of the HV2FEI4 test ASIC, results after irradiation with X-rays to 862 Mrad and neutrons up to 1016(1 MeV neq)/cm2 will be presented. Finally, a brief outlook on further development plans is given.

  3. Ultralow-Loss CMOS Copper Plasmonic Waveguides.

    PubMed

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S

    2016-01-13

    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips. PMID:26654281

  4. Capacitively Coupled CMOS VCSEL Driver Circuits for Optical Communication

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor

    This thesis presents the analysis, design and implementation of a common-cathode capacitively-coupled VCSEL driver in 65nm CMOS intended for short-reach optical interconnects. The driver consists of an AC-coupled high-frequency path and a low-frequency path that provides DC signal components. By increasing the low-frequency path bandwidth by 10 times compared to previous AC-coupled drivers allowed the on-chip coupling capacitor to be reduced to 2.1pF, occupying 3 times less area than prior art. The driver introduces capacitively-coupled two-tap emphasis to equalize the VCSEL's optical response. The VCSEL was modulated with an OMA of up to 5.1dBm and an ER of 9dB, measuring an RMS jitter of 5ps at a data rate of 15Gb/s, which represents the highest OMA and ER achieved in high-speed anode-driving LDDs. The driver could be programmed for a low-power mode, outputting 2.3dBm OMA at power consumption of only 30mW, corresponding to an energy efficiency of 2pJ/bit.

  5. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  6. IGBT scaling principle toward CMOS compatible wafer processes

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Omura, Ichiro

    2013-02-01

    A scaling principle for trench gate IGBT is proposed. CMOS technology on large diameter wafer enables to produce various digital circuits with higher performance and lower cost. The transistor cell structure becomes laterally smaller and smaller and vertically shallower and shallower. In contrast, latest IGBTs have rather deeper trench structure to obtain lower on-state voltage drop and turn-off loss. In the aspect of the process uniformity and wafer warpage, manufacturing such structure in the CMOS factory is difficult. In this paper, we show the scaling principle toward shallower structure and better performance. The principle is theoretically explained by our previously proposed "Structure Oriented" analytical model. The principle represents a possibility of technology direction and roadmap for future IGBT for improving the device performance consistent with lower cost and high volume productivity with CMOS compatible large diameter wafer technologies.

  7. OLED-on-CMOS integration for optoelectronic sensor applications

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Kreye, Daniel; Reckziegel, Sven; Törker, Michael; Grillberger, Christiane; Amelung, Jörg

    2007-02-01

    Highly-efficient, low-voltage organic light emitting diodes (OLEDs) are well suitable for post-processing integration onto the top metal layer of CMOS devices. This has been proven for OLED microdisplays so far. Moreover, OLEDon- CMOS technology may also be excellently suitable for various optoelectronic sensor applications by combining highly efficient emitters, use of low-cost materials and cost-effective manufacturing together with silicon-inherent photodetectors and CMOS circuitry. The use of OLEDs on CMOS substrates requires a top-emitting, low-voltage and highly efficient OLED structure. By reducing the operating voltage for the OLED below 5V, the costs for the CMOS process can be reduced, because a process without high-voltage option can be used. Red, orange, white, green and blue OLED-stacks with doped charge transport layers were prepared on different dualmetal layer CMOS test substrates without active transistor area. Afterwards, the different devices were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.). Low operating voltages of 2.4V at 100cd/m2 for the red p-i-n type phosphorescent emitting OLED stack, 2.5V at 100cd/m2 for the orange phosphorescent emitting OLED stack and 3.2V at 100cd/m2 for the white fluorescent emitting OLED have been achieved here. Therefore, those OLED stacks are suitable for use in a CMOS process even within a regular 5V process option. Moreover, the operating voltage achieved so far is expected to be reduced further when using different top electrode materials. Integrating such OLEDs on a CMOS-substrate provide a preferable choice for silicon-based optical microsystems targeted towards optoelectronic sensor applications, as there are integrated light barriers, optocouplers, or lab-onchip devices.

  8. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  9. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  10. CMOS-compatible RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lakamraju, Narendra V.; Kim, Bruce; Phillips, Stephen M.

    2004-08-01

    Mobile technologies have relied on RF switches for a long time. Though the basic function of the switch has remained the same, the way they have been made has changed in the recent past. In the past few years work has been done to use MEMS technologies in designing and fabricating an RF switch that would in many ways replace the electronic and mechanical switches that have been used for so long. The work that is described here is an attempt to design and fabricate an RF MEMS switch that can handle higher RF power and have CMOS compatible operating voltages.

  11. CMOS IC fault models, physical defect coverage, and I sub DDQ testing

    SciTech Connect

    Fritzemeier, R.R.; Soden, J.M. ); Hawkins, C.F. . Dept. of Electrical and Computer Engineering)

    1991-01-01

    The development of the stuck-at fault (SAF) model is reviewed with emphasis on its relationship to CMOS integrated circuit (IC) technologies. The ability of the SAF model to represent common physical defects in CMOS ICs is evaluated. A test strategy for defect detection, which includes I{sub DDQ} testing is presented. 16 refs., 4 figs.

  12. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  13. Single photon detection and localization accuracy with an ebCMOS camera

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Dominjon, A.; Barbier, R.

    2015-07-01

    The CMOS sensor technologies evolve very fast and offer today very promising solutions to existing issues facing by imaging camera systems. CMOS sensors are very attractive for fast and sensitive imaging thanks to their low pixel noise (1e-) and their possibility of backside illumination. The ebCMOS group of IPNL has produced a camera system dedicated to Low Light Level detection and based on a 640 kPixels ebCMOS with its acquisition system. After reminding the principle of detection of an ebCMOS and the characteristics of our prototype, we confront our camera to other imaging systems. We compare the identification efficiency and the localization accuracy of a point source by four different photo-detection devices: the scientific CMOS (sCMOS), the Charge Coupled Device (CDD), the Electron Multiplying CCD (emCCD) and the Electron Bombarded CMOS (ebCMOS). Our ebCMOS camera is able to identify a single photon source in less than 10 ms with a localization accuracy better than 1 μm. We report as well efficiency measurement and the false positive identification of the ebCMOS camera by identifying more than hundreds of single photon sources in parallel. About 700 spots are identified with a detection efficiency higher than 90% and a false positive percentage lower than 5. With these measurements, we show that our target tracking algorithm can be implemented in real time at 500 frames per second under a photon flux of the order of 8000 photons per frame. These results demonstrate that the ebCMOS camera concept with its single photon detection and target tracking algorithm is one of the best devices for low light and fast applications such as bioluminescence imaging, quantum dots tracking or adaptive optics.

  14. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  15. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  16. Development of on-CMOS chip micro-photonic and MOEMS systems

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Okhai, Timothy; Bourouina, Tarik; Noell, Wilfried

    2011-03-01

    Advanced 3D CAD and optical simulation software were used to design first iteration on-CMOS chip MOEMS micro-systems. A Si Avalanche-based LED and an array of detectors interface laterally with a single arm canti-lever system, all to be fabricated with CMOS technology. Silicon nitride wave-guides are used as optical propagation channels offering losses of lower than 1dB.cm-1. Micro-bending and multi-planing of the wave guiding is possible. Far-field manipulation of the emitted channel radiation is possible. Mechanically designed and sensor systems can be added by means of CMOS post processing techniques. The emission level of the Si CMOS Av LEDs is 10+3 higher than the detectivity of silicon p-i-n detectors, offering good dynamic range in detection and data analyses. The mature processing characteristics of CMOS technology offers high integration possibilities and low cost manufacturing of the designed systems.

  17. Thin Film on CMOS Active Pixel Sensor for Space Applications

    PubMed Central

    Schulze Spuentrup, Jan Dirk; Burghartz, Joachim N.; Graf, Heinz-Gerd; Harendt, Christine; Hutter, Franz; Nicke, Markus; Schmidt, Uwe; Schubert, Markus; Sterzel, Juergen

    2008-01-01

    A 664 × 664 element Active Pixel image Sensor (APS) with integrated analog signal processing, full frame synchronous shutter and random access for applications in star sensors is presented and discussed. A thick vertical diode array in Thin Film on CMOS (TFC) technology is explored to achieve radiation hardness and maximum fill factor.

  18. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  19. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  20. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications

    NASA Astrophysics Data System (ADS)

    Arcamone, Julien; Dupré, Cécilia; Arndt, Grégory; Colinet, Eric; Hentz, Sébastien; Ollier, Eric; Duraffourg, Laurent

    2014-10-01

    This work reports on top-down nanoelectromechanical resonators, which are among the smallest resonators listed in the literature. To overcome the fact that their electromechanical transduction is intrinsically very challenging due to their very high frequency (100 MHz) and ultimate size (each resonator is a 1.2 μm long, 100 nm wide, 20 nm thick silicon beam with 100 nm long and 30 nm wide piezoresistive lateral nanowire gauges), they have been monolithically integrated with an advanced fully depleted SOI CMOS technology. By advantageously combining the unique benefits of nanomechanics and nanoelectronics, this hybrid NEMS-CMOS device paves the way for novel breakthrough applications, such as NEMS-based mass spectrometry or hybrid NEMS/CMOS logic, which cannot be fully implemented without this association.

  1. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction

    PubMed Central

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-01-01

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology. PMID:26184222

  2. Closed-loop adaptive optics using a CMOS image quality metric sensor

    NASA Astrophysics Data System (ADS)

    Ting, Chueh; Rayankula, Aditya; Giles, Michael K.; Furth, Paul M.

    2006-08-01

    When compared to a Shack-Hartmann sensor, a CMOS image sharpness sensor has the advantage of reduced complexity in a closed-loop adaptive optics system. It also has the potential to be implemented as a smart sensor using VLSI technology. In this paper, we present a novel adaptive optics testbed that uses a CMOS sharpness imager built in the New Mexico State University (NMSU) Electro-Optics Research Laboratory (EORL). The adaptive optics testbed, which includes a CMOS image quality metric sensor and a 37-channel deformable mirror, has the capability to rapidly compensate higher-order phase aberrations. An experimental performance comparison of the pinhole image sharpness feedback method and the CMOS imager is presented. The experimental data shows that the CMOS sharpness imager works well in a closed-loop adaptive optics system. Its overall performance is better than that of the pinhole method, and it has a fast response time.

  3. Large area CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Guerrini, N.; Sedgwick, I.

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  4. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  5. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  6. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Bilbao de Mendizabal, J.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-01

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  7. A 0.0016 mm2 0.64 nJ Leakage-Based CMOS Temperature Sensor

    PubMed Central

    Ituero, Pablo; López-Vallejo, Marisa; López-Barrio, Carlos

    2013-01-01

    This paper presents a CMOS temperature sensor based on the thermal dependencies of the leakage currents targeting the 65 nm node. To compensate for the effect of process fluctuations, the proposed sensor realizes the ratio of two measures of the time it takes a capacitor to discharge through a transistor in the subthreshold regime. Furthermore, a novel charging mechanism for the capacitor is proposed to further increase the robustness against fabrication variability. The sensor, including digitization and interfacing, occupies 0.0016 mm2 and has an energy consumption of 47.7–633 pJ per sample. The resolution of the sensor is 0.28 °C, and the 3σ inaccuracy over the range 40–110 °C is 1.17 °C. PMID:24051526

  8. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  9. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  10. INDEP approach for leakage reduction in nanoscale CMOS circuits

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Pattanaik, Manisha; Raj, Balwinder

    2015-02-01

    Complementary metal oxide semiconductor (CMOS) technology scaling for improving speed and functionality turns leakage power one of the major concerns for nanoscale circuits design. The minimization of leakage power is a rising challenge for the design of the existing and future nanoscale CMOS circuits. This paper presents a novel, input-dependent, transistor-level, low leakage and reliable INput DEPendent (INDEP) approach for nanoscale CMOS circuits. INDEP approach is based on Boolean logic calculations for the input signals of the extra inserted transistors within the logic circuit. The gate terminals of extra inserted transistors depend on the primary input combinations of the logic circuits. The appropriate selection of input gate voltages of INDEP transistors are reducing the leakage current efficiently along with rail to rail output voltage swing. The important characteristic of INDEP approach is that it works well in both active as well as standby modes of the circuits. This approach overcomes the limitations created by the prevalent current leakage reduction techniques. The simulation results indicate that INDEP approach mitigates 41.6% and 35% leakage power for 1-bit full adder and ISCAS-85 c17 benchmark circuit, respectively, at 32 nm bulk CMOS technology node.

  11. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  12. Fully CMOS analog and digital SiPMs

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-03-01

    Silicon Photomultipliers (SiPMs) are emerging single photon detectors used in many applications requiring large active area, photon-number resolving capability and immunity to magnetic fields. We present three families of analog SiPM fabricated in a reliable and cost-effective fully standard planar CMOS technology with a total photosensitive area of 1×1 mm2. These three families have different active areas with fill-factors (21%, 58.3%, 73.7%) comparable to those of commercial SiPM, which are developed in vertical (current flow) custom technologies. The peak photon detection efficiency in the near-UV tops at 38% (fill-factor included) comparable to commercial custom-process ones and dark count rate density is just a little higher than the best-in-class commercial analog SiPMs. Thanks to the CMOS processing, these new SiPMs can be integrated together with active components and electronics both within the microcell and on-chip, in order to act at the microcell level or to perform global pre-processing. We also report CMOS digital SiPMs in the same standard CMOS technology, based on microcells with digitalized processing, all integrated on-chip. This CMOS digital SiPMs has four 32×1 cells (128 microcells), each consisting of SPAD, active quenching circuit with adjustable dead time, digital control (to switch off noisy SPADs and readout position of detected photons), and fast trigger output signal. The achieved 20% fill-factor is still very good.

  13. A novel colour-sensitive CMOS detector

    NASA Astrophysics Data System (ADS)

    Langfelder, G.; Longoni, A.; Zaraga, F.

    2009-10-01

    A novel colour-sensitive semiconductor detector is proposed. The device (named Transverse Field Detector (TFD)) can be used to measure the colour of the incident light without any colour filter. The device is completely compatible with standard CMOS processes and is suitable to be integrated in a pixel array for imaging purposes. The working principle is based on the capability of this device to collect at different superficial junctions the carriers, generated at different depths, by means of suitable transverse electric fields. The transverse components of the electric field are generated inside the depleted region by a suitable bias of the superficial junctions. Thanks to the differences in the light absorption coefficients at different wavelengths, the device performs colour separation. Among the advantages of this approach are the capability of an active tuning of the pixel colour response, which can be obtained just by changing the biasing values of collecting junctions, and foreseen higher colour fidelity, thanks to the easy extension to four colour pixels. First test structures of three colours TFD pixels were designed and built in a standard CMOS 90 nm technology. Operative principles of the device and first experimental results are presented.

  14. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    PubMed Central

    Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  15. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  16. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  17. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  18. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  19. Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip

    NASA Astrophysics Data System (ADS)

    Li-Shu, Wu; Yan, Zhao; Hong-Chang, Shen; You-Tao, Zhang; Tang-Sheng, Chen

    2016-06-01

    In this work, we demonstrate the technology of wafer-scale transistor-level heterogeneous integration of GaAs pseudomorphic high electron mobility transistors (pHEMTs) and Si complementary metal–oxide semiconductor (CMOS) on the same Silicon substrate. GaAs pHEMTs are vertical stacked at the top of the Si CMOS wafer using a wafer bonding technique, and the best alignment accuracy of 5 μm is obtained. As a circuit example, a wide band GaAs digital controlled switch is fabricated, which features the technologies of a digital control circuit in Si CMOS and a switch circuit in GaAs pHEMT, 15% smaller than the area of normal GaAs and Si CMOS circuits.

  20. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.

    PubMed

    Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V

    2014-10-01

    Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. PMID:24500239

  1. Planar CMOS analog SiPMs: design, modeling, and characterization

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-11-01

    Silicon photomultipliers (SiPMs) are large area detectors consisting of an array of single-photon-sensitive microcells, which make SiPMs extremely attractive to substitute the photomultiplier tubes in many applications. We present the design, fabrication, and characterization of analog SiPMs in standard planar 0.35 μm CMOS technology, with about 1 mm × 1 mm total area and different kinds of microcells, based on single-photon avalanche diodes with 30 μm diameter reaching 21.0% fill-factor (FF), 50 μm diameter (FF = 58.3%) or 50 μm square active area with rounded corner of 5 μm radius (FF = 73.7%). We also developed the electrical SPICE model for CMOS SiPMs. Our CMOS SiPMs have 25 V breakdown voltage, in line with most commercial SiPMs and higher gain (8.8 × 106, 13.2 × 106, and 15.0 × 106, respectively). Although dark count rate density is slightly higher than state-of-the-art analog SiPMs, the proposed standard CMOS processing opens the feasibility of integration with active electronics, for switching hot pixels off, drastically reducing the overall dark count rate, or for further on-chip processing.

  2. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  3. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  4. CMOS output buffer wave shaper

    NASA Technical Reports Server (NTRS)

    Albertson, L.; Whitaker, S.; Merrell, R.

    1990-01-01

    As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.

  5. A new CMOS-based digital imaging detector for applications in mammography

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2005-09-01

    We have developed a CMOS-based x-ray imaging detector in the same form factor of a standard film cassette (18 cm × 24 cm) for Small Field-of-view Digital Mammography (SFDM) applications. This SFDM cassette is based on our three-side buttable, 25 mm × 50 mm, 48μm active-pixel CMOS sensor modules and utilizes a 150μm columnar CsI(Tl) scintillator. For imaging up to 100 mm × 100 mm field-of-view, a number of CMOS sensor modules need to be tiled and electronically synchronized together. By using fiber-optic communication, acquired images from the SFDM cassette can be transferred, processed and displayed on a review station within approximately 5 seconds of exposure, greatly enhancing patient flow. We present the physical performance of this CMOS-based SFDM cassette, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and more subjective criteria, by evaluating images from a phantom study and the clinical studies of our collaborators. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for digital mammography today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. The SFDM cassette can be employed in various mammography applications, including spot imaging, stereotactic biopsy imaging, core biopsy and surgical biopsy specimen radiography. This study demonstrates that all the image quality requirements for demanding mammography applications can be addressed with CMOS technology.

  6. Monolithic integration of high bandwidth waveguide coupled Ge photodiode in a photonic BiCMOS process

    NASA Astrophysics Data System (ADS)

    Lischke, S.; Knoll, D.; Zimmermann, L.

    2015-03-01

    Monolithic integration of photonic functionality in the frontend-of-line (FEOL) of an advanced microelectronics technology is a key step towards future communication applications. This combines photonic components such as waveguides, couplers, modulators, and photo detectors with high-speed electronics plus shortest possible interconnects crucial for high-speed performance. Integration of photonics into CMOS FEOL is therefore in development for quite some time reaching 90nm node recently [1]. However, an alternative to CMOS is high-performance BiCMOS, offering significant advantages for integrated photonics-electronics applications with regard to cost and RF performance. We already presented results of FEOL integration of photonic components in a high-performance SiGe:C BiCMOS baseline to establish a novel, photonic BiCMOS process. Process cornerstone is a local-SOI approach which allows us to fabricate SOI-based, thus low-loss photonic components in a bulk BiCMOS environment [2]. A monolithically integrated 10Gbit/sec Silicon modulator with driver was shown here [3]. A monolithically integrated 25Gbps receiver was presented in [4], consisting of 200GHz bipolar transistors and CMOS devices, low-loss waveguides, couplers, and highspeed Ge photo diodes showing 3-dB bandwidth of 35GHz, internal responsivity of more than 0.6A/W at λ= 1.55μm, and ~ 50nA dark current at 1V. However, the BiCMOS-given thermal steps cause a significant smearing of the Germanium photo diodes doping profile, limiting the photo diode performance. Therefore, we introduced implantation of non-doping elements to overcome such limiting factors, resulting in photo diode bandwidths of more than 50GHz even under the effect of thermal steps necessary when the diodes are integrated in a high performance BiCMOS process.

  7. CMOS floating-point vector-arithmetic unit

    NASA Astrophysics Data System (ADS)

    Timmermann, D.; Rix, B.; Hahn, H.; Hosticka, B. J.

    1994-05-01

    This work describes a floating-point arithmetic unit based on the CORDIC algorithm. The unit computes a full set of high level arithmetic and elementary functions: multiplication, division, (co)sine, hyperbolic (co)sine, square root, natural logarithm, inverse (hyperbolic) tangent, vector norm, and phase. The chip has been integrated in 1.6 micron double-metal n-well CMOS technology and achieves a normalized peak performance of 220 MFLOPS.

  8. A BiCMOS integrated charge to amplitude converter

    SciTech Connect

    Gallin-Martel, L.; Pouxe, J.; Rossetto, O.

    1996-12-31

    This paper describes a fast two channel gated charge to amplitude converter (QAC) which has been designed with the 1.2 {mu}m BiCMOS technology from AMS (Austria Mikro Systeme). It can integrate fast negative impulse currents up to 100 mA. Associated with an audio 18 bit low cost ADC, it can easily be used to make a 12 to 13 bit QDC. The problems of current to current conversion, pedestal and offset stability are discussed.

  9. A novel multi-actuation CMOS RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che

    2008-12-01

    This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.

  10. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  11. CMOS downsizing toward sub-10 nm

    NASA Astrophysics Data System (ADS)

    Iwai, Hiroshi

    2004-04-01

    Recently, CMOS downsizing has been accelerated very aggressively in both production and research level, and even transistor operation of a 6 nm gate length p-channel MOSFET was reported in a conference. However, many serious problems are expected for implementing such small-geometry MOSFETs into large scale integrated circuits, and it is still questionable whether we can successfully introduce sub-10 nm CMOS LSIs into the market or not. In this paper, limitation and its possible causes for the downscaling of CMOS towards sub-10 nm are discussed with consideration of past CMOS predictions for the limitation.

  12. Functional Model of Carbon Nanotube Programmable Resistors for Hybrid Nano/CMOS Circuit Design

    NASA Astrophysics Data System (ADS)

    Zhao, Weisheng; Agnus, Guillaume; Derycke, Vincent; Filoramo, Ariana; Gamrat, Christian; Bourgoin, Jean-Philippe

    Hybrid Nano (e.g. Nanotube and Nanowire) /CMOS circuits combine both the advantages of Nano-devices and CMOS technologies; they have thus become the most promising candidates to relax the intrinsic drawbacks of CMOS circuits beyond Moore’s law. A functional simulation model for an hybrid Nano/CMOS design is presented in this paper. It is based on Optically Gated Carbon NanoTube Field Effect Transistors (OG-CNTFET), which can be used as 2-terminal programmable resistors. Their resistance can be adjusted precisely, reproducibly and in a non-volatile way, over three orders of magnitude. These interesting behaviors of OG-CNTFET promise great potential for developing the non-volatile memory and neuromorphic adaptive computing circuits. The model is developed in Verilog-A language and implemented on Cadence Virtuoso platform with Spectre 5.1.41 simulator. Many experimental parameters are included in this model to improve the simulation accuracy.

  13. Speckle-based modulation transfer function measurements for comparative evaluation of CCD and CMOS detector arrays

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Pozo, Antonio M.; Rubiño, Manuel

    2013-01-01

    Charge-coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) matrices offer excellent features in imaging systems. For assessing the suitability of each technology according to the application, the complete characterization of the detector arrays becomes necessary. A system is optically characterized by the modulation transfer function (MTF). We have comparatively studied the results provided by the speckle method for detectors of two types: CCD and CMOS. To do so, we first analysed the precision in determining the MTF of the CCD using two apertures at the exit port of an integrating sphere: a single and a double-slit. For the single-slit, we propose a new procedure of fitting the experimental data which overcomes the drawbacks of the conventional procedure. Since it offered lower uncertainty and better reproducibility, the single-slit was used for the study with the CMOS detector. Significant differences were found between the MTF of the CCD and the CMOS detectors.

  14. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  15. Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

    NASA Astrophysics Data System (ADS)

    Little, Jeffrey W.; Tyrrell, Brian M.; D'Onofrio, Richard; Berger, Paul J.; Fernandez-Cull, Christy

    2014-06-01

    A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10μs latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.

  16. The evaluation system of the 2-D scanning mirror based on CMOS sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Gui-ying; Xie, Yuan; Chen, Jin-xing

    2010-10-01

    The high precision two-dimension scanning control technique is being developed for the next geosynchronous satellites FY-4 satellites which is using the three-axis stabilization stages. How to evaluate the point and scanning precision of the scanning mirror is one of the most important technologies. This paper describes the optoelectronic measure method based on CMOS sensors to evaluate the point and scanning precision of the scanning mirror in the laboratory, which is a 2-D dynamic angle measurement system. Some technologies, such as the sup-pixel orientation technology and the CMOS ROI technology, are used in the measurement system. The research shows that the angle measurement system based on IBIS-6600CMOS sensors can attain the 20°× 20° field of view, 2" accuracy, and 1Kframes/s speed. But the system is sensitive to the environment and it can only be worked in the laboratory.

  17. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  18. Multiband CMOS sensor simplify FPA design

    NASA Astrophysics Data System (ADS)

    Wang, Weng Lyang B.; Ling, Jer

    2015-10-01

    Push broom multi-band Focal Plane Array (FPA) design needs to consider optics, image sensor, electronic, mechanic as well as thermal. Conventional FPA use two or several CCD device as an image sensor. The CCD image sensor requires several high speed, high voltage and high current clock drivers as well as analog video processors to support their operation. Signal needs to digitize using external sample / hold and digitized circuit. These support circuits are bulky, consume a lot of power, must be shielded and placed in close to the CCD to minimize the introduction of unwanted noise. The CCD also needs to consider how to dissipate power. The end result is a very complicated FPA and hard to make due to more weighs and draws more power requiring complex heat transfer mechanisms. In this paper, we integrate microelectronic technology and multi-layer soft / hard Printed Circuit Board (PCB) technology to design electronic portion. Since its simplicity and integration, the optics, mechanic, structure and thermal design will become very simple. The whole FPA assembly and dis-assembly reduced to a few days. A multi-band CMOS Sensor (dedicated as C468) was used for this design. The CMOS Sensor, allow for the incorporation of clock drivers, timing generators, signal processing and digitization onto the same Integrated Circuit (IC) as the image sensor arrays. This keeps noise to a minimum while providing high functionality at reasonable power levels. The C468 is a first Multiple System-On-Chip (MSOC) IC. This device used our proprietary wafer butting technology and MSOC technology to combine five long sensor arrays into a size of 120 mm x 23.2 mm and 155 mm x 60 mm for chip and package, respectively. The device composed of one Panchromatic (PAN) and four different Multi- Spectral (MS) sensors. Due to its integration on the electronic design, a lot of room is clear for the thermal design. The optical and mechanical design is become very straight forward. The flight model FPA

  19. CMOS-compatible graphene photodetector covering all optical communication bands

    NASA Astrophysics Data System (ADS)

    Pospischil, Andreas; Humer, Markus; Furchi, Marco M.; Bachmann, Dominic; Guider, Romain; Fromherz, Thomas; Mueller, Thomas

    2013-11-01

    Optical interconnects are becoming attractive alternatives to electrical wiring in intra- and interchip communication links. Particularly, the integration with silicon complementary metal-oxide semiconductor (CMOS) technology has received considerable interest because of the ability of cost-effective integration of electronics and optics on a single chip. Although silicon enables the realization of optical waveguides and passive components, the integration of another, optically absorbing, material is required for photodetection. Traditionally, germanium or compound semiconductors are used for this purpose; however, their integration with silicon technology faces major challenges. Recently, graphene emerged as a viable alternative for optoelectronic applications, including photodetection. Here, we demonstrate an ultra-wideband CMOS-compatible photodetector based on graphene. We achieved a multigigahertz operation over all fibre-optic telecommunication bands beyond the wavelength range of strained germanium photodetectors, the responsivity of which is limited by their bandgap. Our work complements the recent demonstration of a CMOS-integrated graphene electro-optical modulator, and paves the way for carbon-based optical interconnects.

  20. CMOS/LCOS-based image transceiver device: II

    NASA Astrophysics Data System (ADS)

    Efron, Uzi; Davidov, Isak; Sinelnikov, Vladimir; Friesem, Asher A.

    2001-11-01

    A CMOS-liquid crystal-based image transceiver device (ITD) is under development at the Holon Institute of Technology. The device combines both functions of imaging and display in a single array configuration. This unique structure allows the combination of see-through, aiming, imaging and the displaying of a superposed image to be combined in a single, compact, head mounted display. The CMOS-based pixel elements are designed to provide efficient imaging in the visible range as well as driver capabilities for the overlying liquid crystal modulator. The image sensor part of the pixel is based on an n-well photodiode and a three-transistor readout circuit. The imaging function is based on a back- illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configurations are proposed: 1) A p++/p-/p-well silicon structure using twin- well CMOS process; 2) An n-well processed silicon structure with a micro-lens array. The display portion of the IT device is to be fabricated on a silicon-based reflective, active matrix driver, using nematic liquid crystal material, in LCOS technology. The timing, sequencing and control of the IT device array are designed in a pipeline array processing scheme. A preliminary prototype system and device design have been performed and the first test device is currently undergoing testing. Details of the device design as well as its Smart Goggle applications are presented.

  1. Fundamental performance differences between CMOS and CCD imagers: Part II

    NASA Astrophysics Data System (ADS)

    Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff

    2007-09-01

    A new class of CMOS imagers that compete with scientific CCDs is presented. The sensors are based on deep depletion backside illuminated technology to achieve high near infrared quantum efficiency and low pixel cross-talk. The imagers deliver very low read noise suitable for single photon counting - Fano-noise limited soft x-ray applications. Digital correlated double sampling signal processing necessary to achieve low read noise performance is analyzed and demonstrated for CMOS use. Detailed experimental data products generated by different pixel architectures (notably 3TPPD, 5TPPD and 6TPG designs) are presented including read noise, charge capacity, dynamic range, quantum efficiency, charge collection and transfer efficiency and dark current generation. Radiation damage data taken for the imagers is also reported.

  2. A fully integrated CMOS inverse sine circuit for computational systems

    NASA Astrophysics Data System (ADS)

    Seon, Jong-Kug

    2010-08-01

    An inverse trigonometric function generator using CMOS technology is presented and implemented. The development and synthesis of inverse trigonometric functional circuits based on the simple approximation equations are also introduced. The proposed inverse sine function generator has the infinite input range and can be used in many measurement and instrumentation systems. The nonlinearity of less than 2.8% for the entire input range of 0.5 Vp-p with a small-signal bandwidth of 3.2 MHz is achieved. The chip implemented in 0.25 μm CMOS process operates from a single 1.8 V supply. The measured power consumption and the active chip area of the inverse sine function circuit are 350 μW and 0.15 mm2, respectively.

  3. Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2013-08-01

    To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].

  4. Radiation Hard 0.25 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2008-08-01

    To support space applications we have produced a test chip with our in house 0.25 micron BiCMOS- Technology. Then the chips were radiated and measured. During measurements no threshold voltage shift and no single event latchup (SEL) were obtained up to a level of 200 krad. As conclusion of the measurement we developed new radiation hard design rules and according to these rules we created a new radiation hard CMOS library. With this new library we produced a Leon3 chip with triple module redundancy. Single event upsets did occur. Therefore we upgrade the library to make the flip flops more resistant against single event upset (SEU) by adding two p-MOS transistors.

  5. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  6. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  7. Effect of Cu pad morphology on direct-Cu pillar formation in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Choi, Eunmi; Kim, Areum; Cui, Eunwha; Lee, Ukjae; Son, Hyung Bin; Hahn, Sang June; Pyo, Sung Gyu

    2014-09-01

    We report the feasibility of forming Ni bumps directly on Cu pads in CMOS image sensor (CIS) logic elements formed by Cu wires with diameters of less than 65 nm. The direct Ni bump process proposed in this study simplifies the fabrication process and reduces costs by eliminating the need for Al pad process. In addition, this process can secure the margin of the final layer, enabling the realization of thin camera modules. In this study, we evaluated the effect of pad annealing on the direct formation of Ni bumps over Cu pads. The results suggest that the morphology of the Cu pad varies depending on the annealing sequence, and post-passivation annealing resulted in fewer defects than pad etch annealing. The shear stress of the Ni bumps was 57.77 mgf/m2, which is six times greater than the corresponding reference value. Furthermore, we evaluated the reliability of a chip with an anisotropic conductive film (ACF) and a non-conducting paste (NCP) by using high-temperature storage (HTS), thermal cycling (TC), and wet high-temperature storage (WHTS) reliability tests. The evaluation results suggest the absence of abnormalities in all samples. [Figure not available: see fulltext.

  8. A CCD/CMOS process for integrated image acquisition and early vision signal processing

    NASA Astrophysics Data System (ADS)

    Keast, Craig L.; Sodini, Charles G.

    The development of technology which integrates a four phase, buried-channel CCD in an existing 1.75 micron CMOS process is described. The four phase clock is employed in the integrated early vision system to minimize process complexity. Signal corruption is minimized and lateral fringing fields are enhanced by burying the channel. The CMOS process for CCD enhancement is described, which highlights a new double-poly process and the buried channel, and the integration is outlined. The functionality and transfer efficiency of the process enhancement were appraised by measuring CCD shift registers at 100 kHz. CMOS measurement results are presented, which include threshold voltages, poly-to-poly capacitor voltage and temperature coefficients, and dark current. A CCD/CMOS processor is described which combines smoothing and segmentation operations. The integration of the CCD and the CMOS processes is found to function due to the enhancement-compatible design of the CMOS process and the thorough employment of CCD module baseline process steps.

  9. Low-cost uncooled infrared detector arrays in standard CMOS

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Tanrikulu, M. Y.; Akin, Tayfun

    2003-09-01

    number of parallel readout channels and by optimizing the post-CMOS etching steps. The uniformity of the array is very good due to the mature CMOS fabrication technology. The measured uncorrected differential voltage non-uniformity for the 128 x 128 array pixels after the CMOS fabrication is 0.2% with a standard deviation of only 1.5 mV, which is low due to the improved array structure that can compensate for the voltage drops along the routing resistances in the array. Non-uniformity of temperature sensitivity of the array pixels is measured to be less than 3% with a mean and standard deviation of -2.05 mV/K and 61 μV/K, respectively. The temperature sensitivity of the differential pixel voltages has a measured mean value of 2.3 μV/K, relaxing the requirements on the temperature stabilization. Considering its performance and its simple fabrication steps, the proposed method is very cost-effective to fabricate large format focal plane arrays for low-cost infrared imaging applications.

  10. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  11. A CMOS TDI image sensor for Earth observation

    NASA Astrophysics Data System (ADS)

    Rushton, Joseph E.; Stefanov, Konstantin D.; Holland, Andrew D.; Endicott, James; Mayer, Frederic; Barbier, Frederic

    2015-09-01

    Time Delay and Integration (TDI) is used to increase the Signal to Noise Ratio (SNR) in image sensors when imaging fast moving objects. One important TDI application is in Earth observation from space. In order to operate in the space radiation environment, the effect that radiation damage has on the performance of the image sensors must be understood. This work looks at prototype TDI sensor pixel designs, produced by e2v technologies. The sensor is a CCD-like charge transfer device, allowing in-pixel charge summation, produced on a CMOS process. The use of a CMOS process allows potential advantages such as lower power consumption, smaller pixels, higher line rate and extra on-chip functionality which can simplify system design. CMOS also allows a dedicated output amplifier per column allowing fewer charge transfers and helping to facilitate higher line rates than CCDs. In this work the effect on the pixels of radiation damage from high energy protons, at doses relevant to a low Earth orbit mission, is presented. This includes the resulting changes in Charge Transfer inefficiency (CTI) and dark signal.

  12. Polycrystalline Mercuric Iodide Films on CMOS Readout Arrays

    PubMed Central

    Hartsough, Neal E.; Iwanczyk, Jan S.; Nygard, Einar; Malakhov, Nail; Barber, William C.; Gandhi, Thulasidharan

    2009-01-01

    We have created high-resolution x-ray imaging devices using polycrystalline mercuric iodide (HgI2) films grown directly onto CMOS readout chips using a thermal vapor transport process. Images from prototype 400×400 pixel HgI2-coated CMOS readout chips are presented, where the pixel grid is 30 μm × 30 μm. The devices exhibited sensitivity of 6.2 μC/Rcm2 with corresponding dark current of ∼2.7 nA/cm2, and a 80 μm FWHM planar image response to a 50 μm slit aperture. X-ray CT images demonstrate a point spread function sufficient to obtain a 50 μm spatial resolution in reconstructed CT images at a substantially reduced dose compared to phosphor-coated readouts. The use of CMOS technology allows for small pixels (30 μm), fast readout speeds (8 fps for a 3200×3200 pixel array), and future design flexibility due to the use of well-developed fabrication processes. PMID:20161098

  13. CMOS-liquid-crystal-based image transceiver device

    NASA Astrophysics Data System (ADS)

    Efron, Uzi; Davidov, Isak; Sinelnikov, Vladimir; Levin, Ilya

    2001-05-01

    A CMOS-Liquid Crystal-Based Image Transceiver Device (ITD) is under development at the Holon Institute of Technology. The device combines both functions of imaginary and display in a single array structure. This unique structure allows the combination of see-through, aiming, imaging and the displaying of a superposed image to be combined in a single, compact, head mounted display. The CMOS-based pixel elements are designed to provide image sensor part of the pixel is based on an n-well photodiode and a three-transistors readout circuit. The imaging function is based on a back- illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configuration are proposed: 1) A p++/p-/p-well silicon structure using twin- well CMOS process; 2) an n-well processed silicon structure with a micro-lens array. The display portion of the IT device is to be fabricate don a silicon-based reflective, active matrix driver, using nematic liquid crystal material. The reflective display pixel electrode is driven by an n-MOS transistor, formed in the corresponding pixel region on the silicon substrate. The timing, sequencing and control of the IT device array are designed in a pipeline array processing scheme. A preliminary prototype system and device design have been performed and the first test device is currently being tested. Details of the device design as well as its smart goggle applications are presented.

  14. Characterization of a CMOS detector for limited-view mammography

    NASA Astrophysics Data System (ADS)

    Elbakri, Idris A.

    2007-03-01

    Sensors based on complementary metal oxide semiconductors (CMOS) technology have recently been considered for mammography applications. CMOS offers the advantages of lower cost and relative ease of fabrications. We report on the evaluation of a CMOS imager (C9730DK, Hamamatsu Corporation) with 14-bit digitization and 50-micron detector element (del) resolution. The imager has an active area of 5 x 5 cm and uses 160-micron layer of needle-crystal CsI (55 mg/cc) to convert x-rays to light. The detector is suitable for spot and specimen imaging and image-guided biopsy. To evaluate resolution performance, we measured the modulation transfer function (MTF) using the slanted edge method. We also measured the normalized noise power spectrum (NNPS) using Fourier analysis of uniform images. The MTF and NNPS were used to determine the detective quantum efficiency (DQE) of the detector. The detector was characterized using a molybdenum target/molybdenum filter mammography x-ray source operated at 28 kVp with 44mm of PMMA added to mimic clinical beam quality (HVL = 0.62 mm Al). Our analysis showed that the imager had a linear response. The MTF was 28% at 5 lp/mm and 8% at 10 lp/mm. The product of the NNPS and exposure showed that the detector was quantum limited. The DQE near 0 lp/mm was in the 55-60% range. The DQE and MTF performance of the CMOS detector are comparable to published values for other digital mammography detectors.

  15. Electronic-photonic integrated circuits on the CMOS platform

    NASA Astrophysics Data System (ADS)

    Kimerling, L. C.; Ahn, D.; Apsel, A. B.; Beals, M.; Carothers, D.; Chen, Y.-K.; Conway, T.; Gill, D. M.; Grove, M.; Hong, C.-Y.; Lipson, M.; Liu, J.; Michel, J.; Pan, D.; Patel, S. S.; Pomerene, A. T.; Rasras, M.; Sparacin, D. K.; Tu, K.-Y.; White, A. E.; Wong, C. W.

    2006-02-01

    The optical components industry stands at the threshold of a major expansion that will restructure its business processes and sustain its profitability for the next three decades. This growth will establish a cost effective platform for the partitioning of electronic and photonic functionality to extend the processing power of integrated circuits. BAE Systems, Lucent Technologies, Massachusetts Institute of Technology, and Applied Wave Research are participating in a high payoff research and development program for the Microsystems Technology Office (MTO) of DARPA. The goal of the program is the development of technologies and design tools necessary to fabricate an application-specific, electronicphotonic integrated circuit (AS-EPIC). As part of the development of this demonstration platform we are exploring selected functions normally associated with the front end of mixed signal receivers such as modulation, detection, and filtering. The chip will be fabricated in the BAE Systems CMOS foundry and at MIT's Microphotonics Center. We will present the latest results on the performance of multi-layer deposited High Index Contrast Waveguides, CMOS compatible modulators and detectors, and optical filter slices. These advances will be discussed in the context of the Communications Technology Roadmap that was recently released by the MIT Microphotonics Center Industry Consortium.

  16. Scanning probe lithography approach for beyond CMOS devices

    NASA Astrophysics Data System (ADS)

    Durrani, Zahid; Jones, Mervyn; Kaestner, Marcus; Hofer, Manuel; Guliyev, Elshad; Ahmad, Ahmad; Ivanov, Tzvetan; Zoellner, Jens-Peter; Rangelow, Ivo W.

    2013-03-01

    As present CMOS devices approach technological and physical limits at the sub-10 nm scale, a `beyond CMOS' information-processing technology is necessary for timescales beyond the semiconductor technology roadmap. This requires new approaches to logic and memory devices, and to associated lithographic processes. At the sub-5 nm scale, a technology platform based on a combination of high-resolution scanning probe lithography (SPL) and nano-imprint lithography (NIL) is regarded as a promising candidate for both resolution and high throughput production. The practical application of quantum-effect devices, such as room temperature single-electron and quantum-dot devices, then becomes feasible. This paper considers lithographic and device approaches to such a `single nanometer manufacturing' technology. We consider the application of scanning probes, capable of imaging, probing of material properties and lithography at the single nanometer scale. Modified scanning probes are used to pattern molecular glass based resist materials, where the small particle size (<1 nm) and mono-disperse nature leads to more uniform and smaller lithographic pixel size. We also review the current status of single-electron and quantum dot devices capable of room-temperature operation, and discuss the requirements for these devices with regards to practical application.

  17. ESD protection design for advanced CMOS

    NASA Astrophysics Data System (ADS)

    Huang, Jin B.; Wang, Gewen

    2001-10-01

    ESD effects in integrated circuits have become a major concern as today's technologies shrink to sub-micron/deep- sub-micron dimensions. The thinner gate oxide and shallower junction depth used in the advanced technologies make them very vulnerable to ESD damages. The advanced techniques like silicidation and STI (shallow trench insulation) used for improving other device performances make ESD design even more challenging. For non-silicided technologies, a certain DCGS (drain contact to gate edge spacing) is needed to achieve ESD hardness for nMOS output drivers and nMOS protection transistors. The typical DCGS values are 4-5um and 2-3um for 0.5um and 0.25um CMOS, respectively. The silicidation reduces the ballast resistance provided by DCGS with at least a factor of 10. As a result, scaling of the ESD performance with device width is lost and even zero ESD performance is reported for standard silicided devices. The device level ESD design is focused in this paper, which includes GGNMOS (gate grounded NMOS) and GCNMOS (gate coupled NMOS). The device level ESD testing including TLP (transmission line pulse) is given. Several ESD issues caused by advanced technologies have been pointed out. The possible solutions have been developed and summarized including silicide blocking, process optimization, back-end ballasting, and new protection scheme, dummy gate/n-well resistor ballsting, etc. Some of them require process cost increase, and others provide novel, compact, and simple design but involving royalty/IP (intellectual property) issue. Circuit level ESD design and layout design considerations are covered. The top-level ESD protection strategies are also given.

  18. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications. PMID:26780441

  19. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  20. Analysis of electron multiplying charge coupled device and scientific CMOS readout noise models for Shack-Hartmann wavefront sensor accuracy

    NASA Astrophysics Data System (ADS)

    Basden, Alastair G.

    2015-07-01

    In recent years, detectors with subelectron readout noise have been used very effectively in astronomical adaptive optics systems. Here, we compare readout noise models for the two key faint flux level detector technologies that are commonly used: electron multiplying charge coupled device (EMCCD) and scientific CMOS (sCMOS) detectors. We find that in almost all situations, EMCCD technology is advantageous, and that the commonly used simplified model for EMCCD readout is appropriate. We also find that the commonly used simple models for sCMOS readout noise are optimistic, and we recommend that a proper treatment of the sCMOS root mean square readout noise probability distribution should be considered during instrument performance modeling and development.

  1. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS Inverters on plastic.

    PubMed

    Lee, Myeongwon; Jeon, Youngin; Moon, Taeho; Kim, Sangsig

    2011-04-26

    A route to the top-down fabrication of highly ordered and aligned silicon nanowire (SiNW) arrays with degenerately doped source/drain regions from a bulk Si wafer is presented. In this approach, freestanding n- and p-SiNWs with an inverted triangular cross section are obtained using conventional photolithography, crystal orientation dependent wet etching, size reduction oxidation, and ion implantation doping. Based on these n- and p-SiNWs transferred onto a plastic substrate, simple SiNW-based complementary metal-oxide-semiconductor (CMOS) inverters are constructed for the possible applications of these SiNW arrays in integrated circuits on plastic. The static voltage transfer characteristic of the SiNW-based CMOS inverter exhibits a voltage gain of ∼9 V/V and a transition of 0.32 V at an operating voltage of 1.5 V with a full output voltage swing between 0 V and V(DD), and its mechnical bendability indicates good fatigue properties for potential applications of flexible electronics. This novel top-down approach is fully compatible with the current state-of-the-art Si-based CMOS technologies and, therefore, offers greater flexibility in device design for both high-performance and low-power functionality. PMID:21355599

  2. Biosensing with integrated CMOS nanopores

    NASA Astrophysics Data System (ADS)

    Uddin, Ashfaque; Yemenicioglu, Sukru; Chen, Chin-Hsuan; Corgliano, Ellie; Milaninia, Kaveh; Xia, Fan; Plaxco, Kevin; Theogarajan, Luke

    2012-10-01

    This paper outlines our recent efforts in using solid-state nanopores as a biosensing platform. Traditionally biosensors concentrate mainly on the detection platform and not on signal processing. This decoupling can lead to inferior sensors and is exacerbated in nanoscale devices, where device noise is large and large dynamic range is required. This paper outlines a novel platform that integrates the nano, micro and macroscales in a closely coupled manner that mitigates many of these problems. We discuss our initial results of DNA translocation through the nanopore. We also briefly discuss the use of molecular recognition properties of aptamers with the versatility of the nanopore detector to design a new class of biosensors in a CMOS compatible platform.

  3. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System.

    PubMed

    Rae, Bruce R; Muir, Keith R; Gong, Zheng; McKendry, Jonathan; Girkin, John M; Gu, Erdan; Renshaw, David; Dawson, Martin D; Henderson, Robert K

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  4. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  5. Worst-case test vectors for functional failure induced by total dose in CMOS microcircuits with transmission gates

    SciTech Connect

    Abou-Auf, A.A.; Barbe, D.F.; Rushdi, M.M.

    1997-12-01

    The authors have recently developed fault models for functional and leakage-current failures induced in circuits containing static CMOS gates (e.g., INV, NOR and NAND). They used these fault models to automatically generate worst-case test vectors (WCTV) for circuits composed of the above gates as basic building blocks. However, CMOS circuits can be composed from other building blocks in addition to static CMOS gates. One of these is the transmission gate (TG). Static CMOS gates and TGs together make up the majority of CMOS circuits. Unfortunately, functional failures induced in circuits containing TGs have received little attention in the past. Moreover, the authors are not aware of previous effort to identify WCTV for CMOS circuits containing TGs. The focus in this paper is to develop fault models for CMOS circuits containing TGs, then use these models to identify the combinations of irradiation and postirradiation test vectors that can result in a worst-case failure level of the circuit under test. In their analysis, they will use the circuits in the CMOSN Cell Library. This analysis is supported by SPICE simulation that utilizes experimentally extracted transistor parameters. They have also used their analysis to interpret data from a previous total-dose testing a test chip designed using the CMOSN Cell Library and fabricated using 1 {mu} technology.

  6. A CMOS readout circuit for microstrip detectors

    NASA Astrophysics Data System (ADS)

    Nasri, B.; Fiorini, C.

    2015-03-01

    In this work, we present the design and the results of a CMOS analog channel for silicon microstrips detectors. The readout circuit was initially conceived for the outer layers of the SuperB silicon vertex tracker (SVT), but can serve more generally other microstrip-based detection systems. The strip detectors considered show a very high stray capacitance and high series resistance. Therefore, the noise optimization was the first priority design concern. A necessary compromise on the best peaking time to achieve an acceptable noise level together with efficiency and timing accuracy has been investigated. The ASIC is composed by a preamplifier, shaping amplifier and a Time over Threshold (T.o.T) block for the digitalization of the signals. The chosen shaping function is the third-order semi-Gaussian function implemented with complex poles. An inverter stage is employed in the analog channel in order to operate with signals delivered from both p and n strips. The circuit includes the possibility to select the peaking time of the shaper output from four values: 250 ns, 375 ns, 500 ns and 750 ns. In this way, the noise performances and the signal occupancy can be optimized according to the real background during the experiment. The ASIC prototype has been fabricated in the 130 nm IBM technology which is considered intrinsically radiation hard. The results of the experimental characterization of a produced prototype are satisfactorily matched with simulation.

  7. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  8. A CMOS readout system for very large detector capacitances

    NASA Astrophysics Data System (ADS)

    Schoeneberg, U.; Hosticka, B. J.; Fent, J.; Oberlack, H.; Zimmer, G.

    1990-03-01

    In this contribution we present readout electronics for a liquid-argon calorimeter. It has been designed and optimized for operation at cryogenic temperatures and it is integrated in an n-well 2 μm CMOS technology. The chip contains 16 analog channels with switched-capacitor circuits for charge collection, storage, and amplification, and averaging and correlated double sampling circuits for noise reduction. Further components include a trigger generator, an analog multiplexer, digital control circuits for analog switching, and 50 ω cable drivers.

  9. Laser SEU sensitivity mapping of deep submicron CMOS SRAM

    NASA Astrophysics Data System (ADS)

    Yongtao, Yu; Guoqiang, Feng; Rui, Chen; Jianwei, Han

    2014-06-01

    The pulsed laser facility for SEU sensitivity mapping is utilized to study the SEU sensitive regions of a 0.18 μm CMOS SRAM cell. Combined with the device layout micrograph, SEU sensitivity maps of the SRAM cell are obtained. TCAD simulation work is performed to examine the SEU sensitivity characteristics of the SRAM cell. The laser mapping experiment results are discussed and compared with the electron micrograph information of the SRAM cell and the TCAD simulation results. The results present that the test technique is reliable and of high mapping precision for the deep submicron technology device.

  10. Radiation-hard silicon gate bulk CMOS cell family

    SciTech Connect

    Gibbon, C. F.; Habing, D. H.; Flores, R. S.

    1980-01-01

    A radiation-hardened bulk silicon gate CMOS technology and a topologically simple, high-performance dual-port cell family utilizing this process have been demonstrated. Additional circuits, including a random logic circuit containing 4800 transistors on a 236 x 236 mil die, are presently being designed and processed. Finally, a joint design-process effort is underway to redesign the cell family in reduced design rules; this results in a factor of 2.5 cell size reduction and a factor of 3 decrease in chip interconnect area. Cell performance is correspondingly improved.

  11. Flexible packaging and integration of CMOS IC with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-05-01

    We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.

  12. Novel Implantation Method to Improve Machine-Model Electrostatic Discharge Robustness of Stacked N-Channel Metal-Oxide Semiconductors (NMOS) in Sub-Quarter-Micron Complementary Metal-Oxide Semiconductors (CMOS) Technology

    NASA Astrophysics Data System (ADS)

    Ker, Ming-Dou; Hsu, Hsin-Chyh; Peng, Jeng-Jie

    2002-11-01

    A novel ion implantation method for electrostatic discharge protection, often called as ESD implantation, is proposed to significantly improve machine-model (MM) ESD robustness of N-channel metal-oxide semiconductors (NMOS) device in stacked configuration (stacked NMOS). By using this ESD implantation method, the ESD current is discharged far away from the surface channel of NMOS, therefore the stacked NMOS in the mixed-voltage I/O interface can sustain a much higher ESD level, especially under the MM ESD stress. The MM ESD robustness of the stacked NMOS with a device dimension of W/L=300 μm/0.5 μm for each NMOS has been successfully improved from the original 358 V to become 491 V in a 0.25-μm complementary metal-oxide semiconductors (CMOS) process.

  13. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  14. Creating a parameterized model of a CMOS transistor with a gate of enclosed layout

    NASA Astrophysics Data System (ADS)

    Vinogradov, S. M.; Atkin, E. V.; Ivanov, P. Y.

    2016-02-01

    The method of creating a parameterized spice model of an N-channel transistor with a gate of enclosed layout is considered. Formulas and examples of engineering calculations for use of models in the computer-aided Design environment of Cadence Vitruoso are presented. Calculations are made for the CMOS technology with 180 nm design rules of the UMC.

  15. CMOS/SOI hardening at 100 MRAD (SiO sub 2 )

    SciTech Connect

    Leray, J.L.; Dupont-Nivet, E.; Pere, J.F.; Coic, Y.M.; Raffaelli, M. ); Auberton-Herve, A.J.; Bruel, M.; Giffard, B., Margail, J. )

    1990-12-01

    Hardened CMOS/SOI 29101 microprocessor, elementary cells and transistor shave been irradiated at levels between 10 Mrad(SiO{sub 2}) and 1 Grad(SiO{sub 2}) ({sup 60}Co and 10 keV x-rays). SIMOX buried oxide behavior in the range of 100 Mrad(SiO{sub 2}) and a channel-stopped MOS/SOI structure avoiding lateral leakage current are presented. These two items indicate the feasibility of a CMOS/SOI technology operating in the hundred Mrad(SiO{sub 2}) range.

  16. 180 Degree Hybrid (Rat-Race) Junction on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John

    2003-01-01

    180-degree hybrid junctions can be used to equally divide power between two output ports with either a 0 or 180-degree phase difference. Alternatively, they can be used to combine signals from two sources and output a sum and difference signal. The main limitation of implementing; these on CMOS grade silicon is the high loss associated with the substrate. In this paper, we present a low loss 180-degree hybrid junction on CMOS grade (15 omega-cm) silicon with a polyimide interface layer for the first time. The divider utilizes Finite Ground Coplanar (FGC) line technology, and operates at a center frequency of 15 GIIz.

  17. Deposition of titanium dioxide nanoparticles on the membrane of a CMOS-MEMS resonator

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Y.; Dennis, J. O.; Khir, M. H. Md; Saad, M. N. Mohamad

    2014-10-01

    A CMOS-MEMS resonator is optimized as a highly sensitive gas sensor. The principle of detection is based on change in resonant frequency of the resonator due to adsorption/absorption of trace gases onto the active material on the resonator membrane. The resonator was successfully fabricated using 0.35 μm CMOS technology and post-CMOS micromachining process. The post-CMOS process is used to etch the silicon substrate and silicon oxide to release the suspended structures of the devices. Preliminary trials of nanocrystalline Titania paste (TiO2) was screen-printed on three aluminum plates of sizes 2mm × 2 mm. One of the samples was analysed as prepared while the other two samples were sintered at 300°C and 550°C, respectively. Physical observation indicated a change of the color for heated samples as compared to the unheated one. EDX results indicates a carbon (C) peak with average weight % of 18.816 in the as prepared sample and absence of the peaks for the samples sintered at 300°C and 550°C. EDX results also show that the TiO2 used consists of a uniform distribution of spherical shaped nanoparticles with a diameter of about 13.49 to 48.42 nm. Finally, the Titania paste was successfully deposit on the membrane of the CMOS-MEMS resonator for use as the gas sensitive membrane of the sensor.

  18. Testability of VLSI (Very Large Scale Integration) leakage faults in CMOS (Complementary Metal Oxide Semiconductor)

    NASA Astrophysics Data System (ADS)

    Malaiya, Y. K.; Su, S. Y. H.

    1983-09-01

    With the advent of VLSI (Very Large Scale Integration), the importance of CMOS (Complementary Metal Oxide Semiconductor) technology has increased. CMOS offers some very significant advantages over NMOS, and has emerged very competitive. Therefore, testability of CMOS devices is of considerable importance. CMOS devices exhibit some failure modes which are not adequately represented by the classical stuck-at fault model. A new fault model is introduced here to represent such faults. Leakage faults are specifically examined in this report, such faults increase the static supply current (which is ordinarily quite low) substantially. A leakage testing experiment consists of applying different vectors to the circuit, and in each case measuring the static supply current. This experimentally obtained data is then analyzed to obtain fault-related information. Leakage testing offers extra testability without any additional pins. It can detect some faults which cannot be detected by the conventional testing. Test generation for several basic CMOS structures is considered. Correspondence between leakage testing and conventional testing is studied. Two methods for analyzing experimental data are presented. Available experimental data was analyzed to obtain statistical information.

  19. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  20. A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-01-01

    A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.

  1. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors

    PubMed Central

    Nguyen, Dung C.; Ma, Dongsheng (Brian); Roveda, Janet M. W.

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers. PMID:23319947

  2. The effect of interconnection resistance on the performance enhancement of liquid-nitrogen-cooled CMOS circuits

    SciTech Connect

    Watt, J.T. ); Plummer, J.D. . Center for Integrated Systems)

    1989-08-01

    The effect of interconnection resistance on CMOS circuit performance is examined at room temperature and liquid-nitrogen temperature. The interconnection is modeled as a distributed RLC line driven by an optimal configuration of cascaded inverters. The thin-film resistivity of pure aluminum has been measured to allow accurate prediction of the effect of interconnection resistance on performance. A critical interconnect length is defined as the point at which interconnect resistance begins to dominate propagation delay time. The critical interconnect length is computed at room temperature and liquid-nitrogen temperature for present-day and scaled CMOS technologies and compared to the maximum interconnect length expected in state-of-the-art VLSI circuits. Conclusions are drawn concerning the importance of interconnection resistance in determining the enhancement in performance achieved through reduced-temperature operation of CMOS integrated circuits.

  3. A CMOS-compatible, surface-micromachined pressure sensor for aqueous ultrasonic application

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1994-12-31

    A surface micromachined pressure sensor array is under development at the Integrated Micromechanics, Microsensors, and CMOS Technologies organization at Sandia National Laboratories. This array is designed to sense absolute pressures from ambient pressure to 650 psia with frequency responses from DC to 2 MHz. The sensor is based upon a sealed, deformable, circular LPCVD silicon nitride diaphragm. Absolute pressure is determined from diaphragm deflection, which is sensed with low-stress, micromechanical, LPCVD polysilicon piezoresistors. All materials and processes used for sensor fabrication are CMOS compatible, and are part of Sandia`s ongoing effort of CMOS integration with Micro-ElectroMechanical Systems (MEMS). Test results of individual sensors are presented along with process issues involving the release etch and metal step coverage.

  4. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons.

    PubMed

    Zhang, Xin; Wong, Wai Man; Zhang, Yulong; Zhang, Yandong; Gao, Fei; Nelson, Richard D; Larue, John C

    2009-01-01

    In this paper we present the design and prototyping of a 24-channel mixed signal full-customized CMOS integrated biosensor chip for in vitro extracellular recording of neural signals. Design and implementation of hierarchical modules including microelectrode electrophysiological sensors, analog signal buffers, high gain amplifier and control/interface units are presented in detail. The prototype chip was fabricated by MOSIS with AMI C5 0.5 microm, double poly, triple metal layer CMOS technology. The electroless gold plating process is used to replace the aluminum material obtained from the standard CMOS process with biocompatible metal gold in the planner microelectrode array sensors to prevent cell poisoning and undesirable electrochemical corrosion. The biosensor chip provides a satisfactory signal-to-noise ratio for neural signals with amplitudes and frequencies within the range of 600microV - 2mV and 100 Hz to 10KHz, respectively. PMID:19965239

  5. 25 Gb/s photoreceiver based on vertical-illumination type Ge-on-Si photodetector and CMOS amplifier circuit for optical interconnects

    NASA Astrophysics Data System (ADS)

    Joo, Jiho; Jang, Ki-Seok; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Gyungock; Jeong, Gyu-Seob; Chi, Hankyu; Jeong, Deog-Kyoon

    2015-02-01

    We report the silicon photonic receivers based on the hybrid-integrated vertical-illumination-type germanium-on-silicon photodetector and CMOS amplifier circuit, for optical interconnects. The high-speed vertical-illumination-type Ge-on-Si photodetector is defined on a bulk-silicon wafer, and the CMOS amplifier chip was designed with 65nm ground rule. The PCB-packaged 4 channel 25 Gb/s photoreceiver exhibits a resposivity of 0.68A/W. The sensitivity measured at a BER of 10-12 is -8.3 dBm and -2.4dBm for 25Gb/s and 32Gb/s, respectively. The energy efficiency is 2.19 pJ/bit at 25 Gb/s. The single-channel butterfly-packaged photoreceiver exhibits the sensitivity of -11dBm for 25 Gb/s at a BER of 10-12. The energy efficiency is 2.67 pJ/bit at 25 Gb/s.

  6. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor.

    PubMed

    Nikkhoo, Nasim; Cumby, Nichole; Gulak, P Glenn; Maxwell, Karen L

    2016-01-01

    The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185

  7. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  8. CMOS prototype for retinal prosthesis applications with analog processing

    NASA Astrophysics Data System (ADS)

    Castillo-Cabrera, G.; García-Lamont, J.; Reyes-Barranca, M. A.; Matsumoto-Kuwabara, Y.; Moreno-Cadenas, J. A.; Flores-Nava, L. M.

    2014-12-01

    A core architecture for analog processing, which emulates a retina's receptive field, is presented in this work. A model was partially implemented and built on CMOS standard technology through MOSIS. It considers that the receptive field is the basic unit for image processing in the visual system. That is why the design is concerned on a partial solution of receptive field properties in order to be adapted in the future as an aid to people with retinal diseases. A receptive field is represented by an array of 3×3 pixels. Each pixel carries out a process based on four main operations. This means that image processing is developed at pixel level. Operations involved are: (1) photo-transduction by photocurrent integration, (2) signal averaging from eight neighbouring pixels executed by a neu-NMOS (ν-NMOS) neuron, (3) signal average gradient between central pixel and the average value from the eight neighbouring pixels (this gradient is performed by a comparator) and finally (4) a pulse generator. Each one of these operations gives place to circuital blocks which were built on 0.5 μm CMOS technology.

  9. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  10. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  11. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  12. Characterization and reliability of CMOS microstructures

    NASA Astrophysics Data System (ADS)

    Fedder, Gary K.; Blanton, Ronald D. S.

    1999-08-01

    This paper provides an overview of high-aspect-ratio CMOS micromachining, focusing on materials characterization, reliability, and fault analysis. Composite microstrutural beam widths and gaps down to 1.2 micrometers are etched out of conventional CMOS dielectric, aluminum, and gate-polysilicon thin films using post-CMOS dry etching for both structural sidewall definition and for release from the substrate. Differences in stress between the multiple metal and dielectric layers cause vertical stress gradients and curl, while misalignment between layers causes lateral stress gradients and curl. Cracking is induced in a resonant fatigue structures at 620 MPa of repetitive stress after over 50 million cycles. Beams have withstood over 1.3 billion cycles at 124 MPa stress levels induced by electrostatic actuation. Failures due to process defects are classified according to the geometrical features of the defective structures. Relative probability of occurrence of each defect type is extracted from the process simulation results.

  13. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    NASA Astrophysics Data System (ADS)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  14. Low power, CMOS digital autocorrelator spectrometer for spaceborne applications

    NASA Technical Reports Server (NTRS)

    Chandra, Kumar; Wilson, William J.

    1992-01-01

    A 128-channel digital autocorrelator spectrometer using four 32 channel low power CMOS correlator chips was built and tested. The CMOS correlator chip uses a 2-bit multiplication algorithm and a full-custom CMOS VLSI design to achieve low DC power consumption. The digital autocorrelator spectrometer has a 20 MHz band width, and the total DC power requirement is 6 Watts.

  15. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    NASA Technical Reports Server (NTRS)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  16. Electroabsorption modulators for CMOS compatible optical interconnects in III-V and group IV materials

    NASA Astrophysics Data System (ADS)

    Roth, Jonathan Edgar

    While electrical systems excel at information processing, photonics is useful in systems for high-bandwidth, low-loss signal transmission. As photonics technology has become increasingly widespread and has been deployed at shorter distance scales than traditional long-haul networks, it has become important to efficiently integrate photonics components with electrical integrated circuits. Optoelectronic modulators used as transmitters are an important class of device for use in optical interconnects. Many optoelectronic modulator designs use waveguides. Coupling light into waveguides requires a difficult alignment step. This dissertation will describe a number of optoelectronic modulators that do not have the tight alignment constraints associated with waveguide-based modulators. The eased alignment constraints may be important for the practical manufacturing and packaging of systems using optical interconnects. Most currently deployed photonics technologies also use substrates other than silicon and materials incompatible with CMOS manufacturing. Recently we discovered a strong quantum-confined Stark effect in Ge/SiGe quantum well structures that can be used to create efficient optoelectronic modulators on silicon substrates. Optoelectronic modulators using this technology can be fabricated with conventional CMOS foundry processes, possibly on the same chips as CMOS circuits. In this dissertation, an optical interconnect operating in the C-band will be presented. We believe this is the first such device employing an optical transmitter flip-chip bonded to silicon CMOS. A number of novel modulators will be presented, which are fabricated on silicon substrates, and employ Ge/SiGe quantum well structures. These modulators include a novel architecture known as the side-entry modulator, which is designed for monolithic integration with electronics. One side-entry modulator achieved over 3 dB of contrast in the telecommunications C-band for a voltage swing of 1V. Such a

  17. End-of-fabrication CMOS process monitor

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.

    1990-01-01

    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).

  18. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  19. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  20. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  1. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Yemenicioglu, S.; Chen, C.-H.; Corigliano, E.; Milaninia, K.; Theogarajan, L.

    2013-04-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  2. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  3. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  4. Research on spaceborne low light detection based on EMCCD and CMOS

    NASA Astrophysics Data System (ADS)

    Wu, Xingxing; Liu, Jinguo; Zhou, Huaide; Zhang, Boyan

    2015-10-01

    Electron Multiplying Charge Coupled Device(EMCCD) can realize read out noise of less than 1e- by promoting gain of charges with the charge multiplication principle and is suitable for low light imaging. With the development of back Illuminated CMOS technology CMOS with high quantum efficiency and less than 1.5e- read noise has been developed by Changchun Institute of Optics, Fine Mechanics and Physics(CIOMP). Spaceborne low light detection cameras based on EMCCD CCD201 and based on CMOS were respectively established and system noise models were founded. Low light detection performance as well as principle of spaceborne camera based on EMCCD and spaceborne camera based on CMOS were compared and analyzed. Results of analysis indicated that signal to noise(SNR) of spaceborne low light detection camera based on EMCCD would be 23.78 as radiance at entrance pupil of the camera was as low as 10-9 W/cm2/sr/μm at the focal plane temperature of 20°C. Spaceborne low light detection camera worked in starring mode and the integration time was 2 second. SNR of low light detection camera based on CMOS would be 27.42 under the same conditions. If cooling systems were used and the temperature was lowered from 20°C to -20°C, SNR of low light detection camera based on EMCCD would be improved to 27.533 while SNR of low light detection camera based on CMOS would be improved to 27.79.

  5. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    NASA Astrophysics Data System (ADS)

    Liu, J.; Barbero, M.; Bilbao De Mendizabal, J.; Breugnon, P.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.

    2016-03-01

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm-2s-1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R&D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given.

  6. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    PubMed

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  7. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    PubMed Central

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  8. CMOS cassette for digital upgrade of film-based mammography systems

    NASA Astrophysics Data System (ADS)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  9. Further developments on a novel color sensitive CMOS detector

    NASA Astrophysics Data System (ADS)

    Langfelder, G.; Longoni, A.; Zaraga, F.

    2009-05-01

    The Transverse Field Detector (TFD) is a recently proposed Silicon pixel device designed to perform color imaging without the use of color filters. The color detection principle is based on the dependence of the Silicon absorption coefficient from the wavelength and relies on the generation of a suitable transverse electric field configuration, within the semiconductor active layer, to drive photocarriers generated at different depths towards different collecting electrodes. Each electrode has in this way a different spectral response with respect to the incoming wavelength. Pixels with three or four different spectral responses can be implemented within ~ 6 μm of pixel dimension. Thanks to the compatibility with standard triple well CMOS processes, the TFD can be used in an Active Pixel Sensor exploiting a dedicated readout topology, based on a single transistor charge amplifier. The overall APS electronics includes five transistors (5T) and a feedback capacitance, with a resulting overall fill factor around 50%. In this work the three colors and four colors TFD pixel simulations and implementations in a 90 nm standard CMOS triple well technology are described. Details on the design of a TFD APS mini matrix are provided and preliminary experimental results on four colors pixels are presented.

  10. Custom CMOS Reed Solomon coder for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Cameron, K.; Owsley, P.; Maki, G.

    1990-01-01

    A VLSI coder is presented that can function either as an encoder or decoder for Reed-Solomon codes. VLSI is one approach to implementing high-performance Reed-Solomon decoders. There are three VLSI technologies that could be used: gate arrays, standard cells, and full custom. The first two approaches are relatively easy to implement, but are limited in both performance and density. Full-custom VLSI is used to achieve both circuit density and speed, and allows control of the amount of interconnect. Speed, which is a function of capacitance, which is a function of interconnect, is an important parameter in high-performance VLSI. A single 8.2 mm x 8.4 mm, 200,000 transistor CMOS chip implementation of the Reed-Solomon code required by the Hubble Space Telescope is reported. The chip features a 10-MHz sustained byte rate independent of error pattern. The 1.6-micron CMOS integrated circuit has complete decoder and encoder functions and uses a single data/system clock. Block lengths up to 255 bytes and shortened codes are supported with no external buffering. Erasure corrections and random error corrections are supported with programmable correction of up to 10 symbol errors. Correction time is independent of error pattern and the number of errors in the incoming message.

  11. 3D integration of sub-surface photonics with CMOS

    NASA Astrophysics Data System (ADS)

    Jalali, Bahram; Indukuri, Tejaswi; Koonath, Prakash

    2006-02-01

    The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface silicon layers that are separated from the surface silicon layer by an intervening SiO II layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue for silicon photonics.

  12. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach. PMID:23458812

  13. CMOS low data rate imaging method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Long-long; Liu, Kun; Han, Da-peng

    2012-07-01

    Complementary metal-oxide semiconductor (CMOS) technology enables the integration of image sensing and image compression processing, making improvements on overall system performance possible. We present a CMOS low data rate imaging approach by implementing compressed sensing (CS). On the basis of the CS framework, the image sensor projects the image onto a separable two-dimensional (2D) basis set and measures the corresponding coefficients obtained. First, the electrical current output from the pixels in a column are combined, with weights specified by voltage, in accordance with Kirchhoff's law. The second computation is performed in an analog vector-matrix multiplier (VMM). Each element of the VMM considers the total value of each column as the input and multiplies it by a unique coefficient. Both weights and coefficients are reprogrammable through analog floating-gate (FG) transistors. The image can be recovered from a percentage of these measurements using an optimization algorithm. The percentage, which can be altered flexibly by programming on the hardware circuit, determines the image compression ratio. These novel designs facilitate image compression during the image-capture phase before storage, and have the potential to reduce power consumption. Experimental results demonstrate that the proposed method achieves a large image compression ratio and ensures imaging quality.

  14. High-stage analog accumulator for TDI CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Jianxin, Li; Fujun, Huang; Yong, Zong; Jing, Gao

    2016-02-01

    The impact of the parasitic phenomenon on the performance of the analog accumulator in TDI CMOS image sensor is analyzed and resolved. A 128-stage optimized accumulator based on 0.18-μm one-poly four-metal 3.3 V CMOS technology is designed and simulated. A charge injection effect from the top plate sampling is employed to compensate the un-eliminated parasitics based on the accumulator with a decoupling switch, and then a calibration circuit is designed to restrain the mismatch and Process, Voltage and Temperature (PVT) variations. The post layout simulation indicates that the improved SNR of the accumulator upgrades from 17.835 to 21.067 dB, while an ideal value is 21.072 dB. In addition, the linearity of the accumulator is 99.62%. The simulation results of two extreme cases and Monte Carlo show that the mismatch and PVT variations are restrained by the calibration circuit. Furthermore, it is promising to design a higher stage accumulator based on the proposed structure. Project supported by the National Natural Science Foundation of China (Nos. 61404090, 61434004).

  15. Large CMOS imager using hadamard transform based multiplexing

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Wadsworth, Mark V.

    2005-01-01

    We have developed a concept design for a large (10k x 10k) CMOS imaging array whose elements are grouped in small subarrays with N pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT) based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier by a factor of N^1/2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. The envisioned imager would operate at a speed >100 fps with the pixel noise < 20 e-. The power dissipation would be 100 pW/pixe1. The combination of the large format, high speed, high sensitivity and low power dissipation can be very attractive for space reconnaissance applications.

  16. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  17. Low power SEU immune CMOS memory circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Whitaker, Sterling

    1992-01-01

    The authors report a design improvement for CMOS static memory circuits hardened against single event upset (SEU) using a recently proposed logic/circuit design technique. This improvement drastically reduces static power consumption, reduces the number of transistors required in a D flip-flop design, and eliminates the possibility of capturing an upset state in the slave section during a clock transition.

  18. Fully CMOS-compatible titanium nitride nanoantennas

    NASA Astrophysics Data System (ADS)

    Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.; Baum, Brian K.; Goldhaber-Gordon, David; Dionne, Jennifer A.

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  19. A fail-safe CMOS logic gate

    NASA Technical Reports Server (NTRS)

    Bobin, V.; Whitaker, S.

    1990-01-01

    This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered.

  20. CMOS preamplifiers for detectors large and small

    SciTech Connect

    O`Connor, P.

    1997-12-31

    We describe four CMOS preamplifiers developed for multiwire proportional chambers (MWPC) and silicon drift detectors (SDD) covering a capacitance range from 150 pF to 0.15 pF. Circuit techniques to optimize noise performance, particularly in the low-capacitance regime, are discussed.

  1. Low-Power SOI CMOS Transceiver

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.

    2003-01-01

    The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS

  2. IR CMOS: the digital nightvision solution to sub-1 mLux imaging

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Vineis, C.; Palsule, C.; Jiang, J.; Joy, T.

    2015-05-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux at 60 FPS with a 720P CMOS image sensor in a compact, low latency camera. The camera contains a 1 inch (16 mm) optical format sensor and streams uncompressed video over CameraLink with row wise image latency below 1 msec. Sub mLux imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancement is achieved by utilizing SiOnyx's proprietary ultrafast laser semiconductor processing technology that enhances the absorption of light within a thin pixel layer. Our technology demonstrates a 10 fold improvement in infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see-spot.

  3. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented. PMID:27104122

  4. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect

    Li, Ying; Yu, Jun Wu, Hao; Tang, Zhenan

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  5. Microactuateur electrothermique bistable: Etude d'implementation avec une technologie standard CMOS

    NASA Astrophysics Data System (ADS)

    Ressejac, Isabelle

    The general objective of this Ph.D. thesis was to study the implementation of a new type of eletrothermal microactuator. This actuator presents the advantages to be bistable and fabricated in a standard CMOS process, allowing the integration of a microelectronics addressing circuit on the same substrate. Experimental research work, presented in this thesis, relate to the different steps carried out in order to implement this CMOS MEMS device: its theoretical conception, its fabrication with a standard CMOS technology, its micromachining as a post-process, its characterization and its electro-thermo-mechanical modeling. The device was designed and fabricated by using Mitel 1,5 mum CMOS technology and the Can-MEMS service which are both available via the Canadian Microelectronics Corporation. Fabricated monolithically within a standard CMOS process, our microactuator is suitable for large-scale integration due to its small dimensions (length ˜1000 mum and width ˜150 mum). It constitutes the basic component of a N by N matrix controlled by a microelectronic addressing system built on the same substrate. Initially, only one micromachining technique (involving TMAH) was used, and long etching times (>9 h) were requires} in order to release the microstructures. However, the passivation layer from the CMOS process could protect the underlying metal from the TMAH for a sufficient time (only ˜1--2 h). Consequently, we had to develop a micromachining strategy with shorter etching times to allow the complete release of the microstructures without damaging them. Post-processing begins with deposition (by sputtering) of a platinum layer intended to protect the abutment from subsequent etching. Our micromachining strategy is mainly based on the use of a hybrid etching process starting with a first anisotropic TMAH etching followed by a XeF2 isotropic etching. After micromachining, the released microactuator has a significant initial deflection with its tip reaching a height

  6. Novel CMOS readout techniques for uncooled pyroelectric IR FPA

    NASA Astrophysics Data System (ADS)

    Sun, Tai-Ping; Chin, Yuan-Lung; Chung, Wen-Yaw; Hsiung, Shen-Kan; Chou, Jung-Chuan

    1998-09-01

    Based on the application of the source follower per detector (SFD) input biasing technique, a new redout structure for the IR focal-plane-array (FPA), called the variable gain source follower per detector (VGSFD) is proposed and analyzed. The readout circuit of VGSFD of a unit cell of pyroelectric sensor under investigation, is composed of a source follower per detector circuit, high gain amplifier, and the reset switch. The VGSFD readout chip has been designed in 0.5 micrometers double-poly-double-metal n-well CMOS technology in various formats from 8 by 8 to 128 by 128. The experimental 8 by 8 VGSFD measurement results of the fabricated readout chip at room temperature have successfully verified both the readout function and performance. The high gain, low power, high sensitivity readout performances are achieved in a 50 by 50 micrometers (superscript 2) pixel size.

  7. A portable swappable method scientific CMOS image data storage system

    NASA Astrophysics Data System (ADS)

    Liu, Wen-long; Pi, Hai-feng; Hu, Bing-liang; Gao, Jia-rui

    2015-11-01

    In the field of deep space exploration, the detector needs high-speed data real-time transmission and large capacity storage. SATA(Serial advanced technology attachment) as a new generation of interface protocols, SATA interface hard disk has the advantages of with large storage capacity, high transmission rate, the cheap price, data is not lost when power supply drop, so it is suitable for used in high speed large capacity data storage system. This paper by using Kintex-7 XCE7K325T XILINK series FPGA, the data of scientific CMOS CIS2521F through the SATA controller is stored in the hard disk. If the hard disk storage is full, it will automatically switch to the next hard disk.

  8. Reliability Considerations of ULP Scaled CMOS in Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    White, Mark; MacNeal, Kristen; Cooper, Mark

    2012-01-01

    NASA, the aerospace community, and other high reliability (hi-rel) users of advanced microelectronic products face many challenges as technology continues to scale into the deep sub-micron region. Decreasing the feature size of CMOS devices not only allows more components to be placed on a single chip, but it increases performance by allowing faster switching (or clock) speeds with reduced power compared to larger scaled devices. Higher performance, and lower operating and stand-by power characteristics of Ultra-Low Power (ULP) microelectronics are not only desirable, but also necessary to meet low power consumption design goals of critical spacecraft systems. The integration of these components in such systems, however, must be balanced with the overall risk tolerance of the project.

  9. A radiation hardened SONOS/CMOS EEPROM family

    SciTech Connect

    Klein, V.F.; Wood, G.M.; Buller, J.F. . Semiconductor Sector); Murray, J.R.; Rodriquez, J.L. )

    1990-01-01

    There has long been a need for fast read nonvolatile, rad hard memories for military and space applications. Recent advances in EEPROM technology now allow this need to be met for many applications. Harris/Sandia have developed a 16k and a 256k rad hard EEPROM. The EEPROMs utilize a Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory transistor integrated into a 2 {mu}m, rad hard two level metal CMOS process. Both the 16k and the 256k parts have been designed to interface with the Intel 8085 or 80C51 and National 32000 series microprocessors and feature page and block clear modes. Both parts are functionally identical, and are produced by the same fabrication process. They are also pin for pin compatible with each other, except for the extra address and ground pins on the 256k. This paper describes the characteristics of this EEPROM family. 1 ref.

  10. A radiation hardened SONOS/CMOS EEPROM family

    NASA Astrophysics Data System (ADS)

    Klein, V. F.; Wood, G. M.; Buller, J. F.; Murray, J. R.; Rodriquez, J. L.

    1990-07-01

    There has long been a need for fast read nonvolatile, rad hard memories for military and space applications. Recent advances in Electrically Erasably Programmable Read Only Memory (EEPROM) technology now allow this need to be met for many applications. Harris/Sandia have developed a 16k and a 256k rad hard EEPROM. The EEPROMs utilize a Silicon Oxide Nitride Oxide Silicon (SONOS) memory transistor integrated into a 2 microns rad hard two level metal CMOS process. Both the 16k and the 256k parts were designed to interface with the Intel 8085 or 80C51 and National 32000 series microprocessors and feature page and block clear modes. Both parts are functionally identical, and are produced by the same fabrication process. They are also pin for pin compatible with each other, except for the extra address and ground pins on the 256k. The characteristics of this EEPROM family are described.

  11. Interferometric metrology of wafer nanotopography for advanced CMOS process integration

    NASA Astrophysics Data System (ADS)

    Valley, John F.; Koliopoulos, Chris L.; Tang, Shouhong

    2001-12-01

    According to industry standards (SEMI M43, Guide for Reporting Wafer Nanotopography), Nanotopography is the non- planar deviation of the whole front wafer surface within a spatial wavelength range of approximately 0.2 to 20 mm and within the fixed quality area (FQA). The need for precision metrology of wafer nanotopography is being actively addressed by interferometric technology. In this paper we present an approach to mapping the whole wafer front surface nanotopography using an engineered coherence interferometer. The interferometer acquires a whole wafer raw topography map. The raw map is then filtered to remove the long spatial wavelength, high amplitude shape contributions and reveal the nanotopography in the filtered map. Filtered maps can be quantitatively analyzed in a variety of ways to enable statistical process control (SPC) of nanotopography parameters. The importance of tracking these parameters for CMOS gate level processes at 180-nm critical dimension, and below, is examined.

  12. Development of a CMOS integrated zero-crossing discriminator using analog continuous-time division

    SciTech Connect

    Jochmann, M.W.

    1996-12-31

    High resolution time spectroscopy experiments require circuit techniques that accurately mark the time arrival of events regardless of their amplitude. For this purpose zero-crossing techniques are generally used because of their independence of the signal amplitude. Since the output response of real voltage comparators is related to the input signal slope and overdrive, even these time-pickoff methods are burdened by an amplitude dependent time walk. Therefore a new time-pickoff circuit is proposed using analog continuous-time division to eliminate the undesired amplitude information. Based on a standard CMOS technology a first test version has been developed that is still under production. First promising SPICE simulations using the simulation parameters of an inexpensive 1.2 {mu}m CMOS technology have shown a time walk fairly below 200 ps (FWHM) over a 40 dB amplitude range and for input signal risetimes of 2 to 3 ns.

  13. Noise in a CMOS digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Chi, Zhang; Suying, Yao; Jiangtao, Xu

    2011-11-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS.

  14. Spectrum acquisition of detonation based on CMOS

    NASA Astrophysics Data System (ADS)

    Li, Yan; Bai, Yonglin; Wang, Bo; Liu, Baiyu; Xue, Yingdong; Zhang, Wei; Gou, Yongsheng; Bai, Xiaohong; Qin, Junjun; Xian, Ouyang

    2010-10-01

    The detection of high-speed dynamic spectrum is the main method to acquire transient information. In order to obtain the large amount spectral data in real-time during the process of detonation, a CMOS-based system with high-speed spectrum data acquisition is designed. The hardware platform of the system is based on FPGA, and the unique characteristic of CMOS image sensors in the rolling shutter model is used simultaneously. Using FPGA as the master control chip of the system, not only provides the time sequence for CIS, but also controls the storage and transmission of the spectral data. In the experiment of spectral data acquisition, the acquired information is transmitted to the host computer through the CameraLink bus. The dynamic spectral curve is obtained after the subsequent processing. The experimental results demonstrate that this system is feasible in the acquisition and storage of high-speed dynamic spectrum information during the process of detonation.

  15. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  16. CMOS-array design-automation techniques

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardt, T.

    1979-01-01

    Thirty four page report discusses design of 4,096-bit complementary metal oxide semiconductor (CMOS) read-only memory (ROM). CMOSROM is either mask or laser programable. Report is divided into six sections; section one describes background of ROM chips; section two presents design goals for chip; section three discusses chip implementation and chip statistics; conclusions and recommendations are given in sections four thru six.

  17. Radiation effects on scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Liyan, Liu; Xiaohui, Liu; Xiaofeng, Jin; Xiang, Li

    2015-11-01

    A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to 110 MeV·cm2/mg.

  18. Radiation characteristics of scintillator coupled CMOS APS for radiography conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyun; Kim, Soongpyung; Kang, Dong-Won; Kim, Dong-Kie

    2006-11-01

    Under industrial radiography conditions, we analyzed short-term radiation characteristics of scintillator coupled CMOS APS (hereinafter SC CMOS APS). By means of experimentation, the contribution of the transmitted X-ray through the scintillator to the properties of the CMOS APS and the afterimage, generated in the acquired image even at low dose condition, were investigated. To see the transmitted X-ray effects on the CMOS APS, Fein focus™ X-ray machine, two scintillators of Lanex™ Fine and Regular, and two CMOS APS array of RadEye™ were used under the conditions of 50 kV p/1 mAs and 100 kV p/1 mAs. By measuring the transmitted X-ray on signal and Noise Power Spectrum, we analytically examined the generation mechanism of the afterimage, based on dark signal or dark current increase in the sensor, and explained the afterimage in the SC CMOS APS.

  19. Efficient design of CMOS TSC checkers

    NASA Technical Reports Server (NTRS)

    Biddappa, Anita; Shamanna, Manjunath K.; Maki, Gary; Whitaker, Sterling

    1990-01-01

    This paper considers the design of an efficient, robustly testable, CMOS Totally Self-Checking (TSC) Checker for k-out-of-2k codes. Most existing implementations use primitive gates and assume the single stuck-at fault model. The self-testing property has been found to fail for CMOS TSC checkers under the stuck-open fault model due to timing skews and arbitrary delays in the circuit. A new four level design using CMOS primitive gates (NAND, NOR, INVERTERS) is presented. This design retains its properties under the stuck-open fault model. Additionally, this method offers an impressive reduction (greater than 70 percent) in gate count, gate inputs, and test set size when compared to the existing method. This implementation is easily realizable and is based on Anderson's technique. A thorough comparative study has been made on the proposed implementation and Kundu's implementation and the results indicate that the proposed one is better than Kundu's in all respects for k-out-of-2k codes.

  20. Correct CMOS IC defect models for quality testing

    NASA Technical Reports Server (NTRS)

    Soden, Jerry M.; Hawkins, Charles F.

    1993-01-01

    Leading edge, high reliability, and low escape CMOS IC test practices have now virtually removed the stuck-at fault model and replaced it with more defect-orientated models. Quiescent power supply current testing (I(sub DDQ)) combined with strategic use of high speed test patterns is the recommended approach to zero defect and high reliability testing goals. This paper reviews the reasons for the change in CMOS IC test practices and outlines an improved CMOS IC test methodology.

  1. Behavior of faulty double BJT BiCMOS logic gates

    NASA Technical Reports Server (NTRS)

    Menon, Sankaran M.; Malaiya, Yashwant K.; Jayasumana, Anura P.

    1992-01-01

    Logic Behavior of a Double BJT BiCMOS device under transistor level shorts and opens is examined. In addition to delay faults, faults that cause the gate to exhibit sequential behavior were observed. Several faults can be detected only by monitoring the current. The faulty behavior of Bipolar (TTL) and CMOS logic families is compared with BiCMOS, to bring out the testability differences.

  2. Interferometric comparison of the performance of a CMOS and sCMOS detector

    NASA Astrophysics Data System (ADS)

    Flores-Moreno, J. M.; De la Torre I., Manuel H.; Hernández-Montes, M. S.; Pérez-López, Carlos; Mendoza S., Fernando

    2015-08-01

    We present an analysis of the imaging performance of two state-of-the-art sensors widely used in the nondestructive- testing area (NDT). The analysis is based on the quantification of the signal-to-noise (SNR) ratio from an optical phase image. The calculation of the SNR is based on the relation of the median (average) and standard deviation measurements over specific areas of interest in the phase images of both sensors. This retrieved phase is coming from the vibrational behavior of a large object by means of an out-of-plane holographic interferometer. The SNR is used as a figure-of-merit to evaluate and compare the performance of the CMOS and scientific CMOS (sCMOS) camera as part of the experimental set-up. One of the cameras has a high speed CMOS sensor while the other has a high resolution sCMOS sensor. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The vibration induced to the sample is performed by a linear step motor with an attached tip in the motion stage. Each camera is used once at the time to record the deformation keeping the same experimental conditions for each case. These measurements may complement the conventional procedures or technical information commonly used to evaluate a camerás performance such as: quantum efficiency, spatial resolution and others. Results present post processed images from both cameras, but showing a smoother and easy to unwrap optical phase coming from those recorded with the sCMOS camera.

  3. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    NASA Technical Reports Server (NTRS)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  4. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    PubMed Central

    Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  5. Current-mode CMOS hybrid image sensor

    NASA Astrophysics Data System (ADS)

    Benyhesan, Mohammad Kassim

    Digital imaging is growing rapidly making Complimentary Metal-Oxide-Semi conductor (CMOS) image sensor-based cameras indispensable in many modern life devices like cell phones, surveillance devices, personal computers, and tablets. For various purposes wireless portable image systems are widely deployed in many indoor and outdoor places such as hospitals, urban areas, streets, highways, forests, mountains, and towers. However, the increased demand on high-resolution image sensors and improved processing features is expected to increase the power consumption of the CMOS sensor-based camera systems. Increased power consumption translates into a reduced battery life-time. The increased power consumption might not be a problem if there is access to a nearby charging station. On the other hand, the problem arises if the image sensor is located in widely spread areas, unfavorable to human intervention, and difficult to reach. Given the limitation of energy sources available for wireless CMOS image sensor, an energy harvesting technique presents a viable solution to extend the sensor life-time. Energy can be harvested from the sun light or the artificial light surrounding the sensor itself. In this thesis, we propose a current-mode CMOS hybrid image sensor capable of energy harvesting and image capture. The proposed sensor is based on a hybrid pixel that can be programmed to perform the task of an image sensor and the task of a solar cell to harvest energy. The basic idea is to design a pixel that can be configured to exploit its internal photodiode to perform two functions: image sensing and energy harvesting. As a proof of concept a 40 x 40 array of hybrid pixels has been designed and fabricated in a standard 0.5 microm CMOS process. Measurement results show that up to 39 microW of power can be harvested from the array under 130 Klux condition with an energy efficiency of 220 nJ /pixel /frame. The proposed image sensor is a current-mode image sensor which has several

  6. Envelope tracking CMOS power amplifier with high-speed CMOS envelope amplifier for mobile handsets

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Sakai, Yasufumi; Oishi, Kazuaki; Yamazaki, Hiroshi; Mori, Toshihiko; Yamaura, Shinji; Suto, Kazuo; Tanaka, Tetsu

    2014-01-01

    A high-efficiency CMOS power amplifier (PA) based on envelope tracking (ET) has been reported for a wideband code division multiple access (W-CDMA) and long term evolution (LTE) application. By adopting a high-speed CMOS envelope amplifier with current direction sensing, a 5% improvement in total power-added efficiency (PAE) and a 11 dB decrease in adjacent channel leakage ratio (ACLR) are achieved with a W-CDMA signal. Moreover, the proposed PA achieves a PAE of 25.4% for a 10 MHz LTE signal at an output power (Pout) of 25.6 dBm and a gain of 24 dB.

  7. High-Q CMOS-integrated photonic crystal microcavity devices

    PubMed Central

    Mehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.

    2014-01-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300–9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems. PMID:24518161

  8. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  9. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-03-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  10. CMOS readout integrated circuit involving pixel-level ADC for microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Hwang, C. H.; Kwon, I. W.; Lee, Y. S.; Lee, H. C.

    2008-04-01

    The function of most readout integrated circuits (ROIC) for microbolometer focal plane arrays (FPAs) is supplying a bias voltage to a microbolometer of each pixel, integrating the current of a microbolometer, and transferring the signals from pixels to the output of a chip. However, the scale down of CMOS technology allows the integration of other functions. In this paper, we proposed a CMOS ROIC involving a pixel-level analog-to-digital converter (ADC) for 320 × 240 microbolometer FPAs. Such integration would improve the performance of a ROIC at the reduced system cost and power consumption. The noise performance of a microbolometer is improved by using the pixelwise readout structure because integration time can be increased up to 1ms. A Pixel circuit is consisted of a background skimming circuit, a differential amplifier, an integration capacitor and a 10-bit DRAM. First, the microbolometer current is integrated for 1ms after the skimming current correction. The differential amplifier operates as an op-Amp and the integration capacitor makes negative feedback loop between an output and a negative input of the op-Amp. And then, the integrated signal voltage is converted to digital signals using a modified single slope ADC in a pixel when the differential amplifier operates as a comparator and the 10-bit DRAM stores values of a counter. This readout circuit is designed and fabricated using a standard 0.35μm 2-poly 3-metal CMOS technology.

  11. A CMOS low power, process/temperature variation tolerant RSSI with an integrated AGC loop

    NASA Astrophysics Data System (ADS)

    Qianqian, Lei; Min, Lin; Yin, Shi

    2013-03-01

    A low voltage low power CMOS limiter and received signal strength indicator (RSSI) with an integrated automatic gain control (AGC) loop for a short-distance receiver are implemented in SMIC 0.13 μm CMOS technology. The RSSI has a dynamic range of more than 60 dB and the RSSI linearity error is within ±0.5 dB for an input power from -65 to -8 dBm. The RSSI output voltage is from 0.15 to 1 V and the slope of the curve is 14.17 mV/dB while consuming 1.5 mA (I and Q paths) from a 1.2 V supply. Auto LNA gain mode selection with a combined RSSI function is also presented. Furthermore, with the compensation circuit, the proposed RSSI shows good temperature-independent and good robustness against process variation characteristics.

  12. SEMICONDUCTOR INTEGRATED CIRCUITS: A high-performance low-power CMOS AGC for GPS application

    NASA Astrophysics Data System (ADS)

    Qianqian, Lei; Qiming, Xu; Zhiming, Chen; Yin, Shi; Min, Lin; Hailong, Jia

    2010-02-01

    A wide tuning range, low power CMOS automatic gain control (AGC) with a simple architecture is proposed. The proposed AGC is composed of a variable gain amplifier (VGA), a comparator and a charge pump, and the dB-linear gain is controlled by the charge pump. The AGC was implemented in a 0.18 μm CMOS technology. The dynamic range of the VGA is more than 55 dB, the bandwidth is 30 MHz, and the gain error is lower than ±1.5 dB over the full temperature and gain ranges. It is designed for GPS application and is fed from a single 1.8 V power supply. The AGC power consumption is less than 5 mW, and the area of the AGC is 700 × 450 μm2.

  13. A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Lioe, DeXing; Mars, Kamel; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji

    2016-03-01

    A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (SRS) spectroscopy is presented in this paper. The effective SRS signal from the stimulated emission of SRS mechanism is very small in contrast to the offset of a probing laser source, which is in the ratio of 10-4 to 10-5. In order to extract this signal, the common offset component is removed, and the small difference component is sampled using switched-capacitor integrator with a fully differential amplifier. The sampling is performed over many integration cycles to achieve appropriate amplification. The lock-in pixels utilizes high-speed lateral electric field charge modulator (LEFM) to demodulate the SRS signal which is modulated at high-frequency of 20MHz. A prototype chip is implemented using 0.11μm CMOS image sensor technology.

  14. Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP

    NASA Astrophysics Data System (ADS)

    Jagdhold, U.

    2010-08-01

    To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].

  15. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  16. Novel low area CMOS readout circuit for uncooled microbolometers with low noise

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Jiang, Yadong; Zhou, Yun; Luo, Fengwu

    2009-05-01

    We propose a novel CMOS readout structure without sample and hold (SH) circuit for uncooled microbolometers. In this readout circuit, all the pixels in one row can be integrated simultaneously, and the readout integrated circuit (ROIC) area can be reduced by as much as 30%. Moreover, a single capacitor implementation of both capacitive transimpedance amplifier (CTIA) and correlated double sampling (CDS) is utilized to improve noise performance. An experimental 40x30 ROIC chip has been designed and fabricated with 0.5 μm CMOS technology. The test results show that the ROIC has good linearity with 260μV RMS total output noise voltage and 1800x650 μm2 total circuit area.

  17. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan

    2016-03-01

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  18. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm. PMID:27137315

  19. A low power 3.125 Gbps CMOS analog equalizer for serial links

    NASA Astrophysics Data System (ADS)

    Hao, Ju; Yumei, Zhou; Yishu, Jiao

    2010-11-01

    A CMOS analog equalizer is designed to meet the different high speed communication specifications, such as USB 2.0, PCI-E and rapid IO. The proposed circuit architecture could facilitate the wide frequency scale ranging from 1 to 3.125 Gbps by adjusting the locations of pole and zero, so that the circuit can change its response accordingly as the channel characteristic alters. In order to balance the parasitic capacitors in the internal point, symmetric switches are addressed to generate the equal load for differential signals. A prototype chip was fabricated in 0.13-μm 1P8M mix-signal CMOS technology. The actual area is 0.49 × 0.5 mm2, and the analog equalizer operates up to 3.125 Gbps over 3 m RG-58 coaxial cable and 50 cm FR4-PCB trace. The overall power dissipation is approximately 14.4 mW.

  20. A CMOS compatible Microbulk Micromegas-like detector using silicon oxide as spacer material

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Fransen, M.; van der Graaf, H.; Lu, J.; Schmitz, J.

    2011-02-01

    We present a new Micro Pattern Gaseous Detector (MPGD) fabricated with nonpolymeric materials. The device structure is similar to a Microbulk Micromegas design, consisting of a punctured metal grid supported by a continuous perforated insulating structure. In this detector, the supporting structure is made out of silicon oxide. Devices were tested in He/ iC 4H 10 (80/20) and Ar/ iC 4H 10 (80/20) gas mixtures under 55Fe irradiation. Gas gain of 20,000 and energy resolution below 13% FWHM were achieved. The CMOS compatibility of the fabrication process has been studied in Timepix chips as well as individual 0.13-μm technology CMOS transistors. Complete detectors have been fabricated on top of Timepix chips. In an Ar/ iC 4H 10 (80/20) gas mixture 55Fe decay events were recorded operating the Timepix chip in 2D readout mode.

  1. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  2. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  3. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  4. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-01

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive. PMID:24353390

  5. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  6. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  7. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    PubMed

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  8. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Konstantinidis, A. C.; Zheng, Y.; Speller, R. D.; Evans, P. M.; Allinson, N. M.; Wells, K.

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  9. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  10. SPICE analysis of the SEU sensitivity of a fully depleted SOI CMOS SRAM cell

    SciTech Connect

    Alles, M.L. )

    1994-12-01

    Fully depleted silicon-on-insulator (SOI) technologies are of interest for commercial applications as well as for use in harsh (radiation-intensive) environments. In both types of application, effects of charged particles (single-event effects) are of concern. Here, SPICE analysis of SEU sensitivity of a 6-T SRAM cell using commercially-representative fully depleted SOI CMOS technology parameters indicates that reduction of the minority carrier lifetime (parasitic bipolar gain) and use of thinner silicon can significantly reduce SEU sensitivity.

  11. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  12. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  13. Label-free immunodetection with CMOS-compatible semiconducting nanowires.

    PubMed

    Stern, Eric; Klemic, James F; Routenberg, David A; Wyrembak, Pauline N; Turner-Evans, Daniel B; Hamilton, Andrew D; LaVan, David A; Fahmy, Tarek M; Reed, Mark A

    2007-02-01

    Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms. Successful solution-phase nanowire sensing has been demonstrated for ions, small molecules, proteins, DNA and viruses; however, 'bottom-up' nanowires (or similarly configured carbon nanotubes) used for these demonstrations require hybrid fabrication schemes, which result in severe integration issues that have hindered widespread application. Alternative 'top-down' fabrication methods of nanowire-like devices produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications. PMID:17268465

  14. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  15. A 10-bit ratio-independent cyclic ADC with offset canceling for a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kaiming, Nie; Suying, Yao; Jiangtao, Xu; Zhaorui, Jiang

    2014-03-01

    A 10-bit ratio-independent switch-capacitor (SC) cyclic analog-to-digital converter (ADC) with offset canceling for a CMOS image sensor is presented. The proposed ADC completes an N-bit conversion in 1.5N clock cycles with one operational amplifier. Combining ratio-independent and polarity swapping techniques, the conversion characteristic of the proposed cyclic ADC is inherently insensitive both to capacitor ratio and to amplifier offset voltage. Therefore, the circuit can be realized in a small die area and it is suitable to serve as the column-parallel ADC in CMOS image sensors. A prototype ADC is fabricated in 0.18-μm one-poly four-metal CMOS technology. The measured results indicate that the ADC has a signal-to-noise and distortion ratio (SNDR) of 53.6 dB and a DNL of +0:12/-0:14 LSB at a conversion rate of 600 kS/s. The standard deviation of the offset variation of the ADC is reduced from 2.5 LSB to 0.5 LSB. Its power dissipation is 250 μW with a 1.8 V supply, and its area is 0.03 × 0.8 mm2.

  16. Design, development, fabrication and delivery of register and multiplexer units. [CMOS monolithic chip development

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardi, T.

    1978-01-01

    Several approaches for implementing the register and multiplexer unit into two CMOS monolithic chip types were evaluated. The CMOS standard cell array technique was selected and implemented. Using this design automation technology, two LSI CMOS arrays were designed, fabricated, packaged, and tested for proper static, functional, and dynamic operation. One of the chip types, multiplexer register type 1, is fabricated on a 0.143 x 0.123 inch chip. It uses nine standard cell types for a total of 54 standard cells. This involves more than 350 transistors and has the functional equivalent of 111 gates. The second chip, multiplexer register type 2, is housed on a 0.12 x 0.12 inch die. It uses 13 standard cell types, for a total of 42 standard cells. It contains more than 300 transistors, the functional equivalent of 112 gates. All of the hermetically sealed units were initially screened for proper functional operation. The static leakage and the dynamic leakage were measured. Dynamic measurements were made and recorded. At 10 V, 14 megabit shifting rates were measured on multiplexer register type 1. At 5 V these units shifted data at a 6.6 MHz rate. The units were designed to operate over the 3 to 15 V operating range and over a temperature range of -55 to 125 C.

  17. High-performance CMOS image sensors at BAE SYSTEMS Imaging Solutions

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Balicki, Janusz; Bartkovjak, Peter; Do, Hung; Li, Wang

    2012-07-01

    In this paper, we present an overview of high-performance CMOS image sensor products developed at BAE SYSTEMS Imaging Solutions designed to satisfy the increasingly challenging technical requirements for image sensors used in advanced scientific, industrial, and low light imaging applications. We discuss the design and present the test results of a family of image sensors tailored for high imaging performance and capable of delivering sub-electron readout noise, high dynamic range, low power, high frame rates, and high sensitivity. We briefly review the performance of the CIS2051, a 5.5-Mpixel image sensor, which represents our first commercial CMOS image sensor product that demonstrates the potential of our technology, then we present the performance characteristics of the CIS1021, a full HD format CMOS image sensor capable of delivering sub-electron read noise performance at 50 fps frame rate at full HD resolution. We also review the performance of the CIS1042, a 4-Mpixel image sensor which offers better than 70% QE @ 600nm combined with better than 91dB intra scene dynamic range and about 1 e- read noise at 100 fps frame rate at full resolution.

  18. Low-dose performance of wafer-scale CMOS-based X-ray detectors

    NASA Astrophysics Data System (ADS)

    Maes, Willem H.; Peters, Inge M.; Smit, Chiel; Kessener, Yves; Bosiers, Jan

    2015-03-01

    Compared to published amorphous-silicon (TFT) based X-ray detectors, crystalline silicon CMOS-based active-pixel detectors exploit the benefits of low noise, high speed, on-chip integration and featuring offered by CMOS technology. This presentation focuses on the specific advantage of high image quality at very low dose levels. The measurement of very low dose performance parameters like Detective Quantum Efficiency (DQE) and Noise Equivalent Dose (NED) is a challenge by itself. Second-order effects like defect pixel behavior, temporal and quantization noise effects, dose measurement accuracy and limitation of the x-ray source settings will influence the measurements at very low dose conditions. Using an analytical model to predict the low dose behavior of a detector from parameters extracted from shot-noise limited dose levels is presented. These models can also provide input for a simulation environment for optimizing the performance of future detectors. In this paper, models for predicting NED and the DQE at very low dose are compared to measurements on different CMOS detectors. Their validity for different sensor and optical stack combinations as well as for different x-ray beam conditions was validated.

  19. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Evans, P. M.; Green, S.; Manolopoulos, S.; Nieto-Camero, J.; Parker, D. J.; Poludniowski, G.; Price, T.; Waltham, C.; Allinson, N. M.

    2015-06-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  20. Radiation damage studies on STAR250 CMOS sensor at 300 keV for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Henderson, R.; Holmes, J.

    2006-09-01

    There is a pressing need for better electronic detectors to replace film for recording high-resolution images using electron cryomicroscopy. Our previous work has shown that direct electron detection in CMOS sensors is promising in terms of resolution and efficiency at 120 keV [A.R. Faruqi, R. Henderson, M. Prydderch, R. Turchetta, P. Allport, A. Evans, Nucl. Instr. and Meth. 546 (2005) 170], but in addition, the detectors must not be damaged by the electron irradiation. We now present new measurements on the radiation tolerance of a 25 μm pitch CMOS active-pixel sensor, the STAR250, which was designed by FillFactory using radiation-hard technology for space applications. Our tests on the STAR250 aimed to establish the imaging performance at 300 keV following irradiation. The residual contrast, measured on shadow images of a 300 mesh grid, was >80% after corrections for increased dark current, following irradiation with up to 5×10 7 electrons/pixel (equivalent to 80,000 electron/μm 2). A CMOS sensor with this degree of radiation tolerance would survive a year of normal usage for low-dose electron cryomicroscopy, which is a very useful advance.

  1. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS

    PubMed Central

    Liang, Yuan; Yu, Hao; Zhang, Hao Chi; Yang, Chang; Cui, Tie Jun

    2015-01-01

    A low-loss and low-crosstalk surface-wave transmission line (T-line) is demonstrated at sub-THz in CMOS. By introducing periodical sub-wavelength structures onto the metal transmission line, surface plasmon polaritons (SPP) are excited and propagate signals via a strongly localized surface wave. Two coupled SPP T-lines and two quasi-TEM T-lines are both fabricated on-chip, each with a separation distance of 2.4 μm using standard 65 nm CMOS technology. Measurement results show that the SPP T-lines achieve wideband reflection coefficient lower than −14 dB and crosstalk ratio better than −24 dB, which is 19 dB lower on average than the traditional T-lines from 220 GHz to 325 GHz. The demonstrated compact and wideband SPP T-lines have shown great potential for future realization of highly dense on-chip sub-THz communications in CMOS. PMID:26445889

  2. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.

    PubMed

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<-9 dB) with excellent transmission efficiency (averagely -1.9 dB) from 110 GHz-325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author's knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  3. Design of an ultra low power CMOS pixel sensor for a future neutron personal dosimeter

    SciTech Connect

    Zhang, Y.; Hu-Guo, C.; Husson, D.; Hu, Y.

    2011-07-01

    Despite a continuously increasing demand, neutron electronic personal dosimeters (EPDs) are still far from being completely established because their development is a very difficult task. A low-noise, ultra low power consumption CMOS pixel sensor for a future neutron personal dosimeter has been implemented in a 0.35 {mu}m CMOS technology. The prototype is composed of a pixel array for detection of charged particles, and the readout electronics is integrated on the same substrate for signal processing. The excess electrons generated by an impinging particle are collected by the pixel array. The charge collection time and the efficiency are the crucial points of a CMOS detector. The 3-D device simulations using the commercially available Synopsys-SENTAURUS package address the detailed charge collection process. Within a time of 1.9 {mu}s, about 59% electrons created by the impact particle are collected in a cluster of 4 x 4 pixels with the pixel pitch of 80 {mu}m. A charge sensitive preamplifier (CSA) and a shaper are employed in the frond-end readout. The tests with electrical signals indicate that our prototype with a total active area of 2.56 x 2.56 mm{sup 2} performs an equivalent noise charge (ENC) of less than 400 e - and 314 {mu}W power consumption, leading to a promising prototype. (authors)

  4. Low-noise CMOS SPAD arrays with in-pixel time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Tosi, Alberto; Villa, Federica; Bronzi, Danilo; Zou, Yu; Lussana, Rudi; Tamborini, Davide; Tisa, Simone; Durini, Daniel; Weyers, Sascha; Pashen, Uwe; Brockherde, Werner; Zappa, Franco

    2014-05-01

    We present our latest results concerning CMOS Single-Photon Avalanche Diode (SPAD) arrays for high-throughput parallel single-photon counting. We exploited a high-voltage 0.35 μm CMOS technology in order to develop low-noise CMOS SPADs. The Dark Count Rate is 30 cps at room temperature for 30 μm devices, increases to 2 kcps for 100 μm SPADs and just to 100 kcps for 500 μm ones. Afterpulsing is less than 1% for hold-off time longer than 50 ns, thus allowing to reach high count rates. Photon Detection Efficiency is > 50% at 420 nm, > 40% below 500 nm and is still 5% at 850 nm. Timing jitter is less than 100 ps (FWHM) in SPADs with active area diameter up to 50 μm. We developed CMOS SPAD imagers with 150 μm pixel pitch and 30 μm SPADs. A 64×32 SPAD array is based on pixels including three 9-bit counters for smart phase-resolved photon counting up to 100 kfps. A 32x32 SPAD array includes 1024 10-bit Time-to-Digital Converters (TDC) with 300 ps resolution and 450 ps single-shot precision, for 3D ranging and FLIM. We developed also linear arrays with up to 60 pixels (with 100 μm SPAD, 150 μm pitch and in-pixel 250 ps TDC) for time-resolved parallel spectroscopy with high fill factor.

  5. Monolithically fabricated germanium-on-SOI photodetector and Si CMOS circuit for integrated photonic applications

    NASA Astrophysics Data System (ADS)

    Ang, Kah-Wee; Liow, Tsung-Yang; Yu, Ming-Bin; Fang, Qing; Song, Junfeng; Lo, Guo Q.; Kwong, Dim-Lee

    2010-05-01

    In this paper, we report our design and fabrication approach towards realizing a monolithic integration of Ge photodetector and Si CMOS circuits on common SOI platform for integrated photonic applications. The approach, based on the Ge-on-SOI technology, enables the realization of high sensitivity and low noise photodetector that is capable of performing efficient optical-to-electrical encoding in the near-infrared wavelengths regime. When operated at a bias of -1.0V, a vertical PIN detector achieved a lower Idark of ~0.57μA as compared to a lateral PIN detector, a value that is below the typical ~1μA upper limit acceptable for high speed receiver design. Very high responsivity of ~0.92A/W was obtained in both detector designs for a wavelength of 1550nm, which corresponds to a quantum efficiency of ~73%. Impulse response measurements showed that a vertical PIN photodetector gives rise to a smaller FWHM of ~24.4ps, which corresponds to a -3dB bandwidth of ~11.3GHz where RC time delay is known to be the dominant factor limiting the speed performance. Eye patterns (PRBS 27-1) measurement further confirms the achievement of high speed and low noise photodetection at a bit-rate of 8.5Gb/s. In addition, we evaluate the DC characteristics of the monolithically fabricated Si CMOS inverter circuit. Excellent transfer and output characteristics were achieved by the integrated CMOS inverter circuits in addition to the well behaved logic functions. We also assess the impact of the additional thermal budget introduced by the Ge epitaxy growth on the threshold voltage variation of the short channel CMOS transistors and discuss the issues and potential for the seamless integration of electronic and photonic integrated circuits.

  6. A low-temperature bridge-input CMOS circuit for low-impedance detector

    NASA Astrophysics Data System (ADS)

    Yuan, HongHui; Chen, YongPing

    2014-09-01

    Low-impedance long-wave infrared detectors (the wavelength longer than 10 microns) have very important applications in cryogenic aim detection, super-distance detection, anti-jamming target identify and so on. Therefore the research in the field of infrared detector technology is of importance. At present, no low-impedance photoconductive detectors are integrated with CMOS circuit. To design low-temperature CMOS circuit being fit for low impedance infrared photoconductive detector and realize high performance IR imaging, using differential amplifier with symmetrical positive and negative power is necessary, the low-resist detector is connected between an input and grounding, the corresponding low resistance is connected between another input and grounding, a larger feedback resistor is used between negative input and output, this structure can effectively solve the matching problem of low-impedance and high-impedance CMOS. In addition, the noise voltage from VBIAS terminal can be effectively reduced by increasing the ratio of the bias resistor and the detector resistance. The whole circuit is designed two grade. The first grade is adopted bridge input structure, this structure is fit for low impedance detector. The positive amplifying method is applied in second grade . The first grade feedback resistance is designed 1M ohm, the circuit is supplied by +/-1.5V. The testing showed that the circuit can work well when it connects with low-impedance infrared photoconductive detector at the liquid nitrogen low temperature. The magnification is up to 30000 times, 3dB bandwidth is more than 4kHz, the equivalent input noise is near 1.5 micron volts. This circuit has perfectly solved the matching problem between high impedance CMOS circuit and low impedance detector.

  7. Integration of complex optical functionality in a production CMOS process

    NASA Astrophysics Data System (ADS)

    Gunn, Lawrence C., III

    Optical functionality has been developed within the confines of an existing CMOS process. As of this writing, 10Gigabit modulators, electrically tunable optical filters, waveguides, and grating coupler technology have been successfully implemented alongside the existing transistors in the Freescale Hip7SOI process. This technology will be used to manufacture high bandwidth optical interconnections directly on silicon chips, allowing a new type of network and computing infrastructure to be developed. This work is covered in two distinct phases. First, the exploratory work done to gain experience with high index contrast silicon waveguides primarily served to uncover challenges related with simulation of these devices, and with the practical limitations of efficiently coupling the resulting waveguide devices with the outside world. The second phase began as the grating coupler emerged to address the coupling challenge. It became feasible to conceive of a commercially viable technology based on silicon photonics. The coupler has been evolved to a high level, currently achieving coupling loss of less than 1dB. Once the light is on chip, filtering and modulation technology are implemented. The reverse-biased plasma dispersion modulator has a 3dB roll-off of 10GHz, and an insertion loss less than 5dB. Optical filters based on ring resonators, arrayed waveguide gratings, and interleavers have all been implemented, often with world record performance, and many of the devices have been made electronically tunable to compensate for manufacturing variations and environmental excursions. Finally, circuitry has been designed and constructed on the same die with the optical functionality, fully demonstrating the ability to achieve monolithic integration of these devices.

  8. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  9. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  10. Latchup in CMOS devices from heavy ions

    NASA Technical Reports Server (NTRS)

    Soliman, K.; Nichols, D. K.

    1983-01-01

    It is noted that complementary metal oxide semiconductor (CMOS) microcircuits are inherently latchup prone. The four-layer n-p-n-p structures formed from the parasitic pnp and npn transistors make up a silicon controlled rectifier. If properly biased, this rectifier may be triggered 'ON' by electrical transients, ionizing radiation, or a single heavy ion. This latchup phenomenon might lead to a loss of functionality or device burnout. Results are presented from tests on 19 different device types from six manufacturers which investigate their latchup sensitivity with argon and krypton beams. The parasitic npnp paths are identified in general, and a qualitative rationale is given for latchup susceptibility, along with a latchup cross section for each type of device. Also presented is the correlation between bit-flip sensitivity and latchup susceptibility.

  11. Integrated on-chip 0.35 μm BiCMOS current-mode DC-DC buck converter

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Soo; Kim, Nam-Soo; Gendensuren, Munkhsuld; Choi, Jae-Ho; Choi, Joong-Ho

    2012-12-01

    A current-mode DC-DC buck converter with a fully integrated power module is presented in this article. The converter is implemented using BiCMOS technology in amplifier and power MOSFET in a current sensor. The current sensor is realised by the power lateral double-diffused MOSFET with the aspect ratio much larger than that of a matched p-MOSFET. In addition, BiCMOS technology is applied in the error amplifier for an accurate current sensing and a fast transient response. The DC-DC converter is fabricated with 0.35 µm BiCMOS process. Experimental results show that the fully integrated converter operates at 1.3 MHz switching frequency with a supply voltage of 5 V. The output DC voltage is obtained as expected and the output ripple is controlled to be within 2% with a 30 µH off-chip inductor and 100 µF off-chip capacitor.

  12. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  13. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    NASA Astrophysics Data System (ADS)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  14. Fabrication and Electrical Characterization of Strained Si-on-insulator/Strained SiGe-on-insulator Dual Channel CMOS structures with High-Mobility Channels

    NASA Astrophysics Data System (ADS)

    Tezuka, Tsutomu; Nakaharai, Shu; Moriyama, Yoshihiko; Hirashita, Norio; Toyoda, Eiji; Sugiyama, Naoharu; Mizuno, Tomohisa; Takagi, Shinichi

    Mobility enhancement technologies by incorporating strain in MOSFETs have been recognized as key technologies for scaled CMOS devices. The most promising channel materials for n- and p-channel MOSFETs are tensily-strained Si and compressively-strained Ge (SiGe), respectively, from the viewpoint of their high mobility values. In this paper, dual channel CMOS structures with strained Si-on-insulator (strained-SOI)-nMOSFETs and strained SiGe-on-insulator (strained-SGOI)-pMOSFETs are demonstrated as well as their high channel mobility and current drive enhancements. Strained Si channels on a relaxed SGOI substrate and Ge-rich strained SGOI channels are located on the nMOS and pMOS regions of the same wafer, respectively. The dual channel structure was fabricated by a CMOS process combined with the Ge condensation process, in which the epitaxially grown SiGe layer on the SOI substrate was locally oxidized at high temperatures. As a result, significant electron- and hole-mobility enhancements for the strained SOI and SGOI channels were observed as well as the drain current enhancements. Based on the measured mobility for the nMOS and pMOS channels in the CMOS devices, CMOS performance enhancement of 30% was estimated.

  15. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications. PMID:20040430

  16. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  17. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  18. High-speed multicolour photometry with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Zhilyaev, B. E.; Reshetnyk, V. M.

    2012-11-01

    We present the results of testing the commercial digital camera Nikon D90 with a CMOS sensor for high-speed photometry with a small telescope Celestron 11'' at the Peak Terskol Observatory. CMOS sensor allows to perform photometry in 3 filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system of CMOS sensors is close to the Johnson BVR system. The results of testing show that one can carry out photometric measurements with CMOS cameras for stars with the V-magnitude up to ≃14^{m} with the precision of 0.01^{m}. Stars with the V-magnitude up to ˜10 can be shot at 24 frames per second in the video mode.

  19. Depleted CMOS pixels for LHC proton-proton experiments

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2016-07-01

    While so far monolithic pixel detectors have remained in the realm of comparatively low rate and radiation applications outside LHC, new developments exploiting high resistivity substrates with three or four well CMOS process options allow reasonably large depletion depths and full CMOS circuitry in a monolithic structure. This opens up the possibility to target CMOS pixel detectors also for high radiation pp-experiments at the LHC upgrade, either in a hybrid-type fashion or even fully monolithic. Several pixel matrices have been prototyped with high ohmic substrates, high voltage options, and full CMOS electronics. They were characterized in the lab and in test beams. An overview of the necessary development steps and different approaches as well as prototype results are presented in this paper.

  20. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  1. High resolution, high bandwidth global shutter CMOS area scan sensors

    NASA Astrophysics Data System (ADS)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  2. A new architecture of current-mode CMOS TDI Sensor

    NASA Astrophysics Data System (ADS)

    Ji, Cheng; Chen, Yongping

    2015-10-01

    Nowadays, CMOS sensors still suffer from the problem of low SNR, especially in the stage of low illumination and high relative scanning velocity. Lots of methods have been develop to overcome this problem. Among these researches, TDI (Time Delay Integration) architecture is a more natural choice, which is natively supported by CCD sensors. In this paper a new kind of proposed current-mode sensor is used to achieve TDI operation in analog domain. The circuit is composed of three main parts. At first, a current-type pixel is proposed, in which the active MOSFET is operated in the triode region to ensure the output current is linearly dependent on the gate voltage and avoid the reduction of threshold voltage in the traditional voltage mode pixels, such as 3T, 4T which use the source followers as its active part. Then a discrete double sampling (DDS) unit, which is operated in the form of currents is used to efficiently reduce the fixed pattern noise (FPN) and make the output is independent of reset voltage of pixels. For accumulation, an improved current mirror adder under controlled of timing circuits is proposed to overcome the problem of saturation suffered in voltage domain. Some main noise sources, especially come from analog sample and holds capacitors and switches is analyzed. Finally, simulation results with CSMC 0.5um technology and Cadence IC show that the proposed method is reasonable and efficient to improve the SNR.

  3. A hierarchical approach to test generation for CMOS VLSI circuits

    NASA Astrophysics Data System (ADS)

    Weening, Edward Christiaan

    A hierarchical approach to the automatic test pattern generation for large digital VLSI circuits, fabricated in CMOS technology, is developed and implemented. The use of information on the circuit's hierarchy, which is readily available from most modern CAD (Computer Aided Design) systems, speeds up the test generation process considerably and enhances the quality of the tests generated. The hierarchical test generation tool can also be integrated in future CAD systems making test generation and testability enhancement during circuit design feasible. The hierarchical approach is described at the switch, functional, and behavioral level. A test pattern generation algorithm at the switch level is presented. Test generation and fault simulation algorithms both using OBDD (Ordered Binary Decision Diagram) functional descriptions of the circuit modules are presented. A test plan generation method at the behavioral level is presented. Practical results show that the hierarchical approach to test generation is more efficient than a conventional, non-hierarchical approach, especially for switch level faults. The results also show that the use of Design For Testability (DFT) circuitry is supported at the behavioral level.

  4. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination.

    PubMed

    Rufino, Giancarlo; Grassi, Michele

    2009-01-01

    This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively. PMID:22408538

  5. Characteristics of CMOS Light Detectors at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Christian, James; Johnson, Erik; Stapels, Christopher; Linsay, Paul; Miskimen, Rory; Crabb, Donald; Augustine, Frank

    2008-10-01

    Advancing nuclear and high-energy physics often requires experiments conducted in harsh environments, such as a liquid helium bath and a superconducting magnet at several Tesla. These experiments need improved sensors that operate in these conditions. Improvements in detector technology used in extreme environments can improve the data quality and allow new designs for experiments that operate under these conditions. Solid-State Photomultipliers (SSPM), a device built from a monolithic array of photodiodes, can be used in these environments where traditional PMTs may not operate. Measurements of the diode properties at low temperatures down to 5 K are used to determine the potential of CMOS SSPMs in these environments. At temperatures below 60 K, extensive after pulsing is observed, which renders the Geiger photodiodes in the SSPM nonfunctional for biases above breakdown. In proportional mode operation, below the reverse bias breakdown, the photodiodes show a linear response to incident light with a relatively large gain and can be used at temperatures near 5 K.

  6. A CMOS Amperometric System for Multi-Neurotransmitter Detection.

    PubMed

    Massicotte, Genevieve; Carrara, Sandro; Di Micheli, Giovanni; Sawan, Mohamad

    2016-06-01

    In vivo multi-target and selective concentration monitoring of neurotransmitters can help to unravel the brain chemical complex signaling interplay. This paper presents a dedicated integrated potentiostat transducer circuit and its selective electrode interface. A custom 2-electrode time-based potentiostat circuit was fabricated with 0.13 μm CMOS technology and provides a wide dynamic input current range of 20 pA to 600 nA with 56 μ W, for a minimum sampling frequency of 1.25 kHz. A multi-working electrode chip is functionalized with carbon nanotubes (CNT)-based chemical coatings that offer high sensitivity and selectivity towards electroactive dopamine and non-electroactive glutamate. The prototype was experimentally tested with different concentrations levels of both neurotransmitter types, and results were similar to measurements with a commercially available potentiostat. This paper validates the functionality of the proposed biosensor, and demonstrates its potential for the selective detection of a large number of neurochemicals. PMID:26761882

  7. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    PubMed Central

    Rufino, Giancarlo; Grassi, Michele

    2009-01-01

    This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively. PMID:22408538

  8. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  9. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  10. CMOS front end electronics for the ATLAS muon detector

    SciTech Connect

    Huth, J.; Oliver, J.; Hazen, E.; Shank, J.

    1997-12-31

    An all-CMOS design for an integrated ASD (Amplifier-Shaper-Discriminator) chip for readout of the ATLAS Monitored Drift Tubes (MDTs) is presented. Eight channels of charge-sensitive preamp, two-stage pole/zero shaper, Wilkinson ADC and discriminator with programmable hysteresis are integrated on a single IC. Key elements have been prototyped in 1.2 and 0.5 micron CMOS operating at 5V and 3.3V respectively.

  11. A PEDA approach for monolithic photonic BiCMOS technologies

    NASA Astrophysics Data System (ADS)

    Simon, Stefan; Winzer, Georg; Roßmann, Helmut; Kroh, Marcel; Zimmermann, Lars; Mausolf, Thomas

    2015-06-01

    The paper describes a novel approach to photonic electronic design automation (PEDA) based on the commercial design suite Laytools for circuit and physical layout design and simulation. The goal of this work is the integration of an electronic-photonic design flow into an existing electronic design automation (EDA) tool. Contrary to other solutions, with this approach, it is possible to minimize the required interfaces to other third party tools. In addition to existing electronic device models, photonic components are described with behavioral models. The mask layout has been extended to the needs of the electronic photonic integrated circuit (ePIC) designer and the verification flow was adapted to the photonic structures.

  12. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    NASA Astrophysics Data System (ADS)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  13. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; Ackland, B.; Dickinson, A.; Eid, E.; Inglis, D.

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  14. Design and Integration of Discrete Components for Low Energy WDM Silicon Photonics on CMOS Systems

    NASA Astrophysics Data System (ADS)

    Zortman, William A.

    2011-12-01

    The historical and continuing exponential growth in processor capability continues to provide the parallel growth in supercomputer and datacenter capacity. Technological requirements to continue this growth include high speed interconnects to access memory and to link the thousands of chips in a large machine. This presentation describes a body of work in silicon photonic transmitter technology that provides the chip-to-chip optical interconnect bandwidth for future multiprocessors. The silicon photonic technology demonstrated is, to our knowledge, the lowest power and lowest voltage external optical modulator of any kind in the world. Compatibility with current and proposed low voltage signaling is demonstrated. Intimate integration with CMOS technology is obtained in monolithic and two dimensional integration schemes. Additionally, the high volume manufacturing impacts, on what heretofore had been only piece part demonstrations, is quantified. Finally, the prospect of geographically separated data center virtualization is supported with the demonstration and theory of the long haul capability of silicon photonic microdisk modulators.

  15. New interpretation of photonic yield processes (450-750nm) in multi-junction Si CMOS LEDs: simulation and analyses

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Bellotti, Enrico

    2010-02-01

    Emission levels in the 450-750nm range of about 80-100 fold higher than that emitted by single junction avalanche LEDs, has been obtained. CMOS Si LED p+-i-np+ structures were modeled in order to investigate the effect of various depletion layer profiles and defect engineering on the photonic transitions in the 1.4 to 2.8 eV, 450-750nnm regime. Modeling and device simulation results showed that by utilizing a short lowly doped layer in between a highly doped p+ layer and n layer can enhance the photonic yields by orders of magnitude through an increase in the dynamic carrier densities in the device and favoring enhanced lateral multiplication processes. The electric field profile should be of the order of 5 x 105 V.cm-1 and about 0.5 micron long. Injecting of carriers of opposite charge type from an opposing forward bias junction further enhance the photonic yield. These models and interpretations is confirmed by analyses of device designs as realized in 1.2 μm and 0.35 CMOS technology. The device design involved normal CMOS design and processing procedures with no excessive micro-dimensioning. The current devices operated in the 8-10V, 1uA - 2mA regime and yield emission intensities of up to 100 nW.μm-2. The current emission levels are about three orders higher than the low frequency detectability limit of Si CMOS p-n detectors of corresponding area. The particular design favors higher emission levels towards the 750nm wavelength region. This makes diverse electro-optical applications possible such as optical communication on chip, diverse optical signal processing and wave-guiding. It also enables realization of on chip Micro-Optical-Electro-Mechanical Sensors (MOEMS), which could lead to the development of so-called "smart chips" utilizing standard CMOS integrated circuitry.

  16. Compact CMOS Camera Demonstrator (C3D) for Ukube-1

    NASA Astrophysics Data System (ADS)

    Harriss, R. D.; Holland, A. D.; Barber, S. J.; Karout, S.; Burgon, R.; Dryer, B. J.; Murray, N. J.; Hall, D. J.; Smith, P. H.; Grieg, T.; Tutt, J. H.; Endicott, J.; Jerram, P.; Morris, D.; Robbins, M.; Prevost, V.; Holland, K.

    2011-09-01

    The Open University, in collaboration with e2v technologies and XCAM Ltd, have been selected to fly an EO (Earth Observation) technology demonstrator and in-orbit radiation damage characterisation instrument on board the UK Space Agency's UKube-1 pilot Cubesat programme. Cubesat payloads offer a unique opportunity to rapidly build and fly space hardware for minimal cost, providing easy access to the space environment. Based around the e2v 1.3 MPixel 0.18 micron process eye-on-Si CMOS devices, the instrument consists of a radiation characterisation imager as well as a narrow field imager (NFI) and a wide field imager (WFI). The narrow and wide field imagers are expected to achieve resolutions of 25 m and 350 m respectively from a 650 km orbit, providing sufficient swathe width to view the southern UK with the WFI and London with the NFI. The radiation characterisation experiment has been designed to verify and reinforce ground based testing that has been conducted on the e2v eye-on-Si family of devices and includes TEC temperature control circuitry as well as RADFET in-orbit dosimetry. Of particular interest are SEU and SEL effects. The novel instrument design allows for a wide range of capabilities within highly constrained mass, power and space budgets providing a model for future use on similarly constrained missions, such as planetary rovers. Scheduled for launch in December 2011, this 1 year low cost programme should not only provide valuable data and outreach opportunities but also help to prove flight heritage for future missions.

  17. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  18. On noise in time-delay integration CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Levski, Deyan; Choubey, Bhaskar

    2016-05-01

    Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classification of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classification of existing readout schemes include, pipelined charge transfer, buffered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in different readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classification of all major noise sources for all popular implementations in the literature.

  19. Characterization and comparison of lateral amorphous semiconductors with embedded Frisch grid detectors on 0.18μm CMOS processed substrate for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Hristovski, Christos; Goldan, Amir; Majid, Shaikh Hasibul; Wang, Kai; Shafique, Umar; Karim, Karim

    2011-03-01

    An indirect digital x-ray detector is designed, fabricated, and tested. The detector integrates a high speed, low noise CMOS substrate with two types of amorphous semiconductors on the circuit surface. Using a laterally oriented layout a-Si:H or a-Se can be used to coat the CMOS circuit and provide high speed photoresponse to complement the high speed circuits possible on CMOS technology. The circuit also aims to reduce the effect of slow carriers by integrated a Frisch style grid on the photoconductive layer to screen for the slow carriers. Simulations show a uniform photoresponse for photons absorbed on the top layer and an enhanced response when using a Frisch grid. EQE and noise results are presented. Finally, possible applications and improvements to the area of indirect x-ray imaging that are capable of easily being implemented on the substrate are suggested.

  20. Imaging study of positive and negative tone weak phase-shifted 65 nm node contacts

    NASA Astrophysics Data System (ADS)

    Beach, James V.; Petersen, John S.; Greenway, Robert T.; Maslow, Mark J.; MacDonald, Susan S.; Margolis, Lee H.; Hughes, Gregory P.

    2005-05-01

    CPL and aerial image mapping type contact designs for both negative and positive tones were created, built and tested for 100 nm and sub-100 nm contacts. Experimental results illustrated the need for electromagnetic-field corrections in the simulations. Resolution down to 80nm dense contacts were seen with both negative and positive resists with acceptable process windows though some process optimization is still required as unacceptable CD variation and a reentrant profile was observed. High MEEF requires strict CD control on the mask. Data volume for the isolated contact designs can also challenge the mask build.

  1. All-Digital Baseband 65nm PLL/FPLL Clock Multiplier using 10-cell Library

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  2. ALL-Digital Baseband 65nm PLL/FPLL Clock Multiplier Using 10-Cell Library

    NASA Technical Reports Server (NTRS)

    Schuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li; Madala, Shridhar

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  3. Memory technology survey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The current status of semiconductor, magnetic, and optical memory technologies is described. Projections based on these research activities planned for the shot term are presented. Conceptual designs of specific memory buffer pplications employing bipola, CMOS, GaAs, and Magnetic Bubble devices are discussed.

  4. High-performance monolithic CMOS detectors for space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Vignon, Bruno; Magnan, Pierre; Farre, Jean A.; Corbiere, Franck; Martin-Gonthier, Philippe

    2001-12-01

    During the last 10 years, research about CMOS image sensors (also called APS - Active Pixel Sensors) has been intensively carried out, in order to offer an alternative to CCDs as image sensors. This is particularly the case for space applications as CMOS image sensors feature characteristics which are obviously of interest for flight hardware: parallel or semi-parallel architecture, on chip control and processing electronics, low power dissipation, high level of radiation tolerance... Many image sensor companies, institutes and laboratories have demonstrated the compatibility of CMOS image sensors with consumer applications: micro-cameras, video-conferencing, digital- still cameras. And recent designs have shown that APS is getting closer to the CCD in terms of performance level. However, he large majority of the existing products do not offer the specific features which are required for many space applications. ASTRIUM and SUPAERO/CIMI have decided to work together in view of developing CMOS image sensors dedicated to space business. After a brief presentation of the team organization for space image sensor design and production, the latest results of a high performances 512 X 512 pixels CMOS device characterization are presented with emphasis on the achieved electro-optical performance. Finally, the on going and short-term coming activities of the team are discussed.

  5. All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers

    NASA Astrophysics Data System (ADS)

    Duong, Quoc-Hoang; Kim, Chang-Wan; Lee, Sang-Gug

    Two variable gain amplifiers (VGAs) that adopt new approximated exponential equations are proposed in this paper. The dB-linear range of the proposed VGAs is extended more than what the approximated exponential equations predict by a bias circuit technique that adopts negative feedback. The proposed VGAs feature wide gain variation, low-power, high linearity, wide control signal range, and small chip size. One of the proposed VGAs is fabricated in 0.18μm CMOS technology and measurements show a gain variation of 83dB (-36-47dB) with a gain error of less than ±2dB, and P1dB/IIP3 from -55/8 to -20/20.5dBm, while consuming an average current of 3.4mA from a 1.8V supply; the chip occupies 0.4mm2. The other VGA is simulated in 0.18μm CMOS technology and simulations show a gain variation of 91dB (-41-50dB), and P1dB/IIP3 from -50/-25 to -33/0dBm, while consuming an average current of 1.5mA from a 1.8V supply.

  6. CMOS array of photodiodes with electronic processing for 3D optical reconstruction

    NASA Astrophysics Data System (ADS)

    Hornero, Gemma; Montane, Enric; Chapinal, Genis; Moreno, Mauricio; Herms, Atila

    2001-04-01

    It is well known that laser time-of-flight (TOF) and optical triangulation are the most useful optical techniques for distance measurements. The first one is more suitable for large distances, since for short range of distances high modulation frequencies of laser diodes (©200-500MHz) are needed. For these ranges, optical triangulation is simpler, as it is only necessary to read the projection of the laser point over a linear optical sensor without any laser modulation. Laser triangulation is based on the rotation of the object. This motion shifts the projected point over the linear sensor, resulting on 3D information, by means of the whole readout of the linear sensor in each angle position. On the other hand, a hybrid method of triangulation and TOF can be implemented. In this case, a synchronized scanning of a laser beam over the object results in different arrival times of light to each pixel. The 3D information is carried by these delays. Only a single readout of the linear sensor is needed. In this work we present the design of two different linear arrays of photodiodes in CMOS technology, the first one based on the Optical triangulation measurement and the second one based in this hybrid method (TFO). In contrast to PSD (Position Sensitive Device) and CCDs, CMOS technology can include, on the same chip, photodiodes, control and processing electronics, that in the other cases should be implemented with external microcontrollers.

  7. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  8. Towards a 10 μs, thin and high resolution pixelated CMOS sensor system for future vertex detectors

    NASA Astrophysics Data System (ADS)

    De Masi, R.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Degerli, Y.; Deveaux, M.; Dorokhov, A.; Doziére, G.; Dulinski, W.; Gelin, M.; Goffe, M.; Fontaine, J. C.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Voutsinas, G.; Wagner, F. M.; Winter, M.

    2011-02-01

    The physics goals of many high energy experiments require a precise determination of decay vertices, imposing severe constraints on vertex detectors (readout speed, granularity, material budget,…). The IPHC-IRFU collaboration developed a sensor architecture to comply with these requirements. The first full scale CMOS sensor was realised and equips the reference planes of the EUDET beam telescope. Its architecture is being adapted to the needs of the STAR (RHIC) and CBM (FAIR) experiments. It is a promising candidate for the ILC experiments and the ALICE detector upgrade (LHC). A substantial improvement to the CMOS sensor performances, especially in terms of radiation hardness, should come from a new fabrication technology with depleted sensitive volume. A prototype sensor was fabricated to explore the benefits of the technology. The crucial system integration issue is also currently being addressed. In 2009 the PLUME collaboration was set up to investigate the feasibility and performances of a light double sided ladder equipped with CMOS sensors, aimed primarily for the ILC vertex detector but also of interest for other applications such as the CBM vertex detector.

  9. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  10. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  11. Novel CMOS time-delay integration using single-photon counting for high-speed industrial and aerospace applications

    NASA Astrophysics Data System (ADS)

    El-Desouki, Munir M.; Al-Azem, Badeea

    2014-03-01

    Time-delay integration (TDI) is a popular imaging technique that is used in many applications such as machine vision, dental scanning and satellite earth observation. One of the main advantages of using TDI imagers is the increased effective integration time that is achieved while maintaining high frame-rates. Another use for TDI imagers is with moving objects, such as the earth's surface or industrial machine vision applications, where integration time is limited in order to avoid motion blurs. Such technique may even find its way in mobile and consumer based imaging applications where the reduction in pixel size can limit the performance during low-light and high speed applications. Until recently, TDI was only used with charge-coupled devices (CCDs) mainly due to their charge transfer characteristics. CCDs however, are power consuming and slow when compared to CMOS technology and are no longer favorable for mobile applications. In this work, we report on novel single-photon counting based TDI technique that is implemented in standard CMOS technology allowing for complete camera-on-a-chip solution. The imager was fabricated in a standard CMOS 150 nm 5-metal digital process from LFoundry.

  12. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  13. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array.

    PubMed

    Rock, William; Bonn, Mischa; Parekh, Sapun H

    2013-07-01

    We demonstrate near shot-noise limited hyperspectral stimulated Raman scattering (SRS) spectroscopy using oscillator-only excitation conditions. Using a fast CMOS camera synchronized to an acousto-optic modulator and subtracting subsequent frames acquired at up to 1 MHz frame rates, we demonstrate demodulation and recovery of the SRS spectrum. Surprisingly, we observe that the signal-to-noise of SRS spectra is invariant at modulation frequencies down to 2.5 kHz. Our approach allows for a direct comparison of SRS with coherent anti-Stokes Raman scattering (CARS) spectroscopy under identical experimental conditions. Our findings suggest that hyperspectral SRS imaging with shot-noise limited performance at biologically compatible excitation energies is feasible after minor modifications to fast frame-rate CMOS array technology. PMID:23842298

  14. Application of Adaptive Neuro Fuzzy Inference System (ANFIS) In Implementing of New CMOS Fuzzy Logic Controller (FLC) Chip

    NASA Astrophysics Data System (ADS)

    Aminifar, S.; Yosefi, Gh.

    2007-09-01

    In this paper, we present away of using Anfis architecture to implement a new fuzzy logic controller chip. Anfis which tunes the fuzzy inference system with a backpropagation algorithm based on collection of input-output data makes fuzzy system to learn. This training is given from a standard response of the system and membership functions are suitably modified. For adaptive Anfis based fuzzy controller and its circuit design, we propose new circuits for implementing each controller block, and illustrate the test results and control surface of Anfis controller along with CMOS fuzzy logic controller using Matlab and Hspice software respectively. For implementing controller according to the Anfis training, we proposed new and improved integrated circuits which consist of Fuzzifier, Min operator and Multiplier/Divider. The control surfaces of controller are obtained by using Anfis training and simulation results of integrated circuits in less than 0.075 mm2 area in 0.35 μm CMOS standard technology.

  15. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  16. A 75 ps rms time resolution BiCMOS time to digital converter optimized for high rate imaging detectors

    NASA Astrophysics Data System (ADS)

    Hervé, C.; Torki, K.

    2002-04-01

    This paper presents an integrated time to digital converter (TDC) with a bin size adjustable in the range of 125 to 175 ps and a differential nonlinearity of ±0.3%. The TDC has four channels. Its architecture has been optimized for the readout of imaging detectors in use at Synchrotron Radiation facilities. In particular, a built-in logic flags piled-up events. Multi-hit patterns are also supported for other applications. Time measurements are extracted off chip at the maximum throughput of 40 MHz. The dynamic range is 14 bits. It has been fabricated in 0.8 μm BiCMOS technology. Time critical inputs are PECL compatible whereas other signals are CMOS compatible. A second application specific integrated circuit (ASIC) has been developed which translates NIM electrical levels to PECL ones. Both circuits are used to assemble board level TDCs complying with industry standards like VME, NIM and PCI.

  17. Design of CMOS logic gates for TID radiation

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere; Sasabo, Maria L.

    1993-01-01

    The rise time, fall time and propagation delay of the logic gates were derived. The effects of total ionizing dose (TID) radiation on the fall and rise times of CMOS logic gates were obtained using C program calculations and PSPICE simulations. The variations of mobility and threshold voltage on MOSFET transistors when subjected to TID radiation were used to determine the dependence of switching times on TID. The results of this work indicate that by increasing the size of P-channel transistor with respect to the N-channel transistors of the CMOS gates, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in TID radiation.

  18. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  19. Fabrication of the planar angular rotator using the CMOS process

    NASA Astrophysics Data System (ADS)

    Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen

    2002-05-01

    In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.

  20. 77 FR 26787 - Certain CMOS Image Sensors and Products Containing Same; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... COMMISSION Certain CMOS Image Sensors and Products Containing Same; Notice of Receipt of Complaint... complaint entitled Certain CMOS Image Sensors and Products Containing Same, DN 2895; the Commission is... importation of certain CMOS image sensors and products containing same. The complaint names as...

  1. Spectrometer with CMOS demodulation of fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Christiansen, Martin Brokner

    A CMOS imager based spectrometer is developed to interrogate a network containing a large number of Bragg grating sensors. The spectrometer uses a Prism-Grating- Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the spot can be determined by finding the center of the spot produced. The use of a randomly addressable CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a low sampling rate. However, the use of a CMOS imager leads to several unique problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, a long pixel time constant, and software issues. The expected capabilities of the CMOS imager based spectrometer are determined with a theoretical model. The theoretical model tests three algorithms for determining the center of the spot: single row centroid, single row parabolic fit, and entire spot centroid. The theoretical results are compared to laboratory test data and field test data. The CMOS based spectrometer is capable of interrogating many optical fibers, and in the configuration tested, the fiber bundle consisted of 23 fibers. Using this system, a single fiber can be interrogated from 778 nm to 852 nm at 2100 Hz or multiple fibers can be interrogated over the same wavelength so that the total number of fiber interrogations is up to 2100 per second. The reflected Bragg wavelength can be determined within +/-3pm, corresponding to a +/-3μɛ uncertainty.

  2. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    PubMed Central

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  3. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-07-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<‑9 dB) with excellent transmission efficiency (averagely ‑1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology.

  4. Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, A.; Iriarte, G. F.; Hernando-Garcia, J.; Calle, F.

    2015-02-01

    A post-complementary metal oxide semiconductor (CMOS) compatible microfabrication process of piezoelectric cantilevers has been developed. The fabrication process is suitable for standard silicon technology and provides low-cost and high-throughput manufacturing. This work reports design, fabrication and characterization of piezoelectric cantilevers based on aluminum nitride (AlN) thin films synthesized at room temperature. The proposed microcantilever system is a sandwich structure composed of chromium (Cr) electrodes and a sputtered AlN film. The key issue for cantilever fabrication is the growth at room temperature of the AlN layer by reactive sputtering, making possible the innovative compatibility of piezoelectric MEMS devices with CMOS circuits already processed. AlN and Cr have been etched by inductively coupled plasma (ICP) dry etching using a BCl3-Cl2-Ar plasma chemistry. As part of the novelty of the post-CMOS micromachining process presented here, a silicon Si (1 0 0) wafer has been used as substrate as well as the sacrificial layer used to release the microcantilevers. In order to achieve this, the Si surface underneath the structure has been wet etched using an HNA (hydrofluoric acid + nitric acid + acetic acid) based solution. X-ray diffraction (XRD) characterization indicated the high crystalline quality of the AlN film. An atomic force microscope (AFM) has been used to determine the Cr electrode surface roughness. The morphology of the fabricated devices has been studied by scanning electron microscope (SEM). The cantilevers have been piezoelectrically actuated and their out-of-plane vibration modes were detected by vibrometry.

  5. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  6. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  7. Design, Characterization and Analysis of a 0.35 μm CMOS SPAD

    PubMed Central

    Jradi, Khalil; Pellion, Denis; Ginhac, Dominique

    2014-01-01

    Most of the works about single-photon detectors rely on Single Photon Avalanche Diodes (SPADs) designed with dedicated technological processes in order to achieve single-photon sensitivity and excellent timing resolution. Instead, this paper focuses on the implementation of high-performance SPADs detectors manufactured in a standard 0.35-micron opto-CMOS technology provided by AMS. We propose a series of low-noise SPADs designed with a variable pitch from 20 μm down to 5 μm. This opens the further way to the integration of large arrays of optimized SPAD pixels with pitch of a few micrometers in order to provide high-resolution single-photon imagers. We experimentally demonstrate that a 20-micron SPAD appears as the most relevant detector in terms of Signal-to-Noise ratio, enabling emergence of large arrays of SPAD. PMID:25470491

  8. Integrating conjugated polymer microactuators with CMOS sensing circuitry for studying living cells

    NASA Astrophysics Data System (ADS)

    Urdaneta, Mario; Liu, Yingkai; Christophersen, Marc; Prakash, Somashekar; Abshire, Pamela; Smela, Elisabeth

    2005-05-01

    We present the use of electroactive polymer actuators as components of a biolab-on-a-chip, which has potential applications in cell-based sensing. This technology takes full advantage of the properties of polypyrrole actuators as well as the wide range of CMOS sensors that can be created. System integration becomes an important issue when developing real applications of EAP technologies. The requirements of the application and the constraints imposed by the various components must be considered in the context of the whole system, along with any opportunities that present themselves. In this paper, we discuss some of these challenges, including actuator design, the use of complementary actuation techniques, miniaturization, and packaging.

  9. A low-power CMOS WIA-PA transceiver with a high sensitivity GFSK demodulator

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Yu, Jiang; Shengyou, Liu; Guiliang, Guo; Yuepeng, Yan

    2015-06-01

    This paper presents a low power, high sensitivity Gaussian frequency shift keying (GFSK) demodulator with a flexible frequency offset canceling method for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The receiver uses a low-IF (1.5 MHz) architecture, and the transmitter uses a sigma delta PLL based modulation with Gaussian low-pass filter for low power consumption. The active area of the demodulator is 0.14 mm2. Measurement results show that the proposed demodulator operates without harmonic distortion, deals with ± 180 kHz frequency offset, needs SNR only 18.5 dB at 0.1% bit-error rate (BER), and consumes no more than 0.26 mA from a 1.8 V power supply. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  10. Evaluation of Mo-doped Ti salicide process for sub-0.18-μm CMOS

    NASA Astrophysics Data System (ADS)

    Chao, Chih-Ping; Kittl, Jorge A.; Hong, Qi-Zhong; Shiau, Wei-Tsun; Rodder, Mark; Chen, Ih-Chin

    1998-09-01

    For scaled CMOS technology with gate length down to sub-0.25 micrometer, the conventional Ti salicide suffers from high polygate sheet resistance (Rsheet) due to difficulty in the low resistivity C54 TiSi2 phase transition. To improve the sub 0.25 micrometer TiSi2 Rsheet, pre-amorphization implant (PAI) was added to achieve low Rsheet down to approximately 0.1 micrometer gate length, and PAI based TiSi2 has been the base-line salicide process for current 0.25 micrometer CMOS technology. However, various studies on sub 0.18 micrometer devices have shown that PAI process tends to induce additional S/D dopant diffusion and results in the series resistance (RSD) increase and drive current degradation, especially for pMOS transistors. On the other hand, Mo implant was found effective in enhancing the C54 TiSi2 formation for narrow lines and has the potential to realize a simplified TiSi2 process with one single thermal step. However, the Mo based Ti salicide is still relatively new to date, and a complete CMOS study is helpful in identifying the trade-offs for such a process. In this work, we present a detailed CMOS evaluation of Mo doped TiSi2 process. Two different Mo based processes are studied: (1) Mo implant into gate before gate pattern (Mo-A case). In this case, the source/drain (S/D) diffusion regions have minimal Mo doping. (2) Mo implant into gate and S/D regions right before the S/D anneal (Mo-B case). For both Mo-A and Mo-B processes, we also studied the effect of Mo doses and the difference between the conventional 2-step rapid thermal process (RTP), low-temperature formation plus Ti strip plus high-temperature anneal, and the 1-step RTP process, namely low-T formation plus Ti stripe, where the high-T anneal is skipped. The results of the Mo processes are compared with three other reference salicide processes: conventional TiSi2 without PAI (Conv.), TiSi2 with Ge or As PAI and the emerging CoSi2 technology. The following CMOS care-abouts are evaluated for

  11. Lithography with infrared illumination alignment for advanced BiCMOS backside processing

    NASA Astrophysics Data System (ADS)

    Kulse, P.; Schulz, K.; Behrendt, U.; Wietstruck, M.; Kaynak, M.; Marschmeyer, S.; Tillack, B.

    2014-10-01

    Driven by new applications such as BiCMOS embedded RF-MEMS, high-Q passives, Si-based microfluidics for bio sensing and InP-Si BiCMOS heterointegration [1-4], accurate alignment between back and front side is highly desired. In this paper, we present an advanced back to front side alignment technique and implementation of it into the back side processing module of IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS technology. Using the Nikon i-line Stepper NSR-SF150, a new infrared alignment system has been introduced. The developed technique enables a high resolution and accurate lithography on the back side of the BiCMOS-processed Si wafers for additional backside processing, such as backside routing metallization. In comparison to previous work [5] with overlay values of 500 nm and the requirement of two-step lithography, the new approach provides significant improvement in the overlay accuracy with overlay values of 200 nm and a significant increase of the fabrication throughput by eliminating the need of the two-step lithography. The new non-contact alignment procedure allows a direct back to front side alignment using any front side alignment mark (Fig. 2), which generated a signal by reflecting the IR light beam. Followed by a measurement of the misalignment between both front to back side overlay marks (Fig. 3) using EVG®NT40 automated measurement system, a final lithography process with wafer interfield corrections is applied to obtain a minimum overlay of 200 nm. For the specific application of deep Si etching using Bosch process, the etch profile angle deviation across the wafer (tilting) has to be considered as well. From experimental data, an etch profile angle deviation of 8 μm across the wafer has been measured (Fig. 7). The overlay error caused by tilting was corrected by optimization and adjustment of the stepper offset parameters. All measurements of back to front side misalignment were performed with the EVG®40NT automated measurement system

  12. A 15-bit incremental sigma-delta ADC for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Li, Zhengfen; Zhong, Shengyou; Zou, Mei; Yao, Libin

    2015-04-01

    An incremental sigma-delta ADC is designed for column-parallel ADC array in CMOS image sensor. Sigma-delta modulator with single-loop single-bit structure is chosen for power consumption and performance reasons. Second-order modulator is used to reduce conversion time, without stability problem and large area accompanied by higher order sigma-delta modulator. The asymmetric current mirror amplifier used in integrator reduces more than 30% power dissipation. The digital filter and decimator are implemented by counters and adders with significantly reduced chip area and power consumption. A Clock generator is shared by 8 ADCs for trade-off among power, area and clock loading. The ADC array is implemented in a 0.18-μm CMOS technology and clocked at 10 MHz, and the simulated resolution achieves 15-bit with 255 clock cycles. The average power consumption per ADC is 118 μW including clock generator, and the area is only 0.0053 μm2.

  13. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology. PMID:23938507

  14. An Integrated CMOS Front-End Receiver with a Frequency Tripler for V-Band Applications

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hung; Chen, Min-Chiao; Ko, Chun-Lin; Wu, Chung-Yu

    A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20GHz. The fabricated receiver has a maximum conversion gain of 19.4dB, a minimum single-side band noise figure of 10.2dB, the input-referred 1-dB compression point of -20dBm and the input third order inter-modulation intercept point of -8.3dB. It draws only 15.8mA from a 1.2-V power supply with a total chip area of 0.794mm × 0.794mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.

  15. A robust color signal processing with wide dynamic range WRGB CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2011-01-01

    We have developed a robust color reproduction methodology by a simple calculation with a new color matrix using the formerly developed wide dynamic range WRGB lateral overflow integration capacitor (LOFIC) CMOS image sensor. The image sensor was fabricated through a 0.18 μm CMOS technology and has a 45 degrees oblique pixel array, the 4.2 μm effective pixel pitch and the W pixels. A W pixel was formed by replacing one of the two G pixels in the Bayer RGB color filter. The W pixel has a high sensitivity through the visible light waveband. An emerald green and yellow (EGY) signal is generated from the difference between the W signal and the sum of RGB signals. This EGY signal mainly includes emerald green and yellow lights. These colors are difficult to be reproduced accurately by the conventional simple linear matrix because their wave lengths are in the valleys of the spectral sensitivity characteristics of the RGB pixels. A new linear matrix based on the EGY-RGB signal was developed. Using this simple matrix, a highly accurate color processing with a large margin to the sensitivity fluctuation and noise has been achieved.

  16. Full colour RGB OLEDs on CMOS for active-matrix OLED microdisplays

    NASA Astrophysics Data System (ADS)

    Kreye, D.; Toerker, M.; Vogel, U.; Amelung, J.

    2006-08-01

    Microdisplays are used in various optical devices such as headsets, viewfinders and helmet-mounted displays. The use of organic light emitting diodes (OLEDs) in a microdisplay on silicone substrate provides the opportunity of lower power consumption and higher optical performance compared to other near-to-eye display technologies. Highly efficient, low-voltage, top emitting OLEDs are well suitable for the integration into a CMOSprocess. By reducing the operating voltage for the OLEDs below 5V, the costs for the CMOS process can be reduced significantly, because a standard process without high-voltage option can be used. Various OLED stacks on silicone substrate are presented, suitable for full colour (RGB) applications. Red and green emitting phosphorescent OLEDs and blue emitting fluorescent OLEDs all with doped charge transport layers were prepared on a two metal layer CMOS test substrate without active transistor area. Afterwards, the different test displays were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.)

  17. Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras

    PubMed Central

    Wang, Jing; Smith, Richard J.; Light, Roger A.; Richens, Joanna L.; Zhang, Jing; O’Shea, Paul; See, Chung; Somekh, Michael G.

    2014-01-01

    Phase sensitive Surface Plasmon Resonance (SPR) techniques are a popular means of characterizing biomolecular interactions. However, limitations due to the narrow dynamic range and difficulty in adapting the method for multi-point sensing have restricted its range of applications. This paper presents a compact phase sensitive SPR technology using a custom CMOS camera. The system is exceptionally versatile enabling one to trade dynamic range for sensitivity without altering the optical system. We present results showing sensitivity over the array of better than 10−6 Refractive Index Units (RIU) over a refractive index range of 2×10−2 RIU, with peak sensitivity of 3×10−7 RIU at the center of this range. We also explain how simply altering the settings of polarization components can give sensitivity on the order of 10−8 RIU albeit at the cost of lower dynamic range. The consistent response of the custom CMOS camera in the system also allowed us to demonstrate precise quantitative detection of two Fibrinogen antibody–protein binding sites. Moreover, we use the system to determine reaction kinetics and argue how the multipoint detection gives useful insight into the molecular binding mechanisms. PMID:24632461

  18. CMOS-MEMS Test-Key for Extracting Wafer-Level Mechanical Properties

    PubMed Central

    Chuang, Wan-Chun; Hu, Yuh-Chung; Chang, Pei-Zen

    2012-01-01

    This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young’s modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler’s beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young’s modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 μm standard CMOS process, and the experimental results refer to Osterberg’s work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive. PMID:23235449

  19. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE PAGESBeta

    Gao, X.; Mamaluy, D.; Cyr, E. C.; Marinella, M. J.

    2016-05-10

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  20. A reliable ground bounce noise reduction technique for nanoscale CMOS circuits

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Pattanaik, Manisha

    2015-11-01

    Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.

  1. 12-inch-wafer-scale CMOS active-pixel sensor for digital mammography

    NASA Astrophysics Data System (ADS)

    Heo, Sung Kyn; Kosonen, Jari; Hwang, Sung Ha; Kim, Tae Woo; Yun, Seungman; Kim, Ho Kyung

    2011-03-01

    This paper describes the development of an active-pixel sensor (APS) panel, which has a field-of-view of 23.1×17.1 cm and features 70-μm-sized pixels arranged in a 3300×2442 array format, for digital mammographic applications. The APS panel was realized on 12-inch wafers based on the standard complementary metal-oxide-semiconductor (CMOS) technology without physical tiling processes of several small-area sensor arrays. Electrical performance of the developed panel is described in terms of dark current, full-well capacity and leakage current map. For mammographic imaging, the optimized CsI:Tl scintillator is experimentally determined by being combined with the developed panel and analyzing im aging characteristics, such as modulation-transfer function, noise-power spectrum, detective quantum efficiency, image l ag, and contrast-detail analysis by using the CDMAM 3.4 phantom. With these results, we suggest that the developed CMOS-based detector can be used for conventional and advanced digital mammographic applications.

  2. A novel Bayer-like WRGB color filter array for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Honda, Hiroto; Iida, Yoshinori; Itoh, Go; Egawa, Yoshitaka; Seki, Hiromichi

    2007-02-01

    We have developed a CMOS image sensor with a novel color filter array(CFA) where one of the green pixels of the Bayer pattern was replaced with a white pixel. A transparent layer has been fabricated on the white pixel instead of a color filter to realize over 95% transmission for visible light with wavelengths of 400-700 nm. Pixel pitch of the device was 3.3 um and the number of pixels was 2 million (1600H x 1200V). The novel Bayer-like WRGB (White-Red-Green-Blue) CFA realized higher signal-to-noise ratios of interpolated R, G, and B values in low illumination (3lux) by 6dB, 1dB, and 6dB, respectively, compared with those of the Bayer pattern, with the low-noise pre-digital signal process. Furthermore, there was no degradation of either resolution or color representation for the interpolated image. This new CFA has a great potential to significantly increase the sensitivity of CMOS/CCD image sensors with digital signal processing technology.

  3. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  4. High dynamic range CMOS image sensor with pixel level ADC and in-situ image enhancement

    NASA Astrophysics Data System (ADS)

    Harton, Austin V.; Ahmed, Mohamed I.; Beuhler, Allyson; Castro, Francisco; Dawson, Linda M.; Herold, Barry W.; Kujawa, Gregory; Lee, King F.; Mareachen, Russell D.; Scaminaci, Tony J.

    2005-03-01

    We describe a CMOS image sensor with pixel level analog to digital conversion (ADC) having high dynamic range (>100db) and the capability of performing many image processing functions at the pixel level during image capture. The sensor has a 102x98 pixel array and is implemented in a 0.18um CMOS process technology. Each pixel is 15.5um x15.5um with 15% fill factor and is comprised of a comparator, two 10 bit memory registers and control logic. A digital to analog converter and system processor are located off-chip. The photodetector produces a photocurrent yielding a photo-voltage proportional to the impinging light intensity. Once the photo-voltage is less than a predetermined global reference voltage; a global code value is latched into the pixel data buffer. This process prevents voltage saturation resulting in high dynamic range imaging. Upon completion of image capture, a digital representation of the image exists at the pixel array, thereby, allowing image data to be accessed in a parallel fashion from the focal plane array. It is demonstrated that by appropriate variation of the global reference voltage with time, it is possible to perform, during image capture, thresholding and image enhancement operations, such as, contrast stretching in a parallel manner.

  5. 10000 pixels wide CMOS frame imager for earth observation from a HALE UAV

    NASA Astrophysics Data System (ADS)

    Delauré, B.; Livens, S.; Everaerts, J.; Kleihorst, R.; Schippers, Gert; de Wit, Yannick; Compiet, John; Banachowicz, Bartosz

    2009-09-01

    MEDUSA is the lightweight high resolution camera, designed to be operated from a solar-powered Unmanned Aerial Vehicle (UAV) flying at stratospheric altitudes. The instrument is a technology demonstrator within the Pegasus program and targets applications such as crisis management and cartography. A special wide swath CMOS imager has been developed by Cypress Semiconductor Cooperation Belgium to meet the specific sensor requirements of MEDUSA. The CMOS sensor has a stitched design comprising a panchromatic and color sensor on the same die. Each sensor consists of 10000*1200 square pixels (5.5μm size, novel 6T architecture) with micro-lenses. The exposure is performed by means of a high efficiency snapshot shutter. The sensor is able to operate at a rate of 30fps in full frame readout. Due to a novel pixel design, the sensor has low dark leakage of the memory elements (PSNL) and low parasitic light sensitivity (PLS). Still it maintains a relative high QE (Quantum efficiency) and a FF (fill factor) of over 65%. It features an MTF (Modulation Transfer Function) higher than 60% at Nyquist frequency in both X and Y directions The measured optical/electrical crosstalk (expressed as MTF) of this 5.5um pixel is state-of-the art. These properties makes it possible to acquire sharp images also in low-light conditions.

  6. A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE

    NASA Astrophysics Data System (ADS)

    Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao

    2016-05-01

    A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source–gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate–source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base–emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from ‑40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is ‑31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).

  7. Low light level CMOS sensor for night vision systems

    NASA Astrophysics Data System (ADS)

    Gross, Elad; Ginat, Ran; Nesher, Ofer

    2015-05-01

    For many years image intensifier tubes were used for night vision systems. In 2014, Elbit systems developed a digital low-light level CMOS sensor, with similar sensitivity to a Gen II image-intensifiers, down to starlight conditions. In this work we describe: the basic principle behind this sensor, physical model for low-light performance estimation and results of field testing.

  8. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  9. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-01

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications. PMID:23900281

  10. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  11. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.

    PubMed

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  12. Upper-Bound Estimates Of SEU in CMOS

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1990-01-01

    Theory of single-event upsets (SEU) (changes in logic state caused by energetic charged subatomic particles) in complementary metal oxide/semiconductor (CMOS) logic devices extended to provide upper-bound estimates of rates of SEU when limited experimental information available and configuration and dimensions of SEU-sensitive regions of devices unknown. Based partly on chord-length-distribution method.

  13. An SEU-hardened CMOS data latch design

    SciTech Connect

    Rockett, L.R. Jr.

    1988-12-01

    A Single Event Upset (SEU)-hardened Complementary Metal-Oxide Semiconductor (CMOS) data latch design is described. The hardness is achieved by virtue of the latch design, thus no fabrication process or design groundrule development is required. Hardness is gained with comparatively little adverse impact on performance. Cyclotron tests provided hardness verification.

  14. CMOS VLSI Layout and Verification of a SIMD Computer

    NASA Technical Reports Server (NTRS)

    Zheng, Jianqing

    1996-01-01

    A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.

  15. Attributes and drawbacks of submicron CMOS for IR FPA readouts

    NASA Astrophysics Data System (ADS)

    Kozlowski, L. J.

    1998-09-01

    The availability of submicron CMOS has enabled the development of shingle-chip IR cameras having performance capabilities and on-chip functions which were previously impossible. Sensor designers are, however, encoutering and overcoming several challanges including steadily decreasing operating voltage.

  16. Relationship between IBICC imaging and SEU in CMOS ICs

    SciTech Connect

    Sexton, F.W.; Horn, K.M.; Doyle, B.L.; Laird, J.S.; Cholewa, M.; Saint, A.; Legge, G.J.F.

    1993-03-01

    Ion-beam-induced charge-collection (IBICC) images of the TA670 16K-bit CMOS SRAM are analyzed and compared to previous SEU images. Enhanced charge collection was observed in the n-source/drains regions consistent with bipolar amplification or shunting.

  17. Relationship between IBICC imaging and SEU in CMOS ICs

    SciTech Connect

    Sexton, F.W.; Horn, K.M.; Doyle, B.L. ); Laird, J.S.; Cholewa, M.; Saint, A.; Legge, G.J.F. )

    1993-01-01

    Ion-beam-induced charge-collection (IBICC) images of the TA670 16K-bit CMOS SRAM are analyzed and compared to previous SEU images. Enhanced charge collection was observed in the n-source/drains regions consistent with bipolar amplification or shunting.

  18. Reliability design of CMOS image sensor for space applications

    NASA Astrophysics Data System (ADS)

    Xie, Ning; Chen, Shijun; Chen, Yongping

    2013-08-01

    In space applications, sensors work in very harsh space environment. Thus the reliability design must be carefully considered. This paper addresses the techniques which effectively increase the reliability of CMOS image sensors. A radiation tolerant pixel design which is implemented in a sun tracker sensor is presented. Measurement results of total dose radiation, SEL, SEU, etc prove the radiation immunity of the sensor.

  19. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  20. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.