Science.gov

Sample records for 6d cooling channel

  1. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  2. Circularly Inclined Solenoid Channel for 6D Ionization Cooling of Muons

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2009-05-01

    Ionization cooling is essential for realization of Muon Collider, muons beam based neutrino factories and other experiments involving muons. The simplest structure - absorber(s) immersed in alternating solenoidal magnetic field - provides only transverse cooling since the longitudinal motion in the most suitable momentum range (2-300MeV/c) is naturally anti-damped. To overcome this difficulty it is proposed to periodically tilt solenoids so that a rotating transverse magnetic field was created. By choosing the phase advance per period above a multiple of 2{pi} it is possible to ensure that muons with higher momentum make a longer path in the absorber (whether distributed or localized) thus providing longitudinal damping. Basic theory of such channel and results of tracking simulations are presented.

  3. Helical FOFO Snake for 6D Ionization Cooling of Muons

    SciTech Connect

    Alexahin, Y.

    2010-03-30

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside the solenoids and RF cavities between them. An important feature of such a channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented which show that a 200 MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  4. Helical FOFO snake for 6D ionization cooling of muons

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2009-10-01

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside solenoids and RF cavities between them. Important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4Beamline are presented which show that 200MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  5. MANX, A 6-D Muon Cooling Demonstration Experiment

    SciTech Connect

    Roberts,Thomas; Alsharo'a, Mohammad; Hanlet, Pierrick M; Johnson, Rolland P; Kuchnir, Moyses; Paul, Kevin; Ankenbrandt, Charles; Moretti, Alfred; Popovic, Milorad; Yarba, Victor; Kaplan, Daniel; Yonehara, Katsuya

    2005-04-01

    Most ionization cooling schemes now under consideration are based on using many large flasks of liquid hydrogen energy absorber. One important example is the proposed Muon Ionization Cooling Experiment (MICE), which has recently been approved to run at the Rutherford Appleton Laboratory (RAL). In the work reported here, a potential muon cooling demonstration experiment based on a continuous liquid energy absorber in a helical cooling channel (HCC) is discussed. The original HCC used a gaseous energy absorber for the engineering advantage of combining the energy absorption and RF energy regeneration in hydrogen-filled RF cavities. In the Muon And Neutrino eXperiment (MANX) that is proposed here, a liquid-filled HCC is used without RF energy regeneration to achieve the largest possible cooling rate in six dimensions. In this case, the magnetic fields of the HCC must diminish as the muons lose momentum as they pass through the liquid energy absorber. The length of the MANX device is determined by the maximum momentum of the muon test beam and the maximum practical field that can be sustained at the magnet coils. We have studied a 3 meter-long HCC example that could be inserted between the MICE spectrometers at RAL.

  6. Integrating the MANX 6-D Muon Cooling Experiment with the MICE Spectrometers

    SciTech Connect

    Kahn, S.A.; Abrams, R.J.; Ankenbrandt, C.; Cummings, M.A.C.; Johnson, R.P.; Roberts, T.; Yonehara, K.; /Fermilab

    2009-05-01

    The MANX experiment is to demonstrate the reduction of 6D muon phase space emittance using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a short two-period long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being setup at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. This paper shall consider the various approaches to integrate MANX into the RAL hall using the MICE spectrometers. This study shall discuss the matching schemes used to minimize losses and prevent emittance growth between the MICE spectrometers and the MANX HCC. Also the placement of additional detection planes in the matching region and the HCC to improve the resolution will be examined.

  7. Applications of an MPI Enhanced Simulated Annealing Algorithm on nuSTORM and 6D Muon Cooling

    SciTech Connect

    Liu, A.

    2015-06-01

    The nuSTORM decay ring is a compact racetrack storage ring with a circumference ~480 m using large aperture ($\\phi$ = 60 cm) magnets. The design goal of the ring is to achieve a momentum acceptance of 3.8 $\\pm$10% GeV/c and a phase space acceptance of 2000 $\\mu$m·rad. The design has many challenges because the acceptance will be affected by many nonlinearity terms with large particle emittance and/or large momentum offset. In this paper, we present the application of a meta-heuristic optimization algorithm to the sextupole correction in the ring. The algorithm is capable of finding a balanced compromise among corrections of the nonlinearity terms, and finding the largest acceptance. This technique can be applied to the design of similar storage rings that store beams with wide transverse phase space and momentum spectra. We also present the recent study on the application of this algorithm to a part of the 6D muon cooling channel. The technique and the cooling concept will be applied to design a cooling channel for the extracted muon beam at nuSTORM in the future study.

  8. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  9. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  10. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  11. Helical channel design and technology for cooling of muon beams

    SciTech Connect

    Yonehara, K; Derbenev, Y.S.; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  12. Epicyclic Helical Channels for Parametric Resonance Ionization Cooling

    SciTech Connect

    Andrei Afanaciev, Alex Bogacz, Yaroslav Derbenev, Kevin Beard, Valentin Ivanov, Rolland Johnson, Guimei Wang, Katsuya Yonehara

    2009-05-01

    In order to achieve cooling of muons in addition to 6D helical cooling channel (HCC) [1], we develop a technique based on a parametric resonance. The use of parametric resonances requires alternating dispersion, minimized at locations of thin absorbers, but maximized in between in order to compensate for chromatic aberrations [2]. These solutions can be combined in an Epicyclic Helical Cooling Channel (EHCC) that meets requirements of alternating dispersion of beam periodic orbit with best conditions for maintenance of stable beam transport in a continuous solenoid-type field [3]. We discuss here basic features and new simulation results for EHCC.

  13. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  14. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  15. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  16. High field - low energy muon ionization cooling channel

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham; Palmer, Robert B.; Neuffer, David

    2015-09-01

    Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300 μ m -rad in transverse and ≈1 - 1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50 - 25 μ m -rad with an upper limit on the longitudinal emittance of ≈76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25-30 T and low momentum muon beam starting at 135 MeV /c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel's optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  17. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, K.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  18. Achromatic Cooling Channel with Li Lenses

    SciTech Connect

    Balbekov, V.

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  19. Helium Loop Cooling Channel Hydraulic Characterization

    SciTech Connect

    Olivas, Eric Richard; Morgan, Robert Vaughn; Woloshun, Keith Albert

    2015-07-02

    New methods for generating ⁹⁹Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ⁹⁹mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ¹⁰⁰Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  20. Turbine component cooling channel mesh with intersection chambers

    DOEpatents

    Lee, Ching-Pang; Marra, John J

    2014-05-06

    A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

  1. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  2. Focusing solenoids for the MICE cooling channel

    SciTech Connect

    Green, M.A.; Baynham, E.; Barr, G.; Lau, W.; Rochford, J.H.; Yang, S.

    2003-09-15

    This report describes a design for focusing solenoids for the low beta sections for the proposed Muon Ionization Cooling Experiment (MICE). There are three focusing solenoid pairs that will be around the muon absorbers for MICE. The two solenoid coils have an inside diameter of 510 mm, a length of 180 mm, and a thickness of 100 mm. A distance of 260 mm separates the two coils in the pair. The coils are designed to operate at opposite polarity, in order to create a gradient field in the low beta sections of the MICE cooling channel. As result, the force pushing the coil pair apart approaches 270 metric tons when the coils operate close to the short sample current for the superconductor. The forces between the coils will be carried by a support structure that is both on the inside and the outside the coils. During some modes of operation for MICE, the coils may operate at the same polarity, which means that the force between the coils pushes them together. The focusing magnet must be designed for both modes of operation. This support structure for the coils will be part of the focusing magnet quench protection system.

  3. Evolution of cooling-channel properties for varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Pizzarelli, M.; Nasuti, F.; Onofri, M.

    2016-07-01

    A trade-off analysis is performed on a cooling channel system representative of liquid rocket engine cooling systems. This analysis requires multiple cooling channel flow calculations which are performed by means of a proper numerical approach, referred to as quasi-two-dimensional (2D) model. This model, which is suited to high-aspect-ratio cooling channels (HARCC), permits to have a fast prediction of both the coolant flow evolution and the temperature distribution along the whole cooling channel structure. Before using the quasi-2D model for the trade-off analysis, its validation by comparison with computational fluid dynamics (CFD) results is presented and discussed. The results show that the pump power required to overcome losses in the cooling circuit can be minimized selecting a channel shaped with a suitably high aspect ratio.

  4. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    SciTech Connect

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessary to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.

  5. Thermotechnical performance of an air-cooled tuyere with air cooling channels in series

    NASA Astrophysics Data System (ADS)

    Shen, Yuansheng; Zhou, Yuanyuan; Zhu, Tao; Duan, Guangbin

    2016-03-01

    To reduce the cooling air consumption for an air-cooled tuyere, an air-cooled tuyere with air cooling channels in series is developed based on several hypotheses, i.e., a transparent medium in the blast furnace, among others, and the related mathematical models are introduced and developed. Referring to the data from a BF site, the thermotechnical computation for the air-cooled tuyere was performed, and the results show that when the temperature of the inlet cooling air increases, the temperatures for the outlet cooling air, the outer surface of the tuyere, the walls of the air cooling channels and the center channel as well as the heat going into the center channel increase, but the heat absorbed by the cooling air flowing through the air cooling channels decreases. When the cooling air flow rate under the standard state increases, the physical parameters mentioned above change in an opposite directions. Compared to a water-cooled tuyere, the energy savings for an air-cooled tuyere are more than 0.23 kg/min standard coal.

  6. Progress on the superconducting magnets for the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Virostek, S. P.; Li, D.; Zisman, M. S.; Wang, L.; Pan, H.; Wu, H.; Guo, X. L.; Xu, F. Y.; Liu, X. K.; Zheng, S. X.; Bradshaw, T.; Baynham, D. E.; Cobb, J.; Lau, W.; Lau, P.; Yang, S. Q.

    2010-06-01

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in the United States, China, and the UK respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that are used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  7. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  8. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  9. Component having cooling channel with hourglass cross section

    SciTech Connect

    Campbell, Christian X; Lee, Ching-Pang

    2015-04-28

    A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).

  10. Thoughts on Incorporating HPRF in a Linear Cooling Channel

    SciTech Connect

    Gallardo, Juan C.; Zisman, Michael S

    2009-08-20

    We discuss a possible implementation of high-pressure gas-filled RF (HPRF) cavities in a linear cooling channel for muons and some of the technical issues that must be dealt with. The approach we describe is a hybrid approach that uses high-pressure hydrogen gas to avoid cavity breakdown, along with discrete LiH absorbers to provide the majority of the energy loss. Initial simulations show that the channel performs as well as the original vacuum RF channel while potentially avoiding the degradation in RF gradient associated with the strong magnetic field in the cooling channel.

  11. State Machine Operation of the MICE Cooling Channel

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The cooling channel for MICE has between 12 and 18 superconductnig solenoid coils in 3 to 7 magnets, depending on the staged development of the experiment. The magnets are coaxial and in close proximity which requires coordinated operation of the magnets when ramping, responding to quench conditions, and quench recovery. To reliably manage the operation of the magnets, MICE is implementing state machines for each magnet and an over-arching state machine for the magnets integrated in the cooling channel. The state machine transitions and operating parameters are stored/restored to/from the configuration database and coupled with MICE Run Control. Proper implementation of the state machines will not only ensure safe operation of the magnets, but will help ensure reliable data quality. A description of MICE, details of the state machines, and lessons learned from use of the state machines in recent magnet training tests will be discussed.

  12. Prediction of Pressure Drop in the ITER Divertor Cooling Channels

    SciTech Connect

    Yin, S.T.; Chen, J.L.

    2005-04-15

    This study investigated the pressure drop in the divertor cooling channels of the International Thermonuclear Experimental Reactor (ITER). The water in the cooling channels will encounter the following flow and boiling regimes: 1) single-phase convection, 2) highly-subcooled boiling, 3) onset of nucleate boiling (ONB), and 4) fully-developed subcooled boiling. The upper operating boundary is limited by the departure from nucleate boiling (DNB) or burnout conditions. Twisted-tape insert will be used to enhance local heat transfer. Analytical models, validated with relevant databases, were proposed for the above-identified flow regimes. A user-friendly computer code was developed to calculate the overall pressure drop and the exit pressure of a specific local segment throughout the entire flow circuit. Although the operating parameters were based on the CDA phase input the results are found in general agreement when compared with the ITER EDA results.

  13. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  14. Cooling of ultrarelativistic β and μ particles by laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Dabagov, S. B.; Frolov, E. N.

    2016-07-01

    The descriprion of ultrarelativistic classical particles’ movement in interference laser field formed by multichannel ’’sandwich” structures taking into account the radiative energy losses is present. The muon channeling case is described in detail. The critical angle for muon bound motion in the potential well of laser field is defined. The feasibility of beam cooling for charged particles due to radiation losses is shown.

  15. Transition from heating to cooling of channeled ion beams

    SciTech Connect

    Toepffer, Christian

    2006-06-15

    Experiments showing a transverse heating or cooling of channeled ion beams are explained in terms of electron capture and loss processes between the projectile ions and the target. Such processes violate reversibility as the projectile captures electrons from occupied bound states and loses them to unoccupied weakly bound or continuum states. The transition probabilities for the transfer of electrons are calculated in the impact parameter Born approximation. Their dependence on the distance from the crystal strings is determined by scale factors which depend in turn on the relative velocity and the binding energies of the transferred electrons in the projectile and in the crystal, respectively. The appearance of transverse heating and cooling depends on the relative size of the scale factors for capture and loss. The transition from heating to cooling as function of velocity is described in good agreement with the experiments.

  16. Traveling Wave RF Systems for Helical Cooling Channels

    SciTech Connect

    Yonehara, K.; Lunin, A.; Moretti, A.; Popovic, M.; Romanov, G.; Neubauer, M.; Johnson, R.P.; Thorndahl, L.; /CERN

    2009-05-01

    The great advantage of the helical ionization cooling channel (HCC) is its compact structure that enables the fast cooling of muon beam 6-dimensional phase space. This compact aspect requires a high average RF gradient, with few places that do not have cavities. Also, the muon beam is diffuse and requires an RF system with large transverse and longitudinal acceptance. A traveling wave system can address these requirements. First, the number of RF power coupling ports can be significantly reduced compared with our previous pillbox concept. Secondly, by adding a nose on the cell iris, the presence of thin metal foils traversed by the muons can possibly be avoided. We show simulations of the cooling performance of a traveling wave RF system in a HCC, including cavity geometries with inter-cell RF power couplers needed for power propagation.

  17. Studies of high-field sections of a muon helical cooling channel with coil separation

    SciTech Connect

    Lopes, M.L.; Kashikhin, V.S.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling discussed. The paper also describes methods for field corrections and their practical limits. The magnetic performance of the helical solenoid with coil separation was discussed in this work. The separation could be done in three different ways and the performances could be very different which is important and should be carefully described during the beam cooling simulations. The design that is currently being considered is the one that has the poorest magnetic performance because it presents ripples in all three components, in particular in the helical gradient which could be quite large. Moreover, the average gradient could be off, which could affect the cooling performance. This work summarized methods to tune the gradient regarding the average value and the ripple. The coil longitudinal thickness and the helix period can be used to tune G. Thinner coils tend to reduce the ripples and also bring G to its target value. However, this technique reduces dramatically the operational margin. Wider coils can also reduce the ripple (not as much as thinner coils) and also tune the gradient to its target value. Longer helix periods reduce ripple and correct the gradient to the target value.

  18. Progress in the construction of the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Palladino, Vittorio

    2012-03-01

    The international Muon Ionization Cooling Experiment (MICE), sited at Rutherford Appleton Laboratory in the UK, aims to build and test one cell of a a realistic ionization cooling channel lattice. This comprises three Absorber--Focus-Coil (AFC) modules and two RF--Coupling-Coil (RFCC) modules. Both are technically challenging. The Focus Coils are dual-coil superconducting solenoids, in close proximity, wound on a common mandrel. Each pair of coils is run in series, but can be configured with the coil polarities in the same (``solenoid mode'') or opposite (``gradient mode''). At the center of each FC there is a 20-L liquid-hydrogen absorber, operating at about 14 K, to serve as the energy loss medium for the ionization cooling process. The longitudinal beam momentum is restored in the RFCC modules, each of which houses four 201.25-MHz RF cavities whose irises are closed with 42-cm diameter thin Be windows. To contain the muon beam, each RFCC module also has a 1.4-m diameter superconducting coupling solenoid surrounding the cavities. Both types of magnet are cooled with multiple 2-stage cryo-coolers, each delivering 1.5 W of cooling at 4 K. Designs for all components are complete and fabrication is under way. Descriptions of the various components, design requirements, and construction status will be described.

  19. Progress in the construction of the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Hanson, Gail G.; MICE Collaboration

    2013-02-01

    The international Muon Ionization Cooling Experiment (MICE), sited at Rutherford Appleton Laboratory in the UK, aims to build and test one cell of a realistic ionization cooling channel lattice. This comprises three Absorber—Focus-Coil (AFC) modules and two RF— Coupling-Coil (RFCC) modules; both are technically challenging. The Focus Coils are dual-coil superconducting solenoids, in close proximity, wound on a common mandrel. Each pair of coils is run in series, but can be configured with the coil polarities the same ("solenoid mode") or opposite ("gradient mode"). At the center of each FC there is a 20-L liquid-hydrogen absorber, operating at about 14 K, to serve as the energy loss medium for the ionization cooling process. The longitudinal beam momentum is restored in the RFCC modules, each of which houses four 201.25-MHz RF cavities whose irises are closed with 42-cm diameter thin beryllium windows. To contain the muon beam, each RFCC module also has a 1.4-m diameter superconducting coupling solenoid surrounding the cavities. Both types of magnet are cooled with multiple two-stage cryo-coolers, each delivering 1.5 W of cooling at 4 K. Designs for all components are complete and fabrication is under way. Descriptions of the various components, design requirements, and construction status will be described.

  20. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  1. Quench Protection for the MICE Cooling Channel Coupling Magnet

    SciTech Connect

    Guo, Xing Long; Xu, Feng Yu; Wang, Li; Green, Michael A.; Pan, Heng; Wu, Hong; Liu, X.K.; Jia, Lin Xiang; Amm, Kathleen

    2008-08-02

    This paper describes the passive quench protection system selected for the muon ionization cooling experiment (MICE) cooling channel coupling magnet. The MICE coupling magnet will employ two methods of quench protection simultaneously. The most important method of quench protection in the coupling magnet is the subdivision of the coil. Cold diodes and resistors are put across the subdivisions to reduce both the voltage to ground and the hot-spot temperature. The second method of quench protection is quench-back from the mandrel, which speeds up the spread of the normal region within the coils. Combining quench back with coil subdivision will reduce the hot spot temperature further. This paper explores the effect on the quench process of the number of coil sub-divisions, the quench propagation velocity within the magnet, and the shunt resistance.

  2. Electrically heated tube investigation of cooling channel geometry effects

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1995-01-01

    The results of an experimental investigation on the combined effects of cooling channel aspect ratio and curvature for rocket engines are presented. Symmetrically heated tubes with average heat fluxes up to 1.7 MW/m(exp 2) were used. The coolant was gaseous nitrogen at an inlet temperature of 280 K (500 R) and inlet pressures up to 1.0 x 10(exp 7) N/m(exp 2) (1500 psia). Two different tube geometries were tested: a straight, circular cross-section tube, and an aspect-ratio 10 cross-section tube with a 45 deg bend. The circular tube results are compared to classical models from the literature as validation of the system. The curvature effect data from the curved aspect-ratio 10 tube compare favorably to the empirical equations available in the literature for low aspect ratio tubes. This latter results suggest that thermal stratification of the coolant due to diminished curvature effect mixing may not be an issue for high aspect-ratio cooling channels.

  3. Experimental study on heat transfer and flow resistance in improved latticework cooling channels

    NASA Astrophysics Data System (ADS)

    Deng, Hongwu; Wang, Kai; Zhu, Jianqin; Pan, Wenyan

    2013-06-01

    Characteristics of heat transfer and flow resistance of the latticework (vortex) cooling channel with ribs truncated at their two ends were theoretically and experimentally studied compared with regular and smooth channels of the same configuration. The results showed: the heat transfer efficiency of the latticework channel with two slots was better than those of regular and smooth channels of the same configuration, its flow resistance situation in the slotted channel becomes quite complex; The flow resistances of 2 mm- and 4 mm-slotted channels were obviously lower than that of the regular channel, but they are still much higher than that of the smooth channel; Compared with the regular channel, the total heat transfer efficiencies of the slotted channels were pretty improved, among them the 4-mm slotted channel has the biggest enhancement. From the experimental results, it is obvious that the latticework channel with proper slots has a great prospect in the design of the inner cooling channels of turbine blades.

  4. Influence of Cooling Channel Geometry on the Thermal Response in Silicon Nitride Plates Studied

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Baaklini, George Y.

    2002-01-01

    Engine manufacturers are continually attempting to improve the performance and efficiency of internal combustion engines. Usually they raise the operating temperature or reduce the cooling air requirement for the hot section turbine components. However, the success of these attempts depends on finding materials that are lightweight, are strong, and can withstand high temperatures. Ceramics are among the top candidate materials considered for such harsh applications. They hold low-density, high-temperature strength, and thermal conductivity, and they are undergoing investigation as potential materials for replacing nickel-base alloys and superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass. The long-term objectives of the High Temperature Propulsion Components (HOTPC) Project are to develop manufacturing technology, thermal and environmental barrier coatings (TBC/EBC), and the analytical modeling capability to predict thermomechanical stresses in minimally cooled silicon nitride turbine nozzle vanes under simulated engine conditions. Two- and three-dimensional finite element analyses with TBC were conducted at the NASA Glenn Research Center. Nondestructive evaluation was used to determine processing defects. The study included conducting preliminary parametric analytical runs of heat transfer and stress analyses under steady-state conditions to demonstrate the feasibility of using cooled Si3N4 parts for turbine applications. The influence of cooling-channel shapes (such as circular, square, and ascending-order cooling channels) on cooling efficiency and thermal stresses was investigated. Temperature distributions were generated for all cases considered under both cooling and no-cooling conditions, with air being the cooling medium. The table shows the magnitude of the

  5. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  6. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  7. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    The T- and Y-shaped flow channels can be optimized for reduced pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, we studied the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same pumping power and heat generation constraints and their heat transfer performance is studied.

  8. Conditional cooling limit for a quantum channel going through an incoherent environment

    PubMed Central

    Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim

    2015-01-01

    We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems – qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology. PMID:26568362

  9. The design of an asymmetric bionic branching channel for electronic chips cooling

    NASA Astrophysics Data System (ADS)

    Xu, Shanglong; Qin, Jie; Guo, Wei; Fang, Kuang

    2013-06-01

    Inspired by the wing vein of Lepidoptera, a designment of asymmetric bionic branching channel for electronic chips cooling is developed. Lepidoptera vein D was chosen to measure the angle of first and second branch level. Based on these regular patterns, an asymmetric bionic branching channel is designed in a 35 mm × 35 mm chip. Comparing with fractal-like branching channel, it provides a stronger heat transfer capability, lower pressure drop and lower flow resistance in the experiment.

  10. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  11. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of

  12. Improvement of film cooling effectiveness in thin rectangular channel by using riblets

    SciTech Connect

    Miura, Takashi; Horiki, Sachiyo; Osakabe, Masahiro

    1999-07-01

    Film cooling behavior in a thin rectangular channel was experimentally studied by using water and the film cooling effectiveness was compared with previous correlations for a wide space. The flow pattern and the wall temperature distribution were visualized with hydrogen bubbles and liquid crystal sheet, respectively. The wavy temperature distribution was observed on the wall just after the injection slit. The temperature wave slowly moved and oscillated in the streamwise direction. The wave propagation in the spanwise direction was relatively small, but the wave pattern was randomly different in each experimental condition. The low and high temperature regions of the wave corresponded to the high and low speed regions near the wall, respectively. It was suggested that the temperature wave was generated with the several longitudinal vortexes developed downstream of the injection in the thin channel. As thinning the channel, the size of vortexes corresponding to the wave length became smaller and the cooling effectiveness was decreased. The riblets were tentatively used to depress the vortexes and increase the film cooling effectiveness. By using the appropriate riblets, the inrushes of high speed main flow into the film due to the vortexes was reduced and approximately 30% increase of the cooling effectiveness was obtained.

  13. The effect of rotation on heat transfer in the radial cooling channels of turbine blades

    NASA Astrophysics Data System (ADS)

    Iskakov, K. M.; Trushin, V. A.

    1985-02-01

    The effect of rotation on heat transfer in the channels of moving turbine blades in a loop cooling system is investigated experimentally. The working channels consisted of round tubes with sharp edges and the tubes were fixed to a support. Calculation of the parameters required for correlating the experimental data was conducted according to local air temperature at the entry of the channel. Analysis of the measured and calculated heat transfer parameters showed that the average error in determining heat transfer was 13 percent. The error in calculating the bulk flow rate of air was 8 percent. Formulas for calculating the centrifugal and centripetal air flows are derived.

  14. Bulge formed cooling channels with a variable lead helix on a hollow body of revolution

    NASA Technical Reports Server (NTRS)

    McAninch, Michael D. (Inventor); Holbrook, Richard L. (Inventor); Lacount, Dale F. (Inventor); Kawashige, Chester M. (Inventor); Crapuchettes, John M. (Inventor); Scala, James (Inventor)

    1993-01-01

    A method of constructing a nozzle having cooling channels comprises a shell and a liner which are formed into a body of revolution having an axis of revolution. Helical welds are formed to hold the liner and shell to each other with a channel position being defined between each pair of helical welds. Pressurized fluid which may be a gas or a liquid, is introduced between the weld pairs to outwardly bulge the material of at least one of the liner and shell to define the channels.

  15. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    SciTech Connect

    Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y.

    2012-05-22

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  16. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  17. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  18. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  19. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  20. Computation of turbulent recirculating flow in channels, and for impingement cooling

    SciTech Connect

    Chang, B.H.

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-[epsilon] turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improvement modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-[epsilon] turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating. The wall thermal boundary condition was found to have a significant effect on local heat transfer coefficients in the neighborhood of boundary layer separation.

  1. Fabricating rectangular internal cooling channels in silicon x-ray monochromator optics

    SciTech Connect

    Bilderback, D. H.

    1989-07-01

    Internally cooled monochromator crystals have been successfully fabricated and tested with synchrotron radiation. A single block of silicon was parted in the middle and grooves on a mm scale were cut into one half. The two blocks were then bonded back together with a silver-glass die attach paste. After firing in air at 430 /degree/C, the composite crystal was virtually strain free. One version of the composite crystal with cooling channels 0.76 mm beneath the diffracting surface was successfully tested at CHESS with intense undulator radiation.

  2. Status of the MANX muon cooling experiment

    SciTech Connect

    Yonehara, K.; Broemmelsiek, D.; Hu, M.; Jansson, A.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Lopes, M.; Shiltsev, V.; Yarba, V.; Yu, M.; /Fermilab /Muons Inc., Batavia

    2008-06-01

    A demonstration experiment of six-dimensional (6D) phase space muon beam cooling is a key milestone on the roadmap toward to a real muon collider. In order to achieve this goal, they have designed the Muon Collider and Neutrino Factory Experiment (MANX) channel, which consists of the Helical Cooling Channel (HCC). They discuss the status of the simulation study of the MANX in this document.

  3. Design and Simulation of a Matching System into the Helical Cooling Channel

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, C.; Johnson, R. P.; Kahn, S.; Marhauser, F.; Derbenev, Y.; Morozov, V.; Sy, A.; Alexahin, Y.; Neuffer, D.; Yonehara, K.

    2014-07-01

    Muon colliders could provide the most sensitive measurement of the Higgs mass and return the US back to the Energy Frontier. Central to the capabilities of muon colliders are the cooling channels that provide the extraordinary reduction in emittance required for the precise Higgs mass measurement and increased luminosity for enhanced discovery potential of an Energy Frontier Machine. The Helical Cooling Channel (HCC) is able to achieve such emittance reduction and matching sections within the HCC have been successfully designed in the past with lossless transmission and no emittance growth. However, matching into the HCC from a straight solenoid poses a challenge, since a large emittance beam must cross transition. We elucidate on the challenge and present evaluations of two solutions, along with concepts to integrate the operations of a Charge Separator and match into the HCC.

  4. Flow visualization study in high aspect ratio cooling channels for rocket engines

    NASA Astrophysics Data System (ADS)

    Meyer, Michael L.; Giuliani, James E.

    1993-11-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  5. Flow visualization study in high aspect ratio cooling channels for rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1993-01-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  6. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  7. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and

  8. Characterization of an inline row impingement channel for turbine blade cooling applications

    NASA Astrophysics Data System (ADS)

    Ricklick, Mark A.

    Gas turbines have become an intricate part of today's society. Besides powering practically all 200,000+ passenger aircraft in use today, they are also a predominate form of power generation when coupled with a generator. The fact that they are highly efficient, and capable of large power to weight ratios, makes gas turbines an ideal solution for many power requirement issues faced today. Designers have even been able to develop small, 'micro' turbines capable of producing efficient portable power. Part of the turbine's success is the fact that their efficiency levels have continuously risen since their introduction in the early 1800's. Along with improvements in our understanding and designs of the aerodynamic components of the turbine, as well as improvements in the areas of material design and combustion control, advances in component cooling techniques have predominantly contributed to this success. This is the result of a simple thermodynamic concept; as the turbine inlet temperature is increased, the overall efficiency of the machine increases as well. Designers have exploited this fact to the extent that modern gas turbines produce rotor inlet temperatures beyond the melting point of the sophisticated materials used within them. This has only been possible through the use of sophisticated cooling techniques, particularly in the 1st stage vanes and blades. Some of the cooling techniques employed today have been internal cooling channels enhanced with various features, film and showerhead cooling, as well as internal impingement cooling scenarios. Impingement cooling has proven to be one of the most capable heat removal processes, and the combination of this cooling feature with that of channel flow, as is done in impingement channel cooling, creates a scenario that has understandably received a great deal of attention in recent years. This study has investigated several of the unpublished characteristics of these impingement channels, including the channel

  9. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions

    NASA Astrophysics Data System (ADS)

    Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.

    2015-07-01

    This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.

  10. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Maldonado, Jaime J.

    1994-01-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  11. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  12. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    SciTech Connect

    YOUCHISON,DENNIS L.; NORTH,MART T.

    2000-11-22

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m{sup 2} and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm{sup 2} area. An impressive 10 kW of power was absorbed on an area of 24 cm{sup 2}. Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m{sup 2} using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.

  13. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect

    Bowring, D. L.; DeMello, A. J.; Lambert, A. R.; Li, D.; Virostek, S.; Zisman, M.; Kaplan, D.; Palmer, R. B.

    2012-05-20

    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  14. Effect of rotation on heat transfer and hydraulic resistance in the radial cooling channels of turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Iskakov, K. M.; Trushin, O. V.; Tsaplin, M. I.; Shatalov, Yu. S.

    Results of a modeling study indicate that rotation significantly (up to 60 percent) changes local heat transfer and increases, by a factor of 5-6, hydraulic resistance in the smooth radial channels of turbine rotor blades with a low-pressure cooling system. The results of the study have been used in the design of a turbine cooling system for a turbofan engine.

  15. Heat/mass transfer and flow characteristics of pin fin cooling channels in turbine blades

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Saxena, A.

    Experiments studied the local heat/mass transfer distributions and pressure drops in pin fin channels that modeled internal cooling passages in gas turbine blades. Heat/mass transfer distributions were determined for a straight flow through a pin fin channel (H/D = 1.0, X/D = S/D = 2.5) and a flow through the pin fin channel with trailing edge flow ejection. The overall friction factor and local pressure drop results were obtained for various configurations and lengths of the trailing edge ejection holes. The results show that, when there is trailing edge flow ejection, the main flow stream turns toward the trailing edge ejection holes. The wake regions downstream of the pins and the regions affected by secondary flow shift toward the ejection holes. The local channel wall heat/mass transfer is generally high immediately upstream of a pin, in the wake region downstream of a pin, and in the regions affected by secondary flow. In the case with trailing edge flow ejection, the heat/mass transfer generally decreases in the radial direction as a result of the reducing radial mass flow rate. The overall friction is higher when the trailing edge ejection holes are longer and when they are configured such that more flow is forced further downstream in the pin fin channel before exiting through the ejection holes.

  16. Beam-envelope theory of ionization cooling

    NASA Astrophysics Data System (ADS)

    Wang, Chun-xi; Kim, Kwang-Je

    2004-10-01

    Linear beam-envelope theory of ionization cooling in 6D phase space has been systematically established in the past few years. In this paper, we briefly review the general formalism as well as the specific theories for a quadrupole channel and a bent-solenoidal channel with symmetric focusing. These channels play important roles in the design of cooling channels for the envisioned neutrino factories and muon colliders. The analytical solutions of these channels are relatively simple yet provide good understanding of cooling and heating mechanisms in both transverse and longitudinal phase spaces. Furthermore, the resulting formulae can be used to evaluate cooling channel designs the same way as the radiation integrals are used in storage ring designs.

  17. Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures

    NASA Astrophysics Data System (ADS)

    Mici, Joni; Rothenberg, Bradley; Brisson, Erik; Wicks, Sunny; Stubbs, David M.

    2015-09-01

    Advances in 3D printing technology allow for the manufacture of topologically complex parts not otherwise feasible through conventional manufacturing methods. Maturing metal and ceramic 3D printing technologies are becoming more adept at printing complex shapes, enabling topologically intricate mirror substrates. One application area that can benefit from additive manufacturing is reflective optics used in high energy laser (HEL) systems that require materials with a low coefficient of thermal expansion (CTE), high specific stiffness, and (most importantly) high thermal conductivity to effectively dissipate heat from the optical surface. Currently, the limits of conventional manufacturing dictate the topology of HEL optics to be monolithic structures that rely on passive cooling mechanisms and high reflectivity coatings to withstand laser damage. 3D printing enables the manufacture of embedded cooling channels in metallic mirror substrates to allow for (1) active cooling and (2) tunable structures. This paper describes the engineering and analysis of an actively cooled composite optical structure to demonstrate the potential of 3D printing on the improvement of optomechanical systems.

  18. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling

    NASA Astrophysics Data System (ADS)

    Makinde, O. D.; Chinyoka, T.

    2010-12-01

    This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton's law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.

  19. Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

    NASA Astrophysics Data System (ADS)

    Moon, In-Sang; Lee, Seon-Mi; Moon, Il-Yoon; Yoo, Jae-Han; Lee, Soo-Yong

    2011-09-01

    A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

  20. The Physical Connection and Magnetic Coupling of the MICE CoolingChannel Magnets and the Magnet Forces for Various MICE OperatingModes

    SciTech Connect

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-08-20

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component.

  1. Experimental study of an upward sub-cooled forced convection in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.

    2016-07-01

    The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.

  2. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    NASA Astrophysics Data System (ADS)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier

  3. An experimental investigation on liquid methane heat transfer enhancement through the use of longitudinal fins in cooling channels

    NASA Astrophysics Data System (ADS)

    Galvan, Manuel de Jesus

    In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not

  4. The MANX Muon Cooling Experiment Detection System

    NASA Astrophysics Data System (ADS)

    Kahn, S. A.; Abrams, R. J.; Ankenbrandt, C.; Cummings, M. A. C.; Johnson, R. P.; Robertsa, T. J.; Yoneharab, K.

    2010-03-01

    The MANX experiment is being proposed to demonstrate the reduction of 6D muon phase space emittance, using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a two-period-long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being set up at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. We discuss the placement of detection planes to optimize the muon track resolution.

  5. The Effect of Extending the Length of the Coupling Coils in a MuonIonization Cooling Channel

    SciTech Connect

    Green, Michael A.

    2007-11-10

    RF cavities are used to re-accelerate muons that have beencooled by absorbers that are in low beta regions of a muon ionizationcooling channel. A superconducting coupling magnet (or magnets) arearound or among the RF cavities of a muon ionization-cooling channel. Thefield from the magnet guides the muons so that they are kept within theiris of the RF cavities that are used to accelerate the muons. Thisreport compares the use of a single short coupling magnet with anextended coupling magnet that has one or more superconducting coils aspart of a muon-cooling channel of the same design as the muon ionizationcooling experiment (MICE). Whether the superconducting magnet is shortand thick or long and this affects the magnet stored energy and the peakfield in the winding. The magnetic field distribution also affects is themuon beam optics in the cooling cell of a muon coolingchannel.

  6. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  7. Channel flow modeling of impingement cooling of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Koo, J. J.

    1984-01-01

    Local heat transfer distributions in impingement cooling have been measured by Kreatsoulas and Prieser for a range of conditions which model those in actual turbine blades, including the effects of rotation. These data were reported as local Nusselt numbers, but referred to coolant supply conditions. By means of a channel flow modeling of the flow in the supply and impingement passages, the same data are here presented in terms of local Nusselt number distributions such as are used in design. The results in this form are compared to the nonrotating impingement results of Chupp and to the rotating but nonimpingement results of Morris. Rotation reduces the mean Nusselt numbers from these found by Chupp by about 30 percent, and introduces important radial variations which are sensitive to rotation and to leading edge stagger angle.

  8. Shape optimization of staggered ribs in a rotating equilateral triangular cooling channel

    NASA Astrophysics Data System (ADS)

    Moon, Mi-Ae; Park, Min-Jung; Kim, Kwang-Yong

    2014-04-01

    A rotating equilateral triangular cooling channel with staggered square ribs inside the leading edge of a turbine blade has been optimized in this work based on surrogate modeling. The fluid flow and heat transfer in the channel have been analyzed using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations under uniform heat flux condition. Shear stress transport turbulence model has been used as a turbulence closure. Computational results for area-averaged Nusselt number have been validated compared to the experimental data. The objectives related to the heat transfer rate and pressure drop has been linearly combined with a weighting factor to define the objective function. The angle of the rib, the rib pitch-to-hydraulic diameter ratio, and the rib width-to-hydraulic diameter ratio have been selected as the design variables. Twenty-two design points have been generated by Latin Hypercube sampling, and the values of the objective function have been calculated by the RANS analysis at these points. The surrogate model for the objective function has been constructed using the radial basis neural network method. Through the optimization, the objective function value has been improved by 21.5 % compared to that of the reference geometry.

  9. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    NASA Astrophysics Data System (ADS)

    Ghoneim, Mohamed T.; Fahad, Hossain M.; Hussain, Aftab M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Alfaraj, Nasir; Lizardo, Ernesto B.; Hussain, Muhammad M.

    2015-12-01

    In today's digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical "through silicon" micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  10. Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system

    NASA Astrophysics Data System (ADS)

    Ribert, G.; Taieb, D.; Petit, X.; Lartigue, G.; Domingo, P.

    2013-03-01

    To address physical modeling of supercritical multicomponent fluid flows, ideal-gas law must be changed to real-gas equation of state (EoS), thermodynamic and transport properties have to incorporate dense fluid corrections, and turbulence modeling has to be reconsidered compared to classical approaches. Real-gas thermodynamic is presently investigated with validation by NIST (National Institute of Standards and Technology) data. Two major issues of Liquid Rocket Engines (LRE) are also presented. The first one is the supercritical fluid flow inside small cooling channels. In a context of LRE, a strong heat flux coming from the combustion chamber (locally Φ ≈ 80 MW/m2) may lead to very steep density gradients close to the wall. These gradients have to be thermodynamically and numerically captured to properly reproduce in the simulation the mechanism of heat transfer from the wall to the fluid. This is done with a shock-capturing weighted essentially nonoscillatory (WENO) numerical discretization scheme. The second issue is a supercritical fluid injection following experimental conditions [1] in which a trans- or supercritical nitrogen is injected into warm nitrogen. The two-dimensional results show vortex structures with high fluid density detaching from the main jet and persisting in the low-speed region with low fluid density.

  11. Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge.

    PubMed

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H

    2013-01-01

    High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to

  12. Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge.

    PubMed

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H

    2013-01-01

    High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to

  13. MICE, the international Muon Ionization Cooling Experiment

    NASA Astrophysics Data System (ADS)

    Heidt, Chris

    2013-04-01

    Ionization Cooling is the only practical solution to preparing high brilliance muon beams for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (UK). It is characterized by exquisite emittance determination by 6D measurement of individual particles, a cooling section comprising 23 MV of acceleration at 200 MHz and 3 liquid hydrogen absorbers totaling 1m of liquid hydrogen on the path of 140-240 MeV/c muons. Thebeam has already been commissioned successfully and first measurements of beam emittance performed. We are setting up for the final high precision emittance determination and the measurements of cooling in Li Hydrogen. The design offers opportunities to observe cooling with various absorbers and several optics configurations. Results will be compared with detailed simulations of cooling channel performance to ensure full understanding of the cooling process. Progress towards the full cooling experiment with RF re-acceleration will also be reported.

  14. Development of high-performance cooling devices for space application by using flow boiling in narrow channels.

    PubMed

    Miura, Shinichi; Inada, Yukihiro; Shinmoto, Yasuhisa; Ohta, Haruhiko

    2009-04-01

    Heat generation density from semiconductor devices has been increasing with the rapid development of electronic technology. The cooling system using boiling two-phase phenomena has attracted much attention because of its high heat removal potential. To develop compact and high-performance cooling systems, we conducted experiments on the increase of critical heat flux (CHF) for flow boiling in narrow channels by improved liquid supply. A large surface of 150 mm in heated length and 30 mm in width with grooves of an apex angle of 90 degrees , 0.5-mm depth, and 1 mm in pitch was employed. A structure of narrow heated channel between parallel plates with an unheated auxiliary channel was devised and tested by using water for different combinations of gap sizes and volumetric flow rates, where inlet of the main heated channel and the outlet of auxiliary unheated channel were closed to prevent the flow instability observed frequently at low flow rate for parallel two channels. For the total volumetric flow rate more than 4.5 x 10(-5) m(3)/s, higher values of CHF large than 2 x 10(6) W/m(2) were obtained for gap size of 2 mm. For gap sizes of 2 mm and 5 mm at high volumetric flow rate larger than 6.0 x 10(-5) m(3)/s, or mass velocity based on the cross section are of main heated channel 958.1 kg/m(2)s and 383.2 kg/m(2) s, respectively, the extension of dry patches was observed at the upstream location of the main heated channel resulting in burnout not at the downstream but at the upstream. By the increase in total volumetric flow rate, the pressure drop increased because of increasing in the flow rate passing through the sintered metal porous plates connecting both channels. The values of pressure drop for gap size of 2 mm were higher than that for gap size of 5 mm. When the performance of the cooling system was evaluated on the basis of pump power, ignoring its variation in the efficiency with volumetric flow rate, that is, the power defined as the product of the

  15. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    NASA Astrophysics Data System (ADS)

    Tikadar, Amitav; Hossain, Md. Mahamudul; Morshed, A. K. M. M.

    2016-07-01

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advanced heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.

  16. Parametric-Resonance Ionization Cooling in Twin-Helix.

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney

    2011-09-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.

  17. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    SciTech Connect

    Bragg-Sitton, S.M.; Kapernick, R.; Godfroy, T.J.

    2004-02-04

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

  18. Thermal performance of Al2O3 in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    NASA Astrophysics Data System (ADS)

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu

    2015-08-01

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  19. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel.

    PubMed

    Chuang, Huai-hu; Neuhausser, Werner M; Julius, David

    2004-09-16

    TRPM8, a member of the transient receptor potential family of ion channels, depolarizes somatosensory neurons in response to cold. TRPM8 is also activated by the cooling agents menthol and icilin. When exposed to menthol or cold, TRPM8 behaves like many ligand-gated channels, exhibiting rapid activation followed by moderate Ca(2+)-dependent adaptation. In contrast, icilin activates TRPM8 with extremely variable latency followed by extensive desensitization, provided that calcium is present. Here, we show that, to achieve full efficacy, icilin requires simultaneous elevation of cytosolic Ca2+, either via permeation through TRPM8 channels or by release from intracellular stores. Thus, two stimuli must be paired to elicit full channel activation, illustrating the potential for coincidence detection by TRP channels. Determinants of icilin sensitivity map to a region of TRPM8 that corresponds to the capsaicin binding site on the noxious heat receptor TRPV1, suggesting a conserved molecular logic for gating of these thermosensitive channels by chemical agonists. PMID:15363396

  20. Modeling the high-field section of a muon helical cooling channel

    SciTech Connect

    Zlobin, A.V.; Barzi, E.; Kashikhin, V.S.; Lamm, M.J.; Lombardo, V.; Lopes, M.L.; Yu, M.; Johnson, R.P.; Flanagan, G.; Kahn, S.A.; Turenne, M.; /MUONS Inc., Batavia

    2010-05-01

    This paper describes the conceptual design and parameters of a short model of a high-field helical solenoid for muon beam cooling. Structural materials choices, fabrication techniques and first test results are discussed.

  1. Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels.

    PubMed

    Battisti, L; Baggio, P

    2001-05-01

    In gas turbine cooling design, techniques for heat extraction from the surfaces exposed to the hot stream are based on the increase of the inner heat transfer areas and on the promotion of the turbulence of the cooling flow. This is currently obtained by casting periodic ribs on one or more sides of the serpentine passages into the core of the blade. Fluid dynamic and thermal behaviour of the cooling flow have been extensively investigated by means of experimental facilities and many papers dealing with this subject have appeared in the latest years. The evaluation of the average value of the heat transfer coefficient most of the time is inferred from local measurements obtained by various experimental techniques. Moreover the great majority of these studies are not concerned with the overall average heat transfer coefficient for the combined ribs and region between them, but do focus just on one of them. This paper presents an attempt to collect information about the average Nusselt number inside a straight ribbed duct. Series of measurements have been performed in steady state eliminating the error sources inherently connected with transient methods. A low speed wind tunnel, operating in steady state flow, has been built to simulate the actual flow condition occurring in a rectilinear blade cooling channel. A straight square channel with 20 transverse ribs on two sides has been tested for Re of about 3 x 10(4), 4.5 x 10(4) and 6 x 10(4). The ribbed wall test section is electrically heated and the heat removed by a stationary flow of known thermal and fluid dynamic characteristics.

  2. Cooling Characteristics of Highly Viscous Liquids in a Channel with a Large Number of Right-Angled Bends

    NASA Astrophysics Data System (ADS)

    Kuriyam, Masafumi; Li, Xiangyi; Harada, Eiji; Konno, Hirotaka

    An investigation was performed on the flow and cooling characteristics of highly viscous liquids in the channel with a large number of right-angled bends. The variation of flow pattern and temperature profile according to Reynolds number and Prandtl number were presented by solving numerically the Navier-Stokes equations with energy equation under the condition that the fluid properties were independent on temperature. Average heat transfer cofficient and friction factor were also calculated and compared with the experimental data regarding aqueous solutions of corn syrup. Through the comparison, the effect of the variable viscosity of the test fluid on the flow and heat transfer characteristics was considered in connection with the channel configuration.

  3. Optimization of cooling channel design and spray patterns in aluminum die casting using infrared thermography

    NASA Astrophysics Data System (ADS)

    Prystay, Mark; Loong, Chee A.; Nguyen, Ky T.

    1996-03-01

    A protocol for infrared thermal analysis of die surfaces is proposed. The most suitable infrared camera has a spectral response in the 8 - 10 micrometer of the infrared spectrum as the emissivity is higher and more uniform across the surface of the die than in the 3 - 5 micrometer region of the spectrum. Through the prudent use of shielding, die surface temperatures can be measured, thermal gradients are detected, the effectiveness of cooling lines can be evaluated and spray patterns are optimized. The technique is not suitable for examining aluminum parts as the emissivity of aluminum is low and the optical properties of the surface oxide layer change as the part cools.

  4. Measurement of the Coolant Channel Temperatures and Pressures of a Cooled Radial-Inflow Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1994-01-01

    Instrumentation has been installed on the surface of a cooled radial-inflow turbine. Thermocouples and miniature integrated sensor pressure transducers were installed to measure steady state coolant temperatures, blade wall temperatures, and coolant pressures. These measurements will eventually be used to determine the heat transfer characteristics of the rotor. This paper will describe the procedures used to install and calibrate the instrumentation and the testing methods followed. A limited amount of data will compare the measured values to the predicted values.

  5. Simulation of gas-assisted injection mold-cooling process using line source model approach for gas channel

    SciTech Connect

    Chang, Y.P.; Hu, S.Y.; Chen, S.C.

    1998-10-01

    Gas-assisted injection molding (GAIM) process, being an innovative injection molding process, can substantially reduce production expenses through reduction in material cost, reduction in clamp tonnage and reduction in cycle time. Whether it is feasible to perform an integrated simulation for process simulation based on a unified CAE model for gas-assisted injection molding (GAIM) is a great concern. In the present study, numerical algorithms based on the same CAE model used for process simulation regarding filling and packaging stages were developed to simulate the cooling phase of GAIM using a cycle-averaged three-dimensional modified boundary element technique similar to that used for conventional injection molding. However, to use the current CAE model for analysis, gas channel was modeled by two-node elements using line source approach. It was found that this new modeling not only affects the mold wall temperature calculation very slightly but also reduces the computer time by 95% as compared with a full gas channel modeling required a lot of triangular elements on gas channel surface. This investigation indicates that it is feasible to achieve an integrated process simulation for GAIM under one CAE model resulting in great computational efficiency for industrial application.

  6. 6D RG flows and nilpotent hierarchies

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.; Rudelius, Tom; Tomasiello, Alessandro

    2016-07-01

    With the eventual aim of classifying renormalization group flows between 6D superconformal field theories (SCFTs), we study flows generated by the vevs of "conformal matter," a generalization of conventional hypermultiplets which naturally appear in the F-theory classification of 6D SCFTs. We consider flows in which the parent UV theory is (on its partial tensor branch) a linear chain of gauge groups connected by conformal matter, with one flavor group G at each end of the chain, and in which the symmetry breaking of the conformal matter at each end is parameterized by the orbit of a nilpotent element, i.e. T-brane data, of one of these flavor symmetries. Such nilpotent orbits admit a partial ordering, which is reflected in a hierarchy of IR fixed points. For each such nilpotent orbit, we determine the corresponding tensor branch for the resulting SCFT. An important feature of this algebraic approach is that it also allows us to systematically compute the unbroken flavor symmetries inherited from the parent UV theory.

  7. Effect of MHD and Injection through one side of a long vertical channel embedded in porous medium with transpiration cooling

    NASA Astrophysics Data System (ADS)

    Govardhan, K.; Kaladhar, K.; Nagaraju, G.; Balaswamy, B.

    2014-12-01

    This paper examines the effect of MHD, and injection through one side of a long vertical channel embedded in porous medium with transpiration cooling. The governing nonlinear partial differential equations have been transformed by similarity transformation into a set of ordinary differential equations, which are solved numerically by Adam-moultan Predictor-Corrector method with Newton-Raphson Method for missing initial conditions. Proflles of dimensionless velocity, temperature and concentration are shown graphically for different parameters entering into the analysis. Also the effects of the pertinent parameters on the heat transfer rates are tabulated. An analysis of the results obtained shows that the flow field is influenced appreciably by emerging parameters of the present study.

  8. A 201 MHz RF cavity design with non-stressed pre-curved Be windows for muon cooling channels

    SciTech Connect

    Li, Derun; Ladran, A.; Staples, J.; Virostek, S.; Zisman, M.; Lau, W.; Yang, S .; Rimmer, R.A.

    2003-05-01

    We present a 201-MHz RF cavity design for muon cooling channels with non-stressed and pre-curved Be foils to terminate the beam apertures. The Be foils are necessary to improve the cavity shunt impedance with large beam apertures needed for accommodating large transverse size muon beams. Be is a low-Z material with good electrical and thermal properties. It presents an almost transparent window to muon beams, but terminates the RF cavity electro-magnetically. Previous designs use pre-stressed flat Be foils in order to keep cavity from detuning resulted from RF heating on the window surface. Be foils are expensive, and it is difficult to make them under desired tension. An alternative design is to use precurved and non-stressed Be foils where the buckling direction is known, and frequency shifts can be properly predicted. We will present mechanical simulations on the Be foils in this paper.

  9. Heat transfer and pressure drop in blade cooling channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Lei, C. K.

    1984-01-01

    Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty.

  10. Optics for Phase Ionization Cooling of Muon Beams

    SciTech Connect

    R.P. Johnson; S.A. Bogacz; Y.S. Derbenev

    2006-06-26

    The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.

  11. Modeling of the Evaporative Cooling of Running-Down Liquid Films in the Slit Channel of the Spraying Device of a Cooling Tower

    NASA Astrophysics Data System (ADS)

    Dashkov, G. V.; Malenko, G. L.; Solodukhin, A. D.; Tyutyuma, V. D.

    2014-11-01

    This paper presents the results of computational modeling of the nonstationary evaporative cooling of a liquid film running down a vertical surface cooled by a turbulent vapor-air counterflow. The heat and mass transfer problem has been formulated in conjugate form. The calculation data on the total heat flow density at the interface for various instants of time are given.

  12. Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system

    NASA Astrophysics Data System (ADS)

    Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno

    2012-06-01

    The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the

  13. STATUS OF THE INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT(MICE)

    SciTech Connect

    Zisman, Michael S.

    2007-07-18

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal-conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed.

  14. Infrared Spectroscopy of C_6D_6-Rg_n(n=1,2)

    NASA Astrophysics Data System (ADS)

    George, Jobin; Yousefi, Mahdi; Rezaei, Mojtaba; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Benzene-noble gas complexes were one of the earliest topics of interest in spectroscopic investigation of van der Waals (vdW) complexes. Smalley et al. observed C_6H_6-(He)1,2 vdW complexes in the late 1970s by means of electronic spectroscopy. A recent study on the same species was done by M. Hayashi et al. Here, we present the infrared observation of C_6D_6-Rg_n (n=1,2) with the rare gas being He, Ne, or Ar, in the regions of νb{12} fundamental band of C_6D_6 (˜2289 wn) and the νb{2} + νb{13} combination band (˜2275 wn) which are coupled by a Fermi resonance. The spectra were observed at a resolution of 60 MHz using a tunable optical parametric oscillator to probe a pulsed supersonic-jet expansion from a slit nozzle. In the case of C_6D_6-Rg dimers, the spectra were assigned to a symmetric top with C6v symmetry with the rare gas atom being located on the C6 symmetry axis. To observe C_6D_6-Rg_2 trimers, the nozzle was cooled using a closed-cycle methanol refrigerator and the spectra were simulated with a rotational temperature of 1.3K. The spectra of the C_6D_6-Rg_2 trimers were in agreement with a D6h symmetry structure, where the rare gas atoms are positioned above and below the C_6D_6 plane. Data analysis and observation are presently ongoing. S. M. Beck, M. G. Liverman, D. L. Monts and R. E. Smalley, J. Chem. Phys. 70, 232 (1979). M. Hayashi, Y. Ohshima, Chem. Phys. 419, 131 (2013).

  15. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  17. Local heat/mass transfer and pressure drop in a two-pass rib-roughened channel for turbine airfoil cooling

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Chandra, P. R.

    1987-01-01

    The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.

  18. Flow-Induced Vibration of a Reed in a Channel: Effect of Reed Shape on Convective Heat Transfer with Application to Electronic Cooling

    NASA Astrophysics Data System (ADS)

    Rips, Aaron; Shoele, Kourosh; Glezer, Ari; Mittal, Rajat

    2015-11-01

    Flow-induced vibration of a reed (a thin plate or flag) in a channel can improve heat transfer efficiency in forced convection applications, allowing for more heat transfer for the same fan power. Such systems have wide ranging applications in electronic and power cooling. We investigate the effect of 3D reed shape on heat transfer enhancement. To study 3D effects, we first use 2D fluid-structure interaction (FSI) simulations of an optimized reed (in terms of mass and stiffness) to generate a prescribed reed motion. We then apply that motion to a pseudo 3D reed (i.e. infinitely stiff in the spanwise direction) and study the heat transfer enhancement in a 3D channel. This method allows us to explore a large parameter space exhaustively, and using this method, we examine the effect of several parameters, such as reed planform and spanwise gap, on the heat transfer enhancements for forced convection in a channel. Simulations indicate that these geometrical feature have a significant effect on the vortex dynamics in the wake as well as the heat transfer efficiency. This work was supported by grants from AFOSR, EPRI and NSF.

  19. Thermal performance of Al{sub 2}O{sub 3} in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    SciTech Connect

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu

    2015-08-28

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  20. Measuring the cosmic bulk flow with 6dFGSv

    NASA Astrophysics Data System (ADS)

    Magoulas, Christina; Springob, Christopher; Colless, Matthew; Mould, Jeremy; Lucey, John; Erdoğdu, Pirin; Jones, D. Heath

    2016-10-01

    While recent years have seen rapid growth in the number of galaxy peculiar velocity measurements, disagreements remain about the extent to which the peculiar velocity field - a tracer of the large-scale distribution of mass - agrees with both ΛCDM expectations and with velocity field models derived from redshift surveys. The 6dF Galaxy Survey includes peculiar velocities for nearly 9 000 early-type galaxies (6dFGSv), making it the largest and most homogeneous galaxy peculiar velocity sample to date. We have used the 6dFGS velocity field to determine the amplitude and scale of large-scale cosmic flows in the local universe and test standard cosmological models. We also compare the galaxy density and peculiar velocity fields to establish the distribution of dark and luminous matter and better constrain key cosmological parameters such as the redshift-space distortion parameter.

  1. On the Defect Group of a 6D SCFT

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Heckman, Jonathan J.; Park, Daniel S.; Rudelius, Tom

    2016-06-01

    We use the F-theory realization of 6D superconformal field theories (SCFTs) to study the corresponding spectrum of stringlike, i.e., surface defects. On the tensor branch, all of the stringlike excitations pick up a finite tension, and there is a corresponding lattice of string charges, as well as a dual lattice of charges for the surface defects. The defect group is data intrinsic to the SCFT and measures the surface defect charges which are not screened by dynamical strings. When non-trivial, it indicates that the associated theory has a partition vector rather than a partition function. We compute the defect group for all known 6D SCFTs, and find that it is just the abelianization of the discrete subgroup of U(2) which appears in the classification of 6D SCFTs realized in F-theory. We also explain how the defect group specifies defining data in the compactification of a (1, 0) SCFT.

  2. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  3. CF6-6D engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Wulf, R. H.; Kramer, W. H.; Pass, J. E.; Smith, J. J.

    1980-01-01

    Cruise cockpit recordings and test cell performance data in conjunction with hardware inspection data from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-6D model engine. These studies successfully isolated short-term deterioration from the longer term, and defined areas where a significant reduction in aircraft energy requirements for the 1980's can be realized. Unrestored losses which remain after engine refurbishment represent over 70% of the loss at engine shop visit. Sixty-three percent of the unrestored losses are cost-effective to restore which could reduce fuel consumed by CF6-6D engines in 1980 by 10.9 million gallons.

  4. Time span of plutonism, fabric development, and cooling in a Neoproterozoic magmatic arc segment: U Pb age constraints from syn-tectonic plutons, Sark, Channel Islands, UK

    NASA Astrophysics Data System (ADS)

    Miller, Brent V.; Samson, Scott D.; D'Lemos, Richard S.

    1999-10-01

    New U-Pb zircon and titanite dates from syn-tectonic plutons on the British Channel Island of Sark constrain the time span of plutonism, fabric development, and cooling in this part of the Neoproterozoic Cadomian magmatic arc. The Tintageu leucogneiss is a mylonitic unit that was dated previously at 615.6 +4.2-2.3 Ma. The Port du Moulin quartz diorite, which intruded the Tintageu unit, contains a high-strain solid-state deformation fabric that is less intense than, but parallel to, fabrics in the leucogneiss and yields a U-Pb zircon date of 613.5 +2.3-1.5 Ma. The Little Sark quartz diorite also displays solid-state deformation fabrics in addition to relict magmatic textures, and yields a U-Pb zircon date of 611.4 +2.1-1.3 Ma. The North Sark granodiorite is largely penetratively undeformed, exhibits mainly magmatic fabrics and textures and has a U-Pb zircon date of 608.7 +1.1-1.0 Ma. Two fractions of titanite from each intrusion are essentially concordant and are identical within error, with mean dates of 606.5±0.4 Ma (Port du Moulin quartz diorite), 606.2±0.6 Ma (Little Sark quartz diorite), 606.4±0.6 Ma (North Sark granodiorite). The new U-Pb data, in combination with previous U-Pb and 40Ar/ 39Ar data and previous field studies, confirm the syn-tectonic nature of the Sark plutons and quantify the time span (ca. 7 m.y.) required for intrusion and sufficient crystallization of each body to record incremental strain during waning deformation. Titanite U-Pb and hornblende 40Ar/ 39Ar dates mark final cooling about 2 m.y. after intrusion of the last pluton.

  5. The Simpsons program 6-D phase space tracking with acceleration

    SciTech Connect

    Machida, S. )

    1993-12-25

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  6. The Simpsons program 6-D phase space tracking with acceleration

    SciTech Connect

    Machida, S.

    1993-02-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  7. The Simpsons program 6-D phase space tracking with acceleration

    NASA Astrophysics Data System (ADS)

    Machida, S.

    1993-12-01

    A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.

  8. Flavour changing Z ' signals in a 6D inspired model

    NASA Astrophysics Data System (ADS)

    Frère, Jean-Marie; Libanov, Maxim; Mollet, Simon; Troitsky, Sergey

    2016-06-01

    We consider the phenomenology of new neutral gauge bosons with flavour non-diagonal couplings to fermions, inherent in 6D models explaining successfully the hierarchy of masses as well as the mixing for quarks, charged leptons and neutrinos (this model can in particular be credited with the correct prediction of the neutrino mixing angle θ 13). We present a general relation between masses of new gauge bosons and their couplings to fermions. We show that in the current realization of the model, the new heavy bosons are unreachable at LHC but argue why the constraint could be relaxed in the context of a different realization. In view of a more systematic study, we use an effective model inspired by the above to relate directly rare meson decays to possible LHC observations. In terms of effective Lagrangians, this can be seen as the introduction in the model of only one overall scaling parameter to extend our approach without modifying the 4D (gauge) structure.

  9. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  10. Multi-pass cooling for turbine airfoils

    DOEpatents

    Liang, George

    2011-06-28

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  11. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  12. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  13. Cooling arrangement for a gas turbine component

    SciTech Connect

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  14. Is cooling still cool?

    PubMed

    Subramaniam, Ashwin; Tiruvoipati, Ravindranath; Botha, John

    2015-03-01

    Therapeutic hypothermia (TH), where patients are cooled to between 32°C and 36°C for a period of 12-24 hours and then gradually rewarmed, may reduce the risk of ischemic injury to cerebral tissue following a period of insufficient blood flow. This strategy of TH could improve mortality and neurological function in patients who have experienced out-of-hospital cardiac arrest (OOHCA). The necessity of TH in OOHCA was challenged in late 2013 by a fascinating and potentially practice changing publication, which found that targeting a temperature of 36°C had similar outcomes to cooling patients to 33°C. This article reviews the current literature and summarizes the uncertainties and questions raised when considering cooling of patients at risk of hypoxic brain injury. Irrespective of whether TH or targeted temperature management is deployed in patients at risk of hypoxic brain injury, it would seem that avoiding hyperpyrexia is important and that a more rigorous approach to neurological evaluation is mandated. PMID:25423577

  15. Electron cooling

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  16. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  17. Turbine airfoil with laterally extending snubber having internal cooling system

    DOEpatents

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  18. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  19. Personal cooling apparatus and method

    DOEpatents

    Siman-Tov, Moshe; Crabtree, Jerry Allen

    2001-01-01

    A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

  20. Industrial stator vane with sequential impingement cooling inserts

    SciTech Connect

    Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

    2013-08-06

    A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

  1. 6-D, A Process Framework for the Design and Development of Web-based Systems.

    ERIC Educational Resources Information Center

    Christian, Phillip

    2001-01-01

    Explores how the 6-D framework can form the core of a comprehensive systemic strategy and help provide a supporting structure for more robust design and development while allowing organizations to support whatever methods and models best suit their purpose. 6-D stands for the phases of Web design and development: Discovery, Definition, Design,…

  2. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  3. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  4. RF Integration into Helical Magnet for Muon 6-Dimensional Beam Cooling

    SciTech Connect

    Yonehara, K.; Kashikhin, V.; Lamm, M.; Lee, A.; Lopes, M.; Zlobin, A.; Johnson, R.P.; Kahn, S.; Neubauer, M.; /Muons Inc., Batavia

    2009-05-01

    The helical cooling channel is proposed to make a quick muon beam phase space cooling in a short channel length. The challenging part of the helical cooling channel magnet design is how to integrate the RF cavity into the compact helical cooling magnet. This report shows the possibility of the integration of the system.

  5. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  6. Sequential cooling insert for turbine stator vane

    SciTech Connect

    Jones, Russell B; Krueger, Judson J; Plank, William L

    2014-04-01

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  7. Sequential cooling insert for turbine stator vane

    SciTech Connect

    Jones, Russel B; Krueger, Judson J; Plank, William L

    2014-11-04

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  8. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  9. Modelling SF-6D health state preference data using a nonparametric Bayesian method.

    PubMed

    Kharroubi, Samer A; Brazier, John E; Roberts, Jennifer; O'Hagan, Anthony

    2007-05-01

    This paper reports on the findings from applying a new approach to modelling health state valuation data. The approach applies a nonparametric model to estimate SF-6D health state utility values using Bayesian methods. The data set is the UK SF-6D valuation study where a sample of 249 states defined by the SF-6D (a derivative of the SF-36) was valued by a representative sample of the UK general population using standard gamble. The paper presents the results from applying the nonparametric model and comparing it to the original model estimated using a conventional parametric random effects model. The two models are compared theoretically and in terms of empirical performance. The paper discusses the implications of these results for future applications of the SF-6D and further work in this field. PMID:17069909

  10. 17 CFR 270.6d-1 - Exemption for certain closed-end investment companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contain the following information: (1) A brief description of the character of the business and investment... paragraphs (1) and (2) of section 6(d) of the Act. (3) The number of holders of each class of the...

  11. The DEP-6D, a new preference-based measure to assess health states of dependency.

    PubMed

    Rodríguez-Míguez, E; Abellán-Perpiñán, J M; Alvarez, X C; González, X M; Sampayo, A R

    2016-03-01

    In medical literature there are numerous multidimensional scales to measure health states for dependence in activities of daily living. However, these scales are not preference-based and are not able to yield QALYs. On the contrary, the generic preference-based measures are not sensitive enough to measure changes in dependence states. The objective of this paper is to propose a new dependency health state classification system, called DEP-6D, and to estimate its value set in such a way that it can be used in QALY calculations. DEP-6D states are described as a combination of 6 attributes (eat, incontinence, personal care, mobility, housework and cognition problems), with 3-4 levels each. A sample of 312 Spanish citizens was surveyed in 2011 to estimate the DEP-6D preference-scoring algorithm. Each respondent valued six out of the 24 states using time trade-off questions. After excluding those respondents who made two or more inconsistencies (6% out of the sample), each state was valued between 66 and 77 times. The responses present a high internal and external consistency. A random effect model accounting for main effects was the preferred model to estimate the scoring algorithm. The DEP-6D describes, in general, more severe problems than those usually described by means of generic preference-based measures. The minimum score predicted by the DEP-6D algorithm is -0.84, which is considerably lower than the minimum value predicted by the EQ-5D and SF-6D algorithms. The DEP-6D value set is based on community preferences. Therefore it is consistent with the so-called 'societal perspective'. Moreover, DEP-6D preference weights can be used in QALY calculations and cost-utility analysis. PMID:26921836

  12. CF6-6D engine short-term performance deterioration

    NASA Technical Reports Server (NTRS)

    Kramer, W. H.; Paas, J. E.; Smith, J. J.; Wulf, R. H.

    1980-01-01

    Studies conducted as part of the NASA-Lewis CF6 jet engine diagnostics program are summarized. An 82-engine sample of DC-10-10 aircraft engine checkout data that were gathered to define the extent and magnitude of CF6-6D short term performance deterioration were analyzed. These data are substantiated by the performance testing and analytical teardown of CF6-6D short term deterioration engine serial number (ESN) 451507.

  13. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  14. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  15. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  16. Transpiration And Regenerative Cooling Of Rocket Engine

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1989-01-01

    Transpiration cooling extends limits of performance. Addition of transpiration cooling to regeneratively-cooled rocket-engine combustion chamber proposed. Modification improves performance of engine by allowing use of higher chamber pressure. Throat section of combustion-chamber wall cooled by transpiration, while chamber and nozzle sections cooled by fluid flowing in closed channels. Concept applicable to advanced, high-performance terrestrial engines or some kinds of industrial combustion chambers. With proper design, cooling scheme makes possible to achieve higher chamber pressure and higher overall performance in smaller engine.

  17. Steroid-independent male sexual behavior in B6D2F2 male mice.

    PubMed

    McInnis, Christine M; Venu, Samitha; Park, Jin Ho

    2016-09-01

    It is well established that male sexual behavior (MSB) is regulated by gonadal steroids; however, individual differences in MSB, independent of gonadal steroids, are prevalent across a wide range of species, and further investigation is necessary to advance our understanding of steroid-independent MSB. Studies utilizing B6D2F1 hybrid male mice in which a significant proportion retain MSB after long-term orchidectomy, identified as steroid-independent-maters (SI-maters), have begun to unravel the genetic underpinnings of steroid-independent MSB. A recent study demonstrated that steroid-independent MSB is a heritable behavioral phenotype that is mainly passed down from B6D2F1 hybrid SI-maters when crossed with C57BL6J female mice. To begin to uncover whether the strain of the dam plays a role in the inheritance of steroid-independent MSB, B6D2F1 hybrid females were crossed with B6D2F1 hybrid males. While the present study confirms the finding that steroid-independent MSB is a heritable behavioral phenotype and that SI-mater sires are more likely to pass down some components of MSB than SI-non-maters to their offspring, it also reveals that the B6D2F2 male offspring that were identified as SI-maters that displayed the full repertoire of steroid-independent MSB had the same probability of being sired from either a B6D2F1 SI-mater or SI-non-mater. These results, in conjunction with previous findings, indicate that the specific chromosomal loci pattern that codes for steroid-independent MSB in the B6D2F2 male offspring may result regardless of whether the father was a SI-mater or SI-non-mater, and that the maternal strain may be an important factor in the inheritance of steroid-independent MSB. PMID:27476435

  18. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  19. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  20. Cooling assembly for fuel cells

    DOEpatents

    Kaufman, Arthur; Werth, John

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  1. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  2. First-principles calculation of the structural stability of 6d transition metals

    SciTech Connect

    Oestlin, A.; Vitos, L.

    2011-09-15

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  3. Scaling relations of early-type galaxies in the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Magoulas, C.; Colless, M.; Jones, H.; Mould, J.; Springob, C.

    2010-11-01

    Over 10,000 early-type galaxies from the 6dF Galaxy Survey (6dFGS) (Jones, D. H. et al. (2009), Jones et al. (2004)) have been used to determine the Fundamental Plane at optical and near-infrared wavelengths. We find that a maximum likelihood fit to an explicit three-dimensional Gaussian model for the distribution of galaxies in size, surface brightness and velocity dispersion can precisely account for selection effects, censoring and observational errors, leading to precise and unbiased parameters for the Fundamental Plane and its intrinsic scatter.

  4. Maximum likelihood method for fitting the Fundamental Plane of the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Magoulas, C.; Colless, M.; Jones, D.; Springob, C.; Mould, J.

    2010-04-01

    We have used over 10,000 early-type galaxies from the 6dF Galaxy Survey (6dFGS) to construct the Fundamental Plane across the optical and near-infrared passbands. We demonstrate that a maximum likelihood fit to a multivariate Gaussian model for the distribution of galaxies in size, surface brightness and velocity dispersion can properly account for selection effects, censoring and observational errors, leading to precise and unbiased parameters for the Fundamental Plane and its intrinsic scatter. This method allows an accurate and robust determination of the dependencies of the Fundamental Plane on variations in the stellar populations and environment of early-type galaxies.

  5. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  6. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  7. MICE: Its Program of Ionization Cooling Measurements in the Subsequent Steps

    NASA Astrophysics Data System (ADS)

    Snopok, Pavel; MICE Collaboration

    2012-08-01

    The Muon Ionization Cooling Experiment collaboration is constructing a complete unit cell of a muon ionization cooling channel. The set of cooling experiments to be performed and the progress on the construction are described.

  8. Influence of curvature in regenerative cooling system of rocket engine

    NASA Astrophysics Data System (ADS)

    Torres, Y.; Stefanini, L.; Suslov, D.

    2009-09-01

    Thermomechanical loads in rocket engines can be drastically reduced by a reliable cooling system. The regenerative cooling system uses propellants as coolant which flows through milled cooling channels in the chamber walls. Due to centrifugal forces, dynamic secondary motions appear in cooling-channel curvatures, which strongly modify heat transfer. Three-dimensional (3D) numerical calculations have been performed in order to compare this heat flux modification with empirical correlations. Different turbulence models and wall treatments have been tested to develop a complete numerical data base about asymmetrical (concave side) heat transfer in curved cooling channels of rocket engine.

  9. A comparison of the EQ-5D and SF-6D across seven patient groups.

    PubMed

    Brazier, John; Roberts, Jennifer; Tsuchiya, Aki; Busschbach, Jan

    2004-09-01

    As the number of preference-based instruments grows, it becomes increasingly important to compare different preference-based measures of health in order to inform an important debate on the choice of instrument. This paper presents a comparison of two of them, the EQ-5D and the SF-6D (recently developed from the SF-36) across seven patient/population groups (chronic obstructive airways disease, osteoarthritis, irritable bowel syndrome, lower back pain, leg ulcers, post menopausal women and elderly). The mean SF-6D index value was found to exceed the EQ-5D by 0.045 and the intraclass correlation coefficient between them was 0.51. Whilst this convergence lends some support for the validity of these measures, the modest difference at the aggregate level masks more significant differences in agreement across the patient groups and over severity of illness, with the SF-6D having a smaller range and lower variance in values. There is evidence for floor effects in the SF-6D and ceiling effects in the EQ-5D. These discrepancies arise from differences in their health state classifications and the methods used to value them. Further research is required to fully understand the respective roles of the descriptive systems and the valuation methods and to examine the implications for estimates of the impact of health care interventions.

  10. [NORMATIVE VALUES OF SF-6D QUESTIONNAIRE FOR CHILEAN DIABETES PATIENTS].

    PubMed

    Garcia-Gordillo, Miguel A; Collado-Mateo, Daniel; Olivares, Pedro R; Adsuar, José C

    2015-12-01

    Introducción: la diabetes mellitus es una de las enfermedades crónicas de mayor prevalencia e impacto económico a nivel mundial. La diabetes produce un impacto sobre la calidad de vida relacionada con la salud de las personas que la padecen. El cuestionario SF-6D permite evaluar la calidad de vida relacionada con la salud. Es uno de los cuestionarios más usados a nivel mundial, ya que permite conocer las preferencias sociales de los distintos estados de salud. Sin embargo, según nuestro conocimiento no se dispone de los valores normativos de este cuestionario en la población diabética chilena. Objetivo: reportar los datos normativos del cuestionario SF-6D en la población diabética chilena. Métodos: los datos fueron extraídos de la Encuesta Nacional de Salud (ENS 2009-2010) de Chile. En este estudio se incluyen 424 personas que presentan diabetes (143 hombres y 281 mujeres). Los datos se han presentado segregados por sexo y grupo de edad, así como por región, estado civil, hábito tabáquico, nivel de ingresos y estudios. Resultados: el índice de utilidad del SF-6D en mujeres chilenas con diabetes fue de 0,65 (± 0,15), mientras que en hombres fue 0,70 (± 0,15). Menos del 5% de la población declara una utilidad con valor 1. El índice de utilidad del SF-6D en pacientes con diabetes disminuye con la edad, en las situaciones de bajos ingresos y con niveles de educación bajos. Conclusiones: este estudio presenta los valores normativos chilenos del SF-6D derivado del SF-12 en pacientes con diabetes.

  11. Low pressure cooling seal system for a gas turbine engine

    SciTech Connect

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  12. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  13. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  14. A muon beam for cooling experiments

    SciTech Connect

    Jansson, Andreas; Balbekov, V.I.; Broemmelsiek, Daniel Robert; Hu, M.; Mokhov, Nikolai V.; Yonehara, K.; /Fermilab

    2007-06-01

    Within the framework of the Fermilab Muon Collider Task Force, the possibility of developing a dedicated muon test beam for cooling experiments has been investigated. Cooling experiments can be performed in a very low intensity muon beam by tracking single particles through the cooling device. With sufficient muon intensity and large enough cooling decrement, a cooling demonstration experiment may also be performed without resolving single particle trajectories, but rather by measuring the average size and position of the beam. This allows simpler, and thus cheaper, detectors and readout electronics to be used. This paper discusses muon production using 400MeV protons from the Linac, decay channel and beamline design, as well as the instrumentation required for such an experiment, in particular as applied to testing the Helical Cooling Channel (HCC) proposed by Muons Inc.

  15. Comparison of SF-6D and EQ-5D Scores in Patients With Breast Cancer

    PubMed Central

    Yousefi, Mahmood; Najafi, Safa; Ghaffari, Shahram; Mahboub-Ahari, Alireza; Ghaderi, Hossein

    2016-01-01

    Background Utility values are a key component of a cost-utility analysis. The EQ-5D and SF-6D are two commonly used measures for deriving utilities. Of particular importance is assessing the performance of these instruments in terms of validity. Objectives This study aimed to compare the performance of the EQ-5D and the SF-6D in different states of breast cancer. Patients and Methods This was a cross-sectional study of 163 patients with breast cancer who attended the breast cancer subspecialty clinic affiliated with the breast cancer research center (BCRC) at ACECR, in Tehran, Iran, and were consecutively recruited. Patients completed several questionnaires, including the EQ-5D, SF-36, and general questions regarding their demographic characteristics. Utility values for different states of breast cancer were obtained using predetermined algorithms for the EQ-5D and SF-6D. The distribution of the utility values and the differences between the different states for both instruments were statistically assessed. Furthermore, the agreement between the two instruments was evaluated using intra-class correlation coefficients and Bland-Altman plots. Results The mean and median EQ-5D utility scores for the total sample were 0.685 and 0.761, respectively. The mean SF-6D utility score for the total sample was 0.653, and the median utility score was 0.640. The mean utility values of the EQ-5D for “state P,” “state R,” “state S,” and “state M” were estimated as 0.674, 0.718, 0.730, and 0.552, respectively. The SF-6D provided mean utility values of 0.638, 0.677, 0.681, and 0.587 for those states. Both instruments assigned statistically significant (P < 0.01) scores for different states. The intra-class correlation for the two measures was 0.677 (95% confidence interval (CI): 0.558 - 0.764). The Bland-Altman plot indicated a better agreement on the higher values and that at higher values, the EQ-5D yields a higher score than the SF-6D; this relationship was

  16. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  17. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  18. ATOMIC AND MOLECULAR PHYSICS: Theoretical analysis of ionic autoionization spectra of lanthanum via an intermediate state [Xe]5d6d 1P1

    NASA Astrophysics Data System (ADS)

    Zhong, Yin-Peng; Jia, Feng-Dong; Zhong, Zhi-Ping

    2009-10-01

    In the framework of multi-channel quantum defect theory, eigenquantum defects μα and the transformation matrices Uiα of La+ are calculated from first principles by relativistic multi-channel theory, while the dipole matrix elements Dα are obtained by fitting with experimental data. Then the ionic autoionization spectra of lanthanum via the intermediate state [Xe]5d6d 1P1 in the energy region of 90213-91905 cm-1 are obtained. Experimental peaks are classified and assigned by comparing with the corresponding calculated spectra. More specifically, four ionic autoionization Rydberg series converging to La2+ 5d5/2 2D5/2 and several states converging to higher lying states of La2+ are found and assigned.

  19. Periodic orbits of perturbed elliptic oscillators in 6D via averaging theory

    NASA Astrophysics Data System (ADS)

    Lembarki, Fatima Ezzahra; Llibre, Jaume

    2016-10-01

    We provide sufficient conditions on the energy levels to guarantee the existence of periodic orbits for the perturbed elliptic oscillators in 6D using the averaging theory. We give also an analytical estimation of the shape of these periodic orbits parameterized by the energy. The Hamiltonian system here studied comes either from the analysis of the galactic dynamics, or from the motion of the atomic particles in physics.

  20. Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

    PubMed

    Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian

    2015-01-01

    High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).

  1. Geometric engineering, mirror symmetry and 6{d}_{(1,0)}to 4{d}_{(N=2)}

    NASA Astrophysics Data System (ADS)

    Del Zotto, Michele; Vafa, Cumrun; Xie, Dan

    2015-11-01

    We study compactification of 6 dimensional (1,0) theories on T 2. We use geometric engineering of these theories via F-theory and employ mirror symmetry technology to solve for the effective 4d N=2 geometry for a large number of the (1 ,0) theories including those associated with conformal matter. Using this we show that for a given 6d theory we can obtain many inequivalent 4d N=2 SCFTs. Some of these respect the global symmetries of the 6d theory while others exhibit SL(2 , ℤ) duality symmetry inherited from global diffeomorphisms of the T 2. This construction also explains the 6d origin of moduli space of 4d affine ADE quiver theories as flat ADE connections on T 2. Among the resulting 4 d N=2 CFTs we find theories whose vacuum geometry is captured by an LG theory (as opposed to a curve or a local CY geometry). We obtain arbitrary genus curves of class S with punctures from toroidal compactification of (1 , 0) SCFTs where the curve of the class S theory emerges through mirror symmetry. We also show that toroidal compactification of the little string version of these theories can lead to class S theories with no punctures on arbitrary genus Riemann surface.

  2. Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-D-glucan (lasiodiplodan).

    PubMed

    Vasconcelos, Ana Flora D; Dekker, Robert F H; Barbosa, Aneli M; Carbonero, Elaine R; Silveira, Joana L M; Glauser, Bianca; Pereira, Mariana Sá; Corradi da Silva, Maria de Lourdes

    2013-02-15

    An exocellular β-(1→6)-D-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-D-glucan were investigated by UV-vis, FT-IR and (13)C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and (13)C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-D-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests. PMID:23399236

  3. SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac

    SciTech Connect

    Han, Z; Yip, S; Lewis, J; Mannarino, E; Friesen, S; Wagar, M; Hacker, F

    2015-06-15

    Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTrac and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.

  4. Prospects of laser cooling in atomic thallium

    SciTech Connect

    Fan, Isaac; Chen, Tzu-Ling; Liu, Yu-Sheng; Lien, Yu-Hung; Liu, Yi-Wei; Shy, Jow-Tsong

    2011-10-15

    One of the most precisely determined upper limits for the electron electric dipole moment (EDM) is set by the thallium (Tl) atomic beam experiment. One way to enhance the sensitivity of the atomic beam setup is to laser cool the Tl atoms to reduce the EDM-like phase caused by the Exv effect. In this report, a cooling scheme based on the 6P{sub 3/2}(F=2){r_reversible}6D{sub 5/2}(F{sup '}=3) transition in Tl is proposed. The absolute frequency measurement of this nearly closed-cycle transition was performed in an atomic beam apparatus. Two Ti:sapphire lasers were frequency-doubled using enhancement cavities in X-type configurations to provide the needed 377- and 352-nm light sources for the optical pumping and cooling transitions, respectively. The absolute frequency of this cooling transition is determined to be 851 634 646(56) MHz.

  5. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  6. Global cooling?

    PubMed

    Damon, P E; Kunen, S M

    1976-08-01

    The world's inhabitants, including Scientists, live primarily in the Northern Hemisphere. It is quite natural to be concerned about events that occur close to home and neglect faraway events. Hence, it is not surprising that so little attention has been given to the Southern Hemisphere. Evidence for global cooling has been based, in large part, on a severe cooling trend at high northern latitudes. This article points out that the Northern Hemisphere cooling trend appears to be out of phase with a warming trend at high latitudes in the Southern Hemisphere. The data are scanty. We cannot be sure that these temperature fluctuations are be not the result of natural causes. How it seems most likely that human activity has already significantly perturbed the atmospheric weather system. The effect of particulate matter pollution should be most severe in the highly populated and industrialized Northern Hemisphere. Because of the rapid diffusion of CO(2) molecules within the atmosphere, both hemispheres will be subject to warming due to the atmospheric (greenhouse) effect as the CO(2) content of the atmosphere builds up from the combustion of fossil fuels. Because of the differential effects of the two major sources of atmospheric pollution, the CO(2) greenhouse effect warming trend should first become evident in the Southern Hemisphere. The socioeconomic and political consequences of climate change are profound. We need an early warning system such as would be provided by a more intensive international world weather watch, particularly at high northern and southern latitudes.

  7. Turbine airfoil with an internal cooling system having vortex forming turbulators

    SciTech Connect

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  8. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  9. 40 CFR 35.1605-9 - Indian Tribe set forth at 40 CFR 130.6(d).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Publicly Owned Freshwater Lakes § 35.1605-9 Indian Tribe set forth at 40 CFR 130.6(d). A Tribe meeting the requirements set forth at 40 CFR 130.6(d). ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Indian Tribe set forth at 40 CFR...

  10. 40 CFR 35.1605-9 - Indian Tribe set forth at 40 CFR 130.6(d).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Publicly Owned Freshwater Lakes § 35.1605-9 Indian Tribe set forth at 40 CFR 130.6(d). A Tribe meeting the requirements set forth at 40 CFR 130.6(d). ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Indian Tribe set forth at 40 CFR...

  11. 40 CFR 35.1605-9 - Indian Tribe set forth at 40 CFR 130.6(d).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Publicly Owned Freshwater Lakes § 35.1605-9 Indian Tribe set forth at 40 CFR 130.6(d). A Tribe meeting the requirements set forth at 40 CFR 130.6(d). ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Indian Tribe set forth at 40 CFR...

  12. 40 CFR 35.1605-9 - Indian Tribe set forth at 40 CFR 130.6(d).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Publicly Owned Freshwater Lakes § 35.1605-9 Indian Tribe set forth at 40 CFR 130.6(d). A Tribe meeting the requirements set forth at 40 CFR 130.6(d). ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Indian Tribe set forth at 40 CFR...

  13. 40 CFR 35.1605-9 - Indian Tribe set forth at 40 CFR 130.6(d).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Publicly Owned Freshwater Lakes § 35.1605-9 Indian Tribe set forth at 40 CFR 130.6(d). A Tribe meeting the requirements set forth at 40 CFR 130.6(d). ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Indian Tribe set forth at 40 CFR...

  14. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  15. 16Oxygen irradiation enhances cued fear memory in B6D2F1 mice

    NASA Astrophysics Data System (ADS)

    Raber, Jacob; Marzulla, Tessa; Kronenberg, Amy; Turker, Mitchell S.

    2015-11-01

    The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of 16O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. 16O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with 16O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following 16O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of 16O ion exposure.

  16. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  17. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  18. Charge Separation for Muon Collider Cooling

    SciTech Connect

    Palmer, R.B.; Fernow; R.C.

    2011-03-28

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  19. Ionization Cooling Using a Parametric Resonance

    SciTech Connect

    Y.S. Derbenev; R.P. Johnson

    2005-05-16

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is presently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. A new idea to combine ionization cooling with parametric resonances has been developed that will lead to beams with much smaller sizes so that high luminosity in a muon collider can be achieved with fewer muons. In the linear channel described here, a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' as they pass down the channel. Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism where each absorber is followed by RF cavities. We discuss the theory of Parametric-resonance Ionization Cooling, including the sensitivity to aberrations and the need to start with a beam that has already been cooled adequately.

  20. Incorporation of a Rovibrational Analysis of OC-H_2O Into 6-D Morphed Potentials of the Complex

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Springer, Sean D.; McElmurry, Blake A.; Leonov, Igor I.; Lucchese, Robert R.; Bevan, John W.; Coudert, L. H.

    2016-06-01

    Rovibrational transitions associated with tunneling states in the water bending vibration in OC-H_2O and other available spectroscopic data are included in generation of 6-D morphed potentials of the complex. Six-dimension ab initio interaction potentials are initially calculated for the complex to provided the initial functions for the potential morphing. The available spectroscopic data is then used to fit and generate 6-D morphed potentials. Previous prediction of the D_0 of the complex will be incorporated in the analysis. Finally, intermolecular frequencies of the complex will be predicted using the 6-D morphed potentials involving the CO stretching and the H_2O bending vibrations.

  1. Physical properties of the 6d-series elements from density functional theory: Close similarity to lighter transition metals

    NASA Astrophysics Data System (ADS)

    Gyanchandani, Jyoti; Sikka, S. K.

    2011-05-01

    We have calculated some of the physical properties of the recently discovered 6d elements by density functional theory. Comparison with those of the 5d metals shows that there is a close analogy for the crystal structures, for parabolic variation of equilibrium atomic volumes and bulk moduli, and an almost linearly increasing behavior of the pressure derivative of the bulk modulus across the 6d series. The Friedel model that is used to explain these trends for homologous series also holds for 6d metals. These elements also seem to be placed correctly in the Periodic Table.

  2. Biosynthesis of galactogen: purification of a 1. -->. 6 D-galactosyltransferase from Helix pomatia

    SciTech Connect

    Goudsmit, E.M.

    1986-05-01

    A (1 ..-->.. 6) D-galactosyltransferase from a pellet fraction (8000xg) of Helix pomatia albumen gland has been purified over 2000-fold by affinity chromatography on UDP-p-amino-phenyl-Sepharose. The enzyme catalyzes transfer of D-galactose from UDP-galactose to a 1 ..-->.. 6 linkage on acceptor H. pomatia galactogen. Three other polymers served as acceptors; beef lung galactan, Lymnaea stagnalis galactogen and arabinogalactan from larch wood. To determine the linkage of added galactose termini, acceptor galactogen of H. pomatia that had been tritiated by treatment with galactose oxidase and (/sup 3/H)KBH/sub 4/ was incubated with UDP-D-galactose and purified enzyme extract. /sup 3/H-galactogen reaction product was recovered, methylated, hydrolyzed and acetylated; tritiated derivatives were identified by collection of effluent fractions from gas chromatography.

  3. Longitudinal halo in beam bunches with self-consistent 6-D distributions

    NASA Astrophysics Data System (ADS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.

    1998-11-01

    We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation.

  4. Six Dimensional Bunch Merging for Muon Collider Cooling

    SciTech Connect

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A muon collider requires single, intense, muon bunches with small emittances in all six dimensions. It is most efficient to initally phase-rotate the muons into many separate bunches, cool these bunches in six dimensions (6D), and, when cool enough, merge them into single bunches (one of each sign). Previous studies only merged in longitudinal phase space (2D). In this paper we describe merging in all six dimensions (6D). The scheme uses rf for longitudinal merging, and kickers and transports with differing lengths (trombones) for transverse merging. Preliminary simulations, including incorporation in 6D cooling, is described. Muons are efficiently generated by pion decay, but they then have very large emittances. A muon collider requires low emittances, which can be achieved using transverse ionization cooling, combined with emittance exchange using dispersion and shaped absorbers. For efficient capture, muons are first phase-rotated by rf into a train of many bunches. But for high luminosity, we need just one bunch of each sign, so after some initial cooling, these bunches should be merged.

  5. Cooling of debris beds

    SciTech Connect

    Barleon, L.; Thomauske, K.; Werie, H.

    1984-04-01

    The dependence of the dryout heat flux for volume-heated particulate beds on bed height (less than or equal to40 cm), particle diameter (0.06 to 16 mm), stratification and boundary conditions (saturated and subcooled liquid, adiabatic and cooled bottom and sidewalls) has been determined for water and Freon-113. Channel penetration through subcooled layers and ''downward boiling'' due to capillarity effects have been observed. Different types of bed disturbances have been identified, and their effect on dryout has been studied. Using existing theoretical models, which have been verified by the experiments, the upper limit of the thermal load on support structures has been calculated as a function of the particle size and bottom temperature for reactor accident conditions (Pu/U-oxide particles in sodium).

  6. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner

    PubMed Central

    Dutta, Nirmal

    2016-01-01

    ABSTRACT RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. PMID:27493202

  7. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner.

    PubMed

    Dutta, Nirmal; Seo, Seongjin

    2016-09-15

    RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia.

  8. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner.

    PubMed

    Dutta, Nirmal; Seo, Seongjin

    2016-01-01

    RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. PMID:27493202

  9. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  10. SU-F-BRE-05: Development and Evaluation of a Real-Time Robotic 6D Quality Assurance Phantom

    SciTech Connect

    Belcher, AH; Liu, X; Grelewicz, Z; Wiersma, RD

    2014-06-15

    Purpose: A 6 degree-of-freedom robotic phantom capable of reproducing dynamic tumor motion in 6D was designed to more effectively match solid tumor movements throughout pre-treatment scanning and radiation therapy. With the abundance of optical and x-ray 6D real-time tumor tracking methodologies clinically available, and the substantial dosimetric consequences of failing to consider tumor rotation as well as translation, this work presents the development and evaluation of a 6D instrument with the facility to improve quality assurance. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the so-called Stewart-Gough parallel kinematics platform archetype. The device was then controlled using an inverse kinematics formulation, and precise movements in all six degrees of freedom (X, Y, Z, pitch, roll, and yaw) as well as previously obtained cranial motion, were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system (Polaris, NDI), and quantitatively compared to the input trajectory. Thus, the accuracy and repeatability of 6D motion was investigated and the phantom performance was characterized. Results: Evaluation of the 6D platform demonstrated translational RMSE values of 0.196 mm, 0.260 mm, and 0.101 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.068 degrees, 0.0611 degrees, and 0.095 degrees over 10 degrees of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced cranial trajectories over 15 minutes, with a maximal RMSE of 0.044 mm translationally and 0.036 degrees rotationally. Conclusion: This 6D robotic phantom has proven to be accurate under clinical standards and capable of reproducing tumor motion in 6D. Consequently, such a robotics device has the potential to serve as a more effective system for IGRT QA that involves both translational and

  11. Laminar immersion cooling of microelectronic chips mounted to conductive substrates

    SciTech Connect

    Ghetzler, R.; Funk, D.C.; Kruse, N.A.; Copple, E.J.

    1995-12-31

    Experiments were performed to determine the thermal performance obtainable from laminar immersion cooling of sparsely spaced high powered microelectronic devices mounted to conductive substrates. The test substrates formed the lower wall of a narrow channel which was cooled with FC-40 dielectric fluid. The research was motivated by the need to support development of cooling technology for compact low profile electronic devices. The channel height constraint and pressure drop considerations precluded use of turbulent coolant flow. The combination of laminar coolant flow and substrate conduction provided a cooling solution.

  12. The Milky Way's halo in 6D: Gaia's Radial Velocity Spectrometer performance

    NASA Astrophysics Data System (ADS)

    Seabroke, George; Cropper, Mark; Katz, David; Sartoretti, Paola; Panuzzo, Pasquale; Marchal, Olivier; Gueguen, Alain; Benson, Kevin; Dolding, Chris; Huckle, Howard; Smith, Mike; Baker, Steve

    2016-08-01

    Gaia's Radial Velocity Spectrometer (RVS) has been operating in routine phase for over one year since initial commissioning. RVS continues to work well but the higher than expected levels of straylight reduce the limiting magnitude. The end-of-mission radial-velocity (RV) performance requirement for G2V stars was 15 km s-1 at V = 16.5 mag. Instead, 15 km s-1 precision is achieved at 15 < V < 16 mag, consistent with simulations that predict a loss of 1.4 mag. Simulations also suggest that changes to Gaia's onboard software could recover ~0.14 mag of this loss. Consequently Gaia's onboard software was upgraded in April 2015. The status of this new commissioning period is presented, as well as the latest scientific performance of the on-ground processing of RVS spectra. We illustrate the implications of the RVS limiting magnitude on Gaia's view of the Milky Way's halo in 6D using the Gaia Universe Model Snapshot (GUMS).

  13. The Milky Way’s halo in 6D: Gaia's Radial Velocity Spectrometer performance

    NASA Astrophysics Data System (ADS)

    Seabroke, George; Cropper, Mark; Katz, David; Sartoretti, Paola; Panuzzo, Pasquale; Marchal, Olivier; Gueguen, Alain; Benson, Kevin; Dolding, Chris; Huckle, Howard; Smith, Mike; Baker, Steve

    2015-08-01

    Gaia's Radial Velocity Spectrometer (RVS) has been operating in routine phase for nearly one year since initial commissioning. RVS continues to work well but the higher than expected levels of stray light reduce the limiting magnitude. The end-of-mission radial velocity performance requirements are 15 km/s for G2V stars at V = 16.5 mag. 15 km/s accuracy is achieved at V ~ 15 mag, in agreement with simulations that predict a loss of 1.4 mag. Simulations also suggest that changes to Gaia’s onboard software could recover ~0.1 mag of this loss. Consequently Gaia's onboard software will be upgraded in spring/summer 2015 (TBC). The status of this new commissioning period will be presented, as well as the latest scientific performance of the on-ground processing of RVS spectra. The implications of the RVS limiting magnitude on Gaia’s view of the Milky Way’s halo in 6D will be illustrated using the Gaia Universe Model Snapshot (GUMS).

  14. 28Silicon Irradiation Impairs Contextual Fear Memory in B6D2F1 Mice.

    PubMed

    Raber, Jacob; Marzulla, Tessa; Stewart, Blair; Kronenberg, Amy; Turker, Mitchell S

    2015-06-01

    The space radiation environment consists of multiple species of charged particles, including (28)Si, (48)Ti and protons that may impact cognition, but their damaging effects have been poorly defined. In mouse studies, C57Bl6/J homozygous wild-type mice and genetic mutant mice on a C57Bl6/J background have typically been used for assessing effects of space radiation on cognition. In contrast, little is known about the radiation response of mice on a heterozygous background. Therefore, in the current study we tested the effects of (28)Si, (48)Ti and proton radiation on hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory in C57Bl6/J × DBA2/J F1 (B6D2F1) mice three months after irradiation. Contextual fear memory was impaired at a 1.6 Gy dose of (28)Si radiation, but not cued fear memory. (48)Ti or proton irradiation did not affect either type of memory. Based on earlier space radiation cognitive data in C57Bl6/J mice, these data highlight the importance of including different genetic backgrounds in studies aimed at assessing cognitive changes after exposure to space radiation.

  15. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  16. Inheritance of steroid-independent male sexual behavior in male offspring of B6D2F1 mice.

    PubMed

    McInnis, Christine M; Bonthuis, Paul J; Rissman, Emilie F; Park, Jin Ho

    2016-04-01

    The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as "maters"), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or "non-maters". A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior.

  17. A Comparison between the EQ-5D and the SF-6D in Patients with Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Chen, Jing; Wong, Carlos K. H.; McGhee, Sarah M.; Pang, Polly K. P.; Yu, Wai-Cho

    2014-01-01

    Background The appropriate use of generic preference-based measures determines the accuracy of disease assessment and further decision on healthcare policy using quality adjusted life years. The discriminative capacity of different instruments would differ across disease groups. Our study was to examine the difference in utility scores for COPD patients measured by EQ-5D and SF-6D and to assist the choice of a proper instrument in this disease group. Methods Differences of mean utility scores of EQ-5D and SF-6D in groups defined by socio-demographic characteristics, comorbidities, health service utilisation and severity of illness were tested using Mann-Whitney test, t-test, Kruskal-Wallis test, Pearson’s correlation coefficient and ANOVA, as appropriate. The discriminative properties of the two instruments were compared against indicators of quality of life using receiver operating characteristic curves. The statistical significance of the area under the curves (AUC) was tested by ANOVA and F-statistics used to compare the efficiency with which each instrument discriminated between disease severity groups. Results Mean utility scores of EQ-5D and SF-6D were 0.644 and 0.629 respectively in the 154 subjects included in the analysis. EQ-5D scores were significantly higher than SF-6D in groups less severe and these differences corresponded to a minimally important difference of greater than 0.03 (p<0.001). EQ-5D and SF-6D scores were strongly correlated across the whole sample (r = 0.677, p<0.001) and in pre-defined groups (r>0.5 and p<0.05 for all correlation coefficients). AUCs were above 0.5 against the indicators of health-related quality of life for both instruments. F-ratios suggested SF-6D was more efficient in discriminating cases of different disease severity than EQ-5D. Conclusions Both EQ-5D and SF-6D appeared to be valid preference-based measures in Chinese COPD patients. SF-6D was more efficient in detecting differences among subgroups with

  18. Identification of Rab41/6d Effectors Provides an Explanation for the Differential Effects of Rab41/6d and Rab6a/a' on Golgi Organization.

    PubMed

    Liu, Shijie; Majeed, Waqar; Kudlyk, Tetyana; Lupashin, Vladimir; Storrie, Brian

    2016-01-01

    Unexpectedly, members of the Rab VI subfamily exhibit considerable variation in their effects on Golgi organization and trafficking. By fluorescence microscopy, neither depletion nor overexpression of the GDP-locked form of Rab6a/a', the first trans Golgi-associated Rab protein discovered, affects Golgi ribbon organization while, on the other hand, both Rab41/6d depletion and overexpression of GDP-locked form cause Golgi fragmentation into a cluster of punctate elements, suggesting that Rab41/6d has an active role in maintenance of Golgi ribbon organization. To establish a molecular basis for these differences, we screened for Rab41/6d interacting proteins by yeast two-hybrid assay. 155 non-repetitive hits were isolated and sequenced, and after searching in NCBI database, 102 different proteins and protein fragments were identified. None of these hits overlapped with any published Rab6a/a' effector. Eight putative Rab41 interactors involved in membrane trafficking were found. Significantly, these exhibited a preferential interaction with GTP- vs. GDP-locked Rab41/6d. Of the 8 hits, the dynactin 6, syntaxin 8, and Kif18A plasmids were the only ones expressing the full-length protein. Hence, these 3 proteins were selected for further study. We found that depletion of dynactin 6 or syntaxin 8, but not Kif18A, resulted in a fragmented Golgi apparatus that displayed a Rab41/6d knockdown phenotype, i.e., the Golgi apparatus was disrupted into a cluster of punctate Golgi elements. Co-immunoprecipation experiments verified that the interaction of dynactin 6 and syntaxin 8 with GTP-locked Rab41/6d was stronger than that with wild type Rab41/6d and least with the GDP-locked form. In contrast, co-immunoprecipitation interaction with Rab6a was greatest with the GDP-locked Rab6a, suggestive of a non-physiological interaction. In conclusion, we suggest that dynactin 6, a subunit of dynactin complex, the minus-end-directed, dynein motor, provides a sufficient molecular basis to

  19. Identification of Rab41/6d Effectors Provides an Explanation for the Differential Effects of Rab41/6d and Rab6a/a' on Golgi Organization.

    PubMed

    Liu, Shijie; Majeed, Waqar; Kudlyk, Tetyana; Lupashin, Vladimir; Storrie, Brian

    2016-01-01

    Unexpectedly, members of the Rab VI subfamily exhibit considerable variation in their effects on Golgi organization and trafficking. By fluorescence microscopy, neither depletion nor overexpression of the GDP-locked form of Rab6a/a', the first trans Golgi-associated Rab protein discovered, affects Golgi ribbon organization while, on the other hand, both Rab41/6d depletion and overexpression of GDP-locked form cause Golgi fragmentation into a cluster of punctate elements, suggesting that Rab41/6d has an active role in maintenance of Golgi ribbon organization. To establish a molecular basis for these differences, we screened for Rab41/6d interacting proteins by yeast two-hybrid assay. 155 non-repetitive hits were isolated and sequenced, and after searching in NCBI database, 102 different proteins and protein fragments were identified. None of these hits overlapped with any published Rab6a/a' effector. Eight putative Rab41 interactors involved in membrane trafficking were found. Significantly, these exhibited a preferential interaction with GTP- vs. GDP-locked Rab41/6d. Of the 8 hits, the dynactin 6, syntaxin 8, and Kif18A plasmids were the only ones expressing the full-length protein. Hence, these 3 proteins were selected for further study. We found that depletion of dynactin 6 or syntaxin 8, but not Kif18A, resulted in a fragmented Golgi apparatus that displayed a Rab41/6d knockdown phenotype, i.e., the Golgi apparatus was disrupted into a cluster of punctate Golgi elements. Co-immunoprecipation experiments verified that the interaction of dynactin 6 and syntaxin 8 with GTP-locked Rab41/6d was stronger than that with wild type Rab41/6d and least with the GDP-locked form. In contrast, co-immunoprecipitation interaction with Rab6a was greatest with the GDP-locked Rab6a, suggestive of a non-physiological interaction. In conclusion, we suggest that dynactin 6, a subunit of dynactin complex, the minus-end-directed, dynein motor, provides a sufficient molecular basis to

  20. Perturbative calculations in space-time having extra dimensions: The 6D single axial box anomaly

    NASA Astrophysics Data System (ADS)

    Fonseca, M. V. S.; Dallabona, G.; Battistel, O. A.

    2014-11-01

    A detailed investigation about the 6D single axial box anomalous amplitude is presented. The superficial degree of divergence involved, in the one-loop perturbative calculations, is quadratic and the corresponding theory is nonrenormalizable. In spite of this, we show that the phenomenon of anomaly can be clearly characterized in a completely analogous way as that of 4D single axial triangle anomaly. The required calculations are made within the context of a novel calculational strategy where the amplitudes are not modified in intermediary steps. Divergent integrals are, in fact, not really solved. Adequate representations for the internal propagators are adopted according to the degree of divergence involved, so that when the last Feynman rule is taken (integration over the loop momentum) all the dependence on the internal (arbitrary) momenta are placed only in finite integrals. In the divergent structures emerging, no physical parameter is present and such objects are not really integrated. Only very general properties are assumed for such quantities which are universal (all space-time dimensions). The consistency of the perturbative calculations fixes some relations among the divergent integrals so that all the potentially ambiguous terms can be automatically removed. In spite of the absence of ambiguities, the emerging results allow us to give a clear and transparent description of the anomaly. The present investigation confirms the point of view stated by the same prescription for the well-known 2D axial-vector (AV) two-point and 4D single (AVV) and triple (AAA) axial-vector anomalies: the anomalous amplitudes need not be assumed as ambiguous quantities to allow an adequate description of the anomalies. We show also that a surprising, but natural, connection between the coupling of fermions with a pseudoscalar tensor field is found. In addition, we show that the crucial mathematical aspects of the problem are deeply related to a recently arisen controversy

  1. Semantic data association for planar features in outdoor 6D-SLAM using lidar

    NASA Astrophysics Data System (ADS)

    Ulas, C.; Temeltas, H.

    2013-05-01

    Simultaneous Localization and Mapping (SLAM) is a fundamental problem of the autonomous systems in GPS (Global Navigation System) denied environments. The traditional probabilistic SLAM methods uses point features as landmarks and hold all the feature positions in their state vector in addition to the robot pose. The bottleneck of the point-feature based SLAM methods is the data association problem, which are mostly based on a statistical measure. The data association performance is very critical for a robust SLAM method since all the filtering strategies are applied after a known correspondence. For point-features, two different but very close landmarks in the same scene might be confused while giving the correspondence decision when their positions and error covariance matrix are solely taking into account. Instead of using the point features, planar features can be considered as an alternative landmark model in the SLAM problem to be able to provide a more consistent data association. Planes contain rich information for the solution of the data association problem and can be distinguished easily with respect to point features. In addition, planar maps are very compact since an environment has only very limited number of planar structures. The planar features does not have to be large structures like building wall or roofs; the small plane segments can also be used as landmarks like billboards, traffic posts and some part of the bridges in urban areas. In this paper, a probabilistic plane-feature extraction method from 3DLiDAR data and the data association based on the extracted semantic information of the planar features is introduced. The experimental results show that the semantic data association provides very satisfactory result in outdoor 6D-SLAM.

  2. Efficient needle plasma actuators for flow control and surface cooling

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata

    2015-07-01

    We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.

  3. Comparison of capsular genes of Streptococcus pneumoniae serotype 6A, 6B, 6C, and 6D isolates.

    PubMed

    Song, Jae-Hoon; Baek, Jin Yang; Ko, Kwan Soo

    2011-05-01

    Recently, Streptococcus pneumoniae serotypes 6C and 6D have been identified. It is thought that they emerged by the replacement of wciN(β) in the capsular loci of serotypes 6A and 6B, respectively. However, their evolution has not been unveiled yet. To investigate the evolution of four serotypes of S. pneumoniae serogroup 6, four genes of the capsular polysaccharide synthesis (cps) locus, wchA, wciN, wciO, and wciP, of isolates of S. pneumoniae serotypes 6A, 6B, 6C, and 6D were sequenced. Multilocus sequence typing (MLST) was performed to investigate their genetic backgrounds. The wchA gene of serotype 6C and 6D isolates was distinct from that of serotype 6A and 6B isolates, which may suggest cotransfer of wchA with wciN(β). Otherwise, serotypes 6C and 6D displayed different genetic backgrounds from serotypes 6A and 6B, which was suggested by MLST analysis. In addition, serotype 6C isolates showed distinct wciP polymorphisms from other serotypes, which also indicated that serotype 6C had not recently originated from serotype 6A. Although serotype 6D shared the same amino acid polymorphisms of wciO with serotype 6B, wciP of serotype 6D differed from that of serotype 6B. The data indicate the implausibility of the scenario of a recent emergence of the cps locus of serotype 6D by genetic recombination between serotypes 6B and 6C. In addition, five serotype 6A and 6B isolates (6X group) displayed cps loci distinct from those of other isolates. The cps locus homogeneity and similar sequence types in MLST analysis suggest that most of the 6X group of isolates originated from the same ancestor and that the entire cps locus might have recently been transferred from an unknown origin. Serotype 6B isolates showed two or more cps locus subtypes, indicating a recombination-mediated mosaic structure of the cps locus of serotype 6B. The collective data favor the emergence of cps loci of serotypes 6A, 6B, 6C, and 6D by complicated recombination.

  4. A solvable model for fermion masses on a warped 6D world with the extra 2D sphere

    NASA Astrophysics Data System (ADS)

    Kokado, Akira; Saito, Takesi

    2015-03-01

    In a warped 6D world with an extra two-dimensional sphere, we propose an exactly solvable model for fermion masses with zero mode. The warp factor is given by ϕ(θ, φ) = sin θcos φ, which is a solution to the 6D Einstein equation with the bulk cosmological constant Λ and the energy-momentum tensor of the bulk matter fields. Our model provides another possibility of obtaining fermion zero mode, rather than traditional model based on Dirac's monopole.

  5. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    NASA Astrophysics Data System (ADS)

    Hart, T. L.

    2010-03-01

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  6. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  7. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  8. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  9. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  11. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+.

    PubMed

    Kromann, Jimmy C; Christensen, Anders S; Steinmann, Casper; Korth, Martin; Jensen, Jan H

    2014-01-01

    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction energy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values within 0.02 kcal/mol of one another. The main difference is that the geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3 or more imaginary frequencies using PM6-D3H+ implemented in GAMESS, while the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed, e.g., when computing vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible. PMID:25024918

  12. "Anomalous" excitation in hydrogen-bonded molecular crystals - a Raman scattering study of specifically deuterated acetanilide (C 6D 5-CONH-CD 3)

    NASA Astrophysics Data System (ADS)

    Sauvajol, J. L.; De Nunzio, G.; Almairac, R.; Moret, J.; Barthés, M.; Bataillon, Place E.

    1991-01-01

    The focus of experimental and theoretical works about crystalline Acetanilide has been the "anomalous" temperature-dependent ir absorption and Raman peaks at about 1650 cm -1 and the multiband structure in the N-H stretch region. A lively discussion about the assignment of these "anomalous" bands has arisen and is still in progress. The present Raman experiments should be placed in this context as an attempt to identify the molecular degrees of freedom which originate the "anomalous" bands. In this aim Raman experiments have been performed on specifically deuterated Acetanilide [C 6D 5-CONH-CD 3] single crystal in the low-frequency (phonon) and C=O stretching regions. On cooling a distinct band at about 1495 cm -1 increases in intensity. We assign this peak to the equivalent of the 1650 cm -1 band in Acetanilide. The temperature dependence of this Raman line was studied. The results are discussed in the light of the models proposed to explain the anomalous behaviour of the 1650 cm -1 Raman line in Acetanilide.

  13. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  14. On analog simulation of ionization cooling of muons

    SciTech Connect

    Xie, Ming

    2001-06-18

    Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo.

  15. Internally Cooled Monolithic Silicon Nitride Aerospace Components

    NASA Technical Reports Server (NTRS)

    Best, Jonathan E.; Cawley, James D.; Bhatt, Ramakrishna T.; Fox, Dennis S.; Lang, Jerry (Technical Monitor)

    2000-01-01

    A set of rapid prototyping (RP) processes have been combined with gelcasting to make ceramic aerospace components that contain internal cooling geometry. A mold and core combination is made using a MM6Pro (Sanders Prototyping, Inc.) and SLA-250/40 (3Dsystems, Inc.). The MM6Pro produces cores from ProtoBuild (trademarked) wax that are dissolved in room temperature ethanol following gelcasting. The SLA-250/40 yields epoxy/acrylate reusable molds. Parts produced by this method include two types of specimens containing a high density of thin long cooling channels, thin-walled cylinders and plates, as well as a model hollow airfoil shape that can be used for burner rig evaluation of coatings. Both uncoated and mullite-coated hollow airfoils has been tested in a Mach 0.3 burner rig with cooling air demonstrating internal cooling and confirming the effectiveness of mullite coatings.

  16. Film cooling enhancement with surface restructure

    NASA Astrophysics Data System (ADS)

    Chen, Shuping

    Discrete-hole film cooling is used extensively in turbine components. In past decades, many research works concerning this technique have been published. Recently, efforts have been directed at seeking technologies that would increase film cooling effectiveness. Particularly, surface reshaping through protective coatings, such as a thermal barrier coating (TBC), is very attractive to turbine designers because extra machining work is not needed for its application. In the present work, film cooling enhancement with surface restructure is experimentally studied using an infrared (IR) imaging technique. The first surface structure studied is the surface with flow-aligned blockers. The studied configurations include single-hole and three-hole-row structures. The single-hole case is used for studying the effects of blocker design parameters, which include blocker height (0.2D, 0.4D, and 0.6D), distance between two neighboring blockers (0.8D, D, and 1.2D), blocker length (2", 4", and 6"), and blowing ratio M (0.43 and 0.93). The design with the best performance is chosen for the three-hole-row cases. The second surface shape studied, is the so-called upstream ramp, which is placed in front of a row of film cooling holes. Investigated geometrical parameters include upstream ramp angles (8.5°, 15°, and 24°) and blowing ratio M (0.29, 0.43, 0.57, 0.93, and 1.36). Detailed local film cooling effectiveness and heat transfer coefficient are measured using an IR imaging technique. The third film cooling concept is the so-called trenched film cooling holes, i.e., film cooling holes sitting in a transverse groove. The film cooling structure for this experimental test consists of a three-hole row embedded in a trench 0.5D in depth and 2D in width, where D is the diameter of the holes. Five blowing ratios (0.29, 0.43, 0.57, 0.93, and 1.36) are tested. Based on the tested results, the three film cooling schemes are also compared. To implement the experimental work, a test system

  17. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  18. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  19. Radial turbine cooling

    NASA Astrophysics Data System (ADS)

    Roelke, Richard J.

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  20. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  1. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  2. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  3. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  4. Cool flame quench distances

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; Hirsch, E.

    1974-01-01

    The results of a brief experimental investigation are presented which confirm the expectation that cool flame quenching distances should be larger than hot flame quenching distances. It is also discovered that whereas quenching distances for hot flames reach their minimum values near stoichiometric conditions, cool flame quenching distances are least under rich conditions. Rich conditions are well known to favor cool flame formation.

  5. Cooling of stored beams

    SciTech Connect

    Mills, F.E.

    1986-10-15

    Beam cooling methods developed for the accumulation of antiprotons are being employed to assist in the performance of experiments in Nuclear and Particle Physics with ion beams stored in storage rings. The physics of beam cooling, and the ranges of utility of stochastic and electron cooling are discussed in this paper.

  6. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  7. 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces

    NASA Astrophysics Data System (ADS)

    Martini, Gabriella; Taylor, Washington

    2015-06-01

    We carry out a systematic study of a class of 6D F-theory models and associated Calabi-Yau threefolds that are constructed using base surfaces with a generalization of toric structure. In particular, we determine all smooth surfaces with a structure invariant under a single C∗ action (sometimes called "T-varieties" in the mathematical literature) that can act as bases for an elliptic fibration with section of a Calabi-Yau threefold. We identify 162,404 distinct bases, which include as a subset the previously studied set of strictly toric bases. Calabi-Yau threefolds constructed in this fashion include examples with previously unknown Hodge numbers. There are also bases over which the generic elliptic fibration has a Mordell-Weil group of sections with nonzero rank, corresponding to non-Higgsable U(1) factors in the 6D supergravity model; this type of structure does not arise for generic elliptic fibrations in the purely toric context.

  8. Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Mei; Li, Cheng-Bin; Tang, Yong-Bo; Shi, Ting-Yun

    2016-09-01

    The dynamic polarizabilities of the 7s and 6d states of Ra+ are calculated using a relativistic core polarization potential method. The magic wavelengths of the 7s1/2-6d3/2,5/2 transitions are identified. Comparing to the common radio-frequency (RF) ion traps, using the laser field at the magic wavelength to trap the ion could suppress the frequency uncertainty caused by the micromotion of the ion, and would not affect the transition frequency measurements. The heating rates of the ion and the powers of the laser for the ion trapping are estimated, which would benefit the possible precision measurements based on all-optical trapped Ra+. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 91336211 and 11504094).

  9. Magic wavelengths for the 7s1/2‑6d3/2,5/2 transitions in Ra+

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Mei; Li, Cheng-Bin; Tang, Yong-Bo; Shi, Ting-Yun

    2016-09-01

    The dynamic polarizabilities of the 7s and 6d states of Ra+ are calculated using a relativistic core polarization potential method. The magic wavelengths of the 7s1/2‑6d3/2,5/2 transitions are identified. Comparing to the common radio-frequency (RF) ion traps, using the laser field at the magic wavelength to trap the ion could suppress the frequency uncertainty caused by the micromotion of the ion, and would not affect the transition frequency measurements. The heating rates of the ion and the powers of the laser for the ion trapping are estimated, which would benefit the possible precision measurements based on all-optical trapped Ra+. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 91336211 and 11504094).

  10. Six-degree-of-freedom program to optimize simulated trajectories (6D POST). Volume 1: Formulation manual

    NASA Technical Reports Server (NTRS)

    Brauer, G. L.; Habeger, A. R.; Stevenson, R.

    1974-01-01

    The basic equations and models used in a computer program (6D POST) to optimize simulated trajectories with six degrees of freedom were documented. The 6D POST program was conceived as a direct extension of the program POST, which dealt with point masses, and considers the general motion of a rigid body with six degrees of freedom. It may be used to solve a wide variety of atmospheric flight mechanics and orbital transfer problems for powered or unpowered vehicles operating near a rotating oblate planet. Its principal features are: an easy to use NAMELIST type input procedure, an integrated set of Flight Control System (FCS) modules, and a general-purpose discrete parameter targeting and optimization capability. It was written in FORTRAN 4 for the CDC 6000 series computers.

  11. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  12. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  13. Multiphysics Simulation of Active Hypersonic Lip Cooling

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Wang, Wen-Ping

    1999-01-01

    This article describes the application of the Multidisciplinary Analysis (MDA) solver, Spectrum, in analyzing a hydrogen-cooled hypersonic cowl leading-edge structure. Spectrum, a multiphysics simulation code based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling, as well as the interactions between these disciplines. Fluid-solid-thermal interactions in a hydrogen impingement-cooled leading edge are predicted using Spectrum. Two- and semi-three-dimensional models are considered for a leading edge impingement coolant, concept under either specified external heat flux or aerothermodynamic heating from a Mach 5 external flow interaction. The solution accuracy is demonstrated from mesh refinement analysis. With active cooling, the leading edge surface temperature is drastically reduced from 1807 K of the adiabatic condition to 418 K. The internal coolant temperature profile exhibits a sharp gradient near channel/solid interface. Results from two different cooling channel configurations are also presented to illustrate the different behavior of alternative active cooling schemes.

  14. Modelling covariates for the SF-6D standard gamble health state preference data using a nonparametric Bayesian method.

    PubMed

    Kharroubi, Samer; Brazier, John E; O'Hagan, Anthony

    2007-03-01

    It has long been recognised that respondent characteristics can impact on the values they give to health states. This paper reports on the findings from applying a non-parametric approach to estimate the covariates in a model of SF-6D health state values using Bayesian methods. The data set is the UK SF-6D valuation study, where a sample of 249 states defined by the SF-6D (a derivate of the SF-36) was valued by a sample of the UK general population using standard gamble. Advantages of the nonparametric model are that it can be used to predict scores in populations with different distributions of characteristics and that it allows for an impact to vary by health state (whilst ensuring that full health passes through unity). The results suggest an important age effect, with sex, class, education, employment and physical functioning probably having some effect, but the remaining covariates having no discernable effect. Adjusting for covariates in the UK sample made little difference to mean health state values. The paper discusses the implications of these results for policy. PMID:17157971

  15. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  16. Heating and cooling system

    SciTech Connect

    Imig, L.A.; Gardner, M.R.

    1982-08-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes. Official Gazette of the U.S. Patent and Trademark Office.

  17. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  18. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  19. Postexercise Cooling Rates in 2 Cooling Jackets

    PubMed Central

    Brade, Carly; Dawson, Brian; Wallman, Karen; Polglaze, Ted

    2010-01-01

    Abstract Context: Cooling jackets are a common method for removing stored heat accumulated during exercise. To date, the efficiency and practicality of different types of cooling jackets have received minimal investigation. Objective: To examine whether a cooling jacket containing a phase-change material (PC17) results in more rapid postexercise cooling than a gel cooling jacket and a no-jacket (control) condition. Design: Randomized, counterbalanced design with 3 experimental conditions. Setting: Participants exercised at 75% V̇o2max workload in a hot climate chamber (temperature  =  35.0 ± 1.4°C, relative humidity  =  52 ± 4%) for 30 minutes, followed by postexercise cooling for 30 minutes in cool laboratory conditions (ambient temperature  =  24.9 ± 1.8°C, relative humidity  =  39% ± 10%). Patients or Other Participants: Twelve physically active men (age  =  21.3 ± 1.1 years, height  =  182.7 ± 7.1 cm, body mass  =  76.2 ± 9.5 kg, sum of 6 skinfolds  =  50.5 ± 6.9 mm, body surface area  =  1.98 ± 0.14 m2, V̇o2max  =  49.0 ± 7.0 mL·kg−1·min−1) participated. Intervention(s): Three experimental conditions, consisting of a PC17 jacket, a gel jacket, and no jacket. Main Outcome Measure(s): Core temperature (TC), mean skin temperature (TSk), and TC cooling rate (°C/min). Results: Mean peak TC postexercise was 38.49 ± 0.42°C, 38.57 ± 0.41°C, and 38.55 ± 0.40°C for the PC17 jacket, gel jacket, and control conditions, respectively. No differences were observed in peak TC cooling rates among the PC17 jacket (0.038 ± 0.007°C/min), gel jacket (0.040 ± 0.009°C/min), and control (0.034 ± 0.010°C/min, P > .05) conditions. Between trials, no differences were calculated for mean TSk cooling. Conclusions: Similar cooling rates for all 3 conditions indicate that there is no benefit associated with wearing the PC17 or gel jacket. PMID:20210620

  20. Thermosyphon boiling in vertical channels

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Schweitzer, H.

    The thermal characteristics of ebullient cooling systems for VHSIC and VLSI microelectronic component thermal control are studied by experimentally and analytically investigating boiling heat transfer from a pair of flat, closely spaced, isoflux plates immersed in saturated water. A theoretical model for liquid flow rate through the channel is developed and used as a basis for correlating the rate of heat transfer from the channel walls. Experimental results for wall temperature as a function of axial location, heat flux, and plate spacing are presented. The finding that the wall superheat at constant imposed heat flux decreases as the channel is narrowed is explained with the aid of a boiling thermosiphon analysis which yields the mass flux through the channel.

  1. Requirements and infection prophylaxis for internally cooled implant drills.

    PubMed

    Proff, P; Bayerlein, T; Kramer, A; Allegrini, S; Dietze, S; Fanghänel, J; Gedrange, T

    2006-02-01

    Implant site preparation is crucially important to long-term success. Heat generation during drilling is unfavourable, since bone is relatively susceptible to heat, depending on its vascularisation and microstructure. Numerous factors such as drilling pressure, number of revolutions, drill design, wear and material, drilling depth and cooling influence heat generation. Internally cooled drills are, therefore, increasingly used, even though the improved cooling effect compared to conventional externally cooled drills is controversial. Internally cooled drills may have the disadvantage of a germ reservoir developing in the cooling channel. This study aimed to examine the effects of disinfection and sterilisation of internally cooled drills. After contamination of the cooling channel with suitable bioindicators (Enterococcus faecium, ATCC 6057 and spores of Bacillus stearothermophilus, ATCC 7953), the drills were disinfected (disinfection solution ID 220, Dürr Dental) and autoclaved (Webeco, E5S90, 134 degrees C, 2.6 bar, 5 min). Disinfection was not completely effective except after pre-cleaning. By means of sterilisation all spores of Bacillus stearothermophilus were completely killed. Internally cooled drills can be successfully disinfected by means of this hygienic procedure routinely used in dental practice and no source of infection is created.

  2. Comparing the performance of the SF-6D and the EQ-5D in different patient groups.

    PubMed

    Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N

    2014-01-01

    Introdução: O objectivo geral deste artigo consiste em comparar o desempenho do EQ-5D e do SF-6D em quatro grupos de doentes que sofrem de asma, doença pulmonar obstrutiva crónica, cataratas e artrite reumatóide. Em particular, este artigo tem dois objectivos específicos: 1) estudar o nível de concordância entre os índices e os sistemas descritivos das dimensões do SF-6D e EQ-5D, e 2) analisar a capacidade de discriminação dos instrumentos.Material e Métodos: Uma amostra de 643 doentes respondeu ao SF-36v2 e ao EQ-5D. Foram analisados a capacidade de discriminação dos instrumentos, bem como o nível de concordância entre os índices e os sistemas descritivos das dimensões do SF-6D e EQ-5D. O nível de concordância entre os instrumentos foi estudado com base em coeficientes de correlação e nos gráficos de Bland-Altman, enquanto a influência da condição médica e de outras variáveis de natureza sociodemográfica nos índices foi analisada com o recurso a testes não paramétricos. Utilizaram-se também testes para amostras emparelhadas para identificar diferenças entre osscores finais dos instrumentos.Resultados e Discussão: Verificou-se a existência de uma correlação forte e de uma concordância elevada entre os dois índices. Em termos globais, os índices diferem por condição médica e por grupo sociodemográfico e ambos os instrumentos demonstraram uma capacidade discriminativa semelhante entre grupos sociodemográficosConclusão: Confirmou-se a hipótese de que o SF-6D gera valores de utilidade superiores em populações com doenças. O SF-6D e o EQ-5D parecem comportar-se de forma diferente em cada uma das doenças analisadas, uma vez que as medidas descritivas diferem entre instrumentos e os coeficientes de correlação não são uniformes. Os resultados demonstraram que o EQ-5D e o SF-6D geram valores de utilidade diferentes, mas que existe uma concordância elevada entre os dois instrumentos. Pode-se concluir que os resultados

  3. Gas turbine cooling system

    SciTech Connect

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  4. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  5. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  6. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor.

    PubMed

    Vedani, Angelo; Dobler, Max; Lill, Markus A

    2005-06-01

    We present a concept for the in silico simulation of adverse effects triggered by drugs and chemicals. The underlying philosophy combines flexible docking (software Yeti) for the identification of the binding mode(s) and 6D-QSAR (software Quasar) for their quantification. The results obtained for 106 diverse molecules binding to the estrogen receptor (q2 = 0.903; p2 = 0.885) suggest that our approach is suitable for the identification of an endocrine-disrupting potential associated with drugs and chemicals.

  7. Induced low-energy effective action in the 6D, N = (1 , 0) hypermultiplet theory on the vector multiplet background

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Merzlikin, B. S.; Pletnev, N. G.

    2016-08-01

    We consider the six dimensional N = (1 , 0) hypermultiplet model coupled to an external field of the Abelian vector multiplet in harmonic superspace approach. Using the superfield proper-time technique we find the divergent part of the effective action and derive the complete finite induced low-energy superfield effective action. This effective action depends on external field and contains in bosonic sector all the powers of the constant Maxwell field strength. The obtained result can be treated as the 6D, N = (1 , 0) supersymmetric Heisenberg-Euler type effective action.

  8. Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing.

    PubMed

    Kuwajima, Takaaki; Yoshida, Yutaka; Takegahara, Noriko; Petros, Timothy J; Kumanogoh, Atsushi; Jessell, Thomas M; Sakurai, Takeshi; Mason, Carol

    2012-05-24

    At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.

  9. Mechanically-reattachable liquid-cooled cooling apparatus

    DOEpatents

    Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E

    2013-09-24

    An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.

  10. The cooling of particle beams

    SciTech Connect

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

  11. Semioptimal practicable algorithmic cooling

    NASA Astrophysics Data System (ADS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-04-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon’s entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  12. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  13. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  14. Body cooling after death.

    PubMed

    Kuehn, L A; Tikuisis, P; Livingstone, S; Limmer, R

    1980-09-01

    In the analyses of cases of death in cold air environments, it is often of interest to determine the time required for the body of the individual to cool to ambient temperature. Usually such determinations have been based on Newton's law of cooling. This paper describes a case history in which this technique was experimentally tested and consequently abandoned in favour of a more complex biophysical model which more accurately described the thermo-physical events inherent in body cooling. This model is recommended for determination of the times required for various body parts to cool to ambient environmental temperatures.

  15. Power electronics cooling apparatus

    SciTech Connect

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  16. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  17. Direct-Cooled Power Electronics Substrate

    SciTech Connect

    Wiles, R.; Ayers, C.; Wereszczak, A.

    2008-12-23

    The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

  18. Synthesis of the C-glycoside of α-D-mannose-(1 → 6)-d-myo-inositol†

    PubMed Central

    Hans, Sunej; Altiti, Ahmad; Mootoo, David R.

    2015-01-01

    The dimannosylatedinositol pseudotrisaccharide phospholipid of the lipoarabinomannan (LAM) component of the mycobacterial cell wall has attracted interest as a therapeutic target because of its uniqueness to mycobacteria, its assembly at an early stage in LAM biosynthesis and the immunological activity of oligosaccharides containing this subunit. Accordingly, analogues of this pseudotrisaccharide, α-d-mannose-(1 → 2)-α-d-mannose-(1 → 6)-d-myo-inositol are of interest as mechanistic probes and drug leads. C-glycosides are of special interest because of their hydrolytic stability and conformational differences compared to O-glycosides. Herein, as a prelude to C-glycoside analogues of this pseudotrisaccharide, we describe the synthesis of the C-glycoside of α-D-mannose-(1 → 6)-d-myo-inositol. The synthetic strategy centers on the elaboration of a C1-linked glycal-inositol, the glycone segment of which is assembled via an oxocarbenium ion cyclization on a thioacetal-enol ether precursor that originates from “glycone” and “aglycone” components. PMID:24057020

  19. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  20. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  1. UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C(+)-T)6:[d(A-G)6.d(C-T)6]; evidence for a proton switch.

    PubMed Central

    Lavelle, L; Fresco, J R

    1995-01-01

    Near-UV difference spectral analysis of the triplex formed from d(C-T)6 and d(A-G)6.d(C-T)6 in neutral and acidic solution shows that the third strand dC residues are protonated at pH 7.0, far above their intrinsic pKa. Additional support for ion-dipole interactions between the third strand dC residues and the G.C target base pairs comes from reduced positive dependence of triplet stability on ionic strength below 0.9 M Na+, inverse dependence above 0.9 M Na+ and strong positive dependence on hydrogen ion concentration. Molecular modeling (AMBER) of C:G.C and C+:G.C base triplets with the third strand base bound in the Hoogsteen geometry shows that only the C+:G.C triplet is energetically feasible. van't Hoff analysis of the melting of the triplex and target duplex shows that between pH 5.0 and 8.5 in 0.15 M NaCl/0.005 M MgCl2 the enthalpy of melting (delta H degree obs) varies from 5.7 to 6.6 kcal.mol-1 for the duplex in a duplex mixture and from 7.3 to 9.7 kcal.mol-1 for third strand dissociation in the triplex mixture. We have extended the condensation-screening theory of Manning to pH-dependent third strand binding. In this development we explicitly include the H+ contribution to the electrostatic free energy and obtain [formula: see text]. The number of protons released in the dissociation of the third strand from the target duplex at pH 7.0, delta n2, is thereby calculated to be 5.5, in good agreement with approximately six third strand dc residues per mole of triplex. This work shows that when third strand binding requires protonated residues that would otherwise be neutral, triplex formation and dissociation are mediated by proton uptake and release, i.e., a proton switch. As a by-product of this study, we have found that at low pH the Watson-Crick duplex d(A-G)6.d(C-T)6 undergoes a transition to a parallel Hoogsteen duplex d(A-G)6.d(C(+)-T)6. PMID:7651830

  2. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  3. Elastocaloric cooling: Stretch to actively cool

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  4. District cooling in Scandinavia

    SciTech Connect

    Andersson, B.

    1996-11-01

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heating Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.

  5. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  7. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  8. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  9. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  10. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2016-07-12

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  11. DOAS, Radiant Cooling Revisited

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  12. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  13. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  14. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  15. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  16. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  17. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  18. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  19. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  20. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  1. Quasi-isochronous Muon Collection Channels

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, C.; Neuffer, D.; /Fermilab

    2010-05-01

    Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced as tertiary beams, resulting in diffuse phase space distributions. To make useful beams, the muons must be rapidly cooled before they decay. An idea conceived recently for the collection and cooling of muon beams, namely, the use of a Quasi-Isochronous Helical Channel (QIHC) to facilitate capture of muons into RF buckets, has been developed further. The resulting distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. After a brief elaboration of the QIHC concept, recent developments are described.

  2. The 6dF Galaxy Survey: the near-infrared Fundamental Plane of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Magoulas, Christina; Springob, Christopher M.; Colless, Matthew; Jones, D. Heath; Campbell, Lachlan A.; Lucey, John R.; Mould, Jeremy; Jarrett, Tom; Merson, Alex; Brough, Sarah

    2012-11-01

    We determine the near-infrared Fundamental Plane (FP) for ˜104 early-type galaxies in the 6-degree Field Galaxy Survey (6dFGS). We fit the distribution of central velocity dispersion, near-infrared surface brightness and half-light radius with a 3D Gaussian model using a maximum-likelihood method. The model provides an excellent empirical fit to the observed FP distribution and the method proves robust and unbiased. Tests using simulations show that it gives superior results to regression techniques in the presence of significant and correlated uncertainties in all three parameters, censoring of the data by various selection effects and outliers in the data sample. For the 6dFGS J-band sample we find an FP with Re ∝ σ01.52±0.03Ie-0.89±0.01, similar to previous near-infrared determinations and consistent with the H- and K-band FPs once allowance is made for differences in mean colour. The overall scatter in Re about the FP is σr = 29 per cent, and is the quadrature sum of an 18 per cent scatter due to observational errors and a 23 per cent intrinsic scatter. Because of the Gaussian distribution of galaxies in FP space, σr is not the distance error, which we find to be σd = 23 per cent. Using group richness and local density as measures of environment, and morphologies based on visual classifications, we find that the FP slopes do not vary with environment or morphology. However, for fixed velocity dispersion and surface brightness, field galaxies are on average 5 per cent larger than galaxies in groups or higher density environments, and the bulges of early-type spirals are on average 10 per cent larger than ellipticals and lenticulars. The residuals about the FP show significant trends with environment, morphology and stellar population. The strongest trend is with age, and we speculate that age is the most important systematic source of offsets from the FP, and may drive the other trends through its correlations with environment, morphology and

  3. Influence of Cooling Hole Geometry and Material Conductivity on the Thermal Response of Cooled Silicon Nitride Plate

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Girgis, Morris

    2002-01-01

    To complement the effectiveness of ceramic materials and the applicability to turbine engine applications, a parametric study using the finite element method was carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was verified in an attempt to minimize the thermal stresses and reach an optimal rate of stress. The thermal stress profile was generated for specimens with circular and square cooling channels. Lower stresses were reported for a higher magnitude of thermal conductivity and in particular for the circular cooling channel arrangement. Contour plots for the stresses and the temperature are presented and discussed.

  4. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. MEIC electron cooling program

    SciTech Connect

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  7. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  8. Status of the International Muon Ionization Cooling Experiment (MICE)

    SciTech Connect

    Zisman, Michael S.; Zisman, Michael S.

    2007-02-02

    An international experiment to demonstrate muonionization cooling is scheduled for beam at RutherfordAppleton Laboratory (RAL) in 2007. The experimentcomprises one cell of the Study II cooling channel [1],along with upstream and downstream detectors to identifyindividual muons and measure their initial and final 6Dphase-space parameters to a precision of 0.1percent. Magneticdesign of the beam line and cooling channel are completeand portions are under construction. The experiment willbe described, including cooling channel hardware designs,fabrication status, and running plans. Phase 1 of theexperiment will prepare the beam line and providedetector systems, including time-of-flight, Cherenkov,scintillating-fiber trackers and their spectrometersolenoids, and an electromagnetic calorimeter. The Phase2 system will add the cooling channel components,including liquid-hydrogen absorbers embedded insuperconducting Focus Coil solenoids, 201-MHz normalconductingRF cavities, and their surrounding CouplingCoil solenoids. The MICE Collaboration goal is tocomplete the experiment by 2010; progress toward this isdiscussed.

  9. Fluctuation conductivity and the chiral glass state in disordered YBa2Cu3O6+d thin films

    NASA Astrophysics Data System (ADS)

    Sobocinski, P. A.; Grande, P. L.; Pureur, P.

    2015-10-01

    In this communication we report on fluctuation conductivity experiments in several superconducting YBa2Cu3O6+d thin films grown by chemical solution deposition. These films are c-axis oriented and show granularity at a submicron scale. Two of the samples were submitted to ion implantation in order to study effects of local disorder. When the temperature approaches the superconducting transition from above we first observe the expected three-dimensional Gaussian fluctuation region. Then, a crossover occurs closely above the transition to a regime dominated by genuine critical fluctuations characterized by a large exponent. Based on previous theoretical predictions, we interpret these critical regimes as precursors of the superconducting chiral glass state.

  10. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  11. Method and system for providing cooling for turbine components

    DOEpatents

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to the outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.

  12. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  13. Stimulated radiative laser cooling

    NASA Astrophysics Data System (ADS)

    Muys, P.

    2008-04-01

    Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to the radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

  14. Why Exercise Is Cool

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Why Exercise Is Cool KidsHealth > For Kids > Why Exercise Is ... day and your body will thank you later! Exercise Makes Your Heart Happy You may know that ...

  15. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  16. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  17. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  18. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  19. Convective Array Cooling for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Dolce, James (Technical Monitor)

    2003-01-01

    A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.

  20. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  1. The impact of pneumococcal conjugate vaccines on carriage of and disease caused by Streptococcus pneumoniae serotypes 6C and 6D in southern Israel.

    PubMed

    Porat, Nurith; Benisty, Rachel; Givon-Lavi, Noga; Trefler, Ronit; Dagan, Ron

    2016-05-27

    The introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) followed by PCV13 resulted in a dramatic reduction in carriage and disease rates of Streptococcus pneumoniae (Sp) serotype 6B (Sp6B) and Sp6A. The structural modifications of the capsule of Sp6A and Sp6B to become Sp6C and Sp6D, respectively, raised a concern that eradication of Sp6A/Sp6B by PCV could be accompanied by an increase in Sp6C/Sp6D. This study examines the dynamics and clonal distribution of Sp6C/Sp6D relative to Sp6A/Sp6B during 1999-2014, pre- and post-PCV implementation. Sp were cultured from Blood/CSF and MEF of children <2 years, and from conjunctiva and nasopharynx of children <5 years. PCR was applied for Sp6C and Sp6D identification. Clonality was determined by PFGE and MLST. PCV introduction resulted in decreased carriage rates and conjunctivitis caused by serogroup 6 serotypes. Incidence of Sp6A, Sp6B and Sp6D in otitis media dropped gradually along with PCV7/13 introduction, whereas Sp6C rates increased in the PCV7 period and then decreased following PCV13 implementation. In invasive pneumococcal disease, complete elimination of serogroup 6 was found in the PCV era. Similar clonal composition was found for Sp6C and Sp6D pre- and post-PCV. We conclude that Sp6C and Sp6D do not act as replacement serotypes for Sp6A and Sp6B following vaccination with PCV13. The major Sp6C and Sp6D clones present pre-PCV persisted also post-PCV implementation, suggesting that these clones possess an advantage retained post-vaccination. PMID:27113163

  2. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  3. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  4. Superconducting solenoids for the MICE channel

    SciTech Connect

    Green, M.A.; Barr, G.; Baynham, D.E.; Rockford, J.H.; Fabbricatore, P.; Farinin, S.; Palmer, R.B.; Rey, J.M.

    2003-05-01

    This report describes the channel of superconductingsolenoids for the proposed international Muon Ionization CoolingExperiment (MICE). MICE consists of two cells of a SFOFO cooling channelthat is similar to that studied in the level 2 study of a neutrinofactory[1]. MICE also consists of two detector solenoids at either end ofthe cooling channel section. The superconducting solenoids for MICEperform three functions. The coupling solenoids, which are largesolenoids around 201.25 MHz RF cavities, couple the muon beam between thefocusing sections as it passes along the cooling channel. The focusingsolenoids are around the liquid hydrogen absorber that reduces themomentum of the muons in all directions. These solenoids generate agradient field along the axis as they reduce the beta of the muon beambefore it enters the absorber. Each detector solenoid system consists offive coils that match the muon beam coming to or from an absorber to a4.0 T uniform solenoidal field section that that contains the particledetectors at the ends of the experiment. There are detector solenoids atthe beginning and at the end of the experiment. This report describes theparameters of the eighteen superconducting coils that make up the MICEmagnetic channel.

  5. Comparing Social Stories™ to Cool versus Not Cool

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  6. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  7. Turbulent supersonic channel flow

    NASA Astrophysics Data System (ADS)

    Lechner, Richard; Sesterhenn, Jörn; Friedrich, Rainer

    2001-01-01

    The effects of compressibility are studied in low Reynolds number turbulent supersonic channel flow via a direct numerical simulation. A pressure-velocity-entropy formulation of the compressible Navier-Stokes equations which is cast in a characteristic, non-conservative form and allows one to specify exact wall boundary conditions, consistent with the field equations, is integrated using a fifth-order compact upwind scheme for the Euler part, a fourth-order Padé scheme for the viscous terms and a third-order low-storage Runge-Kutta time integration method. Coleman et al fully developed supersonic channel flow at M?=?1.5 and Re?=?3000 is used to test the method. The nature of fluctuating variables is investigated in detail for the wall layer and the core region based on scatter plots. Fluctuations conditioned on sweeps and ejections in the wall layer are especially instructive, showing that positive temperature, entropy and total temperature fluctuations are mainly due to sweep events in this specific situation of wall cooling. The effect of compressibility on the turbulence structure is in many respects similar to that found in homogeneous shear turbulence and in mixing layers. The normal components of the Reynolds stress anisotropy tensor are increased due to compressibility, while the shear stress component is slightly reduced. Characteristic of the Reynolds stress transport is a suppression of the production of the longitudinal and the shear stress component, a suppression of all velocity-pressure-gradient correlations and most of the dissipation rates. Comparison with incompressible channel flow data reveals that compressibility effects manifest themselves in the wall layer only.

  8. Cool WISPs for stellar cooling excesses

    NASA Astrophysics Data System (ADS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  9. Lifetime of the 7s6d {sup 1}D{sub 2} atomic state of radium.

    SciTech Connect

    Trimble, W. L.; Sulai, I. A.; Ahmad, I.; Bailey, K.; Graner, B.; Greene, J. P.; Holt, R. J.; Korsch, W.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Physics; Univ. of Chicago; Univ. of Kentucky

    2009-01-01

    The lifetime of the 7s6d {sup 1}D{sub 2} state of atomic radium is determined to be 385(45) {mu}s using cold {sup 226}Ra atoms prepared in a magneto-optical trap. The {sup 1}D{sub 2} state is populated from the decay of the {sup 1}P{sub 1} state which is excited by a pulse of 483 nm light. The decay of the {sup 1}D{sub 2} state is observed by detecting delayed fluorescence at 714 nm from the last step in the decay sequence {sup 1}P{sub 1}-{sup 1}D{sub 2}-{sup 3}P{sub 1}-{sup 1}S{sub 0}. The measured lifetime is compared to a number of theoretical calculations. An improved value of the 7s7p {sup 1}P{sub 1} level of 20 715.598(6) cm{sup -1} is obtained.

  10. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Steidl, P.; Richter, D.; Schuy, C.; Schubert, E.; Haberer, Th; Durante, M.; Bert, C.

    2012-04-01

    Irradiation of moving targets using a scanned ion beam can cause clinically intolerable under- and overdosages within the target volume due to the interplay effect. Several motion mitigation techniques such as gating, beam tracking and rescanning are currently investigated to overcome this restriction. To enable detailed experimental studies of potential mitigation techniques a complex thorax phantom was developed. The phantom consists of an artificial thorax with ribs to introduce density changes. The contraction of the thorax can be controlled by a stepping motor. A robotic driven detector head positioned inside the thorax mimics e.g. a lung tumour. The detector head comprises 20 ionization chambers and 5 radiographic films for target dose measurements. The phantom’s breathing as well as the 6D tumour motion (3D translation, 3D rotation) can be programmed independently and adjusted online. This flexibility allows studying the dosimetric effects of correlation mismatches between internal and external motions, irregular breathing, or baseline drifts to name a few. Commercial motion detection systems, e.g. VisionRT or Anzai belt, can be mounted as they would be mounted in a patient case. They are used to control the 4D treatment delivery and to generate data for 4D dose calculation. To evaluate the phantom’s properties, measurements addressing reproducibility, stability, temporal behaviour and performance of dedicated breathing manoeuvres were performed. In addition, initial dosimetric tests for treatment with a scanned carbon beam are reported.

  11. Experimental Tests of Cooling: Expectations and Additional Needs

    SciTech Connect

    Zisman, Michael S

    2008-09-24

    Cooling is a critical aspect for a high-performance Neutrino Factory or a MuonCollider. For this reason, considerable effort is being put toward theexperimental verification of this technique. The international Muon IonizationCooling Experiment, MICE, was approved to operate at Rutherford AppletonLaboratory (RAL) in the UK and beam line commissioning commenced in March, 2008. The MICE collaboration comprises about 130 scientists and engineers from Asia, Europe, and the U.S. In this paper we present the motivation and goals for thisexperiment and describe its present status. MICE is scheduled for completion in2011. We will also indicate the prospects for a future 6D muon coolingexperiment and discuss its possible time schedule.

  12. Processes influencing cooling of reactor effluents

    SciTech Connect

    Magoulas, V.E.; Murphy, C.E. Jr.

    1982-06-07

    Discharge of heated reactor cooling water from SRP reactors to the Savannah River is through sections of stream channels into the Savannah River Swamp and from the swamp into the river. Significant cooling of the reactor effluents takes place in both the streams and swamp. The majority of the cooling is through processes taking place at the surface of the water. The major means of heat dissipation are convective transfer of heat to the air, latent heat transfer through evaporation and radiative transfer of infrared radiation. A model was developed which incorporates the effects of these processes on stream and swamp cooling of reactor effluents. The model was used to simulate the effect of modifications in the stream environment on the temperature of water flowing into the river. Environmental effects simulated were the effect of changing radiant heat load, the effect of changes in tree canopy density in the swamp, the effect of total removal of trees from the swamp, and the effect of diverting the heated water from L reactor from Steel Creek to Pen Branch. 6 references, 7 figures.

  13. Quench Protection for the MICE Cooling Channel CouplingMagnet

    SciTech Connect

    Green, M.A.; Wang, L.; Guo, X.L.

    2007-11-20

    The MICE coupling coil is fabricated from Nb-Ti, which hashigh quench propagation velocities within the coil in all directionscompared to coils fabricated with other superconductors such as niobiumtin. The time for the MICE coupling coil to become fully normal throughnormal region propagation in the coil is shorter than the time needed fora safe quench (as defined by a hot-spot temperature that is less than 300K). A MICE coupling coil quench was simulated using a code written at theInstitute of Cryogenics and Superconductive Technology (ICST) at theHarbin Institute of Technology (HIT). This code simulates quench backfrom the mandrel as well as normal region propagation within the coil.The simulations included sub-division of the coil. Each sub-division hasa back to back diodes and resistor across the coil. Current flows in theresistor when there is enough voltage across the coil to cause current toflow through the diodes in the forward direction. The effects of thenumber of coil sub-divisions and the value of the resistor across thesub-division on the quench were calculated with and without quench back.Sub-division of the coupling coil reduces the peak voltage to ground, thelayer-to-layer voltage and the magnet hot-spot temperature. Quench backreduces the magnet hot-spot temperature, but the peak voltage to groundand layer-to-layer voltage are increased, because the magnet quenchesfaster. The resistance across the coil sub-division affects both thehot-spot temperature and the peak voltage to ground.

  14. Estimating the burden of disease in chronic pain with and without neuropathic characteristics: does the choice between the EQ-5D and SF-6D matter?

    PubMed

    Torrance, Nicola; Lawson, Kenny D; Afolabi, Ebenezer; Bennett, Michael I; Serpell, Michael G; Dunn, Kate M; Smith, Blair H

    2014-10-01

    The EQ-5D and Short Form (SF)12 are widely used generic health-related quality of life (HRQoL) questionnaires. They can be used to derive health utility index scores, on a scale where 0 is equivalent to death and 1 represents full health, with scores less than zero representing states "worse than death." We compared EQ-5D or SF-6D health utility index scores in patients with no chronic pain, and chronic pain with and without neuropathic characteristics (NC), and to explore their discriminant ability for pain severity. Self-reported health and chronic pain status was collected as part of a UK general population survey (n=4451). We found moderate agreement between individual dimensions of EQ-5D and SF-6D, with most highly correlated dimensions found for mental health and anxiety/depression, role limitations and usual activities, and pain and pain/discomfort. Overall 43% reported full health on the EQ-5D, compared with only 4.2% on the SF-6D. There were significant differences in mean utilities for chronic pain with NC (EQ-5D 0.47 vs SF-6D 0.62) and especially for severe pain (EQ-5D 0.33 vs SF-6D 0.58). On the EQ-5D, 17% of those with chronic pain with NC and 3% without NC scored "worse than death," a state which is not possible using the SF-6D. Health utilities derived from EQ-5D and SF-12/36 can discriminate between group differences for chronic pain with and without NC and greater pain severity. However, the instruments generate widely differing HRQoL scores for the same patient groups. The choice between using the EQ-5D or SF-6D matters greatly when estimating the burden of disease. PMID:25020004

  15. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  16. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  17. Cooling in a compound bucket

    SciTech Connect

    Shemyakin, A.; Bhat, C.; Broemmelsiek, D.; Burov, A.; Hu, M.; /Fermilab

    2007-09-01

    Electron cooling in the Fermilab Recycler ring is found to create correlation between longitudinal and transverse tails of the antiproton distribution. By separating the core of the beam from the tail and cooling the tail using 'gated' stochastic cooling while applying electron cooling on the entire beam, one may be able to significantly increase the overall cooling rate. In this paper, we describe the procedure and first experimental results.

  18. Monitoring Cray Cooling Systems

    SciTech Connect

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff; Donovan, Matthew J; Layton, Christopher C

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  19. Passive containment cooling system

    DOEpatents

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  20. Winds from cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1995-01-01

    Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.

  1. [Selective brain cooling].

    PubMed

    Corrard, F

    1999-01-01

    The brain is especially sensitive to heat stress. To limit the increase of intracranial heat in case of hyperthermia or fever, a system of selective cooling is put on. It includes two heat-exchangers. The first one, in the face and scalp skin, disperses calories through sweat evaporation. The second one is intracranial, close to the arteries which irrigate the brain. They are connected by a vascular network. In these conditions, the arterial blood temperature, of which cerebral temperature depends upon, is reduced by the cooled venous blood which comes from subcutaneous tissues through the skull wall. On feverish children, increasing such a selective cooling by face fanning can limit cerebral thermal stress. PMID:9974103

  2. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  3. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  4. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  5. Research on cooling effectiveness in stepped slot film cooling vane

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Wu, Hong; Zhou, Feng; Rong, Chengjun

    2016-06-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cooling technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.

  6. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  7. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  8. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  9. Cyclic cooling algorithm

    SciTech Connect

    Rempp, Florian; Mahler, Guenter; Michel, Mathias

    2007-09-15

    We introduce a scheme to perform the cooling algorithm, first presented by Boykin et al. in 2002, for an arbitrary number of times on the same set of qbits. We achieve this goal by adding an additional SWAP gate and a bath contact to the algorithm. This way one qbit may repeatedly be cooled without adding additional qbits to the system. By using a product Liouville space to model the bath contact we calculate the density matrix of the system after a given number of applications of the algorithm.

  10. Anomalous law of cooling

    SciTech Connect

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  11. Anomalous law of cooling

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  12. Anomalous law of cooling.

    PubMed

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  13. Modulation of Thermoreceptor TRPM8 by Cooling Compounds

    PubMed Central

    2012-01-01

    ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed. PMID:22860192

  14. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  15. Apparatus for the compact cooling of modules

    SciTech Connect

    Iyengar, Madhusudan K.; Parida, Pritish R.

    2015-07-07

    An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.

  16. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  17. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  18. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  19. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  20. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  1. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  2. Electron Cooling of RHIC

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  3. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  4. Candidates for laser cooling of atomic anions: La{sup -} versus Os{sup -}

    SciTech Connect

    Pan, Lin; Beck, Donald R.

    2010-07-15

    This brief report is a follow-up to the recent proposal to use La{sup -} as another candidate, in addition to Os{sup -}, in laser cooling of anions, which can then be used to cool antiprotons sympathetically. Using the relativistic configuration interaction formalism, we calculate the photodetachment cross sections of the upper laser cooling state La{sup -} 5d6s{sup 2}6p {sup 3}D{sub 1} and Os{sup -} 5d{sup 6}6s{sup 2}6p {sup 6}D{sub 9/2}. Our results show that La{sup -} has a very similar two-photon detachment loss as Os{sup -}, retaining it as another promising candidate for cooling antiprotons sympathetically.

  5. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  6. Electron Cooling Study for MEIC

    SciTech Connect

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  7. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  8. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  9. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    DOEpatents

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  10. A somatosensory circuit for cooling perception in mice.

    PubMed

    Milenkovic, Nevena; Zhao, Wen-Jie; Walcher, Jan; Albert, Tobias; Siemens, Jan; Lewin, Gary R; Poulet, James F A

    2014-11-01

    The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.

  11. Quasi-isochronous muon collection channels

    SciTech Connect

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  12. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  13. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  14. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient. PMID:26367826

  15. Boosted Fast Flux Loop Alternative Cooling Assessment

    SciTech Connect

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  16. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  17. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  18. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  19. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  20. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Vernaleo, John C.; Reynolds, Christopher S.

    2006-07-01

    In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.

  1. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  2. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  3. Utility avoids cooling tower

    SciTech Connect

    1994-08-01

    After more than four years of often rancorous debate, New Jersey late last month approved a plan that permits the state`s largest utility to reclaim and restore Delaware Bay marshland instead of constructing a costly cooling tower for two nuclear power units. Environmental interests say they`ll appeal the wetlands proposal, calling it an {open_quotes}unproven experiment{close_quotes} that violates Clean Water Act provisions.

  4. Cooling your home naturally

    SciTech Connect

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  5. Turbine cooling waxy oil

    SciTech Connect

    Geer, J.S.

    1987-10-27

    A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

  6. Cab Heating and Cooling

    SciTech Connect

    Damman, Dennis

    2005-10-31

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  7. Project S'COOL

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  8. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  9. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  10. Balance maintenance in high-speed motion of humanoid robot arm-based on the 6D constraints of momentum change rate.

    PubMed

    Zhang, Da-song; Xiong, Rong; Wu, Jun; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance. PMID:24883404

  11. Balance maintenance in high-speed motion of humanoid robot arm-based on the 6D constraints of momentum change rate.

    PubMed

    Zhang, Da-song; Xiong, Rong; Wu, Jun; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.

  12. Balance Maintenance in High-Speed Motion of Humanoid Robot Arm-Based on the 6D Constraints of Momentum Change Rate

    PubMed Central

    Zhang, Da-song; Chu, Jian

    2014-01-01

    Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance. PMID:24883404

  13. Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling.

    PubMed

    Tajino, Koji; Hosokawa, Hiroshi; Maegawa, Shingo; Matsumura, Kiyoshi; Dhaka, Ajay; Kobayashi, Shigeo

    2011-03-02

    We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T - 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T - 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.

  14. Frequencies of pyrethroid resistance-associated mutations of Vssc1 and CYP6D1 in field populations of Musca domestica L. in Turkey.

    PubMed

    Taşkın, Vatan; Başkurt, Sibel; Doğaç, Ersin; Taşkin, Belgin Göçmen

    2011-12-01

    House flies were collected from 16 different provinces in the Aegean and Mediterranean regions of Turkey, and the frequencies of pyrethroid resistance-associated mutations in Vssc1 and CYP6D1 in these field-collected populations were studied. Although there is no organized resistance management program for house fly control in Turkey, it is known that different groups of insecticides, including pyrethroids, are used. The frequencies of both Vssc1 and CYP6D1 alleles were weighted toward the susceptibles, with Vssc1-susceptible alleles having higher frequencies in both regions (0.75 in Aegean and 0.69 in Mediterranean populations) than CYP6D1-susceptible alleles (0.65 in Aegean and 0.56 in Mediterranean populations). The frequencies of kdr-his alleles were higher than the frequencies of kdr alleles in these populations. While the frequencies of kdr-his alleles were close to each other in the Aegean (0.23) and Mediterranean (0.17) populations, the frequencies of kdr alleles remarkably differed in these two regions, with values of 0.02 and 0.14, respectively. In contrast to Europe, Asia, and the U.S.A., no super-kdr allele was detected in the samples from both regions. We identified six and eight different Vssc1+CYP6D1 genotype classes in the Aegean and Mediterranean regions, respectively. The three most common genotype classes in the regions were susceptible Vssc1 with heterozygous CYP6D1v1 (29%), sus/kdr-his1 with heterozygous CYP6D1v1 (23%), and susceptible Vssc1 with CYP6D1 (22%). The total frequencies of these three most common genotype classes (approximately 75%) obtained in our study were very close to the value obtained in Florida in a previous study, which was related by the similarity of temperature patterns between Florida and the corresponding regions of Turkey. This may reflect the lack of overwintering fitness cost associated with resistance alleles in both climates. PMID:22129395

  15. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoting; Vinjanampathy, Sai; Strauch, Frederick; Jacobs, Kurt

    2012-02-01

    There is presently a great deal of interest in cooling high-frequency micro- and nano-mechanical oscillators to their ground states. The present state of the art in cooling mechanical resonators is a version of sideband cooling, which was originally developed in the context of cooling trapped ions. Here we present a method based on quantum control that uses the same configuration as sideband cooling--coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator--but will cool significantly colder. This is achieved by applying optimal control and varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity quantum information transfer between resonators.

  16. Particles generation and cooling of pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Kryvdyk, Volodymyr

    2016-07-01

    The generation of secondary particles (neutrinos, neutrons, electrons, protons, mesons) and gamma-ray photons because of nuclear interactions in magnetospheres of pulsars and magnetars are considered. By means of the nuclear interactions, the primarily accelerated electrons and protons in the pulsar magnetosphere will be generated secondary particles and photons, which will also generate particles and gamma-ray photons by cascading interactions. Namely from these particles and photons, which arise because of multiple interactions, and will consist of the pulsar magnetosphere. It is important that in pulsar magnetosphere will generate the powerful flux of neutral particles (neutrons) and a neutrino that do not interact with the magnetic field and are free to go out with her, bringing out energy and cooling magnetosphere. So, we obtain a powerful new channel cooling pulsar magnetosphere. This is a new result, which shows that cooling of pulsar and magnetars is not only a result of the processes generating neutrinos in the inner core, but also due to the generation of neutrino and neutrons in the pulsar magnetosphere and subsequently their exit in the interstellar environment.

  17. Design Evaluation Using Finite Element Analysis of Cooled Silicon Nitride Plates for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.

  18. Electron cooling of electron beams

    SciTech Connect

    Larson, D.J.

    1993-09-01

    Electron cooling of electron (and positron) sources may be important for future linear collider applications. In order to cool electrons with electrons, an intermediary positron beam must be employed, since it is impossible to merge two beams of identical particles into the cooling straight. By adjusting the beta functions of the electron and positron lattices appropriately, the final emittance of the stored electron beam can be made less than the emittance of the cooling electron beam. This paper will discuss accelerator physics issues relating to an electron-cooled electron beam source.

  19. Trap seal for open circuit liquid cooled turbines

    DOEpatents

    Grondahl, Clayton M.; Germain, Malcolm R.

    1980-01-01

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  20. Adiabatic cooling of atoms by an intense standing wave

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Story, J. G.; Tollett, J. J.; Hulet, Randall G.

    1992-08-01

    Lithium atoms channeled in the nodes of an intense standing-wave radiation field are cooled to near the recoil limit by adibatically reducing the radiation intensity. The final momentum distribution has a narrow component with a root-mean-squared momentum of 2ħk in one dimension, where ħk is the momentum of a radiation-field photon. The data are compared with the results of a Monte Carlo simulation using a two-level atom model. This process may be useful for cooling and increasing the phase-space density of atoms confined in a magnetic trap.

  1. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes.

    PubMed

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes; Hübner, Christian G

    2016-05-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach. PMID:26972111

  2. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  3. Simulation of a Helical Channel using GEANT4

    SciTech Connect

    Elvira, V. D.; Lebrun, P.; Spentzouris, P.

    2001-02-01

    We present a simulation of a 72 m long cooling channel proposed by V. Balbekov based on the helical cooling concept developed by Ya. Derbenev. LiH wedge absorbers provide the energy loss mechanism and 201 MHz cavities are used for re-acceleration. They are placed inside a main solenoidal field to focus the beam. A helical field with an amplitude of 0.3 T and a period of 1.8 m provides momentum dispersion for emittance exchange.The simulation is performed using GEANT4. The total fractional transmission is 0.85, and the transverse, longitudinal, and 3-D cooling factors are 3.75, 2.27, and 14.61, respectively. Some version of this helical channel could eventually be used to replace the first section of the double flip channel to keep the longitudinal emittance under control and increase transmission. Although this is an interesting option, the technical challenges are still significant.

  4. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Cooled artery extension

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor)

    1990-01-01

    An artery vapor trap. A heat pipe artery is constructed with an extension protruding from the evaporator end of the heat pipe beyond the active area of the evaporator. The vapor migrates into the artery extension because of gravity or liquid displacement, and cooling the extension condenses the vapor to liquid, thus preventing vapor lock in the working portion of the artery by removing vapor from within the active artery. The condensed liquid is then transported back to the evaporator by the capillary action of the artery extension itself or by wick located within the extension.

  6. Cooling apparatus and method

    DOEpatents

    Mayes, James C.

    2009-05-05

    A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

  7. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  8. Cooled, temperature controlled electrometer

    DOEpatents

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  9. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  10. Cooled infrared telescope development

    NASA Technical Reports Server (NTRS)

    Young, L. S.

    1976-01-01

    The feasibility of the design concept for a 1-m-aperture, cryogenically cooled telescope for Spacelab is assessed. The device makes use of double-folded Gregorian reflective optics. The planned cryogen is helium, and beryllium will be used for the 1.2 m primary mirror. Results of studies based on smaller instruments indicate that no new technology will be required to construct a Shuttle Infrared Telescope Facility which will offer improvement over the sensitivity of conventional telescopes by a factor of 1000 at 10 micrometers.

  11. Cooled spool piston compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  12. Beverage dispenser cooling system

    SciTech Connect

    Stanfill, T.M.

    1988-03-15

    In a beverage dispensing system of the type having a supply container of the beverage located at a storage site, valve means at a dispensing site remote from the storage site for dispensing the beverage, pressure means for supplying the beverage under pressure from the supply container to the valve means through a beverage conduit, refrigeration means at the storage site for cooling a liquid into a chilled liquid, pump means at the storage site for circulating the chilled liquid from the storage site to the dispensing site through a transmit chilled line and from the dispensing sites back to the storage site through a return chilled line, the chilled lines running in parallel with the beverage conduit within an insulated jacket conduit extending between the storage and dispensing site, the improvement is described comprising in combination: an insulated concentric section located at the dispensing site, having an inner conduit concentrically located within an outer conduit; and manifold means for connecting the transmit and return chilled lines to opposite ends of one of the concentric conduits, and for connecting the beverage conduit and valve means to opposite ends of the other concentric conduit, to further cool the beverage by heat transfer from the chilled liquid in the concentric section.

  13. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  14. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  15. NightCool: A Nocturnal Radiation Cooling Concept

    SciTech Connect

    Parker, Danny S.; Sherwin, John R.; Hermelink, Andreas H.

    2008-08-26

    This report describes an experimental evaluation that was conducted on a night sky cooling system designed to substantially reduce space cooling needs in homes in North American climates. The system uses a sealed attic covered by a highly conductive metal roof (a roof integrated radiator) which is selectively linked by air flow to the main zone with the attic zone to provide cooling - largely during nighttime hours.

  16. The Cool Flames Experiment

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert

    2001-01-01

    A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to

  17. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  18. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect

    Cargill, P. J.; Bradshaw, S. J.

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  19. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  20. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoting; Vinjanampathy, Sai; Strauch, Frederick W.; Jacobs, Kurt

    2011-10-01

    The present state of the art in cooling mechanical resonators is a version of sideband cooling. Here we present a method that uses the same configuration as sideband cooling—coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator—but will cool significantly colder. This is achieved by varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity quantum information transfer between resonators.

  1. SIMULATING THE COOLING FLOW OF COOL-CORE CLUSTERS

    SciTech Connect

    Li Yuan; Bryan, Greg L.

    2012-03-01

    We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any active galactic nucleus (AGN) heating, focusing instead on cooling in order to understand how gas reaches the supermassive black hole at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the cooling of gas out to 100 kpc with the cold gas accretion in the central 100 pc, potentially closing the loop between cooling and heating. Isotropic heat conduction does not affect the result significantly, but we show that including the potential well of the brightest cluster galaxy is necessary to obtain the correct result. Also, we found that the outcome is sensitive to resolution, requiring very high mass resolution to correctly reproduce the small transition radius.

  2. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  3. Staging acceleration and cooling in a Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.

    2006-03-01

    All schemes to produce intense sources of high-energy muons—Neutrino factories, beta beams, Colliders—require collection, RF capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or "cooled" both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. In the current US baseline scenario, the cooling required for acceleration is about a factor of 10 in transverse emittance per plane. Longitudinal cooling is also required. In the proposed Japanese scenario, using an alternative acceleration scheme, no cooling is presumed. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.

  4. Experimental study on resonant frequency of the thermoacoustic cooling system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Shin-ichi; Hirano, Hiroyuki; Fujita, Takashi; Watanabe, Yoshiaki

    2006-05-01

    The purpose of our study is to construct a new cooling system applying the thermoacoustic effect. Stainless loop-tube is employed as our thermoacoustic cooling system and temperature decrease of 40 degrees C from the room temperature has been confirmed. In this paper, it is investigated that the relation between the viscosity boundary layer and the resonant frequency of the generated sound is investigated. Also, the sound pressure and temperature variation are observed with various total lengths of the loop-tube, with the view toward improvement in the cooling effect of the thermoacoustic cooling system. It was generally considered that the sound generated in the thermoacoustic cooling system is resonated with the tube length by 1 wavelength. However, when the total length of the loop-tube is over 2600 mm and inner pressure is 0.1 MPa, the resonant wavelength is 2. This is resulted from the influence of the viscosity boundary layer. It is found that the loop-tube decides the resonant frequency so that the thickness of the viscosity boundary layer is smaller than the stack channel radius. As a result, the resonant wavelength is 2 in a certain condition. The frequency is an important parameter for the thermoacoustic cooling system. From obtained results, one of the factors to select the frequency is found.

  5. Feasibility assessment of vacuum cooling followed by immersion vacuum cooling on water-cooked pork.

    PubMed

    Dong, Xiaoguang; Chen, Hui; Liu, Yi; Dai, Ruitong; Li, Xingmin

    2012-01-01

    Vacuum cooling followed by immersion vacuum cooling was designed to cool water-cooked pork (1.5±0.05 kg) compared with air blast cooling (4±0.5°C, 2 m/s), vacuum cooling (10 mbar) and immersion vacuum cooling. This combined cooling method was: vacuum cooling to an intermediate temperature of 25°C and then immersion vacuum cooling with water of 10°C to the final temperature of 10°C. It was found that the cooling loss of this combined cooling method was significantly lower (P<0.05) than those of air blast cooling and vacuum cooling. This combined cooling was faster (P<0.05) than air blast cooling and immersion vacuum cooling in terms of cooling rate. Moreover, the pork cooled by combined cooling method had significant differences (P<0.05) in water content, color and shear force.

  6. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  7. MUON POLARIZATION IN A FRONT-END CHANNEL OF A NEUTRINO FACTORY.

    SciTech Connect

    FUKUI, Y.; FERNOW, R.C.; GALLARDO, J.C.

    2001-06-18

    As one of the figures of merit, muon polarization and its correlation to the particle arrival time was studied for the high intensity muon beam source of a Neutrino Factory. Muon polarization, 100% polarized in the parent pion rest system, was tracked down the pion capture, phase rotation, and ionization cooling channels, using the BMT equation. A study was done of the dependence of the muon polarization and its correlation on the configuration of induction linac channels in the phase rotation channel. Depolarization effects of the muon polarization through absorbers in the ionization cooling channel was simulated.

  8. Dispersion in a bent-solenoid channel with symmetric focusing

    SciTech Connect

    Wang, Chun-xi

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  9. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  10. Serotype 6B from a pneumococcal polysaccharide vaccine induces cross-functional antibody responses in adults to serotypes 6A, 6C, and 6D.

    PubMed

    Kim, Han Wool; Lee, Soyoung; Kim, Kyung-Hyo

    2016-09-01

    Cross-reactivity of pneumococcal capsular polysaccharides is a key element for formulating pneumococcal vaccines and evaluating vaccine efficacy. This study examined whether 23-valent pneumococcal polysaccharide vaccine (PPSV23), which only contains 6B, can elicit cross-functional immune responses against recently discovered serotypes (6C and 6D), as well as against 6A, in 2 adult age groups.Young adults (25-51 years; N = 28) and elderly subjects (over 65 years; N = 60) were immunized with PPSV23. Functional antibody responses were determined in pre- and postimmune sera via multiplexed opsonophagocytic killing assay against serotypes 6A/B/C/D.At postimmunization, the geometric mean opsonic indices (OIs) for 6B and nonvaccine serotypes (6A, 6C, and 6D) significantly increased in both age groups. The geometric fold increases of OIs for 6B/A/C/D significantly differed (18.2, 24.8, 3.1, and 7.1, respectively). Proportions of subjects with 4-fold increases in OIs for 6B/A/C/D were 73%, 70%, 31%, and 49%, respectively. Correlations of fold increases in OIs were highest between 6B and 6A, followed by 6B and 6D, then by 6B and 6C. Comparisons of young adults and the elderly revealed that most immunogenicity variables were higher in the former group.Our data demonstrated that 6B in PPSV23 induced cross-functional immune responses against serotypes 6A, 6C, and 6D, according to the degree of similarity in their capsular polysaccharide structures. In addition, we found significant age-related differences in PPSV23-induced cross-reactivity. PMID:27631247

  11. Synergy of the Developed 6D BIM Framework and Conception of the nD BIM Framework and nD BIM Process Ontology

    ERIC Educational Resources Information Center

    O'Keeffe, Shawn Edward

    2013-01-01

    The author developed a unified nD framework and process ontology for Building Information Modeling (BIM). The research includes a framework developed for 6D BIM, nD BIM, and nD ontology that defines the domain and sub-domain constructs for future nD BIM dimensions. The nD ontology defines the relationships of kinds within any new proposed…

  12. Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome

    PubMed Central

    Luo, Linlin; McGarvey, Peter; Madhavan, Subha; Kumar, Rakesh; Gusev, Yuriy; Upadhyay, Geeta

    2016-01-01

    Stem cell antigen-1 (Sca-1) is used to isolate and characterize tumor initiating cell populations from tumors of various murine models [1]. Sca-1 induced disruption of TGF-β signaling is required in vivo tumorigenesis in breast cancer models [2, 3-5]. The role of human Ly6 gene family is only beginning to be appreciated in recent literature [6-9]. To study the significance of Ly6 gene family members, we have visualized one hundred thirty gene expression omnibus (GEO) dataset using Oncomine (Invitrogen) and Georgetown Database of Cancer (G-DOC). This analysis showed that four different members Ly6D, Ly6E, Ly6H or Ly6K have increased gene expressed in bladder, brain and CNS, breast, colorectal, cervical, ovarian, lung, head and neck, pancreatic and prostate cancer than their normal counter part tissues. Increased expression of Ly6D, Ly6E, Ly6H or Ly6K was observed in sub-set of cancer type. The increased expression of Ly6D, Ly6E, Ly6H and Ly6K was found to be associated with poor outcome in ovarian, colorectal, gastric, breast, lung, bladder or brain and CNS as observed by KM plotter and PROGgeneV2 platform. The remarkable findings of increased expression of Ly6 family members and its positive correlation with poor outcome on patient survival in multiple cancer type indicate that Ly6 family members Ly6D, Ly6E, Ly6K and Ly6H will be an important targets in clinical practice as marker of poor prognosis and for developing novel therapeutics in multiple cancer type. PMID:26862846

  13. Electronic cooling using thermoelectric devices

    SciTech Connect

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  14. Electronic cooling using thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2015-05-01

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  15. Fuel cell crimp-resistant cooling device with internal coil

    DOEpatents

    Wittel, deceased, Charles F.

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  16. Beam-Plasma Interaction in Muon Ionization Cooling Lattices

    NASA Astrophysics Data System (ADS)

    Ellison, James; Snopok, Pavel

    2015-04-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerator experiments. There are a number of software packages available to the muon accelerator community that allow detailed simulations with many physics processes accounted for. However, there is also a list of missing physics processes that require implementation or interfacing with other codes. This list is being prioritized, and the most important processes addressed. One of the crucial physics processes specific to muon accelerators that has not yet been implemented in any current simulation code is beam-induced plasma effect in liquid, solid, and gaseous absorbers that are key elements of a cooling channel. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  17. Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in Brazilian patients with deafness.

    PubMed

    Belintani Piatto, Vânia; Maria Goloni Bertollo, Eny; Lúcia Sartorato, Edi; Victor Maniglia, José

    2004-10-01

    Mutations in the GJB2 gene are the most common cause of sensorineural non-syndromic deafness in different populations. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in many countries. The aim of this study was to determine the prevalence of GJB2 mutations and the del(GJB6-D13S1830) mutation in non-syndromic deaf Brazilians. The 33 unrelated probands were examined by clinical evaluation to exclude syndromic forms of deafness. Mutation analysis in the GJB2 gene and the testing for the del(GJB6-D13S1830) were performed in both the patients and their family members. The 35delG mutation was found in nine of the probands or in 14 of the mutated alleles. The V37I mutation and the del(GJB6-D13S1830) mutation were also found in two patients, both are compound heterozygote with 35delG mutation. These findings strengthen the importance of genetic diagnosis, providing early treatment, and genetic counseling of deaf patients.

  18. β(1-3)(1-6)-D-glucans modulate immune status in pigs: potential importance for efficiency of commercial farming

    PubMed Central

    Oliveira, Carlos

    2014-01-01

    Background In face of the challenge of the emergent diseases and the current efforts of the governments to create conditions to ban growth-promoting antibiotics and to improve efficiency of the commercial farming, new opportunities are created for natural, highly effective and cost affordable immunomodulators; able to induce and enhance resistance against diseases and to reduce farming-related stress. Supplementation of animal feed with β(1-3)(1-6)-D-glucans has been repeatedly shown to modulate the immune system ant to influence growth characteristics of farmed animals. Materials and methods In our study we focused on evaluation of effects of an insoluble, fungi-derived β(1-3)(1-6)-D-glucan as dietary supplement in piglets. We measured the growth, phagocytosis of peripheral blood cells and interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α) production after feeding with 15 mg of glucan/kg/day. Conclusions Following supplementation, β(1-3)(1-6)-D-glucan has been shown to stimulate growth, phagocytic activity, and IL-2 production. In addition, it significantly lowered the cortisol and TNF-α levels after lipopolysaccharide (LPS) challenge. PMID:25332992

  19. VALIDATION AND COMPARISON OF EQ-5D-3L AND SF-6D INSTRUMENTS IN A SPANISH PARKINSON´S DISEASE POPULATION SAMPLE.

    PubMed

    Garcia-Gordillo, Miguel Ángel; Del Pozo-Cruz, B; Adsuar, J C; Cordero-Ferrera, J M; Abellan-Perpiñan, J M; Sanchez-Martinez, F I

    2015-12-01

    Introducción: el uso de cuestionarios de calidad de vida basados en preferencias poblacionales están recibiendo cada vez más atención en el proceso de toma de decisiones en el ámbito sanitario. Sin embargo, a nuestro entender, EQ-5D y SF-6D nunca han sido comparados en una muestra de población con la enfermedad de Parkinson. Objetivo: el objetivo de este trabajo fue evaluar las propiedades psicométricas de ambos instrumentos en una muestra de población española con enfermos de Parkinson. Métodos: un total de 133 pacientes fueron entrevistados utilizando EQ-5D y SF-6D. La validez, el grado de acuerdo y la sensibilidad de ambos instrumentos fueron calculados para su posterior comparación. Las preferencias de la población española fueron utilizadas en ambos instrumentos. Resultados: las utilidades de EQ-5D y SF-6D han mostrado una fuerte correlación (r> 0,50 y p.

  20. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  1. Age of Martian channels

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1976-01-01

    The ages of large Martian channels have been studied by determining the relative abundances of craters superimposed on channels and adjacent terrains and by examining superposition relationships between channels and plains and mantle materials. The channels are extremely old, are spatially confined and temporally related to the ancient cratered terrain, and in many cases are related to the as yet poorly understood genetic processes of fretting and chaos formation. No evidence is found for recent channel activity.

  2. Variable area fuel cell cooling

    DOEpatents

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  3. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  4. Electron cooling experiments in CSR

    NASA Astrophysics Data System (ADS)

    Yang, XiaoDong; Li, Jie; Mao, LiJun; Li, GuoHong; Ma, XiaoMing; Yan, TaiLai; Mao, RuiShi; Yang, JianCheng; Yuan, YouJin; Parkhomchuk, Vasily; Reva, Vladimir

    2011-12-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  5. Young Channel, Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This daytime IR image was collected on February 3, 2003 during the northern summer season. This image shows a younger channel cutting through an older crater.

    Image information: IR instrument. Latitude 30.8, Longitude 19 East (341 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System

  6. Fluid cooled electrical assembly

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  7. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  8. GAS COOLED NUCLEAR REACTORS

    DOEpatents

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  9. Kepler's Cool Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan; Muirhead, P. S.; Johnson, J. A.; Gonzales, A.; Shporer, A.; Plavchan, P.; Lockwood, A.; Morton, T.

    2014-01-01

    Some of the most exciting exoplanet results to date have come from the smallest and coolest sample of stars in the Kepler field—the M dwarfs. These cool stars represent the largest stellar population in the Galaxy which in turn harbors one of the largest known exoplanet populations. However, an accurate understanding of their physical properties currently eludes us. Detached, M dwarf eclipsing binary systems provide an accurate and precise, model-independent means of measuring the fundamental properties of low-mass stars shedding light on the rich physics embodied by this spectral class and refining our knowledge of their exoplanets. We have undertaken an observational campaign to obtain masses, radii, and effective temperatures of the Kepler eclipsing binaries having an M dwarf primary with periods between 1 and 60 days. These data will allow detailed comparisons between stellar properties, binary period, rotation, metallicity and activity levels.

  10. Naturally cooled Florida house

    SciTech Connect

    Not Available

    1981-07-01

    A 1750 ft/sup 2/ home in northern Florida is described, constructed at a cost of $35/ft/sup 2/ (comparable to conventional homes), yet incorporating a number of passive solar and active systems. The well-planned design (emphasizing cooling rather than heating) is explained and illustrated in some detail. Notable features described include: (1) earth burning; (2) south facing greenhouse-solarium; (3) hatch-equipped attic wells which admit light and let the heat out; (4) roof overhangs above skylights; (5) solar screening over the greenhouse windows; (6) insulated drapes; (7) thermal insulation at R-28; (8) use of post-tensioned concrete (floor slab and walls); and (9) 2'' styrofoam skirting extending eight feet into the bermed earth. Use of engineering known-how to cut costs is discussed. (MJJ)

  11. The tracker systems for the muon ionization cooling experiment

    NASA Astrophysics Data System (ADS)

    Heidt, C.

    2013-08-01

    The Muon Ionization Cooling Experiment (MICE) will be the first experiment to demonstrate muon ionization cooling in the momentum range of 140-240 MeV/c. The experiment is a single-particle experiment where the input and output beam emittances are constructed from an ensemble of selected single-muon candidates. The fiber trackers are placed in a solenoidal field of 4 T (one before and one after the cooling channel) to measure the muon 4-momentum and provide the basic information for determining the emittances. This paper gives a brief overview of MICE and then describes the details of the fiber tracker assemblies, the unique construction technique used (which for the first time used 350 μm diameter scintillating fiber), the readout electronics and performance with respect to light yield, hit resolution and tracking efficiency as measured in a recent cosmic-ray test of the two final tracker systems.

  12. Optimal Staging of Acceleration and Cooling in a Neutrino Factory

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.

    2005-12-01

    Schemes to produce intense sources of high-energy muons, Neutrino Factories, beta beams, and colliders, require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large initial emittances must be reduced or cooled both in size and in energy spread before the muons can be efficiently accelerated to multi-GeV energies. The acceleration stage becomes critical in formulating and optimizing muon beams; individual stages are strongly interlinked and not independent as is the case in most conventional acceleration systems. Most importantly, the degree of cooling, or cooling channel, depends on the choice of acceleration. This work discusses two basic, but different approaches to a Neutrino Factory and how the optimal strategy depends on beam parameters and method of acceleration.

  13. High-power passive-cooled diode laser device

    NASA Astrophysics Data System (ADS)

    Bonati, Guido F.; Hennig, Petra; Rollig, Ullrich; Lorenzen, Dirk

    2003-06-01

    In order to achieve a thermally stable diode laser system based on high power diode laser bars, actively cooled heatsinks in form of micro channel heat sinks (MCHS) are used to face the power loss density of 106 W/m2 while requiring a minimum device volume. At identical junction temperature, passively cooled diode lasers are usually lower in power and the device volume is much higher due to the heat flux spreading design of passive heatsinks. However, as a matter of principle, the cooling with MCHS sinks requires a sealing between the heat sink itself and the system around. This sealing is usually achieved by o-rings, what can never avoid the transfer of vapor from the cooling system into the vicinity of the diode laser. Extreme requirements on availability, which lead to corresponding lifetime requirements, like in telecom applications, already require passively cooled diode lasers without any water in the inner system boundaries. For applications not requiring the extreme compact design volume of actively cooled diode lasers but requiring extreme lifetime or a minimum outlay on the periphery, we started looking into passively cooled diode laser stacks. To achieve a minimized temperature rise in the junction, we already developed a new copper-based heat sink, spreading the power loss in an optimized manner. Based on this heatsink, we started developing a heat exchanger with a low thermal resistance while keeping the water out of the inner system boundaries. The thermal resistance is low enough to run up to 12 passively cooled diode lasers on a low ambient temperature with a minimum of periphery requirements.

  14. Air cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  15. Film cooling for a closed loop cooled airfoil

    DOEpatents

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  16. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  17. Applying alpha-channeling to mirror machines

    SciTech Connect

    Zhmoginov, A. I.; Fisch, N. J.

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  18. Applying alpha-channeling to mirror machines

    NASA Astrophysics Data System (ADS)

    Zhmoginov, A. I.; Fisch, N. J.

    2012-05-01

    The α-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic α particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of α channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the α-channeling mechanism. For practical implementation of the α-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the α-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the α-channeling wave to the fuel ions.

  19. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  20. Design of Transpiration Cooled Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Callens, E. Eugene, Jr.; Vinet, Robert F.

    1999-01-01

    This study explored three approaches for the utilization of transpiration cooling in thermal protection systems. One model uses an impermeable wall with boiling water heat transfer at the backface (Model I). A second model uses a permeable wall with a boiling water backface and additional heat transfer to the water vapor as it flows in channels toward the exposed surface (Model II). The third model also uses a permeable wall, but maintains a boiling condition at the exposed surface of the material (Model III). The governing equations for the models were developed in non-dimensional form and a comprehensive parametric investigation of the effects of the independent variables on the important dependent variables was performed. In addition, detailed analyses were performed for selected materials to evaluate the practical limitations of the results of the parametric study.

  1. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  2. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  3. Newton's Law of Cooling Revisited

    ERIC Educational Resources Information Center

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  4. Nonpharmacologic Approach to Minimizing Shivering During Surface Cooling: A Proof of Principle Study1

    PubMed Central

    Shah, Nirav G.; Cowan, Mark J.; Pickering, Edward; Sareh, Houtan; Afshar, Majid; Fox, Dawn; Marron, Jennifer; Davis, Jennifer; Herold, Keith; Shanholtz, Carl B.; Hasday, Jeffrey D.

    2012-01-01

    Purpose This study had two objectives: (1) to quantify the metabolic response to physical cooling in febrile patients with Systemic Inflammatory Response Syndrome (SIRS); and (2) to provide proof for the hypothesis that the efficiency of external cooling and the subsequent shivering response are influenced by site and temperature of surface cooling pads. Methods To quantify shivering thermogenesis during surface cooling for fever, we monitored oxygen consumption (VO2) in six febrile patients with SIRS during conventional cooling with cooling blankets and ice packs. To begin to determine how location and temperature of surface cooling influences shivering, we compared 5 cooling protocols for inducing mild hypothermia in six healthy volunteers. Results In the SIRS patients, core temperature decreased 0.67°C per hour, all patients shivered, VO2 increased 57.6% and blood pressure increased 15% during cooling. In healthy subjects, cooling with the 10°C vest was most comfortable and removed heat most efficiently without shivering or VO2 increase. Cooling with combined vest and thigh pads stimulated the most shivering and highest VO2, and increased core temperature. Reducing vest temperature from 10°C to 5°C failed to increase heat removal secondary to cutaneous vasoconstriction. Capsaicin, an agonist for TRPV1 warm-sensing channels, partially reversed this effect in 5 subjects. Conclusions Our results identify the hazards of surface cooling in febrile critically ill patients and support the concept that optimization of cooling pad temperature and position may improve cooling efficiency and reduce shivering. PMID:22762936

  5. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  6. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  7. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  8. CFD Analyses on LHe Cooling for SCQ Magnets in BEPCII Upgrade

    NASA Astrophysics Data System (ADS)

    He, Z. H.; Wang, L.; Tang, H. M.; Zhang, X. B.; Jia, L. X.

    2004-06-01

    A pair of superconducting interaction region quadrupole magnets in Beijing Electron-Positron Collider Upgrade (BEPCII) are to be cooled by supercritical helium in order to eliminate the flow instabilities in the constrained cooling channels. The fluid flow is simulated by the commercial computational dynamics fluid software. The heat loads to the superconducting quadrupole (SCQ) magnets from the radiation shields at 80 K and from the thermal conduction of mechanical supports are considered. The temperature distribution of the fluid in the liquid helium cooling channels, and the heat transfer in the SCQ magnet and by its supports are presented. The influence of mass flow rate on pressure drop in the cooling passage is analyzed.

  9. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  10. FUSE Observations of Luminous Cool Stars

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Young, P. R.; Ake, T. B.

    2000-12-01

    Luminous cool stars can address the evolution of magnetic activity and the dynamics of stellar winds and mass loss. The region of yellow supergiants in the HR diagram contains stars of intermediate mass both with coronas and those possessing a hot outer atmosphere in the presence of a strong wind (the ``hybrid'' stars). These hybrid objects hold particular significance for evolution studies because they represent the physically important connection between solar-like stars (with coronas and fast winds of low-mass loss rate) and the cool supergiant stars (Alpha Ori-like) with cool outer atmospheres and massive winds. The Far Ultraviolet Spectroscopic Explorer (FUSE) measured the chromospheric and transition region emissions of the bright G2 Ib supergiant Beta Draconis (HD 159181) on 9 May 2000. Two exposures through the large aperture totaled 7695 s and were obtained in all channels covering the region λ λ 912-1180. Emission from chromospheric and transition region ions (C III, O VI, Si III, S IV, S VI) is detected along with a number of low ion stages. Profiles of strong lines are asymmetric suggesting the presence of a wind. A short exposure (3260 s) of Alpha Aquarii (HD 209750), a hybrid supergiant also of spectral type G2 Ib was obtained June 29, 2000. Dynamics of the atmospheres can be inferred from line profiles. The atmospheric temperature distribution, densities, and scale sizes can be evaluated from line fluxes to characterize the differences between a coronal star and a hybrid supergiant. FUSE is a NASA Origins mission operated by The Johns Hopkins University. Funding for this research is provided through NASA Contract NAS-532985.

  11. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  12. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  13. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  14. Importance of combining convection with film cooling

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1971-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  15. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  16. Cooling characteristics of air cooled radial turbine blades

    NASA Astrophysics Data System (ADS)

    Sato, T.; Takeishi, K.; Matsuura, M.; Miyauchi, J.

    The cooling design and the cooling characteristics of air cooled radial turbine wheels, which are designed for use with the gas generator turbine for the 400 horse power truck gas turbine engine, are presented. A high temperature and high speed test was performed under aerodynamically similar conditions to that of the prototype engine in order to confirm the metal temperature of the newly developed integrated casting wheels constructed of the superalloys INCO 713C. The test results compared with the analytical value, which was established on the basis of the results of the heat transfer test and the water flow test, are discussed.

  17. Estimation of patient setup uncertainty using BrainLAB Exatrac X-Ray 6D system in image-guided radiotherapy.

    PubMed

    Infusino, Erminia; Trodella, Lucio; Ramella, Sara; D'Angelillo, Rolando M; Greco, Carlo; Iurato, Aurelia; Trodella, Luca E; Nacca, Alessandro; Cornacchione, Patrizia; Mameli, Alessandra

    2015-03-08

    The purpose of this study was to evaluate setup uncertainties for brain sites with ExacTrac X-Ray 6D system and to provide optimal margin guidelines. Fifteen patients with brain tumor were included in this study. Two X-ray images with ExacTrac X-Ray 6D system were used to verify patient position and tumor target localization before each treatment. The 6D fusion software first generates various sets of DRRs with position variations in both three translational and three rotational directions (six degrees of freedom) for the CT images. Setup variations (translation and rotation) after correction were recorded and corrected before treatment. The 3D deviations are expressed as mean ± standard deviation. The random error (Σ(σi)), systematic error (μi), and group systematic error (M(μi)) for the different X-ray were calculated using the definitions of van Herk.(1) Mean setup errors were calculated from X-ray images acquired after all fractions. There is moderate patient-to-patient variation in the vertical direction and small variations in systematic errors and magnitudes of random errors are smaller. The global systematic errors were measured to be less than 2.0 mm in each direction. Random component of all patients are smaller ranging from 0.1-0.3 mm small. The safety margin (SM) to the lateral, is 0.5 mm and 2.6 mm for van Herk(1) and Stroom et al.,(2) respectively, craniocaudal axis is 1.5 mm and 3.4 mm, respectively, and with respect to the antero-posterior axis, 2.3 mm and 3.9 mm. Daily X-ray imaging is essential to compare and assess the accuracy of treatment delivery to different anatomical locations.

  18. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  19. Laser cooling of a harmonic oscillator's bath with optomechanics

    NASA Astrophysics Data System (ADS)

    Xu, Xunnong; Taylor, Jacob

    Thermal noise reduction in mechanical systems is a topic both of fundamental interest for studying quantum physics at the macroscopic level and for application of interest, such as building high sensitivity mechanics based sensors. Similar to laser cooling of neutral atoms and trapped ions, the cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an efficient scheme for reducing the thermal load on a mechanical resonator while improving its quality factor. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

  20. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  1. Ion channels and cancer.

    PubMed

    Kunzelmann, Karl

    2005-06-01

    Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl- channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.

  2. An Alternative to Laser Cooling

    NASA Astrophysics Data System (ADS)

    Raizen, Mark

    2015-03-01

    Laser cooling has been the standard approach for over thirty years for cooling the translational motion of atoms. While laser cooling is an extremely successful method, it has been limited to a small set of elements in the periodic table. The performance of laser cooling for those elements has saturated in terms of flux of ultra-cold atoms, density, and phase-space density. I report our progress towards the development of an alternative to laser cooling. Our approach relies on magnetic stopping of supersonic beams, an atomic coilgun. A recent advance is the experimental realization of an adiabatic coilgun which preserves phase-space density. Further cooling was demonstrated with a one-way wall, realizing the historic thought experiment of Maxwell's Demon. More recently, we showed how to apply this method to compress atomic phase space with almost no loss of atom number. Our approach is fundamentally different than laser cooling as it does not rely on the momentum of the photon, but rather the photon entropy. I will report on our experimental progress towards this goal, and describe future experiments that will be enabled by this work.

  3. Non-intrusive cooling system

    DOEpatents

    Morrison, Edward F.; Bergman, John W.

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  4. Liquid Cooling in Data Centers

    SciTech Connect

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is

  5. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2016-07-12

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  6. Cool Cities, Cool Planet (LBNL Science at the Theater)

    SciTech Connect

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2010-10-11

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  7. Self-Transport of Condensed Liquid in Micro Cooling Device Using Distributed Meniscus Pumping.

    PubMed

    So, Hongyun; Pisano, Albert P

    2015-06-16

    This paper reports a reliable passive micro pump system combining the physical properties of a tapered microchannel and sharp microstructures. This tailored microchannel with triple-spike microstructures was created to transport condensed liquid into the reservoir chamber in a micro cooling device and in the case of chip off-mode prepare the next cooling cycle before chip on-mode, allowing the reliable and continuous circulation of coolant without liquid being trapped in the vapor channel causing dryout limitation. At the tapered channel end, the pinned liquid meniscus was distributed by a middle spike and then continued to overflow into the condenser chamber due to extended capillary action. PMID:26010771

  8. Self-Transport of Condensed Liquid in Micro Cooling Device Using Distributed Meniscus Pumping.

    PubMed

    So, Hongyun; Pisano, Albert P

    2015-06-16

    This paper reports a reliable passive micro pump system combining the physical properties of a tapered microchannel and sharp microstructures. This tailored microchannel with triple-spike microstructures was created to transport condensed liquid into the reservoir chamber in a micro cooling device and in the case of chip off-mode prepare the next cooling cycle before chip on-mode, allowing the reliable and continuous circulation of coolant without liquid being trapped in the vapor channel causing dryout limitation. At the tapered channel end, the pinned liquid meniscus was distributed by a middle spike and then continued to overflow into the condenser chamber due to extended capillary action.

  9. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    SciTech Connect

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  10. Experimental characterization of the ITER TF structure cooling in HELIOS test facility

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Rousset, B.; Lacroix, B.; Nicollet, S.; Vallcorba, R.; Bessette, D.; Vostner, A.; Gauthier, F.

    2015-12-01

    During ITER plasma operation, large thermal loads are generated in the stainless steel Toroidal Field (TF) coil casing. To minimize the impact on the temperature of the TF Cable in Conduit Conductor (CICC), these heat loads are intercepted by case cooling channels which are implemented at the interface to the winding pack. One of the design options for the case cooling channels consists of a stainless steel pipe inserted in a rectangular groove which is machined in the casing and filled by a charged resin of high thermal conductivity. A higher number of cooling pipes is arranged at the plasma facing wall of the case, thus providing a better shielding to the TF conductor at high field. To assess the efficiency of the cooling pipes and their thermal coupling with the charged resin, experimental characterizations have been performed. First of all, the thermal resistance vs temperature of some of the individual components of a TF coil has been measured on representative samples in a cryogenic bench. Further characterizations have been performed on an integrated mock-up of the TF cooling scheme at cryogenic temperature in HELIOS test facility at CEA Grenoble. The mock-up consists of a piece of TF casing that can be heated uniformly on its surface, one cooling channel implemented in the groove which is filled with the charged resin, the filler, the ground insulation, the radial plate and one insulated CICC. The cooling pipe and the CICC are cooled by supercritical helium at 4.4 K and 5 bar; the instrumentation consists of temperature, pressure and mass flow sensors. Both stationary and transient operating modes have been investigated to assess the thermal efficiency of the case cooling design. The experimental tests are presented and the first results are discussed and analyzed in this document.

  11. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  13. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  14. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  15. GENETIC MAPPING OF VOCALIZATION TO A SERIES OF INCREASING ACUTE FOOTSHOCKS USING B6.A CONSOMIC AND B6.D2 CONGENIC MOUSE STRAINS

    SciTech Connect

    Matthews, Douglas B; Chesler, Elissa J; Cook, Melloni N.; Cockroft, Judy; Philip, Vivek M; Goldowitz, Daniel

    2008-01-01

    Footshock response is used to study biological functions in mammals. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 congenic mouse strains and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J and B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 congenic mice. These data identify genetic regions involved in footshock sensitivity and establish additional mouse resources for use in investigating complex behaviors.

  16. Mesoscopic quantum multiplex for channeling bunches

    NASA Astrophysics Data System (ADS)

    Shen, Jing

    1998-09-01

    (1) Bogacz-Cline channeling is an interesting idea that can transform a bunch of low particle intensity to a collider of high luminosity but it was maintained as impossible to carry out because of three technical problems. (2) The first of which is discussed in this paper, and it is how to get billions particles from each bunch to enter into and channel through a single crystal channel. (3) Two basic difficulties of entrance are discussed in this paper. The first is due to the Heisenberg's uncertainty, and the second is the dimension reduction of a beam bunch in crystal from 3D to 1D. (4) To overcome these difficulties, a hybrid device named Mesoscopic Quantum Multiplex (MQM) is designed to achieve entrance and channeling. It is a quantum generalization of classical multiplex in detector readout electronics for the classical-quantum interface. It is made by nano-crystalline technology. (5) The MQM can channel the Richter-Kimura-Takada flat e± beams of NLC-JLC, and low emittance p or heavy ion beams as well as the Bogacz-Cline μ± beams, and the Nagamine-Chu cool μ± beams.

  17. C. elegans TRP channels.

    PubMed

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  18. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  19. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  20. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.