Science.gov

Sample records for 6g r6g dye

  1. Prussian Blue Modified PLA Microcapsules Containing R6G for Ultrasonic/Fluorescent Bimodal Imaging Guided Photothermal Tumor Therapy.

    PubMed

    Feng, Shanshan; Wang, Jinrui; Ma, Fang; Liang, Xiaolong; Li, Xiaoda; Xing, Sen; Yue, Xiuli

    2016-03-01

    A theranostic agent has been successfully constructed for fluorescence/ultrasound dual-modal imaging guided photothermal therapy by loading the fluorescent dye R6G into polylactide microcapsules (PLA MCs) followed by deposition of Prussian blue nanoparticles (PB NPs) into the surface of PLA MCs. It was proved that the obtained microcapsules of R6G@PLA/PB MCs could serve as an efficient probe to simultaneously enhance fluorescence imaging and ultrasound imaging greatly in vivo. R6G@PLA/PB MCs exhibited significant photothermal cytotoxicity. Cancer cells could be killed efficiently through photothermal effects of R6G@PLA/PB MCs due to the strong absorption of PB NPs in the near infrared region under laser irradiation. In a word, R6G@PLA/PB MCs integrate multiple capabilities for effective tumor imaging and therapy. Such a single agent provides us a possibility to interpret accurately the obtained images, identify the size and location of the tumor, as well as guide and monitor the photothermal therapy.

  2. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?

    PubMed

    Ghosh, Surajit; Roy, Arpita; Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Dhir, Anjali; Sarkar, Nilmoni

    2015-03-01

    The rotational dynamics and translational diffusion of a hydrophilic organic molecule, rhodamine 6G perchlorate (R6G ClO4) in small unilamellar vesicles formed by two different ionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), with cholesterol have been investigated using fluorescence spectroscopic methods. Moreover, in this article the formation of vesicle using anionic surfactant, SDS at different cholesterol-to-surfactant molar ratio (expressed by Q value (Q = [cholesterol]/[surfactant])) has also been reported. Visual observation, dynamic light scattering (DLS) study, turbidity measurement, steady state fluorescence anisotropy (r0) measurement, and eventually microscopic images reveal the formation of small unilamellar vesicles in aqueous solution. Also, in this study, an attempt has been made to observe whether the cationic probe molecule, rhodamine 6G (R6G) experiences similar or different microenvironment in cholesterol-SDS and cholesterol-CTAB assemblies with increase in cholesterol concentration. The influence of cholesterol on rotational and translational diffusion of R6G molecules has been investigated by monitoring UV-vis absorption, fluorescence, time-resolved fluorescence anisotropy, and finally fluorescence correlation spectroscopy (FCS) measurements. In cholesterol-SDS assemblies, due to the strong electrostatic attractive interaction between the negatively charged surface of vesicle and cationic R6G molecules, the rotational and diffusion motion of R6G becomes slower. However, in cholesterol-CTAB aggregates, the enhanced hydrophobicity and electrostatic repulsion induces the migration of R6G from vesicle bilayer to aqueous phase. The experimental observations suggest that the surface charge of vesicles has a stronger influence than the hydrophobicity of the vesicle bilayer on the rotational and diffusion motion of R6G molecules.

  3. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Futamata, M.; Maruyama, Y.

    2008-10-01

    In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl-, Br-, I-, SCN-, CN-, or S2O3 2- anions, whose adsorption features are elucidated by the formation constants for AgX2 ( m-1)-, here X denotes the above anions. In particular, Cl-, Br-, or SCN- ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN-, S2O3 2-, or I- anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650-700 to 500-550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.

  4. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure.

    PubMed

    Zhang, C; Jiang, S Z; Huo, Y Y; Liu, A H; Xu, S C; Liu, X Y; Sun, Z C; Xu, Y Y; Li, Z; Man, B Y

    2015-09-21

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/silicon pyramid arrays structure (GO/Ag/PSi). The SERS behaviors are discussed and compared by the detection of R6G. Based on the contrast experiments with PSi, GO/PSi, Ag/PSi and GO/AgA/PSi as SERS substrate, the perfect bio-compatibility, good homogeneity and chemical stability were confirmed. We also calculated the electric field distributions using Finite-difference time-domain (FDTD) analysis to further understand the GO/Ag/PSi structure as a perfect SERS platform. These experimental and theoretical results imply that the GO/Ag/PSi with regular pyramids array is expected to be an effective substrate for label-free sensitive SERS detections in areas of medicine, food safety and biotechnology.

  5. R6G molecule induced modulation of the optical properties of reduced graphene oxide nanosheets for use in ultrasensitive SPR sensing

    PubMed Central

    Xue, Tianyu; Yu, Shansheng; Zhang, Xiaoming; Zhang, Xinzheng; Wang, Lei; Bao, Qiaoliang; Chen, Caiyun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-01

    A proper understanding of the role that molecular doping plays is essential to research on the modulation of the optical and electronic properties of graphene. The adsorption of R6G molecules onto defect-rich reduced graphene oxide nanosheets results in a shift of the Fermi energy and, consequently, a variation in the optical constants. This optical variation in the graphene nanosheets is used to develop an ultrasensitive surface plasmon resonance biosensor with a detection limit of 10−17 M (0.01 fM) at the molecular level. A density functional theory calculation shows that covalent bonds were formed between the R6G molecules and the defect sites on the graphene nanosheets. Our study reveals the important role that defects play in tailoring the properties and sensor device applications of graphene materials. PMID:26887525

  6. Fluorescent monodisperse spherical particles based on mesoporous silica containing rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Trofimova, E. Yu.; Grudinkin, S. A.; Kukushkina, Yu. A.; Kurdyukov, D. A.; Medvedev, A. V.; Yagovkina, M. A.; Golubev, V. G.

    2012-06-01

    Fluorescent monodisperse spherical silica (SiO2) particles with a regular mesoporous structure containing encapsulated Rhodamine 6G (R6G) dye have been synthesized. The as-synthesized particles have been coated with SiO2 and SiO2-CTAB (cetyltrimethylammonium bromide, C16H33N(CH3)3Br) shells in order to prevent uncontrolled release of the dye from pores. The kinetics of R6G release from the pores of silica particles has been studied. It has been found that the particles synthesized by adding CTAB and R6G to the reaction mixture, as well as the particles coated with the SiO2-CTAB shell, are characterized by the maximum duration of dye release from the pores, which is probably associated with the formation of chemical bonds between R6G and CTAB molecules.

  7. Rhodamine 6G laser pumped by cathodoluminescence

    SciTech Connect

    Lisitsyn, V.M.; Lyakh, G.O.; Orlovskii, V.M.; Osipov, V.V.; Urbazaev, M.N.

    1984-08-01

    Cathodoluminescence from a CdS crystal, generated by the action of high-power short-duration electron beam pulses was used to pump a rhodamine 6G (R6G) laser. Measurements were made of the energy spectrum of the electrons in the beam exciting the CdS crystal, of the cathodoluminescence spectrum of CdS, of the absorption and emission spectra of the dye, and also of the time characteristics of the cathodoluminescence and of the dye laser radiation. When the electron beam incident on the crystal was characterized by a current of 500 A and duration 8 nsec at half-height, the radiation pulses emitted by R6G had an energy of approx.1 mJ and the efficiency of generation of these pulses was approx.0.3%. OFF

  8. Narrow bandwidth tuning of rhodamine 6G dye pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Ling Ying-yi; Wang Yi-man; Dou Ai-rong; Huang Dan-hong

    1986-03-01

    In this paper the experimental study for narrow bandwidth tuning of ethylene glycol solution of rhodamine 6G pumped by a XeCl excimer laser is reported. The tunable range from 572.7 nm to 612.9 nm with linewidth of 0.004 nm has been obtained. The conversion efficiency is 16.0%. The experimental results of seven other dyes are also presented.

  9. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    NASA Astrophysics Data System (ADS)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  10. Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels

    SciTech Connect

    McKiernan, J.M.; Yamanaka, S.A.; Dunn, B.; Zink, J.I. )

    1990-07-26

    Rhodamine 6G (R6G) doped aluminosilicate glass synthesized by the sol-gel method exhibits laser action. Transparent 5 mm {times} 5 mm {times} 10 mm monoliths were used as cast in a simple laser cavity. This new material was pumped at rates of up to 25 Hz and was still active after as many as 40,000 pump pulses. Luminescence and free-running laser spectra are measured. The dependence of the R6G doped aluminosilicate dye laser output on the number of pump pulses and the pump pulse energy is discussed.

  11. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing.

    PubMed

    Wang, Yaohui; Jiang, Caina; Wen, Guiqing; Zhang, Xinghui; Luo, Yanghe; Qin, Aimiao; Liang, Aihui; Jiang, Zhiliang

    2016-06-01

    Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2 PO4 -Na2 HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 10(4) to 3.53 × 10(7) , 4.95 × 10(5) to 2.475 × 10(8) and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 10(4) cfu/mL E. coli, 2.3 × 10(5) cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Seventeen psec pulses from a nitrogen laser-pumped short-cavity rhodamine 6G dye laser

    SciTech Connect

    Liesegang, G.W.

    1983-08-15

    We wish to report the generation of 17-psec pulses of 200-kW intensity from a nitrogen-pumped rhodamine 6G short-cavity dye laser. This dye laser has a cavity length of 120 ..mu..m and is axially pumped by the nitrogen laser. (AIP)

  13. Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy.

    PubMed

    Wazawa, Tetsuichi; Morimoto, Nobuyuki; Nagai, Takeharu; Suzuki, Makoto

    2015-01-01

    Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns(-1) at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin.

  14. Rotational motion of rhodamine 6G tethered to actin through oligo(ethylene glycol) linkers studied by frequency-domain fluorescence anisotropy

    PubMed Central

    Wazawa, Tetsuichi; Morimoto, Nobuyuki; Nagai, Takeharu; Suzuki, Makoto

    2015-01-01

    Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns−1 at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin. PMID:27493858

  15. Photodegradation and self-healing in a Rhodamine 6G dye and nanoparticle-doped polyurethane random laser

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin R.; Gunawidjaja, Ray; Eilers, Hergen

    2015-07-01

    One of the fundamental difficulties in implementing organic dyes in random lasers is irreversible photodegradation of the dye molecules, leading to loss of performance and the need to replace the dye. We report the observation of self-healing after photodegradation in a Rhodamine 6G dye and nanoparticle-doped polyurethane random laser. During irradiation, we observe two distinct temporal regions in which the random lasing emission first increases in intensity and redshifts, followed by further redshifting, spectral broadening, and decay in the emission intensity. After irradiation, the emission intensity is found to recover back to its peak value, while still being broadened and redshifted, which leads to the result of an enhancement of the spectrally integrated intensity. We also perform IR-VIS absorbance measurements and find that the results suggest that during irradiation, some of the dye molecules form dimers and trimers and that the polymer host is irreversibly damaged by photooxidation and Norrish type I photocleavage.

  16. Reciprocal passive mode locking of a rhodamine 6G dye laser and the Ar/sup +/ pump laser

    SciTech Connect

    Yasa, Z.A.; Amer, N.M.

    1981-02-01

    A rhodamine 6G dye laser, internally pumped within the extended cavity of an Ar/sup +/-ion laser, is mode locked when its cavity length is matched to half that of the pump laser: the 5145-A argon laser line is passively mode locked by the combination of the saturable absorption and the lasing action of the dye, which is in turn synchronously pumped and mode locked. Tunable (5650-5950-A)approx.10 psec pulses are generated, and the average output power is approx.80 mW.

  17. Reciprocal passive mode locking of a rhodamine 6G dye laser and the Ar+ pump laser

    SciTech Connect

    Yasa, Zafer A.; Amer, Nabil M.

    1981-02-01

    We report that a rhodamine 6G dye laser, internally pumped within the extended cavity of an Ar+-ion laser, is mode locked when its cavity length is matched to half that of the pump laser: the 5145-Å argon laser line is passively mode locked by the combination of the saturable absorption and the lasing action of the dye, which is in turn synchronously pumped and mode locked. Tunable (5650–5950-Å) ~10 psec pulses are generated, and the average output power is ~80 mW.

  18. Compression mechanism of subpicosecond pulses by malachite green dye in passively mode-locked rhodamine 6G/DODCI CW dye lasers

    SciTech Connect

    Watanabe, A.; Hara, M.; Kobayashi, H.; Takemura, H.; Tanaka, S.

    1983-04-01

    The pulse width compression effect of a malachite green (MG) dye upon subpicosecond pulses has been experimentally investigated in a CW passively mode-locked rhodamine 6G/DODCI dye laser. The pulse width reduces as MG concentration increases, and reaches 0.34 ps at 1.5 X 10/sup -6/ M. By adding the MG dye, good mode locking is achieved in a rather wide pumping-power range. A computer simulation of pulse growth has also been carried out by using simple rate equations, in which the fast-recovery component of loss due to the MG dye is taken into account. The simulated results can explain some experimental results qualitatively such as pulse width compression and pumping-power restriction. The pulse width compression results essentially from the fast recovery of cavity loss caused by the MG dye.

  19. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    PubMed

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  20. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    PubMed

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step. PMID:26873829

  1. Time resolved FRET measurement in various heterogeneous media using merocyanine dye as a donor

    NASA Astrophysics Data System (ADS)

    Kedia, Niraja; Bagchi, Sanjib

    2015-06-01

    Ultrafast fluorescence resonance energy transfer (FRET) from a merocyanine dye to a Rhodamine 6G (R6G) molecule in micelles formed by the surfactants SDS and DTAB and also in a catanionic vesicle formed by SDS and DTAB has been studied by picosecond time resolved emission spectroscopy. Here the dye acts as a donor molecule and R6G acts as the acceptor molecule. Multiple timescales of FRET have been detected, namely, an ultrafast component of 100-500 ps and relatively long component (1800-3300 ps). The different time scales are attributed to different donor-acceptor distances.

  2. Time resolved FRET measurement in various heterogeneous media using merocyanine dye as a donor.

    PubMed

    Kedia, Niraja; Bagchi, Sanjib

    2015-06-15

    Ultrafast fluorescence resonance energy transfer (FRET) from a merocyanine dye to a Rhodamine 6G (R6G) molecule in micelles formed by the surfactants SDS and DTAB and also in a catanionic vesicle formed by SDS and DTAB has been studied by picosecond time resolved emission spectroscopy. Here the dye acts as a donor molecule and R6G acts as the acceptor molecule. Multiple timescales of FRET have been detected, namely, an ultrafast component of 100-500 ps and relatively long component (1800-3300 ps). The different time scales are attributed to different donor-acceptor distances.

  3. Kinetic peculiarities of rhodamine 6G photodegradation in polymethylmethacrylate

    SciTech Connect

    Mardaleishvili, I.R.; Anisimov, V.M.

    1986-10-01

    Dye-activated polymer matrices have found recently wide technological applications as active laser media. The kinetic mechanism for dye photodegradation has been studied in this work for polymethylmethacrylate (PMMA) activated by rhodamine 6G (R6G). It has been found that the dye molecules are not equivalent with respect to their stability to the light and the effective width of their distribution over this parameter depends on the photon energy acting on the system. For the short wavelength UV irradiation (lambda = 254 nm) the distribution is narrow and it widens with an increase in the excitation wavelength. Optically transparent PMMA films (molecular weight 160,000 and thickness ca.20 mum) have been used in the present work. The necessity of accounting for the kinetics and effectiveness of the relaxation processes leading to a change in the reactivity of the molecules added to the polymer matrix limit the applicability of the kinetic stabilization method. A detailed study of the relaxation processes has been carried out, where it has been demonstrated for a number of polymer matrices, including PMMA, that a relaxation of guest molecules, leading to an enhancement of their reactivity, is effective only at the temperatures close to T /SUB c/ of the polymer. For PMMA activated by R6G the dark incubation of the previously irradiated sample for 30 min at 90 C leads to a substantial increase in the further photodegradation process. This is due to the fact that the relaxation process leads to an increased fraction of the highly reactive molecules. Diagrams are included.

  4. The shape effect of Au particles on random laser action in disordered media of Rh6G dye doped with PMMA polymer

    NASA Astrophysics Data System (ADS)

    Yin, Jiajia; Feng, Guoying; Zhou, Shouhuan; Zhang, Hong; Wang, Shutong; Zhang, Hua

    2016-10-01

    Random laser actions in a disordered media based on polymethyl methacrylate (PMMA) polymer doped with Rh6G dye and Au nanoparticles have been demonstrated. It was observed that the shape of Au nanoparticles can tune the spectral central position of the random laser action. It was also seen that the shape of Au nanoparticles strongly affects the pump threshold. Comparing nanosphere- and nanorod-based systems, the nanorod-based one exhibited a lower threshold.

  5. Short pulse generation from a flashlamp-pumped rhodamine 6G ring dye laser using the colliding pulse mode-locking technique

    SciTech Connect

    Singh, S.

    1987-01-01

    The colliding pulse mode-locking (CPM) technique has been applied to a flashlamp-pumped rhodamine 6G dye laser to reliably generate pulses of <1.5 ps. Pulse evolution in the ring cavity has been studied by examining the pulse characteristics at various parts of the pulse train using a Photochron II streak camera. The measured pulse durations in the ring cavity were found to be detector-limited and were shorter than those generated in a linear cavity. The shortest pulses were observed to evolve toward the end of the --600-ns long mode-locked train.

  6. Intersystem crossing from highly excited states. rhodamine 6G

    SciTech Connect

    Ryl'kov, V.V.; Cheshev, E.A.

    1985-09-01

    The authors carried out an investigation of ethanolic solutions of Rhodamine 6G (R6G) at 20 C by laser flash photolysis. The excitation of dilute (3 /SUP ./ 10/sup -5/ M) solutions of R6G with an initial optical density of 1.5 up to an intensity of 100 MW/cm/sup 2/ resulted in only weak triplet-triplet absorption. The introduction of additions of lithium chloride or lithium bromide in 0.1 M concentrations into a solution of R6G (3.10/sup -5/ M) resulted in the appearance of induced absorption and the introduction of an addition of lithium nitrate in the same concentration into the solution did not result in enhancement of triplet-triplet absorption.

  7. Detection of single rhodamine 6g molecules in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Ng, K.C.; Whitten, W.B.; Ramsey, J.M. )

    1993-09-01

    Single Rhodamine 6G (R6G) molecules in levitated glycerol microdroplets have been detected with signal-to-noise ratios of >40 using CW laser-induced fluorescence. The fluorescence signal from single R6G molecules was identified by the magnitude of the fluorescence signal and by the unique time dependence of the fluorescence count rate before photobleaching. This high sensitivity allows single molecules to be counted by use of a digital detection approach offering significantly lower detection limits than those possible with conventional detection methods. 27 refs., 6 figs.

  8. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    PubMed

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  9. Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography [rapid communication

    NASA Astrophysics Data System (ADS)

    Zhou, Hualan; Li, Zhuang; Wu, Aiguo; Wei, Gang; Liu, Zhiguo

    2004-09-01

    Dip-pen nanolithography (DPN) has been developed to pattern monolayer film of various molecules on suitable substrate through the controlled movement of ink-coated atomic force microscopy (AFM) tip, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this paper, the direct patterning of rhodamine 6G on mica by dip-pen nanolithography was demonstrated. R6G features patterned on the mica was successfully achieved with different tip movement which can be programmed by Nanoscript™ language. From the AFM image of R6G patterns, we know that R6G molecule is flatly binding to the mica surface through electrostatic interaction, thus stable R6G nanostructures could be formed on mica. The influence of translation speed and contact time on DPN was discussed. The method can be extended to direct patterning of many other organic molecules, and should open many opportunities for miniaturized optical device and site-specific biological staining.

  10. Rotational and Translational Dynamics of Rhodamine 6G in a Pyrrolidinium Ionic Liquid: A Combined Time-Resolved Fluorescence Anisotropy Decay and NMR Study

    SciTech Connect

    Guo, Jianchang; Han, Kee Sung; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Hagaman, Edward {Ed} W; Shaw, Robert W

    2012-01-01

    NMR spectroscopy and time-resolved fluorescence anisotropy decay (TRFAD) are two of the most commonly used methods to study solute-solvent interactions. However, only a few studies have been reported to date using a combined NMR and TRFAD approach to systematically investigate the overall picture of diffusional and rotational dynamics of both the solute and solvent. In this paper, we combined NMR and TRFAD to probe fluorescent rhodamine dyes in a pyrrolidinium-based room temperature ionic liquid (RTIL), an emergent environmentally-friendly solvent type used in several energy-related applications. A specific interaction of the R6G cation and [Tf2N]- anion was identified, resulting in near-stick boundary condition rotation of R6G in this RTIL. The diffusional rates of the R6G solute and [C4mpyr][Tf2N] solvent derived from 1H NMR suggest the rates are proportional to their corresponding hydrodynamic radii. The 1H and 13C NMR studies of self-rotational dynamics of [C4mpyr][Tf2N] showed that the self-rotational correlation time of [C4mpyr]+ is 47 2 ps at 300 K. At the same temperature, we find that the correlation time for N-CH3 rotation in [C4mpyr]+ is 77 2 ps, comparable to overall molecular reorientation. This slow motion is attributed to properties of the cation structure.

  11. Emission Lifetimes of a Fluorescent Dye under Shock Compression.

    PubMed

    Liu, Wei-long; Bassett, Will P; Christensen, James M; Dlott, Dana D

    2015-11-01

    The emission lifetimes of rhodamine 6G (R6G) were measured under shock compression to 9.1 GPa, with the dual intents of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly(methyl methacrylate) (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and the emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0 to 9 GPa, with a slope of -0.22 ns·GPa(-1). The linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, because lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.

  12. Emission Lifetimes of a Fluorescent Dye under Shock Compression.

    PubMed

    Liu, Wei-long; Bassett, Will P; Christensen, James M; Dlott, Dana D

    2015-11-01

    The emission lifetimes of rhodamine 6G (R6G) were measured under shock compression to 9.1 GPa, with the dual intents of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly(methyl methacrylate) (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and the emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0 to 9 GPa, with a slope of -0.22 ns·GPa(-1). The linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, because lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure. PMID:26469397

  13. Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe-containing TiO2 catalysts.

    PubMed

    Demir, Nazlı; Gündüz, Gönül; Dükkancı, Meral

    2015-03-01

    In this study, degradation of Rhodamine 6G (Rh6G) was investigated with ultrasound-assisted heterogeneous photoFenton process by iron-containing TiO2 catalysts. The catalysts were prepared by incipient wetness impregnation method and characterized by XRD, SEM, FT-IR, nitrogen adsorption, and ICP-AES measurements. Almost complete color removal (99.9 %) was achieved after a reaction time of 90 min while chemical oxygen demand (COD) could be removed by 24 % only with the 1 wt% iron-containing TiO2 catalyst. Initial color removal after 15 min of reaction and total COD abatement after 90 min of reaction decreased with increasing calcination temperature of the catalyst from 573 to 973 K. This indicated that the catalytic activity of the catalyst depend on the percentage of anatase phase in the TiO2, which was decreased with increasing calcination temperature.

  14. Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe-containing TiO2 catalysts.

    PubMed

    Demir, Nazlı; Gündüz, Gönül; Dükkancı, Meral

    2015-03-01

    In this study, degradation of Rhodamine 6G (Rh6G) was investigated with ultrasound-assisted heterogeneous photoFenton process by iron-containing TiO2 catalysts. The catalysts were prepared by incipient wetness impregnation method and characterized by XRD, SEM, FT-IR, nitrogen adsorption, and ICP-AES measurements. Almost complete color removal (99.9 %) was achieved after a reaction time of 90 min while chemical oxygen demand (COD) could be removed by 24 % only with the 1 wt% iron-containing TiO2 catalyst. Initial color removal after 15 min of reaction and total COD abatement after 90 min of reaction decreased with increasing calcination temperature of the catalyst from 573 to 973 K. This indicated that the catalytic activity of the catalyst depend on the percentage of anatase phase in the TiO2, which was decreased with increasing calcination temperature. PMID:24756679

  15. Correlation of surface enhanced Raman spectroscopy and nanoparticle aggregation with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Hoff, Christopher A.

    Surface enhanced Raman spectroscopy (SERS) has fascinated the analytical chemistry field for decades. The SERS phenomenon has progressively leveraged the inherently insensitive Raman phenomenon from a novelty vibrational spectroscopy method into one capable of single molecule detection, with attendant molecular level selectivity and information. Yet, even after 40 years since its discovery, the core mechanism behind this phenomenon is still debated. This thesis presents results from a series of photometric titrations wherein solutions of 30 nm Au@Ag nanoparticles (NPs) were titrated with rhodamine 6G (R6G), spanning five orders of magnitude in R6G concentration, and which elucidate the conditions required for the onset of SERS by R6G in this system. The experiments illustrated the correlation between the Raman response and the plasmonic (via UV-Vis spectroscopy) properties of the nanoparticle solutions. It was found that the onset of R6G SERS was related much more closely to the aggregation of the nanoparticles in solution than to their R6G adsorbed surface coverage. However, triggering aggregation with sodium chloride appeared to enhance SERS by an independent mechanism, which is operative only at low, i.e., [NaCl] > 100 mM concentration.

  16. Dye-capped semiconductor nanoclusters. Excited state and photosensitization aspects of rhodamine 6G H-aggregates bound to SiO{sub 2} and SnO{sub 2} colloids

    SciTech Connect

    Nasr, C. |; Liu, D.; Kamat, P.V.; Hotchandani, S.

    1996-06-27

    SiO{sub 2} and SnO{sub 2} colloids are capped with a cationic dye, rhodamine 6G, by electrostatic interaction. The close packing of these dye molecules on the negatively charged SiO{sub 2} and SnO{sub 2} colloid results in the formation of H-aggregates. These aggregates are nonfluorescent but can inject electrons from the excited state into SnO{sub 2} colloids. The photophysical and photochemical properties of rhodamine-6G-aggregate on SiO{sub 2} and SnO{sub 2} colloids have been investigated using picosecond laser flash photolysis. Charge injection from the excited dye aggregate into SnO{sub 2} nanocrystallites occurs with a rate constant of 5.5 x 10{sup 9} s{sup -1}. The application of these dye aggregates in extending the photoresponse of nanocrystalline SnO{sup 2} film has been demonstrated by constructing a photoelectrochemical cell. A maximum incident photon-to-photocurrent efficiency of nearly 1% was observed for the photosensitized current generation. Fast reverse electron transfer between the injected electron and the cation radical of the dye aggregate is a limiting factor in maximizing the incident photon-to-photocurrent efficiency (IPCE). 65 refs., 11 figs.

  17. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater.

  18. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. PMID:27529381

  19. Second harmonic and sum frequency generation on dye-coated surfaces using collinear and non-collinear excitation geometries. [Rhodamine 6G monolayers on glass

    SciTech Connect

    Muenchausen, R.E.; Nguyen, D.C.; Keller, R.A.; Nogar, N.S.

    1986-01-01

    Doubly resonantly enhanced sum frequency generation from rhodamine 6G monolayers adsorbed on glass substates is compared with resonantly enhanced second harmonic generation using a collinear excitation geometry. Second harmonic and sum frequency generation with a non-collinear excitation geometry is also reported where spatial filtering of the non-collinear output is shown to increase the scattered light rejection by more than 4 orders of magnitude.

  20. Charge transfer in graphene oxide-dye system for photonic applications

    SciTech Connect

    Bongu, Sudhakara Reddy Bisht, Prem B.; Thu, Tran V.; Sandhu, Adarsh

    2014-02-20

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex.

  1. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Fang, Yingcui; Blinn, Kevin; Li, Xiaxi; Weng, Guojun; Liu, Meilin

    2013-04-01

    We made clean silver nano-clusters (AgNCs) on glass substrates by DC magnetron sputtering of a high purity Ag target in a high vacuum chamber. The AgNCs film shows strong localized surface plasmon resonance (LSPR) due to the coupling among Ag nanoparticles in the AgNCs and the coupling between AgNCs. The LSPR indicates strong coupling with Rhodamine 6G (R6G) adsorbed on the AgNC surface, which enhances the R6G absorption intensity and broadens the absorption wavelength range. This result promotes plasmonic nanoparticles to be better used in solar cells.

  2. Determination of the rate constants of molecular processes regulating the level of induced absorption in a laser based on an aqueous-micellar solution of rhodamine 6G with lamp pumping

    SciTech Connect

    Levin, M.B.; Snegov, M.I.; Cherkasov, A.S.

    1987-03-01

    A method of determining the average lifetime tau of the products responsible for inverse induced absorption in aqueous--micellar solutions of rhodamine 6G (R6G) on lamp pumping based on a comparison of threshold intensities of excitation (W/sub th/) in the resonators of a laser with a different Q is proposed. Using the value of tau found (0.2 ..mu..sec) and experimental data on the change in W/sub th/ with the concentration of cyclooctatetraene (COT) added to the solution the rate constant of quenching of the absorbing products by COT molecules (K/sub q/ = 2.6 x 10/sup 7/ M/sup -1/sec/sup -1/) was determined. In the assumption that the absorbing products are triplet dye molecules, the value of the rate constant of interconversion (K/sub 32/) of R6G into an aqueous--micellar solution (K/sub 32/ = 1.3 x 10/sup 7/ sec/sup -1/) was determined. A comparison was made of the values of the constants found with the corresponding values known from the literature.

  3. Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory

    SciTech Connect

    Jensen, Lasse; Schatz, George C.

    2006-03-27

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. In this work, we present the first calculation of the resonance Raman scattering (RRS) spectrum of rhodamine 6G (R6G) which is a prototype molecule in surface-enhanced Raman scattering (SERS). The calculation is done using a recently developed time-dependent density functional theory (TDDFT) method, which uses a short-time approximation to evaluate the Raman scattering cross section. The normal Raman spectrum calculated with this method is in good agreement with experimental results. The calculated RRS spectrum shows qualitative agreement with SERS results at a wavelength that corresponds to excitation of the S1 state, but there are significant differences with the measured RRS spectrum at wavelengths that correspond to excitation of the vibronic sideband of S1. Although the agreement with the experiments is not perfect, the results provide insight into the RRS spectrum of R6G at wavelengths close to the absorption maximum where experiments are hindered due to strong fluorescence. The calculated resonance enhancements are found to be on the order of 105. This indicates that a surface enhancement factor of about 1010 would be required in SERS in order to achieve single-molecule detection of R6G.

  4. Investigation of Fluorescence Characteristic in Transversely Excited Dye and Nanoparticle-Doped PMMA Fibre

    NASA Astrophysics Data System (ADS)

    NG, C. S.; Yap, S. S.; Chin, O. H.; Wong, H. Y.; Tou, T. Y.

    2011-03-01

    A simple extruder was used to fabricate poly (methyl methacrylate) (PMMA) fibers with optimum diameter 0.5 mm from the modified, low-softening (50-60° C) PMMA that was prepared using the reactive polymerization. The laser dye Rhodamine 6G (R6G) and Zinc Oxide (ZnO) nanoparticles of nominal diameter 30nm were added to the monomer MMA prior to the polymerization process, hence producing a random media. The nanoparticle embedded dye-doped PMMA fibers were transversely excited by TEA Nitrogen (N2) laser for fluorescence studies. It was observed that ZnO nanoparticles embedded in the dye-doped PMMA fibre significantly improved the fluorescence characteristic.

  5. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  6. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  7. The mutual influence of two different dyes on their sensitized fluorescence (cofluorescence) in nanoparticles from complexes

    NASA Astrophysics Data System (ADS)

    Mironov, L. Yu.; Sveshnikova, E. B.; Ermolaev, V. L.

    2013-10-01

    We have studied the fluorescence sensitization and quenching for pairs of different dyes simultaneously incorporated into nanoparticles from complexes M(diketone)3phen, where M(III) is La(III), Lu(III), or Sc(III); diketone is p-phenylbenzoyltrifluoroacetone (PhBTA) or naphthoyltrifluoroacetone (NTA); and phen is 1,10-phenanthroline. We have shown that, upon formation of nanoparticles in the solution in the presence of two dyes the concentrations of which are either comparable with or lower than the concentration of nanoparticles (<20 nM), the intensities of the sensitized fluorescence of dyes in nanoparticles in binary solutions and in solutions of either of the dyes coincide. We have found that the intensity of sensitized fluorescence of small (<20 nM) concentrations of rhodamine 6G (R6G) or Nile blue (NB) increases by an order of magnitude upon simultaneous introduction into nanoparticles of 1 μM of coumarin 30 (C30), while the intensity of fluorescence of C30 sensitized by complexes decreases by an order of magnitude. The same effect is observed as 1 μM of R6G are introduced into nanoparticles with NB ([NB] ≤ 20 nM). The increase in the fluorescence of dye molecules upon their incorporation from the solution into nanoparticles from complexes is noticeably lower than that expected from the proposed ratio of concentrations of complexes and dyes in nanoparticles. Analysis of the obtained data indicates that the introduction of large concentrations of C30 or R6G dyes into nanoparticles makes it possible to prevent large energy losses due to impurities or upon transition to a triplet state that arises during the migration of the excitation energy over S 1 levels of complexes. Energy accumulated by these dyes is efficiently transferred to another dye that is present in the solution at lower concentrations and that has a lower-lying S 1 level, which makes it possible to increase its fluorescence by an order of magnitude upon its incorporation into nanoparticles.

  8. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    PubMed

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  9. Absorption-polarization characteristics of rhodamine 6G and its base in poly(methyl methacrylate)

    SciTech Connect

    Prishchepov, A.S.; Nizamou, N.

    1986-01-01

    Results are presented of the measurement and analysis of the absorption-polarization characteristics of rhodamine 6G and the base of rhodamine 6G (BR6G) in polymeric films of poly(methylmethacrylate) (PMMA). The absorption spectrum of a PMMA film containing BR6G and the cationic dye in the monomeric and associated states are shown.

  10. Investigating the Energy Transfer from Dye Molecules to DNA Stabilized Au Nanoparticles.

    PubMed

    Patel, Arun Singh; Sahoo, Harekrushna; Mohanty, T

    2016-09-01

    Double-stranded DNA stabilized gold nanoparticles (Au NPs) are synthesized by chemical reduction method and characterized with different spectroscopic techniques such as UV-Visible absorption, Fourier transform infrared (FTIR), & circular-dichroism (CD) as well as transmission electron microscopy (TEM). These NPs show absorption maximum at 520 nm and size of most of the particles are of the order of 3.5 ± 1.0 nm. These Au NPs show crystalline nature as confirmed from electron diffraction pattern. The effect of formation of Au NPs on the macromolecule has been studied using infrared and circular dichroism spectroscopy. Formation of NPs causes conformational changes in the DNA molecules. These Au NPs are further used as resonant energy acceptor of fluorescence emission from dye molecules (Rhodamine 6G). The fluorescence intensity of Rhodamine 6G (R6G) is quenched in presence of Au NPs. The effect of DNA molecules on the fluorescence quenching and the rate of energy transfer from R6G molecules to Au NPs have been explored. PMID:27422695

  11. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy. PMID:26695301

  12. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy.

  13. Highly sensitive wavelength-dependent nonaqueous capillary electrophoresis for simultaneous screening of various synthetic organic dyes.

    PubMed

    Park, Moonhee; Bahng, Seung-Hoon; Woo, Nain; Kang, Seong Ho

    2016-05-15

    A novel multi-wavelength nonaqueous capillary electrophoresis (MW-NACE) technique based on wavelength-dependent laser-induced fluorescence (LIF) detection was investigated for the simultaneous screening of various synthetic organic dyes. Multi-wavelength excitation light sources were utilized to excite different organic dyes [e.g., 543 nm for crystal violet (CV), methyl violet B (MVB), methyl violet B base (MBB), rhodamine 6G (R6G), and rhodamine B base (RBB); 635 nm for nile blue A (NBA) and methylene blue (MB)] simultaneously. Using a nonaqueous buffer system composed of 15 mM sodium borate and 835 mM acetic acid in 100% ethanol (pH=5.4), all dyes were analyzed within 15 min with excellent resolution (R≥4.0) under an electric field of 500 V/cm. Calibration curves showed excellent linearity with square of correlation coefficients (r(2)) greater than 0.9908 over wide dynamic ranges of 0.4-50 μM for CV, 0.8-50 μM for MVB, 1.5-50 μM for MBB, 0.08-5 nM for R6G, 0.06-10 μM for MB, 0.02-10 μM for NBA, and 0.13-10 pM for RBB. The detection limits (S/N=3) of 40 fM to 0.5 μM were 10-200,000 times lower than those of previous detection methods. While adjacent peaks were not well distinguished with baseline separation in a single capillary, the devised technique was faster and more sensitive than conventional aqueous and nonaqueous CE approaches, thereby enabling the quantitative analysis of various dyes based on wavelength-dependent fluorescence detection with different excitation wavelengths. PMID:26992516

  14. Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Thrall, Elizabeth S.

    photooxidation rate does not track the plasmon resonance of the silver nanoparticles but instead rises monotonically with photon energy. These results are discussed in terms of plasmonic enhancement mechanisms and a theoretical model describing hot carrier photochemistry. The second chapter explores the electronic absorption and resonance Raman scattering of the dye molecule rhodamine 6G (R6G) adsorbed on graphene. Graphene has been shown to quench the fluorescence of adsorbed molecules and quantum dots, and some previous studies have reported that the Raman scattering from molecules adsorbed on graphene is enhanced. We show that reflective contrast spectroscopy can be used to obtain the electronic absorption spectrum of R6G adsorbed on graphene, allowing us to estimate the surface concentration of the dye molecule. From these results we are able to calculate the absolute Raman scattering cross-section for R6G adsorbed on bilayer graphene. We find that there is no evidence of enhancement but instead that the cross-section is reduced by more than three-fold from its value in solution. We further show that a model incorporating electromagnetic interference effects can reproduce the observed dependence of the R6G Raman intensity on the number of graphene layers. The third and final chapter describes the preliminary results from studies of the dissimilatory metal-reducing bacterium Geobacter sulfurreducens . This anaerobic bacterium couples the oxidation of organic carbon sources to the reduction of iron oxides and other extracellular electron acceptors, a type of anaerobic respiration that necessitates an electron transport chain that can move electrons from the interior of the cell to the extracellular environment. The electron transport chain in G. sulfurreducens has not been completely characterized and two competing mechanisms for the charge transport have been proposed. The first holds that G. sulfurreducens produces type IV

  15. Selectable Ultrasensitive Detection of Hg2+ with Rhodamine 6G-Modified Nanoporous Gold Optical Sensor

    PubMed Central

    Wang, Zheng; Yang, Min; Chen, Chao; Zhang, Ling; Zeng, Heping

    2016-01-01

    An extremely sensitive fluorescence sensor has been developed for selectively detection of mercury ions based on metallophilic Hg2+-Au+ interactions, which results in an effective release of pre-adsorbed rhodamine 6G (R6G) molecules from the nanoporous gold substrate, associated with a significant decrease of fluorescence intensity. The optical sensor has a detection sensitivity down to 0.6 pM for Hg2+ and CH3Hg+ ions, in particular a superior selectivity in a complex aqueous system containing 13 different types of metal ions, meanwhile maintaining a long-term stability after 10 cycles. Such a fluorescence sensor combining multiple advantages therefore present promising potentials in various applications. PMID:27403721

  16. Selectable Ultrasensitive Detection of Hg2+ with Rhodamine 6G-Modified Nanoporous Gold Optical Sensor

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yang, Min; Chen, Chao; Zhang, Ling; Zeng, Heping

    2016-07-01

    An extremely sensitive fluorescence sensor has been developed for selectively detection of mercury ions based on metallophilic Hg2+-Au+ interactions, which results in an effective release of pre-adsorbed rhodamine 6G (R6G) molecules from the nanoporous gold substrate, associated with a significant decrease of fluorescence intensity. The optical sensor has a detection sensitivity down to 0.6 pM for Hg2+ and CH3Hg+ ions, in particular a superior selectivity in a complex aqueous system containing 13 different types of metal ions, meanwhile maintaining a long-term stability after 10 cycles. Such a fluorescence sensor combining multiple advantages therefore present promising potentials in various applications.

  17. Selectable Ultrasensitive Detection of Hg(2+) with Rhodamine 6G-Modified Nanoporous Gold Optical Sensor.

    PubMed

    Wang, Zheng; Yang, Min; Chen, Chao; Zhang, Ling; Zeng, Heping

    2016-01-01

    An extremely sensitive fluorescence sensor has been developed for selectively detection of mercury ions based on metallophilic Hg(2+)-Au(+) interactions, which results in an effective release of pre-adsorbed rhodamine 6G (R6G) molecules from the nanoporous gold substrate, associated with a significant decrease of fluorescence intensity. The optical sensor has a detection sensitivity down to 0.6 pM for Hg(2+) and CH3Hg(+) ions, in particular a superior selectivity in a complex aqueous system containing 13 different types of metal ions, meanwhile maintaining a long-term stability after 10 cycles. Such a fluorescence sensor combining multiple advantages therefore present promising potentials in various applications. PMID:27403721

  18. Application of fluorescent dyes for some problems of bioelectromagnetics

    NASA Astrophysics Data System (ADS)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  19. Lewis acid-assisted isotopic 18F-19F exchange in BODIPY dyes: facile generation of positron emission tomography/fluorescence dual modality agents for tumor imaging.

    PubMed

    Liu, Shuanglong; Lin, Tzu-Pin; Li, Dan; Leamer, Lauren; Shan, Hong; Li, Zibo; Gabbaï, François P; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is a powerful technique for imaging biological pathways in vivo, particularly those that are key targets in disease processes. In contrast, fluorescence imaging has demonstrated to be a superior method for image-guided surgery, such as tumor removal. Although the integration of PET and optical imaging could provide an attractive strategy for patient management, there is a significant shortage of established platforms/methods for PET/optical probe construction. In this study, various reaction conditions were explored to develop a simple and fast method allowing for the introduction of [(18)F]-fluoride into BODIPY dyes. Through a systematic optimization of the reaction conditions, we found that BODIPY dyes, including commercial amine-reactive BODIPY succinimidyl esters, may be converted into their radioactive analogues in the matter of minutes via a (18)F-(19)F isotopic exchange reaction promoted by a Lewis acid such as SnCl4. An integrin-targeting RGD peptide was also conjugated with [(18)F]BODIPY® R6G , derived from the commercially available BODIPY® R6G fluorescent tag, to provide a [(18)F]-RGD conjugate in 82% yield. In vivo evaluation of this imaging probe showed a discernible tumor uptake in the U87MG xenograft model. The dual modality imaging properties of the probe was confirmed by ex vivo fluorescence and microPET imaging experiments. In summary, in the matter of minutes, BODIPY dyes were converted into their "hot" radioactive analogues via a (18)F-(19)F isotopic exchange reaction promoted by a Lewis acid. This approach, which can be applied to commercial BODIPY dyes, provides easy access to positron emission tomography/fluorescence dual modality imaging agents. PMID:23471211

  20. Dye-doped organosilicate nanoparticles as cell-preserving labels for photoacoustic signal generation.

    PubMed

    Ramirez-Perez, Francisco I; Gutiérrez-Juárez Gerardo; Bok, Sangho; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Baker, Gary A; Polo-Parada, Luis

    2014-11-01

    Nanoparticle-assisted ultrasound generation by pulsed laser or photoacoustic (PA) techniques has been employed in the study of several tissues both in vivo and in vitro. Among the many applications of this technology, the detection of few cells in vitro is of particular interest. However, the toxicity induced by laser irradiation used for PA signal generation, whether in the absence or the presence of PA enhancers, within single isolated cells has not yet been investigated in detail. Herein, we report our studies of the cellular health of two different nanoparticle-labeled cell lines one hour after being subjected to a single laser pulse in vitro. We selected for this study an Hs936 skin epithelial melanoma cell line, which can be naturally detected photoacoustically, as well as a T47D human mammary breast gland epithelial cell line which has proven difficult to detect photoacoustically due to the absence of natural melanin. We have evaluated the amplitude of the PA signal derived from these two cell types, unlabeled and labeled with nanoparticles of two types (gold nanoparticles, AuNPs, or rhodamine 6G-doped organosilicate nanoparticles, R6G-NPOs), and assessed their health one hour subsequent to laser treatment. The current work corroborates previous findings that, for unlabeled cells, Hs936 produces a detectable PA signal whereas the T47D line does not. Cells labeled with AuNPs or R6G-NPOs produced a detectable PA signal of similar amplitude for the two cell lines. A significant number of Hs936 cells (both unlabeled cells and those labeled with AuNPs) exhibited cell nuclei alterations, as revealed by DAPI staining conducted an hour after photo treatment. Remarkably, the T47D cells suffered damage only when labeled with AuNPs. A significant finding, the R6G-NPOs proved capable of non-destructive PA signal generation in both cell types. Our findings advocate a transformational path forward for the use of dye-doped silicate nanoparticles in cell-compatible PA

  1. Pressure-induced shifts of the fluorescence spectrum of rhodamine 6G in solution

    SciTech Connect

    Zhang, B.; Chandrasekhar, M.; Chandrasekhar, H.R.

    1985-09-01

    The effect of hydrostatic pressure on the fluorescence spectrum of rhodamine 6G dye in two different solutions is studied. The peak shifts to longer wavelengths with increasing pressure with a pressure coefficient of -29 and -19 cm/sup -1//kbar for ethanol and 4:1 methanol-ethanol solvents, respectively. Possible applications of increasing the tunability of dye lasers by pressure are discussed.

  2. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals

    SciTech Connect

    Michaels, A.M.; Nirmal, M.; Brus, L.E.

    1999-11-03

    To explore the relationship between local electromagnetic field enhancement and the large SERS (surface enhanced Raman scattering) enhancement that enables the observation of single molecule Raman spectra, they measure both resonant Rayleigh scattering spectra and rhodamine 6G Raman spectra from single Ag particles. The apparatus combines the techniques of dark-field optical microscopy for resonant Rayleigh measurements, and grazing incidence Raman spectroscopy. The Rayleigh spectra show that the citrate-reduced Ag colloid is extremely heterogeneous. Only the larger particles, in part created by salt induced aggregation, show a large SERS effect. In agreement with the work of Nie and Emory, a few nanocrystals show huge single molecule R6G SERS intensities. While all SERS active particles have some resonant Rayleigh scattering at the 514.5 nm laser wavelength, there is no correlation between the resonant Rayleigh spectra and the SERS intensity. A model is discussed in which huge SERS intensities result from single chemisorbed molecules interacting with ballistic electrons in optically excited large Ag particles. This model is a natural consequence of the standard local electromagnetic field model for SERS and the high surface sensitivity of plasmon dephasing in the noble metals.

  3. Output characteristics of a laser utilizing rhodamine 6G in microporous glass

    SciTech Connect

    Al'tshuler, G.B.; Dul'neva, E.G.; Krylov, K.I.; Meshkovskii, I.K.; Urbanovich, V.S.

    1983-06-01

    A study was made of the lasing characteristics of new active media in the form of microporous glass containing a dye. The efficiency of conversion of the pump radiation, and the spatial and frequency spectra of the output radiation were determined for lasers with dispersive and nondispersive resonators and with active elements in the form of an ethanol solution of rhodamine 6G or microporous glass containing either rhodamine 6G or its ethanol solution. It was found that the use of active elements made of microporous glass and containing rhodamine 6G improved considerably the spatial characteristics of the output radiation compared with those obtained using liquid active media.

  4. Effect of gold nanoparticles on the optical properties of Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Barzan, Mohammad; Hajiesmaeilbaigi, Fereshteh

    2016-05-01

    Gold nanoparticles are synthesized by the laser ablation method and characterized by transmission electron microscopy and UV-visible absorption spectroscopy. The absorption and emission spectra and powers of Rhodamine 6G in the absence and presence of 27 nm diameter gold nanoparticles were studied. Empirical measurements represented that presence of gold nanoparticles lead to decrease the fluorescence power and fluorescence quantum yield, and increase the absorbance and absorbed power of Rhodamine 6G. Also, Stern-Volmer quenching constant of dye in proximity of nanoparticles shows high value which implies efficient quenching of the dye fluorescence by gold nanoparticles. Fluorescence quantum yield, radiative and nonradiative decay rate of Rhodamine 6G-gold nanoparticles assembly, in parallel orientation, as a function of dye's dipole moment distance from gold nanoparticle's surface, based on Gersten-Nitzan model, are calculated. Calculations show variations of the fluorescence quenching is strongly depended on the distance between the dye molecules and the Nps' surface. Also, calculated radiative decay rate indicates good agreement with the experimental value, and results of the ratio of the nonradiative to the radiative decay rate of Rhodamine 6G-gold nanoparticles mixture show nonradiative energy transfer is better explained in terms of NSET rather than FRET mechanism.

  5. Photophysical properties of lasing mixed solutions of oxazine 17 and rhodamine 6G

    SciTech Connect

    Levshin, L.V.; Saletskii, A.M.; Yuzhakov, V.I.

    1985-09-01

    This paper presents the results of the effect of triplet states of the donor component, for which Rhodamine 6G was used, on the lasing characteristics of lamp-pumped solutions of this dye, oxazine. The energy and spectral properties are studied and the results analyzed.

  6. Concentration quenching of rhodamine 6G fluorescence in the adsorbed state

    SciTech Connect

    Zemskii, V.I.; Meshkovskii, I.K.; Sokolov, I.A.

    1985-08-01

    Porous glass to which molecules of organic dyes have been added is a promising active solid medium for tunable lasers. The spectroluminescent characteristics of samples of porous glass activated with rhodamine 6G molecules have been studied. It is shown that molecules of rhodamine 6G adsorbed in porus glass retain their capacity for fluorescence with a high quantum yield. Fixation of rhodamine 6G molecules on the pore walls interferes with their association in the concentration range up to 10/sup 19/ cm/sup -3/. Concentration quenching of fluorescence is observed starting with a concentration of dye molecules of 5 x 10/sup 15/ cm/sup -3/; this is explained by inductive-resonance energy transfer between monomeric molecules under conditions of inhomogeneous broadening of the electronic spectra of the adsorbed molecules.

  7. Relationship between temperature-induced changes in internal microscopic structures of poly(N-isopropylacrylamide) microgels and organic dye uptake behavior.

    PubMed

    Kureha, Takuma; Sato, Takaaki; Suzuki, Daisuke

    2014-07-29

    Temperature-induced changes in the internal structures of poly(N-isopropylacrylamide) (pNIPAm) microgels were evaluated by small-angle X-ray scattering (SAXS), and the results were used to explain organic dye uptake by the microgels. The dye uptake experiments were conducted using two organic dyes: cationic rhodamine 6G (R6G) and anionic erythrosine. In the SAXS investigation, the internal structures of the microgels were characterized in terms of the correlation length, ξ, and the distance, d*, which originated from the local packing of the isopropyl groups of two neighboring chains. With increasing temperature up to the volume phase transition temperature (VPTT) of the microgels, the correlation length, ξ, was increased and the distance, d*, was decreased. At the same time, the amounts of the dyes taken up by the pNIPAm microgels were increased, despite a decrease in the volume of the microgels. The results indicated that the pNIPAm chains were closer to each other due to the hydrophobic association of isopropyl groups, which resulted in the growth of the hydrophobic domains. Thus, the hydrophobic interactions between the dyes and pNIPAm were probably accompanied by the domain formation. With a further increase of temperature above the VPTT, the correlation length, ξ, was decreased and then not defined because the Ornstein-Zernike type contribution disappeared, and the distance, d*, was not largely changed. At the same time, the uptake amounts of the dyes per unit volume of the microgels were also not largely changed, which behaved similar to the distance, d*. It was probably due to the fact that the internal structures of the microgels were not largely changed because the isopropyl groups were in contact with each other. The view was supported by the result of the uptake study of the nonthermoresponsive microgels which did not have the hydrophobic isopropyl groups. PMID:25003512

  8. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    SciTech Connect

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-02-20

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response.

  9. Effect of relaxation processes on fluorescence lifetime and polarization characteristics of rhodamine 6G in glycerol

    SciTech Connect

    Levshin, L.V.; Struganova, I.A.; Tolevtaev, B.N.

    1986-11-01

    Some new phenomena which can be attributed to the relaxation kinetics of the distribution halfwidth over the 0-0 frequencies for organic dye solutions have been discovered in the present work. The kinetic and polarization characteristics of flourescence from the viscous dipolar solutions of the dyes exhibiting dynamic inhomogeneous broadening upon excitation near the absorption band center have been studied. The objects of the study are rhodamine 6G solutions in glycerol and ethanol at the concentration 10/sup -//sub 6/ mole/liter. It was concluded that the presence of the dip in the flourescence lifetime and the hump in the fluorescence polarization dependences on emission wavelength in the viscous dipolar solution of rhodamine 6G has been detected. The phenomena have been explained by the formation of the excited-state nonequilibrium distribution of the flourescence centers over the 0-0 transition frequencies upon monochromatic excitation and by the subsequent relaxation of the nonequilibrium distribution into the equilibrium one.

  10. Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties.

    PubMed

    Vanamudan, Ageetha; Pamidimukkala, Padmaja

    2015-03-01

    The objective of this study was to investigate the use of chitosan-clay nanocomposite (CC) as an adsorbent for Rhodamine 6G (Rh-6G). The effects of adsorbent dose, contact time, and concentration on the adsorption process were systematically studied. Isotherm models were applied to the experimental equilibrium data obtained from spectrophotometric measurements of dye adsorption. Various Kinetic models were used to describe the kinetic data and evaluate of rate constants. Rh-6G loaded adsorbents were investigated for their optical and photophysical properties. PMID:25526692

  11. An enhanced cerium(IV)-rhodamine 6G chemiluminescence system using guest-host interactions in a lab-on-a-chip platform for estimating the total phenolic content in food samples.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2016-04-01

    Two chemiluminescence-microfluidic (CL-MF) systems, e.g., Ce(IV)-rhodamine B (RB) and Ce(IV)-rhodamine 6G (R6G), for the determination of the total phenolic content in teas and some sweeteners were evaluated. The results indicated that the Ce(IV)-R6G system was more sensitive in comparison to the Ce(IV)-RB CL system. Therefore, a simple (CL-MF) method based on the CL of Ce(IV)-R6G was developed, and the sensitivity, selectivity and stability of this system were evaluated. Selected phenolic compounds (PCs), such as quercetin (QRC), catechin (CAT), rutin (RUT), gallic acid (GA), caffeic acid (CA) and syringic acid (SA), produced analytically useful chemiluminescence signals with low detection limits ranging from 0.35 nmol L(-1) for QRC to 11.31 nmol L(-1) for SA. The mixing sequence and the chip design were crucial, as the sensitivity and reproducibility could be substantially affected by these two factors. In addition, the anionic surfactant (i.e., sodium dodecyl sulfate (SDS)) can significantly enhance the CL signal intensity by as much as 300% for the QRC solution. Spectroscopic studies indicated that the enhancement was due to a strong guest-host interaction between the cationic R6G molecules and the anionic amphiphilic environment. Other parameters that could affect the CL intensities of the PCs were carefully optimized. Finally, the method was successfully applied to tea and sweetener samples. Six different tea samples exhibited total phenolic/antioxidant levels from 7.32 to 13.5 g per 100g of sample with respect to GA. Four different sweetener samples were also analyzed and exhibited total phenolic/antioxidant levels from 500.9 to 3422.9 mg kg(-1) with respect to GA. The method was selective, rapid and sensitive when used to estimate the total phenolic/antioxidant level, and the results were in good agreement with those reported for honey and tea samples. PMID:26838423

  12. Study of photoproducts of Rhodamine 6G in ethanol upon powerful laser pumping

    SciTech Connect

    Batishche, S.A.; Malevich, N.A.; Mostovnikov, V.A.

    1995-04-01

    Absorption spectra of rhodamine 6G in ethanol solution are measured using, the technique of laser probing upon pumping by a doubled Nd {sup 3+}:YAG laser with pulse length{tau}{sub 01}{approx_equal}16ns. It is shown that, at the pumping energy density {ge}1.5 J/cm{sup 2}, short-lived ({tau} < 25 ns) and long-lived photoproducts formed in the dye solution, which absorbed in a wide spectral range, including the lasing region. The estimates show that the probability of rhodamine 6G transformation to the photoproduct upon three-step excitation at 532 nm achieves {approximately}2.5 X 10{sup -3}. It is noted that, in order to obtain reliable spectroscopic information using this technique, one should take into account the intense scattering of probing radiation by thermal noise gratings, which are formed due to self-diffraction of the pumping radiation into noise components.

  13. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    PubMed

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. PMID:27101017

  14. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    SciTech Connect

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan; Kim, Seung Wook

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  15. Influence of lithium iodide on association of rhodamine 6G molecules in mixtures of isopropanol with CCl/sub 4/

    SciTech Connect

    Saletskii, A.M.; Shekunov, V.A.; Yuzhakov, V.I.

    1987-11-01

    The spectral-luminescent properties of rhodamine 6G on addition of lithium iodide to the solutions were studied in mixtures of polar (isopropanol) and nonpolar (carbon tetrachloride) solvents. It was found that when LiI is added, the complex associates of the dye molecules formed in solutions containing more than 90 vol. % of CCl/sub 4/ dissociate into rhodamine 6G monomers. The enthalpy of association of rhodamine depends on the concentration of the salt in the system. The volume and the geometry of the complexes have been evaluated from the data of the polarization characteristics of the fluorescence of the associates.

  16. Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide.

    PubMed

    Maurya, Sandeep Kumar; Yadav, Dheerendra; Goswami, Debabrata

    2016-09-01

    We investigate the effect of cetyl-trimethyl-ammonium-bromides (CTAB) concentration on the fluorescence of Rhodamine-6G in water. This spectroscopic study of Rhodamine-6G in presence of CTAB was performed using two-photon-induced-fluorescence at 780 nm wavelength using high repetition rate femtosecond laser pulses. We report an increment of ∼10 % in the fluorescence in accordance with ∼12 % enhancement in the absorption intensity of the dye molecule around the critical micellar concentration. We discuss the possible mechanism for the enhancement in the two-photon fluorescence intensity and the importance of critical micellar concentration. PMID:27324955

  17. Enhancement of Singlet-Triplet Energy Transfer Between Dyes in a Polymer Film by Surface Plasmons of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsibul'nikova, A. V.; Bryukhanov, V. V.; Slezhkin, V. A.

    2015-04-01

    The effect of the plasmon energy generated in Ag citrate hydrosol and ablated Au nanoparticles on the singlettriplet electron energy transfer between rhodamine 6G (R6G) and acriflavine (ACF) molecules incorporated into polyvinyl alcohol (PVA) films is studied. The increased efficiency of non-radiative energy transfer in the presence of Au nanoparticles and the increased lifetime of excited states of molecules are established.

  18. Spectral and temporal features of the pumping of rhodamine 6G by radiation from a copper vapor laser

    SciTech Connect

    Soldatov, A.N.; Sukhanov, V.B.

    1983-01-01

    An experimental investigation was made of the influence of the relative delay time tau and of the intensity ratio R/sub 21/ of the spectral components emitted by a copper vapor laser on the energy and spectral characteristics of lasing in rhodamine 6G. For certain values of tau and P/sub 21/, lasing in the dye was disrupted. A clamping effect was discovered between the rhodamine 6G laser emission spectrum and the yellow line of the copper vapor laser. The results obtained were used to determine the parameters of an interference filter for suppressing the yellow line from the copper vapor laser, and this made it possible to raise the efficiency of conversion of the pump radiation into lasing in the dye.

  19. Sonocatalytic and sonophotocatalytic degradation of Rhodamine 6G containing wastewaters.

    PubMed

    Bokhale, Nileema B; Bomble, Snehal D; Dalbhanjan, Rachana R; Mahale, Deepika D; Hinge, Shruti P; Banerjee, Barnali S; Mohod, Ashish V; Gogate, Parag R

    2014-09-01

    The present work deals with degradation of aqueous solution of Rhodamine 6G (Rh 6G) using sonocatalytic and sonophotocatalytic treatment schemes based on the use of cupric oxide (CuO) and titanium dioxide (TiO2) as the solid catalysts. Experiments have been carried out at the operating capacity of 2 L and constant initial pH of 12.5. The effect of catalyst loading on the sonochemical degradation has been investigated by varying the loading over the range of 1.5-4.5 g/L. It has been observed that the maximum degradation of 52.2% was obtained at an optimum concentration of CuO as 1.5 g/L whereas for TiO2 maximum degradation was observed as 51.2% at a loading of 4 g/L over similar treatment period. Studies with presence of radical scavengers such as methanol (CH3OH) and n-butanol (C4H9OH) indicated lower extents of degradation confirming the dominance of radical mechanism. The combined approach of ultrasound, solid catalyst and scavengers has also been investigated at optimum loadings to simulate real conditions. The optimal solid loading was used for studies involving oxidation using UV irradiations where 26.4% and 28.9% of degradation was achieved at optimal loading of CuO and TiO2, respectively. Studies using combination of UV and US irradiations have also been carried out using the optimal concentration of the catalysts. It has been observed that maximum degradation of 63.3% is achieved using combined US and UV with TiO2 (4 g/L) as the photocatalyst. Overall it can be said that the combined processes give higher extent of degradation as compared to the individual processes based on US or UV irradiations.

  20. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  1. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Jing; Su, Yanjie; Xu, Minghan; Yang, Zhi; Zhang, Yafei

    2014-02-01

    We have demonstrated a facile and low-cost approach to synthesize ZnO nanowire (NW)/reduced graphene oxide (RGO) nanocomposites, in which ZnO NWs and graphene oxide (GO) were produced in large scale separately and then hybridized into ZnO NW/RGO nanocomposites by mechanical mixing and low-temperature thermal reduction. Rhodamine 6G (Rh6G) was used as a model dye to evaluate the photocatalytic properties of ZnO NW/RGO nanocomposites. The obtained nanocomposites show significantly enhanced photocatalytic performance, which took only 10 min to decompose over 98% Rh6G. Finally the mechanism of the great enhancement about photocatalytic activity of ZnO NW/RGO nanocomposites is studied. It is mainly attributed to that RGO nanosheets can transfer the electrons of ZnO NWs excited by ultraviolet (UV) irradiation, increase electron migration efficiency, and then longer the lifetime of the holes in ZnO NWs. The high charge separation efficiency of photo-generated electron-hole pairs directly leads to the lower recombination rate of ZnO NW/RGO nanocomposites, makes more effective electrons and holes to participate the radical reactions with Rh6G, thus significantly improving the photocatalytic properties. The high degradation efficiency makes the ZnO NW/RGO nanocomposites promising candidates in the application of environmental pollutant and wastewater treatment.

  2. Laser based on dye-activated silica gel

    SciTech Connect

    Altshuler, G.B.; Bakhanov, V.A.; Dulneva, E.G.; Erofeev, A.V.; Mazurin, O.V.; Roskova, G.P.; Tsekhomskaya, T.S.

    1987-06-01

    Silica gel activated by a dye is used as a new laser medium. The lasin characteristics of rhodamine 6G in silica gel are reported. An important characteristic of the dye laser is its long service life, which is determined by the photostability of the dye in silic gel.(AIP)

  3. Study of the spectral and angular characteristics of laser action by rhodamine 6G solutions in a short cavity

    SciTech Connect

    Smirnov, V.S.; Studenov, V.I.; Rozuvanova, V.A.

    1984-05-01

    An experimental and theoretical study has been made of the spectral and angular characteristics of a laser with an ethanol solution of rhodamine 6G, pumped with the second-harmonic radiation of an LTIPCh-6 laser, as a function of the spacing of a Fabry-Perot interferometer used as a cavity laser. It is shown experimentally that when the cavity is short, the radiation of the laser studied has a distinct spectral and angular structure which is determined by the length of the cavity and is independent of the reflectancies of the cavity mirrors, activator concentration, or power of the exciting radiation. Good agreement is shown to exist between the experimental and theoretical results. It is concluded that the character of formation of the spectral and angular radiation characteristics of a dye laser is determined almost entirely by the properties of the Fabry-Perot interferometer used as the cavity.

  4. Random lasing and coherent back scattering study in rhodamine 6G doped polymer optical fiber (POF) particles

    NASA Astrophysics Data System (ADS)

    C, Sreechandralijith K.; Peter, Jaison; Thankappan, Aparna; Nampoori, V. P. N.; Radhakrishnan, P.

    2014-10-01

    We demonstrate coherent back scattering and random lasing from an active random media of Rhodamine 6G doped polymer optical fiber particles on different sizes. Narrow emission modes are observed experimentally over a broad range of scattering strengths without requiring optical cavities. The particle-size dependence of transport mean free path, which measured from coherent backscattering measurements. Since the scattering mean free path is less than the emission wavelength, recurrent light scattering arises and provides coherent feedback for lasing. Laser emission from the sample observed in all directions. This observation also provides direct evidence for the existence of recurrent scattering of light. The lasing threshold intensity depends on the excitation volume, also the decrease of the lasing threshold at large particle size. The feedback for lasing originates mainly from backscattering of particles near the boundaries of the pumped region. Here, the lasing threshold depends strongly on the size distribution, dye concentration and intensity of excitation in the ensemble.

  5. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2.

    PubMed

    Sakamoto, Misato; Shoji, Atsushi; Sugawara, Masao

    2016-07-15

    Functionalized giant unilamellar vesicles (GUVs) containing a fluorescence dye Rhodamine 6G is proposed as a marker in sandwich-type immunoassay for bovine serum albumin (BSA) and lipocalin-2 (LCN2). The GUVs were prepared by the electroformation method and functionalized with anti-BSA antibody and anti-LCN2 antibody, respectively. The purification of antibody-modified GUVs was achieved by conventional centrifugation and a washing step in a flow system. To antigen on an antibody slip, antibody-modified GUVs were added as a marker and incubated. After wash-out of excess reagents and lysis of the bound GUVs with Triton X-100, the fluorescence image was captured. The fluorometric immunoassays for BSA and LCN2 exhibited lower detection limits of 4 and 80 fg ml(-)(1), respectively. PMID:27117116

  6. Transparent gel and xerogel of thorium phosphate: optical spectroscopy with: Nd3+,Eu3+,Cr3+ and Rhodamine 6G

    SciTech Connect

    Genet, M.; Brandel, V.; Lahalle, M.P.; Simoni, E.

    1992-03-01

    Chemical conditions for thorium phosphate gel preparation have been determined. The transparency is of good optical quality and the gel is very stable for a long time. Under drying condition, this gel can give rise to the xerogel which is still transparent. We can also prepare this xerogel by simple evaporation at room temperature of a very concentrated solution of thorium phosphate. From this viscous medium, the xerogel can be obtained in various kinds of shapes : threads, slabs and blocks. Solidification time depends on the final volume desired and spreads from few minutes to several weeks. Absorption spectrum of pure gel and xerogel have been recorded. Gel and xerogel doped with very well known probes like Nd3+ and Er3+ were examined to compare their optical properties with aqueous medium of the same chemical composition. Eu3+ doped gel and xerogel were also studied using their fluorescence properties. The optical properties of Cr3+ in doped gel and xerogel allowed us to determine the kinetics of hydration sphere modification during the drying period. Finally, as xerogel synthesis takes place at room temperature, fragile organic dye can be used as dopant, so Rhodamine 6G absorption and emission spectra have been studied in these conditions. When, at that time, the xerogel is doped with Coumarin 460 and Tb3+ an energy transfer is observed between dye and Tb3+ ions, which contributes to enhance the fluorescence of Tb3+ ions. Eu3+ behaves similarly. In conclusion, gel and xerogel of thorium phosphate tested with usual probes such as 3d, 4f ions and dyes seem to be very promising matrices.

  7. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  8. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    PubMed

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  9. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    PubMed

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms. PMID:27371913

  10. Photophysics of Fluorescent Probes Under 1-10 GPa Shock Compression

    NASA Astrophysics Data System (ADS)

    Liu, Weilong; Christensen, James; Bassett, William; Dlott, Dana D.

    2015-06-01

    The use of fluorescent probes in shocked microstructured media can permit measurements of local pressures and temperatures with high time and space resolution. Here we focus on the use of a highly-emissive dye, rhodamine 6G (R6G). In order to understand the fundamental mechanisms of R6G photophysics under extreme conditions, we synchronized a femtosecond laser and streak camera with a laser-driven flyer plate shock compression system. We studied R6G emission lifetimes and spectra under shock conditions and under static high pressure when the dye was dissolved in poly-methylacryate (PMMA) or when the dye was encapsulated in silica microspheres, where R6G is superemissive. Under shock compression, the emission spectra of R6G redshifts. It is difficult to measure local pressures using the redshift, because one would have to spectrally resolve the emission from every spot in the shocked material. It would be much easier to measure the emission intensity at each location. We have found that the R6G emission intensity also changes in a shock, so it is useful to relate the intensity changes to local shock conditions. Our measurements show the intensity changes in a shock because the fluorescence lifetime drops from about 3.5 ns at ambient pressure to about 1 ns at 10 GPa. Present address: Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

  11. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 μm inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 μm inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  12. Dye Painting!

    ERIC Educational Resources Information Center

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  13. Rhodamine-6G can photosensitize folic acid decomposition through electron transfer

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Ito, Hiroki

    2015-05-01

    Rhodamine-6G photosensitized folic acid decomposition in aqueous solution, and its quantum yield in the presence of 10 μM folic acid was 9.9 × 10-6. A possible mechanism of this photodecomposition is direct oxidation through an electron transfer from folic acid to rhodamine-6G. The fluorescence lifetime of rhodamine-6G was slightly decreased by folic acid, suggesting electron transfer in the excited singlet state of rhodamine-6G. The quenching rate coefficient estimated from the Stern-Volmer plot of the fluorescence quenching supported that this electron transfer proceeds as a diffusion-controlled reaction. The quantum yields of the electron transfer and the following reaction could be determined.

  14. Transient absorption in water-micellar solutions of rhodamine 6G with flash lamp excitation

    SciTech Connect

    Levin, M.B.; Cherkasov, A.S.

    1986-06-01

    This paper studies the kinetics of transient losses in water-micellar solutions of rhodamine 6G by using flash lamp excitation. During the experiments, the laser radiation energy was measured, the time evolution of stimulated emission spectra was recorded; pulse shape was monitored by an oscillograph. The change of generation characteristics of water-micellar solutions of rhodamine 6G as a function of cyclooctatetraene concentration is shown.

  15. Spectral broadening in a microdroplet dye laser

    NASA Astrophysics Data System (ADS)

    Knospe, Anders G.; Kwok, Alfred S.

    2004-05-01

    We have observed broadening of the lasing spectrum of 60-μm diameter micrdroplet dye lasers. The spectral width of microdroplet dye lasers consisting of Rhodamine 6G or Pyrromethene 597 is essentially constant when water is used as a solvent but broaden by >30% at high input-laser intensities when ethanol is used as solvent. Spectral broadening is preceded by stimulated Raman scattering of ethanol in the microdroplets as the input-laser intensity increases.

  16. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    SciTech Connect

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to the DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.

  17. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGES

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  18. Laser kinetic processes in dye mixtures

    SciTech Connect

    Lei Jie; Fu Honglang

    1988-11-01

    Radiation from rhodamine 6G+cresyl violet and rhodamine B+cresyl violet dye mixtures in ethyl alcohol pumped by N/sub 2/ laser light were studied. The rate constants of resonant transfer in the mixtures were determined. The radiative transfer processes are discussed.

  19. Methods for reducing the divergence of lamp-excited rhodamine 6G solution lasers

    SciTech Connect

    Smirnov, V.S.

    1980-11-01

    Different methods for reducing the divergence of rhodamine 6G solution lasers with lamp pumping are studied experimentally. A reduction of divergence to 2--4 mrad is achieved. It is shown that some methods provide such low divergence for comparatively low losses of lasing energy.

  20. Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Arnold, S.; Ramsey, J.M. )

    1992-11-15

    Fluorescence lifetimes of Rhodamine 6G in levitated micron-sized droplets have been measured using a time-correlated photon counting technique. The coupling of emission into spherical cavity modes of the droplet results in significant emission rate enhancements which allow estimation of the homogeneous linewidth at room temperature.

  1. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G.

  2. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G. PMID:26019296

  3. [Fluorescence Determination of Trace Se with the Hydride-K13-Rhodamine 6G System].

    PubMed

    Liang, Ai-hui; Li, Yuan; Huang, Shan-shan; Luo, Yang-he; Wen, Gui-qing; Jiang, Zhi-liang

    2015-05-01

    Se is a necessary trace element for human and animals, but the excess intake of Se caused poison. Thus, it is very important to determination of Se in foods and water. The target of this study is development of a new, sensitive and selective hydride generation-molecular fluorescence method for the determination of Se. In 0. 36 mol . L-1 sulfuric acid, NaBH4 as reducing agent, Se (IV) is reduced to H2 Se. Usin3-g I solution as absorption liquid3, I- is reduced to I- by H2Se. When adding rhodamine 6G, Rhodamine 6G and I3- form association particles, which lead to the fluorescence intensity decreased. When Se(IV) existing, Rhodamine 6G and I3- bind less, And the remaining amount of Rhodamine 6G increase. So the fluorescence intensity is enhanced. The analytical conditions were optimized, a 0. 36 ml . L-1 H2SO4, 21. 6.g . L-1 NaBH4, 23.3 µm . L-1 rhodamine 6G, and 50 µmol . L-1 KI3 were chosen for use. When the excitation wavelength is at 480nm, the Rayleigh scattering peak does not affect the fluorescence recording, and was selected for determination of Se. Under the selected conditions, Se(IV) concentration in the 0. 02~0. 60 µg . mL-1 range and the increase value of the fluorescence intensity (ΔF) at 562 nm linear relationship. The linear regression equation is ΔF562 nm =12. 6c + 20. 9. The detecton limit was 0.01 µ.g . L-1. The influence of coexistence substances on the hydride generatin-molecular fluorescence determination of 5. 07 X10(-6) mol . L-1 Se(IV) was considered in details. Results showed that this new fluorescence method is of high selectivity, that is, 0. 5 mmol. L-1 Ba2+, Ca2+, Zn2+ and Fe3+, 0. 25 mmol . L-1 . Mg2+, 0. 05 mmol . L-1 K+, 0. 2 mmol . L-1 Al3+, 0. 025 mmol . L-1 Te(VI) do not interfere with the determination. The influence of Hg2+, CD2+ and Cu2+ that precipitate with Se(IV), can be eliminated by addition of complex reagent. This hydride generation-molecular fluorescence method has been applied to determination of trace Se in water

  4. Random lasing from Rhodamine 6G doped ethanediol solution based on the cicada wing nanocones

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Feng, Guoying; Zhang, Hong; Yang, Chao; Yin, Jiajia; Dai, Shenyu; Zhou, Shouhuan

    2016-06-01

    Random lasing from Rhdomaine 6G (Rh6G) doped ethanediol solution based on the cicada wing nanostructures as scatterers has been demonstrated. The optical positive feedback of the random laser is provided by these nanocones on the cicada wing, where the scale of the nanocones and the distance between them is about 150 nm and 200 nm, respectively. Al-coated reflector has been introduced to reduce the loss of the pump energy from the bottom, and moreover lower the laser threshold, which is about 126.0 μJ/pulse. Due to the liquid gain medium, the lifetime of this random laser is longer than conventional random lasers. This random laser shows the potential applications in biological random laser and photonic devices.

  5. Observing single-molecule chemical reactions on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Emory, Steven R.; Ambrose, W. Patrick; Goodwin, Peter M.; Keller, Richard A.

    2001-06-01

    We report on the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scatters (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of bread SERS vibrational bands at 1592 cm-1 and 1340 cm-1 observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurement of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  6. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  7. An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model

    NASA Astrophysics Data System (ADS)

    Purcell, A.; Tregoning, P.; Dehecq, A.

    2016-05-01

    The recent release of the next-generation global ice history model, ICE6G_C(VM5a), is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology, and, of course, geodynamics (Earth rheology studies). In this paper we make an assessment of some aspects of the ICE6G_C(VM5a) model and show that the published present-day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ˜8.6 mm/yr) and beneath the Ross Ice Shelf (by ˜5 mm/yr). Furthermore, the published spherical harmonic coefficients—which are meant to represent the dimensionless present-day changes due to glacial isostatic adjustment (GIA)—contain excessive power for degree ≥90, do not agree with physical expectations and do not represent accurately the ICE6G_C(VM5a) model. We show that the excessive power in the high-degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. (2011) is applied, but when correct Stokes coefficients are used, the empirical relationship produces excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. (2011). Using the Australian National University (ANU) groups CALSEA software package, we recompute the present-day GIA signal for the ice thickness history and Earth rheology used by Peltier et al. (2015) and provide dimensionless Stokes coefficients that can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present-day mass balance change signals. We denote the new data sets as ICE6G_ANU.

  8. Study of laser emission losses in rhodamine 6G solutions under quasilongitudinal laser excitation

    SciTech Connect

    Aristov, A.V.; Eremenko, A.S.; Nikolaev, A.B.

    1986-08-01

    As a result of studies of the reciprocal of the quantum yield of stimulated laser emission as a function of the reciprocal of the useful loss factor, a quantitative dependence of induced losses in the pumping and lasing channels on the volume density of absorbed exciting radiation has been established. It is concluded from quantitative evidence that the margin of an appreciable increase in lasing efficiency for rhodamine 6G solutions consists in a decrease of the pumping-induced light scattering.

  9. Evaluating Heat Pipe Performance in 1/6 g Acceleration: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; McCollum, Timothy A.; Gibson, Marc A.; Sanzi, James L.; Sechkar, Edward A.

    2011-01-01

    Heat pipes composed of titanium and water are being considered for use in the heat rejection system of a fission power system option for lunar exploration. Placed vertically on the lunar surface, the heat pipes would operate as thermosyphons in the 1/6 g environment. The design of thermosyphons for such an application is determined, in part, by the flooding limit. Flooding is composed of two components, the thickness of the fluid film on the walls of the thermosyphon and the interaction of the fluid flow with the concurrent vapor counter flow. Both the fluid thickness contribution and interfacial shear contribution are inversely proportional to gravity. Hence, evaluating the performance of a thermosyphon in a 1 g environment on Earth may inadvertently lead to overestimating the performance of the same thermosyphon as experienced in the 1/6 g environment on the moon. Several concepts of varying complexity have been proposed for evaluating thermosyphon performance in reduced gravity, ranging from tilting the thermosyphons on Earth based on a cosine function, to flying heat pipes on a low-g aircraft. This paper summarizes the problems and prospects for evaluating thermosyphon performance in 1/6 g.

  10. The aqueous-polyelectrolyte dye solution as an active laser medium

    SciTech Connect

    Akimov, A I; Saletskii, A M

    2000-11-30

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes - polyacrylic and polymethacrylic acids - are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions. (lasers, active media)

  11. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a…

  12. Sol-gel/rhodamine 6G composite films with tailored microstructures

    SciTech Connect

    Logan, D.L.; Ashley, C.S.; Assink, R.A.; Brinker, C.J. |

    1992-12-31

    A multi-step hydrolysis procedure was developed to prepare composite organic dye/sol-gel thin films with variable porosity for such as switches or sensors. Variation of acid and base catalyzed hydrolysis sequences of three sols prepared from tetraethoxysilane with identical H{sub 2}O/Si ratios, dilution factors, and pH resulted in considerably different silicate speciation. Under conditions where monomer was avoided, the refractive indices of as-deposited films could be varied by an again step prior to film deposition. This general strategy, which relies on the aggregation of fractal polymeric clusters, is compatible with the low temperature and near neutral pH requirements of both organic dyes and biologically active species such as enzymes.

  13. Anti-CD155 and anti-CD112 monoclonal antibodies conjugated to a fluorescent mesoporous silica nanosensor encapsulating rhodamine 6G and fluorescein for sensitive detection of liver cancer cells.

    PubMed

    Tao, Liang; Song, Chaojun; Huo, Chenyang; Sun, Yuanjie; Zhang, Chunmei; Li, Xiaohua; Yu, Shaojuan; Sun, Mingyu; Jin, Boquan; Zhang, Zhujun; Yang, Kun

    2016-08-01

    A novel method for sensitive detection of liver cancer cells using anti-CD155 and anti-CD112 monoclonal antibodies conjugated to ultrabright fluorescent mesoporous silica nanoparticles (FMSNs) encapsulating Rhodamine 6G and fluorescein was developed. The diameter of the obtained nanoparticles was 90 nm, and the quantum yield was 69%. Because the emission of fluorescein has a high degree of overlap with the excitation of Rhodamine 6G, and these two dyes were sufficiently close to each other on the nanoparticles, fluorescence resonance energy transfer can occur between these two dyes. This transfer not only maintains the original feature of the nanochannels and the skeletal network of the silica weakening the inner filtering of the dye, but also makes the excitation peak of the nanoparticles wider and increases the useful load amount of the dye. Because the wider Stokes shifts weaken the interference of excitation, the detection sensitivity is enhanced at the same time. The NaIO4 oxidation method does not use a cross-linker but rather uses covalent immobilization of the monoclonal antibodies on the FMSNs. This method can maintain the activity of the monoclonal antibodies more easily than the glutaraldehyde method. These advantages ensure that the nanosensor has high sensitivity and specificity for detecting liver cancer SMMC-7721 and HHCC cells. The in vivo imaging experiment also ensured that the biosensor can target tumor tissue in mice. PMID:27301350

  14. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS.

    PubMed

    Riehle, Marc; Büscher, Anja K; Gohlke, Björn-Oliver; Kaßmann, Mario; Kolatsi-Joannou, Maria; Bräsen, Jan H; Nagel, Mato; Becker, Jan U; Winyard, Paul; Hoyer, Peter F; Preissner, Robert; Krautwurst, Dietmar; Gollasch, Maik; Weber, Stefanie; Harteneck, Christian

    2016-09-01

    FSGS is a CKD with heavy proteinuria that eventually progresses to ESRD. Hereditary forms of FSGS have been linked to mutations in the transient receptor potential cation channel, subfamily C, member 6 (TRPC6) gene encoding a nonselective cation channel. Most of these TRPC6 mutations cause a gain-of-function phenotype, leading to calcium-triggered podocyte cell death, but the underlying molecular mechanisms are unclear. We studied the molecular effect of disease-related mutations using tridimensional in silico modeling of tetrameric TRPC6. Our results indicated that G757 is localized in a domain forming a TRPC6-TRPC6 interface and predicted that the amino acid exchange G757D causes local steric hindrance and disruption of the channel complex. Notably, functional characterization of model interface domain mutants suggested a loss-of-function phenotype. We then characterized 19 human FSGS-related TRPC6 mutations, the majority of which caused gain-of-function mutations. However, five mutations (N125S, L395A, G757D, L780P, and R895L) caused a loss-of-function phenotype. Coexpression of wild-type TRPC6 and TRPC6 G757D, mimicking heterozygosity observed in patients, revealed a dominant negative effect of TRPC6 G757D. Our comprehensive analysis of human disease-causing TRPC6 mutations reveals loss of TRPC6 function as an additional concept of hereditary FSGS and provides molecular insights into the mechanism responsible for the loss-of-function phenotype of TRPC6 G757D in humans. PMID:26892346

  15. An assessment of the ICE6G_C (VM5A) glacial isostatic adjustment model

    NASA Astrophysics Data System (ADS)

    Purcell, Anthony; Tregoning, Paul; Dehecq, Amaury

    2016-04-01

    The recent release of the next-generation global ice history model, ICE6G_C(VM5a) [Peltier et al., 2015, Argus et al. 2014] is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology and, of course, geodynamics (Earth rheology studies). In this presentation I will assess some aspects of the ICE6G_C(VM5a) model and the accompanying published data sets. I will demonstrate that the published present-day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ˜8.6 mm/yr) and beneath the Ross Ice Shelf (by ˜5 mm/yr). Further, the published spherical harmonic coefficients - which are meant to represent the dimensionless present-day changes due to glacial isostatic adjustment (GIA) - will be shown to contain excessive power for degree ≥ 90, to be physically implausible and to not represent accurately the ICE6G_C(VM5a) model. The excessive power in the high degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. [2011] is applied but, when correct Stokes' coefficients are used, the empirical relationship will be shown to produce excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. [2011]. Finally, a global radial velocity field for the present-day GIA signal, and corresponding Stoke's coefficients will be presented for the ICE6GC ice model history using the VM5a rheology model. These results have been obtained using the ANU group's CALSEA software package and can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present-day mass balance change signals without any of the shortcomings of the previously published data-sets. We denote the new data sets ICE6G_ANU.

  16. Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Rau, Ileana; Szukalski, Adam; Sznitko, Lech; Miniewicz, Andrzej; Bartkiewicz, Stanislaw; Kajzar, Francois; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2012-10-01

    Deoxyribonucleic acid (DNA) is commonly viewed as a genetic information carrier. However, now it is recognized as a nanomaterial, rather than as a biological material, in the research field of nanotechnology. Here, we show that using pure DNA, doped with rhodamine 6G, we are able to observe amplified spontaneous emission (ASE) phenomenon. Moderate ASE threshold, photodegradation, and reasonable gain coefficient observed in this natural host gives some perspectives for practical applications of this system in biophotonics. Obtained results open the way and will be leading to construction of truly bio-lasers using nature made luminophores, such as anthocyanins.

  17. Molecular orientation of submonolayer rhodamine-6G on quartz substrates: A comparative study using reflection and transmission UV-Vis spectroscopy

    SciTech Connect

    Elking, M.D.; He, G.; Xu, Z.

    1996-10-01

    Reflection and transmission UV-Vis spectroscopy have been applied to study the molecular orientation and surface density of rhodamine-6G molecules physisorbed on optically flat quartz (SiO{sub 2}) substrates. Our results have shown that for the {ital s}-polarized excitation, the submonolayer of physisorbed rhodamine-6G dye molecules causes enhanced reflection in the wavelength region from 400 nm to 600 nm where the electronic transition takes place. For the {ital p}-polarized excitation, the reflection is enhanced when the angle of incidence is smaller than Brewster{close_quote}s angle of quartz at 55.6{degree}, and the reflection is reduced when the angle of incidence is larger than Brewster{close_quote}s angle of quartz. An independent method has been established in this paper by which the molecular orientation can be determined accurately by carrying out optical measurements in both the reflection and transmission directions. {copyright} {ital 1996 American Institute of Physics.}

  18. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  19. Band-edge lasing in Rh6G-doped dichromated gelatin at different excitations

    NASA Astrophysics Data System (ADS)

    Ying, Cui-Feng; Zhou, Wen-Yuan; Ye, Qing; Zhang, Xiao-Liang; Tian, Jian-Guo

    2010-11-01

    One-dimensional photonic crystal band-edge lasing at different excitations was studied experimentally by altering the excitation angle. We considered almost every condition including in-band, out-of-band and near the band edge while keeping the density of states unchanged. Holographic rhodamin 6G-doped dichromated gelatin was used for creating low-threshold photonic band-edge lasing (PBEL). Lasing actions excited near the high-energy and low-energy band edges were observed simultaneously, and their full widths at half maximum were different. The results show that the PBEL intensity and pump efficiency are sensitive to the excitation angle, enhanced obviously at the excitation near the band edge and suppressed distinctly in the band which agreed well with the theoretical prediction. We also demonstrated for the first time that active matters exist not only in the air voids but also in the high-index regions of the gelatin.

  20. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M. ); Arnold, S. )

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  1. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-11-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  2. Fanshaped superradiance of a dye laser

    SciTech Connect

    Wang, X.; Peng, G.

    1982-09-01

    The experimental apparatus used to achieve fan shaped superradiance of a dye laser by using second harmonics from a giant pulsed YAP:Nd(3+) laser oscillator-amplifier to pump Rhodamine 6G is described. The laser device employs a single 45 deg LiNbO3 electro-optical Q-switched yttrium aluminate laser as the oscillation stage, and after one stage of oscillation of yttrium aluminate laser amplification, it puts out a laser peak power of approximately 30 MW, with a repetition rate of once per second using LiLO3 (I type phase matching, theta m approximately 30 deg) outer cavity frequency doubling, it puts out 0.539 micrometer frequency doubled light, with a peak power of 1.8 MW and then uses the 0.539 micrometer frequency doubled light to pump Rhodamine 6G laser dye. The emission obtained assumes a fan shape which is planar.

  3. A study of the interaction between rhodamine 6g and hydroxy propyl β-cyclodextrin by steady state fluorescence

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; menaka, T.

    2011-10-01

    The binding of rhodamine 6G and hydroxy propyl β-cyclodextrin (Hβ-CD) was investigated measuring fluorescence and absorption at pH 7.0. The solid inclusion complex of Rh6G and Hβ-CD has been studied by Ultraviolet (UV) spectroscopy, Fluorimetry, Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance ( 1HNMR) and in the Scanning Electron Microscope (SEM). Association constant Kg and Ke were determined by the enhancement of the fluorescence of rhodamine 6G in the presence of Hβ-CD. Fluorescence of Rh6G is generally enhanced, in complexes of Rh6G and β-Cyclodextrin in aqueous solutions. The free energy change for the ground state (Δ Gg) and for the excited state (Δ Ge) have also been determined. The experimental results indicated that the inclusion process is an exothermic and spontaneous.

  4. A study of the interaction between rhodamine 6g and hydroxy propyl β-cyclodextrin by steady state fluorescence.

    PubMed

    Bakkialakshmi, S; Menaka, T

    2011-10-15

    The binding of rhodamine 6G and hydroxy propyl β-cyclodextrin (Hβ-CD) was investigated measuring fluorescence and absorption at pH 7.0. The solid inclusion complex of Rh6G and Hβ-CD has been studied by Ultraviolet (UV) spectroscopy, Fluorimetry, Fourier Transform Infrared (FTIR), (1)H Nuclear Magnetic Resonance ((1)HNMR) and in the Scanning Electron Microscope (SEM). Association constant K(g) and K(e) were determined by the enhancement of the fluorescence of rhodamine 6G in the presence of Hβ-CD. Fluorescence of Rh6G is generally enhanced, in complexes of Rh6G and β-Cyclodextrin in aqueous solutions. The free energy change for the ground state (ΔG(g)) and for the excited state (ΔG(e)) have also been determined. The experimental results indicated that the inclusion process is an exothermic and spontaneous.

  5. 29-fsec pulse generation from a linear-cavity synchronously pumped dye laser

    SciTech Connect

    Kubota, H.; Kurokawa, K.; Nakazawa, M.

    1988-09-01

    29-fsec optical pulses at a center wavelength of 615 nm have been generated from a linear-cavity synchronously pumped dye laser without using the colliding-pulse mode-locking technique. The laser consists of two dye jets (a gain jet and a saturable absorber jet) and a sequence of four Brewster-angled prisms. Kiton Red S is used as the laser dye instead of the conventional Rhodamine 6G.

  6. High-repetition-rate high-power variable-bandwidth dye laser

    SciTech Connect

    Lavi, S.; Amit, M.; Bialolanker, G.; Miron, E.; Levin, L.A.

    1985-07-01

    An efficient high-repetition-rate dye laser is described which has a bandwidth that can be tailored to match typical atomic inhomogeneous linewidths. The dye laser is pumped by a 4-kHz 2--6 mJ/pulse copper vapor laser. The total efficiency of the dye laser (oscillator and amplifier) is 45% for rhodamine 6G and 30% for rhodamine B.

  7. Tunable optofluidic distributed feedback dye lasers

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Zhang, Zhaoyu; Emery, Teresa; Scherer, Axel; Psaltis, Demetri

    2006-08-01

    We demonstrated a continuously tunable optofluidic distributed feedback (DFB) dye laser on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip. The optical feedback was provided by a phase-shifted higher order Bragg grating embedded in the liquid core of a single mode buried channel waveguide. We achieved nearly 60nm continuously tunable output by mechanically varying the grating period with two dye molecules Rhodamine 6G (Rh6G) and Rhodamine 101 (Rh101). Single-mode operation was obtained with <0.1nm linewidth. Because of the higher order grating, a single laser, when operated with different dye solutions, can provide tunable output covering from near UV to near IR spectral region. The low pump threshold (< 1uJ) makes it possible to use a single high energy pulsed laser to pump hundreds of such lasers on a chip. An integrated array of five DFB dye lasers with different lasing wavelengths was also demonstrated. Such laser arrays make it possible to build highly parallel optical sensors on a chip. The laser chip is fully compatible with PDMS based soft microfluidics.

  8. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  9. Rh6G released from solid and nanoporous SiO2 spheres prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    García-Macedo, J. A.; Francisco S., P.; Franco, A.

    2015-10-01

    Porous silica nanoparticles are considering good systems for drug cargo and liquid separation. In this work we studied the release of rhodamine 6G (Rh6G) from solid and porous silica nanoparticles. Solid and porous SiO2 spheres were prepared by sol-gel method. Nanoporous channels were produced by using a surfactant that was removed by chemical procedure. Rh6G was incorporated into the channels by impregnation. The hexagonal structure of the pores was detected by XRD and confirmed by HRTEM micrographs. Rh6G released from the particles by stirring them in water at controlled speed was studied as function of time by photoluminescence. Released ratio was faster in the solid nanoparticles than in the porous ones. In the last case, a second release mechanism was observed. It was related with rhodamine coming out from the porous.

  10. Stimulated Raman scattering of laser dye mixtures dissolved in multiple scattering media

    SciTech Connect

    Yashchuk, V P; Komyshan, A O; Tikhonov, E A; Olkhovyk, L A

    2014-10-31

    Stimulated Raman scattering (SRS) of a mixture of rhodamine 6G and pyrromethene 605 laser dyes in vesicular films is studied. It is shown that a peculiar interaction of dyes occurs under conditions of multiple scattering of light from vesicles. This interaction manifests itself as SRS excitation of one of the dyes by random lasing of the other dye, provided that the random lasing spectrum overlaps the Stokes lines of the first dye. In addition, there is energy transfer between molecules of these dyes if their luminescence and absorption spectra overlap. The results obtained confirm that the mechanism of SRS from laser dyes in multiple scattering media is similar to that in coherent-active Raman spectroscopy. These results extend the possibility of determining the vibrational spectrum of dye molecules from their secondary radiation in these media. (nonlinear optical phenomena)

  11. Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan:fructan 6G-fructosyltransferase (6G-FFT) in product formation.

    PubMed

    Ritsema, Tita; Verhaar, Auke; Vijn, Irma; Smeekens, Sjef

    2005-07-01

    Enzymes of the glycosyl hydrolase family 32 are highly similar with respect to primary sequence but catalyze divergent reactions. Previously, the importance of the conserved sucrose-binding box in determining product specificity of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) was established [Ritsema et al., 2004, Plant Mol. Biol. 54: 853-863]. Onion 6G-FFT synthesizes the complex fructan neo-series inulin by transferring fructose residues to either a terminal fructose or a terminal glucose residue. In the present study we have elucidated the molecular determinants of product specificity by substitution of individual amino acids of the sucrose binding box with amino acids that are present on homologous positions in other fructosyltransferases or vacuolar invertases. Substituting the presumed nucleophile Asp85 of the beta-fructosidase motif resulted in an inactive enzyme. 6G-FFT mutants S87N and S87D did not change substrate or product specificities, whereas mutants N84Y and N84G resulted in an inactive enzyme. Most interestingly, mutants N84S, N84A, and N84Q added fructose residues preferably to a terminal fructose and hardly to the terminal glucose. This resulted in the preferential production of inulin-type fructans. Combining mutations showed that amino acid 84 determines product specificity of 6G-FFT irrespective of the amino acid at position 87. PMID:16158237

  12. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions

    SciTech Connect

    Majer, G.; Melchior, J. P.

    2014-03-07

    Precise diffusion measurements of rhodamine 6G (Rh6G) dissolved in D{sub 2}O at concentrations between 50 and 200 μM were carried out in the temperature range from 280 to 320 K using pulsed field gradient nuclear magnetic resonance (PFG-NMR). The obtained diffusion coefficients can be used as a calibration reference in fluorescence correlation spectroscopy (FCS). Besides measuring the diffusivity of Rh6G, the diffusion coefficient of the solvent in the same system could be determined in parallel by PFG-NMR as the resonances of water and Rh6G are well separated in the {sup 1}H NMR spectrum. To analyze the differences due to the isotope effect of the solvent (D{sub 2}O vs. H{sub 2}O), the correlation time τ{sub D} of Rh6G was measured by FCS in both D{sub 2}O and H{sub 2}O. The obtained isotopic correction factor, τ{sub D}(D{sub 2}O)/τ{sub D}(H{sub 2}O) = 1.24, reflects the isotope effect of the solvent´s self-diffusion coefficients as determined previously by PFG-NMR.

  13. Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus

    PubMed Central

    Schmidt, Joshua M.; Good, Robert T.; Appleton, Belinda; Sherrard, Jayne; Raymant, Greta C.; Bogwitz, Michael R.; Martin, Jon; Daborn, Phillip J.; Goddard, Mike E.; Batterham, Philip; Robin, Charles

    2010-01-01

    The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ∼16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession. PMID:20585622

  14. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  15. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution

    PubMed Central

    Bavali, A.; Parvin, P.; Mortazavi, S. Z.; Nourazar, S. S.

    2015-01-01

    The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers. PMID:26137372

  16. High Raman-to-fluorescence ratio of Rhodamine 6G excited with 532  nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles.

    PubMed

    Sadegh, N; Khadem, H; Tavassoli, S H

    2016-08-01

    A highly efficient Raman-to-fluorescence ratio of Rhodamine 6G is obtained by means of 532 nm laser wavelength, which is in close proximity of the dye's absorption maximum. Closely packed, gap-filled self-assembled monolayers of silver nanoparticles were produced to observe the Raman signals of Rhodamine 6G. Two mechanisms contribute to detect the Raman signals of the fluorescent sample: surface-enhanced Raman scattering (SERS) and nanomaterial surface energy transfer (NSET). Self-assembled monolayers of silver nanoparticles with different coverage densities and also those filled with probe molecules were prepared through variations of the substrate's immersion time in a nanoparticle solution and drying the substrate, respectively. Examination of the effects of these two factors on the plasmonic response and SERS efficiency of the substrate revealed that in a gap-filled dense coverage, near-field interactions dominate, which remarkably increase the Raman-to-fluorescence ratio (RFR). To have a perfect dense coverage, the efficient immersion time was obtained at about 48 h. Drying the substrates also caused further enhancement in RFR through filling interparticle spaces with dye molecules and, accordingly, an increase in NSET efficiency. PMID:27505398

  17. Fluorescence depolarization of rhodamine 6G in glycerol: a photon-counting test of three-dimensional excitation transport theory

    SciTech Connect

    Anfinrud, P.A.; Hart, D.E.; Hedstrom, J.F.; Struve, W.S.

    1986-05-22

    Time-correlated photon counting has been used to measure fluorescence concentration depolarization for rhodamine 6G in glycerol. The excitation transport theory developed by Gochanour, Andersen, and Fayer yields good approximations to the experimental decay profiles over the concentration range 1.7 x 10/sup -4/ to 2.4 x 10/sup -3/ M. Although the differences between optimized theoretical and experimental profiles are fractionally small, they are readily characterized under present counting statistics. They prove to be dominated by experimental artifacts, arising from excitation trapping by rhodamine 6G aggregates and from self-absorption in solution cells thicker than approx. 10 ..mu..m.

  18. Optical devices based on dye-coated superconductor junctions: An example of a composite molecule-superconductor device

    SciTech Connect

    Zhao, J.; Jurbergs, D.; Yamazi, B.; McDevitt, J.T.

    1992-03-25

    High-temperature superconductors provide new opportunities as materials used in the construction of hybrid molecule-superconductor components. Here, the authors describe fabrication methods for and operation of optical sensors based on molecular dye-coated superconductor junctions. Devices prepared from yttrium barium cuprates and using octaethylporphyrin, phthalocyanine, and rhodamine 6G as dyes have been prepared. 9 refs., 1 fig.

  19. Experimental studies on output, spatial, and spectral characteristics of a microdroplet dye laser containing intralipid as a highly scattering medium

    SciTech Connect

    Taniguchi, Hiroshi; Tanosaki, Shinji; Tsujita, Kazuhiro; Inaba, Humio

    1996-11-01

    Lasing characteristics of Rhodamine 6G dye-doped microdroplets containing highly scattering fat emulsion Intralipid-10% are studied experimentally. Noteworthy findings are that well-defined lasing threshold can be observed and one order or more magnitude enhancement of emission intensity with suitable (optimum) conditions of the Intralipid mixing ratio, in comparison with original neat-dye lasing microdroplets. The authors present and discuss the measured results of input-output intensities for different dye concentrations and dye-Intralipid mixing ratios in this high-gain laser dye-soft scatterer system and microscope images of spatial distribution of light emission from both the microdroplets containing neat-dye and dye-Intralipid mixture. It was found that almost no-lasing neat-dye microdroplets, which have either much higher or much lower dye concentration, can achieve lasing by substituting suitably certain amounts of the Intralipid, causing multiple light scattering. Spectral measurements of lasing outputs from the Rhodamine 6G dye-Intralipid microdroplets show the tendency of the disappearance of the well-known mode structures, owing to the morphology-dependent resonances of this microspherical cavity inherent to the neat-dye microdroplets. It is their belief that the present results make this novel method of dye-Intralipid microsystem very attractive for a variety of future applications, including diagnostic tools for highly sensitive detection and identification of small quantity objects and species embedded or hidden in highly scattering media.

  20. Textile dye dermatitis.

    PubMed

    Hatch, K L; Maibach, H I

    1995-04-01

    The literature concerning textile dye dermatitis published during the last decade was reviewed. Sixty-one cases of dye-allergic contact dermatitis in which the presentation or course of the dermatitis was unusual or the dye allergen was one not previously reported have been described. The four new dye allergens discovered were Disperse Blue 106, Disperse Blue 85, Disperse Brown 1, and Basic Red 46. The incidence of dye dermatitis varied from 1% to 15.9% depending on the country, patient sample, and number of dyes in the patch test series. The 10 new dye allergens discovered in these studies were Disperse Blue 153, Disperse Orange 13, Basic Black 1, Basic Brown 1, the acid dyes Supramine Yellow and Supramine Red, the direct dye Diazol Orange, the basic dye Brilliant Green, Turquoise Reactive, and Neutrichrome Red. Disperse Blue 106 and Disperse Blue 124 were shown to be the strongest clothing dye sensitizers to date. Standard screening patch test series were found to be inadequate for the detection of textile dye sensitivity; therefore textile dye patch test series should be used. It is difficult to determine whether the incidence of dye dermatitis is increasing or decreasing because controlled epidemiologic studies are lacking, but data suggest that textile dye sensitivity is more common than previously believed.

  1. Characteristics of a dye laser amplifier transversely pumped by copper vapor lasers with a two-dimensional calculation model

    SciTech Connect

    Sugiyama, A.; Nakayama, T.; Kato, M.; Maruyama, Y.

    1997-08-01

    A two-dimensional rate equation model, taking into consideration the transverse absorption loss of pump laser power, is proposed to evaluate the characteristics of a dye laser amplifier with a large input laser beam diameter pumped by high average power copper vapor lasers. The calculations are in good agreement with the measurements taken with a Rhodamine 6G dye, and the model can be used for evaluation of the dye concentration at any wavelength. {copyright} 1997 Optical Society of America

  2. Study of the generation characteristics of laser converters with dye-based wide-aperture solid--liquid active elements

    SciTech Connect

    Eremenko, A.S.; Zemskii, V.I.; Kolesnikov, Y.L.; Malinin, B.G.; Meshkovsky, I.K.; Savkin, N.P.; Stepanov, V.E.; Shildyaev, V.S.

    1986-11-01

    The lasing characteristics of an active element, consisting of a fine porous silicate matrix, has been studied. Molecules of a dye (rhodamine 6G) and an ethanol solution of the same dye were introduced into the cells. It has been shown that under conditions of large heat release (when thermooptical distortions begin to appear in the dye solutions), the solid--liquid element preserves the stability of its own lasing characteristics.

  3. Interleukin-6 g.-174G>C promoter polymorphism is associated with obesity in the EPIC-Potsdam Study.

    PubMed

    Klipstein-Grobusch, Kerstin; Möhlig, Matthias; Spranger, Joachim; Hoffmann, Kurt; Rodrigues, Fabio U S; Sharma, Arya M; Klaus, Susanne; Pfeiffer, Andreas F H; Boeing, Heiner

    2006-01-01

    Homozygosity for the interleukin-6 (IL-6) g.-174G>C promoter polymorphism has recently been associated with indices of overweight. Homozygous subjects were observed to have reduced energy expenditure, suggesting that lower IL-6 gene transcription, caused by the IL-6 g.-174G>C promoter polymorphism, may be associated with obesity. The aim of this study was to investigate the association of this polymorphism with long-term weight gain. For 334 normal weight (20 < BMI < or = 25 kg/m2) and 334 obese (BMI > 30 kg/m2) subjects matched by age and sex originating from the population-based EPIC-Potsdam Study, recalled weight change from age 25 to study enrollment was determined, the IL-6 g.-174G>C promoter polymorphism was defined, and plasma concentrations of IL-6 and C-reactive protein were measured. The IL-6 g.-174G>C promoter polymorphism was significantly associated with obesity (chi2 = 7,34, p = 0.026). Odds ratios for subjects with GC and CC genotypes for obesity were 1.19 (95% CI: 0.84 to 1.68; p = 0.323) and 1.91 (95% CI: 1.19 to 3.08; p = 0.007), respectively. Recalled weight change from age 25 years to study enrollment differed significantly according to genotype (p = 0.044) and was most pronounced in subjects with the CC genotype, suggesting that the IL-6 g.-174G>C promoter polymorphism is a susceptibility or modifying locus for common obesity and weight gain.

  4. Mechanism for radiative energy transfer and expansion of the spectral lasing range in a rhodamine 6G--oxazine 17 system

    SciTech Connect

    Reva, M.G.; Akimov, A.I.; Korol'kova, N.V.; Kurokhtin, N.V.; Uzhinov, B.M.

    1985-12-01

    The nature of radiative transfer of electronic excitation energy from rhodamine 6G to oxazine 17 is determined. As a result of laser excitation, lasing in the acceptor (oxazine 17) is achieved due to absorption of donor (rhodamine 6G) luminescence by its molecules. The continuous tuning range of single-component ethanol solutions of rhodamine 6G and oxazine 17, and of a binary rhodamine 6G--oxazine 17 system with energy transfer, is determined.

  5. IMB-6G, a novel N-substituted sophoridinic acid derivative, induces endoplasmic reticulum stress-mediated apoptosis via activation of IRE1α and PERK signaling

    PubMed Central

    Zhang, Na; Bi, Chongwen; Liu, Lu; Dou, Yueying; Tang, Sheng; Pang, Weiqiang; Deng, Hongbin; Song, Danqing

    2016-01-01

    Sophoridinic acid derivatives have received considerable attentions for their potencies in cancer therapy. IMB-6G is a novel N-substituted sophoridinic acid derivative with potent cytotoxicity against tumor cells. In the present study, we explored the antitumor abilities of IMB-6G in human hepatocellular carcinoma (HCC) cells and investigated the underlying mechanisms. We found that IMB-6G inhibited cell growth and induced mitochondrial-dependent apoptosis in HepG2 and SMMC7721 cells. Analyses of the molecular mechanism of IMB-6G-induced apoptosis indicated IMB-6G induced endoplasmic reticulum (ER) stress activation. Incubation of HCC cells with IMB-6G induced increase in Bip and CHOP levels, which precede induction of apoptosis. Further study showed IMB-6G activated IRE1α and PERK pathways but did not stimulated ATF6 pathway in HCC cells. Moreover, silencing of IRE1α dramatically abrogated IMB-6G-induced pro-apoptotic ASK1-JNK signaling. Importantly, interruption of CHOP rendered HCC cells sensitive to IMB-6G-induced apoptosis via inactivation of Bim, PUMA and Bax. Thus, the IRE1α-ASK1 and PERK-CHOP pathways may be a novel molecular mechanism of IMB-6G-induced apoptosis. Collectively, our study demonstrates that IMB-6G induces ER stress-mediated apoptosis by activating IRE1α and PERK pathways. Our findings provide a rationale for the potential application of IMB-6G in HCC therapy. PMID:27009865

  6. Fluorescence properties of dye doped mesoporous silica

    SciTech Connect

    Carbonaro, Carlo M. Corpino, Riccardo Ricci, Pier Carlo Chiriu, Daniele; Cannas, Carla

    2014-10-21

    In this paper we present a review of the main results we obtained studying the emission properties of organic-inorganic hybrids obtained combining mesoporous silica and Xantene dyes, in particular the standard reference Rhodamine 6G. The purpose of the review is to show the possibility to efficiently 'dope' the transparent inorganic porous matrix to obtain promising systems for photonic and biomedical applications. The strategies to solve the concentration effect and the leaching phenomenon are discussed within the framework of the single exciton theory.

  7. Performance analysis and characterization of the Lumonics Inc. HyperDYE-300 laser-pumped dye laser. Final technical report

    SciTech Connect

    Taylor, T.S.; Davenport, W.E.; Ehrlich, J.J.

    1990-07-11

    The laser analyzed in this research, the Lumonics, Inc. HyperDYE-300 laser pumped dye laser, was procured via the FSTC D650 Program and was characterized in order to support the technology development of that program. The dye laser was pumped with a Neodymium:YAG q-switched laser and it utilized Rhodamine-6G in methanol. It was found to be tunable from about 545 nm to 590 nm and produced a maximum ouput energy of 56 percent of the pump beam energy. The analysis involved the measuring of optimum dye/solvent concentration, output energy versus tunability, optical efficiency versus tunability, temporal and spatial profiles, beam divergence, linewidth, and amplified spontaneous emission versus laser emission.

  8. Single mode optofluidic distributed feedback dye laser

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Zhang, Zhaoyu; Emery, Teresa; Scherer, Axel; Psaltis, Demetri

    2006-01-01

    Single frequency lasing from organic dye solutions on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip is demonstrated. The laser cavity consists of a single mode liquid core/PDMS cladding channel waveguide and a phase shifted 15th order distributed feedback (DFB) structure. A 1mM solution of Rhodamine 6G in a methanol and ethylene glycol mixture was used as the gain medium. Using 6 nanosecond 532nm Nd:YAG laser pulses as the pump light, we achieved threshold pump fluence of ~0.8mJ/cm2 and single-mode operation at pump levels up to ten times the threshold. This microfabricated dye laser provides a compact and inexpensive coherent light source for microfluidics and integrated optics covering from near UV to near IR spectral region.

  9. Facile synthesis of gold nanopuncheons with high-index facets and their SERS effects on Rhodamine 6G

    SciTech Connect

    Li, Jing Chang, Minmin; Zhou, Xinmu; Li, Dongping; Li, Yongxiu

    2014-11-15

    Highlights: • Au nanopuncheons with high-index facets have been prepared by seed-mediated growth. • The nanopuncheons are enclosed by 24 planes of (2 5 0), (3 0 1) and 2 (0 1 0) planes. • The nanopuncheons showed high SERS activity toward Rhodamine 6G. - Abstract: Au nanopuncheons with exposed high-index facets have been synthesized in high-yield by employing didodecyldimethylammonium bromide (DDAB) as surfactant in one-step seed-mediated growth. Transmission electron microscopy (TEM) characterization showed that the as-prepared Au nanopuncheons possessed 24 high index facets of (2 5 0), (3 0 1), and 2 (0 1 0) planes. Due to the high density of atomic steps and kinks in the structure, the Au nanopuncheons exhibited high surface enhanced Raman scattering (SERS) activity toward Rhodamine 6G.

  10. Postglacial Rebound Model ICE-6G_C (VM5a) Constrained by Geodetic and Geologic Observations

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Argus, D. F.; Drummond, R.

    2014-12-01

    We fit the revised global model of glacial isostatic adjustment ICE-6G_C (VM5a) to all available data, consisting of several hundred GPS uplift rates, a similar number of 14C dated relative sea level histories, and 62 geologic estimates of changes in Antarctic ice thickness. The mantle viscosity profile, VM5a is a simple multi-layer fit to prior model VM2 of Peltier (1996, Science). However, the revised deglaciation history, ICE-6G (VM5a), differs significantly from previous models in the Toronto series. (1) In North America, GPS observations of vertical uplift of Earth's surface from the Canadian Base Network require the thickness of the Laurentide ice sheet at Last Glacial Maximum to be significantly revised. At Last Glacial Maximum the new model ICE-6G_C in this region, relative to ICE-5G, roughly 50 percent thicker east of Hudson Bay (in and northern Quebec and Labrador region) and roughly 30 percent thinner west of Hudson Bay (in Manitoba, Saskatchewan, and the Northwest Territories).the net change in mass, however, is small. We find that rates of gravity change determined by GRACE when corrected for the predictions of ICE-6G_C (VM5a) are significantly smaller than residuals determined on the basis of earlier models. (2) In Antarctica, we fit GPS uplift rates, geologic estimates of changes in ice thickness, and geologic constraints on the timing of ice loss. The resulting deglaciation history also differs significantly from prior models. The contribution of Antarctic ice loss to global sea level rise since Last Glacial Maximum in ICE-6G_C is 13.6 meters, less than in ICE-5G (17.5 m), but significantly larger than in both the W12A model of Whitehouse et al. [2012] (8 m) and the IJ05 R02 model of Ivins et al. [2013] (7.5 m). In ICE-6G_C rapid ice loss occurs in Antarctica from 11.5 to 8 thousands years ago, with a rapid onset at 11.5 ka thereby contributing significantly to Meltwater Pulse 1B. In ICE-6G_C (VM5a), viscous uplift of Antarctica is increasing

  11. Influence of thiourea on the emission characteristics of a laser based on an aqueous solution of rhodamine 6G

    SciTech Connect

    Viktorova, A.A.; Savikin, A.P.; Tsaregradskii, V.B.

    1983-08-01

    An investigation was made of the spectral (luminescence and lasing) characteristics of an aqueous solution of rhodamine 6G with an addition of thiourea. When the thiourea concentration in the solvent was > or =30%, the absorption and fluorescence spectra changed greatly, the lasing threshold decreased approximately fourfold, and the output power increased by an order of magnitude. The good thermooptical properties of water as a solvent, in combination with the disaggregation properties of thiourea, made it possible to realize (without circulation of the solution) a pulse-periodic lasing regime at a repetition frequency of < or approx. =50 Hz and with output radiation parameters typical of a laser with continuous circulation of an ethanol solution of rhodamine 6G.

  12. Cloth dye poisoning

    MedlinePlus

    ... poisonous ingredient in most household cloth dyes. Most common household cloth dyes are made from nonpoisonous substances, such as: Mild soaps Pigments Salts Although these substances are generally considered not dangerous, ...

  13. Rotational reorientation dynamics at high pressures: rhodamine 6G in ethanol from 1 bar to 6 kbar

    SciTech Connect

    Philips, L.A.; Webb, S.P.; Yeh, S.W.; Clark, J.H.

    1985-01-03

    Picosecond, time-resolved fluorescence depolarization spectroscopy has been used to measure the rotational reorientation time (tau/sub or/) of electronically excited rhodamine 6G. When the dependence of tau/sub or/ on solvent viscosity for a series of linear alcohols is compared with that for ethanol as a function of pressure over the range from 1 bar to 6 kbar, substantially different rotational reorientation dynamics are found for identical macroscopic viscosities. 31 references, 2 figures, 2 tables.

  14. Interleukin-6 G-174C gene polymorphism and serum resistin levels in North Indian women: potential risk of metabolic syndrome.

    PubMed

    Gupta, A; Gupta, V; Singh, A K; Tiwari, S; Agrawal, S; Natu, S M; Agrawal, C G; Negi, M P S; Pant, A B

    2011-10-01

    The present investigations were aimed to identify the possible association between genetic polymorphism in interleukin-6 (IL-6) G-174C gene, which confers susceptibility to metabolic syndrome, and serum level of resistin in North Indian women. The study population comprised 370 unrelated Indian women (192 having abdominal obesity and 178 controls). Polymorphism in genotype (CC+GC) of IL-6 G-174C gene was determined using a combination of polymerase chain reaction (PCR) and sequence-specific primer with restriction fragment length polymorphism (RFLP) technology. Insulin resistance (IR) and serum resistin level were also analyzed along with metabolic risk factors. Of 192 abdominal obese women, 147 (76.56%) were found to have mutant CC+GC (p = 0.001) genotype and allele frequency (p = 0.001), which was significantly higher 45 (23.44%) than non-obese and their respective wild type. The mutant genotype (CC+GC) of IL-6 gene was found to be associated significantly with high triglyceride (p = 0.025) and resistin level (p < 0.001), when compared with respective wild genotype (GG) in obese women. Non-obese women with no signs of metabolic risk factors were found to have significantly low level of serum resistin and IR in comparison to obese women having genetic polymorphism for IL-6 G-174C gene. Study suggests that IL-6 G-174C gene is one among the susceptibility loci for metabolic syndrome in North Indian women. Genotype for this polymorphism may prove informative for prediction of genetic risk for metabolic syndrome. Further, high level of serum resistin molecules may be targeted to correlate with metabolic syndrome risk factors and could be used as early prediction marker.

  15. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters.

    PubMed

    Parshetti, Ganesh K; Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2014-06-01

    Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars. PMID:24727353

  16. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  17. Catalytic solid substrate-room temperature phosphorimetry for the determination of residual perphenazine based on the electronic effect of rhodamine 6G.

    PubMed

    Zheng, Zhi-Yong; Cui, Ma-Lin; Zhang, Li-Hong; Jiang, Shu-Lian; Jiao, Li; Lin, Xuan; Lin, Shao-Qin; Liu, Jia-Ming

    2013-01-01

    The rhodamine 6G(+) -perphenazine (Rhod 6G(+) -PPH) compound is formed in the ester-exchange reaction between -OH of PPH and -COOC2 H5 of Rhod 6G(+) . PPH was oxidized to a red compound (PPH') in the presence of K2 S2 O8 . Interestingly, the room temperature phosphorescence (RTP) of Rhod 6G(+) was quenched because the -OH of PPH' reacted with -COOC2 H5 of Rhod 6G(+) -PPH to form Rhod 6G(+) -PPH' and PPH, which decreased the π-electron density (δ) of the carbon atom in the Rhod 6G(+) -PPH' conjugated system and enhanced the nonradiation energy loss of the excited Rhod 6G(+) of the triplet state. The PPH content was directly proportional to the ΔIp of the system. Thus, a new catalytic solid-substrate room temperature phosphorimetry (SSRTP) method was established for the determination of PPH. The method had high sensitivity (the limit of detection was 0.019 fg/spot, corresponding to a concentration of 4.8 × 10(-14)  g/mL; the sampling quantity was 0.40 μL/spot), good selectivity, convenience and speed. The analytical results were in accordance with those of high-performance liquid chromatography (HPLC). The structures of Rhod 6G(+) , PPH and Rhod 6G(+) -PPH were characterized by infrared spectra. The reaction mechanism by which PPH was determined is discussed.

  18. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  19. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  20. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques.

    PubMed

    Hafuka, Akira; Ding, Qing; Yamamura, Hiroshi; Yamada, Koji; Satoh, Hisashi

    2015-11-15

    To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. PMID:26318652

  1. Novel PAMAM Dendron as a Bichromophoric Probe Based on Rhodamine 6G and 1,8-Naphthalimide.

    PubMed

    Dimitrova, Margarita D; Georgiev, Nikolai I; Bojinov, Vladimir B

    2016-05-01

    A novel PAMAM dendron designed as a wavelength-shifting bichromophore with 1,8-naphthalimide energy "donor" capable of absorbing light and efficiently transferring the energy to a focal Rhodamine 6G "acceptor" was synthesized and investigated. Moreover, the system was configured on the "fluorophore-spacer-receptor" format. Thus, the distinguishing features of FRET systems were successfully combined with the properties of photoinduced electron transfer and classical ring-opening sensor systems. The synthesized compound shows excellent signaling properties towards protons, Hg(2+) and Fe(3+) ions, therefore, the system is able to act as an one-output combinatorial logic circuit with four chemical inputs. PMID:27048224

  2. Rhodamine 6G hydrazone bearing thiophene unit: A highly sensitive and selective off-on fluorescent chemosensor for Al3+

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Na; Mao, Pan-Dong; Wang, Yuan; Zhao, Xiao-Lei; Jia, Lei; Xu, Zhou-Qing

    2016-10-01

    A rhodamine derivative (R1) has been synthesized by a hydrazone formation of rhodamine 6G hydrazide with 3-methylthiophene-2-carbaldehyde, which exhibits high selectivity and sensitivity as an "off-on" fluorescent sensor toward Al3+ in water containing media. The binding process was confirmed by UV-vis absorption, fluorescence measurements, mass spectroscopy and DFT calculation. The probe functions by Al3+ induced hydrolytic cleavage of the imine-bond to produce an intense rhodamine-based emission. To test the practical use of the probe, the determination of Al3+ in real water samples was also evaluated.

  3. Aerogels: A new material for emissive display applications

    SciTech Connect

    Glauser, S.A.C.; Lee, H.W.H.

    1997-03-01

    The remarkable optical and electronic properties of doped and undoped silica aerogels establish their utility as unique, multifunctional host materials for fluorescent dyes and other luminescent materials for display and imaging applications. We present results on the photoluminescence and absorption of undoped silica aerogels and aerogels doped with Er{sup 3+}, rhodamine 6G (R6G), and fluorescein. We also demonstrate evidence of Fowler-Nordheim tunneling of electrons in aerogels. 4 refs., 10 figs.

  4. Luminescent studies of fluorescent chromophore-doped silica aerogels for flat panel display applications

    SciTech Connect

    Glauser, S.A.C.; Lee, H.W.H.

    1997-04-01

    The remarkable optical and electronic properties of doped and undoped silica aerogels establish their utility as unique, mulitfunctional host materials for fluorescent dyes and other luminescent materials for display and imaging applications. We present results on the photoluminescence, absorption, and photoluminescence excitation spectra of undoped silica aerogels and aerogels doped with Er{sup 3+}, rhodamine 6G (R6G), and fluorescein. 4 refs., 12 figs.

  5. Enhanced fluorescence emitted by microdroplets containing organic dye emulsions.

    PubMed

    Boni, M; Nastasa, V; Andrei, I R; Staicu, Angela; Pascu, M L

    2015-01-01

    In this paper, laser beam resonant interaction with pendant microdroplets that are seeded with a laser dye (Rhodamine 6G (Rh6G)) water solution or oily Vitamin A emulsion with Rhodamine 6G solution in water is investigated through fluorescence spectra analysis. The excitation is made with the second harmonic generated beam emitted by a pulsed Nd:YAG laser system at 532 nm. The pendant microdroplets containing emulsion exhibit an enhanced fluorescence signal. This effect can be explained as being due to the scattering of light by the sub-micrometric drops of oily Vitamin A in emulsion and by the spherical geometry of the pendant droplet. The droplet acts as an optical resonator amplifying the fluorescence signal with the possibility of producing lasing effect. Here, we also investigate how Rhodamine 6G concentration, pumping laser beam energies and number of pumping laser pulses influence the fluorescence behavior. The results can be useful in optical imaging, since they can lead to the use of smaller quantities of fluorescent dyes to obtain results with the same quality. PMID:25784965

  6. Par6G suppresses cell proliferation and is targeted by loss-of-function mutations in multiple cancers

    PubMed Central

    Marques, E; Englund, J I; Tervonen, T A; Virkunen, E; Laakso, M; Myllynen, M; Mäkelä, A; Ahvenainen, M; Lepikhova, T; Monni, O; Hautaniemi, S; Klefström, J

    2016-01-01

    Differentiated epithelial structure communicates with individual constituent epithelial cells to suppress their proliferation activity. However, the pathways linking epithelial structure to cessation of the cell proliferation machinery or to unscheduled proliferation in the context of tumorigenesis are not well defined. Here we demonstrate the strong impact of compromised epithelial integrity on normal and oncogenic Myc-driven proliferation in three-dimensional mammary epithelial organoid culture. Systematic silencing of 34 human homologs of Drosophila genes, with previously established functions in control of epithelial integrity, demonstrates a role for human genes of apico-basal polarity, Wnt and Hippo pathways and actin dynamics in regulation of the size, integrity and cell proliferation in organoids. Perturbation of these pathways leads to diverse functional interactions with Myc: manifested as a RhoA-dependent synthetic lethality and Par6-dependent effects on the cell cycle. Furthermore, we show a role for Par6G as a negative regulator of the phosphatidylinositol 3′-kinase/phosphoinositide-dependent protein kinase 1/Akt pathway and epithelial cell proliferation and evidence for frequent inactivation of Par6G gene in epithelial cancers. The findings demonstrate that determinants of epithelial structure regulate the cell proliferation activity via conserved and cancer-relevant regulatory circuitries, which are important for epithelial cell cycle restriction and may provide new targets for therapeutic intervention. PMID:26073086

  7. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  8. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  9. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Argus, D. F.; Drummond, R.

    2015-01-01

    A new model of the last deglaciation event of the Late Quaternary ice age is here described and denoted as ICE-6G_C (VM5a). It differs from previously published models in this sequence in that it has been explicitly refined by applying all of the available Global Positioning System (GPS) measurements of vertical motion of the crust that may be brought to bear to constrain the thickness of local ice cover as well as the timing of its removal. Additional space geodetic constraints have also been applied to specify the reference frame within which the GPS data are described. The focus of the paper is upon the three main regions of Last Glacial Maximum ice cover, namely, North America, Northwestern Europe/Eurasia, and Antarctica, although Greenland and the British Isles will also be included, if peripherally, in the discussion. In each of the three major regions, the model predictions of the time rate of change of the gravitational field are also compared to that being measured by the Gravity Recovery and Climate Experiment satellites as an independent means of verifying the improvement of the model achieved by applying the GPS constraints. Several aspects of the global characteristics of this new model are also discussed, including the nature of relative sea level history predictions at far-field locations, in particular the Caribbean island of Barbados, from which especially high-quality records of postglacial sea level change are available but which records were not employed in the development of the model. Although ICE-6G_C (VM5a) is a significant improvement insofar as the most recently available GPS observations are concerned, comparison of model predictions with such far-field relative sea level histories enables us to identify a series of additional improvements that should follow from a further stage of model iteration.

  10. Continuous-wave dye laser pumped by a high-pressure argon arc

    SciTech Connect

    Thiel, E.; Zander, C.; Drexhage, K.

    1988-11-01

    Continuous-wave operation of a Rhodamine 6G dye laser, incoherently pumped by a high-pressure argon arc, has been achieved. A special electrode design reduces melting of the electrode tips, and thus the arc provides the necessary brightness for periods of the order of hours.

  11. Accurate and absolute diffusion measurements of Rhodamine 6G in low-concentration aqueous solutions by the PGSE-WATERGATE sequence

    SciTech Connect

    Majer, G.; Zick, K.

    2015-04-28

    A pulsed field gradient spin-echo nuclear magnetic resonance (NMR) sequence with solvent suppression (PGSE-WATERGATE) was applied to accurately measure the diffusion coefficients of Rhodamine 6G (Rh6G) in low-concentration aqueous solutions. Three samples with Rh6G concentrations of C{sub Rh6G} = 1, 4.5, and 25 μM were investigated. The precise determination of the diffusion coefficients in this low-concentration range was made possible by using a cryogenically cooled NMR probe and by the effective solvent suppression of the PGSE-WATERGATE sequence. The present results bridge the gap between diffusion data measured by fluorescence correlation spectroscopy in the single molecule limit and diffusivities obtained by pulsed field gradient NMR (PFG-NMR) without solvent suppression at higher concentrations. To further extend the concentration range, the diffusion coefficient of Rh6G was also measured on a sample with C{sub Rh6G} = 410 μM by PFG-NMR. The overall concentration dependence of the Rh6G diffusion at 25 °C is discussed in terms of dimerization of the Rh6G molecules. The concentration-dependent monomer/dimer proportion is deduced from the diffusion data.

  12. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  13. Dependence of the activation energy of rhodamine 6G phototransformation into an irreversible photoproduct on the excitation wavelength

    SciTech Connect

    Aristov, A.V.

    1994-12-01

    The results of our previous studies of the quantum yield {Phi}{sub ip} of irreversible phototransformations in rhodamines in deoxygenated solutions are presented along with the results of a quantum-chemical analysis of the dipole-dipole electronic transitions between different molecular orbitals in the 15000-38000 cm{sup -1} spectral region. A combined analysis of these results gives insight into the features of the singlet-singlet absorption spectrum of xanthene dyes in a broad spectral region from 15000 to 38000 cm{sup -1} and explains a considerable difference in values of {Phi}{sub ip} upon excitations into the isoenergetic states in different parts of the absorption spectrum. The relation between the threshold activation energy of the photodestruction of molecules and molecular orbitals involved in the electronic transitions induced by absorption of photons in different spectral regions is found. 10 refs., 1 fig.

  14. Generation of microsecond laser pulses in polyurethane matrices doped with dyes

    SciTech Connect

    Nikolaev, S V; Pozhar, V V; Dzyubenko, M I

    2006-08-31

    Active laser elements based on polyurethane matrices doped with rhodamine 6G and oxazine 17 dyes are fabricated and tested. Lasing in the yellow-green and red spectral regions is obtained upon excitation of these matrices by a dye laser at 532 nm. The spectral and spatial-angular parameters of emission are studied. It is shown that these parameters are similar for polymer and liquid dye lasers. It is confirmed that pump radiation causes strong thermal distortions of active polymer media and the degree of influence of these distortions on lasing is demonstrated in experiments. The tuning of a laser based on a rhodamine 6G-doped polymer matrix is demonstrated in the range between 579 and 601 nm. (lasers)

  15. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    PubMed

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  16. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    PubMed

    Harrop, Thomas W R; Sztal, Tamar; Lumb, Christopher; Good, Robert T; Daborn, Phillip J; Batterham, Philip; Chung, Henry

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  17. Evolutionary Changes in Gene Expression, Coding Sequence and Copy-Number at the Cyp6g1 Locus Contribute to Resistance to Multiple Insecticides in Drosophila

    PubMed Central

    Harrop, Thomas W. R.; Sztal, Tamar; Lumb, Christopher; Good, Robert T.; Daborn, Phillip J.; Batterham, Philip; Chung, Henry

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster–D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species. PMID:24416303

  18. Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice.

    PubMed

    Moses, Katrin; Klein, Johanna C; Männ, Linda; Klingberg, Anika; Gunzer, Matthias; Brandau, Sven

    2016-06-01

    Expansion of Ly-6G(+) myeloid cells has been reported in most murine cancer models. However, divergent findings exist regarding the role and effect of these cells on host immunity and tumor progression. Antibody-mediated depletion of Ly-6G(+) cells is a common technique to assess the in vivo relevance of these cells. Interpretation of results crucially depends on the efficacy and course of depletion. We established murine head and neck cancer models and analyzed the efficacy of antibody-mediated depletion by flow cytometry, conventional histology, and intravital imaging with a novel Ly-6G-transgenic mouse model. The first phase of depletion was characterized by effective elimination of Ly-6G(+) cells from the peripheral blood. Nevertheless, viable, resistant cells were found to reside in the tumor tissue and spleen. This peripheral depletion phase was associated with high systemic levels of granulocyte colony-stimulating factor and KC and enhanced splenic production of Ly-6G(+) cells. Even under sustained treatment with either αGr-1 or αLy-6G antibodies, peripheral blood depletion ended after approximately 1 wk and was followed by reappearance of immature Ly-6G(+) cells with an immunoregulatory phenotype. Reappearance of these depletion-resistant immature cells was enhanced in tumor-bearing, compared with naïve, control mice. Collectively, our data suggest that depletion of Ly-6G(+) myeloid cells in tumor-bearing mice is counteracted by the persistence of intratumoral cells, enhanced extramedullary granulopoiesis, and accelerated reappearance of immature cells. Hence, extensive monitoring of in vivo kinetics and tissue distribution of Ly-6G(+) cells is required in depletion studies.

  19. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor

    PubMed Central

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  20. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor.

    PubMed

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  1. Dye system for dye laser applications

    SciTech Connect

    Hammond, P.R.

    1991-05-21

    This patent describes a dye of the DCM family, (2-methyl-6-(2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl)-4H-pyran-4-ylidene)-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  2. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  3. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics.

    PubMed

    Al-Etaibi, Alya M; Alnassar, Huda S; El-Apasery, Morsy Ahmed

    2016-01-01

    The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated. PMID:27367659

  4. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase.

    PubMed

    Vijn, I; van Dijken, A; Sprenger, N; van Dun, K; Weisbeek, P; Wiemken, A; Smeekens, S

    1997-03-01

    Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.

  5. Postglacial Rebound and Current Ice Loss Estimates from Space Geodesy: The New ICE-6G (VM5a) Global Model

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Argus, D.; Drummond, R.; Moore, A. W.

    2012-12-01

    We compare, on a global basis, estimates of site velocity against predictions of the newly constructed postglacial rebound model ICE-6G (VM5a). This model is fit to observations of North American postglacial rebound thereby demonstrating that the ice sheet at last glacial maximum must have been, relative to ICE-5G,thinner in southern Manitoba, thinner near Yellowknife (northwest Territories), thicker in eastern and southern Quebec, and thicker along the British Columbia-Alberta border. The GPS based estimates of site velocity that we employ are more accurate than were previously available because they are based on GPS estimates of position as a function of time determined by incorporating satellite phase center variations [Desai et al. 2011]. These GPS estimates are constraining postglacial rebound in North America and Europe more tightly than ever before. In particular, given the high density of GPS sites in North America, and the fact that the velocity of the mass center (CM) of Earth is also more tightly constrained, the new model much more strongly constrains both the lateral extent of the proglacial forebulge and the rate at which this peripheral bulge (that was emplaced peripheral to the late Pleistocence Laurentia ice sheet) is presently collapsing. This fact proves to be important to the more accurate inference of the current rate of ice loss from both Greenland and Alaska based upon the time dependent gravity observations being provided by the GRACE satellite system. In West Antarctica we have also been able to significantly revise the previously prevalent ICE-5G deglaciation history so as to enable its predictions to be optimally consistent with GPS site velocities determined by connecting campaign WAGN measurements to those provided by observations from the permanent ANET sites. Ellsworth Land (south of the Antarctic peninsula), is observed to be rising at 6 ±3 mm/yr according to our latest analyses; the Ellsworth mountains themselves are observed to be

  6. CD11b+ Ly6Chi Ly6G- immature myeloid cells recruited in response to Salmonella enterica serovar Typhimurium infection exhibit protective and immunosuppressive properties.

    PubMed

    Tam, Jason W; Kullas, Amy L; Mena, Patricio; Bliska, James B; van der Velden, Adrianus W M

    2014-06-01

    Immature myeloid cells in bone marrow are a heterogeneous population of cells that, under normal conditions, provide tissues with protective cell types such as granulocytes and macrophages. Under certain pathological conditions, myeloid cell homeostasis is altered and immature forms of these cells appear in tissues. Murine immature myeloid cells that express CD11b and Ly6C or Ly6G (two isoforms of Gr-1) have been associated with immunosuppression in cancer (in the form of myeloid-derived suppressor cells) and, more recently, infection. Here, we found that CD11b(+) Ly6C(hi) Ly6G(-) and CD11b(+) Ly6C(int) Ly6G(+) cells accumulated and persisted in tissues of mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Recruitment of CD11b(+) Ly6C(hi) Ly6G(-) but not CD11b(+) Ly6C(int) Ly6G(+) cells from bone marrow into infected tissues depended on chemokine receptor CCR2. The CD11b(+) Ly6C(hi) Ly6G(-) cells exhibited a mononuclear morphology, whereas the CD11b(+) Ly6C(int) Ly6G(+) cells exhibited a polymorphonuclear or band-shaped nuclear morphology. The CD11b(+) Ly6C(hi) Ly6G(-) cells differentiated into macrophage-like cells following ex vivo culture and could present antigen to T cells in vitro. However, significant proliferation of T cells was observed only when the ability of the CD11b(+) Ly6C(hi) Ly6G(-) cells to produce nitric oxide was blocked. CD11b(+) Ly6C(hi) Ly6G(-) cells recruited in response to S. Typhimurium infection could also present antigen to T cells in vivo, but increasing their numbers by adoptive transfer did not cause a corresponding increase in T cell response. Thus, CD11b(+) Ly6C(hi) Ly6G(-) immature myeloid cells recruited in response to S. Typhimurium infection exhibit protective and immunosuppressive properties that may influence the outcome of infection.

  7. Diode-pumped dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O. A.; Gorbunkov, M. V.; Petukhov, V. A.; Semenov, M. A.

    2016-10-01

    This letter reports diode pumping for dye lasers. We offer a pulsed dye laser with an astigmatism-compensated three-mirror cavity and side pumping by blue laser diodes with 200 ns pulse duration. Eight dyes were tested. Four dyes provided a slope efficiency of more than 10% and the highest slope efficiency (18%) was obtained for laser dye Coumarin 540A in benzyl alcohol.

  8. Hair dye poisoning

    MedlinePlus

    ... are: Arsenic Bismuth Denatured alcohol Lead ( lead poisoning ) Mercury Pyrogallol Silver Hair dyes may contain other harmful ... bleeding and infection. Continued exposure to lead or mercury can lead to permanent brain and nervous system ...

  9. Dye Application, Manufacture of Dye Intermediates and Dyes

    NASA Astrophysics Data System (ADS)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  10. Bright emissive core-shell spherical microparticles for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2014-07-01

    Experiments were performed to study the response to shock compression of rhodamine 6G (R6G) dye encapsulated in 1.25 μm diameter silica microspheres. When R6G was encapsulated in microspheres, the emission intensity under steady-state irradiation (the brightness) was 3.4 times greater than the same dye in solution (the free dye). At least part of the brightness improvement was caused by an enhanced radiative rate. When the microspheres were embedded in poly-methylmethacrylate subjected to planar shocks in the 3-8.4 GPa range by laser-driven flyer plates, the dye emission redshifted and lost intensity. The dye emission redshift represents an instantaneous response to changes in the local density. In free dye samples, the shock-induced intensity loss had considerably slower rise times and fall times than the redshift. When dye was encapsulated in microspheres, the time dependence of the intensity loss matched the redshift almost exactly over a range of shock pressures and durations. The faster response to shock of dye in silica microspheres was explained by dye photophysics. The microsphere environment decreased the singlet state lifetime, which decreased the rise time, and it also decreased the triplet state lifetime, which decreased the fall time. Since it is much easier and more convenient to make measurements of intensity rather than spectral shift, these microspheres represent a substantial improvement in optical sensors to monitor shock compression of microstructured materials.

  11. Bright emissive core-shell spherical microparticles for shock compression spectroscopy

    SciTech Connect

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2014-07-21

    Experiments were performed to study the response to shock compression of rhodamine 6G (R6G) dye encapsulated in 1.25 μm diameter silica microspheres. When R6G was encapsulated in microspheres, the emission intensity under steady-state irradiation (the brightness) was 3.4 times greater than the same dye in solution (the free dye). At least part of the brightness improvement was caused by an enhanced radiative rate. When the microspheres were embedded in poly-methylmethacrylate subjected to planar shocks in the 3–8.4 GPa range by laser-driven flyer plates, the dye emission redshifted and lost intensity. The dye emission redshift represents an instantaneous response to changes in the local density. In free dye samples, the shock-induced intensity loss had considerably slower rise times and fall times than the redshift. When dye was encapsulated in microspheres, the time dependence of the intensity loss matched the redshift almost exactly over a range of shock pressures and durations. The faster response to shock of dye in silica microspheres was explained by dye photophysics. The microsphere environment decreased the singlet state lifetime, which decreased the rise time, and it also decreased the triplet state lifetime, which decreased the fall time. Since it is much easier and more convenient to make measurements of intensity rather than spectral shift, these microspheres represent a substantial improvement in optical sensors to monitor shock compression of microstructured materials.

  12. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  13. Synthesis of ultrabright nanoporous fluorescent silica discoids using an inorganic silica precursor

    NASA Astrophysics Data System (ADS)

    Volkov, Dmytro O.; Cho, Eun-Bum; Sokolov, Igor

    2011-05-01

    The templated sol-gel synthesis of ultrabright fluorescent nanoporous silica particles based on the use of organic silica sources has previously been reported. The use of organosilanes as the main silica precursors has a number of issues, in particular, the low robustness of the synthesis due to instability of the organic silica source. Here we report on a novel synthesis of ultrabright fluorescent nanoporous silica discoids (a specific shape in-between the sphere and disk) of 3.1 +/- 0.7 microns in size, which were prepared using a stable inorganic sodium silicate silica source. Organic fluorescent dye Rhodamine 6G (R6G) was physically (non-covalently) entrapped inside cylindrical nanochannels of ~4-5 nm in diameter. In contrast to the synthesis with organic silica precursors, the obtained particles showed an excessive leakage of dye. To prevent this leakage, we modified the synthesis by adding a small amount of a secondary silica source. The synthesized particles show virtually no leakage, high photostability, and a brightness equivalent to the fluorescence of up to 7 × 107 free R6G molecules. This is about 7 times higher than the fluorescent brightness of particles of the same size made of CdSe/ZnS quantum dots, and 420 times higher than the brightness of the same volume of aqueous solution of free R6G dye.

  14. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.

    PubMed

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; Goddard, William A; Lee, Yoon Sup; Kim, Hyungjun

    2014-12-18

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D(+). The fast regeneration of D(+) using the redox pair (typically the I(-)/I3(-) couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provides a rapid dye regeneration route of ∼4 ps, where penetration of I(-) next to D(+) enables an immediate electron transfer, forming a kinetic barrier. This explains the recently reported ultrafast dye regeneration rate of a few picoseconds determined experimentally. We expect that our MD based comprehensive understanding of the dye regeneration mechanism will provide a helpful guideline in designing TiO2-dye-electrolyte interfacial systems for better performing DSSCs. PMID:26273975

  15. Triplet extinction coefficients of some laser dyes I

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1988-07-15

    We measured the triplet extinction coefficients epsilon/sub T/ over the laser action spectral region of Rhodamine 6G; Rhodamine B; Rhodamine 110; Fluorol-7GA; Coumarin 540A; Coumarin 522; Coumarin 1; Coumarin 120; 4,4'-diphenyl stilbene; and 2,7-bis-(4-methoxy-phenyl)-9,9-dipropylfluorene. We employed the different lines from an argon ion cw laser for excitation. McClure's method was used to obtain the triplet extinction coefficients epsilon/sub T/. The method requires the measurement of triplet optical densities OD/sub T/ as a function of different cw laser excitation intensities (powers) I/sub ex/ . The importance of triplet-state losses on dye laser efficiency is reviewed. The laser action properties of the laser dyes we studied are briefly discussed as they relate to the measured epsilon/sub T/ values.

  16. Orientation of dichroic dyes in ultra-drawn polyethylenes

    SciTech Connect

    Bastiaansen, C.; Schmidt, H.W.; Govaert, L.; Smith, P.

    1993-12-31

    The optical properties in the visible wavelength range (400-800 nm) of solution-cast, ultra-drawn, ultra-high-molecular-weight polyethylene (UHMW-PE, M{sub w}>10{sup 6} g/mol) films were investigated. UHMW-PE films, drawn 30 times at 125{degrees}C, possess a rather low transmittance (40-60%) in the visible wavelength range. However, highly transparent films with a transmittance exceeding 90% are obtained by applying a surface coating to the films. Dichroism in the visible wavelength range can be generated in drawn UHMW-PE films by incorporating dichroic dyes. Certain dichroic dyes were found to orient during solid state drawing and UHMW-PE films with a high dichroic ratio (30) and order parameter (0.91) can be produced.

  17. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  18. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  19. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  20. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun

    2014-07-01

    Two novel methods, first derivative spectrophotometric method (1D) and first derivative ratio spectrophotometric method (1DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL-1, with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by 1D method, and 0.9987 for RhB and 0.9958 for Rh6G by 1DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL-1. The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for 1D and 1DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis.

  1. Transforming a Fructan:Fructan 6G-Fructosyltransferase from Perennial Ryegrass into a Sucrose:Sucrose 1-Fructosyltransferase1[C

    PubMed Central

    Lasseur, Bertrand; Schroeven, Lindsey; Lammens, Willem; Le Roy, Katrien; Spangenberg, German; Manduzio, Hélène; Vergauwen, Rudy; Lothier, Jérémy; Prud'homme, Marie-Pascale; Van den Ende, Wim

    2009-01-01

    Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale. PMID:18952861

  2. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction.

    PubMed

    Xiao, Ni; Deng, Jian; Huang, Kaihui; Ju, Saiqin; Hu, Canhui; Liang, Jun

    2014-07-15

    Two novel methods, first derivative spectrophotometric method ((1)D) and first derivative ratio spectrophotometric method ((1)DR), have been developed for the simultaneous trace determination of rhodamine B (RhB) and rhodamine 6G (Rh6G) in food samples after dispersive liquid-liquid microextraction (DLLME). The combination of derivative spectrophotometric techniques and DLLME procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimum conditions, the linear calibration curves ranged from 5 to 450 ng mL(-1), with the correlation coefficients (r) of 0.9997 for RhB and 0.9977 for Rh6G by (1)D method, and 0.9987 for RhB and 0.9958 for Rh6G by (1)DR method, respectively. The calculated limits of detection (LODs) based on the variability of the blank solutions (S/N = 3 criterion) for 11 measurements were in the range of 0.48-1.93 ng mL(-1). The recoveries ranged from 88.1% to 111.6% (with RSD less than 4.4%) and 91.5-110.5% (with RSD less than 4.7%) for (1)D and (1)DR method, respectively. The influence of interfering substances such as foreign ions and food colorants which might be present in the food samples on the signals of RhB and Rh6G was examined. The developed methods have been successfully applied to the determination of RhB and Rh6G in black tea, red wine and chilli powder samples with the characteristics of simplicity, cost-effectiveness, environmental friendliness, and could be valuable for routine analysis.

  3. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  4. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  5. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient.

  6. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  7. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  8. Triplet-extinction coefficients of some laser dyes. 1

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1989-03-01

    For flashlamp-pumped dye lasers, the negative effect of triplet-state losses on laser action efficiency is well known. Oscilloscope traces of laser pulses showed that laser action diminishes much sooner than the flashlamp excitation pulse. This effect was attributed to the buildup of triplet-state dye molecules during the excitation from the flashlamp pulse. Triplet-extinction coefficients epsilon(T) were measured over the laser-action spectral region of Rhodamine 6G; Rhodamine B; Rhodamine 110; Fluorol-7GA; Coumarin 540A; Coumarin 522; Coumarin 1; Coumarin 120; 4,4'-diphenyl stilbene; and 2,7-bis(4-methoxy-phenyl)-9,9-dipropylfluorene. The different lines from an argon-ion cw laser were employed for excitation. McClure's method was used to obtain the triplet extinction coefficients Epsilon(T). The method requires the measurement of triplet optical densities OD(T) as a function of different cw laser-excitation intensities (powers) I(ex). The importance of triplet-state losses on dye-laser efficiency is reviewed. The laser action properties of the laser dyes studied are briefly discussed as they relate to the measured epsilon=(T) values.

  9. Hair Dyes and Cancer Risk

    MedlinePlus

    ... including aromatic amines that were found to cause cancer in animals. In the mid- to late 1970s, however, manufacturers changed the components in dye products to eliminate some of these chemicals ... in hair dyes can cause cancer. Given the widespread use of hair dye products, ...

  10. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    SciTech Connect

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  11. Plasmon enhancement of Raman scattering and fluorescence for rhodamine 6G molecules in the porous glass and PVA films with nanoparticles of silver citrate hydrosol

    NASA Astrophysics Data System (ADS)

    Konstantinova, E. I.; Zyubin, A. U.; Slezhkin, V. A.; Samusev, I. G.; Bryukhanov, V. V.

    2016-08-01

    The study of Raman and fluorescence spectra for Rhodamine 6G molecules in a film of polyvinyl alcohol on the modified by silver nanoparticles (NPs) porous glass and without the porous glass has been done. The gain of the scattering intensity and fluorescence emission has been obtained in the presence of silver nanoparticles. The gain order was obtained as ~ 1011

  12. Dual optoelectronic visual detection and quantification of spectroscopically silent heavy metal toxins: a multi-measurand sensing strategy based on Rhodamine 6G as chromo or fluoro ionophore.

    PubMed

    Prathish, K P; James, D; Jaisy, J; Prasada Rao, T

    2009-08-01

    A novel colorimetric chemo-sensor for the simultaneous visual detection and quantification of spectroscopically silent heavy metal toxins viz. cadmium, lead and mercury has been developed. This is based on the proposed sequential ligand exchange (SLE) mechanism of iodide from Pb-I(-)-Rhodamine 6G ion associate with citrate (without affecting ion associates of Cd and Hg) and subsequently from Cd-I(-)-Rhodamine 6G ion associate with EDTA (without affecting Hg-I(-)-Rhodamine 6G). Multi-measurand detection and quantification by colorimetry is possible as the individual toxins gives identical bathochromic shifts in aqueous solution, i.e. from 530 to 575 nm on formation of ternary ion associates in singular, binary and ternary mixtures. The visual detection provides a simple, quick and sensitive detection method in addition to quantification via spectrophotometry with Sandell sensitivities of 1.1, 15 and 2.5 microg dm(-2) for cadmium, lead and mercury, respectively. The developed procedure has been successfully tested for the analysis of environmental (cast alkali, lead acid battery and zinc manufacturing industry effluents) samples. Furthermore, the multi-measurand quantification of the above-mentioned heavy metal toxins based on fluorescence quenching and use of Pyronine G as chromo-ionophore instead of Rhodamine 6G is also described.

  13. Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: purification, activity, and binding properties toward multiple pesticides.

    PubMed

    Cheesman, Matthew J; Traylor, Matthew J; Hilton, Margaret E; Richards, Katelyn E; Taylor, Matthew C; Daborn, Phillip J; Russell, Robyn J; Gillam, Elizabeth M J; Oakeshott, John G

    2013-05-01

    Cytochrome P450 CYP6G1 has been implicated in the resistance of Drosophila melanogaster to numerous pesticides. While in vivo and in vitro studies have provided insight to the diverse functions of this enzyme, direct studies on the isolated CYP6G1 enzyme have not been possible due to the need for a source of recombinant enzyme. In the current study, the Cyp6g1 gene was isolated from D. melanogaster and re-engineered for heterologous expression in Escherichia coli. Approximately 460 nmol L⁻¹ of P450 holoenzyme were obtained in 500 mL cultures. The recombinant enzyme was located predominantly within the bacterial cytosol. A two-step purification protocol using Ni-chelate affinity chromatography followed by removal of detergent on a hydroxyapatite column produced essentially homogenous enzyme from both soluble and membrane fractions. Recombinant CYP6G1 exhibited p-nitroanisole O-dealkylation activity but was not active against eleven other typical P450 marker substrates. Substrate-induced binding spectra and IC₅₀ values for inhibition of p-nitroanisole O-dealkylation were obtained for a wide selection of pesticides, namely DDT, imidacloprid, chlorfenvinphos, malathion, endosulfan, dieldrin, dicyclanil, lufenuron and carbaryl, supporting previous in vivo and in vitro studies on Drosophila that have suggested that the enzyme is involved in multi-pesticide resistance in insects. PMID:23470655

  14. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  15. Real-time monitoring of single-molecule reactions in aqueous solution

    SciTech Connect

    Hong, Xiao; Xu, N.; Yeung, E.S. |

    1997-12-31

    Direct measurement of dynamics of single molecules, e.g., rhodamine 6G (R-6G) and single R-6G tagged with single biological molecules in aqueous solution, was achieved by using thin-layer laser-induced total internal reflection fluorescence microscopy (TLTIRFM). Single-molecule reactions can be directly and simultaneously monitored with spatial resolution down to 0.2 {mu}m and temporal resolution down to 0.2 ms. Dynamics of single-molecule reactions, for example, single dye molecules reacting with a proton and single proteins adsorbing on an active surface, are investigated and evident by monitoring their reaction environment, e.g., temperature and pH. Novel approaches and applications of these studies will be prospected in this presentation.

  16. Novel ternary component Ag-SrTa2O6/g-C3N4 photocatalyst: Synthesis, optical properties and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Su, Yiguo; Zhao, Yanxia; Zhao, Yingjie; Lang, Junyu; Xin, Xin; Wang, Xiaojing

    2015-12-01

    In this work, we report on the synthesis of a novel ternary component Ag-SrTa2O6/g-C3N4 photocatalytic system with efficient visible light photocatalytic activity toward Cr(VI) photoreduction and methyl orange degradation. The samples were carefully characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, Fourier transformed infrared spectroscopy and photocatalytic test. It is found that SrTa2O6 was deposited on the surface of g-C3N4 and that obtained SrTa2O6/g-C3N4 heterojunction photocatalyst showed strong absorption in the visible light region. Photocatalytic test indicated that the as-prepared SrTa2O6/g-C3N4 heterojunction showed increased photocatalytic activity toward Cr(VI) photoreduction and methyl orange degradation in comparison with the bare SrTa2O6 and g-C3N4 under visible light irradiation. The matching of the band structure between SrTa2O6 and g-C3N4 induced an efficient photogenerated electron transfer from the conduction band of g-C3N4 to the conduction band of SrTa2O6, resulting in efficient separation of the photogenerated electron-hole pairs and the subsequent promotion of photocatalytic activity. Moreover, the decoration of Ag on SrTa2O6/g-C3N4 led to the formation of ternary component Ag-SrTa2O6/g-C3N4 photocatalyst, which can highly enhance the visible light absorption efficiency and robustlypromote the photocatalytic activity by a factor of 2.8 for Cr(VI) photoreduction and 4.6 for methyl orange degradation, respectively. Ag decoration on SrTa2O6/g-C3N4 can not only extend the visible light absorption region due to surface plasmon resonance effects, but also act as an electron mediator for efficient migration of photogenerated electrons and simultaneously prevent the recombination of photogenerated electron-hole pairs as much as possible. Finally, a possible photocatalytic mechanism of the charge transfer in Ag-SrTa2O6/g-C3N4 photocatalyst was proposed.

  17. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  18. Development of a single-mode dye laser pumped by a copper vapor laser

    NASA Astrophysics Data System (ADS)

    Arai, Yasushi; Niki, Hideaki; Adachi, Satoru; Takeda, Tetsuya; Yamanaka, Tatsuhiko; Yamanaka, Chiyoe

    1986-10-01

    An efficient high power single mode dye laser was developed for a study of uranium enrichment. The oscillation and amplification properties were studied experimentally and theoretically. The obtained band width was narrower than 100 MHz. When rhodamine 6 G chloride was used, the average output power and efficiency of the oscillator-amplifier system were 300 mW and 5%, respectively, at 575 nm for the total copper vapor laser pumping power of 4 W.

  19. Solid-state tunable lasers based on dye-doped sol-gel materials

    SciTech Connect

    Dunn, B.; Mackenzie, J.D.; Zink, J.I.; Stafsudd, O.M.

    1992-03-01

    The sol-gel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. The luminescent organic dye molecules, rhodamine 6G and coumarin 540A have been incorporated, via the sol-gel method, into aluminosilicate and organically modified silicate host matrices. Synthesis, laser oscillation and photostability for these systems are reported. The improved photostability of these materials with respect to comparable polymeric host materials is discussed.

  20. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well.

  1. Dye removal from textile dye wastewater using recycled alum sludge.

    PubMed

    Chu, W

    2001-09-01

    The removal of dyes from textile dying wastewater by recycled alum sludge (RAS) generated by the coagulation process itself was studied and optimized. One hydrophobic and one hydrophilic dye were used as probes to examine the performance of this process. It was found that RAS is a good way of removing hydrophobic dye in wastewater, while simultaneously reducing the fresh alum dosage, of which one third of the fresh alum can be saved. The back-diffusion of residued dye from the recycling sludge is detected but is easily controlled as long as a small amount of fresh alum is added to the system. The use of RAS is not recommended for the removal of hydrophilic dyes, since the high solubility characteristics of such dyes can cause deterioration in the water quality during recycling.

  2. Azacoumarin dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.

  3. Azaquinolone dye lasers

    DOEpatents

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.

  4. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  5. Microwave assisted dyeing of polyester fabrics with disperse dyes.

    PubMed

    Al-Mousawi, Saleh Mohammed; El-Apasery, Morsy Ahmed; Elnagdi, Mohamed Hilmy

    2013-09-09

    Dyeing of polyester fabrics with thienobenzochromene disperse dyes under conventional and microwave heating conditions was studied in order to determine whether microwave heating could be used to enhance the dyeability of polyester fabrics. Fastness properties of the dyed samples were measured. All samples dyed with or without microwave heating displayed excellent washing and perspiration fastness. The biological activities of the synthesized dyes against Gram positive bacteria, Gram negative bacteria, yeast and fungus were also evaluated.

  6. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  7. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster

    PubMed Central

    Battlay, Paul; Schmidt, Joshua M.; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  8. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample.

  9. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini; Dollahon, Norman R.; Stoll, Sarah L.

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  10. Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions.

    PubMed

    Spallanzani, Raúl Germán; Dalotto-Moreno, Tomás; Raffo Iraolagoitia, Ximena Lucía; Ziblat, Andrea; Domaica, Carolina Inés; Avila, Damián Ezequiel; Rossi, Lucas Ezequiel; Fuertes, Mercedes Beatriz; Battistone, María Agustina; Rabinovich, Gabriel Adrián; Salatino, Mariana; Zwirner, Norberto Walter

    2013-12-01

    The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b(+)Gr-1(+), mostly CD11b(+)Ly6G(+)Ly6C(int) and CD11b(+)Ly6G(-)Ly6C(high) cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b(+)Ly6G(+)Ly6C(int) cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b(+)Ly6G(+)Ly6C(int) cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b(+)Gr-1(+) cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b(+)Gr-1(+) cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b(+)Ly6G(+)Ly6C(int) cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence. PMID:24114144

  11. Performance of an array of plasma pinches as a new optical pumping source for dye lasers

    SciTech Connect

    Rieger, H.; Kim, K.

    1983-11-01

    A new optical pumping source consisting of an array of plasma pinches in the hypocycloidal-pinch geometry is employed to pump a variety of dye lasers. A dye cuvette is inserted along the symmetry axis of the plasma device such that it may be surrounded by the plasma pinch. The light from the plasma pinch is very intense and rich in ultraviolet, which makes it an attractive optical pumping source for dye lasers, particularly in the blue-green spectral region. Control of the plasma fluorescence is achieved by the choice of gas, its fill pressure, and the capacitor bank voltage and its stored energy. The rise time of this ''plasma flashlamp'' depends mainly on the gas species and the fill pressure. Output energy of approx.2 mJ per cm/sup 3/ of lasing medium, or 2 kW/cm/sup 3/ for a 1-..mu..s laser pulse, is obtained from rhodamine 6G, coumarin 480, LD 490, and coumarin 504 dyes. That both the coumarin 480 and rhodamine 6G lasers have the comparable output power is a direct proof that the present optical pumping source is more efficient than the commercial xenon flashlamps in pumping lasers in the blue-green spectral region.

  12. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer

    NASA Astrophysics Data System (ADS)

    Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.

    2016-02-01

    We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.

  13. Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

    2014-08-01

    Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 μm. Halloysite has negative SiO2 outermost and positive Al2O3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters.

  14. Effect of temperature and surfactant on the control release of microencapsulated dye in lecithin liposomes. I.

    PubMed

    Baptista, A L F; Coutinho, P J G; Real Oliveira, M E C D; Gomes, J I N Rocha

    2003-05-01

    The objective of our work has been the microencapsulation of dyes with lecithin from soybean, with the formation of liposomes, as a substitute for synthetic auxiliaries so as to improve the quality of the effluent. Current scenarios promote the disintegration and leakage of the liposomes, such as, changes in temperature, pH and the use of surfactants. Since dyeing process is a mix of all these parameters, we pretended to study each one separately. Rhodamine 6G fluorescence is known to be concentration quenched through the formation of non-fluorescent dimmers and, additionally, through the energy transfer from rhodamine monomer to these dimmers (Baptista ALF, Coutinho PJG, Real Oliveira MECD, Gomes JINR. Proceedings of 13th International Symposium of Surfactants, SIS 2000, Gainesville, USA, 2000). The temperature, the surfactant and pH induce a release of the encapsulated dye resulting in rhodamine dilution and consequently alterations in the dimerization/binding equilibrium. The experimental spectra indicate that rhodamine binds almost completely to liposomes. The decomposition of the rhodamine fluorescence spectra allowed us to determine the percentage of released dye during a simulated dyeing process, and allowed us to conclude that the dimerization process occurs mainly at the inner interfaces. The amount of dye released induced by temperature changes was greater in the presence of surfactant.

  15. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  16. Self-scanning of a dye laser due to feedback from a BaTiO/sub 3/ phase-conjugate reflector

    SciTech Connect

    Whitten, W.B.; Ramsey, J.M.

    1984-02-01

    Feedback from a self-pumped BaTiO/sub 3/ phase-conjugate reflector into an untuned cw dye laser produces substantial line narrowing (4--6 GHz) and generates a recurrent wavelength sweep from the rhodamine 6G peak at 618 nm to as far as 644 nm.

  17. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  18. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  19. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer. PMID:6993608

  20. Carcinogenicity of hair dye components.

    PubMed

    Van Duuren, B L

    1980-03-01

    The available animal carcinogenicity data on hair dye components was reviewed. From this review it became clear that certain hair dye components, some of which are still in hair dye formulations now on the market, are animal carcinogens. The compounds of concern that are still in use are: 3-amino-4-methoxyaniline, 2-nitro-4-aminoaniline and 3-nitro-4-hydroxyaniline. Certain azo dyes formerly used, and related compounds still in use, contain the benzidine moiety. Two of these compounds, Direct Blue 6 and Direct Black 38, have been shown to be metabolized in animals to the human carcinogen benzidine. Furthermore, skin absorption studies carried out with radiolabeled hair dye components applied to animal or human skin have conclusively shown that these compounds are systemically absorbed and excreted. Known cocarcinogens such as catechol and pyrogallol, which enhance benzo(a)pyrene carcinogenicity on mouse skin, are used as hair dye components. It is not known whether such compounds will enhance the carcinogenicity of substituted aniline hair dye chemicals. The available epidemiologic data are not sufficient to link hair dye use with an increased incidence in human cancer.

  1. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  2. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.

    PubMed

    Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong

    2014-07-15

    A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems.

  3. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    PubMed

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  4. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  5. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  6. Anxiolytic-like effect of (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl)methanone (6g) in experimental mouse models of anxiety

    PubMed Central

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur Kumar

    2013-01-01

    Aim: The present study was designed to investigate the anxiolytic activity of 6g, a novel serotonin type-3 receptor (5-HT3) receptor antagonist in experimental mouse models of anxiety. Materials and Methods: The anxiolytic activity of “6g” (1 and 2 mg/kg, intraperitoneally [i.p.]) was evaluated in mice by using a battery of behavioral tests of anxiety such as elevated plus maze (EPM), light-dark (L&D) box, hole board (HB), and open field test (OFT) with diazepam (2 mg/kg, i.p.) as standard anxiolytic. None of the tested dose of “6g” affects the base line locomotion. Results: The new chemical entity “6g” (2 mg/kg, i.p.) and diazepam (2 mg/kg, i.p.) significantly (P < 0.05) increased the percentage of time spent and number of entries in open arm in the EPM test. In the L&D test compound “6g” (2 mg/kg, i.p.) and diazepam (2 mg/kg, i.p.) significantly (P < 0.05) increased the total time spent in light compartment as well as number of transitions from one compartment to other. Compound “6g” (1 and 2 mg/kg, i.p.) and diazepam (2 mg/kg, i.p.) also significantly (P < 0.05) increased number of head dips, whereas significantly (P < 0.05) decreased the head dipping latency in HB test as compared to vehicle control group. In addition, 6g (2 mg/kg, i.p.) and diazepam (2 mg/kg, i.p.) significantly (P < 0.05) increased the ambulation scores (square crossed) in OFT and there was no significant effect of 6g (1 and 2 mg/kg, i.p.) and diazepam (2 mg/kg, i.p.) on rearing scores. Conclusion: In conclusion, these findings indicated that compound “6g” exhibited an anxiolytic-like effect in animal models of anxiety. PMID:23833367

  7. Dyeing Properties of Natural Dye Syzygium cuminii on Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, V.; Ninge Gowda, K. N.; Sudhakar, R.

    2014-04-01

    Dyeing behavior of natural dye extracted from the bark of Syzygium cuminii L has been studied on silk fabric. Colour values and colour co-ordinates were examined in terms of K/S and L* a* b* C and h. A range of shades were obtained by using various mordants and mordanting techniques. Dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with the set standards to determine the eco-friendliness of natural dye. Their concentrations were much below the stipulated limits. Dyed samples were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and were found to possess antibacterial activity.

  8. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  9. Hair dye poisoning and rhabdomyolysis.

    PubMed

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity. PMID:25976581

  10. Irradiation of Escherichia coli in the Visible Spectrum with a Tunable Organic-Dye Laser Energy Source

    PubMed Central

    Takahashi, Patrick K.; Toups, Harold J.; Greenberg, David B.; Dimopoullos, George T.; Rusoff, Louis L.

    1975-01-01

    Pulsed laser energy was shown to be effective in inhibiting the growth of Escherichia coli. The irradiation source was derived from a tunable organic-dye laser utilizing rhodamine 6G (590 ± 5 nm) solutions as lasing media. The organisms, suspended in nutrient broth, were irradiated both with and without an exogenous photosensitizer. One photosensitizer (toluidine blue) did not appreciably alter the inhibitory effect observed. In the presence of acridine orange, however, some additional growth occurred. PMID:1089163

  11. On the diversity of reversible products of phototransformations in ethanol solutions of rhodamines at stepwise quantum excitation

    SciTech Connect

    Aristov, A.V.; Kozlovskii, D.A.; Nikolaev, A.B.

    1995-03-01

    The formation of various reversible products of phototransformations (RPP) in rhodamine 6G (R6G), rhodamine C (RC), and unsubstituted rhodamine (UR) solutions at pulsed stepwise quantum excitation is investigated. The dependence of the type of RPP on the specific system of molecular orbitals (MO), within the bounds of which light quanta are absorbed, is revealed. The excitation of molecules in the MO system responsible for absorbing the light with the wavelength {lambda} = 353 nm leads to formation of RPP, mainly as semioxidized forms of R6G, RC, an UR with a lifetime {tau} = 10{sup {minus}10}-10{sup {minus}9} s. The excitation of molecules in another system of orbitals, namely, in the system responsible for absorbing the light with {lambda} = 532 nm, is accompanied by formation of RPP with {tau} = 10{sup {minus}7}-10{sup {minus}6} s in the form of lactone modifications of RC and UR. Under similar conditions of exciting R6G molecules, the dye is converted not to the lactone form, but to another type of RPP with the same lifetime and with a much larger activation energy for its formation. The prospects of applying RPP in rhodamine solutions for the real-time optical control of spectral properties of these solutions are evaluated. 14 refs.

  12. Organic random lasers in the weak-scattering regime

    NASA Astrophysics Data System (ADS)

    Polson, R. C.; Vardeny, Z. V.

    2005-01-01

    We used the ensemble-averaged power Fourier transform (PFT) of random laser emission spectra over the illuminated area to study random lasers with coherent feedback in four different disordered organic gain media in the weak scattering regime, where the light mean free path, ℓ* is much larger than the emission wavelength. The disordered gain media include a π -conjugated polymer film, an opal photonic crystal infiltrated with a laser dye (rhodamine 6G; R6G) having optical gain in the visible spectral range, a suspension of titania balls in R6G solution, and biological tissues such as chicken breast infiltrated with R6G. We show the existence of universality among the random resonators in each gain medium that we tested, in which at the same excitation intensity a dominant random cavity is excited in different parts of the sample. We show a second universality when scaling the average PFT of the four different media by ℓ* ; we found that the dominant cavity in each disordered gain medium scales with ℓ* . The excellent agreement obtained with computer simulations using a distribution of random microdisks, each contributing a number of longitudinal whispering gallery modes within the gain spectrum, unambiguously shows that random lasers in the weak scattering regime cannot be described by gain amplification of localized photon states.

  13. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.

    PubMed

    Demirbas, E; Kobya, M; Sulak, M T

    2008-09-01

    The preparation of activated carbon from apricot stone with H(2)SO(4) activation and its ability to remove a basic dye, astrazon yellow 7 GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 degrees C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions. PMID:18093829

  14. Influence of morphology on the emissive properties of dye-doped PVP nanofibers produced by electrospinning

    NASA Astrophysics Data System (ADS)

    Enculescu, Monica; Evanghelidis, Alex; Enculescu, Ionut

    2014-12-01

    Dye-doped polymer micro- and nanofibers with tailored light emission properties have great potential for applications in optical, optoelectronic, or photonic devices. In this study, these types of structures were obtained by electrospinning rhodamine 6 G-doped polyvinylpyrrolidone (PVP) using a polymer solution of 10% (mass) concentration in ethanol. Polymer nanofibers with different morphologies (smooth and beaded) and diameters of about 500 nm were obtained using different electrospinning conditions with the same solutions. Fluorescence optical microscopy observations showed that the dye was distributed uniformly in the doped PVP nanofibers. Different shifts were observed when we compared the wavelength of the dye emission band peak of the smooth nanofibers (566 nm) and the wavelength of the dye emission band peak of the beaded fibers (561.5 nm) produced by electrospinning in different conditions with the wavelength of the emission band peak for transparent thin films produced by spin coating (558 nm) using the same polymer solution. This demonstrates that it is possible to tune the optical properties of electrospun dye-doped polymer nanofibers simply by modifying the morphology of the material, i.e., the parameters of the electrospinning process.

  15. Investigation of the effect of the duration of pumping on the spectral and spatial--angular characteristics of lasing by rhodamine 6G solutions in a short resonator

    SciTech Connect

    Smirnov, V.S.; Studenov, V.I.

    1985-10-01

    An investigation of the spectral and spatial--angular characteristics of radiation of a laser based on an ethanol solution of rhodamine 6G in a short plane-parallel nonselective resonator with longitudinal pumping by laser radiation of nano- and microsecond duration was performed. It was shown that in all cases formation of the characteristics of the radiation investigated is due to the resonator parameters of the Fabry-Perot interferometer used as a resonator. It was noted that on an increase in the duration of excitation a weak short-wave shift of the maximum of the lasing spectrum with a simultaneous blurring of the interference structure of the spectrum and of the radiation field occurs. The indicated facts are explained by the difference of the energy contribution to the lasing volume, which leads both to homogeneous heating of the solution in the lasing zone and to radial inhomogeneity of heat release, degrading the conditions of inteference.

  16. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential.

  17. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodríguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential. PMID:20214593

  18. Dye removal by immobilised fungi.

    PubMed

    Rodríguez Couto, Susana

    2009-01-01

    Dyes are widely used within the food, pharmaceutical, cosmetic, printing, textile and leather industries. This has resulted in the discharge of highly coloured effluents that affect water transparency and gas solubility in water bodies. Furthermore, they pose a problem because of their carcinogenicity and toxicity. Therefore, removal of such dyes before discharging them into natural water streams is essential. For this, appropriate treatment technologies are required. The treatment of recalcitrant and toxic dyes with traditional technologies is not always effective or may not be environmentally friendly. This has impelled the search for alternative technologies such as biodegradation with fungi. In particular, ligninolytic fungi and their non-specific oxidative enzymes have been reported to be responsible for the decolouration of different synthetic dyes. Thus, the use of such fungi is becoming a promising alternative to replace or complement the current technologies for dye removal. Processes using immobilised growing cells seem to be more promising than those with free cells, since the immobilisation allows using the microbial cells repeatedly and continuously. This paper reviews the application of fungal immobilisation to dye removal. PMID:19211032

  19. Morphological evolution and visible light-induced degradation of Rhodamine 6G by nanocrystalline bismuth tungstate prepared using a template-based approach

    NASA Astrophysics Data System (ADS)

    Silva, Raissa Mendes; Batista Barbosa, Diego Augusto; de Jesus Silva Mendonça, Caritas; de Oliveira Lima, José Renato; Silva, Fernando Carvalho; Longo, Elson; Maciel, Adeilton Pereira; de Araujo Paschoal, Carlos William; Almeida, Marcio Aurélio Pinheiro

    2016-09-01

    The cleaning of water contaminated with organic dyes is a crucial problem nowadays. The search for good catalysts is intense, and bismuth tungstates have attracted a lot of attention because of their catalytic properties which are related to their crystal structure and morphology. In this study, we show that Bi2WO6 (BWO) crystals synthesized by the surfactant-assisted hydrothermal method create a different morphology than non-assisted crystals. With the assistance of the PVP surfactant, even the BWO crystalline structure could change, crystallizing into a high-symmetry metastable phase. These changes in morphology imply a decrease in BWO catalytic activity, which shows that insightful control of BWO synthesis is necessary to improve the BWO properties.

  20. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

  1. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  2. Structural influence of the inorganic network in the laser performance of dye-doped hybrid materials

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; García, O.; del Agua, D.; Sastre, R.

    2005-05-01

    We report a systematic study of the influence on the laser action of Rhodamine 6G (Rh6G) of the composition and structure of new hybrid matrices based on 2-hydroxyethyl methacrylate (HEMA) as organic monomer and different weight proportions of dimethyldiethoxysilane (DEOS) and tetraethoxysilane (TEOS) as inorganic part. We selected mixtures of di- and tetra-functionalized alkoxides trying to decrease, in a controlled way, the rigidity of the three-dimensional network by making use of the flexibility provided by the linear chains acting as a spacer of the inorganic domains. The organization of the molecular units in these nanomaterials was studied through a structural analysis by solid-state NMR. The different reactivity exhibited by di- and tetra-functionalized silanols generates a non-homogeneous tri-dimensional network. Thus, the laser performance in dye-doped hybrid materials is improved when the inorganic phase is composed of a unique alkoxide.

  3. Ion pairs of a molybdenum thiocyanate complex with dyes of the xanthene series

    SciTech Connect

    Ganago, L.I.; Ivanova, I.F.

    1988-03-10

    It has been ascertained that thiocyanate complexes of molybdenum react with dyes of the xanthene series, Rhodamine 6G and Rhodamine B, to form ion pairs. The Mo:SCN:Rhod. component ratios are respectively 1:5:2 and 1:6:3. The ion pairs are stable in an acid medium: 4.5-5.5 M H/sub 2/SO/sub 4/ (MTC-Rhod. 6G) and 3 M H/sub 2/SO (MTC-Rhod. B), and their molecular extinction coefficients are 2.22 x 10/sup 5/ and 3.8 x 10/sub 5/ respectively; MTC in a molybdenum thiocyanate complex. A procedure has been worked out for determining molybdenum in films, making use of the reaction of forming an MTC-Rhod. B ion pair.

  4. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  5. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%.

  6. Monitoring solute interactions with poly(ethylene oxide)-modified colloidal silica nanoparticles via fluorescence anisotropy decay.

    PubMed

    Tleugabulova, Dina; Duft, Andy M; Brook, Michael A; Brennan, John D

    2004-01-01

    The fluorescence-based nanosize metrology approach, proposed recently by Geddes and Birch (Geddes, C. D.; Birch, D. J. S. J. Non-Cryst. Solids 2000, 270, 191), was used to characterize the extent of binding of a fluorescent cationic solute, rhodamine 6G (R6G), to the surface of silica particles after modification of the surface with the hydrophilic polymer poly(ethylene oxide) (PEO) of various molecular weights. The measurement of the rotational dynamics of R6G in PEO solutions showed the absence of strong interactions between R6G and PEO chains in water and the ability of the dye to sense the presence of polymer clusters in 30 wt % solutions. Time-resolved anisotropy decays of polymer-modified Ludox provided direct evidence for distribution of the dye between bound and free states, with the bound dye showing two decay components: a nanosecond decay component that is consistent with local motions of bound probes and a residual anisotropy component due to slow rotation of large silica particles. The data showed that the dye was strongly adsorbed to unmodified silica nanoparticles, to the extent that less than 1% of the dye was present in the surrounding aqueous solution. Addition of PEO blocked the adsorption of the dye to a significant degree, with up to 50% of the probe being present in the aqueous solution for Ludox samples containing 30 wt % of low molecular weight PEO. The addition of such agents also decreased the value and increased the fractional contribution of the nanosecond rotational correlation time, suggesting that polymer adsorption altered the degree of local motion of the bound probe. Atomic force microscopy imaging studies provided no evidence for a change in the particle size upon surface modification but did suggest interparticle aggregation after polymer adsorption. Thus, this redistribution of the probe is interpreted as being due to coverage of particles with the polymer, resulting in lower adsorption of R6G to the silica. The data clearly

  7. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    PubMed

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties.

  8. Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser

    SciTech Connect

    Meshalkin, Yu P; Myachin, A Yu; Bakhareva, S S; Svetlichnyi, Valerii A; Kopylova, T N; Reznichenko, A V; Dolotov, S M; Ponomarenko, E P

    2003-09-30

    Two-photon fluorescence was observed for 18 organic dyes in a polymethyl methacrylate (PMMA) matrix excited by a femtosecond Ti:sapphire laser. The product of the cross section for two-photon absorption by the quantum yield of fluorescence (two-photon fluorescence cross section) is estimated by comparing it with fluorescence of Rhodamine 6G in ethanol. Using this parameter, dyes are selected that exhibit the most intense fluorescence in PMMA and their concentrations in PMMA are optimised. Coumarin and rhodamine dyes in polymer matrices are proposed for using as visualisers of femtosecond radiation of a Ti:sapphire laser and as detectors in self-triggering systems. (active media. lasers)

  9. Stimulated resonance Raman scattering from organic dyes in a multiple-scattering medium as a potential method for determining their vibrational spectra

    SciTech Connect

    Yashchuk, V P; Tikhonov, E A; Bukatar', A O; Prigodiuk, O A; Smalyuk, A P

    2011-10-31

    A method is described for deriving Raman spectra of organic dyes from their random lasing spectra. The method was tested using Rhodamine 6G. The Raman spectrum obtained for this dye agrees well with the spectra measured by standard techniques but is more structured, which allows unresolved features to be detected. The spectrum provides more detailed information owing to the interference between the Raman scattered light and amplified spontaneous emission of the dye molecules within a photon mean free path. One advantage of the method is that the luminescence of the dye helps to observe Raman lines, which allows one to work in the Stokes region and facilitates the measurement procedure. (nonlinear optical phenomena)

  10. Sea dye marker provides visibility for 20 hours

    NASA Technical Reports Server (NTRS)

    De Laat, F.

    1966-01-01

    Sea dye marker block releases a visible slick which lasts at least twelve hours. The dye marker uses a fluorescent dye in a heat cured binder which, when immersed in seawater, releases the dye at a controlled rate.

  11. Effect of solvent viscosity on the anisotropy of distribution of excited centers in an active medium of a dye laser at a pump power near the threshold value

    SciTech Connect

    Yartsev, A.I.; Sechkarev, A.V.

    1995-03-01

    Dependences of the anisotropy of the distribution of excited centers (A) in rhodamine 6G and 6-aminophenolenon solutions in organic solvents of different viscosity are studied. Relying on the character of the dependence of A on the viscosity, the conclusion is made that it is possible to employ a relation similar to the Levshin-Perrin formula for polarized luminescence in the threshold excitation mode. Experimental data are used to calculate angles between absorption and emission dipoles of electron auxochrome groups of molecules for the dyes under investigation and to estimate the effective volume of activator molecules for the ethanol solution of rhodamine 6G. 6 refs., 1 fig.

  12. Control over the charge transfer in dye-nanoparticle decorated graphene

    NASA Astrophysics Data System (ADS)

    Bongu, Sudhakara Reddy; Veluthandath, Aneesh V.; Nanda, B. R. K.; Ramaprabhu, Sundara; Bisht, Prem B.

    2016-01-01

    Charge transfer interaction between silver decorated graphene and three differently charged dyes, cationic (rhodamine 6G), neutral (rhodamine B) and anionic (fluorescein 27) has been studied. The ground state association constants have been evaluated and changes in the fluorescence intensity and lifetimes have been obtained in two solvents. Strength of complex-formation has been found to be higher with the cationic molecule in water. In a higher viscosity solvent, the ground state complex formation is restricted. Local field of localized surface plasmons of nanoparticles adsorbed on the graphene sheets leads to enhanced absorption and fluorescence of fluorescein 27.

  13. Passive mode locking of an energy transfer continuous-wave dye laser

    SciTech Connect

    French, P.M.W.; Taylor, J.R.

    1986-08-01

    The first passive mode locking of a continuous-wave energy transfer dye laser is reported. Using an argon ion laser-pumped mixture of rhodamine 6G and sulphur rhodamine 101 as the active medium, pulses of less than 500 fs duration have been generated over the spectral range 652-694 nm using two different saturable absorbers in a simple linear cavity without dispersion optimization. Pulses as short as 120 fs have been measured using standard second-harmonic generation autocorrelation techniques.

  14. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  15. Metal-Enhanced Fluorescence: Ultrafast Energy Transfer from Dyes in a Polymer Film to Metal Nanoparticles.

    PubMed

    Lee, Jaebeom; Pang, Yoonsoo

    2016-02-01

    Fluorescence from dye molecules dispersed in thin polymer layers increases by 20-25 times when a silver island film exists beneath the layer. Polymer layers of <100 nm thick cover the silver island film to minimize emission quenching from direct contact and also keep the dye molecules in close proximity to the metal nanosurface for possible fluorescence enhancements by silver island film. We report an ultrafast radiation process of ~400 ps lifetime from the surface plasmons of silver nanoparticles observed in time-resolved fluorescence of rhodamine 6G and DCM in thin polymer films coated on silver island surface. The ultrafast energy transfer and fluorescence from metal nanoparticles might be strongly related to the efficiency of metal-enhanced fluorescence. PMID:27433635

  16. Experimental and theoretical investigation of a multipass, plane mirror, femtosecond dye laser amplifier

    NASA Astrophysics Data System (ADS)

    Wittmann, M.; Penzkofer, A.; Gössl, G.

    1995-08-01

    Femtosecond pulses of a passive mode-locked Rhodamine-6G dye laser are amplified in a double-stage, three-pass, plane mirror, Sulforhodamine-101 amplifier system. Saturable filters (Schott glass RG645 and Malachite Green) are used to suppress amplified spontaneous emission. Input pulses of 110-fs duration are broadened to 240 fs in the amplifier system and recompressed to 75 fs in a prism-pair compressor. Using a 20-Hz Q-switched Nd:YAG pump laser of 50-mJ second-harmonic output energy, we obtained amplified and recompressed pulses of 180- mu J energy at 625 nm starting with 40-pJ input pulses. The small-signal amplification dynamics is studied numerically. Relevant gain dye and saturable filter parameters are derived. The influence of amplified spontaneous emission is analyzed.

  17. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  18. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  19. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  20. ICE-6G models of postglacial relative sea-level history applied to Holocene coral reef and mangrove records of the western Caribbean

    NASA Astrophysics Data System (ADS)

    Toscano, M. A.; Peltier, W. R.; Drummond, R.; Gonzalez, J.

    2012-12-01

    Fossil coral reefs and mangrove peat accumulations at western Caribbean sites along a latitudinal gradient from the Florida Keys through Belize and Panama provide dated and interpreted 8,000 year Holocene sea-level records for comparison with RSL predictions of the ICE-6G (VM5A, VM5B; L90) models of glacio-hydro-isostatic adjustment, with and without rotational feedback. These presumably passive continental margin sites provide the means to establish a N-S spatial trend in the varying influences of GIA, eustatic components of Holocene sea level, extent of forebulge collapse and influence of rotational feedback over a 20° latitudinal range. Previous ICE6G (VM5A) model-coral data comparisons for St Croix, USVI, Antigua, Martinique and Barbados (Toscano, Peltier and Drummond, 2011, QSR) along the eastern Caribbean plate and island arc illustrated the close model-data compatibility, the influence of rotational feedback acting as a significant factor in reducing misfits, and the need for high quality in situ data to confirm the extension of the proglacial forebulge into tropical latitudes. The gradient of western Caribbean continental shelf sites comprises a much more varied range of model-data relationships based on extensive combined Acropora palmata (reef crest coral) and Rhizophora mangle (microtidal mangrove) peat datasets in all cases. Starting at the northernmost region with the Florida Keys, there exist negative model misfits to the data, suggesting the possibility of a positive tectonic overprint upon expectations related to the glacial isostatic adjustment process acting alone, even though this region is normally believed to be tectonically stable. The largest multi-proxy database from Belize supports the likelihood of increasing rates of subsidence from north to south in the Belize Lagoon, which may account for numerous positive GIA model-data misfits. The southernmost site at Panama is most similar to Belize in the possible nature of tectonic influences on

  1. Study of Electro-Cyclonic Filtration and Pneumatic Transfer of Lunar Regolith Simulants under 1/6-g and 1-g Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I.; Mueller, Robert P.

    2009-01-01

    NASA has built a prototype oxygen production plant to process the lunar regolith using the hydrogen reduction chemical process. This plant is known as "ROxygen - making oxygen from moon rocks". The ROxygen regolith transfer team has identified the flow and transfer characteristics of lunar regolith simulant to be a concern for lunar oxygen production efforts. It is important to ISRU lunar exploration efforts to develop hardware designs that can demonstrate the ability to flow and transfer a given mass of regolith simulant to a desired vertical height under lunar gravity conditions in order to introduce it into a reactor. We will present results obtained under both 1/6-g and 1-g gravity conditions for a system that can pneumatically convey 16.5 kg of lunar regolith simulant (NU-LHT-2M, Mauna Kea Tephra, and JSC-1A) from a flat-bottom supply hopper to a simulated ISRU reactor (dual-chambered receiving hopper) where the granular material is separated from the convey gas (air) using a series of cyclone separators, one of which is an electrically enhanced cyclone separator (electrocyclone). The results of our study include (1) the mass flow rate as a function of input air pressure for lunar regolith simulants that are conveyed pneumatically as a dusty gas in a vertical direction against gravity under lunar gravity conditions (for NU-LHT-2M and Mauna Kea Tephra), and under earth gravity conditions (for NU-LHT-2M, Mauna Kea Tephra and JSC-1A), and (2) the efficiency of the cyclone/electrocyclone filtration system in separating the convey gas (air) from the granular particulates as a function of particle size.

  2. Pneumatically tunable optofluidic dye laser

    NASA Astrophysics Data System (ADS)

    Song, Wuzhou; Psaltis, Demetri

    2010-02-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with compressed air. This dye laser exhibits a pumping threshold of 1.6 μJ/pulse, a lasing linewidth of 3 nm, and a tuning range of 14 nm.

  3. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner.

  4. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  5. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  6. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  7. Natural dyes versus lysochrome dyes in cheiloscopy: A comparative evaluation

    PubMed Central

    Singh, Narendra Nath; Brave, V R; Khanna, Shally

    2010-01-01

    Cheiloscopy is the study of lip prints. Lip prints are genotypically determined and are unique, and stable. At the site of crime, lip prints can be either visible or latent. To develop lip prints for study purpose various chemicals such as lysochrome dyes, fluorescent dyes, etc. are available which are very expensive. Vermilion (Sindoor used by married Indian women) and indigo dye (fabric whitener) are readily available, naturally derived, and cost-effective reagents available in India. Objective: To compare the efficacy of sudan black, vermilion, and indigo in developing visible and latent lip prints made on bone china cup, satin fabric, and cotton fabric. Materials and Methods: Out of 45 Volunteers 15 lip prints were made on bone China cup 15 lip prints on Satin fabric and 15 on Cotton fabric. Sudan black, vermilion and indigo were applied on visible and latent lip prints and graded as good (+,+), fair (+), and poor (-) and statistically evaluated. Results: The vermilion and indigo dye gives comparable results to that of sudan black for developing visible and latent lip prints. PMID:21189984

  8. Organic dye penetration quantification into a dental composite resin cured by LED system using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane de Fátima Zanirato; Silva, Maciel E., Jr.; Lins, Emery C. C. C.; Costa, Mardoqueu M.; Pelino, José Eduardo P.; Bagnato, Vanderlei S.

    2007-02-01

    A major characteristic of LEDs systems is the lower heat emission related with the kind of light generation and spectral emission band. Material temperature during photoactivation can promote different photocuring performance. Organic dye penetration could be a trace to identify the efficacy of photocured composite resin. A new method using fluorescent spectroscopy through digital image evaluation was developed in this study. In order to understand if there is a real influence of material temperature during the photoactivation procedure of a dental restorative material, a hybrid composite resin (Z250, 3M-Espe, USA) and 3 light sources, halogen lamp (510 mW/cm2) and two LED systems 470+/-10nm (345 and 1000 mW/cm2) under different temperatures and intensities were used. One thousand and five hundred samples under different associations between light sources and temperatures (0, 25, 50, 75 and 100 °C were tested and immediately kept in 6G rodamin dye solution. Dye penetration was evaluated through fluorescent spectroscopy recorded by digital image data. Pixels in gray scale showed the percentage penetration of organic dye into the composite resin mass. Time and temperature were statistically significant (p<0.05) through the ANOVA statistical test. The lowest penetration value was with 60 seconds and 25 °C. Time and temperature are important factors to promote a homogeneous structure polymerized composite resin more than the light source type, halogen or LEDs system.

  9. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    SciTech Connect

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-07-31

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  10. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals.

    PubMed

    Nishijima, Yoshiaki; Ueno, Kosei; Juodkazis, Saulius; Mizeikis, Vygantas; Fujiwara, Hideki; Sasaki, Keiji; Misawa, Hiroaki

    2009-02-16

    Lasing in dye solution-embedded inverse silica opal structures was investigated. The opal films were prepared by sedimentation of polystyrene microspheres on a cover glass. The polystyrene structures were inverted using sol-gel infiltration of silica and subsequent removal of polystyrene. Photoluminescence of rhodamine (rhodamine B, 6G and sulfo-rhodamine 101) dye solutions embedded into the inverse silica opal structures exhibited clear signatures of the lasing via a distributed feedback (DFB) and gain modulation. The refractive index contrast between the dye and the inverse opal was small enough (approximately 0.03%) for the formation of refractive index coupling between the lasing modes. The lasing spectrum exhibited a highly regular periodic structure of modal peaks, rather than the chaotic superposition of peaks reported in previous studies. Lasing modes having a spectral width of about 0.25 nm and a free spectral range of about 0.75 nm appeared at the position of the maximum gain (the maximum fluorescence of the dye).

  11. Hair dye toxicity--a review.

    PubMed

    Marzulli, F N; Green, S; Maibach, H I

    1978-01-01

    This article reviews local and systemic effects which relate to hair dye formulation and hair dye ingredient tests and experiences in man and animals. Mutagenic and carcinogenic aspects are discussed. In a very limited way, safety and hazards of using hair dyes are interpreted for consumers. PMID:363966

  12. Quirks of dye nomenclature. 1. Evans blue.

    PubMed

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name. PMID:23957706

  13. Reactive Fluorescent Dyes For Urethane Coatings

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Cuddihy, Edward F.

    1991-01-01

    Molecules of fluorescent dyes chemically bound in urethane conformal-coating materials to enable nondestructive detection of flaws in coats through inspection under ultraviolet light, according to proposal. Dye-bonding technique prevents outgassing of dyes, making coating materials suitable for use where flaw-free coats must be assured in instrumentation or other applications in which contamination by outgassing must be minimized.

  14. Allergic contact dermatitis from azo dyes.

    PubMed

    Su, J C; Horton, J J

    1998-02-01

    Contact allergy to textile dyes usually occurs with disperse dyes of the azo or anthraquinone groups. A case is reported of a woman with clinical features of contact allergy to coloured nylon stockings who had multiple sensitivities to dyes of different azo groups.

  15. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes.

    PubMed

    Grabolle, Markus; Starke, Marian; Resch-Genger, Ute

    2016-04-12

    Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. PMID:27007448

  16. Anthraquinone dyes for superhydrophobic cotton.

    PubMed

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties.

  17. Anthraquinone dyes for superhydrophobic cotton.

    PubMed

    Salabert, J; Sebastián, R M; Vallribera, A

    2015-09-28

    Water-repellent, self-cleaning and stain resistant textiles are of interest for industrial applications. Anthraquinone reactive dyes were covalently grafted onto cotton fabric surfaces obtaining bright colors with good wash-fastness properties and giving rise to breathable superhydrophobic textiles with self-cleaning properties. PMID:26265296

  18. H2 genotypes of G4P[6], G5P[7], and G9[23] porcine rotaviruses show super-short RNA electropherotypes.

    PubMed

    Nagai, Makoto; Shimada, Saya; Fujii, Yoshiki; Moriyama, Hiromitsu; Oba, Mami; Katayama, Yukie; Tsuchiaka, Shinobu; Okazaki, Sachiko; Omatsu, Tsutomu; Furuya, Tetsuya; Koyama, Satoshi; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya

    2015-04-17

    During group A rotavirus (RVA) surveillance of pig farms in Japan, we detected three RVA strains (G4P[6], G5P[7], and G9P[23] genotypes), which showed super-short RNA patterns by polyacrylamide gel electrophoresis, in samples from a healthy eight-day-old pig and two pigs of seven and eight days old with diarrhea from three farms. Reverse transcription PCR and sequencing revealed that the full-length NSP5 gene of these strains contained 952 or 945 nucleotides, which is consistent with their super-short electropherotypes. Due to a lack of whole genome data on Japanese porcine RVAs, we performed whole genomic analyses of the three strains. The genomic segments of these RVA strains showed typical porcine RVA constellations, except for H2 NSP5 genotype, (G4,5,9-P[6,7,23]-I5-R1-C1-M1-A8-N1-T1-E1-H2 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes). In phylogenetic analyses, these porcine RVA strains clustered with porcine and porcine-like human RVA strains and showed a typical porcine RVA backbone, except for the NSP5 gene; however, intra-genotype reassortment events among porcine and porcine-like human RVA strains were observed. The NSP5 gene segments of these strains were clustered within the H2b genotype with super-short human RVA strains. The H2 genotype has to date only been identified in human and lapine RVA strains. Thus, to our knowledge, this report presents the first case of H2 NSP5 genotype showing a super-short RNA pattern in porcine RVA. These data suggest the possibility of interspecies transmission between pigs and humans and imply that super-short porcine RVA strains possessing H2 genotype are circulating among both asymptomatic and diarrheic porcine populations in Japan. PMID:25724331

  19. Microflora involved in textile dye waste removal.

    PubMed

    Abd El-Rahim, Wafaa M; Moawad, Hassan; Khalafallah, M

    2003-01-01

    Textile dyes are heavily used in factories for coloring different cloth materials. This work was designed to identify microorganisms capable of removing textile dyes, either by biodegradation or by biosorption. We expected to isolate microorganisms adapted to high dye concentrations from sites near textile industry complex. An experiment was conducted to study the efficiency of the isolates in removing textile dyes. The tested dyes were used as carbon and nitrogen sources for isolation of soil and/or water microorganisms capable of removing textile dyes wastes from factories effluent. The results indicated the low efficiency of both bacteria and actinomycetes in clean-up the effluent from the waste dyes in 10-21 days. On the other hand six fungal isolates were obtained by plating factory effluent on Martin's medium and media containing dyes as the sole source of carbon and nitrogen for growth. These isolates fell in two genera, Aspergillus and Trichoderma. Results of these studies revealed the potential capacity of these fungi to decolorize the tested dyes in comparatively short time (2-24 hours) indicating strong efficiency of dye bioremediation by the fungal isolates. Since the process involved is mostly fast interaction between the fungal mycelium and the dye in the media, the possible mechanism could be based on a biosorption of such chemicals on the intact fungal biomass, rather than direct biodegradation of the compounds. PMID:12761767

  20. pH-Insensitive FRET voltage dyes.

    PubMed

    Maher, Michael P; Wu, Nyan-Tsz; Ao, Hong

    2007-08-01

    Many high-throughput ion channel assays require the use of voltage-sensitive dyes to detect channel activity in the presence of test compounds. Dye systems employing Förster resonance energy transfer (FRET) between 2 membrane-bound dyes are advantageous in combining high sensitivity, relatively fast response, and ratiometric output. The most widely used FRET voltage dye system employs a coumarin fluorescence donor whose excitation spectrum is pH dependent. The authors have validated a new class of voltage-sensitive FRET donors based on a pyrene moiety. These dyes are significantly brighter than CC2-DMPE and are not pH sensitive in the physiological range. With the new dye system, the authors demonstrate a new high-throughput assay for the acid-sensing ion channel (ASIC) family. They also introduce a novel method for absolute calibration of voltage-sensitive dyes, simultaneously determining the resting membrane potential of a cell. PMID:17517905

  1. Anaphylaxis to annatto dye: a case report.

    PubMed

    Nish, W A; Whisman, B A; Goetz, D W; Ramirez, D A

    1991-02-01

    Annatto dye is an orange-yellow food coloring extracted from the seeds of the tree Bixa orellana. It is commonly used in cheeses, snack foods, beverages, and cereals. Previously reported adverse reactions associated with annatto dye have included urticaria and angioedema. We present a patient who developed urticaria, angioedema, and severe hypotension within 20 minutes following ingestion of milk and Fiber One cereal, which contained annatto dye. Subsequent skin tests to milk, wheat, and corn were negative. The patient had a strong positive skin test to annatto dye, while controls had no response. The nondialyzable fraction of annatto dye on SDS-PAGE demonstrated two protein staining bands in the range of 50 kD. Immunoblotting demonstrated patient IgE-specific for one of these bands, while controls showed no binding. Annatto dye may contain contaminating or residual seed proteins to which our patient developed IgE hypersensitivity. Annatto dye is a potential rare cause of anaphylaxis. PMID:1994783

  2. [Leather azo dyes: mutagenic and carcinogenic risks].

    PubMed

    Clonfero, E; Venier, P; Granella, M; Levis, A G

    1990-01-01

    The paper reviews the carcinogenicity and mutagenicity data on azo dyes used in the leather industry. Two water soluble benzidine-based dyes were classified as "probably carcinogenic to humans" by the International Agency for Research on Cancer (IARC). No other dyes have been evaluated by the IARC. Of the 48 azo dyes assayed in the Salmonella/microsome test, 20 gave positive results. Attention is drawn to the important role of the in vivo metabolism of azo compounds, which includes a preliminary reduction of the azo bonds and subsequent release of the aromatic amines of the dye. A useful assay (Prival test) for evaluating the mutagenic properties of azo dyes involves a reductive step that permits the release of any genotoxic agents present in the compounds. A list of leather azo dyes is furnished that are considered as potentially harmful due to the presence of a carcinogenic aromatic amine (benzidine, p-aminobenzene and derivatives) in their formulae.

  3. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  4. Dyeing of Jute with Reactive Dyes: Optimisation of the Process Variables and Assessment of Colourfastness Characteristics

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Chakraborty, Sharmistha; Guha Roy, T. K.

    2012-08-01

    This paper deals with the studies on the effect of dye concentration, electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH of the dye solution and material to liquor ratio (MLR) on colour strength and other colour parameters after being dyed of jute fabrics with reactive dyes, namely, Turquoise blue, Lemon Yellow, Red CN colours. The dye absorption increases with increase in electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH and decreases with increase of MLR. Colour fastness to wash, light and rubbing for the dyed samples has been studied and reported. It is observed that reactive dye gives overall good colour fastness to both washing and rubbing. But the light fastness has been found to be moderate only, due to the UV-light initiated fading of jute fibre itself change of the colour substrate, ie, undyed material. This colour fastness has been significantly resolved by post treatment with 1 % benzotriazole.

  5. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  6. DCM-based organic dyes with electron donating groups for dye-sensitized solar cells.

    PubMed

    Kim, Joo Young; Yoon, Seung Soo; Kim, Young Sik

    2014-07-01

    Herein, 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM)-based dyes with electron donating groups were designed and their electronic and optical properties were investigated theoretically for dye-sensitized solar cells (DSSCs). Among the dyes, the D1 and D2 dyes were composed of single electron donating group and the D3 and D4 dyes composed of dual donating group. We performed DFT/TDDFT calculations to get insight into the factors responsible for photovoltaic properties as dye sensitizers. It showed that all the dyes in this work are available as dye sensitizers from the energy consideration compared to TiO2 electrode and iodide electrolyte. It also showed that the D3 and D4 dyes produced additional absorption bands by the introduction of dual donor in absorption spectra and the absorption band of the D4 dye is more red-shifted than that of the D3 dye. It is attributed to the fact that the M2 (a coumarin derivative) moiety with stronger electron withdrawing ability stabilized its LUMO level. In terms of molar extinction coefficient and panchromatic feature, we suggest that the D4 dye would show better performance than other dyes in the present study as a dye sensitizer for DSSCs.

  7. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties

    PubMed Central

    2013-01-01

    ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes. PMID:23866904

  8. Molecular scale characterization of the titania-dye-solvent interface in dye-sensitized solar cells.

    PubMed

    Marquet, Philip; Andersson, Gunther; Snedden, Alan; Kloo, Lars; Atkin, Rob

    2010-06-15

    Charge separation at the dye/titania interface in dye sensitized solar cells is strongly influenced by the thickness and homogeneity of the sensitizing dye layer, as this controls the potential drop across the interface, and the probability of an excited electron being transferred from the dye to the titania. In this study we use atomic force microscopy and the depth profiling method neutral impact collision ion scattering spectroscopy (NICISS) to investigate the thickness and homogeneity of N719 dye adsorbed to titania before and after rinsing with pure acetonitrile. Both experimental methods show that the dye layers are closed but inhomogeneous. Inhomogeneity is more pronounced for unrinsed samples. PMID:20297833

  9. [Benzidine dyes and risk of bladder cancer].

    PubMed

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes. PMID:2618904

  10. [Benzidine dyes and risk of bladder cancer].

    PubMed

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes.

  11. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. PMID:25575805

  12. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    PubMed

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method.

  13. In defence of 'dye therapy'.

    PubMed

    Wainwright, Mark

    2014-07-01

    Worldwide, healthcare is facing enormous problems with the continuing rise of drug-resistant infectious diseases. In view of the scarcity of new antimicrobial agents and the withdrawal of many pharmaceutical houses from the fray, alternative approaches are required. One of these is photoantimicrobial chemotherapy, which is highly effective across the range of microbial pathogens and does not suffer from resistance. However, there is a lack of uptake of this approach by healthcare providers and the pharmaceutical industry alike. It is seldom recalled that, unlike anticancer photodynamic therapy, the development of photoantimicrobial agents has evolved from the antiseptic 'dye therapy' in common use until the widespread introduction of the penicillin class in the mid-1940s. Cationic biological dyes such as methylene blue, crystal violet and acriflavine were effective in local wound therapy and today provide a sound basis for light-activated antimicrobial therapeutics. It is proposed that such 'safe' dyes are introduced as locally administered photoantimicrobials, especially in order to conserve valuable conventional antibacterial drugs. PMID:24795083

  14. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. PMID:26945529

  15. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  16. In defence of 'dye therapy'.

    PubMed

    Wainwright, Mark

    2014-07-01

    Worldwide, healthcare is facing enormous problems with the continuing rise of drug-resistant infectious diseases. In view of the scarcity of new antimicrobial agents and the withdrawal of many pharmaceutical houses from the fray, alternative approaches are required. One of these is photoantimicrobial chemotherapy, which is highly effective across the range of microbial pathogens and does not suffer from resistance. However, there is a lack of uptake of this approach by healthcare providers and the pharmaceutical industry alike. It is seldom recalled that, unlike anticancer photodynamic therapy, the development of photoantimicrobial agents has evolved from the antiseptic 'dye therapy' in common use until the widespread introduction of the penicillin class in the mid-1940s. Cationic biological dyes such as methylene blue, crystal violet and acriflavine were effective in local wound therapy and today provide a sound basis for light-activated antimicrobial therapeutics. It is proposed that such 'safe' dyes are introduced as locally administered photoantimicrobials, especially in order to conserve valuable conventional antibacterial drugs.

  17. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha

    2016-02-01

    Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.

  18. Synthetic dye decolourization by white rot fungi.

    PubMed

    Murugesan, K; Kalaichelvan, P T

    2003-09-01

    Synthetic dyes are integral part of many industrial products. The effluents generated from textile dyeing units create major environmental problems and issues both in public and textile units. Industrial wastewater treatment is one of the major problems in the present scenario. Though, the physical and chemical methods offer some solutions to the problems, it is not affordable by the unit operators. Biological degradation is recognized as the most effective method for degrading the dye present in the waste. Research over a period of two decades had provided insight into the various aspects of biological degradation of dyes. It is observed that the white rot fungi have a non-specific enzyme system, which oxidizes the recalcitrant dyes. Detailed and extensive studies have been made and process developed for treatment of dye containing wastewaters by white rot fungi and their enzyme systems. An attempt is made to summarize the detailed research contributions on these lines.

  19. Photochemical and lasing properties of pyrromethene dyes

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Klueva, Oksana; Kumar, Satish; Pacheco, Dennis P.

    2001-04-01

    Pyrromethene dyes, particularly PM 567, have been studied in liquid media using various spectroscopic techniques. Photodecomposition of dyes was monitored by absorption and fluorescence spectroscopy. In laser flash photolysis experiments on dyes in liquids, phototransients were observed (microsecond time domain) that included dye triplets and at least one other transient of the radical or radical-ion type. Experiments included product studies that allowed identification of major products of photodegradation; an assessment of the effectiveness of known stabilizing additives such as DABCO and butazate was also conducted. Purposes of the work included definition of the roles of energy and electron transfer mechanisms in dye photodegradation and the effects of oxygen or additives in dye media.

  20. Studies on the influence of power ultrasound on dye penetration in leather dyeing using photomicrographic analysis.

    PubMed

    Sivakumar, V; Swaminathan, G; Rao, P G

    2005-10-01

    The use of power ultrasound in enhancing diffusion rate in various chemical as well as physical processes is gaining in importance. The influence of power ultrasound in the leather dyeing process on enhancing the penetration of dye through the leather matrix was studied. The penetration of dye through a leather cross-section for a given time in the presence and absence of an ultrasonic field (33 kHz, 150 W) was studied by photomicrographic analysis using a stereomicroscope. Different types of black dyes, such as Acid black 1, Metal complex black 194 and Direct black 155, were used for dyeing leather in the present study. Photomicrographic analysis of a cross-section of dyed leather indicated better penetration of dyes through the leather matrix with the use of ultrasound than without it. Therefore, the results indicate that ultrasound helps to improve the diffusion of dye and to reduce diffusional resistance in the leather dyeing process.

  1. Suppression and enhancement of dye lasing and stimulated Raman scattering from various dye-doped liquid spheres.

    PubMed

    Taniguchi, H; Tomisawa, H

    1994-09-15

    The observation of suppression or enhancement of dye lasing and stimulated Raman scattering (SRS) from various dye-doped liquid droplets, in which SRS from the initial pumping wavelength appeared in shorter and longer wavelengths of various dye fluorescence regions, is reported; SRS from the dye-lasing wavelengths (double resonances) and stimulated resonance Raman scattering of dyes are included. Furthermore, the contribution to SRS of the dye fluorescence (depending on dye concentration and different dyes) and dye-lasing suppression that is due to stimulated resonance Raman scattering is also described. PMID:19855533

  2. The physics of dye laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jensen, C. C.

    This paper describes a method for the complete analysis of the optical properties of a laser dye. The analysis uses direct measurements of the saturation intensities for absorption and emission. The complete analysis of an ultraviolet laser dye, 3,5,3,5-Tetra-t-butyl-p-sexiphenyl, demonstrates the power of the saturation analysis method. The dye TBS exhibits some unique optical properties which affect its emission wavelength range and photochemistry.

  3. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  4. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  5. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. PMID:25875031

  6. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  7. Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector.

    PubMed

    Huang, Yanmin; Zheng, Wei; Qiu, Yunfeng; Hu, PingAn

    2016-09-01

    Organic dye molecules possessing modulated optical absorption bandwidth and molecular structures can be utilized as sensitizing species for the enhancement of photodetector performance of semiconductor via photoinduced charge transfer mechanism. MoS2 photodetector were modified by drop-casting of methyl orange (MO), rhodamine 6G (R6G), and methylene blue (MB) with different molecular structures and extinction coefficients, and enhanced photodetector performance in terms of photocurrent, photoresponsity, photodetectivity, and external quantum efficiency were obtained after modification of MO, R6G, and MB, respectively. Furthermore, dyes showed different modulating abilities for photodetector performance after combination with MoS2, mainly due to the variation of molecular structures and optical absorption bandwidth. Among tested dyes, deposition of MB onto monolayer MoS2 grown by CVD resulted in photocurrent ∼20 times as high as pristine MoS2 due to favorable photoinduced charge transfer of photoexcited electrons from flat MB molecules to the MoS2 layer. Meanwhile, the corresponding photoresponsivity, photodetectivity, and an external quantum efficiency are 9.09 A W(1-), 2.2 × 10(11) Jones, 1729% at 610 nm, respectively. Photoinduced electron-transfer measurements of the pristine MoS2 and dye-modified MoS2 indicated the n-doping effect of dye molecules on the MoS2. Additionally, surface-enhanced Raman measurements also confirmed the direct correlation with charge transfer between organic dyes and MoS2 taking into account the chemically enhanced Raman scattering mechanism. Present work provides a new clue for the manipulation of high-performance of two-dimensional layered semiconductor-based photodetector via the combination of organic dyes. PMID:27530058

  8. Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector.

    PubMed

    Huang, Yanmin; Zheng, Wei; Qiu, Yunfeng; Hu, PingAn

    2016-09-01

    Organic dye molecules possessing modulated optical absorption bandwidth and molecular structures can be utilized as sensitizing species for the enhancement of photodetector performance of semiconductor via photoinduced charge transfer mechanism. MoS2 photodetector were modified by drop-casting of methyl orange (MO), rhodamine 6G (R6G), and methylene blue (MB) with different molecular structures and extinction coefficients, and enhanced photodetector performance in terms of photocurrent, photoresponsity, photodetectivity, and external quantum efficiency were obtained after modification of MO, R6G, and MB, respectively. Furthermore, dyes showed different modulating abilities for photodetector performance after combination with MoS2, mainly due to the variation of molecular structures and optical absorption bandwidth. Among tested dyes, deposition of MB onto monolayer MoS2 grown by CVD resulted in photocurrent ∼20 times as high as pristine MoS2 due to favorable photoinduced charge transfer of photoexcited electrons from flat MB molecules to the MoS2 layer. Meanwhile, the corresponding photoresponsivity, photodetectivity, and an external quantum efficiency are 9.09 A W(1-), 2.2 × 10(11) Jones, 1729% at 610 nm, respectively. Photoinduced electron-transfer measurements of the pristine MoS2 and dye-modified MoS2 indicated the n-doping effect of dye molecules on the MoS2. Additionally, surface-enhanced Raman measurements also confirmed the direct correlation with charge transfer between organic dyes and MoS2 taking into account the chemically enhanced Raman scattering mechanism. Present work provides a new clue for the manipulation of high-performance of two-dimensional layered semiconductor-based photodetector via the combination of organic dyes.

  9. The microbial degradation of azo dyes: minireview.

    PubMed

    Chengalroyen, M D; Dabbs, E R

    2013-03-01

    The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.

  10. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-01

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  11. On the early development of organic dyes for dye-sensitized solar cells.

    PubMed

    Kloo, Lars

    2013-07-28

    This viewpoint describes the background of the development of organic dyes for dye-sensitized solar cells, the impact of the 2006 ChemComm paper by Sun, Hagfeldt and co-workers regarding the D5 D-π-A-family of dyes, some recent developments and possible future challenges to meet.

  12. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  13. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  14. Estimation of Fluorescent Dye Amount in Tracer Dye Test

    NASA Astrophysics Data System (ADS)

    Pekkan, Emrah; Balkan, Erman; Balkan, Emir

    2015-04-01

    Karstic groundwater is more influenced by human than the groundwater that disperse in pores. On the other hand karstic groundwater resources, in addition to providing agricultural needs, livestock breeding, drinking and domestic water in most of the months of the year, they also supply drinking water to the wild life at high altitudes. Therefore sustainability and hydrogeological investigation of karstic resources is critical. Tracing techniques are widely used in hydrologic and hydrogeologic studies to determine water storage, flow rate, direction and protection area of groundwater resources. Karanfil Mountain (2800 m), located in Adana, Turkey, is one of the karstic recharge areas of the natural springs spread around its periphery. During explorations of the caves of Karanfil mountain, a 600 m deep cave was found by the Turkish and Polish cavers. At the bottom of the cave there is an underground river with a flow rate of approximately 0.5 m3/s during August 2014. The main spring is located 8 km far from the cave's entrance and its mean flow rate changes between 3.4 m3/s and 0.21 m3/s in March and September respectively according to a flowrate observation station of Directorate of Water Works of Turkey. As such frequent storms, snowmelt and normal seasonal variations in rainfall have a significant and rapid effect on the volume of this main spring resource. The objective of our research is to determine and estimate dye amount before its application on the field inspired from the previously literature on the subject. This estimation is intended to provide a preliminary application of a tracer test of a karstic system. In this study dye injection, inlet point will be an underground river located inside the cave and the observation station will be the spring that is approximately 8 km far from the cave entrance. On the other hand there is 600 meter elevation difference between cave entrance and outlet spring. In this test Rodamin-WT will be used as tracer and the

  15. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. PMID:27120290

  16. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    Studies on dye laser theory, design, components, optical systems, and frequency range are presented in approximately 96 citations. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered.

  17. Relative humidity sensing using dye-doped polymer thin-films on metal substrates

    NASA Astrophysics Data System (ADS)

    Kumari, Madhuri; Ding, Boyang; Blaikie, Richard

    2015-12-01

    We demonstrate humidity sensors based on optical resonances sustained in sub-wavelength thick dye-doped polymer coatings on reflecting surfaces. As a result of coupling between dye molecular absorption and Fabry-Perot resonances in the air-coating-surface cavity, the absorption spectra of such thin-film structures show a strong resonant peak under certain illumination conditions. These resonances are sensitive to the structural and material properties of the thin-film, metal underlayer and ambient conditions and hence can be used for gas and vapor sensing applications. Specifically, we present our proof of principle experimental results for humidity sensing using a thin-film structure comprising Rhodamine6G-doped polyvinyl alcohol (PVA) films on silver substrates. Depending on the PVA film thickness, dye-concertation and angle of incidence, the resonant absorption peak can undergo either red-shift or blue-shift as RH level increases in the range 20% to 60%. Also, the absorption magnitude at certain wavelengths near to resonance show almost linear reduction which can be used as the sensing signal. Our simulation studies show a very good agreement with the experimental data. The spectral and temporal sensitivity of this thin-film structure is attributed to the changes in the thickness of the PVA layer which swells by absorbing water molecules

  18. Detection of smectites in ppm and sub-ppm concentrations using dye molecule sensors

    NASA Astrophysics Data System (ADS)

    Lofaj, Marcel; Bujdák, Juraj

    2012-03-01

    Methylene blue and rhodamine 6G were used as molecular sensors for the spectrophotometric titrations of the aqueous colloids of clay minerals (montmorillonite, illite and kaolinite). The dyes adsorbed on colloid particles form molecular aggregates, which exhibit spectral properties significantly different from those of dye solutions. Spectrophotometric titrations provide the most sensitive detection of smectites in aqueous colloids (sub-ppm concentrations); and the sensitivity further increases using second derivative spectroscopy. The endpoint of spectrophotometric titrations can be used for the determination of exchange capacity of the mineral in colloids and in this way to estimate its amount. The method is selective only to expandable clays, which was proven by experiments with kaolinite and illite. Spectrophotometric titrations have promising future in the analysis of clays and can be applied in many fields of geology, mineralogy, chemistry, material sciences or in industry. Its application may expand to the analysis of other nanomaterials built from charged particles and exhibiting metachromasy in the systems with organic dyes.

  19. Thiophene-based dyes for probing membranes.

    PubMed

    López-Duarte, Ismael; Chairatana, Phoom; Wu, Yilei; Pérez-Moreno, Javier; Bennett, Philip M; Reeve, James E; Boczarow, Igor; Kaluza, Wojciech; Hosny, Neveen A; Stranks, Samuel D; Nicholas, Robin J; Clays, Koen; Kuimova, Marina K; Anderson, Harry L

    2015-03-28

    We report the synthesis of four new cationic dipolar push–pull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (–CH=CH–) or ethynylene (–C≡C–) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 μM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 μM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 μM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.

  20. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOEpatents

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  1. Giant raman scattering cross section for an adsorbed dye at ag colloids associated with low EM field enhancement

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Krischer, K.; Ertl, G.

    1988-10-01

    Surface-enhanced resonance Raman scattering (SERRS) of rhodamine 6G molecules adsorbed at aggregated Ag colloids shows an absolute cross section of σ SERRStotal = 2.3 × 10 -16 cm 2, the highest value observed so far, which is nearly equal to the absorption cross section of the same dye in solution. Its magnitude as well as the weak decrease of colloidal Rayleigh scattering, but significant drop of SERRS with increasing dye coverage (0.001 < θ < 0.1), can be explained within the framework of a recently developed quantum-mechanical model of SERRS, which relates the surface enhancement, FSERRS, with the EM field enhancement, g: FSERRS≈ g6, where g is estimated to be about 10.

  2. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions.

    PubMed

    Bavali, A; Parvin, P; Mortazavi, S Z; Mohammadian, M; Mousavi Pour, M R

    2014-08-20

    Red/blue shifts of laser-induced fluorescence (LIF) are investigated using several guest dielectric nanoscatterers, such as TiO2, ZnO, Al2O3, and SiO2, in the host Rd6G, RdB, Coumarin 4, and Coumarin 7 ethanolic solutions. A couple of inflection points are identified varying nanoparticle (NP) density into dye solutions based on LIF spectroscopy. The inflection of the spectral shift exhibits that the suspension of NPs in dye solutions significantly involves a couple of competitive chemical and optical mechanisms during photon traveling in scattering media regarding ballistic and diffusive transport. It is shown that the low, medium, and high NP additives in fluorescent suspension induce blue, red, and blue spectral shifts, respectively.

  3. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  4. Multiple azo disperse dye sensitization mainly due to group sensitizations to azo dyes.

    PubMed

    Nakagawa, M; Kawai, K; Kawai, K

    1996-01-01

    A female patient, with a previous episode of contact dermatitis caused by a blue dress, developed similar dermatitis due to a navy-blue dress. Patch tests revealed multiple allergic positive reactions to paraphenylenediamine (PPD), the navy-blue dress, its extracts, 6 azo disperse dyes in a textile series, as well as 3 dye components, including Disperse (DP) Red 153, which were present in the dress; these were composed of 9 azo disperse dyes, all dyes being of a different chemical structure. On the basis of chemical similarities between these 16 azo dyes including PPD, these are classified into the following 4 groups: thiazol-azoyl-PPD group (including DP Blue 106, DP Blue 124 and 5 used dyes), aminoazobenzene group (DP Red 1, DP Red 17, DP Brown 1 and 2 used dyes), PPD group (PPD and DP Orange 3) and benzothiazol-azoyl-PPD group (2 dyes in DP Red 153). With few exceptions, cross-sensitizations between dyes in the same group have been reported by other authors, or are suggested by us, in the former 3 groups. Multiple azo disperse dye sensitization is therefore considered to be attributable mainly to group sensitizations to azo dyes.

  5. Eco-Friendly Dyeing of Cotton with Indigo Dye By Electrochemical Method

    NASA Astrophysics Data System (ADS)

    Prabu, H. Gurumallesh; Sarala, K.; Babu, S. Ananda; Savitha, K. U.

    2011-07-01

    Eco-friendly dyeing of cotton was performed in two step process; (i) enzymatic pre-treatment of grey cotton fabric and (ii) Electrochemical dyeing of the pre-treated cotton fabric with indigo. The enzymatic pre-treatment was done in three methods; (i) amylase treatment only, (ii) amylase and hydrogen peroxide treatment and (iii) single bath method. The dyeing was carried out with the pre-treated cotton fabric. The reduction of indigo dye by electrochemical method was initiated by applying potential. Then the dyeing was carried out different concentrations of dye, glucose and NaOH. Conventional method of dyeing was also carried out and compared with the electrochemical method. Dyeability was measured by computer colour matching (CCM) GretagMacbeth colour eye 2180UV instrument.

  6. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-11-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash -SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties.

  7. Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs.

    PubMed

    Li, Dan; Zhu, Qingxia; Lv, Diya; Zheng, Binxing; Liu, Yanhua; Chai, Yifeng; Lu, Feng

    2015-08-01

    By using a silver nanoparticle wiper as a surface-enhanced Raman scattering substrate, a highly sensitive, convenient, and rapid platform for detecting dye adulteration of medicinal herbs was obtained. Commercially available filter paper was functionalized with silver nanoparticles to transform it into the flexible wiper. This device was found to collect dye molecules with unprecedented ease. Experiments were performed to optimize various factors such as the type of wiper used, the wetting reagent, and the wetting/wiping mode and time. Excellent wiper performance was observed in the detection of the simulated adulteration of samples with dyes at various concentrations. The limits of detection for nine dyes, including 10(-6) g/mL for malachite green, 10(-7) g/mL for Rhodamine 6G, and 5 × 10(-8) g/mL for methylene blue, were discerned. The results of this investigation show that this proposed method is potentially highly advantageous for field-based applications. Graphical Abstract Schematic diagram illustrating the fabrication of the paper-based SERS substrate, sample collection process on a herb and SERS examination with the portable Raman spectrometer. PMID:26044737

  8. Analysis on superhydrophobic silver decorated copper Oxide nanostructured thin films for SERS studies.

    PubMed

    Jayram, Naidu Dhanpal; Aishwarya, D; Sonia, S; Mangalaraj, D; Kumar, P Suresh; Rao, G Mohan

    2016-09-01

    The present work demonstrates the superhydrophobic and Surface Enhanced Raman Spectroscopy (SERS) active substrate performance of silver coated copper oxide (Ag@CuO) nanostructured thin films prepared by the SILAR process. Super hydrophobic substrates that combine super hydrophobic condensation effect and high enhancement ability of Ag@CuO nanoflowers are investigated for SERS studies. The possible growth mechanism for the formation of nanoflower arrays from nanospindles has been discussed. Morphology and crystallinity of the Ag@CuO thin films are confirmed using FESEM and XRD. The results obtained in the present study indicate that the as-deposited hydrophobic nanospindles structure converts to super hydrophobic nanoflower arrays on annealing at 200°C. The Ag@CuO super hydrophobic nanoflowers thin film based SERS substrates show highly enhanced Raman spectra with an EF value of 2.0×10(7) for (Rhodamine 6G) R6G, allowing a detection limit from a 10(-10)molL(-1) solution. The present study may provide a new perception in fabricating efficient super hydrophobic substrates for SERS, suggesting that the fabricated substrates are promising candidates for trace analysis of R6G dye and are expected to be widely used as highly sensitive SERS active substrates for various toxic dyes in the future. PMID:27294970

  9. Ultrafast pressure-sensitive paint for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr A.; Dlott, Dana D.

    2014-05-01

    A pressure-sensitive paint (PSP) consisting of rhodamine 6G (R6G) dye in poly-methylacryate (PMMA) polymer is studied during nanosecond GPa shock compression created by km s-1 laser-launched layer plates. In contrast with conventional PSP, whose response time is limited to microseconds by diffusion of O2 in porous materials, the response time of this PSP is limited to ˜10 ns by fundamental photophysical processes. The mechanism of shock-induced PSP intensity loss is shown to be shock-enhanced intersystem crossing, which transfers some R6G population from the emissive S1 state to the dark T1 state. Simulations of dye photophysics and comparisons to experiment show that the PSP is sensitive to the complicated time-dependent density profiles produced in PMMA by different duration shocks. The risetime of the PSP response is limited by the S1 lifetime under shock compression. The fall time is limited by the T1 lifetime, which can be decreased by adding triplet quenchers. The PSP can function in two modes. When dissolved O2 (a triplet quencher) was eliminated, the fall time became relatively slow (microseconds), and the PSP sampled the peak shock pressure and held that value for a long time. When dissolved O2 was present, the intensity loss recovery became faster, so the PSP could function as a transient recorder of the shock-induced time-dependent density profile.

  10. Molecular engineering of simple phenothiazine-based dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells.

    PubMed

    Hua, Yong; Chang, Shuai; He, Jian; Zhang, Caishun; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok; Zhu, Xunjin

    2014-05-19

    A series of simple phenothiazine-based dyes, namely, TP, EP, TTP, ETP, and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye-sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc = 15.2 mA cm(-2), Voc =0.783 V, fill factor (FF) = 0.679) and 7.87 % (Jsc = 16.1 mA cm(-2), Voc = 0.717 V, FF = 0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I(-)/I3(-) redox couple. By replacing the T group with the E unit, EP-based DSSCs had a slightly lower PCE of 7.98 % with a higher short-circuit photocurrent (Jsc) of 16.7 mA cm(-2). The dye ETP, with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP, with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.

  11. Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells.

    PubMed

    Li, Xiaoe; Reynal, Anna; Barnes, Piers; Humphry-Baker, Robin; Zakeeruddin, Shaik Mohammed; De Angelis, Filippo; O'Regan, Brian C

    2012-11-28

    We have measured the binding coefficients of iodine to three dyes used in Dye Sensitised Solar Cells (DSSCs). Binding coefficients are quantified via the effect of iodine binding on the UV-vis spectrum of the dye. From iodine titration curves of dye sensitised TiO(2) films we find that the binding coefficients of iodine to the dyes C101, N719 and AR24 (vide infra) are in the range of 2000-4000 M(-1). From FTIR results and molecular modelling we show the iodine binds to the thiocyanate group in all these dyes. For the AR24 dye we present evidence that iodine also binds to the amine moiety on this dye. With these binding coefficients we show that the dye-iodine complex will be present at much higher concentrations than free iodine in the pore structure of a DSSC. As we have recently shown that iodine (rather than tri-iodide) is the dominant acceptor in electron recombination, the concentration dye-iodine complexes could influence recombination rates and thus V(oc). By comparison of recombination data on full cells, we show that AR24 accelerates recombination by a factor of 7 over N719, presumably due to the iodine binding to the amine group. We leave open the question why iodine binding to the amine group seems to have a stronger effect on the recombination than does binding to the thiocyanate. PMID:23070136

  12. Ultrasound for wool dyeing and finishing.

    PubMed

    McNeil, S J; McCall, R A

    2011-01-01

    The effects of ultrasound at 35-39 kHz on several wool dyeing and finishing processes have been investigated as a way of reducing environmental impact. Ultrasound improved the effectiveness of cleaning scoured wool in water and to a lesser extent in water-nonionic surfactant. Scanning electron microscopy did not indicate any surface damage. Fluorescence microscopy revealed increased levels of sulphydryl groups on the wool surface suggesting ultrasound caused the removal of thioester-bound lipids. Ultrasound pre-treatment increased the effectiveness of subsequent oxidative-reductive bleaching, but had no effect on the uptake of acid levelling and acid milling dyes. The pre-treatment retarded the uptake of reactive dye, possibly by increasing the crystallinity of the fibre or removing surface bound lipids. Ultrasound did not improve dyeing under conditions that are currently used in industry, but did show potential to reduce the chemical and energy requirements of dyeing wool with reactive and acid milling dyes, but not acid levelling dyes. PMID:20675174

  13. Photochemistry of triarylmethane dyes bound to proteins

    NASA Astrophysics Data System (ADS)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  14. Ultrasound-assisted dyeing of cellulose acetate.

    PubMed

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time.

  15. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  16. Kinetics of anaerobic biodecolourisation of azo dyes.

    PubMed

    Kalyuzhnyi, S; Yemashova, N; Fedorovich, V

    2006-01-01

    Kinetics of anaerobic biodecolourisation (methanogenic environment) of four azo dyes (Acid Orange 6, Acid Orange 7, Methyl Orange and Methyl Red) was investigated with regard to their electrochemical properties as well as under variation of dye and sludge concentrations, pH and temperature. Cyclic voltammetry revealed a correlation between the potential of irreversible reduction peak of the dye and its first-order decolorisation constant. For each dye tested, this decolourisation constant was adversely proportional to dye concentration (0.086-1.7 mM) and had a saturation (hyperbolic) dependency on sludge concentration (0.04-1.1 g VSS/l), a bell-shape dependency on pH (4.0-9.0) and Arrhenius dependency on temperature (24-40 degrees C). Transfer from methanogenic to sulphate reducing environment led to an increase of decolorisation constant for all the dyes investigated due to the abundant presence of sulphide as a reducing agent in the reaction medium. Similar transfer to a denitrifying environment resulted in an almost complete decease of decolourisation because nitrate easily outcompetes azo dyes as an electron acceptor.

  17. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye.

  18. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    PubMed

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye. PMID:26585007

  19. Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes.

    PubMed

    Nepomnyashchii, Alexander B; Bard, Allen J

    2012-11-20

    BODIPY (boron dipyrromethene) dyes are unique materials with spectroscopic and electrochemical properties comparable to those of aromatic hydrocarbons. Electrochemical studies are useful in understanding the redox properties of these materials and finding structure-stability relations for the radical ions; along with spectroscopy, these studies help researchers design novel compounds with desired properties. This Account represents our attempt at a full description of the electrochemical and electrogenerated chemiluminescence (ECL) properties of the BODIPY dyes. When the dyes are completely substituted with alkyl or other groups, the radical ions of BODIPY dyes are highly stable. But if they include unsubstituted positions, the radical ions can undergo dimerization or other reactions. BODIPY dyes also show unusually large separations, ~1.0 V, between the first and second cyclic voltammetric (CV) waves for both oxidation and reduction half-reactions. Alkyl-substituted BODIPY dyes show good photoluminescence (PL) quantum efficiencies, and radical ion electron transfer annihilation in these molecules produces electrogenerated chemiluminescence (ECL), the intensity of which depends on the structure of the dye. The large separation between waves and the presence of strong ECL signals are both important in the design of stable ECL-based materials. The ECL spectra provide a fast method of monitoring the electrochemical formation of dimers and aggregates from the monomers. BODIPY dyes are particularly good systems for studying stepwise electron transfer in their chemically synthesized oligomers and polymers because of the small separation between the first oxidation and first reduction waves, generally about 2.0-2.4 V, and their relative ease of reduction compared with many other aromatic compounds. The larger separation between consecutive waves for oxidation compared with reduction is noticeable for all BODIPY dimers and trimers. We also observe a more difficult addition

  20. Solvatochromism of BODIPY-Schiff dye.

    PubMed

    Filarowski, Aleksander; Lopatkova, Marina; Lipkowski, Paweł; Van der Auweraer, Mark; Leen, Volker; Dehaen, Wim

    2015-02-12

    A boron-dipyrrin chromophore connected with an o-hydroxyaryl aldimine by a diazo bridge (BODIPY-Schiff dye) has been developed. The photophysical properties of the BODIPY-Schiff dye have been investigated with UV, steady-state, and time-resolved fluorimetry. The spectral features have been characterized with respect to density functional theory and time-dependent density functional theory. The conformational analysis of the studied compound has been accomplished both in the ground and excited states. A scheme of the processes occurring in the BODIPY-Schiff dye has been proposed. PMID:25470764

  1. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed. PMID:26529223

  2. Quirks of dye nomenclature. 5. Rhodamines.

    PubMed

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  3. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  4. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent.

    PubMed

    Modi, H A; Rajput, Garima; Ambasana, Chetan

    2010-08-01

    The aim of this work is to isolate and characterize bacterial isolates form dye house effluent, and to check their ability of decolorizing sulfonated azo dyes, and also to study influence of various environmental parameters on same process. Among seven Gram positive bacterial isolates obtained form dye house effluent, M1 (Bacillus cereus) and M6 were proved to be more potent for decolorizing sulfonated azo dyes under aerobic conditions. Maltose as carbon source and peptone as nitrogen source enhanced decolorization efficiency of M1 (B. cereus). HPTLC studies proved that more than 97% of the dye (Reactive Red 195) was degraded by bacteria after 72 h of incubation. These results along with spectrophotometric data prove the efficiency of bacteria suggesting their possible use in treating dye containing effluents.

  5. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  6. Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.

    PubMed

    Ozdemir, Sebnem; Cirik, Kevser; Akman, Dilek; Sahinkaya, Erkan; Cinar, Ozer

    2013-10-01

    This study aims at investigating azo dye reduction performance of a sulfidogenic anaerobic baffled reactor (ABR) for around 400 days. ABR was operated at 30 °C in a temperature-controlled room and hydraulic retention time (HRT) was kept constant at 2 days. The robustness of ABR was assessed under varying azo dye loadings and COD/sulfate ratios. Additionally, oxygen was supplied (1-2 L air/m(3)reactor min) to the last compartment to investigate the removal of azo dye breakdown products. ABR performed well in terms of COD, sulfate and azo dye removals throughout the reactor operation. Maximum azo dye, COD and sulfate removals were 98%, 98% and 93%, respectively, at COD/sulfate ratio of 0.8. Aeration created different redox conditions in last compartment, which enhanced the removal of COD and breakdown products. The adverse effects of aeration on azo dye reduction were eliminated thanks to the compartmentalized structure of the ABR.

  7. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2016-04-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  8. Spectral properties of optical anisotropy induced by laser radiation in dye solutions

    SciTech Connect

    Pikulik, L G; Chernyavskii, V A; Grib, A F

    2000-06-30

    Spectral studies of induced quasi-crystal properties (which can be quantitatively characterised by the difference in the refractive indices of ordinary and extraordinary waves, {Delta}n=n{sub o}-n{sub e}) in Rhodamine 6G and Rhodamine 4C solutions in glycerine excited in the visible and UV ranges of the absorption spectrum are presented. It is demonstrated that the observed spectral dependences of {Delta}n of these dye solutions excited in the visible (long-wavelength) and UV (short-wavelength) ranges of the absorption spectrum can be interpreted in terms of an oscillator model of a molecule. The proposed method for the analysis of induced optical anisotropy in solutions of organic compounds allows the relative orientation of oscillators in a molecule and, thus, the relative orientation of electronic transitions in a molecule to be determined in a reliable way. (iv international conference on atom and molecular pulsed lasers (ampl'99))

  9. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.

  10. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  11. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  12. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability.

    PubMed

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  13. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  15. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  16. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

  17. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  18. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  19. Thermal treatment of dyes from military munitions

    SciTech Connect

    1996-09-01

    Los Alamos National Laboratory has developed thermal treatment equipment to treat Navy smoke and dye compounds. Navy smokes were burned in the Los Alamos Controlled Air Incinerator (CAI) in the early 1980s. These test results were used in the development of a portable system consisting of a Thermal Treatment Unit (TTU), feed preparation and pumping skid, utility skid, and control trailer. This equipment was started up at Navy facilities at China Lake, CA where several destruction removal efficiency tests were completed in 1993 burning smoke compositions. The equipment was set up at the Nevada Test Site (NTS) in 1996 where tests were completed burning green Navy spotting dyes. Operating and test results from the NTS efforts resulted in clearer understanding of equipment deficiencies, dye characteristics and composition, and secondary wastes generated. Future tests, scheduled for July, 1996 will demonstrate higher bum rates, better pH measurement and control, and stack emission test results for other colored dyes.

  20. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  1. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A.; Hirons, Gregory T.

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  2. Enhanced photocatalytic and adsorptive degradation of organic dyes by mesoporous Cu/Al2O3-MCM-41: intra-particle mesoporosity, electron transfer and OH radical generation under visible light.

    PubMed

    Pradhan, Amaresh C; Parida, K M; Nanda, Binita

    2011-07-28

    Mesoporous Cu/Al(2)O(3)-MCM-41 composite was synthesized by two step processes; in situ incorporation of high surface area mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (in situ method) followed by impregnation of Cu(II) by incipient wetness method. The interesting thing is that starch was used for the first time as template for the preparation of high surface area MA. To evaluate the structural and electronic properties, these catalysts were characterized by low angle X-ray diffraction (LXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-vis DRS, FTIR and photoluminescent (PL) spectra. The various cationic dye such as methylene blue (MB), methyl violet (MV), malachite green (MG) and rhodamine 6G (Rd 6G) of high concentration 500 mg L(-1) were degraded and adsorbed very efficiently (100%) using the 5 Cu/Al(2)O(3)-MCM-41 composite within 30 and 60 min, respectively. The high and quick removal of such concerted cationic organic dyes and also mixed dyes (MB+MV+MG+Rd 6G) by means of photocatalysis/adsorption is basically due to the combined effect three characteristics of synthesized mesoporous 5 Cu/Al(2)O(3)-MCM-41 composite. These characteristics are intra-particle mesoporosity, electron transfer and ˙OH radical generation under solar light. PMID:21681290

  3. Alcian yellow as a fluorescent dye.

    PubMed

    Stockert, J C; Del Castillo, P; Armas-Portela, R

    1989-01-01

    Fluorescence characteristics of the cationic dye Alcian yellow are described. Under ultraviolet excitation, the chromatin and basophilic cytoplasm from cell smears show a blue-white emission, which depends on the presence of nucleic acids. Glycosaminoglycans-containing structures (mast cell granules, cartilage matrix) appear brightly fluorescent. The excitation at 320 less than or equal to lambda less than or equal to 340 nm is the most suitable, and the emission wavelength shows dependence on the dye concentration.

  4. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  5. Phytoremediation in education: textile dye teaching experiments.

    PubMed

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students. PMID:19810348

  6. Synthesis of azoimidazolium dyes with nitrous oxide.

    PubMed

    Tskhovrebov, Alexander G; Naested, Lara C E; Solari, Euro; Scopelliti, Rosario; Severin, Kay

    2015-01-19

    A new method for the synthesis of industrially important azoimidazolium dyes is presented. The procedure is based on a reagent which is rarely used in the context of synthetic organic chemistry: nitrous oxide ("laughing gas"). N2O is first coupled to N-heterocyclic carbenes. Subsequent reaction with aromatic compounds through an AlCl3-induced C-H activation process provides azoimidazolium dyes in good yields. PMID:25420599

  7. Sweeteners, flavorings, and dyes in antibiotic preparations.

    PubMed

    Kumar, A; Weatherly, M R; Beaman, D C

    1991-03-01

    Even though a variety of adverse effects caused by sweeteners, flavorings, and dyes in susceptible individuals have been reported, there is no good single reference with information about these substances in pediatric antimicrobials. Data on sweeteners, flavorings, and dyes in 91 antimicrobial preparations were collected. Sucrose was present in 74 (85%) of 87 preparations, followed by saccharin in 30 (34%) preparations. Mannitol, lactose, and sorbitol were each present in 7 preparations. None of the preparations were free of sweeteners. Thirty-four (37%) of 91 preparations did not specify the flavoring content. While cherry was the most common flavoring used, there were 25 other flavorings. Thirteen different dyes and coloring agents were used in these antimicrobials. Red dye no. 40 was present in 45% of preparations. Tables detailing sweeteners, flavorings, and dyes in different groups of antimicrobials (amoxicillin, ampicillin, cephalosporins, erythromycin, penicillins, sulfonamides, and others) and adverse effects reported with these inert ingredients are presented. These tables should be helpful to physicians in selecting an antimicrobial containing a different sweetener and/or dye when an adverse reaction occurs.

  8. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  9. Synthesis, structure, and physical properties of hybrid nanocomposites for solid-state dye lasers.

    PubMed

    García-Moreno, I; Costela, A; Cuesta, A; García, O; del Agua, D; Sastre, R

    2005-11-24

    We report on the synthesis, structural characterization, physical properties, and lasing action of two organic dyes, Rhodamine 6G (Rh6G) and Pyrromethene 597 (PM597), incorporated into new hybrid organic-inorganic materials, where the organic component was either poly(2-hydroxyethyl-methacrylate) (PHEMA) or copolymers of HEMA with methyl methacrylate (MMA), and the inorganic counterpart consisted of silica derived from hydrolysis-condensation of methyltriethoxysilane (TRIEOS) in weight proportion of up to 30%. Lasing efficiencies of up 23% and high photostabilities, with no sign of degradation in the initial laser output after 100 000 pump pulses at 10 Hz, were demonstrated when pumping the samples transversely at 534 nm with 5.5 mJ/pulse. A direct relationship could be established between the structure of the hybrid materials, analyzed by solid-state NMR, and their laser behavior. An inorganic network dominated by di-/tri- substituted silicates in a proportion approximately 35:65, corresponding to samples of HEMA with 15 and 20 wt % proportion of TRIEOS, optimizes the lasing photostability. The thermal properties of these materials, together with the high homogeneity revealed by atomic force microscopy (AFM) images, even in compounds with high silica content, indicate their microstructure to be a continuous phase, corresponding to the polymer matrix, which "traps" the silica components at molecular level via covalent bonding, with few or no silica islands.

  10. Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics.

    PubMed

    El-Shishtawy, Reda M; El-Zawahry, Manal M; Abdelghaffar, Fatma; Ahmed, Nahed S E

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% of of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  11. Flashlamp-pumped submicrosecond dye laser

    SciTech Connect

    Trusov, A.K.; Trusov, K.K.

    1985-02-01

    A laser flashlamp pumping system having an input energy of 330 J and a pulse duration of approx.230 nsec was developed experimentally and tests were made using a solution of rhodamine 6G under lasing conditions. The maximum lasing energy was 1.1 J, the efficiency was 0.33%, the angle of divergence of the beam at half-energy in a planar resonator was 1.2--1.3 mrad, and the illumination of an ethanol solution of rhodamine 6G halved the output energy when the intensity was 170 kJ/liter.

  12. Allergic dermatoses and respiratory diseases from reactive dyes.

    PubMed

    Estlander, T

    1988-05-01

    5 cases of occupational eczema, urticaria and respiratory disease from reactive dyes, occurring during 1977-1987, are reported. The patients, 4 men and 1 woman, were 24-52 years old when examined. They had been working in dye houses or textile plants, and had been exposed to reactive dyes for 8 months to 4 years before symptoms developed. Only 1 of the patients has been able to continue in the same occupation. On patch testing, the 4 patients with eczema reacted positively to 9 commercial dye powders. 2 patients reacted to the same dye, Remazol Schwarz B. On scratch and/or prick testing, the 2 patients who also had respiratory symptoms and/or urticaria reacted positively to the same dyes as on patch testing. The 5th patient, who had urticaria and respiratory symptoms, reacted positively to a dye, Remazol Gold Gelb RNL, but the patch test with that dye was negative. None of the patients was patch-test-positive to para-phenylenediamine (PPD) or to textile dye allergens in a series of organic dyes. Thus, the series of organic dyes has little value in the screening of allergy to reactive dyes. A 1% pet. dilution of commercial dye powder for patch testing and the same concentration in distilled water for prick testing seem to be suitable for the screening of allergy to reactive dyes.

  13. Enzymatic decolorization of spent textile dyeing baths composed by mixtures of synthetic dyes and additives.

    PubMed

    Ciullini, Ilaria; Gullotto, Antonella; Tilli, Silvia; Sannia, Giovanni; Basosi, Riccardo; Scozzafava, Andrea; Briganti, Fabrizio

    2012-10-01

    The effects of different components of real dyeing bath formulations, such as the equalizing and fixing additives-acids, salts, and surfactants-on the decolorization catalyzed by Funalia trogii enzymatic extracts, were investigated to understand their influence on the recalcitrance to biodegradation of this type of wastewater. The decolorization of selected dyes and dye mixtures after tissue dyeing was performed in the presence/absence of auxiliary compounds. All spent dyeing baths were enzymatically decolorized to different extents, by the addition of extracts containing laccase only or laccase plus cellobiose dehydrogenase. Whereas surfactant auxiliaries, in some instances, inhibit the decolorization of spent dyeing baths, in several occurrences the acid/salt additives favor the enzymatic process. In general, the complete spent dyeing formulations are better degraded than those containing the dyes only. The comparison of extracellular extracts obtained from spent straws from the commercial growth of Pleurotus sp. mushrooms with those from F. trogii reveals similar decolorization extents thus allowing to further reduce the costs of bioremediation.

  14. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  15. Selective staining of animal chromosomes with synthetic dyes following iodine-dye-procedure.

    PubMed

    Dutt, M K

    1975-01-01

    The paper embodies results of the use of 51 synthetic dyes, belonging to different chemical groups for staining of animal chromosomes following iodine-dye procedure. It has been found that some of these dyes can replace gentian violet, crystal violet and safranin when used after this procedure. It has further been found that the fluorescent dyes, acriflavine and acridine yellow can also be used to stain animal chromosomes and that some of the dyes belonging to one chemical group can be successfully used whereas others of the same group are of no use. Dyes of the monoazo group are absolutely useless. Amongst the dyes successfully used, the preparations remain stable when stained with most of them except methyl green, malachite green, brillant green, iodine green and cresyl violet and amongst acid dyes, acid fuchsin. Cytochemical studies presented herein indicate that the components of the animal chromosomes stainable with crystal violet are the nucleic acids and that these substances should be highly polymerised and should not be even in a semi-degraded state. Removal of any one of these nucleic acids makes the chromosomes unstainable with iodine-crystal violet.

  16. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin.

  17. Molecular design and photovoltaic performance of organic dyes containing phenothiazine for dye-sensitized solar cells.

    PubMed

    Jo, Hyo Jeong; Nam, Jung Eun; Sim, Kyoseung; Kim, Dae-Hwan; Kim, Jae Hong; Kang, Jin-Kyu

    2014-10-01

    We synthesized novel organic photosensitizers based on fluorine-substituted phenothiazine with thiophene bridge units in the chromophore for application in dye-sensitized solar cells (DSSCs). Furthermore, organic dyes with different acceptors exhibited higher molar extinction coefficients, and better light absorption at longer wavelengths. The photovoltaic properties of organic dyes composed of different acceptors in their chromophores were measured to identify their effects on the DSSC performance. The organic dye, PFSCN2 containing multi-cyanoacrylic acid as the electron acceptor, showed a power conversion efficiency of 4.67% under AM 1.5 illumination (100 mW/cm2). The retarded recombination kinetics from TiO2 electrode to electrolyte enhanced the electron life time of the organic dye, PFSCN2 in the photoanode of the DSSC. This was confirmed with impedance analysis.

  18. Unexpected radiation hazard in dyes of textiles.

    PubMed

    Abdel Ghany, Hayam A; Ibrahim, Eman M

    2014-01-01

    Textile dyes are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Many of the chemicals used in the textile industry may represent some health concerns. The determination of the radioactivity in textile dyes is therefore very important for both human health and environment. The study was designated to determine, for the first time, the values of (238)U, (232)Th and (40)K in nine different dyes employed in the textile industry using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector. The mean activity concentrations of (238)U, (232)Th and (40)K were 29.37 ± 4.48, 1.15 ± 0.13 and 565 ± 4 Bq/kg, respectively. The calculated radium equivalents for all samples were lower than the maximum admissible value (370 Bq/kg). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 2.94 ± 0.05 to 166 ± 3 nGy/h. So, the absorbed dose rates for all samples of textile dyes were lower than the international recommended value (55 nGy/h) except the yellow dye (166 ± 3 nGy/h), which recorded a significant radiological hazard. The external hazard index was also calculated. Conclusively, the results have indicated that the textile dyes may possess a measurable amount of radioactivity that should be taken into account. Therefore, safety rules and precautions should be applied for dyes used in the textile industry and for people working in this field.

  19. Holographic volume gratings in dye-doped jelly-like gelatin

    NASA Astrophysics Data System (ADS)

    Efendiev, T. Sh.; Katarkevich, V. M.; Rubinov, A. N.

    2007-06-01

    Holographic characteristics of a thick self-developing photosensitive medium - dye-doped jelly-like gelatin are investigated by means of pulsed laser exposure. The experiments were performed using aqueous gelatin solutions of Rhodamin 6G with a layer thickness of 1 mm. The slanted holographic gratings were written with two crossed beams from a frequency-doubled (λ = 532 nm) and Q-switched YAG:Nd laser (τ 0.5 ~ 17 ns, f <= 50 Hz). In the course of recording the hologram was read with the beam from a single-mode He-Ne laser (λ = 632.8 nm) which was not absorbed by the photosensitive medium. The real-time evolution of the grating diffraction efficiency was studied in dependence of the dye and gelatin concentration as well as the writing pulse fluence. It is shown that under appropriate choice of the medium composition and parameters of the recording radiation, it is possible to obtain phase volume holographic gratings with a diffraction efficiency of ~ 87 % and an angular selectivity of ~ 20'.

  20. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT.

    PubMed

    Eriksson, Susanna K; Josefsson, Ida; Ellis, Hanna; Amat, Anna; Pastore, Mariachiara; Oscarsson, Johan; Lindblad, Rebecka; Eriksson, Anna I K; Johansson, Erik M J; Boschloo, Gerrit; Hagfeldt, Anders; Fantacci, Simona; Odelius, Michael; Rensmo, Håkan

    2016-01-01

    The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

  1. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  2. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  3. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  4. Experimental and theoretical studies of complex pulse evolutions in a passively mode-locked ring dye laser

    SciTech Connect

    Avramopoulos, H.; French, P.M.W.; Williams, J.A.R.; New, G.H.C.; Taylor, J.R. )

    1988-09-01

    The optimization of any femtosecond laser requires the various sources of frequency chirp to be taken into account. In particular, for a passively mode-locked CPM ring dye laser, the effects of group velocity dispersion and self-phase modulation arising from time-dependent absorption saturation and the optical Kerr effect must be considered. In this paper a detailed experimental and theoretical study has been made of the role of these parameters in a Rhodamine 110 CPM dye laser. Periodic pulse evolutions are observed, when both positive and negative frequency chirp are present, which are reminiscent of those governed by the nonlinear Schrodinger equation but which are, in fact, distinctly different. Similar results have been obtained with the standard Rhodamine 6G system and it is believed that the theoretical model is generally applicable to any passively mode-locked femtosecond dye laser. An important consequence of this work is that is permits the absolute value of the net group velocity dispersion in the laser cavity to be estimated.

  5. Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors.

    PubMed

    Baban, A; Yediler, A; Avaz, G; Hostede, S S

    2010-02-01

    A treatability study for highly polluted and recalcitrant azo reactive dye-baths from cotton textile dyeing processes was conducted by using fixed and up-flow fluidized bed type reactors packed with brown coal. Ozone oxidation was carried out to assess the combination of biological and chemical oxidation. COD removal efficiencies ranged from 70% to 93%, and up to 99% color removal was attained. At a COD loading rate of 25.5 x 10(-6) gCOD/m(2)-d, COD removal was 85%. Breakthrough of the brown coal used occurred at total organic loading of 0.090 gCOD/g coal. Biodegradable and inert COD fractions of the remazol dye-bath were assessed by BOD(28) and oxygen uptake rate (OUR) measurements. 50% of total COD was initially inert. The inert fraction was reduced by adsorption and ozone oxidation by 65% and 40%, respectively. Brown coal is an inexpensive material and the system has economical and operational advantages as compared to treatment options such as advanced oxidation processes (AOPs) using UV, O(3), H(2)O(2) or electrocoagulation.

  6. Photothermal light harvesting and light-gated molecular release by nanoporous gold disks

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan

    2015-03-01

    Photothermal heating has been an effective mechanism for harvesting light energy by plasmonic resonance. Photothermally generated hyperthermia can alter cell behavior, change cell microenvironment, and promote or suppress cell growth. In the past, colloidal nanoparticles such as gold nanospheres, nanoshells, nanorods, and nanocages have been developed for various applications. Here, we show that nanoporous gold disks (NPGDs) with 400 nm diameter, 75 nm thickness, and 13 nm pores exhibit large specific surface area and effective photothermal light harvesting capability. Another potential application is demonstrated by light-gated, multi-step molecular release of pre-adsorbed R6G fluorescent dye on arrayed NPGDs. Through the use of time-resolved temperature mapping, the spatial and temporal characteristics of photothermal heating in NPGD arrays is successfully demonstrated for both aqueous and air ambient environments. By applying a thermodynamic model to our experimental data, we determined the photothermal conversion efficiency at 56% for NPGD arrays. As a potential application, light-gated, multi-stage release of pre-adsorbed R6G dye molecules from NPGD arrays has been demonstrated. The results establish the foundation that NPGDs can be employed for photothermal light harvesting and light-gated molecular release.

  7. Physical and chemical investigations on natural dyes

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  8. Dyes and Materials for Sensitised Electrochemical Photovoltaics

    NASA Astrophysics Data System (ADS)

    Amirnasr, M.; Brooks, K. G.; McEvoy, A. J.; Nazeeruddin, M. K.; Pechy, P.; Thampi, K. R.; Grätzel, M.

    2001-11-01

    The present concepts evolved in the context of research and development of artificial photosynthetic systems. Our biosphere depends totally on the action of a porphyrin dye, chlorophyll, for its continued existance, since all food resources find their origin in photosynthesis. Equally, for much of our energy resources we rely on the same process, present or past, as stored in fossil fuels. Naturally, therefore, when it comes to the molecular design of dyes for solar photochemical applications the reference to the porphyrins and similar organometallic complexes based on nitrogen ring structures as prototypes is obvious. However, although nature confines itself to magnesium and iron for its principal pigments, chlorophyll and haemoglobin respectively, the synthetic chemist can access the whole range of metallic elements. The use of ruthenium pyridyl complexes has almost thirty years of development history, and although other compounds have been assessed, such as zinc porphyrins and even prussian-blue analogues, the most suitable dyes today are still modifications of the ruthenium-based pyridyl complexes. The molecular engineering of dyes extends the visible spectrum response, enhances stability and promotes chemisorption to oxide semiconductor substrates while maintaining the energetics and kinetics for efficient charge transfer to function in sensitised electrochemical photovoltaic devices. There is also an overview of the present status of the technology, the materials incorporated in current devices, and their reliability in practical applications especially in situations of thermal stress. The conclusion will present the case for ongoing development of dye-sensitised systems in photovoltaic technology.

  9. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles

    PubMed Central

    Mariselvam, R.; Ranjitsingh, A. J. A.; Mosae Selvakumar, P.; Alarfaj, Abdullah A.; Munusamy, Murugan A.

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as PH, temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  10. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  11. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  12. Nonlinear optical properties of multipyrrole dyes

    PubMed Central

    Frenette, Mathieu; Hatamimoslehabadi, Maryam; Bellinger-Buckley, Stephanie; Laoui, Samir; Bag, Seema; Dantiste, Olivier; Rochford, Jonathan; Yelleswarapu, Chandra

    2014-01-01

    The nonlinear optical properties of a series of pyrrolic compounds consisting of BODIPY and aza-BODIPY systems are investigated using 532 nm nanosecond laser and the Z-scan technique. Results show that 3,5-distyryl extension of BODIPY to the red shifted MeO2BODIPY dye has a dramatic impact on its nonlinear absorption properties changing it from a saturable absorber to an efficient reverse saturable absorbing material with a nonlinear absorption coefficient of 4.64 × 10−10 m/W. When plotted on a concentration scale per mole of dye in solution MeO2BODIPY far outperforms the recognized zinc(II) phthalocyanine dye and is comparable to that of zinc(II) tetraphenylporphyrin. PMID:25242819

  13. Quirks of dye nomenclature. 6. Malachite green.

    PubMed

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed. PMID:27491273

  14. Quirks of dye nomenclature. 6. Malachite green.

    PubMed

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  15. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    PubMed Central

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  16. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    PubMed

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-22

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  17. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  18. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  19. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  20. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    PubMed

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  1. Continuous-wave organic dye lasers and methods

    SciTech Connect

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  2. The Ideal Solvent for Paper Chromatography of Food Dyes.

    ERIC Educational Resources Information Center

    Markow, Peter G.

    1988-01-01

    Uses paper chromatography with food dyes to provide a simple and inexpensive basis for teaching chromatography. Provides experimental methodology and tabled results. Includes a solvent system comparison (Rf) for seven dyes and twenty-two solvents. (MVL)

  3. Spectral characteristics and nonlinear studies of crystal violet dye.

    PubMed

    Sukumaran, V Sindhu; Ramalingam, A

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  4. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    SciTech Connect

    Sahmer, Ahmad Zahrin Mohamed, Norani Muti Zaine, Siti Nur Azella

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  5. Third row metal complexes as an alternative dye in dye sensitized solar cell system

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Badriyah, I.; Kristy, I. O.; Dewi, N. S.; Rahardjo, S. B.

    2013-10-01

    Copper(II), Cobalt (II) and Iron (II) complexes as photosensitizer on Dye Sensitized Solar Cell (DSSC) had been investigated. The aim of this research is to find out the respond addition of those dyes on FTO/TiO2 (FTO = fluorine Tin Oxide) thin film to visible light and the effect of various third row complexes to DSSC performance. Slip casting method was used to fabricate FTO/TiO2 and FTO/carbon thin film. The result from FTO/TiO2 UV-Vis spectra show no absorption on visible light. Dye solution was synthesized from free metal ions of Cu(II), Co(II), and Fe(II) in methanol with diphenylamine (dpa), 2,2,bypiridine (bpy), 1,10, phenathroline (phen), 4,4'-dicarboxylic acid-2,2'-bipyridine (dcbq), and anthocyanin (ant) ligands, respectively. UV-Vis spectrophotometry was used to identify FTO/TiO2/dye with various sensitizer dyes. The performance of DSSC was determined by I (current) - V (voltage) curve using Keithley 2602 A System Source. In this research, DSSCs are able to convert photon energy become electrical energy. Dye used in DSSC is greatly effect in photon to current efficiency (IPCE). The greater absorption in visible region of alternative dye used gains higher IPCE spectra. TiO2 character can help spread the absorption in whole visible region. The nanosize mesoporous TiO2 of TiO2/SiPA/CoII-PAR (SiPA = silylpropilamine) have greater value than P25 TiO2/SiPA-CoII-PAR. The SiPA/FeII-PAR and SiPA/CoII-PAR dyes are better dye than tpa.

  6. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    PubMed

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets.

  7. Anti-theft device staining on banknotes detected by mass spectrometry imaging.

    PubMed

    Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique

    2016-03-01

    We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. PMID:26784008

  8. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays.

    PubMed

    Zhu, Xiaolong; Shi, Lei; Schmidt, Michael S; Boisen, Anja; Hansen, Ole; Zi, Jian; Xiao, Sanshui; Mortensen, N Asger

    2013-10-01

    The combination of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interactions enhanced by plasmons. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range. Enhanced coupling of graphene to the plasmon modes of the nanovoid arrays results in significant frequency shifts of the underlying plasmon resonances, enabling 30% enhanced absolute light absorption by adding a monolayer graphene and up to 700-fold enhancement of the Raman response of the graphene. These new perspectives enable us to verify the presence of graphene on gold-void arrays, and the enhancement even allows us to accurately quantify the number of layers. Experimental observations are further supported by numerical simulations and perturbation-theory analysis. The graphene gold-void platform is beneficial for sensing of molecules and placing Rhodamine 6G (R6G) dye molecules on top of the graphene; we observe a strong enhancement of the R6G Raman fingerprints. These results pave the way toward advanced substrates for surface-enhanced Raman scattering (SERS) with potential for unambiguous single-molecule detection on the atomically well-defined layer of graphene. PMID:24010940

  9. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays.

    PubMed

    Zhu, Xiaolong; Shi, Lei; Schmidt, Michael S; Boisen, Anja; Hansen, Ole; Zi, Jian; Xiao, Sanshui; Mortensen, N Asger

    2013-10-01

    The combination of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interactions enhanced by plasmons. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range. Enhanced coupling of graphene to the plasmon modes of the nanovoid arrays results in significant frequency shifts of the underlying plasmon resonances, enabling 30% enhanced absolute light absorption by adding a monolayer graphene and up to 700-fold enhancement of the Raman response of the graphene. These new perspectives enable us to verify the presence of graphene on gold-void arrays, and the enhancement even allows us to accurately quantify the number of layers. Experimental observations are further supported by numerical simulations and perturbation-theory analysis. The graphene gold-void platform is beneficial for sensing of molecules and placing Rhodamine 6G (R6G) dye molecules on top of the graphene; we observe a strong enhancement of the R6G Raman fingerprints. These results pave the way toward advanced substrates for surface-enhanced Raman scattering (SERS) with potential for unambiguous single-molecule detection on the atomically well-defined layer of graphene.

  10. Oxidative degradation of azo dyes using tourmaline.

    PubMed

    Wang, Cuiping; Zhang, Yanwei; Yu, Li; Zhang, Zhiyuan; Sun, Hongwen

    2013-09-15

    This study aimed to investigate the catalyzed degradation ability of tourmaline on the dyes methylene blue (MB), rhodamine B (RhB), and congo red (CR) at different pH values. Interestingly, tourmaline strongly adsorbed anionic dyes, but it did not adsorb cationic dyes. When H₂O₂ was introduced into the tourmaline-dye systems, the degradation percentage for CR catalysis by tourmaline was lower than the percentage of adsorption, whereas the opposite was true for MB and RhB systems. Notably, the catalyzed degradation decreased from 100% to 45% for MB, 100% to 15% for RhB and 100% to 25% for CR as the pH increased from 3.0 to 10.0, respectively, which was much greater than the degradation obtained for previously reported materials at pH values ranging from 4.0 to 10.0. Tourmaline catalytically degraded the dyes over a broad range of pH values, which was attributed to tourmaline automatically adjusting the pH of the dye solutions to approximately 5.5 from an initial range of 4.2-10.0. An electron paramagnetic resonance spin trapping technique observed peroxyl (ROO·) and alkoxy (RO·) or alkyl (R·) radicals originated from the attack of ·OH radicals and O₂(·-) radicals, indicating that these radicals were involved in the catalyzed degradation of MB. Importantly, four intermediate products of MB at m/z 383, 316, 203 and 181 were observed by LC/MS. PMID:23876254

  11. Oxidative degradation of azo dyes using tourmaline.

    PubMed

    Wang, Cuiping; Zhang, Yanwei; Yu, Li; Zhang, Zhiyuan; Sun, Hongwen

    2013-09-15

    This study aimed to investigate the catalyzed degradation ability of tourmaline on the dyes methylene blue (MB), rhodamine B (RhB), and congo red (CR) at different pH values. Interestingly, tourmaline strongly adsorbed anionic dyes, but it did not adsorb cationic dyes. When H₂O₂ was introduced into the tourmaline-dye systems, the degradation percentage for CR catalysis by tourmaline was lower than the percentage of adsorption, whereas the opposite was true for MB and RhB systems. Notably, the catalyzed degradation decreased from 100% to 45% for MB, 100% to 15% for RhB and 100% to 25% for CR as the pH increased from 3.0 to 10.0, respectively, which was much greater than the degradation obtained for previously reported materials at pH values ranging from 4.0 to 10.0. Tourmaline catalytically degraded the dyes over a broad range of pH values, which was attributed to tourmaline automatically adjusting the pH of the dye solutions to approximately 5.5 from an initial range of 4.2-10.0. An electron paramagnetic resonance spin trapping technique observed peroxyl (ROO·) and alkoxy (RO·) or alkyl (R·) radicals originated from the attack of ·OH radicals and O₂(·-) radicals, indicating that these radicals were involved in the catalyzed degradation of MB. Importantly, four intermediate products of MB at m/z 383, 316, 203 and 181 were observed by LC/MS.

  12. Analysis of the ICE-6G (VM5a) global GIA model performance with respect to geological inferences of relative sea-level history: from Barbados to the US East Coast

    NASA Astrophysics Data System (ADS)

    Roy, K.; Peltier, W. R.

    2013-12-01

    Models of the glacial isostatic adjustment process require two fundamental inputs: a history of ice-sheet loading and a model of the radial variation of mantle viscosity. These models, which are dominated by the influence of the Late Pleistocene cycle of glaciation and deglaciation, may be tested and refined by comparing relative sea-level history predictions to geological inferences based upon appropriate sea level indicators. Datasets of high-quality relative sea-level history reconstructions are available for many globally distributed regions and were crucial in the development of the existing spherically symmetric visco-elastic models of the internal structure of Earth's mantle. These reconstructions have also proven to be essential in the development of ice sheet histories for the Late Quaternary, such as the most recent ICE-6G(VM5a) model. This latest model is a refinement of the ICE-5G(VM2) structure, which has been made possible by the increased availability of accurate space geodetic constraints from previously ice-covered regions and from peripheral regions dominated by the process of forebulge collapse, in particular in the continental United States. A geologically derived sea level record of particular importance in the development of these models has been the coral based record from the island of Barbados in the Caribbean Sea, which has provided, once corrected for tectonics, a very accurate estimate of the globally averaged ice equivalent (eustatic) history of sea level change from the Last Glacial Maximum (LGM) onwards. However, a recent analysis by Austermann et al. (2013, Nature Geoscience) has led these authors to suggest an alternative interpretation that centers on the notion that a large amount of North American ice might be missing from the ICE-5G (VM2) model at LGM. In this paper, we demonstrate this alternative interpretation to be incorrect and thereby reinforce the original interpretation of the tectonics corrected record from Barbados as

  13. Trypan blue dye for anterior segment surgeries

    PubMed Central

    Jhanji, V; Chan, E; Das, S; Zhang, H; Vajpayee, R B

    2011-01-01

    Use of vital dyes in ophthalmic surgery has gained increased importance in the past few years. Trypan blue (TB) has been a popular choice among anterior segment surgeons mainly due to its safety, ease of availability, and remarkable ability to enable an easy surgery in difficult situations mostly related to visibility of the targeted tissue. It is being used in cataract surgery since nearly a decade and its utilization has been extended to other anterior segment surgeries like trabeculectomy and corneal transplantation. This review will discuss the techniques and outcome of TB dye-assisted anterior segment surgeries. PMID:21681214

  14. Dye lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-08-01

    This bibliography covers studies on dye laser theory, design, components, optical systems, and frequency range. Abstracts on lasing dyes, pumping, tuning, excitation, molecular structure, and modulation are included. Studies on dye laser use in spectroscopy are covered. This updated bibliography contains 217 citations, none of which are new entries to the previous edition.

  15. Primary flavonoids in marigold dye: extraction, structure and involvement in the dyeing process.

    PubMed

    Guinot, Pauline; Gargadennec, Annick; Valette, Gilles; Fruchier, Alain; Andary, Claude

    2008-01-01

    Flavonoids extracted from marigold flowers were investigated for their dyeing potential. Patulitrin (1) and patuletin (2) were isolated and their structures established using NMR and HPLC-MS. These compounds were identified as the main flavonoids present in the dyeing bath. Following the dyeing process, it was demonstrated that aglycone 2 bound more strongly to wool fibres than its glucoside 1. Moreover, analysis focused on 1 and 2 dynamics during plant growth revealed that these components were only found in flowers during and after flowering. The influence of growing location was also investigated and it appeared that cultivation under Mediterranean conditions enhanced biosynthesis of 1 and 2 . Finally, several solvents were tested for their potential to extract the flavonoids: the use of a water-ethanol mixture gave a high extraction efficiency and allowed selective extraction of 1 and 2. The implications of these results are discussed in relation to the development of marigold as a potential dyeing plant. PMID:17654539

  16. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  17. [Enhanced biodecolourization of azo dyes by the catalysis of anthraquinone dyes intermediators].

    PubMed

    Su, Yan-Yan; Wang, Jing; Zhou, Ji-Ti; Lü, Hong; Li, Li-Hua

    2008-07-01

    Enhanced biodecolourization of azo dyes by suspended and immobilized quinone-reducing community using kinds of anthraquinone dyes intermediators as redox mediators was investigated. The suspended bacterium community could enhance the biodecolourization of many kinds of azo dyes using bromoamine acid (BAA) as a redox mediator, the optimum conditions for Acid Red 3R were as follows: pH 6-9, glucose, BAA and initial dye concentrations 400-600 mg/L, 19-34.2 mg/L and < or = 900 mg/L, respectively. Under these conditions, the maximal decolourization rate was about 95%, which is reached within 7 h for suspended cells and 14 h for immobilized cells. However, the latter needed 38-57 mg/L BAA as a redox mediator. In addition, after 7 cycles without BAA addition, the decolourization rate of Acid Red 3R by immobilized cells retained over 85%.

  18. Characterising dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2009-08-01

    With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

  19. Removal of Triphenylmethane Dyes by Bacterial Consortium

    PubMed Central

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  20. Fiber Chemistry Effects on Dye Uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dyeing efficiency of cotton knits was investigated as a function both of metal contents native to the cotton fiber as well as the presence of sugar-protein reaction products which contribute to +b. Results indicate that aged cotton fiber exhibits both a higher +b value and a tendency to incorpor...

  1. Triphenylmethane Dye Activation of Beta-Arrestin

    PubMed Central

    2013-01-01

    β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508

  2. Quirks of dye nomenclature. 3. Trypan blue.

    PubMed

    Cooksey, C J

    2014-11-01

    Trypan blue is colorant from the 19(th) century that has an association with Africa as a chemotherapeutic agent against protozoan (Trypanosomal) infections, which cause sleeping sickness. The dye still is used for staining biopsies, living cells and organisms, and it also has been used as a colorant for textiles.

  3. Degradation of various dyes using Laccase enzyme.

    PubMed

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  4. Removal of triphenylmethane dyes by bacterial consortium.

    PubMed

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  5. Fluorescent indicator dyes for calcium ions

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor)

    1986-01-01

    The present invention discloses a new class of highly fluorescent indicator dyes that are specific for calcium ions. The new fluorescent indicator dyes combine a stilbene-type fluorophore with a tetracarboxylate parent Ca.sup.2+ chelating compound having the octacoordinate pattern of liganding groups characteristic of EGTA and BAPTA. Preferred forms contain extra heterocyclic bridges to reinforce the ethylenic bond of the stilbene and to reduce hydrophobicity. Compared to their widely used predecessor, quin2, the new dyes offer up to thirty-fold brighter fluorescence, major changes in wavelength (not just intensity) upon Ca.sup.2+ binding, slightly lower affinities for Ca.sup.2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca.sup.2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca.sup.2+, make the dyes useful indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues. The present invention also discloses an improved method for synthesizing alpha-acyloxyalkyl bromides wherein the bromides so synthesized are free of contaminating bis(1-bromoalkyl)ether. The improved method is exemplified herein in the synthesis of acetoxymethyl bromide, a compound useful in preparing the acetoxymethyl esters disclosed herein as novel Ca.sup.2+ specific fluorescent indicators.

  6. Mutagenicity testing of some commonly used dyes.

    PubMed Central

    Chung, K T; Fulk, G E; Andrews, A W

    1981-01-01

    Seventeen commonly used dyes and 16 of their metabolites or derivatives were tested in the Salmonella-mammalian microsome mutagenicity test. Mutagens active with and without added Aroclor-induced rat liver microsome preparations (S9) were 3-aminopyrene, lithol red, methylene blue (USP), methyl yellow, neutral red, and phenol red. Those mutagenic only with S9 activation were 4-aminopyrazolone, 2,4-dimethylaniline, N,N-dimethyl-p-phenylenediamine, methyl red, and 4-phenyl-azo-1-naphthylamine. Orange II was mutagenic only without added S9. Nonmutagenic azo dyes were allura red, amaranth, ponceau R, ponceau SX, sunset yellow, and tartrazine. Miscellaneous dyes not mutagenic were methyl green, methyl violet 2B, and nigrosin. Metabolites of the azo dyes that were not mutagenic were 1-amino-2-naphthol hydrochloride, aniline, anthranilic acid, cresidine salt, pyrazolone T,R-amino salt (1-amino-2-naphthol-3,6-disulfonic disodium salt), R-salt, Schaeffer's salt (2-naphthol-6-sulfonic acid, sodium salt), sodium naphthionate, sulfanilamide, and sulfanilic acid. 4-Amino-1-naphthalenesulfonic acid sodium salt was also not mutagenic. Fusobacterium sp. 2 could reductively cleave methyl yellow to N,N-dimethyl-p-phenylenediamine which was then activated to a mutagen. PMID:7039509

  7. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  8. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium.

    PubMed

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2010-11-01

    A bacterial consortium (consortium GR) consisting of Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 could rapidly decolorize and degrade commonly-used sulfonated reactive dye Green HE4BD and many other reactive dyes. Consortium GR shows markedly higher decolorization activity than that of the individual strains. The preferable physicochemical parameters were identified to achieve higher dye degradation and decolorization efficiency. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of consortium GR. Extent of mineralization was determined with TOC and COD measurements, showing nearly complete mineralization of Green HE4BD by consortium GR (up to 90% TOC and COD reduction) within 24 h. Oxidoreductive enzymes seemed to be involved in fast decolorization/degradation process with the evidence of enzymes induction in the bacterial consortium. Phytotoxicity and microbial toxicity studies confirm that the biodegraded products of Green HE4BD by consortium GR are non-toxic. Consortium GR also shows significant biodegradation and decolorization activities for mixture of reactive dyes as well as the effluent from actual dye manufacturing industry. This confers the possibility of applying consortium GR for the treatment of industrial wastewaters containing dye pollutants.

  9. Method of dye removal for the textile industry

    SciTech Connect

    Stone, M.L.

    2000-07-25

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention uses an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  10. Dark dyes-bright complexes: fluorogenic protein labeling.

    PubMed

    Bruchez, Marcel P

    2015-08-01

    Complexes formed between organic dyes and genetically encoded proteins combine the advantages of stable and tunable fluorescent molecules and targetable, biologically integrated labels. To overcome the challenges imposed by labeling with bright fluorescent dyes, a number of approaches now exploit chemical or environmental changes to control the properties of a bound dye, converting dyes from a weakly fluorescent state to a bright, easily detectable complex. Optimized, such approaches avoid the need for removal of unbound dyes, facilitate rapid and simple assays in cultured cells and enable hybrid labeling to function more robustly in living model organisms.

  11. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  12. Raman Spectroscopic Investigation of Dyes in Spices

    NASA Astrophysics Data System (ADS)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  13. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  14. Evaluation of biotoxicity of textile dyes using two bioassays.

    PubMed

    Moawad, Hassan; El-Rahim, Wafaa M Abd; Khalafallah, M

    2003-01-01

    The toxicity of eight textile dyes was evaluated using two bioassays namely: Ames test and seed germination test. The Ames test is widely used for the evaluation of hazardous mutagenic effect of different chemicals, as a short-term screening test for environmental impact assessment. The eight-textile dyes and Eithidium bromide dye (as positive control) were tested with five "his" Salmonella typhimurium strains: TA 100; TA 98; TA 1535; TA 1537; TA 1538. Using six concentrations of each dye (2.5 microg/ml, 4.5 microg/ml, 9 microg/ml, 13.5 microg/ml, 18 microg/ml, and 22.5 microg/ml) revealed that, most of the dyes were mutagenic for the test strains used in this study. The high concentrations of dye eliminated microbial colonies due to the high frequency of mutation causing lethal effect on the cells. In this work the phytotoxicity of different soluble textile dyes was estimated by measuring the relative changes in seed germination of four plants: clover, wheat, tomato and lettuce. The changes in shooting percentages and root length as affected by dye were also measured. Seed germination percent and shoot growth as well as root length were recorded after 6 days of exposure to different concentrations of textile dyes in irrigation water. The results show that high concentrations of dyes were more toxic to seed germination as compared with the lower concentrations. However, the low concentrations of the tested dyes adversely affected the shooting percent significantly.

  15. Novel method for evaluation of natural dyes in DSSC

    SciTech Connect

    Lakshmi, M.; Kavitha, S.; Paul, Mercyleena

    2014-10-15

    Dye sensitized Solar Cell (DSSC) is presently centered on Ruthenium based dyes. Recent research is diverted to explore the potential of natural dyes in replacing the conventional dyes. In this work we have chosen few natural dyes, which when coated on TiO{sub 2} leads to increase in absorption capacity of TiO{sub 2}. Co-relation of absorption and electrochemical properties of natural dyes gives a scientific insight of the probable performance of a dye, even without fabricating a cell. We have tried to compare this predictions based on HOMO-LUMO energy levels with the real cell performance. Measurements of cell parameters suggest that there is scope for further research in this area.

  16. Decolorization of textile dyes by Alishewanella sp. KMK6.

    PubMed

    Kolekar, Yogesh M; Kodam, Kisan M

    2012-07-01

    Alishewanella sp. strain KMK6 was isolated from textile dye-contaminated soil. The strain was able to decolorize and degrade different azo dyes and displayed high dye degradation ability and tolerance. The bacterium could completely degrade 2.5 g l(-1) dye, Reactive Blue 59 within 6 h. The induction in the level of cytochrome P-450 and activities of azoreductase and NADH-dichlorophenolindophenol reductase were observed in the cells after dye decolorization indicating the role of these enzymes. The intermediates of Reactive Blue 59 degradation were identified by high-performance liquid chromatography, gas chromatography and mass spectroscopy, and Fourier transform infrared spectroscopy. The ecotoxicity has been evaluated for dye and its metabolites by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (a yellow tetrazole) and comet assay, and it revealed that the dye degradation products were nontoxic.

  17. The Use of Vital Dyes during Vitreoretinal Surgery - Chromovitrectomy.

    PubMed

    Farah, Michel Eid; Maia, Maurício; Penha, Fernando M; Rodrigues, Eduardo Büchele

    2016-01-01

    The aim of this article is to present the current data with regard to the application of vital dyes during vitreoretinal surgery, 'chromovitrectomy', as well as to overview the current literature regarding the properties of dyes, techniques of application, indications and complications in chromovitrectomy. It is well known that indocyanine green is toxic to the retina and consequently not the ideal dye for chromovitrectomy. Different vital dyes has been tested for chromovitrectomy including trypan blue, patent blue, triamcinolone acetonide, infracyanine green, sodium fluorescein and brilliant blue. Brilliant blue seems to be the ideal dye for internal limiting membrane due to its afinity, lower toxic profile and to reduce the appearance of apoptosis. Besides the dye itself, the injection technique is crucial to avoid additional toxicity, slow injection, far from the retina and protection of the macular hole are some tips. More recently the use of dyes has been applied to stain perfluorcarbon liquids that may enhance its visualization during vitrectomy. PMID:26502062

  18. The Use of Vital Dyes during Vitreoretinal Surgery - Chromovitrectomy.

    PubMed

    Farah, Michel Eid; Maia, Maurício; Penha, Fernando M; Rodrigues, Eduardo Büchele

    2016-01-01

    The aim of this article is to present the current data with regard to the application of vital dyes during vitreoretinal surgery, 'chromovitrectomy', as well as to overview the current literature regarding the properties of dyes, techniques of application, indications and complications in chromovitrectomy. It is well known that indocyanine green is toxic to the retina and consequently not the ideal dye for chromovitrectomy. Different vital dyes has been tested for chromovitrectomy including trypan blue, patent blue, triamcinolone acetonide, infracyanine green, sodium fluorescein and brilliant blue. Brilliant blue seems to be the ideal dye for internal limiting membrane due to its afinity, lower toxic profile and to reduce the appearance of apoptosis. Besides the dye itself, the injection technique is crucial to avoid additional toxicity, slow injection, far from the retina and protection of the macular hole are some tips. More recently the use of dyes has been applied to stain perfluorcarbon liquids that may enhance its visualization during vitrectomy.

  19. Prediction of Intracellular Localization of Fluorescent Dyes Using QSAR Models.

    PubMed

    Uchinomiya, Shohei; Horobin, Richard W; Alvarado-Martínez, Enrique; Peña-Cabrera, Eduardo; Chang, Young-Tae

    2016-01-01

    Control of fluorescent dye localization in live cells is crucial for fluorescence imaging. Here, we describe quantitative structure activity relation (QSAR) models for predicting intracellular localization of fluorescent dyes. For generating the QSAR models, electric charge (Z) calculated by pKa, conjugated bond number (CBN), the largest conjugated fragment (LCF), molecular weight (MW) and log P were used as parameters. We identified the intracellular localization of 119 BODIPY dyes in live NIH3T3 cells, and assessed the accuracy of our models by comparing their predictions with the observed dye localizations. As predicted by the models, no BODIPY dyes localized in nuclei or plasma membranes. The accuracy of the model for localization in fat droplets was 92%, with the models for cytosol and lysosomes showing poorer agreement with observed dye localization, albeit well above chance levels. Overall therefore the utility of QSAR models for predicting dye localization in live cells was clearly demonstrated. PMID:27055752

  20. Microbiological assessment of dentin stained with a caries detector dye.

    PubMed

    Zacharia, M A; Munshi, A K

    1995-01-01

    The purpose of this study was to assess microbiologically the efficacy of 1% acid red in propylene glycol dye to stain carious dentin. Thirty teeth with primary carious lesions involving dentin were chosen. Cavity preparation using the conventional visual and tactile criteria was done and the dye was applied to the prepared cavity. Dentin samples were collected, from carious dentin prior to cavity preparation, dye stained areas and unstained areas. The total colony forming units (CFU) in each sample were then assessed microbiologically. The results showed a highly significant difference in the total colony forming units in dye stained and dye unstained dentin samples. The 1% acid red dye in propylene glycol dye was found to be effective as an adjunctive aid in the diagnosis of carious dentin.

  1. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  2. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  3. Spectroscopic characterization of SC-NTR: a subsidiary dye of allura red AC dye (FD&C red no. 40).

    PubMed

    Takeda, Y; Goda, Y; Noguchi, H; Yamada, T; Yoshihira, K; Takeda, M

    1994-01-01

    A major subsidiary dye in US certified Allura Red AC dye (FD&C Red No. 40) has been isolated by preparative high performance liquid chromatography. The paper chromatographic properties of the isolated dye indicate that it is the dye designated as SC-NTR in a previous paper (Marmion 1971). Spectroscopic analysis of the isolated dye is consistent with the disodium salt of 6-hydroxy-5-(2-methoxy-5-methyl-3-sulphophenylazo)-2-naphthalen esulphonic acid, which is an azo-coupling product between the meta-isomer of cresidine-p-sulphonic acid (CSA) and Schaeffer's salt (SS).

  4. Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions.

    PubMed

    Bhattacharyya, Krishna G; Sharma, Arunima

    2004-07-01

    In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water. PMID:15158285

  5. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  6. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting.

    PubMed

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices. PMID:27188528

  7. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting.

    PubMed

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  8. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    SciTech Connect

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.

  9. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs. PMID:26846846

  10. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-07-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.

  11. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  12. Well-Aligned Arrays of Vertically Oriented ZnO Nanorod Films for Photocatalytic Degradation of Textile Dye

    NASA Astrophysics Data System (ADS)

    Nasr-Esfahani, Mojtaba; Nekoubin, Amin

    2011-05-01

    Well-aligned hexagonal ZnO nanorods arrays were synthesized via mild hydrothermal method under different conditions. A two-step approach was employed for the epitaxial growth of ZnO. First a ZnO seed layer was prepared by spin-coating process and then ZnO nanorods were deposited on it. The influences of growth time on the surface morphology, length, diameters and phase structure of ZnO rods films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of hydrothermal process time were examined. The results showed that the ZnO nonorods film hydrothermal treated for 4 h have a very high photocatalytic performance.

  13. Dyes at Ag colloids: The role of energy transfer processes for surface fluorescence and surface enhanced resonance raman scattering

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Gerolymatou, A.

    1985-06-01

    The comparison of Raman spectra of a pure water solution with those of an aqueous AG colloid reveals only very weak differences. This indicates, not unexpectedly, a low electromagnetic (EM) enhancement factor ( F ≈ 100) for the Raman scattering of water. Just in opposite to these weak effects, the addition of Ag sol to a {10 -10 M }/{l} rhodamine 6G solution causes the replacement of the former solution fluorescence by a similar intense surface enhanced resonance Raman scattering (SERRS). At higher dye concentrations (up to {10 -8 M }/{l}) it is replaced by both, by SERRS and surface fluorescence. The SERRS cross section is generally higher than 10 -20 cm 2 sr -1 molecule -1 photon -1. This indicates that a model based on a combination of weak EM resonances with molecular resonance Raman effects cannot explain a total enhancement by more than 10 orders of magnitude. An energy-transfer model seems to be more suitable.

  14. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  15. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  16. The Relative Location of the Dye Staining Endpoint Indicated With Polypropylene Glycol-Based Caries Dye versus Conventional Propylene Glycol-Based Caries Dye

    PubMed Central

    Boston, Daniel W; Jefferies, Steven R; Gaughan, John P

    2008-01-01

    Objectives This study determined the difference in the location of the caries dye staining endpoint of 1% Acid Red dye in propylene glycol versus that of 1% Acid Red dye in polypropylene glycol. Methods Freshly extracted permanent molar crowns with primary occlusal carious lesions were chisel-split axially to expose the lesion in cross-section on both halves. One half was stained with propylene glycol-based dye and the other with polypropylene glycol-based dye. For the control group, both halves were stained with propylene glycol-based dye. The dye staining front was marked on digital images of the stained split surfaces, and the images were aligned using reference notches. The distance between the marked staining front lines was measured in five locations, and the measurement protocol was repeated. Weighted averages and a 95% confidence interval for the distance between marked staining front lines were calculated for the control and experimental groups. Results The weighted average distance for the experimental group (0.298 mm, 95% confidence interval 0.240 mm – 0.357 mm) was about four times that of the control group (0.070 mm, 95% confidence interval 0.051 mm – 0.089 mm). Generally, the marked staining line for the polypropylene glycol-based dye specimens was located shallow (occlusal) to the propylene glycol-based staining line (range −0.12 mm to 0.66 mm). Conclusions The staining endpoint of 1% Acid Red dye in polypropylene glycol is shallower than that of 1% Acid Red dye in propylene glycol. The method is useful for comparing staining endpoints of caries dye formulations. (Eur J Dent 2008;2:29–36) PMID:19212506

  17. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  18. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields. PMID:26016854

  19. Dye-promoted precipitation of serum proteins. Mechanism and application.

    PubMed

    Birkenmeier, G; Kopperschläger, G

    1991-11-01

    Immobilized dyes have been used primarily for purification of nucleotide dependent enzymes and proteins from plasma and other sources. Due to their low costs, high protein binding capacity and resistance to degradation dyes bear the potential as ligand for affinity separation of proteins on a large scale. In this paper dyes have been used for precipitation of proteins. Using albumin, prealbumin, alpha 1-acid glycoprotein and immunoglobulin G as model proteins we could demonstrate that dye-promoted precipitation depends on several factors which include the structure of the dye, the pH of the solution, the dye/protein molar ratio and the intrinsic properties of the proteins. It revealed that most of the dyes tested were endowed with the precipitating potential. The efficacy of precipitation was found to increase with the complexity of the dye structure. However, the amount of a dye required for total precipitation was found to be different for a given protein. Electrostatic as well as hydrophobic forces are involved in the mechanism of precipitation. It was demonstrated that by optimizing the conditions, mixtures of proteins can be resolved by dye-promoted precipitation. The high sensitivity of the reaction offers the possibility of using this method for rapid concentration of very diluted protein solutions. PMID:1367693

  20. Significance of hair-dye base-induced sensory irritation.

    PubMed

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  1. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines.

    PubMed Central

    Vennerstrom, J L; Makler, M T; Angerhofer, C K; Williams, J A

    1995-01-01

    In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity. PMID:8593000

  2. Degradation of azo dyes by environmental microorganisms and helminths

    SciTech Connect

    Kingthom Chung; Stevens, S.E. Jr. . Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  3. Solvatochromic dyes detect the presence of homeopathic potencies.

    PubMed

    Cartwright, Steven J

    2016-02-01

    A systematic approach to the design of simple, chemical systems for investigating the nature of homeopathic medicines has led to the development of an experimental protocol in which solvatochromic dyes are used as molecular probes of serially diluted and agitated solutions. Electronic spectroscopy has been used to follow changes in the absorbance of this class of dyes across the visible spectrum in the presence of homeopathic potencies. Evidence is presented using six different solvatochromic dyes in three different solvent systems. In all cases homeopathic potencies produce consistent and reproducible changes in the spectra of the dyes. Results suggest that potencies influence the supramolecular chemistry of solvatochromic dyes, enhancing either dye aggregation or disaggregation, depending upon dye structure. Comparable dyes lacking the intramolecular charge transfer feature of solvatochromic dyes are unaffected by homeopathic potencies, suggesting potencies require the oscillating dipole of solvatochromic dyes for effective interaction. The implications of the results presented, both for an eventual understanding of the nature of homeopathic medicines and their mode of action, together with future directions for research in this area, are discussed.

  4. Phototoxic reaction to xanthene dyes induced by visible light.

    PubMed

    Morikawa, F; Fukuda, M; Naganuma, M; Nakayama, Y

    1976-04-01

    Many dyes, for instance methylene blue, rose bengal, and eosin, are known as photosensitizers, and in the presence of molecular oxygen they induce cell lethality and skin photosensitivity (1-4). Several dyes are used in cosmetic products, particularly in lipsticks. Human lip skin is therefore exposed to potential danger from dye-sensitized phototoxic reactions. Using an in vivo system of mammalian skin, such as the abdominal skin of rabbits, we established screening tests for the phototoxic potential of synthetic dyes in two ways: (a) intracutaneous injection; (b) topical application with and without damaging the barrier property of the stratum corneum. In the intracutaneous injection assay, distinct phototoxic reactions were induced by rose bengal, eosin Y.S., and dibromofluorescein. When these dyes were applied topically to intact skin, no phototoxic reactions were observed. Phototoxic reactions were, however, elicited when the dye solutions were applied to abraded or scratched skin. The intensity of phototoxic reaction was found to be influenced by the vehicle in which the dyes were suspended. Phototoxic reaction to the dyes was induced by artificial light as well as by sunlight. By using commercially available fluorescent lamps with different spectral emissions, the action spectra for the phototoxic reaction to these dyes were investigated and it was found that the maximum phototoxicities of the dyes were manifested by light within a spectral range of 400-600 nm. Further studies on action spectra, using a monochromatic irradiation system, revealed a high correlation between the action spectra of the dyes and their absorption spectra. Maximum effective wavelength for the phototoxic reaction of eosin Y.S. was 525 nm. This topical as well as intradermal assay for assesing phototoxic reaction to synthetic dyes in living skin will be a practical and useful measure for studying the phototoxicity of the dyes.

  5. A photoelectric amplifier as a dye detector

    USGS Publications Warehouse

    Ebel, Wesley J.

    1962-01-01

    A dye detector, based on a modified photoelectric amplifier, has been planned, built, and tested. It was designed to record automatically the time of arrival of fluorescein dye at predetermined points in a stream system. Laboratory tests and stream trials proved the instrument to be efficient. Small changes in color can be detected in turbid or clear water. The unit has been used successfully for timing intervals of more than 17 hours; significant savings of time and manpower have resulted. Replacement of the clock, included in the original device, with a recording milliammeter increases the efficiency of the unit by contin,!ously recording changes in turbidity. The addition of this component would increase the cost from $75 to approximately $105.

  6. Dye-sensitized nanocrystalline solar cells.

    PubMed

    Peter, Laurence M

    2007-06-01

    The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Grätzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.

  7. Starburst triarylamine based dyes for efficient dye-sensitized solar cells.

    PubMed

    Ning, Zhijun; Zhang, Qiong; Wu, Wenjun; Pei, Hongcui; Liu, Bo; Tian, He

    2008-05-16

    We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs.

  8. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    SciTech Connect

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  9. A new technology for harnessing the dye polluted water and dye collection in a chemical factory.

    PubMed

    Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K

    2001-04-01

    A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits. PMID:11590742

  10. Treatment of direct blending dye wastewater and recycling of dye sludge.

    PubMed

    Xu, Xin-Hui; Li, Ming-Li; Yuan, Yuan

    2012-01-01

    A new sorbent material, barium sulfate-Direct Blending Yellow D-3RNL hybrid (BSD), was synthesized and characterized by various methods. Both the anionic dyes, Reactive Brilliant Red X-3B and Weak Acid Green GS were hardly adsorbed by the BSD material, while the sorption of Ethyl Violet (EV) and Victoria Blue B were extremely obvious. The sorption of cationic dyes obeyed the Langmuir isotherm model, which depended on the electric charge attraction. The saturation amount of EV adsorbed onto the BSD material approached to 39.36 mg/g. The sorption of EV changed little with pH from 3 to 12 while it increased with increasing levels of electrolyte. A dye wastewater sampled from Jinjiang Chemicals was treated, and the color removal rate was more than the COD removal rate. In addition, the cationic dye-BSD sludge was utilized as a colorant fill-in coating. The light stability and thermal stability of the colorant was measured and exhibited good features. This work provided a simple and eco-friendly method for dye wastewater treatment with recycling of waste.

  11. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles.

  12. Trinity Bay Study: Dye tracing experiments

    NASA Technical Reports Server (NTRS)

    Ward, G. H., Jr.

    1972-01-01

    An analysis of the heat balance and temperature distribution within Trinity Bay near Galveston, Texas is presented. The effects of tidal currents, wind driven circulations, and large volume inflows are examined. Emphasis is placed on the effects of turbulent diffusion and local shears in currents. The technique of dye tracing to determine the parameters characterizing dispersion is described. Aerial photographs and maps are provided to show the flow conditions existing at different times and seasons.

  13. Indanthrone dye revisited after sixty years.

    PubMed

    Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam

    2014-10-01

    Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.

  14. Photolysis of rhodamine-WT dye

    USGS Publications Warehouse

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  15. Gemini 4 Recovery with Green Marker Dye

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Overhead view of the Gemini 4 spacecraft showing the yellow flotation collar used to stabilize the spacecraft in choppy seas. The green marker dye is highly visible from the air and is used as a locating aid. A crewmember is being hoisted aboard a U.S. Navy helicopter during recovery operations following the successful four-day, 62 revolution mission highlighted by Ed White's space walk.

  16. Decolorization of azo dyes in bioelectrochemical systems.

    PubMed

    Mu, Yang; Rabaey, Korneel; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg

    2009-07-01

    Azo dyes are ubiquitously used in the textile industry. These dyes need to be removed from the effluent prior to discharge to sewage due to their intense color and toxicity. In this study we investigated the use of a bioelectrochemical system (BES) to abioticlly cathodic decolorization of a model azo dye, Acid Orange 7 (AO7), where the process was driven by microbial oxidation of acetate atthe anode. Effective decolorization of AO7 at rates up to 264 +/- 0.03 mol m(-3) NCC d(-1) (net cathodic compartment, NCC) was achieved at the cathode, with concomitant energy recovery. The AO7 decolorization rate was significantly enhanced when the BES was supplied with power, reaching 13.18 +/- 0.05 mol m(-3) NCC d(-1) at an energy consumption 0.012 +/- 0.001 kWh mol(-1) AO7 (at a controlled cathode potential of -400 mV vs SHE). Compared with conventional anaerobic biological methods, the required dosage of organic cosubstrate was significantly reduced in the BES. A possible cathodic reaction mechanism for the decolorization of AO7 is suggested based on the decolorization products identified: the azo bond of AO7 was cleaved at the cathode, resulting in the formation of the colorless sulfanilic acid and 1-amino-2-naphthol.

  17. Mutagenicity of some lipsticks and their dyes.

    PubMed

    Green, M R; Pastewka, J V

    1980-03-01

    Twenty-four lipsticks of various shades and colors were tested for mutagencitiy with the histidine-requiring tester strain Salmonella typhimurium TA98. Nine lipsticks were mutagenic without microsomal (S-9) activation. Dose-response effects were observed. Eight colorants listed as ingredients of the mutagenic lipsticsk were tested with and without S-9. Drug and Cosmetic (D&C) Orange No. 17, a monoazo dye with two nitro groups, was highly mutagenic in the absence of S-9. The mutagenic effect was decreased or lost in the presence of S-9 prepared from livers of male noninbred Sprague-Dawley rats given a single injection of Aroclor 1254. Eight lipsticsk matched for ingredients other than dyes were tested. Two containing D&C Orange No. 17 were directly mutagenic. The mutagenic effect was decreased by the presence of S-9. Only D&C Orange No. 17 was sufficiently mutagenic without microsomal activation to account for the mutagenicity observed in these lipsticks. Lipsticks containing D&C Orange No. 17 and those labeled with the words "may contain" D&C Orange No. 17 should be suspected of being mutagenic for S. typhimurium TA98. This dye and 2,4-dinitrosaniline, which may also be present, are potential health hazards. Assessment of their carcinogenicity awaits evaluation of results obtained by appropriate testing in animals.

  18. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force.

  19. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-01

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  20. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry. PMID:27319056