Science.gov

Sample records for 7-cell hollow-core photonic

  1. Simplified hollow-core photonic crystal fiber.

    PubMed

    Gérôme, Frédéric; Jamier, Raphaël; Auguste, Jean-Louis; Humbert, Georges; Blondy, Jean-Marc

    2010-04-15

    An original design of hollow-core photonic crystal fiber composed of a thin silica ring suspended in air by six silica struts is proposed. This structure can be viewed as a simplified Kagomé-lattice fiber reduced to one layer of air holes. By working on the core surround parameters, an efficient antiresonant air guiding was successfully demonstrated. Two large low-loss windows (visible/IR) were measured with a minimum attenuation less than 0.2 dB radicalm at yellow wavelengths, comparable with state-of-the-art designs. The curvature behavior was also studied, showing low bending loss sensitivity for the fundamental transmission band. These relevant features might open a new route to propose original hollow-core fiber designs while making their production simpler and faster than previously.

  2. Chalcogenide glass hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  3. Inhibited coupling hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Benabid, F.; Gérôme, F.; Vincetti, L.; Debord, B.; Alharbi, M.; Bradley, T.

    2014-02-01

    We review the recent progress on the enhanced inhibited coupling in kagome hollow-core photonic crystal fiber by introducing negative curvature in the fiber-core shape. We show that increasing the hypocycloid contour curvature leads to a dramatic decrease in transmission loss and optical overlap with the silica surround and to a single modedness. Fabricated hypocycloid-core hollow-core photonic crystal fibers with a transmission loss in the range of 20-40 dB/km and for a spectral range of 700 nm-2000 nm have now become typical.

  4. Hollow-core photonic-crystal fibres for laser dentistry

    NASA Astrophysics Data System (ADS)

    Konorov, Stanislav O.; Mitrokhin, Vladimir P.; Fedotov, Andrei B.; Sidorov-Biryukov, Dmitrii A.; Beloglazov, Valentin I.; Skibina, Nina B.; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M.

    2004-04-01

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 µm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 µm and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 µm laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  5. Soft-glass hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Melnikov, Leonid; Khromova, Irina; Scherbakov, Andrey; Nikishin, Nikolay

    2005-09-01

    The results of numerical modeling and experimental investigations of manufactured diamond-shaped and large area hollow core photonic crystal fibers with periodical cladding (kagome-lattice and closely packed tubes) are presented. The use of soft glasses allows to fabricate high-quality structures with moderate losses. Numerical methods, designing strategies and fabrication issues of these promising fiber structures are discussed.

  6. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    SciTech Connect

    Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  7. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  8. Low loss and broadband hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Gerome, F.; Humbert, G.; Blondy, J. M.; Benabid, F.

    2011-03-01

    We report on recent developments on fabrication and optical guidance of Kagome-lattice hollow-core photonic crystal fiber (HC-PCF). These include the design and fabrication of a hypocycloid-shaped core Kagome HC-PCF that combines a record optical attenuation with a baseline exhibiting ~180 dB/km over a transmission bandwidth larger than 200 THz. These results are corroborated with theoretical simulations which show that both the core-shape and the cladding ring number play role in inhibited coupling, inducing core-mode confinement for the fundamental transmission band. We also show that the inhibited coupling is weaker for the first higher-order transmission band by theoretically and experimentally comparing Kagome HC-PCF with a single anti-resonant ring hollow-core fiber.

  9. Single-polarization hollow-core square photonic bandgap waveguide

    NASA Astrophysics Data System (ADS)

    Eguchi, Masashi; Tsuji, Yasuhide

    2016-07-01

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized waves is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.

  10. Single-mode hollow-core photonic crystal fiber made from soft glass.

    PubMed

    Jiang, X; Euser, T G; Abdolvand, A; Babic, F; Tani, F; Joly, N Y; Travers, J C; Russell, P St J

    2011-08-01

    We demonstrate the first soft-glass hollow core photonic crystal fiber. The fiber is made from a high-index lead-silicate glass (Schott SF6, refractive index 1.82 at 500 nm). Fabricated by the stack-and-draw technique, the fiber incorporates a 7-cell hollow core embedded in a highly uniform 6-layer cladding structure that resembles a kagomé-like lattice. Effective single mode guidance of light is observed from 750 to 1050 nm in a large mode area (core diameter ~30 µm) with a low loss of 0.74 dB/m. The underlying guidance mechanism of the fiber is investigated using finite element modeling. The fiber is promising for applications requiring single mode guidance in a large mode area, such as particle guidance, fluid and gas filled devices.

  11. Single-mode hollow-core photonic crystal fiber made from soft glass

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Euser, T. G.; Abdolvand, A.; Babic, F.; Tani, F.; Joly, N. Y.; Travers, J. C.; St. J. Russell, P.

    2011-08-01

    We demonstrate the first soft-glass hollow core photonic crystal fiber. The fiber is made from a high-index lead-silicate glass (Schott SF6, refractive index 1.82 at 500 nm). Fabricated by the stack-and-draw technique, the fiber incorporates a 7-cell hollow core embedded in a highly uniform 6-layer cladding structure that resembles a kagomé-like lattice. Effective single mode guidance of light is observed from 750 to 1050 nm in a large mode area (core diameter ~30 μm) with a low loss of 0.74 dB/m. The underlying guidance mechanism of the fiber is investigated using finite element modeling. The fiber is promising for applications requiring single mode guidance in a large mode area, such as particle guidance, fluid and gas filled devices.

  12. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet; Bayindir, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  13. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  14. Rydberg atoms inside hollow-core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Löw, Robert; Epple, Georg; Kleinbach, Kathrin; Euser, Tijmen; Joly, Nicolas; Pfau, Tilman; Russell, Philip

    2014-05-01

    Rydberg atoms have peculiar properties as enhanced sensitivities to AC/DC electric fields or exaggerated strong interactions between them, leading to optical non-linearities on the single photon level. These properties are mostly studied with spectroscopic methods often limited by the free space diffraction limit. This can be avoided by confining Rydberg atoms inside hollow core fibres offering a perfect match of guided light modes with the atomic gas in terms of atom-light coupling. Additionally we choose Kagome type fibres due to their extremely thin structures, promising a reduced atom wall coupling. With coherent three photon spectroscopy we can show that Rydberg atoms can be excited within these fibres up to states of n = 46 without severe perturbations by the fibre environment.

  15. Scattering loss analysis and structure optimization of hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Song, Jingming; Wu, Rong; Sun, Kang; Xu, Xiaoliang

    2016-06-01

    Effects of core structure in 7 cell hollow-core photonic bandgap fibers (HC-PBGFs) on scattering loss are analyzed by means of investigating normalized interface field intensity. Fibers with different core wall thickness, core radius and rounding corner of air hole are simulated. Results show that with thick core wall and expanded core radius, scattering loss could be greatly reduced. The scattering loss of the HC-PBGFs in the wavelength range of 1.5-1.56 μm could be decreased by about 50 % of the present level with optimized core structure design.

  16. Large-pitch kagome-structured hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Couny, F.; Benabid, F.; Light, P. S.

    2006-12-01

    We report the fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch (˜12μm) kagome lattice cladding. The optical characteristics of the 19-cell, 7-cell, and single-cell core defect fibers include broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion, no detectable surface modes and high confinement of light in the core. Various applications of such a novel fiber are also discussed, including gas sensing, quantum optics, and high harmonic generation.

  17. Large-pitch kagome-structured hollow-core photonic crystal fiber.

    PubMed

    Couny, F; Benabid, F; Light, P S

    2006-12-15

    We report the fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch (approximately 12 microm) kagome lattice cladding. The optical characteristics of the 19-cell, 7-cell, and single-cell core defect fibers include broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion, no detectable surface modes and high confinement of light in the core. Various applications of such a novel fiber are also discussed, including gas sensing, quantum optics, and high harmonic generation.

  18. Ultraviolet guiding hollow-core photonic crystal fiber.

    PubMed

    Février, Sébastien; Gérôme, Frédéric; Labruyère, Alexis; Beaudou, Benoît; Humbert, Georges; Auguste, Jean-Louis

    2009-10-01

    We present what we believe to be the first experimental demonstration of low-loss guiding of UV radiation in hollow-core photonic crystal fiber. The "kagomé" latticed fiber was designed to guide 0.355 microm wavelength radiation with approximately 2 dB/m loss. Moreover, an excellent agreement between modeling and experimental results was obtained. From this comparison it was inferred that propagation loss only arises from the lack of confinement, thereby indicating that such fibers may be designed for even shorter wavelengths where material loss prohibits the use of fused silica as a core material. As an example, a fiber was designed to be operated at 0.25 microm with 0.4 dB/m loss.

  19. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    A simple method for evacuating, refilling and connectorizing hollow-core photonic crystal fiber for use asgas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to amechanical splice between regular and hollow-core fibers.

  20. Rydberg atoms in hollow-core photonic crystal fibres.

    PubMed

    Epple, G; Kleinbach, K S; Euser, T G; Joly, N Y; Pfau, T; Russell, P St J; Löw, R

    2014-06-19

    The exceptionally large polarizability of highly excited Rydberg atoms-six orders of magnitude higher than ground-state atoms--makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.

  1. Rydberg atoms in hollow-core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Epple, G.; Kleinbach, K. S.; Euser, T. G.; Joly, N. Y.; Pfau, T.; Russell, P. St. J.; Löw, R.

    2014-06-01

    The exceptionally large polarizability of highly excited Rydberg atoms—six orders of magnitude higher than ground-state atoms—makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.

  2. Rydberg atoms in hollow-core photonic crystal fibres

    PubMed Central

    Epple, G.; Kleinbach, K. S.; Euser, T. G.; Joly, N. Y.; Pfau, T.; Russell, P. St. J.; Löw, R.

    2014-01-01

    The exceptionally large polarizability of highly excited Rydberg atoms—six orders of magnitude higher than ground-state atoms—makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems. PMID:24942281

  3. Progress in hollow core photonic crystal fiber for atomic vapour based coherent optics

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; Wang, Y. Y.; Alharbi, M.; Fourcade Dutin, C.; Mangan, B. J.; Wheeler, N. V.; Benabid, F.

    2012-03-01

    We report on progress in different hollow core photonic crystal fiber (HC-PCF) design and fabrication for atomic vapor based applications. We have fabricated a Photonic bandgap (PBG) guiding HC-PCF with a record loss of 107dB/km at 785nm in this class of fiber. A double photonic bandgap (DPBG) guiding HC-PCF with guidance bands centred at 780nm and 1064nm is reported. A 7-cell 3-ring Kagome HC-PCF with hypocycloid core is reported, the optical loss at 780nm has been reduced to 70dB/km which to the best of our knowledge is the lowest optical loss reported at this wavelength using HC-PCF. Details on experimental loading of alkali metal vapours using a far off red detuned laser are reported. This optical loading has been shown to decrease the necessary loading time for Rb into the hollow core of a fiber. The quantity of Rb within the fiber core has been enhanced by a maximum of 14% through this loading procedure.

  4. Hollow core photonic crystal fiber as a robust Raman biosensor

    NASA Astrophysics Data System (ADS)

    Khetani, Altaf; Momenpour T. Monfared, Ali; Tiwari, Vidhu S.; Anis, Hanan; Riordon, Jason; Godin, Michel

    2013-03-01

    The present work demonstrates the integration of hollow core photonic crystal fibers (HC-PCF), microfluidics, and statistical analysis for monitoring biomolecules using Raman spectroscopy. HC-PCF as a signal enhancer has been proven by many researchers. However, there have been challenges in using HC-PCF for practical applications due to limitations such as coupling, stability, evaporation, clogging, consistent filling, and reusing the same fiber. This limited the potential of HC-PCF to detect low concentrations of liquid samples, which is why HC-PCF still hasn't transcended the lab barriers. The current device is based on an H-design lay-out which uses the pressure difference between the two ends of the fiber for filling and flushing the liquid samples. This mitigated several issues related to device performance by allowing us to fill the fiber with liquid samples consistently, rapidly and reproducibly. The resulting Raman signals were significantly more stable as various concentrations of ethanol in water were sequentially introduced into the fiber. The scheme also allowed us to overcome the barrier of predicting low concentrations by applying Partial Least Square (PLS) technique which was done for the first time using HC-PCF. Thus, the present scheme paves path for the inclusion of HC-PCF in the main stream point-of-care technology.

  5. Micro-Displacement Sensor Based on a Hollow-Core Photonic Crystal Fiber

    PubMed Central

    Pinto, Ana Margarida Rodrigues; Baptista, José Manuel; Santos, José Luís; Lopez-Amo, Manuel; Frazão, Orlando

    2012-01-01

    A sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured. PMID:23247414

  6. Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy.

    PubMed

    Ghenuche, Petru; Rammler, Silke; Joly, Nicolas Y; Scharrer, Michael; Frosz, Michael; Wenger, Jérôme; Russell, Philip St J; Rigneault, Hervé

    2012-11-01

    We demonstrate the use of a large-pitch Kagome-lattice hollow-core photonic crystal fiber probe for Raman spectroscopy. The large transmission bandwidth of the fiber enables both the excitation and Raman beams to be transmitted through the same fiber. As the excitation beam is mainly transmitted through air inside the hollow core, the silica luminescence background is reduced by over 2 orders of magnitude as compared to standard silica fiber probes, removing the need for fiber background subtraction.

  7. Dynamic control of higher-order modes in hollow-core photonic crystal fibers.

    PubMed

    Euser, T G; Whyte, G; Scharrer, M; Chen, J S Y; Abdolvand, A; Nold, J; Kaminski, C F; Russell, P St J

    2008-10-27

    We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupling allows direct comparison of the losses of different guided modes in both hollow-core bandgap and kagome-lattice photonic crystal fibers. Our results are also relevant to applications in which the intensity distribution of the light inside the fiber is important, such as particle- or atom-guidance.

  8. The use of hollow-core photonic crystal fibres as biological sensors

    SciTech Connect

    Malinin, A V; Skibina, Yu S; Tuchin, Valerii V; Chainikov, M V; Beloglazov, V I; Silokhin, I Yu; Zanishevskaya, A A; Dubrovskii, V A; Dolmashkin, A A

    2011-04-30

    The results of development and study of a new type of a hollow-core photonic crystal fibre with radially increasing diameter of capillaries in the structured cladding are presented. The waveguide possesses a specific transmission spectrum and can be used as an efficient analyser of biological media. (optical technologies in biophysics and medicine)

  9. Light source design using Kagome-lattice hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Anwar; Namihira, Yoshinori

    2014-09-01

    Supercontinuum (SC) light source is designed using high pressure Xe-filled hollow core Kagome-lattice photonic crystal fiber. Using finite element method with perfectly matched layer, SC spectra in normal chromatic dispersion region have been generated using picosecond optical pulses from relatively less expensive laser sources.

  10. Broadband single-photon-level memory in a hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Sprague, M. R.; Michelberger, P. S.; Champion, T. F. M.; England, D. G.; Nunn, J.; Jin, X.-M.; Kolthammer, W. S.; Abdolvand, A.; Russell, P. St. J.; Walmsley, I. A.

    2014-04-01

    Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing and quantum memories for quantum information processing. These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light-matter interactions and have engendered a broad range of nonlinear effects; however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 +/- 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks.

  11. Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber

    SciTech Connect

    Saha, Kasturi; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2011-03-15

    We show that two-photon absorption (TPA) in rubidium atoms can be greatly enhanced by the use of a hollow-core photonic-band-gap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S{sub 1/2{yields}}5D{sub 5/2} transition and observe 1% absorption of a pump beam with a total power of only 1 mW in the fiber. These results are verified by measuring the amount of emitted blue fluorescence and are consistent with the theoretical predictions which indicate that transit-time effects play an important role in determining the two-photon absorption cross section in a confined geometry.

  12. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-17

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  13. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  14. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'Skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  15. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  16. Photonic nanojet focusing for hollow-core photonic crystal fiber probes.

    PubMed

    Ghenuche, Petru; Rigneault, Hervé; Wenger, Jérôme

    2012-12-20

    Large-pitch kagome-lattice hollow-core photonic crystal fibers (HC-PCFs) offer appealing optical properties for beam delivery and remote sensing. However, focusing their optical mode on a submicrometer spot can be challenging due to the large mode diameter and low numerical aperture of these fibers. Here, we demonstrate that a 30 μm latex microsphere directly set at the HC-PCF end-face provides an efficient means to focus the fiber mode down to a spot of 540 nm full width at half-maximum thanks to a photonic nanojet effect. The system is used for fluorescence imaging and direct laser writing on a thin absorbing layer. Potential applications include inspection of semiconductor wafers, photolithography, laser surgery, fluorescence sensing, or optical transfection.

  17. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber.

    PubMed

    Li, Haisu; Ren, Guobin; Lian, Yudong; Zhu, Bofeng; Tang, Min; Zhao, Yuanchu; Jian, Shuisheng

    2016-08-01

    We present the viability of exploiting a current hollow-core photonic bandgap fiber (HC-PBGF) to support orbital angular momentum (OAM) states. The photonic bandgap intrinsically provides a large refractive index spacing for guiding light, leading to OAM transmission with low crosstalk. From numerical simulations, a broad OAM±1 mode transmission window with satisfied effective index separations between vector modes (>10-4) and low confinement loss (<3  dB/km) covering 240 nm bandwidth is observed. The OAM purity (defined as normalized power weight for OAM mode) is found to be affected by the modal effective area. Simulation results also show HC-PBGF based OAM transmission is immune to fabrication inaccuracies near the hollow core. This work illustrates that HC-PBGF is a competitive candidate for high-capacity communication harnessing OAM multiplexing.

  18. Bio-functionalized hollow core photonic crystal fibers for label-free DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Salloom, Hussein T.; Coscelli, E.; Sozzi, M.; Manicardi, A.; Ahmad, Ahmad K.; Al-Janabi, A. Hadi; Corradini, R.; Picchi, G.; Cucinotta, A.; Selleri, S.

    2014-02-01

    Bio-functionalization of inner surfaces of all silica Hollow Core-Photonic Crystal Fibers (HC-PCF) has been investigated. The approach is based on layer-by-layer self-assembly Peptide Nucleic Acid (PNA) probes, which is an oligonucleotide mimic that is well suited for specific DNA target recognition. Two kinds of HC-PCFs have been considered: a photonic Bragg fiber and a hollow core (HC-1060) fiber. After spectral characterization and internal surface functionalization by using PNA probes, genomic DNA solutions from soy flour were infiltrated into the fibers. The experimental results indicate that hybridization of the complementary strand of target DNA increases the thickness of the silica layer and leads up to the generation of surface modes, resulting in a significant modulation of the transmission spectra. Numerical analysis confirms such behavior, suggesting the possibility to realize biological sensing.

  19. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber.

    PubMed

    Li, Haisu; Ren, Guobin; Lian, Yudong; Zhu, Bofeng; Tang, Min; Zhao, Yuanchu; Jian, Shuisheng

    2016-08-01

    We present the viability of exploiting a current hollow-core photonic bandgap fiber (HC-PBGF) to support orbital angular momentum (OAM) states. The photonic bandgap intrinsically provides a large refractive index spacing for guiding light, leading to OAM transmission with low crosstalk. From numerical simulations, a broad OAM±1 mode transmission window with satisfied effective index separations between vector modes (>10-4) and low confinement loss (<3  dB/km) covering 240 nm bandwidth is observed. The OAM purity (defined as normalized power weight for OAM mode) is found to be affected by the modal effective area. Simulation results also show HC-PBGF based OAM transmission is immune to fabrication inaccuracies near the hollow core. This work illustrates that HC-PBGF is a competitive candidate for high-capacity communication harnessing OAM multiplexing. PMID:27472626

  20. Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, O A; Garbos, M K; Euser, T G; Russell, P St J

    2012-07-13

    We report a novel optothermal trapping mechanism that occurs in air-filled hollow-core photonic crystal fiber. In the confined environment of the core, the motion of a laser-guided particle is strongly influenced by the thermal-gradient-driven flow of air along the core surface. Known as "thermal creep flow," this can be induced either statically by local heating, or dynamically by the absorption (at a black mark placed on the fiber surface) of light scattered by the moving particle. The optothermal force on the particle, which can be accurately measured in hollow-core fiber by balancing it against the radiation forces, turns out to exceed the conventional thermophoretic force by 2 orders of magnitude. The system makes it possible to measure pN-scale forces accurately and to explore thermally driven flow in micron-scale structures. PMID:23030165

  1. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Small-Pitch Kagome Hollow-Core Photonic Crystal Fibre

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Hou, Lan-Tian; Zhou, Gui-Yao; Wang, Kang; Chen, Chao

    2008-08-01

    A hollow-core photonic crystal fibre (HC-PCF) based on small-pitch kagome lattice cladding is designed and fabricated. The pitch of the fibre is only 2.45μm and it corresponds to a region of low normalized frequency which has never been investigated before. Both experiments and calculations show that this kagome HC-PCF has a broad optical transmission band from 400 nm to 900 nm, covering the whole visible and near infrared region of the spectrum. Additionally, the loss curve of the fibre is flat in the visible region and the minimum of the loss achieves 0.16dB/m, which is lower than the loss of the kagome HC-PCFs reported before. Furthermore, this fibre can well confine the modes in the air core. No surface modes can be detected in the surrounding silica of the hollow core.

  2. Resonant optical propulsion of a particle inside a hollow-core photonic crystal fiber.

    PubMed

    Maslov, A V

    2016-07-01

    Resonant propulsion of small nonresonant particles inside metal waveguides due to the formation of resonant states by the guided modes below their cutoffs has been predicted in the past. Here it is shown that stable resonant propulsion exists in hollow-core photonic crystal fibers, which are all-dielectric structures and are a major platform for various photonic applications. Specific features of the resonant propulsion are discussed together with the fiber design issues. The results may enable power-efficient transport of particles over long distances, particle sorting, and sensitive detection.

  3. Continuous generation of rubidium vapor in hollow-core photonic bandgap fibers.

    PubMed

    Donvalkar, Prathamesh S; Ramelow, Sven; Clemmen, Stéphane; Gaeta, Alexander L

    2015-11-15

    We demonstrate high optical depths (50±5) that last for hours in rubidium-filled hollow-core photonic bandgap fibers, which represent a 1000× improvement over the operation times previously reported. We investigate the vapor generation mechanism using both a continuous wave and a pulsed light source, and find that the mechanism for generating the rubidium atoms is primarily due to thermal vaporization. The continuous generation of large vapor densities should enable measurements at the single-photon level by averaging over longer time scales. PMID:26565879

  4. REVIEW ARTICLE: Optical frequency comb generation in gas-filled hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Couny, F.; Benabid, F.

    2009-10-01

    The efficiency of gas-based nonlinear processes is often limited by the diffraction of the pump laser as it propagates through the nonlinear medium. As a consequence, phenomena with strong nonlinear response requirements, such as high harmonic generation or Raman sideband generation, lack the required laser-matter interaction to fulfil their potential. Indeed, the conversion efficiency of these techniques is usually low and the experimental set-up cumbersome. The advent of hollow core photonic crystal fibre technology drafts new territories for nonlinear optics, and in particular offers new alternatives for sub-femtosecond pulse generation. The air-guiding fibre combines unprecedented laser confinement over long interaction lengths and, when filled with an adequate nonlinear gas, offers improved conversion efficiency and up to a million-fold reduction of the pump power threshold. This paper presents a review of the types of hollow core PCF available for nonlinear applications and the results obtained for efficient Raman conversion in H2-filled hollow core PCF that led to the observation of a multi-octave frequency comb spanning from ~325 to ~2300 nm using a single pump laser with relatively low power. The generated ultra-broad spectrum creates a simple route towards a compact source of attosecond pulses.

  5. Delivery of nanosecond pulses through hollow core photonic crystal fibres and the associated damage limitations

    NASA Astrophysics Data System (ADS)

    Shephard, J. D.; Jones, J. D. C.; Hand, D. P.; Knight, J. C.

    2005-12-01

    Hollow core photonic crystal fibres (HC-PCFs) show significant improvement over standard solid-core single-mode fibres and although short pulses (around 60 ns pulse width) and energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fibre, providing the pulse energy and high beam quality required for micro-machining of metals, the predicted performance (10's of mJ's) has not yet been achieved. The damage threshold limitations of the HC-PCF were investigated, both by coupling the laser into the fibre core, and by focusing the laser spot directly onto the photonic cladding structure surrounding the hollow core to elucidate the fundamental damage mechanism of this 'web-like' structure. For 1064nm delivery damage occurs exclusively at the launch end face with either partial or complete ablation of the photonic crystal cladding around the core. The pulse energies at which this occurs have been identified using Q-switched Nd:YAG lasers either pulsed from 10 Hz to 100 kHz (10 ns and 60 ns pulse width) or in single-shot mode to isolate the initial damage event. It is proposed that a contributing factor to the damage is the mode-mismatch between the gaussian profile of the incident laser beam and the fundamental mode of the HC-PCF (which is unlike that of conventional fibre). Pulse delivery and damage thresholds for HC-PCF designed for 532 nm operation are also reported. These fibres have noticeably lower damage thresholds compared with the 1064 nm fibre and in this instance damage occurs exclusively along the length of the fibre, yet appears to be independent of bend radius. It is proposed that these fibres may be failing at imperfections within the fibre introduced during the fabrication process.

  6. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    SciTech Connect

    Bajcsy, M.; Hofferberth, S.; Balic, V.; Zibrov, A. S.; Lukin, M. D.; Peyronel, T.; Liang, Q.; Vuletic, V.

    2011-06-15

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of {approx}30,000 rubidium atoms, which creates a medium with an optical depth of {approx}180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth in this system.

  7. Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Sandoghchi, S. R.; Numkam, E.; Bradley, T. D.; Hayes, J. R.; Wheeler, N. V.; Jasion, G.; Gray, D. R.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    We study in detail the macrobending effects in a wide transmission bandwidth (~200nm) 19 cell hollow-core photonic bandgap fiber operating at 1550nm. Our results indicate low bend sensitivity over a ~130nm wide interval within the transmission window, with negligible loss (<0.1dB) for bending radii down to 5mm. The "red shift" and "blue shift" of the bandgap edge have been observed at the short and long wavelength edges, respectively. The cutoff wavelengths where air-guiding modes stop guiding can be extracted from the bending loss spectra, which matches well with the simulated effective refractive index map of such fiber.

  8. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  9. Fabrication of silica hollow core photonic crystal fibres for Er:YAG surgical applications

    NASA Astrophysics Data System (ADS)

    Urich, Artur; Maier, Robert R. J.; Knight, Jonathan C.; Mangan, Brian J.; Renshaw, Steven; Hand, Duncan P.; Shephard, Jonathan D.

    2012-01-01

    In this work we present the fabrication of silica hollow core photonic crystal fibres (HC-PCF) with guidance at 2.94μm. As light is confined inside the hollow core with a very small overlap of the guided E-M wave with the fibre material, the high intrinsic loss of silica at these mid-infrared wavelengths can be overcome. The band gap effect is achieved by a periodic structure made out of air and fused silica. As silica is bio-inert, chemically stable and mechanically robust, these fibres have potential advantages over other multi-component, non-silica optical fibres designed to guide in this wavelength regime. These fibres have a relatively small diameter, low bend sensitivity and single-mode like guidance which are ideal conditions for delivering laser light down a highly flexible fibre. Consequently they provide a potential alternative to existing surgical laser delivery methods such as articulated arms and lend themselves to endoscopy and other minimally invasive surgical procedures. In particular, we present the characterisation and performance of these fibres at 2.94 μm, the wavelength of an Er:YAG laser. This laser is widely used in surgery since the wavelength overlaps with an absorption band of water which results in clean, non-cauterised cuts. However, the practical implementation of these types of fibres for surgical applications is a significant challenge. Therefore we also report on progress made in developing hermetically sealed end tips for these hollow core fibres to avoid contamination. This work ultimately prepares the route towards a robust, practical delivery system for this wavelength.

  10. Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber.

    PubMed

    Wu, Shun; Wang, Chenchen; Fourcade-Dutin, Coralie; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2014-09-22

    We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of (12)C(2)H(2) inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10(-12) at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator.

  11. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-01

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems. PMID:24514492

  12. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Grass, David; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus

    2016-05-01

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  13. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS)

    PubMed Central

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I.; Anis, Hanan

    2015-01-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells. PMID:26601021

  14. Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers.

    PubMed

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2009-07-20

    Dispersion properties, loss and optimum design of kagome lattice hollow-core photonic crystal fibers filled with argon are studied for the purpose of possible applications in ultrafast nonlinear optics. As will be shown numerically and by using an approximate analytical formula these fibers exhibit anomalous dispersion for visible or UV wavelengths both for a 1-cell-core as well for a 3-ring-core which can be controlled by the gas pressure and do not suffer from high loss. It is shown that while the loss is mainly influenced by the strut thickness of the kagome lattice the group velocity dispersion is almost independently controlled by the core size. These results demonstrate that kagome lattice hollow fibers have a promising potential in ultrashort pulse delivering of high-energy pulses and in several interesting applications in ultrafast nonlinear optics.

  15. Atomic mercury vapor inside a hollow-core photonic crystal fiber.

    PubMed

    Vogl, Ulrich; Peuntinger, Christian; Joly, Nicolas Y; Russell, Philip St J; Marquardt, Christoph; Leuchs, Gerd

    2014-12-01

    We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 × 10(10) cm(-3). The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.

  16. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Zeltner, R.; Bykov, D. S.; Xie, S.; Euser, T. G.; Russell, P. St. J.

    2016-06-01

    We report an irradiation sensor based on a fluorescent "flying particle" that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ˜10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  17. Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Khetani, Altaf; Tiwari, Vidhu S.; Harb, Alaa; Anis, Hanan

    2011-08-01

    The feasibility of using hollow core photonic crystal fiber (HC-PCF) in conjunction with Raman spectroscopy has been explored for real time monitoring of heparin concentration in serum. Heparin is an important blood anti-coagulant whose precise monitoring and controlling in patients undergoing cardiac surgery and dialysis is of utmost importance. Our method of heparin monitoring offers a novel alternative to existing clinical procedures in terms of accuracy, response time and sample volume. The optical design configuration simply involves a 785-nm laser diode whose light is coupled into HC-PCF filled with heparin-serum mixtures. By non-selectively filling HC-PCF, a strong modal field overlap is obtained. Consequently, an enhanced Raman signal (>90 times) is obtained from various heparin-serum mixtures filled HC-PCFs compared to its bulk counterpart (cuvette). The present scheme has the potential to serve as a `generic biosensing tool' for diagnosing a wide range of biological samples.

  18. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers.

    PubMed

    Kaczmarek, Krzysztof T; Saunders, Dylan J; Sprague, Michael R; Kolthammer, W Steven; Feizpour, Amir; Ledingham, Patrick M; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  19. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Krzysztof T.; Saunders, Dylan J.; Sprague, Michael R.; Kolthammer, W. Steven; Feizpour, Amir; Ledingham, Patrick M.; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A.; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large optical depths could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient ($>10^5$ for up to a minute) and highest observed persistent ($>2000$ for hours) optical depths of alkali vapours in a light-guiding geometry to date, using a caesium-filled Kagom\\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  20. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification.

    PubMed

    Février, Sébastien; Beaudou, Benoît; Viale, Pierre

    2010-03-01

    It is now commonly accepted that, in large pitch hollow-core 'kagomé' lattice fibers, the loss spectrum is related to resonances of the thin silica webs in the photonic crystal cladding. Moreover, coherent scattering from successive holes' layers cannot be obtained and adding holes' layers does not decrease the loss level. In this communication, cross-comparison of experimental data and accurate numerical modeling is presented that helps demonstrate that waveguiding in large pitch hollow-core fibers arises from the antiresonance of the core surround only and does not originate from the photonic crystal cladding. The glass webs only mechanically support the core surround and are sources of extra leakage. Large pitch hollow-core fibers exhibit features of thin walled and thick walled tubular waveguides, the first one tailoring the transmission spectrum while the second one is responsible for the increased loss figure. As a consequence, an approximate calculus, based on specific features of both types of waveguides, gives the loss spectrum, in very good agreement with experimental data. Finally, a minimalist hollow-core microstructured fiber, the cladding of which consists of six thin bridges suspending the core surround, is proposed for the first time.

  1. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.

    PubMed

    Wang, Y Y; Wheeler, N V; Couny, F; Roberts, P J; Benabid, F

    2011-03-01

    We report on the fabrication of a seven-cell-core and three-ring-cladding large-pitch Kagome-lattice hollow-core photonic crystal fiber (HC-PCF) with a hypocycloid-shaped core structure. We demonstrate experimentally and theoretically that the design of this core shape enhances the coupling inhibition between the core and cladding modes and offers optical attenuation with a baseline of ∼180 dB/km over a transmission bandwidth larger than 200 THz. This loss figure rivals the state-of-the-art photonic bandgap HC-PCF while offering an approximately three times larger bandwidth and larger mode areas. Also, it beats the conventional circular-core-shaped Kagome HC-PCF in terms of the loss. The development of this novel (to our knowledge) HC-PCF has potential for a number of applications in which the combination of a large optical bandwidth and a low loss is a prerequisite.

  2. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    SciTech Connect

    Chow, Kam Kong; Zeng, Haishan; Short, Michael; Lam, Stephen; McWilliams, Annette

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  3. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  4. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    PubMed

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz).

  5. Microwave-driven plasmas in Hollow-Core Photonic Crystal Fibres

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2013-09-01

    This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 μm core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (< 50 W). Diagnostics of the coupled power evidence high ionization degrees (~10-2) , for moderate gas temperatures (~1300 K at the centre of the fibre, estimated by OES), with no damage to the host structure. This counter intuitive result is studied using a 1D-radial fluid model that describes the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. We analyze the modification of the plasma and the gas heating mechanisms with changes in the work conditions (core diameter, pressure and electron density). Work supported by ANR and DGA (ASTRID-2011-UVfactor) and by FCT (Pest-OE/SADG/LA0010/2011).

  6. Molecular Spectroscopy in Hollow-Core Photonic Crystal Fiber at the 10 kHz Level

    NASA Astrophysics Data System (ADS)

    Wang, Chenchen; Knabe, Kevin; Wu, Shun; Lim, Jinkang; Tillman, Karl; Washburn, Brian; Corwin, Kristan; Wheeler, Natalie; Couny, Francois; Benabid, Fetah

    2010-03-01

    High-accuracy spectroscopy in hollow-core photonic crystal fiber (HC-PCF) is desirable for many applications, including frequency references and trace gas analysis. We demonstrate the narrowest sub-Doppler linewidths attained in HC-PCF using large-core kagome structured fiber. Such fibers can yield highly accurate frequency measurements that are about two orders of magnitude higher than previously reported. A fiber laser is locked to the ^12C2H2 ν1+ν3 P(13) transition inside kagome fiber, and compared with two optical frequency combs referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 σ error). Approaches to further narrow the linewidths and improve systematic errors are investigated. The present system thus combines accuracy approaching that of power build-up cavities with the potential to be compact, robust, and integrated into an all-fiber system for a portable near-infrared frequency reference. Supported by AFOSR FA9950-05-1-0304 and NSF ECS-0449295.

  7. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    PubMed

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz). PMID:26560626

  8. Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers

    SciTech Connect

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2010-08-15

    We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.

  9. Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss.

    PubMed

    Alharbi, M; Bradley, T; Debord, B; Fourcade-Dutin, C; Ghosh, D; Vincetti, L; Gérôme, F; Benabid, F

    2013-11-18

    We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber.

  10. Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2010-08-01

    We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.

  11. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    :270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).

  12. Modal content in hypocycloid Kagomé hollow core photonic crystal fibers.

    PubMed

    Bradley, Thomas D; Wheeler, Natalie V; Jasion, Gregory T; Gray, David; Hayes, John; Gouveia, Marcelo Alonso; Sandoghchi, Seyed R; Chen, Yong; Poletti, Francesco; Richardson, David; Petrovich, Marco

    2016-07-11

    The modal content of 7 and 19 cell Kagomé anti resonant hollow core fibers (K-ARF) with hypocycloid core surrounds is experimentally investigated through the spectral and spatial (S2) imaging technique. It is observed that the 7 and 19 cell K-ARF reported here, support 4 and 7 LP mode groups respectively, however the observation that K-ARF support few mode groups is likely to be ubiquitous to 7 and 19 cell K-ARFs. The transmission loss of the higher order modes (HOMs) was measured via S2 and a cutback method. In the 7 cell K-ARF it is found that the LP11 and LP21 modes have approximately 3.6 and 5.7 times the loss of the fundamental mode (FM), respectively. In the 19 cell it is found that the LP11 mode has approximately 2.57 times the loss of the FM, while the LP02 mode has approximately 2.62 times the loss of the FM. Additionally, bend loss in these fibers is studied for the first time using S2 to reveal the effect of bend on modal content. Our measurements demonstrate that K-ARFs support a few mode groups and indicate that the differential loss of the HOMs is not substantially higher than that of the FM, and that bending the fiber does not induce significant inter modal coupling. A study of three different input beam coupling configurations demonstrates increased HOM excitation at output and a non-Gaussian profile of the output beam if poor mode field matching is achieved.

  13. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    SciTech Connect

    Sadeghi, J. Chenari, Z.; Ziaee, F.; Latifi, H.; Santos, J. L.

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10{sup −5} nm/psi at 1480 nm to 1.3 × 10{sup −3} nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10{sup −6} 1/psi to −1.3 × 10{sup −6} 1/psi and from −5 × 10{sup −6} 1/psi to −1.8 × 10{sup −6} 1/psi, respectively, which were in a good accordance with each other.

  14. Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber.

    PubMed

    Abdolvand, A; Walser, A M; Ziemienczuk, M; Nguyen, T; Russell, P St J

    2012-11-01

    In a relatively simple setup consisting of a microchip laser as pump source and two hydrogen-filled hollow-core photonic crystal fibers, a broad, phase-locked, purely rotational frequency comb is generated. This is achieved by producing a clean first Stokes seed pulse in a narrowband guiding photonic bandgap fiber via stimulated Raman scattering and then driving the same Raman transition resonantly with a pump and Stokes fields in a second broadband guiding kagomé-style fiber. Using a spectral interferometric technique based on sum frequency generation, we show that the comb components are phase locked.

  15. Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy

    PubMed Central

    Choi, Heejin; So, Peter T. C.

    2014-01-01

    In this paper, we present a strategy to improve delivery of femtosecond laser pulses from a regenerative amplifier through a hollow core photonic crystal fiber for temporally focused wide-field two-photon endomicroscopy. For endomicroscope application, wide-field two-photon excitation has the advantage of requiring no scanning in the distal end. However, wide-field two-photon excitation requires peak power that is 104–105 times higher than the point scanning approach corresponding to femtosecond pulses with energy on the order of 1–10 μJ at the specimen plane. The transmission of these high energy pulses through a single mode fiber into the microendoscope is a significant challenge. Two approaches were pursued to partially overcome this limitation. First, a single high energy pulse is split into a train of pulses with energy below the fiber damage threshold better utilizing the available laser energy. Second, stretching the pulse width in time by introducing negative dispersion was shown to have the dual benefit of reducing fiber damage probability and compensating for the positive group velocity dispersion induced by the fiber. With these strategy applied, 11 fold increase in the two photon excitation signal has been demonstrated. PMID:25316120

  16. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications.

    PubMed

    Debord, B; Alharbi, M; Benoît, A; Ghosh, D; Dontabactouny, M; Vincetti, L; Blondy, J-M; Gérôme, F; Benabid, F

    2014-11-01

    We report on the development of a hypocycloidal-core Kagome hollow-core photonic crystal fiber guiding, with low transmission loss in the 450-650 nm visible spectral range. Transmission loss records have been achieved with 70  dB/km at 600 nm, and 130  dB/km at 532 nm. As a demonstration of the fiber potential applications, we report on a compact 600 THz wide Raman comb generator, centered around 532 nm, and on a 10 W average power frequency-doubled Yb-fiber picosecond laser beam delivery, along with its use for organic material laser micro-processing.

  17. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of <0.5 Torr. An all-fiber pumped-through cell based on the commercial 2.6-m-long PCF with a 10-μm hollow-core diameter was used. The characteristic relaxation time T2 during which the optical coherent effects were typically observed in our experiments was estimated to be ≈8 ns. This time is governed by the limited time of the acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  18. Short wavelength (UV + VIS) guidance in kagomé lattice hollow core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Février, Sébastien; Beaudou, Benoît

    2010-04-01

    Hollow-core microstructured fibres are designed for the short wavelength domains, either visible or ultra-violet ones. The experimental results confirm that kagomé-lattice antiresonant fibres are good candidate for this purpose. Thorough numerical modelling is carried out in order to determine the physical causes responsible for the loss level observed. From these computations the following conclusions are drawn: (i) the sole antiresonant core surround dictates the location of the transmission windows and (ii) the cladding bridges are sources of extra leakage from the core to the surrounding solid cladding. A straightforward model is therefore devised to determine accurately the loss level in this kind of structure by quasi-analytical calculus.

  19. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases

    SciTech Connect

    Joshi, Sachin; Yalin, Azer P.; Galvanauskas, Almantas

    2007-07-01

    The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity ({approx}200 GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f of {approx}55 allowing spark formation with {approx}98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.

  20. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss.

    PubMed

    Debord, B; Alharbi, M; Bradley, T; Fourcade-Dutin, C; Wang, Y Y; Vincetti, L; Gérôme, F; Benabid, F

    2013-11-18

    We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm.

  1. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    PubMed

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air.

  2. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

  3. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  4. Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber.

    PubMed

    Ménard, Jean-Michel; Russell, Philip St J

    2015-08-01

    Second-order nonlinearity is induced inside a Xe-filled hollow-core photonic crystal fiber (PCF) by applying an external dc field. The system uniquely allows the linear optical properties to be adjusted by changing the gas pressure, allowing for precise phase matching between the LP01 mode at 1064 nm and the LP02 mode at 532 nm. The dependence of the second-harmonic conversion efficiency on the gas pressure, launched pulse energy, and applied field agrees well with theory. The ultra-broadband guidance offered by anti-resonant reflecting hollow-core PCFs, for example, a kagomé PCF, offers many possibilities for generating light in traditionally difficult-to-access regions of the electromagnetic spectrum, such as the ultraviolet or the terahertz windows. The system can also be used for noninvasive measurements of the transmission loss in a hollow-core PCF over a broad spectrum, including the deep and vacuum UV regions.

  5. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers.

    PubMed

    Shurgalin, Max; Anastassiou, Charalambos

    2008-01-01

    Carbon dioxide (CO2) lasers have become one of the most common surgical lasers due to excellent tissue interaction properties that offer precise control of cutting and ablation depth, minimal thermal damage to surrounding tissue, and good hemostasis. However, realization of the benefits offered by using surgical CO2 lasers in many endoscopic, minimally invasive surgical procedures has been inhibited by the absence of reliable, flexible fiber laser beam delivery systems. Recently, novel hollow-core photonic bandgap optical fibers for CO2 lasers were developed that offer high flexibility and mechanical robustness with good optical performance under tight bends. These fibers can be used through rigid and flexible endoscopes and various handpieces and will allow surgeons to perform delicate and precise laser surgery procedures in a minimally invasive manner. This paper describes the basic design of laser beam delivery system, different surgical fiber designs and their characteristics, and usage with existing surgical CO2 laser models. A few examples of successful CO2 laser surgeries performed with these fibers are presented.

  6. Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber.

    PubMed

    Ferreira, Marta S; Bierlich, Jörg; Kobelke, Jens; Schuster, Kay; Santos, José L; Frazão, Orlando

    2012-09-24

    A high sensitivity Fabry-Pérot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 μm. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 μm a sensitivity of 15.4 pm/με was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (~0.81 pm/°C).

  7. Laser Ablation of Dental Tissues with Picosecond Pulses of 1.06-µm Radiation Transmitted through a Hollow-Core Photonic-Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Konorov, Stanislav O.; Mitrokhin, Vladimir P.; Fedotov, Andrei B.; Sidorov-Biryukov, Dmitrii A.; Beloglazov, Valentin I.; Skibina, Nina B.; Shcherbakov, Andrei V.; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M.

    2004-04-01

    Sequences of picosecond pulses of 1.06-µm Nd:YAG laser radiation with a total energy of ~2 mJ are transmitted through a hollow-core photonic-crystal fiber with a core diameter of ~14 µm and are focused onto a tooth's surface in vitro to ablate dental tissue. The hollow-core photonic-crystal fiber is shown to support the single-fundamental-mode regime for 1.06-µm laser radiation, serving as a spatial filter and allowing the laser beam's quality to be substantially improved. The same fiber is used to transmit emission from plasmas produced by laser pulses onto the tooth's surface in the backward direction for detection and optical diagnostics.

  8. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber.

    PubMed

    Light, P S; Benabid, F; Couny, F; Maric, M; Luiten, A N

    2007-05-15

    We report the observation of lambda-configuration electromagnetically induced transparency as well as optical pumping in rubidium-filled kagome-structure hollow-coated-core photonic crystal fiber. We show that a polydimethylsiloxane coating of the fiber core reduces the linewidth of the transparency below that which could be expected for an uncoated fiber. The measured 6 MHz linewidth was dominated by optical broadening.

  9. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Light, P. S.; Benabid, F.; Couny, F.; Maric, M.; Luiten, A. N.

    2007-05-01

    We report the observation of lambda-configuration electromagnetically induced transparency as well as optical pumping in rubidium-filled kagome-structure hollow-coated-core photonic crystal fiber. We show that a polydimethylsiloxane coating of the fiber core reduces the linewidth of the transparency below that which could be expected for an uncoated fiber. The measured 6 MHz linewidth was dominated by optical broadening.

  10. Models for guidance in kagome-structured hollow-core photonic crystal fibres.

    PubMed

    Pearce, G J; Wiederhecker, G S; Poulton, C G; Burger, S; St J Russell, P

    2007-10-01

    We demonstrate by numerical simulation that the general features of the loss spectrum of photonic crystal fibres (PCF) with a kagome structure can be explained by simple models consisting of thin concentric hexagons or rings of glass in air. These easily analysed models provide increased understanding of the mechanism of guidance in kagome PCF, and suggest ways in which the high-loss resonances in the loss spectrum may be shifted.

  11. Modal interferometer based on volatile organic compounds diffused in a simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Niu, Luo; Zhao, Chun-Liu; Kang, Juan; Ye, Man-Ping

    2013-12-01

    In this paper, a modal interferometer based on a simplified hollow-core PCF, which diffused with volatile organic compounds (VOCs) in the air holes, is proposed and investigated in our experiment. When light travels through the input single mode fiber and transmits into the simplified hollow-core PCF, there is only fundamental core mode. However, the high-order core modes will be excited when the molecules of VOCs diffuse into the air holes. After propagation of these modes in the simplified hollow-core PCF, they will recombine at the exit single mode fiber. The ethanol is chosen as the VOC sample in our experiments. The interference pattern of the interferometer, based on a 5.1 cm long simplified hollow-core PCF, exhibited fringe spacing of ~30 nm. The transmission intensity decreases while the fringe visibility increases as the ethanol concentration becomes larger, and the interference spectrum of the ethanol-diffused simplified hollow-core PCF modal interferometer has a red-shift, from 1542.96 nm at 250 ppm to 1545.52 nm at 1000 ppm. The modal interference proposed above has great potential as an optical fiber sensor, measuring physical parameters such as the concentration of VOCs.

  12. Microjoule sub-10 fs VUV pulse generation by MW pump pulses using highly efficient chirped four-wave mixing in hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Im, Song-Jin

    2015-03-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10 fs VUV pulses with energy of up to hundreds of µJ by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. The MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30% . This generation can be realized in a kagome-lattice hollow-core PCF filled with noble gas of high pressure with core diameter less than 40 µm, which would enable technically simple or highly efficient coupling to the fundamental mode of the fiber.

  13. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    PubMed

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    SciTech Connect

    Bromberger, H. Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    NASA Astrophysics Data System (ADS)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  16. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers.

    PubMed

    Sintov, Yoav; Malka, Dror; Zalevsky, Zeev

    2014-08-15

    By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

  17. Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber.

    PubMed

    Wheeler, Natalie V; Grogan, Michael D W; Light, Philip S; Couny, Francois; Birks, Timothy A; Benabid, Fetah

    2010-06-01

    We report on kagomé-lattice photonic microcells with low losses, large outer diameters, and large cores. The large (40-70microm) cores are accommodated by tapering the fibers and splicing the reduced ends to a single-mode fiber. We demonstrate the repeatability of this process and obtain splice losses of 0.6dB by optimizing the taper transition length. Narrow electromagnetically induced transparencies and saturable absorption are demonstrated in an acetylene-filled photonic microcell.

  18. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components. PMID:27176984

  19. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  20. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power.

    PubMed

    Heckl, O H; Saraceno, C J; Baer, C R E; Südmeyer, T; Wang, Y Y; Cheng, Y; Benabid, F; Keller, U

    2011-09-26

    In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies.

  1. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ermolov, A.; Mak, K. F.; Frosz, M. H.; Travers, J. C.; Russell, P. St. J.

    2015-09-01

    We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near infrared, spanning at least 113-1000 nm (i.e., 11 -1.2 eV ), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is an interaction between dispersive-wave emission and plasma-induced blue-shifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, the modeling of which proves to be coherent and possesses a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 asec duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1 % and VUV pulse energies in excess of 50 nJ.

  2. Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Novoa, D.; Cassataro, M.; Travers, J. C.; Russell, P. St. J.

    2015-07-01

    We propose a scheme for the emission of few-cycle dispersive waves in the midinfrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, subcycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the midinfrared. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and midinfrared wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle midinfrared radiation.

  3. Kagome-type hollow-core photonic crystal fibers for beam delivery and pulse compression of high-power ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Saraceno, C. J.; Emaury, F.; Diebold, A.; Schriber, C.; Debord, B.; Gérôme, F.; Südmeyer, T.; Benabid, F.; Keller, U.

    2015-02-01

    Tremendous progress has been achieved in the last years in the field of ultrafast high-power sources. Among the different laser technologies driving this progress, thin-disk lasers (TDLs) have gained significant ground, both from amplifiers and modelocked oscillators. Modelocked TDLs are particularly attractive, as they allow for unprecedented high energy and average powers directly from an oscillator. The exponential progress in the performance of these sources drives growing needs for efficient means of beam delivery and pulse compression at high average power (< 100 W) and high peak power (> 10 MW). This remains a challenging regime for standard fiber solutions: microstructured large-mode-area silica photonic-crystal fibers (PCFs) are good candidates, but peak powers are limited to ≈4-6 MW by self-focusing. Hollow-core (HC) capillaries are adapted for higher peak powers, but exhibit high losses and are not suitable for compact beam delivery. In parallel to the progress achieved in the performance of ultrafast laser systems, recent progress in novel hollow-core PCF designs are currently emerging as an excellent solution for these challenges. In particular, Inhibited-coupling Kagome-type HC-PCFs are particularly promising: their intrinsic guiding properties allow for extremely high damage thresholds, low losses over wide transmission windows and ultra-low dispersion. In our most recent results, we achieve pulse compression in the hundred-watt average power regime using Kagome-type HC-PCFs. We launch 127-W, 18-μJ, 740-fs pulses from our modelocked TDL into an Ar-filled fiber (13 bar), reaching 93% transmission. The resulting spectral broadening allows us to compress the pulses to 88 fs at 112 W of average power, reaching 105 MW of peak power, at 88% compression efficiency. These results demonstrate the outstanding suitability of Kagome HC-PCFs for compression and beam delivery of state-of-the-art kilowatt-class ultrafast systems.

  4. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory

    NASA Astrophysics Data System (ADS)

    Sprague, Michael R.; England, Duncan G.; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W. Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S.; Champion, Tessa F. M.; Russell, Philip St. J.; Walmsley, Ian A.

    2013-05-01

    The generation of large multiphoton quantum states—for applications in computing, metrology and simulation—requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realizing this goal: strong light-matter coupling at low powers, simplified alignment and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in such a system, where 90 ± 1% of atoms are prepared in the ground state. We measure high optical depths (3 × 104) and narrow homogeneous linewidths (6 ± 2 MHz) that do not exhibit significant transit-time broadening, showing that we can prepare a Λ-level system in a pure state. Our results establish that kagome fibres are suitable for implementing a broadband, room-temperature quantum memory, as well as a range of nonlinear optical effects.

  5. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Haapamaki, C. M.; Flannery, J.; Bappi, G.; Al Maruf, R.; Bhaskara, S. V.; Alshehri, O.; Yoon, T.; Bajcsy, M.

    2016-08-01

    Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light-matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  6. Hollow-core fiber Fabry-Perot photothermal gas sensor.

    PubMed

    Yang, Fan; Tan, Yanzhen; Jin, Wei; Lin, Yuechuan; Qi, Yun; Ho, Hoi Lut

    2016-07-01

    A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time.

  7. Hollow-core fiber Fabry-Perot photothermal gas sensor.

    PubMed

    Yang, Fan; Tan, Yanzhen; Jin, Wei; Lin, Yuechuan; Qi, Yun; Ho, Hoi Lut

    2016-07-01

    A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time. PMID:27367092

  8. Dual hollow-core anti-resonant fibres

    NASA Astrophysics Data System (ADS)

    Wheeler, N. V.; Bradley, T. D.; Hayes, J. R.; Jasion, G. T.; Chen, Y.; Sandoghchi, S. R.; Horak, P.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    While hollow core-photonic crystal fibres are now a well-established fibre technology, the majority of work on these speciality fibres has been on designs with a single core for optical guidance. In this paper we present the first dual hollow-core anti-resonant fibres (DHC-ARFs). The fibres have high structural uniformity and low loss (minimum loss of 0.5 dB/m in the low loss guidance window) and demonstrate regimes of both inter-core coupling and zero coupling, dependent on the wavelength of operation, input polarisation, core separation and bend radius. In a DHC-ARF with a core separation of 4.3 μm, we find that with an optimised input polarisation up to 65% of the light guided in the launch core can be coupled into the second core, opening up applications in power delivery, gas sensing and quantum optics.

  9. Towards Rydberg quantum optics in a hollow core fiber

    NASA Astrophysics Data System (ADS)

    Noaman, Mohammad; Langbecker, Maria; Windpassinger, Patrick

    2016-05-01

    Cold atoms inside hollow-core fibers present a promising candidate to study strongly coupled light-matter systems. Adding coherent quantum state control and the intriguing features of Rydberg atoms, i.e. long range dipolar interactions leading to a dipole blockade, to the system should allow for the generation of exotic polaritonic and photonic states. This talk will review the current status of our experimental setup where laser cooled Rubidium atoms are transported into a hollow-core fiber. We present the first measurements of Rydberg EIT in the dipole trap in front of the fiber and discuss the progress towards Rydberg physics in a quasi-one-dimensional geometry. This work is supported by FP7, Marie Curie ITN 317485, QTea.

  10. RF-dressed Rydberg atoms in hollow-core fibres

    NASA Astrophysics Data System (ADS)

    Veit, C.; Epple, G.; Kübler, H.; Euser, T. G.; Russell, P. St. J.; Löw, R.

    2016-07-01

    The giant electro-optical response of Rydberg atoms manifests itself in the emergence of sidebands in the Rydberg excitation spectrum if the atom is exposed to a radio-frequency (RF) electric field. Here we report on the study of RF-dressed Rydberg atoms inside hollow-core photonic crystal fibres, a system that enables the use of low modulation voltages and offers the prospect of miniaturised vapour-based electro-optical devices. Narrow spectroscopic features caused by the RF field are observed for modulation frequencies up to 500 MHz.

  11. Guiding properties of kagome-lattice hollow-core fibers

    NASA Astrophysics Data System (ADS)

    Coscelli, E.; Poli, F.; Passaro, D.; Cucinotta, A.; Selleri, S.

    2010-04-01

    Photonic crystal fibers with kagome lattice are a particular kind of micostructured hollow-core fibers whose cross-section is characterized by a web of thin silica struts intersecting in a Star-of-David pattern. Such fibers show unusual properties, such as light confinement in the air-core in absence of a full photonic bandgap. The primary design parameter for such fibers is the strut thickness, which is responsible for the position and the width of the transmission bands. In this paper the guiding properties of hollow-core photonic crystal fibers with kagome lattice are investigated by means of a full-vector modal solver based on the finite element method. The fundamental mode effective index and confinement loss have been evaluated in a wide wavelength range, spanning from 300 nm to 1600 nm, accounting for the influence of the silica strut width on the transmission window. Moreover, the effects of selective alteration of the width and the shape of the silica struts surrounding the core have been analyzed. Simulation results show that the core-surrounding silica ring has the strongest effect on the transmission band, the loss level and the resonance wavelength position and, consequently, it should be carefully controlled during the fiber fabrication.

  12. Spectroscopy of Rb atoms in hollow-core fibers

    SciTech Connect

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-05-15

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  13. Anti-resonant hexagram hollow core fibers.

    PubMed

    Hayes, John R; Poletti, Francesco; Abokhamis, Mousavi S; Wheeler, Natalie V; Baddela, Naveen K; Richardson, David J

    2015-01-26

    Various simple anti-resonant, single cladding layer, hollow core fiber structures are examined. We show that the spacing between core and jacket glass and the shape of the support struts can be used to optimize confinement loss. We demonstrate the detrimental effect on confinement loss of thick nodes at the strut intersections and present a fabricated hexagram fiber that mitigates this effect in both straight and bent condition by presenting thin and radially elongated nodes. This fiber has loss comparable to published results for a first generation, multi-cladding ring, Kagome fiber with negative core curvature and has tolerable bend loss for many practical applications.

  14. Prospects for atomic magnetometers employing hollow core optical fibre

    NASA Astrophysics Data System (ADS)

    Ironside, C. N.; Seunarine, K.; Tandoi, G.; Luiten, A. N.

    2011-07-01

    Presently, among the most demanding applications for highly sensitive magnetometers are Magnetocardiography (MCG) and Magnetoencephalography (MEG), where sensitivities of around 1pT.Hz-1/2 and 1fT.Hz-1/2 are required. Cryogenic Superconducting Quantum Interference Devices (SQUIDs) are currently used as the magnetometers. However, there has been some recent work on replacing these devices with magnetometers based on atomic spectroscopy and operating at room temperature. There are demonstrations of MCG and MEG signals measured using atomic spectroscopy These atomic magnetometers are based on chip-scale microfabricated components. In this paper we discuss the prospects of using photonic crystal optical fibres or hollow core fibres (HCFs) loaded with Rb vapour in atomic magnetometer systems. We also consider new components for magnetometers based on mode-locked semiconductor lasers for measuring magnetic field via coherent population trapping (CPT) in Rb loaded HCFs.

  15. Sensing Features of Long Period Gratings in Hollow Core Fibers

    PubMed Central

    Iadicicco, Agostino; Campopiano, Stefania

    2015-01-01

    We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs) fabricated in hollow core photonic crystal fibers (HC-PCFs) by the pressure assisted Electric Arc Discharge (EAD) technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index. PMID:25855037

  16. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters.

  17. Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared

    NASA Astrophysics Data System (ADS)

    Argyros, Alexander; Pla, Jarryd

    2007-06-01

    Hollow-core microstructured polymer optical fibres with a kagome lattice cladding are reported. These fibres do not have photonic bandgaps, instead, leakage from the core is suppressed by a low density of states in the cladding, a low overlap of the core mode and the cladding modes and a reduced susceptibility to perturbations. The latter two are the result of a low overlap between the core mode and the solid parts of the microstructure, which also reduces the absorption by the polymer. Losses two orders of magnitude below the material loss were observed and the potential of hollow-core polymer fibres to guide light in the infrared, where the material absorption is high, will be discussed.

  18. Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared.

    PubMed

    Argyros, Alexander; Pla, Jarryd

    2007-06-11

    Hollow-core microstructured polymer optical fibres with a kagome lattice cladding are reported. These fibres do not have photonic bandgaps, instead, leakage from the core is suppressed by a low density of states in the cladding, a low overlap of the core mode and the cladding modes and a reduced susceptibility to perturbations. The latter two are the result of a low overlap between the core mode and the solid parts of the microstructure, which also reduces the absorption by the polymer. Losses two orders of magnitude below the material loss were observed and the potential of hollow-core polymer fibres to guide light in the infrared, where the material absorption is high, will be discussed.

  19. Hollow Core Bragg Waveguide Design and Fabrication for Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramanan, Janahan

    Raman spectroscopy is a widely used technique to unambiguously ascertain the chemical composition of a sample. The caveat with this technique is its extremely weak optical cross-section, making it difficult to measure Raman signal with standard optical setups. In this thesis, a novel hollow core Bragg Reflection Waveguide was designed to simultaneously increase the generation and collection of Raman scattered photons. A robust fabrication process of this waveguide was developed employing flip-chip bonding methods to securely seal the hollow core channel. The waveguide air-core propagation loss was experimentally measured to be 0.17 dB/cm, and the Raman sensitivity limit was measured to be 3 mmol/L for glycerol solution. The waveguide was also shown to enhance Raman modes of standard household aerosols that could not be seen with other devices.

  20. THz propagation in kagome hollow-core microstructured fibers.

    PubMed

    Anthony, Jessienta; Leonhardt, Rainer; Leon-Saval, Sergio G; Argyros, Alexander

    2011-09-12

    We demonstrate single mode terahertz (THz) guidance in hollow-core kagome microstructured fibers over a broad frequency bandwidth. The fibers are characterized using a THz time-domain spectroscopy (THz-TDS) setup, incorporating specially designed THz lenses to achieve good mode overlap with the fundamental mode field distribution. Losses 20 times lower than the losses of the fiber material are observed in the experiments, as well as broad frequency ranges of low dispersion, characteristic of hollow-core fibers.

  1. Hollow-core infrared fiber incorporating metal-wire metamaterial.

    PubMed

    Yan, Min; Mortensen, Niels Asger

    2009-08-17

    Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR waveguides usually use a layer of metallic coating on the inner wall of the waveguide. Such a metallic layer, though reflective, still absorbs guided light significantly due to its finite Ohmic loss, especially for transverse-magnetic (TM) light. In this paper, we show that metal-wire based metamaterials may serve as an efficient TM reflector, reducing propagation loss of the TM mode by two orders of magnitude. By further imposing a conventional metal cladding layer, which reflects specifically transverse-electric (TE) light, we can potentially obtain a low-loss hollow-core fiber. Simulations confirm that loss values for several low-order modes are comparable to the best results reported so far.

  2. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  3. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    NASA Astrophysics Data System (ADS)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  4. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres

    PubMed Central

    Slavík, Radan; Marra, Giuseppe; Fokoua, Eric Numkam; Baddela, Naveen; Wheeler, Natalie V.; Petrovich, Marco; Poletti, Francesco; Richardson, David J.

    2015-01-01

    Propagation time through an optical fibre changes with the environment, e.g., a change in temperature alters the fibre length and its refractive index. These changes have negligible impact in many key fibre applications, e.g., telecommunications, however, they can be detrimental in many others. Examples are fibre-based interferometry (e.g., for precise measurement and sensing) and fibre-based transfer and distribution of accurate time and frequency. Here we show through two independent experiments that hollow-core photonic bandgap fibres have a significantly smaller sensitivity to temperature variations than traditional solid-core fibres. The 18 times improvement observed, over 3 times larger than previously reported, makes them the most environmentally insensitive fibre technology available and a promising candidate for many next-generation fibre systems applications that are sensitive to drifts in optical phase or absolute propagation delay. PMID:26490424

  5. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres

    NASA Astrophysics Data System (ADS)

    Slavík, Radan; Marra, Giuseppe; Fokoua, Eric Numkam; Baddela, Naveen; Wheeler, Natalie V.; Petrovich, Marco; Poletti, Francesco; Richardson, David J.

    2015-10-01

    Propagation time through an optical fibre changes with the environment, e.g., a change in temperature alters the fibre length and its refractive index. These changes have negligible impact in many key fibre applications, e.g., telecommunications, however, they can be detrimental in many others. Examples are fibre-based interferometry (e.g., for precise measurement and sensing) and fibre-based transfer and distribution of accurate time and frequency. Here we show through two independent experiments that hollow-core photonic bandgap fibres have a significantly smaller sensitivity to temperature variations than traditional solid-core fibres. The 18 times improvement observed, over 3 times larger than previously reported, makes them the most environmentally insensitive fibre technology available and a promising candidate for many next-generation fibre systems applications that are sensitive to drifts in optical phase or absolute propagation delay.

  6. Hollow core anti-resonant fiber with split cladding.

    PubMed

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Yong, Ken-Tye; Luan, Feng; Yoo, Seongwoo

    2016-04-01

    An improved design for hollow core anti-resonant fibers (HAFs) is presented. A split cladding structure is introduced to reduce the fabrication distortion within design tolerance. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF and is comparable to that of the nested antiresonant nodeless fiber (NANF) with the same core size. In addition, the SCF allows stacking multiple layers of cladding rings to control the CL. The influences of the number of cladding layers and the cladding gap width on the CL of the SCFs have been studied. SCF with three cladding rings is fabricated by the stack-and-draw technique. A measured attenuation spectrum matches well with the calculation prediction. The measured near field mode patterns also prove the feasibility of our fiber design.

  7. Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF.

    PubMed

    Azhar, M; Wong, G K L; Chang, W; Joly, N Y; Russell, P St J

    2013-02-25

    The effective Kerr nonlinearity of hollow-core kagomé-style photonic crystal fiber (PCF) filled with argon gas increases to ~15% of that of bulk silica glass when the pressure is increased from 1 to 150 bar, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering-absent in noble gases-and having an extremely high optical damage threshold. As a result, detailed and well-controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton-created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realization of reconfigurable supercontinuum sources, wavelength convertors and short-pulse laser systems.

  8. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  9. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  10. Hollow core waveguide as mid-infrared laser modal beam filter

    SciTech Connect

    Patimisco, P.; Giglio, M.; Spagnolo, V.; Sampaolo, A.; Kriesel, J. M.; Tittel, F. K.

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  11. Hollow core waveguide as mid-infrared laser modal beam filter

    NASA Astrophysics Data System (ADS)

    Patimisco, P.; Sampaolo, A.; Giglio, M.; Kriesel, J. M.; Tittel, F. K.; Spagnolo, V.

    2015-09-01

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  12. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-03-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  13. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Shephard, Jonathan; Urich, Artur; Carter, Richard; Jaworski, Piotr; Maier, Robert; Belardi, Walter; Yu, Fei; Wadsworth, William; Knight, Jonathan; Hand, Duncan

    2015-04-01

    The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included. High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications. In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm) is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical procedures.

  14. Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range

    NASA Astrophysics Data System (ADS)

    Kolyadin, A. N.; Alagashev, G. K.; Pryamikov, A. D.; Gladyshev, A. V.; Kosolapov, A. F.; Biriukov, A. S.; Bufetov, IA

    2016-08-01

    In this paper we consider a problem of using negative curvature hollow-core fibers for creation of Raman lasers in the mid IR spectral range. New designs of this type of fibers with cladding formed by one layer of double nested capillaries are discussed and their optical properties are investigated numerically and experimentally. It will be shown that it is possible to reduce the Raman generation threshold by decreasing an effective mode area in such fibers using nested capillaries in the cladding.

  15. Broadband electric-field-induced LP01 and LP02 second harmonic generation in Xe-filled hollow-core PCF.

    PubMed

    Ménard, Jean-Michel; Köttig, Felix; St J Russell, Philip

    2016-08-15

    Second harmonic (SH) generation with 300 fs pump pulses is reported in a xenon-filled hollow-core photonic crystal fiber (PCF) across which an external bias voltage is applied. Phase-matched intermodal conversion from a pump light in the LP01 mode to SH light in the LP02 mode is achieved at a particular gas pressure. Using periodic electrodes, quasi-phase-matched SH generation into the low-loss LP01 mode is achieved at a different pressure. The low linear dispersion of the gas enables phase-matching over a broad spectral window, resulting in a measured bandwidth of ∼10  nm at high pump energies. A conversion efficiency of ∼18%/mJ is obtained. Gas-filled anti-resonant-reflecting hollow-core PCF uniquely offers pressure-tunable phase-matching, ultra-broadband guidance, and a very high optical damage threshold, which hold great promise for efficient three-wave mixing, especially in difficult-to-access regions of the electromagnetic spectrum. PMID:27519091

  16. Raman amplification of pure side-seeded higher-order modes in hydrogen-filled hollow-core PCF.

    PubMed

    Ménard, Jean-Michel; Trabold, Barbara M; Abdolvand, Amir; Russell, Philip St J

    2015-01-26

    We use Raman amplification in hydrogen-filled hollow-core kagomé photonic crystal fiber to generate high energy pulses in pure single higher-order modes. The desired higher-order mode at the Stokes frequency is precisely seeded by injecting a pulse of light from the side, using a prism to select the required modal propagation constant. An intense pump pulse in the fundamental mode transfers its energy to the Stokes seed pulse with measured gains exceeding 60 dB and output pulse energies as high as 8 µJ. A pressure gradient is used to suppress stimulated Raman scattering into the fundamental mode at the Stokes frequency. The growth of the Stokes pulse energy is experimentally and theoretically investigated for six different higher-order modes. The technique has significant advantages over the use of spatial light modulators to synthesize higher-order mode patterns, since it is very difficult to perfectly match the actual eigenmode of the fiber core, especially for higher-order modes with complex multi-lobed transverse field profiles.

  17. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    NASA Astrophysics Data System (ADS)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  18. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-01

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  19. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    PubMed

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  20. High-contrast grating hollow-core waveguide splitter applied to optical phased array

    NASA Astrophysics Data System (ADS)

    Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei

    2014-11-01

    A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.

  1. Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications

    NASA Astrophysics Data System (ADS)

    Vincetti, L.

    2009-08-01

    Propagation loss and dispersion characteristics of a hollow core microstructured fiber in the THz regime are numerically investigated. The fiber cladding consists of a triangular lattice formed by a periodic arrangement of dielectric tubes of Teflon. Numerical results show that guidance mechanism is the same of kagome and square lattice fibers. Low loss and low dispersion frequency ranges can be tuned just by changing the thickness of the tubes irrespectively of their diameter. Propagation loss four decades lower than the bulk absorption and dispersion lower 0.03 ps/nm km can be obtained over a band of about 1.7 THz centered at 2.1 THz.

  2. Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber.

    PubMed

    Beaudou, B; Gerôme, F; Wang, Y Y; Alharbi, M; Bradley, T D; Humbert, G; Auguste, J-L; Blondy, J-M; Benabid, F

    2012-05-01

    We report on power handling oriented design of kagome lattice hollow-core fiber and demonstrate through it for the first time nanosecond laser pulses induced spark ignition in a friendly manner. Two different core designs and transmission bands are investigated and evaluated. The energy threshold damage was measured to be in excess of the 10 mJ level and the output power density is approaching the TW/cm2 after focusing; demonstrating the outstanding ability of such fiber for high power delivery.

  3. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  4. Thermal and Structural Analysis of a Hollow Core Space Shuttle Main Engine (SSME) Turbine Blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; McGaw, Michael A.

    1995-01-01

    The influence of primary and secondary orientations on the elastic response of a hollow core, (001)-oriented nickel base single-crystal superalloy turbine blade, was investigated under combined thermal and mechanical conditions. Finite element techniques is employed through MARC finite element code to conduct the analyses on a hollow core SSME turbine blade made out of PWA 1480 single crystal material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal blade were determined for different orientations of the blade. The influence of angular offsets such as the single crystal's primary and secondary orientations and the loading conditions on the elastic stress response of the PWA 1480 hollow blade are summarized. The influence of he primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle.

  5. Switchable and tunable erbium-doped fiber lasers using a hollow-core Bragg fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Tanglin; Lian, Zhenggang; Wang, Xin; Shen, Yan; Lou, Shuqin

    2016-11-01

    A switchable and tunable erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated in this paper. A novel comb filter, which consists of a section of hollow-core Bragg fiber cascaded with Sagnac loop based on a polarization-maintaining fiber (PMF), is developed to suppress the mode competition in the EDFL. By carefully adjusting the polarization controllers, switchable and tunable single- or dual-wavelength lasing outputs with side-mode suppression ratios as high as 50 dB can be achieved. Single-wavelength lasing outputs with a 3 dB linewidth of 0.02 nm can be tuned within the wavelength range from 1562.4 nm to 1565.8 nm. Two kinds of dual-wavelength lasing outputs with different wavelength intervals of 1 nm and 2.1 nm can be obtained and the corresponding tunable wavelength range is 0.5 nm. Moreover, the wavelength shift and peak power fluctuation of both the single- and dual-wavelength lasing outputs are less than 0.1 nm and 2 dB over half an hour at room temperature, which indicates that the proposed fiber laser has good stability. To the best of our knowledge, it is the first time that a hollow-core Bragg fiber has been used as a comb filter in the EDFL.

  6. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers.

    PubMed

    Yu, Fei; Xu, Mengrong; Knight, Jonathan C

    2016-06-13

    Anti-resonant hollow-core fibers are optical fiber waveguides which exhibit very low dispersion, high damage threshold and ultra-low nonlinear response. However, they typically deliver the light in several spatial modes, whereas their application usually requires that they support a single spatial mode. We report the principles, fabrication, demonstration and characterization of anti-resonant hollow-core fibres with strong differential modal attenuations and low overall attenuations. These fibers perform as single-mode and are eminently suitable for delivery of powerful ultrashort optical pulses in machining, cutting, welding and multiphoton microscopy applications. PMID:27410316

  7. Terahertz Mach-Zehnder interferometer based on a hollow-core metallic ridge waveguide

    NASA Astrophysics Data System (ADS)

    Gerhard, M.; Beigang, R.; Rahm, M.

    2015-04-01

    While terahertz time-domain spectroscopy directly measures amplitude and phase of pulsed terahertz electric fields, the use of more compact terahertz continuous wave sources requires interferometric measurement techniques to obtain phase information. Since constructive and destructive interference are governed by the relative phase of the superimposing fields the phase information can be retrieved from the amplitude modulation signal at the output of the interferometer. Here, we present phase-sensitive measurements of terahertz electric fields in a Mach-Zehnder interferometer that is integrated in a hollow-core metallic ridge waveguide. With lactose in one of the interferometer arms, we measured the modulated amplitude spectrum of the interferometer output signal which carries information about the dielectric properties of the investigated lactose. We explain the measured transmission spectra and the observed dielectric resonances by analytic and numerical means and further confirmed the results by a spectroscopic reference measurement of lactose in a conventional waveguide.

  8. A novel fabrication of fiber Bragg grating in hollow-core fiber with HPDLCs

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Hao; Choi, Wing-Kit; Wang, Lon A.

    2015-02-01

    An electrically controllable fiber Bragg grating (FBG) for working in the communication band is demonstrated by utilizing holographic polymer-dispersed liquid crystal (HPDLCs). PDLC is infiltrated in hollow-core fibers which are about 2μm and 5μm by means of capillarity. For the purpose of periodically separating polymer and liquid crystal to form an FBG, a two-beam interference system based on an argon laser (wavelength: 364nm) is used. To reduce coupling loss, we directly connect single-mode fibers (SMFs) to input and output ports. A maximum transmission loss dip of approximately 5-dB band rejection is obtained. After the cladding diameter is etched by buffered oxide etchant (BOE) solution to 12μm and a 150V external voltage is applied, a dip shift by ~ 15nm is measured

  9. Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material

    SciTech Connect

    Bejot, P.; Schmidt, B. E.; Legare, F.; Kasparian, J.; Wolf, J.-P.

    2010-06-15

    We numerically investigate the pulse compression mechanism in the infrared spectral range based on the successive action of nonlinear pulse propagation in a hollow-core fiber followed by linear propagation through bulk material. We found an excellent agreement of simulated pulse properties with experimental results at 1.8 {mu}m in the two-optical-cycle regime close to the Fourier limit. In particular, the spectral phase asymmetry attributable to self-steepening combined with self-phase modulation is a necessary prerequisite for subsequent compensation by the phase introduced by glass material in the anomalous dispersion regime. The excellent agreement of the model enabled simulating pressure and wavelength tunability of sub-two cycles in the range from 1.5 to 4 {mu}m with this cost-efficient and robust approach.

  10. Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries.

    PubMed

    Sun, Qiang; He, Bin; Zhang, Xiang-Qian; Lu, An-Hui

    2015-08-25

    We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C). PMID:26182333

  11. Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries.

    PubMed

    Sun, Qiang; He, Bin; Zhang, Xiang-Qian; Lu, An-Hui

    2015-08-25

    We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li(+) ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C).

  12. Nonlinear endoscopy with Kagomé lattice hollow-core fibers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lombardini, Alberto; Sivankutty, Siddharth; Chen, Xueqin; Wenger, Jérôme; Habert, Rémi; Fourcade-Dutin, Coralie; Andresen, Esben R.; Kudlinski, Alexandre; Rigneault, Hervé

    2016-03-01

    The development of nonlinear fiber-endoscopes capable of imaging deeper in tissues and accessing internal organs represents a very attractive perspective for application of nonlinear optical microscopes to in-vivo research and diagnostics. The transmission of ultra-short laser pulses within a fiber is a critical issue in the development of such endoscopes. For instance, self-phase modulation (SPM), four-wave mixing (FWM) and Raman scattering occurring in conventional fibers severely affect transmitted pulses profiles in the time and frequency domains. Hollow-core (HC) fibers bring a solution to the problem, since propagation of the pulses in the air core limits nonlinear interactions. We employ here a novel double clad Kagomé-lattice HC fiber for the delivery of ultrafast pulses across a large spectral window (~400nm) with no pulse distortion. The epi-collection of the signal generated at the sample is efficiently performed with a specially designed outer multimode cladding. The fiber is incorporated in a prototype endoscope using a four-quartered piezo-electric tube to scan the laser beam on the sample. The low numerical aperture of the hollow-core (0.02) is efficiently increased by means of a dielectric microsphere attached to the fiber face. This results in tight focusing (~1 micron) of the beam at the HC fiber output. Resonant scanning of the fiber tip allows imaging over a field of 300 microns using low driving voltages. High-resolution images with different contrast mechanisms, such as SHG and TPEF, acquired with the prototype endoscope illustrate the potential of these fibers for nonlinear imaging in regions otherwise inaccessible to conventional optical microscopes.

  13. Nonlinear compression of ultrafast industrial lasers in hypocyloid-core Kagome hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Giree, A.; Guichard, F.; Machinet, G.; Zaouter, Y.; Hagen, Y.; Debords, B.; Dupriez, P.; Gérôme, F.; Hanna, M.; Benabid, F.; Hönninger, C.; Georges, P.; Mottay, E.

    2015-03-01

    The duration of energetic ultrashort pulses is usually limited by the available gain bandwidth of ultrashort amplifiers used to amplify nJ or pJ level seed to hundreds of μμJ or even several mJ. In the case of Ytterbium-doped fiber amplifiers, the available bandwidth is of the order of 40 nm, typically limiting the pulse duration of high-energy fiber chirped-pulse amplifiers to durations above 300 fs. In the case of solid-state amplifier based on Yb:YAG crystals, the host matrix order restricts the amplification bandwidth even more leading to pulses in the low picosecond range. Both architecture would greatly benefit from pulse durations well-below what is allowed by their respective gain bandwidth e.g. sub-100 fs for fiber amplifier and sub-300 fs for solid-state Yb:YAG amplifier. In this contribution, we report on the post-compression of two high energy industrial ultrashort fiber and thin-disk amplifiers using an innovative and efficient hollow core fiber structure, namely the hypocycloid-core Kagome fiber. This fiber exhibits remarkably low propagation losses due to the unique inhibited guidance mechanism that minimize that amount of light propagating in the silica cladding surrounding the hollow core. Spectral broadening is realized in a short piece of Kagome fiber filled with air at 1 atmosphere pressure. For both amplifiers, we were able to demonstrate more than 200 μJ of energy per pulse with duration <100 fs in the case of the fiber amplifier and <300 fs in the case of the thin disk amplifier. Limitations and further energy scaling will also be discussed.

  14. Recent developments in laser-driven and hollow-core fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Digonnet, M. J. F.; Chamoun, J. N.

    2016-05-01

    Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.

  15. Comparison of the filamentation and the hollow-core fibercharacteristics for pulse compression into the few-cycle regime

    SciTech Connect

    Gallmann, L.; Pfeifer, T.; Nagel, P.M.; Abel, M.J.; Neumark,D.M.; Leone, S.R.

    2006-10-23

    The gas-filled hollow-core fiber compression and the opticalfilamentation technique are compared experimentally in a parameter regimesuitable for intense few-cycle pulse generation. In particular, pointingstability, spectral properties, and spatial chirp are investigated. It isfound that in the case of filamentation, the critical parameter forpointing stability is gas pressure inside the generation cell whereas forthe hollow-core fiber it is alignment that plays this role. Thehollow-core fiber technique yields spectra that are better suited forchirped-mirror pulse compression whereas filamentation offers higherthroughput and prospects for easy-to-implement self-compression. Wepresent spectral phase interferometry for direct electric-fieldreconstruction (SPIDER) measurements that directly show the transition inthe spectral phase of the output continua into the self-compressionregime as the gas pressure is increased.

  16. Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor.

    PubMed

    Xie, Qing; Zhao, Yingying; Chen, Xu; Liu, Haimei; Evans, David G; Yang, Wensheng

    2011-09-01

    Nanosheet-based titania (TiO(2)) microspheres with a hollow core-shell structure have been synthesized and employed to immobilize horseradish peroxidase (HRP) in order to fabricate a mediator-free biosensor. The morphology and structure of the TiO(2) microspheres were characterized by X-ray diffraction, scanning electron microscopy and transmission electronic microscopy. A possible growth mechanism has been proposed. Spectroscopic and electrochemical measurements revealed that the TiO(2) microspheres are an immobilization support with biocompatibility for enzymes, affording good enzyme stability and bioactivity. Due to the nanosheet-based hollow core-shell structure of the TiO(2) microspheres, the direct electron transfer of HRP is facilitated and the resulting biosensor displayed good performance for the detection of H(2)O(2), with both a low detection limit of 0.05 μM and a wide linear range of 0.4-140 μM, as well as a fast response and excellent long-term stability. The nanosheet-based TiO(2) microspheres with hollow core-shell structure, can be used for the efficient entrapment of other redox-active proteins and have wide potential applications in biosensors, biocatalysis, biomedical devices and bioelectronics. PMID:21663956

  17. Photonic crystal fibers for food quality analysis

    NASA Astrophysics Data System (ADS)

    Malinin, A. V.; Zanishevskaja, A. A.; Tuchin, V. V.; Skibina, Yu. S.; Silokhin, I. Y.

    2012-06-01

    The aspects of application of the hollow core photonic crystal waveguides for spectroscopic analysis of liquid medium were considered. The possibility of using these structures for analysis of a fruit juice was evaluated. The principles of processing of photonic crystal waveguide transmission spectra, which is sensitive to quality of juice, its composition, and main component concentration, were revealed.

  18. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  19. Perforated hollow core waveguides for Alkali Vapor-cells and Slow Light Devices

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, Matthieu C.

    The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation. Keywords: Matthieu Giraud-Carrier, Aaron Hawkins, microfabrication, spectroscopy, slow light, stopped light, EIT, rubidium, diffusion, vapor transport, microfabrication, ARROW, light-matter interactions, waveguide.

  20. Constructing Hierarchically Hollow Core-Shell MnO2 /C Hybrid Spheres for High-Performance Lithium Storage.

    PubMed

    Wang, Gang; Sun, Yuhan; Li, Debao; Wei, Wei; Feng, Xinliang; Müllen, Klaus

    2016-08-01

    Hierarchical MnO2 /C hybrid spheres (MCS@MnO2 ), consisting of numerous hollow core-shell MnO2 @C nanospheres, are developed via a facile deposition process. The well-defined inner voids and robust carbon framework endow MCS@MnO2 with excellent mechanical stability, efficient utilization of MnO2 , and enhanced reaction kinetics for Li-ion batteries, therefore leading to large specific capacities, superior rate capability, and long-term cycling stability. PMID:27275631

  1. Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Huang; Ye, Dai; Rui-Rui, Zhao; Ding, Wang; Yu-Xin, Leng

    2016-07-01

    We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, 11134010, and 61205208), the National Basic Research Program of China (Grant No. 2011CB808101), and the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800).

  2. Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber.

    PubMed

    Gao, R; Jiang, Y; Zhao, Yang

    2014-11-01

    A compact all-fiber magnetic field sensor based on the magnetic gel coated hollow core fiber (HCF) has been proposed and experimentally demonstrated. A double-layered Fabry-Perot resonator is formed by coating a magnetic gel layer on the surface of the HCF. Anti-resonant reflecting guidance of light can be achieved in the HCF, and leaky mode is induced at resonant wavelength of the double-layered Fabry-Perot resonator, which results in lossy dips in the transmission spectrum of the HCF. Due to the tunable magneto-elastic effect, the shape of the magnetic gel is deformed with the external magnetic field, which results in a change of the resonate condition for the double-layered Fabry-Perot resonator. The magnetic field can be measured by interrogating the wavelength of the lossy dip. The experimental results show that a magnetic field sensitivity of 245  pm/Oe is achieved.

  3. Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Leng, Yuxin

    2013-10-01

    We numerically study the propagation dynamics and compression of ultrashort laser pulses in a hollow-core fiber (HCF) filled with noble gases at different carrier wavelengths from 1.8 μm to 3.9 μm. In the optimal parameter range, single-cycle or even sub-cycle pulses with clean spatial and temporal profiles can be obtained due to chirp compensation beyond 3rd order by bulk material. It is found that the intensity-dependent group velocity sets the upper limits on both the gas pressures and input pulse energies if a clean and well-compressed pulse is required only through compression with bulk materials. In order to use higher gas pressures and larger input energies, two ways are demonstrated to deal with the limitations imposed by the intensity-dependent group velocity.

  4. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    PubMed

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  5. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  6. Photonic crystal fibers in biophotonics

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  7. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  8. Ultraviolet Light Generation in Gas-Filled Kagome Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2015-03-01

    Kagome hollow-core photonic crystal fibers were found to be ideal for the occurrence of ultrafast non-linear optics. This article reports the optimal conditions for the generation of ultraviolet light using a gas filled kagome hollow-core-photonic crystal fiber. It is shown that by changing the pressure of the gas and the input pulse characteristics, the efficiency of conversion and quality of ultraviolet light can be improved, as well as tuning its central frequency. Results suggest that a highly coherent and tunable ultraviolet light source can be constructed, which can find numerous applications.

  9. Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers.

    PubMed

    Zeisberger, Matthias; Tuniz, Alessandro; Schmidt, Markus A

    2016-09-01

    We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (< 1 dB/m at 10.6 µm). Our model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination. PMID:27607656

  10. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  11. Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids.

    PubMed

    Lee, Cheng-Ling; Ho, Hsuan-Yu; Gu, Jheng-Hong; Yeh, Tung-Yuan; Tseng, Chung-Hao

    2015-02-15

    A microcavity fiber Fabry-Perot interferometer (MFFPI) that is based on dual hollow core fibers (HCFs) is developed for measuring the thermo-optic coefficients (TOCs) of liquids. The proposed MFFPI was fabricated by fusion-splicing a tiny segment of the main-HCF with a diameter D of 30 μm and another section of feeding-HCF with a diameter of 5 μm. Then, the main-HCF was filled with liquid by capillary action through the feeding-HCF by immersing the MFFPI in the liquid. The TOCs of the Cargille liquid (n(D)=1.3), deionized (DI) water, and ethanol were accurately determined from the shift of the interference wavelength, which was due to the temperature variation. Our experimental results were also compared with other published studies to investigate the effectiveness of the proposed sensing scheme. The major advantage is that the miniature MFFPI can achieve the measurement of the TOCs of the liquids with picoliter volume, and the measured liquids also can be sealed off and stored inside the HCF to prevent contamination.

  12. Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids.

    PubMed

    Lee, Cheng-Ling; Ho, Hsuan-Yu; Gu, Jheng-Hong; Yeh, Tung-Yuan; Tseng, Chung-Hao

    2015-02-15

    A microcavity fiber Fabry-Perot interferometer (MFFPI) that is based on dual hollow core fibers (HCFs) is developed for measuring the thermo-optic coefficients (TOCs) of liquids. The proposed MFFPI was fabricated by fusion-splicing a tiny segment of the main-HCF with a diameter D of 30 μm and another section of feeding-HCF with a diameter of 5 μm. Then, the main-HCF was filled with liquid by capillary action through the feeding-HCF by immersing the MFFPI in the liquid. The TOCs of the Cargille liquid (n(D)=1.3), deionized (DI) water, and ethanol were accurately determined from the shift of the interference wavelength, which was due to the temperature variation. Our experimental results were also compared with other published studies to investigate the effectiveness of the proposed sensing scheme. The major advantage is that the miniature MFFPI can achieve the measurement of the TOCs of the liquids with picoliter volume, and the measured liquids also can be sealed off and stored inside the HCF to prevent contamination. PMID:25680124

  13. Spectral characterization of a photonic bandgap fiber for sensing applications.

    PubMed

    Aref, S Hashem; Amezcua-Correac, Rodrigo; Carvalho, Joel P; Frazão, Orlando; Santos, José L; Araújo, Francisco M; Latifi, Hamid; Farahi, Faramarz; Ferreira, Luis A; Knight, Jonathan C

    2010-04-01

    We study the measurand-induced spectral shift of the photonic bandgap edge of a hollow-core photonic crystal fiber. The physical measurands considered are strain, temperature, curvature, and twist. A noticeable sensitivity to strain, temperature, and twist is observed, with a blueshift to increase strain and twist. An increase in temperature induces a redshift. On the other hand, curvature has no observable effect on the spectral position of the photonic bandgap edge. PMID:20357872

  14. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  15. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  16. Spectral phase transfer from near IR to deep UV by broadband phase-matched four-wave mixing in an argon-filled hollow core waveguide

    NASA Astrophysics Data System (ADS)

    Siqueira, J. P.; Mendonça, C. R.; Zilio, S. C.; Misoguti, L.

    2016-10-01

    We report on the implementation of a spectral phase transfer scheme from near IR to deep UV, in which the frequency conversion step is based on the broadband phase-matched four-wave mixing in a gas-filled hollow core waveguide. Micro joule level femtosecond pulses at 260 nm were generated by nonlinear mixing of a Ti:sapphire laser and its second-harmonic. The transfer of a π-step phase in a controllable manner was proposed and confirmed by a modulation observed in the generated deep UV femtosecond pulse spectrum due to an interference process. Numerical simulations confirmed our results.

  17. Damage-free single-mode transmission of deep-UV light in hollow-core PCF.

    PubMed

    Gebert, F; Frosz, M H; Weiss, T; Wan, Y; Ermolov, A; Joly, N Y; Schmidt, P O; Russell, P St J

    2014-06-30

    Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagomé type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability.

  18. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  19. Guidance in Kagome-like photonic crystal fibres I: analysis of an ideal fibre structure.

    PubMed

    Chen, Lei; Pearce, Greg J; Birks, Timothy A; Bird, David M

    2011-03-28

    Propagation of light in a square-lattice hollow-core photonic crystal fibre is analysed as a model of guidance in a class of photonic crystal fibres that exhibit broad-band guidance without photonic bandgaps. A scalar governing equation is used and analytic solutions based on transfer matrices are developed for the full set of modes. It is found that an exponentially localised fundamental mode exists for a wide range of frequencies. These analytic solutions of an idealised structure will form the basis for analysis of guidance in a realistic structure in a following paper.

  20. Effects of structure parameters on the sensor performance of photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Pang, Yuanfeng; Bo, Xiaochen

    2015-02-01

    A simple and compact sensor based on a photonic crystal fiber (PCF) for the in-situ detection of fluorescence signals with high sensitivity is demonstrated. Several different kinds of PCF probes are studied. The effect of PCF parameters on sensitivity and the guiding mechanisms are analyzed, and the performance of PCF probes is experimentally evaluated by measuring the fluorescence signal of Cy3 dye. In addition, the detection sensitivity of the hollow-core PCF probe and the flat-tippedmulti-mode fiber probe is compared. The experimental results show that the hollow-core PCF probe provides a greater than five-fold increase in detection sensitivity compared with direct measurements by a flat-tippedmulti-mode fiber probe, which shows its potential for wide applications to in-situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity.

  1. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R.J.; Colby, E.R.; Ischebeck, R.; McGuinness, C.M.; Noble, R.; Plettner, T.; Sears, C.M.S.; Siemann, R.H.; Spencer, J.E.; Walz, D.; /SLAC

    2011-11-21

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  2. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R. J.; Colby, E. R.; McGuinness, C. M.; Noble, R.; Plettner, T.; Siemann, R. H.; Spencer, J. E.; Walz, D.; Ischebeck, R.; Sears, C. M. S.

    2009-01-22

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50 pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. We will describe the experimental plan and recent simulation studies of candidate fibers.

  3. Fiber transport of spatially entangled photons

    NASA Astrophysics Data System (ADS)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  4. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7-7.6 μm Spectral Range.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2016-01-01

    We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range. PMID:27089343

  5. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7–7.6 μm Spectral Range

    PubMed Central

    Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2016-01-01

    We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7–7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5–12 µm. We demonstrated Gaussian-like outputs throughout the 4.5–7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range. PMID:27089343

  6. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7-7.6 μm Spectral Range.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2016-04-13

    We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range.

  7. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Finger, Martin A.; Iskhakov, Timur Sh.; Joly, Nicolas Y.; Chekhova, Maria V.; Russell, Philip St. J.

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ˜2500 photons per mode. The ultra-broadband (˜50 THz ) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  8. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum.

    PubMed

    Finger, Martin A; Iskhakov, Timur Sh; Joly, Nicolas Y; Chekhova, Maria V; Russell, Philip St J

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50  THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  9. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    PubMed

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power.

  10. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    PubMed

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power. PMID:25831302

  11. Design of a compact mode and polarization converter in three-dimensional photonic crystals.

    PubMed

    Wang, Jian; Qi, Minghao

    2012-08-27

    A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25 μm-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 16 nm centered at 1550 nm, whereas the reflection remains below -20 dB. The polarization extinction ratio of the conversion is in principle infinitely high because both W1 waveguides operate in the single-mode regimes in this wavelength range.

  12. Two-octave supercontinuum generation in a water-filled photonic crystal fiber.

    PubMed

    Bethge, J; Husakou, A; Mitschke, F; Noack, F; Griebner, U; Steinmeyer, G; Herrmann, J

    2010-03-15

    Supercontinuum generation in a water-filled photonic crystal fiber is reported. By only filling the central hollow core of this fiber with water, the fiber properties are changed such that the air cladding provides broadband guiding. Using a pump wavelength of 1200 nm and few-microjoule pump pulses, the generation of supercontinua with two-octave spectral coverage from 410 to 1640 nm is experimentally demonstrated. Numerical simulations confirm these results, revealing a transition from a soliton-induced mechanism to self-phase modulation dominated spectral broadening with increasing pump power. Compared to supercontinua generated in glass core photonic fibers, the liquid core supercontinua show a higher degree of coherence, and the larger mode field area and the higher damage threshold of the water core enable significantly higher pulse energies of the white light pulses, ranging up to 0.39microJ. PMID:20389646

  13. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation.

    PubMed

    Zhang, Rui; Teipel, Jörn; Giessen, Harald

    2006-07-24

    We have numerically studied a hollow-core photonic crystal fiber, with its core filled with highly nonlinear liquids such as carbon disulfide and nitrobenzene. Calculations show that the fiber has an extremely high nonlinear parameter gamma on the order of 2.4/W/m at 1.55 mum. The group velocity dispersion of this fiber exhibits an anomalous region in the near-infrared, and its zero-dispersion wavelength is around 1.55 mum. This leads to potentially significant improvements and a large bandwidth in supercontinuum generation. The spectral properties of the supercontinuum generation in liquid-core photonic crystal fibers are simulated by solving the generalized nonlinear Schrödinger equation. The results demonstrate that the liquid-core PCF is capable to generate dramatically broadened supercontinua in a range from 700 nm to more than 2500 nm when pumping at 1.55 mum with subpicosecond pulses. PMID:19516862

  14. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Teipel, Jörn; Giessen, Harald

    2006-07-01

    We have numerically studied a hollow-core photonic crystal fiber, with its core filled with highly nonlinear liquids such as carbon disulfide and nitrobenzene. Calculations show that the fiber has an extremely high nonlinear parameter γ on the order of 2.4/W/m at 1.55 μm. The group velocity dispersion of this fiber exhibits an anomalous region in the near-infrared, and its zero-dispersion wavelength is around 1.55 μm. This leads to potentially significant improvements and a large bandwidth in supercontinuum generation. The spectral properties of the supercontinuum generation in liquid-core photonic crystal fibers are simulated by solving the generalized nonlinear Schrödinger equation. The results demonstrate that the liquid-core PCF is capable to generate dramatically broadened supercontinua in a range from 700 nm to more than 2500 nm when pumping at 1.55 μm with subpicosecond pulses.

  15. Controlled chemical modification of the internal surface of photonic crystal fibers for application as biosensitive elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Sergey A.; Burmistrova, Natalia A.; Pidenko, Pavel S.; Shuvalov, Andrey A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2016-10-01

    Photonic crystal fibers (PCF) are one of the most promising materials for creation of constructive elements for bio-, drug and contaminant sensing based on unique optical properties of the PCF as effective nanosized optical signal collectors. In order to provide efficient and controllable binding of biomolecules, the internal surface of glass hollow core photonic crystal fibers (HC-PCF) has been chemically modified with silanol groups and functionalized with (3-aminopropyl) triethoxysilane (APTES). The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of silanol groups on the HC-PCF inner surface. The relationship between amount of silanol groups on the HC-PCF inner surface and efficiency of following APTES functionalization has been evaluated. Covalent binding of horseradish peroxidase (chosen as a model protein) on functionalized PCF inner surface has been performed successively, thus verifying the possibility of creating a biosensitive element.

  16. Guidance in Kagome-like photonic crystal fibres II: perturbation theory for a realistic fibre structure.

    PubMed

    Chen, Lei; Bird, David M

    2011-03-28

    A perturbation theory is developed that treats a localised mode embedded within a continuum of states. The method is applied to a model rectangular hollow-core photonic crystal fibre structure, where the basic modes are derived from an ideal, scalar model and the perturbation terms include vector effects and structural difference between the ideal and realistic structures. An expression for the attenuation of the fundamental mode due to interactions with cladding modes is derived, and results are presented for a rectangular photonic crystal fibre structure. Attenuations calculated in this way are in good agreement with numerical simulations. The origin of the guidance in our model structure is explained through this quantitative analysis. Further perspectives are obtained through investigating the influence of fibre parameters on the attenuation.

  17. Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers.

    PubMed

    Finger, M A; Joly, N Y; Weiss, T; Russell, P St J

    2014-02-15

    Precise knowledge of the group velocity dispersion in gas-filled hollow-core photonic crystal fiber is essential for accurate modeling of ultrafast nonlinear dynamics. Here we study the validity of the capillary approximation commonly used to calculate the modal refractive index in kagomé-style photonic crystal fibers. For area-preserving core radius a(AP) and core wall thickness t, measurements and finite element simulations show that the approximation has an error greater than 15% for wavelengths longer than 0.56√(a(AP)t), independently of the gas-filling pressure. By introducing an empirical wavelength-dependent core radius, the range of validity of the capillary approximation is extended out to a wavelength of at least 0.98√(a(AP)t).

  18. Detection of analyte refractive index and concentration using liquid-core photonic Bragg fibers

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Qu, Hang; Skorobogatiy, Maksim

    2016-03-01

    We demonstrate detection of liquid analyte refractive index by using a hollow-core photonic Bragg fiber. We apply this fiber sensor to monitor concentrations of commercial cooling oil. The sensor operates on a spectral modality. Variation in the analyte refractive index modifies the bandgap guidance of a fiber, leading to spectral shifts in the fiber transmission spectrum. The sensitivity of the sensor to changes in the analyte refractive index filling in the fiber core is found to be 1460nm/Refractive index unit (RIU). By using the spectral modality and effective medium theory, we determine the concentrations of commercial fluid from the measured refractive indices with an accuracy of ~0.42%. The presented fiber sensor can be used for on-line monitoring of concentration of many industrial fluids and dilutions with sub-1%v accuracy.

  19. Transmission and Propagation of an Accelerating Mode in a Photonic Bandgap Fiber

    SciTech Connect

    Ng, C.-K.; England, R.J.; Lee, L.-Q.; Noble, R.; Rawat, V.; Spencer, J.; /SLAC

    2010-08-26

    A hollow core photonic bandgap (PBG) lattice in a dielectric fiber can provide high gradient acceleration in the optical regime, where the accelerating mode resulting from a defect in the PBG fiber can be excited by high-power lasers. Efficient methods of coupling laser power into the PBG fiber are an area of active research. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to study the propagation of the accelerating mode in the PBG fiber and determine the radiation pattern into free space at the end of the PBG fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed.

  20. Coherent propagation of a single photon in a lossless medium: 0π pulse formation, storage, and retrieval in multiple temporal modes

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sh.; Malakyan, Yu.

    2013-12-01

    Single-photon coherent optics represents a fundamental importance for the investigation of quantum light-matter interactions. While most work has considered the interaction in the steady-state regime, here we demonstrate that a single-photon pulse shorter than any relaxation time in a medium propagates without energy loss and is consistently transformed into a zero-area pulse. A general analytical solution is found for photon passage through a cold ensemble of Λ-type atoms confined inside a hollow core of a single-mode photonic-crystal fiber. We use the robust far-off-resonant Raman scheme to control the pulse reshaping by an intense control laser beam and show that in the case of cw control field, for exact two-photon resonance, the outgoing photon displays an oscillating temporal distribution, which is the quantum counterpart of a classical field ringing, while for nonzero two-photon detuning a slow photon is produced. We demonstrate also that a train of readout control pulses coherently recalls the stored photon in many well-separated temporal modes, thus producing time-bin entangled single-photon states. Such states, which allow sharing quantum information among many users, are highly demanded for applications in long-distance quantum communication.

  1. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  2. Photon-photon colliders

    SciTech Connect

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  3. Photon-photon colliders

    SciTech Connect

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  4. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  5. Optical quantum memory for ultrafast photons using molecular alignment

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Heshami, K.; England, D. G.; Bustard, P. J.; Sussman, B. J.; Spanner, M.

    2016-11-01

    The absorption of broadband photons in atomic ensembles requires either an effective broadening of the atomic transition linewidth, or an off-resonance Raman interaction. Here, we propose a scheme for a quantum memory capable of storing and retrieving ultrafast photons in an ensemble of two-level atoms using a propagation medium with a time-dependent refractive index generated from aligning an ensemble of gas-phase diatomic molecules. The refractive index dynamics generates an effective longitudinal inhomogeneous broadening of the two-level transition. We numerically demonstrate this scheme for storage and retrieval of a weak pulse as short as 50 fs, with a storage time of up to 20 ps. With additional optical control of the molecular alignment dynamics, the storage time can be extended about one nanosecond leading to time-bandwidth products of order 104. This scheme could in principle be achieved using either a hollow-core fibre or a high-pressure gas cell, in a gaseous host medium comprised of diatomic molecules and a two-level atomic vapour at room temperature.

  6. Progress towards atomic vapor photonic microcells: Coherence and polarization relaxation measurements in coated and uncoated HC-PCF

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; McFerran, J. J.; Jouin, J.; Ilinova, E.; Thomas, P.; Benabid, F.

    2013-03-01

    We report a comparative study on dephasing mechanisms between inner core coated and uncoated sections of the same Kagome hypocycloid-shaped core hollow core photonic crystal fibers (HC-PCF) filled with rubidium vapor. The comparison is performed by measuring the atomic polarization relaxation and electromagnetically induced transparency (EIT) linewidth in Rb loaded polydimethylsiloxane (PDMS) inner wall coated and bare silica core Kagome HC-PCF. The measurements show a polarization relaxation time of 32μs in a PDMS coated Kagome HC-PCF and 24μs in uncoated Kagome HC-PCF. A minimum EIT linewidth of 6.2±0.8MHz is achieved in PDMS coated Kagome HC-PCF, and 8.3±0.9 MHz for the uncoated Kagome HC-PCF.

  7. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  8. Super-resolution spectroscopic microscopy via photon localization

    PubMed Central

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm—a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  9. Super-resolution spectroscopic microscopy via photon localization

    NASA Astrophysics Data System (ADS)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-07-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm--a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra.

  10. Large-core photonic microcells for coherent optics and laser metrology

    NASA Astrophysics Data System (ADS)

    Wheeler, N. V.; Grogan, M. D. W.; Wang, Y. Y.; Murphy, D. F.; Birks, T. A.; Benabid, F.

    2011-03-01

    A photonic microcell (PMC) is a length of gas-filled hollow core-photonic crystal fiber (HC-PCF) which is hermetically sealed at both ends by splicing to standard single mode fiber. We describe advances in the fabrication technique of PMCs which enable large core Kagome-lattice HC-PCFs to be integrated into PMC form. The modified fabrication technique uses fiber-tapering to accommodate the large dimensions of the fiber and enables low loss splices with single mode fiber by reducing mode field mismatch. Splice losses as low as 0.6 dB are achieved between 1-cell defect Kagome HC-PCF and single mode fiber. Relative to the previously reported PMCs, which were based on photonic bandgap HC-PCF, the present Kagome HC-PCF based PMC provides broad optical transmission, surface mode-free guidance and larger core at the cost of slightly increased fiber attenuation (~0.2 dB/m). Therefore, the integration of this fiber into PMC form opens up new applications for PMC-based devices. The advantage of the large core dimensions and surface mode free guidance for quantum optics in gas-filled HC-PCF are demonstrated by generation of narrow sub-Doppler features in an acetylenefilled large core PMC.

  11. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway. PMID:27470414

  12. Modification of inner surface of photonic crystal fibers with self-assembled polyaniline films

    NASA Astrophysics Data System (ADS)

    Pidenko, Sergei A.; Pidenko, Pavel S.; Bondarenko, Sergei D.; Shuvalov, Andrei A.; Burmistrova, Natalia A.; Goryacheva, Irina Y.

    2016-04-01

    Photonic crystal fibers (PCFs) with a hollow core are one of the most promising solid support of fiber-optic sensors. The main advantages of PCF as sensor elements in clinical analysis are minimization of optical interactions from the sample and the ability to analyze small volume of samples. At the same time, low sorption capacity of glass which is the basic material for the fabrication of the PCF, limits their use in the development of biosensors. Modification of the inner surface of the PCF can be the solution of the problem. In this work the synthesis of self-assembled films of polyaniline (PANI) on the inner surface of the PCFs was carried out. The modified PCFs were studied by spectroscopy and electron microscopy. It was found that the covering of the inner surface of the PCFs with PANI leads to a shift of the local maximums of the transmission spectrum PCFs up to 25 nm. These makes possible to design the method of varying of photonic bandgaps location.

  13. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  14. Hollow core anti-resonant fibres with split cladding

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo

    2016-03-01

    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.

  15. Two-dimensional effects in hollow core z-pinches

    NASA Astrophysics Data System (ADS)

    Roderick, N. F.; Hussey, T. W.

    Analytic modeling and magnetohydrodynamic simulations have been conducted to investigate two-dimensional effects in imploding plasma shells. These effects include short wavelength disturbances caused by instabilities at the plasma magnetic field interface, long wavelength instabilities associated with plasma annulus formation, and perturbations resulting from the power flow to the plasma annulus. The numerical calculations were carried out using the two-dimensional single-fluid magnetohydrodynamic (MHD) code MACH2 for different plasma density profiles and electrode geometries. Results for short wavelength perturbations show that these phenomena behave in a manner consistent with analytic linear and heuristic nonlinear models. At stagnation they have a negligible effect on the uniformity during the initial coupling to the target, even for large initial perturbations. The disturbances manifest themselves primarily in a rippling of the back of the plasma shell with significant effects, even in this region, not occurring until late in the stagnation process. Long wavelength perturbations produced by a straight axial gas injection for gas puff implosions can lead to pronounced axial nonuniformity, zippering, at stagnation. Variations of the injection conditions and electrode geometry can produce more uniform stagnation. Changes in the mass profile, gas injection angle, and electrode shape can all be used to achieve significantly greater stagnation uniformity. Consistent calculations for an entire implosion process from a gas injection to stagnation including vacuum power flow indicate the degree of coupling of short wavelength, long wavelength and power flow perturbations. Comparison with experimental data show agreement between analytic, numerical and experimental results.

  16. Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity.

    PubMed

    Williams, Gareth O S; Chen, Jocelyn S Y; Euser, Tijmen G; Russell, Philip St J; Jones, Anita C

    2012-09-21

    Photonic crystal fibre constitutes an optofluidic system in which light can be efficiently coupled into a solution-phase sample, contained within the hollow core of the fibre, over long path-lengths. This provides an ideal arrangement for the highly sensitive monitoring of photochemical reactions by absorption spectroscopy. We report here the use of UV/vis spectroscopy to measure the kinetics of the photochemical and thermal cis-trans isomerisation of sub-picomole samples of two azo dyes within the 19-μm diameter core of a photonic crystal fibre, over a path length of 30 cm. Photoisomerisation quantum yields are the first reported for "push-pull" azobenzenes in solution at room temperature; such measurements are challenging because of the fast thermal isomerisation process. Rate constants obtained for thermal isomerisation are in excellent agreement with those established previously in conventional cuvette-based measurements. The high sensitivity afforded by this intra-fibre method enables measurements in solvents in which the dyes are too insoluble to permit conventional cuvette-based measurements. The results presented demonstrate the potential of photonic crystal fibres as optofluidic elements in lab-on-a-chip devices for photochemical applications.

  17. The photon

    NASA Astrophysics Data System (ADS)

    Collins, Russell L.

    2009-10-01

    There are no TEM waves, only photons. Lets build a photon, using a radio antenna. A short antenna (2L<< λ) simplifies the calculation, letting B fall off everywhere as 1/r^2. The Biot-Savart law finds B = (μ0/4π)(LI0/r^2)θφt. The magnetic flux thru a semi-circle of radius λ/2 is set equal to the flux quantum h/e, determining the needed source strength, LI0. From this, one can integrate the magnetic energy density over a sphere of radius λ/2 and finds it to be 1.0121 hc/λ. Pretty close. A B field collapses when the current ceases, but the photon evades this by creating a ɛ0E / t displacement current at center that fully supports the toroidal B assembly as it moves at c. This E=vxB arises because the photon moves at c. Stopped, a photon decays. At every point along the photon's path, an observer will note a transient oscillation of an E field. This sources the EM ``guiding wave'', carrying little or no energy and expanding at c. At the head of the photon, all these spherical guiding waves gather ``in-phase'' as a planar wavefront. This model speaks to all the many things we know about light. The photon is tiny, but its guiding wave is huge.

  18. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  19. Photonic lanterns

    NASA Astrophysics Data System (ADS)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  20. Improved Performance of JLab 7-Cell Cavities by Electropolishing

    SciTech Connect

    Charles Reece, Rongli Geng, Anthony Crawford

    2009-05-01

    The great majority of experience in niobium SRF cavity processing at Jefferson Lab is with BCP etching. This has been used on CEBAF cavities and others totalling over 600 in number. With improved process quality control, field emission is now largely controlled and other factors limit performance. All of the prototype cavities developed for the 12 GeV upgrade, although meeting minimum requirements, have demonstrated a Q-drop in the 17?23 MV/m range that is not remedied by 120 C bake. Most of these cavities received >250 micron removal by BCP etch. Two of these cavities have been electropolished using the protocol under development within ILC R&D activities. The first such cavity was transformed from Q = 3×109 at 17 MV/m to quench from 1×1010 at 35 MV/m. The details of this and subsequent electropolished JLab 7-cell cavities will be reported.

  1. Investigation of MEK activity in COS7 cells entering mitosis.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Luo, Jun

    2014-12-01

    Although the mitogen-activated protein kinase (MAPK) pathway has been extensively investigated, numerous events remain unclear. In the present study, we examined mitogen-activated protein kinase kinase (MEK) expression from interphase to mitosis. Following nocodazole treatment, COS7 cells gradually became round as early as 4 h after treatment. Cyclin B1 expression gradually increased from 4 to 24 h in the presence of nocodazole. When cells were treated with nocodazole for 4 h, the level of epidermal growth factor (EGF)-mediated MEK phosphorylation did not significantly change between nocodazole-untreated and -treated (4 h) cells (P>0.05). However, EGF-mediated MEK phosphorylation was significantly inhibited upon treatment with nocodazole for 8 and 24 h compared to nocodazole-untreated cells (P<0.05). MEK phosphorylation levels were comparable between 1, 5, 10 and 50 ng/ml EGF treatments. Phorbol 12-myristic 13-acetate (PMA) did not activate MEK in mitotic cells. Following treatment of COS7 cells at the interphase with AG1478 or U0126, MEK phosphorylation was blocked. In addition, the investigation of the expression of proteins downstream of MEK demonstrated that EGF does not significantly affect the phosphorylation level of extracellular-signal-regulated kinase (ERK), ribosomal protein S6 kinase (RSK) and Elk in mitotic cells (P>0.05). The results showed that MEK expression is gradually inhibited from cell interphase to mitosis, and that MEK downstream signaling is affected by this inhibition, which probably reflects the requirements of cell physiology during mitosis.

  2. Vesicle Photonics

    SciTech Connect

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  3. Photons Revisited

    NASA Astrophysics Data System (ADS)

    Batic, Matej; Begalli, Marcia; Han, Min Cheol; Hauf, Steffen; Hoff, Gabriela; Kim, Chan Hyeong; Kim, Han Sung; Grazia Pia, Maria; Saracco, Paolo; Weidenspointner, Georg

    2014-06-01

    A systematic review of methods and data for the Monte Carlo simulation of photon interactions is in progress: it concerns a wide set of theoretical modeling approaches and data libraries available for this purpose. Models and data libraries are assessed quantitatively with respect to an extensive collection of experimental measurements documented in the literature to determine their accuracy; this evaluation exploits rigorous statistical analysis methods. The computational performance of the associated modeling algorithms is evaluated as well. An overview of the assessment of photon interaction models and results of the experimental validation are presented.

  4. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  5. Photon-photon collisions via relativisitic mirrors

    SciTech Connect

    Koga, James K.

    2012-07-11

    Photon-photon scattering at low energies has been predicted theoretically for many years. However, due to the extremely small cross section there has been no experimental confirmation of this. Due to the rapid increase in laser irradiances and projected peak irradiances in planned facilities regimes could be reached where photon-photon scattering could be experimentally observed. We will first review basic aspects of photon-photon collisions concentrating on the calculation of the photon-photon scattering cross section. Then we will discuss the possibilities for observing these phenomena in ultra-high irradiance laser-plasma interactions involving relativistic mirrors.

  6. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  7. Microalgae photonics

    NASA Astrophysics Data System (ADS)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  8. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  9. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  10. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  11. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  12. Elevation of cysteine consumption in tamoxifen-resistant MCF-7 cells.

    PubMed

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Ji-Yoon; Oh, Soo Jin; Phuong, Nguyen Thi Thuy; Kang, Keon Wook; Kim, Sang Kyum

    2013-01-15

    Tamoxifen (TAM) resistance is a main cause of therapeutic failure in breast cancers. Although methionine dependency is a phenotypic characteristic of tumor cells, the role of sulfur amino acid metabolism in chemotherapy resistance remains to be elucidated. This study compared metabolite profiles of sulfur amino acid metabolism from methionine to taurine or glutathione (GSH) between normal MCF-7 and TAM-resistant MCF-7 (TAMR-MCF-7) cells. TAMR-MCF-7 cells showed elevated levels and activities of enzymes involved in both transsulfuration from methionine to cysteine and metabolism of cysteine to GSH and taurine. Cysteine concentrations in TAMR-MCF-7 cells and medium conditioned by cell culture for 42h were markedly decreased, while GSH, hypotaurine, and taurine concentrations in the medium were increased. These results show that TAMR-MCF-7 cells display enhanced cysteine utilization. The addition of propargylglycine, a specific cystathionine γ-lyase inhibitor, and buthionine sulfoximine, a specific γ-glutamylcysteine ligase inhibitor, to TAMR-MCF-7 cells, but not to MCF-7 cells, resulted in cytotoxicity after sulfur amino acid deprivation. These results suggest that cell viability of TAMR-MCF-7 cells is affected by inhibition of sulfur amino acid metabolism, particularly cysteine synthesis from homocysteine and GSH synthesis from cysteine. Additionally, the S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in TAMR-MCF-7 cells increased to ~3.6-fold relative to that in MCF-7 cells, a finding that may result from upregulation of methionine adenosyltransferase IIa and S-adenosylhomocysteine hydrolase. In conclusion, this study suggests that TAMR-MCF-7 cells display enhanced cysteine utilization for synthesis of GSH and taurine, and are sensitive to inhibition of cysteine metabolism.

  13. Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature.

    PubMed

    Dash, Jitendra Narayan; Jha, Rajan

    2015-12-10

    We report a highly stable, compact, strain insensitive inline microcavity-based solid-core photonic crystal fiber (SCPCF) modal interferometer for the determination of the refractive index (RI) of an analyte and its temperature. The interferometer is fabricated by splicing one end of SCPCF with single-mode fiber (SMF) and the other end with hollow-core PCF. This is followed by cleaving the part of the solid glass portion possibly present after the microcavity. The formation of the cavities at the end faces of the SCPCF results in reduction of the period of the interference pattern that helps in achieving distinctiveness in the measurement. Three sensor heads have been fabricated, and each has a different length of the collapsed region formed by splicing SMF with SCPCF. The response of the sensors is found to be sensitive to the length of this collapsed region between SMF and SCPCF with a sensitivity of 53 nm/RI unit (RIU) and resolution of 1.8×10(-4) RIU. The temperature response of the sensor is found to be linear, having a temperature sensitivity of 12 pm/°C. In addition to these findings, the effect of strain on the proposed structure is analyzed in both wavelength and intensity interrogation. PMID:26836874

  14. Jets and Photons

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-03-01

    This Letter applies the concept of “jets,” as constructed from calorimeter cell four-vectors, to jets composed (primarily) of photons (or leptons). Thus jets become a superset of both traditional objects such as QCD jets, photons, and electrons, and more unconventional objects such as photon jets and electron jets, defined as collinear photons and electrons, respectively. Since standard objects such as single photons become a subset of jets in this approach, standard jet substructure techniques are incorporated into the photon finder toolbox. Using a (reasonably) realistic calorimeter model we demonstrate that, for a single photon identification efficiency of 80% or above, the use of jet substructure techniques reduces the number of QCD jets faking photons by factors of 2.5 to 4. Depending on the topology of the photon jets, the substructure variables reduce the number of photon jets faking single photons by factors of 10 to 103 at a single photon identification efficiency of 80%.

  15. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  16. RR photons

    NASA Astrophysics Data System (ADS)

    Cámara, Pablo G.; Ibáñez, Luis E.; Marchesano, Fernando

    2011-09-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge U(1) Y (hence with the photon). In this paper we study in detail different avenues by which U(1) RR bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by Stückelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional p-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that type IIA Stückelberg couplings can be understood in terms of torsional (co)homology in M-theory. We provide examples of Type IIA Calabi-Yau orientifolds in which the required torsional cycles exist and kinetic mixing induced by mass mixing is present. We discuss some phenomenological consequences of our findings. In particular, we find that mass mixing may induce corrections relevant for hypercharge gauge coupling unification in F-theory SU(5) GUT's.

  17. Photon-Photon Collisions -- Past and Future

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  18. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  19. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  20. 10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers.

    PubMed

    Knabe, Kevin; Wu, Shun; Lim, Jinkang; Tillman, Karl A; Light, Philip S; Couny, Francois; Wheeler, Natalie; Thapa, Rajesh; Jones, Andrew M; Nicholson, Jeffrey W; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2009-08-31

    Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 mum core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the (12)C2H2 nu(1); + nu(3) P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 sigma error), and the fractional frequency instability is less than 1.2 x 10(-11) at 1 s averaging time.

  1. The assessment of inflammatory activity and toxicity of treated sewage using RAW264.7 cells

    PubMed Central

    Makene, Vedastus W.

    2015-01-01

    Abstract Toxicity and inflammatory activity of wastewater samples were evaluated using RAW264.7 cells as a bioassay model. The RAW264.7 cell cultures were exposed to sterile filtered wastewater samples collected from a sewage treatment plant. Cell viability was evaluated using WST‐1 and XTT assays. Inflammatory effects of samples were assessed by determination of nitric oxide (NO) and interleukin 6 (IL‐6). The NO was estimated using the Griess reaction and IL‐6 was measured by enzyme‐linked immunoassay. All samples had no toxicity effects to RAW264.7 cells, however they significantly (P < 0.001) induced NO and IL‐6 production. The highest NO (12.5 ± 0.38 μM) and IL‐6 (25383.84 ± 2327 pg/mL) production was induced by postbiofiltration sample. Final effluent induced the lowest inflammatory response, which indicates effective sewage treatment. In conclusion, wastewater samples can induce inflammatory activities in RAW264.7 cells. The RAW264.7 cells, therefore, can be used as a model for monitoring the quality of treated sewage. PMID:26900395

  2. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhu, Ling; Zhou, Fanfan

    2014-09-01

    Gallic acid (GA), a polyhydroxylphenolic compound abundantly distributed in plants, fruits, and foods, has been reported to have various biological activities including an anticancer effect. In this study, we extensively investigated the anticancer effect of GA in human breast carcinoma MCF-7 cells. Our study indicated that treatment with GA resulted in inhibition of proliferation and induction of apoptosis in MCF-7 cells. Then, the molecular mechanism of GA's apoptotic action in MCF-7 cells was further investigated. The results revealed that GA induced apoptosis by triggering the extrinsic or Fas/FasL pathway as well as the intrinsic or mitochondrial pathway. Furthermore, the apoptotic signaling induced by GA was amplified by cross-link between the two pathways. Taken together, our findings may be useful for understanding the mechanism of action of GA on breast cancer cells and provide new insights into the possible application of such compound and its derivatives in breast cancer therapy.

  3. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  4. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  5. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  6. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    PubMed Central

    Han, Xiao; Deng, Shan; Wang, Ning; Liu, Yafei; Yang, Xingbin

    2016-01-01

    Background Tetrahydrocurcumin (THC), an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm) was observed after THC treatment. Conclusion THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound. PMID:26899573

  7. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  8. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-01

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals.

  9. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-01

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. PMID:27108272

  10. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation

    PubMed Central

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  11. Single-photon sources

    NASA Astrophysics Data System (ADS)

    Lounis, Brahim; Orrit, Michel

    2005-05-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information.

  12. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  13. First-photon imaging.

    PubMed

    Kirmani, Ahmed; Venkatraman, Dheera; Shin, Dongeek; Colaço, Andrea; Wong, Franco N C; Shapiro, Jeffrey H; Goyal, Vivek K

    2014-01-01

    Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.

  14. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  15. Detection of apoptosis caused by anticancer drug paclitaxel in MCF-7 cells by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Middendorp, E.; Végh, A.-G.; Ramakrishnan, S.-K.; Gergely, C.; Cuisinier, F. J. G.

    2013-02-01

    Confocal Raman Microscopy, a non-invasive, label free imaging technique is used to study apoptosis in living MCF-7 cells. The images are based on Raman spectra of cells components. K-mean clustering was used to determine mitochondria position in cells and cytochrome c distribution inside the cells was based on correlation analysis. Cell apoptosis is defined as cytochrome c diffusion in cytoplasm. Co-localization of cytochrome c is found within mitochondria after three hours of incubation with 10 μM paclitaxel. Our results demonstrate that the presence of paclitaxel at this concentration in the culture media for 3 hours does not induce apoptosis of MCF7 cells via a caspase independent pathway.

  16. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells

    PubMed Central

    McGrath, Kristine C. Y.; Tran, Van H.; Li, Yi-Ming; Duke, Colin C.; Heather, Alison K.; Roufogalis, Basil D.

    2013-01-01

    Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP) cation channel superfamily are candidate calcium influx channels. NFκB activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca2+]i in HuH-7 cells. The increase in [Ca2+]i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca2+]i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NFκB activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NFκB activation was dependent on the calcium gradient and TRPV1. The rapid NFκB activation by S-[6]-gingerol was associated with an increase in mRNA levels of NFκB-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins. PMID:23956783

  17. Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway.

    PubMed

    Ji, Y B; Xin, G S; Qu, Z Y; Zou, X; Yu, M

    2016-01-01

    This study investigated the nature and mechanism of juglone-induced apoptosis in the human breast cancer cell line MCF-7. The inhibitory effect of juglone on MCF-7 cell growth was evaluated by the dimethylthiazol tetrazolium assay. Morphological apoptotic changes were characterized using an inverted microscope, Hoechst 33258 fluorescence staining, and Giemsa staining. The rate of cell apoptosis, intracellular levels of reactive oxygen species (ROS), and mitochondrial membrane potential were detected using flow cytometry. Intracellular Ca(2+) concentrations were detected using laser scanning confocal fluorescence microscopy. Expression of the proteins Bcl-2, Bax, and cytochrome C was assessed by western blotting. Caspase-3 activity was quantified using a caspase-3 activity kit. Juglone inhibited the growth of MCF-7 cell line with an IC50 of 11.99 μM. The rates of MCF-7 cell apoptosis at 24 h after exposure to 5, 10, and 20 μM juglone were 9.29, 20.67, and 28.39%, respectively; compared to unexposed cells, juglone-exposed cells exhibited significant elevation in intracellular ROS level, decrease in mitochondrial membrane potential, and increase in intracellular Ca(2+) concentration. Juglone upregulated the expression of Bax, and downregulated the expression of Bcl-2, promoting the release of cytochrome C, thereby upregulating the activity of caspase-3. The results suggest that the mechanism of juglone-induced apoptosis in MCF-7 cells is characterized by elevated ROS levels, reduced Bcl-2 expression, increased Bax expression, decreased mitochondrial membrane potential, increased intracellular Ca(2+) concentration, outer mitochondrial-membrane rupture, cytochrome C release, and caspase-3 activation. PMID:27525860

  18. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells.

    PubMed

    França, Eduardo Luzía; Honorio-França, Adenilda Cristina; Fernandes, Rubian Trindade da Silva; Marins, Camila Moreira Ferreira; Pereira, Claudia Cristina de Souza; Varotti, Fernando de Pilla

    2016-01-01

    Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer. PMID:26445481

  19. Two-photon physics

    SciTech Connect

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  20. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  1. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka

    2016-02-01

    Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection.

  2. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  3. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  4. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation. PMID:26852703

  5. Downregulation of SOK1 promotes the migration of MCF-7 cells

    SciTech Connect

    Chen, Xu-Dong; Cho, Chien-Yu

    2011-04-08

    Highlights: {yields} SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. {yields} Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. {yields} But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  6. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device

    NASA Astrophysics Data System (ADS)

    Wang, Min-Haw; Kao, Min-Feng; Jang, Ling-Sheng

    2011-06-01

    This study presents an impedance measurement system for single-cell capture and measurement. The microwell structure which utilizes nDEP force is used to single-cell capture and a minimized impedance spectroscopy which includes a power supply chip, an impedance measurement chip and a USB microcontroller chip is used to single-cell impedance measurement. To improve the measurement accuracy of the proposed system, Biquadratic fitting is used in this study. The measurement accuracy and reliability of the proposed system are compared to those of a conventional precision impedance analyzer. Moreover, a stable material, latex beads, is used to study the impedance measurement using the minimized impedance spectroscopy with cell-trapping device. Finally, the proposed system is used to measure the impedance of HeLa cells and MCF-7 cells. The impedance of single HeLa cells decreased from 9.55 × 103 to 3.36 × 103 Ω and the impedance of single MCF-7 cells decreased from 3.48 × 103 to 1.45 × 103 Ω at an operate voltage of 0.5 V when the excitation frequency was increased from 11 to 101 kHz. The results demonstrate that the proposed impedance measurement system successfully distinguishes HeLa cells and MCF-7 cells.

  7. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  8. Photon simulated desorption revisited

    NASA Astrophysics Data System (ADS)

    Menzel, D.

    A promising new method for surface investigations is discussed: Photon stimulated desorption. The electronic excitations of adsorbate complexes on surfaces, either by electron impact or photon absorption, which can lead to repulsive states of the complex and therefore to expulsion of ions and neutrals are considered. Such processes are termed electron (or photon) stimulated desorption, ESD and PSD, respectively. Apart from the primary agent (electrons or photons), these processes are similar, and common label "desorption induced by electronic transitions" (acronym DIET) was proposed. Desorption effects, intrinsic photoneffects, and some of the advantages of PSD over ESD are discussed.

  9. Resonances in photon-photon scattering

    SciTech Connect

    Chanowitz, M.S.

    1984-11-01

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(..pi../sup 0/ ..-->.. ..gamma gamma..) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in ..gamma gamma.. scattering, including especially the low mass dipion. 34 references.

  10. Photon mass from inflation.

    PubMed

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  11. Photonic layered media

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  12. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  13. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  14. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  15. Chirality in photonic systems

    NASA Astrophysics Data System (ADS)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

  16. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  17. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  18. Nonlinear Photonics 2014: introduction.

    PubMed

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  19. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  20. Indistinguishability of independent single photons

    NASA Astrophysics Data System (ADS)

    Sun, F. W.; Wong, C. W.

    2009-01-01

    The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform-limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform-limited pulses and makes photons distinguishable. Only the single photons with the same transform-limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down-conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.

  1. Investigating photonic quantum computation

    NASA Astrophysics Data System (ADS)

    Myers, Casey Robert

    The use of photons as qubits is a promising implementation for quantum computation. The inability of photons to interact, especially with the environment, makes them an ideal physical candidate. However, this also makes them a difficult system to perform two qubit gates on. Recent breakthroughs in photonic quantum computing have shown methods around the requirement of direct photon-photon interaction. In this thesis we study three recently discovered schemes for optical quantum computation. We first investigate the so called linear optical quantum computing (LOQC) scheme, exploring a method to improve the original proposal by constructing a photon-number QND detector that succeeds with a high probability. In doing this we present a new type of LOQC teleporter, one that can detect the presence of a single photon in an arbitrary polarisation state when the input state is a sum of vacuum and multi-photon terms. This new type of teleporter is an improvement on the original scheme in that the entangled states required can be made offline with fewer entangling operations. We next investigate the so called quantum bus (qubus) scheme for photonic quantum computing. We show a scheme to measure the party of n qubit states by using a single qubus mode, controlled rotations and displacements. This allows for the syndrome measurements of any stabilizer quantum error correcting code. We extend these results to a fault tolerant scheme to measure an arbitrary Pauli operator of weight n, incorporating so called single bit teleportations. We investigate the construction of a Toffoli gate by using a single qubus mode, controlled rotations and displacements that works with a success probability of at least 25%. We also investigate the use of single bit teleportations to construct a universal set of gates on coherent state type logic and in the construction of cluster states. We finally investigate the optical Zeno gate, a gate that uses the Zeno effect in the form of two photon

  2. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine. PMID:26925725

  3. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  4. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  5. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  6. Photonic Maxwell's Demon.

    PubMed

    Vidrighin, Mihai D; Dahlsten, Oscar; Barbieri, Marco; Kim, M S; Vedral, Vlatko; Walmsley, Ian A

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  7. Photonic structures in biology.

    PubMed

    Vukusic, Pete; Sambles, J Roy

    2003-08-14

    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  8. Single photon quantum cryptography.

    PubMed

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  9. Photonic Maxwell's Demon.

    PubMed

    Vidrighin, Mihai D; Dahlsten, Oscar; Barbieri, Marco; Kim, M S; Vedral, Vlatko; Walmsley, Ian A

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics. PMID:26894692

  10. Photon collider Higgs factories

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2014-09-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  11. Photonic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Vidrighin, Mihai D.; Dahlsten, Oscar; Barbieri, Marco; Kim, M. S.; Vedral, Vlatko; Walmsley, Ian A.

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  12. Photon physics at RHIC

    SciTech Connect

    Skuja, A.; White, D.H.

    1985-01-01

    Two photon processes induced by heavy ion collisions have been considered. An approximate formalism for calculation is derived. The event rate is interesting at low-photon-photon mass but is limited by the form factor of the nuclei at high mass. The event rate is compared with that at LEP and found to be favorable at the mass of charm mesons but unfavorable at higher masses. It is further noted that two pomeron processes are similar in configuration and are prolific at low pomeron-pomeron masses. 3 refs., 8 figs.

  13. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  14. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    PubMed

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies. PMID:27518624

  15. The effect of entanglement in gravitational photon-photon scattering

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2016-09-01

    The differential cross-section for gravitational photon-photon scattering calculated in perturbative quantum gravity is shown to depend on the degree of polarization entanglement of the two photons. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons. The results are interpreted in terms of quantum interference, and it is shown how they fit into the idea of distance-dependent forces.

  16. Microwave background constraints on mixing of photons with hidden photons

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter E-mail: javier.redondo@desy.de

    2009-03-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} {approx}< 10{sup -7}-10{sup -5} for hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained.

  17. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells.

    PubMed

    Jiang, Xia; Kanda, Tatsuo; Nakamoto, Shingo; Saito, Kengo; Nakamura, Masato; Wu, Shuang; Haga, Yuki; Sasaki, Reina; Sakamoto, Naoya; Shirasawa, Hiroshi; Okamoto, Hiroaki; Yokosuka, Osamu

    2015-03-20

    The JAK2 inhibitor AZD1480 has been reported to inhibit La protein expression. We previously demonstrated that the inhibition of La expression could inhibit hepatitis A virus (HAV) internal ribosomal entry-site (IRES)-mediated translation and HAV replication in vitro. In this study, we analyzed the effects of AZD1480 on HAV IRES-mediated translation and replication. HAV IRES-mediated translation in COS7-HAV-IRES cells was inhibited by 0.1-1 μM AZD1480, a dosage that did not affect cell viability. Results showed a significant reduction in intracellular HAV HA11-1299 genotype IIIA RNA levels in Huh7 cells treated with AZD1480. Furthermore, AZD1480 inhibited the expression of phosphorylated-(Tyr-705)-signal transducer and activator of transcription 3 (STAT3) and La in Huh7 cells. Therefore, we propose that AZD1480 can inhibit HAV IRES activity and HAV replication through the inhibition of the La protein.

  18. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    SciTech Connect

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin; Chen, Zheng-Wang . E-mail: zwchen@mail.hust.edu.cn

    2007-09-21

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.

  19. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    PubMed

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  20. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells.

    PubMed

    Ignatov, Atanas; Ignatov, Tanja; Roessner, Albert; Costa, Serban Dan; Kalinski, Thomas

    2010-08-01

    Tamoxifen is the most frequently used anti-hormonal drug for treatment of women with hormone-dependent breast cancer. The aim of this study is to investigate the mechanism of tamoxifen resistance and the impact of the new estrogen G-protein coupled receptor (GPR30). MCF-7 cells were continuously exposed to tamoxifen for 6 months to induce resistance to the inhibitory effect of tamoxifen. These tamoxifen-resistant cells (TAM-R) exhibited enhanced sensitivity to 17-ss-estradiol and GPR30 agonist, G1, when compared to the parental cells. In TAM-R cells, tamoxifen was able to stimulate the cell growth and MAPK phosphorylation. These effects were abolished by EGFR inhibitor AG1478, GPR30 anti-sense oligonucleotide, and the selective c-Src inhibitor PP2. Only EGFR basal expression was slightly elevated in the TAM-R cells, whereas GPR30 expression and the basal phosphorylation of Akt and MAPK remained unchanged when compared to the parental cells. Interestingly, estrogen treatment significantly increased GPR30 translocation to the cell surface, which was stronger in TAM-R cells. Continuous treatment of MCF-7 cells with GPR30 agonist G1 mimics the long-term treatment with tamoxifen and increases drastically its agonistic activity. This data suggests the important role of GPR30/EGFR receptor signaling in the development of tamoxifen resistance. The inhibition of this pathway is a valid option to improve anti-hormone response in breast cancer.

  1. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    NASA Astrophysics Data System (ADS)

    De Vitis, Stefania; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Perozziello, Gerardo; Dattola, Elisabetta; Candeloro, Patrizio; Di Fabrizio, Enzo

    2016-01-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars.

  2. Photosensitization by Diaziquone: Correlation Between Diaziquone Cytotoxicity and Photoinduced Free Radicals in MCF-7 Cells

    NASA Astrophysics Data System (ADS)

    Al-Nabulsi, Isaf

    The ability of visible light to enhance the activity of diaziquone (AZQ) was evaluated in MCF-7 human breast cancer cells. Exponentially growing monolayers of MCF -7 cells were incubated for 1 hr with AZQ (IC_ {90}, 0.05 muM, IC50, 0.3 muM, or various concentrations of AZQ) prior to variable time intervals of visible light irradiation. Irradiations were performed using a 100W quartz-halogen lamp or 100W mercury arc lamp with a dose rate of 30 or 170 mW/m ^2, respectively. The effect of visible light and/or AZQ on cellular growth was determined by clonogenic assay. The results show that MCF-7 cells were sensitive to growth inhibition by AZQ. Without AZQ, visible light irradiation had no effect on cell survival, while with AZQ, visible light potentiated its cytotoxicity by a factor of 1.6 at 10% survival. This potentiation of AZQ activity is correlated with the formation of free radicals (hydroxyl radicals and AZQ semiquinone) and with the production of DNA strand breaks as measured by electron paramagnetic resonance and gel electrophoresis, respectively. These results support the hypothesis that free radical formation is part of the mechanism of action of AZQ. Moreover, they indicate that visible light irradiation can increase the activity of AZQ and may allow its use in the treatment of tumor in human patients.

  3. Photonic crystal beam splitters.

    PubMed

    Chen, Chii-Chang; Chien, Hung-Da; Luan, Pi-Gang

    2004-11-20

    This work studies two-dimensional photonic crystal beam splitters with two input ports and two output ports. The beam splitter structure consists of two orthogonally crossed line defects and one point defect in square-lattice photonic crystals. The point defect is positioned at the intersection of the line defects to divide the input power into output ports. If the position and the size of the point defect are varied, the power of two output ports can be identical. The beam splitters can be used in photonic crystal Mach-Zehnder interferometers or switches. The simulation results show that a large bandwidth of the extinction ratio larger than 20 dB can be obtained while two beams are interfered in the beam splitters. This enables photonic crystal beam splitters to be used in fiber optic communication systems.

  4. Diamond nonlinear photonics

    NASA Astrophysics Data System (ADS)

    Hausmann, B. J. M.; Bulu, I.; Venkataraman, V.; Deotare, P.; Lončar, M.

    2014-05-01

    Despite progress towards integrated diamond photonics, studies of optical nonlinearities in diamond have been limited to Raman scattering in bulk samples. Diamond nonlinear photonics, however, could enable efficient, in situ frequency conversion of single photons emitted by diamond's colour centres, as well as stable and high-power frequency microcombs operating at new wavelengths. Both of these applications depend crucially on efficient four-wave mixing processes enabled by diamond's third-order nonlinearity. Here, we have realized a diamond nonlinear photonics platform by demonstrating optical parametric oscillation via four-wave mixing using single-crystal ultrahigh-quality-factor (1 × 106) diamond ring resonators operating at telecom wavelengths. Threshold powers as low as 20 mW are measured, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the first measurement of the nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.

  5. Biophotonics: Circadian photonics

    NASA Astrophysics Data System (ADS)

    Rea, Mark S.

    2011-05-01

    A growing body of medical evidence suggests that disrupting the body's biological clock can have adverse effects on health. Researchers are now creating the photonic tools to monitor, predict and influence the circadian rhythm.

  6. Photon counting: Avalanche inspiration

    NASA Astrophysics Data System (ADS)

    Milburn, Gerard

    2008-07-01

    The ability of a customized avalanche-photodiode detector to distinguish the exact number of photons that it receives will simplify the tools required to perform reliable experiments in quantum optics.

  7. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  8. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  9. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  10. Photonics Explorer: revolutionizing photonics in the classroom

    NASA Astrophysics Data System (ADS)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  11. Happy centenary, photon

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton; Weihs, Gregor; Jennewein, Thomas; Aspelmeyer, Markus

    2005-01-01

    One hundred years ago Albert Einstein introduced the concept of the photon. Although in the early years after 1905 the evidence for the quantum nature of light was not compelling, modern experiments - especially those using photon pairs - have beautifully confirmed its corpuscular character. Research on the quantum properties of light (quantum optics) triggered the evolution of the whole field of quantum information processing, which now promises new technology, such as quantum cryptography and even quantum computers.

  12. QUANTUM CRYPTOGRAPHY: Single Photons.

    PubMed

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  13. Ultrastable Multigigahertz Photonic Oscillator

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  14. Photon structure function

    SciTech Connect

    Bardeen, W.A.

    1980-11-01

    Theoretical understanding of the photon structure function is reviewed. As an illustration of the pointlike component, the parton model is briefly discussed. However, the systematic study of the photon structure function is presented through the framework of the operator product expansion. Perturbative QCD is used as the theoretical basis for the calculation of leading contributions to the operator product expansion. The influence of higher order QCD effects on these results is discussed. Recent results for the polarized structure functions are discussed.

  15. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  16. Photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy

    2013-03-01

    Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.

  17. The Hollow Core: Failure of the General Education Curriculum. A Fifty College Study

    ERIC Educational Resources Information Center

    Latzer, Barry

    2004-01-01

    This report provides empirical proof of a disturbing trend in higher education. Over the last several decades colleges and universities have substituted so-called "distribution requirements" for a solid core curriculum. Distribution requirements enable students freely to choose their general education courses, the courses outside their…

  18. Non-hollow-core Cybister trabeculae and compressive properties of two biomimetic models of beetle forewings.

    PubMed

    Tuo, Wanyong; Xie, Juan; Chen, Jinxiang; Guo, Xiaojun

    2016-12-01

    In 2006, the forewing trabeculae of Cybister tripunctatus Olivier (i.e., Cybister) beetles were reported to be hollow, and a biomimetic structural model (i.e., Song's model) was reported to exhibit better compressive mechanical properties than a solid-core trabecula-honeycomb model (i.e., Chen's model). To test these assertions, the current study first observed the trabecular microstructure of the Cybister beetle and confirmed that the trabeculae are solid. Second, the finite element method (FEM) was used to perform a contrast analysis of the compressive mechanical properties of Song's and Chen's biomimetic models. The results indicated that Chen's model exhibited better compressive mechanical properties. These findings, which are completely opposite of Song's findings, were obtained because the comparison models designed for use in Song's study were not comparable to that of Chen's model in terms of the core volumes. This study will benefit the development of beetle forewing biomimetic research. PMID:27612788

  19. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  20. Transient Receptor Potential Vanilloid 1 Expression and Functionality in MCF-7 Cells: A Preliminary Investigation

    PubMed Central

    Barbero, Raffaella; Cuniberti, Barbara; Racca, Silvia; Abbadessa, Giuliana; Piccione, Francesca; Re, Giovanni

    2014-01-01

    Purpose Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel belonging to the transient receptor potential family, and it is expressed in different neoplastic tissues. Its activation is associated with regulation of cancer growth and progression. The aim of this research was to study the expression and pharmacological characteristics of TRPV1 in cells derived from human breast cancer MCF-7 cells. Methods TRPV1 presence was assessed by binding studies and Western blotting. Receptor binding characteristics were evaluated through competition assays, while 3-(4,5-dimethylthiazol-2-yl)-2,5,-dipheyltetrazolium bromide reduction assays were performed to confirm an early hypothesis regarding the modulation of cancer cell proliferation. The functionality of TRPV1 was evaluated by measuring Ca2+ uptake in the presence of increasing concentrations of TRPV1 agonists and antagonists. Results Binding studies identified a single class of TRPV1 (Bmax 1,492±192 fmol/mg protein), and Western blot showed a signal at 100 kDa corresponding to the molecular weight of human TRPV1. Among the different tested agonists and antagonists, anandamide (Ki: 2.8×10-11 M) and 5-iodoresiniferatoxin (5-I-RTX) (Ki: 5.6×10-11 M) showed the highest degrees of affinity for TRPV1, respectively. All tested TRPV1 agonists and antagonists caused a significant (p<0.05) decrease in cell growth rate in MCF-7 cells. For agonists and antagonists, the efficacy of tested compounds displayed the following rank order: resiniferatoxin>anandamide>capsaicin and 5-I-RTX=capsazepine, respectively. Conclusion These data indicate that both TRPV1 agonists and antagonists induce significant inhibition of MCF-7 cell growth. Even though the mechanisms involved in the antiproliferative effects of TRPV1 agonists and antagonists should be further investigated, it has been suggested that agonists cause desensitization of the receptor, leading to alteration in Ca2+-influx regulation. By contrast

  1. Palytoxin induces cell lysis by priming a two-step process in mcf-7 cells.

    PubMed

    Prandi, Simone; Sala, Gian Luca; Bellocci, Mirella; Alessandrini, Andrea; Facci, Paolo; Bigiani, Albertino; Rossini, Gian Paolo

    2011-08-15

    The cytolytic action of palytoxin (PlTX) was recognized long ago, but its features have remained largely undetermined. We used biochemical, morphological, physiological, and physical tools, to study the cytolytic response in MCF-7 cells, as our model system. Cytolysis represented a stereotyped response induced by the addition of isotonic phosphate buffer (PBS) to cells that had been exposed to PlTX, after toxin removal and under optimal and suboptimal experimental conditions. Cytolysis was sensitive to osmolytes present during cell exposure to PlTX but not in the course of the lytic phase. Fluorescence microscopy showed that PlTX caused cell rounding and rearrangement of the actin cytoskeleton. Atomic force microscopy (AFM) was used to monitor PlTX effects in real time, and we found that morphological and mechanical properties of MCF-7 cells did not change during toxin exposure, but increased cell height and decreased stiffness at its surface were observed when PBS was added to PlTX-treated cells. The presence of an osmolyte during PlTX treatment prevented the detection of changes in morphological and mechanical properties caused by PBS addition to toxin-treated cells, as detected by AFM. By patch-clamp technique, we confirmed that PlTX action involved the transformation of the Na(+),K(+)-ATPase into a channel and found that cell membrane capacitance was not changed by PlTX, indicating that the membrane surface area was not greatly affected in our model system. Overall, our findings show that the cytolytic response triggered by PlTX in MCF-7 cells includes a first phase, which is toxin-dependent and osmolyte-sensitive, priming cells to lytic events taking place in a separate phase, which does not require the presence of the toxin and is osmolyte-insensitive but is accompanied by marked reorganization of actin-based cytoskeleton and altered mechanical properties at the cell's surface. A model of the two-step process of PlTX-induced cytolysis is presented. PMID

  2. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  3. Multi-photon absorption limits to heralded single photon sources

    NASA Astrophysics Data System (ADS)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; de Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-11-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources.

  4. Archetype JC virus efficiently replicates in COS-7 cells, simian cells constitutively expressing simian virus 40 T antigen.

    PubMed

    Hara, K; Sugimoto, C; Kitamura, T; Aoki, N; Taguchi, F; Yogo, Y

    1998-07-01

    JC polyomavirus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is ubiquitous in humans, infecting children asymptomatically and then persisting in the kidney. Renal JCV is not latent but replicates to excrete progeny in the urine. The renal-urinary JCV DNAs carry the archetype regulatory region that generates various rearranged regulatory regions occurring in JCVs derived from the brains of PML patients. Tissue cultures that support the efficient growth of archetype JCV have not been reported. We studied whether archetype JCV could replicate in COS-7 cells, simian cells transformed with an origin-defective mutant of simian virus 40 (SV40). Efficient JCV replication, as detected by a hemagglutination assay, was observed in cultures transfected with five of the six archetype DNAs. The progeny JCVs could be passaged to fresh COS-7 cells. However, when the parental cells of COS-7 not expressing T antigen were transfected with archetype JCV DNAs, no viral replication was detected, indicating that SV40 T antigen is essential for the growth of JCV in COS-7 cells. The archetype regulatory region was conserved during viral growth in COS-7 cells, although a small proportion of JCV DNAs underwent rearrangements outside the regulatory region. We then attempted to recover archetype JCV from urine by viral culture in COS-7 cells. Efficient JCV production was observed in COS-7 cells infected with five of the six JCV-positive urine samples examined. Thus, COS-7 cells should be of use not only for the production of archetype JCV on a large scale but also for the isolation of archetype JCV from urine.

  5. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition

  6. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

  7. Two-photon interference with non-identical photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  8. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  9. EDITORIAL: Photonic Crystal Devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pallab K.

    2007-05-01

    The engineering of electromagnetic modes at optical frequencies in artificial dielectric structures with periodic and random variation of the refractive index, enabling control of the radiative properties of the materials and photon localization, was first proposed independently by Yablonovitch and John in 1987. It is possible to control the flow of light in the periodic dielectric structures, known as photonic crystals (PC). As light waves scatter within the photonic crystal, destructive interference cancels out light of certain wavelengths, thereby forming a photonic bandgap, similar to the energy bandgap for electron waves in a semiconductor. Photons whose energies lie within the gap cannot propagate through the periodic structure. This property can be used to make a low-loss cavity. If a point defect, such as one or more missing periods, is introduced into the periodic structure a region is obtained within which the otherwise forbidden wavelengths can be locally trapped. This property can be used to realize photonic microcavities. Similarly, a line of defects can serve as a waveguide. While the realization of three-dimensional (3D) photonic crystals received considerable attention initially, planar two-dimensional (2D) structures are currently favoured because of their relative ease of fabrication. 2D photonic crystal structures provide most of the functionality of 3D structures. These attributes have generated worldwide research and development of sub-μm and μm size active and passive photonic devices such as single-mode and non- classical light sources, guided wave devices, resonant cavity detection, and components for optical communication. More recently, photonic crystal guided wave devices are being investigated for application in microfludic and biochemical sensing. Photonic crystal devices have been realized with bulk, quantum well and quantum dot active regions. The Cluster of articles in this issue of Journal of Physics D: Applied Physics provides a

  10. Photonic topological insulators.

    PubMed

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  11. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  12. Antigravity Acts on Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  13. Photonics for life.

    PubMed

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  14. Activation of RAW 264.7 cells by a polysaccharide isolated from Antarctic bacterium Pseudoaltermonas sp. S-5.

    PubMed

    Li, Jing; Qian, Wen; Xu, Yanghui; Chen, Guochuang; Wang, Guodong; Nie, Songliu; Shen, Bingxiang; Zhao, Zhigang; Liu, Chunyan; Chen, Kaoshan

    2015-10-01

    The aim of this study was to examine the effect of extracellular polysaccharide (PEP) from Antarctic bacterium Pseudoaltermonas sp. S-5 on RAW 264.7 cells together with the underlying signaling pathways. Our results illustrated that PEP induced dendritic-like morphological change in RAW 264.7 cells, and increased the productions of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). PEP could also enhance phagocytic activity of RAW 264.7 cells. Results of immunofluorescence staining and immunoblotting indicated that PEP caused the nuclear translocation of nuclear factor (NF)-κB subunit p65, the degradation of IκB-α and up-expression of phosphorylated p38 mitogen-activated protein kinase (MAPK) in RAW 264.7 cells. According to pharmacological evaluation with specific enzyme inhibitors, both NF-κB and p38 MAPK signaling pathways were involved in the generation of NO and TNF-α induced by PEP. All these results indicated that PEP from Antarctic bacterium Pseudoaltermonas sp. S-5 activated RAW 264.7 cells through NF-κB and p38 MAPK signaling pathways.

  15. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  16. Photon physics with PHENIX

    SciTech Connect

    White, S.

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  17. Sensing individual terahertz photons.

    PubMed

    Hashiba, Hideomi; Antonov, Vladimir; Kulik, Leonid; Tzalenchuk, Alexander; Komiyama, Susumu

    2010-04-23

    One of the promising ways to perform single-photon counting of terahertz radiation consists in sensitive probing of plasma excitation in the electron gas upon photon absorption. We demonstrate the ultimate sensor operating on this principle. It is assembled from a GaAs/AlGaAs quantum dot, electron reservoir and superconducting single-electron transistor. The quantum dot is isolated from the surrounding electron reservoir in such a way that when the excited plasma wave decays, an electron could tunnel off the dot to the reservoir. The resulting charge polarization of the dot is detected with the single-electron transistor. Such a system forms an easy-to-use sensor enabling single-photon counting in a very obscure wavelength region.

  18. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  19. Photonic Floquet topological insulators.

    PubMed

    Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-04-11

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the

  20. Photonic Floquet topological insulators.

    PubMed

    Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-04-11

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the

  1. Photonic hydrogel sensors.

    PubMed

    Yetisen, Ali K; Butt, Haider; Volpatti, Lisa R; Pavlichenko, Ida; Humar, Matjaž; Kwok, Sheldon J J; Koo, Heebeom; Kim, Ki Su; Naydenova, Izabela; Khademhosseini, Ali; Hahn, Sei Kwang; Yun, Seok Hyun

    2016-01-01

    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified. PMID:26485407

  2. Photonic hydrogel sensors.

    PubMed

    Yetisen, Ali K; Butt, Haider; Volpatti, Lisa R; Pavlichenko, Ida; Humar, Matjaž; Kwok, Sheldon J J; Koo, Heebeom; Kim, Ki Su; Naydenova, Izabela; Khademhosseini, Ali; Hahn, Sei Kwang; Yun, Seok Hyun

    2016-01-01

    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified.

  3. Deacetyl-mycoepoxydiene, isolated from plant endophytic fungi Phomosis sp. demonstrates anti-microtubule activity in MCF-7 cells.

    PubMed

    Zhu, Shan-Shan; Zhang, Yu-Sheng; Sheng, Xie-Huang; Xu, Miao; Wu, Si-Si; Shen, Yue-Mao; Huang, Yao-Jian; Wang, Yi; Shi, Yan-Qiu

    2015-02-01

    Deacetyl-mycoepoxydiene (DM), a novel secondary metabolite produced by the plant endophytic fungi Phomosis sp., induced the reorganization of cytoskeleton in actively growing MCF-7 cells by promoting polymerization of tubulin. DM could induce cell cycle arrest at G2/M in MCF-7 cells. Additionally, DM-induced apoptosis was characterized with up-regulating caspase-3, Bax, caspase-9, parp, and p21 while down-regulating Bcl-2 activation. DM conferred dose- and time-dependent inhibitory effects upon cell proliferation of MCF-7 cells both in cultured cells and nude mice with human breast carcinoma xenografts. The results obtained from these in vitro and in vivo models provide new data revealing the potential for DM as a novel microtubule inhibitor.

  4. Two-photon interference of temporally separated photons

    NASA Astrophysics Data System (ADS)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  5. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  6. Induction of the oxidative catabolism of retinoid acid in MCF-7 cells.

    PubMed Central

    Krekels, M. D.; Verhoeven, A.; van Dun, J.; Cools, W.; Van Hove, C.; Dillen, L.; Coene, M. C.; Wouters, W.

    1997-01-01

    Cytochrome P450-dependent oxidation is a pathway for all-trans-retinoic acid (all-trans-RA) catabolism. Induction of this catabolic pathway was studied in MCF-7 breast cancer cells. MCF-7 cells showed low constitutive all-trans-RA catabolism. Concentration-dependent induction was obtained by preincubation of the cells with all-trans-RA (10(-9) to 10(-6) M). Onset of induction was fast, being detectable within 60 min, with maximal induction (45-fold) obtained after 16 h. Enzymatic characterization of induced all-trans-RA catabolism showed an estimated Km value (Michaelis-Menten constant) of 0.33 microM and a Vmax value (maximal velocity of an enzyme-catalysed reaction) of 54.5 fmol polar all-trans-RA metabolites 10(6) cells(-1) h(-1). These kinetic parameters represent the overall formation of polar metabolites from all-trans-RA. Induction of all-trans-RA catabolism was also obtained with other retinoids, CH55 >> 13-cis-RA = all-trans-RA > 9-cis-RA > 4-keto-all-trans-RA > 4-keto-13-cis-RA > retinol. The potency of the retinoids to induce all-trans-RA catabolism was correlated to their retinoic acid receptor affinity (Crettaz et al, 1990; Repa et al, 1990; Sani et al, 1990). Induction of all-trans-RA catabolism was inhibited by actinomycin D. Furthermore, all-trans-RA did not increase cytosolic retinoic acid-binding protein (CRABP) mRNA levels. These data suggest that induction of all-trans-RA catabolism in MCF-7 cells is a retinoic acid receptor-mediated gene transcriptional event. Induced all-trans-RA catabolism was inhibited by various retinoids with decreasing potency in the order: all-trans-RA > 4-keto-all-trans-RA > 13-cis-RA > 9-cis-RA > 4-keto-13-cis-RA > retinol > CH55. The antitumoral compound liarozole-fumarate inhibited all-trans-RA catabolism with a potency similar to that of all-trans-RA. Images Figure 4 PMID:9099955

  7. Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells

    PubMed Central

    Liu, Yitong; Flynn, Thomas J.; Xia, Menghang; Wiesenfeld, Paddy L.; Ferguson, Martine S.

    2016-01-01

    A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1% dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 >> HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC50 within 2.5 fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7 cells, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity. PMID:26377104

  8. Photons and magnetization

    NASA Astrophysics Data System (ADS)

    2013-06-01

    Magnets are often electrically activated, but recent research has demonstrated various schemes that can control magnetization using light and photocarriers. Nature Photonics spoke to Petr Němec and Tomas Jungwirth about their recent work on a polarization-independent optical-torque approach.

  9. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  10. Auxiliary Entanglement in Photon Pairs for Multi-Photon Entanglement

    SciTech Connect

    Grice, Warren P; Bennink, Ryan S; Evans, Philip G; Humble, Travis S; Schaake, Jason

    2012-01-01

    A growing number of experiments make use of multiple pairs of photons generated in the process of spontaneous parametric down-conversion. We show that entanglement in unwanted degrees of freedom can adversely affect the results of these experiments. We also discuss techniques to reduce or eliminate spectral and spatial entanglement, and we present results from two-photon polarization-entangled source with almost no entanglement in these degrees of freedom. Finally, we present two methods for the generation of four-photon polarization- entangled states. In one of these methods, four-photon can be generated without the need for intermediate two-photon entanglement.

  11. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  12. Two-photon spectroscopy of excitons with entangled photons

    SciTech Connect

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  13. Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wave Function: Comparison of Two-Photon Absorption with One-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Nakanishi, Toshihiro; Kobayashi, Hirokazu; Sugiyama, Kazuhiko; Kitano, Masao

    2009-10-01

    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon and two-photon transitions induced by photon pairs in three-level atoms using two-photon wave functions. We show that two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: a Gaussian wave function and a rectangular wave function. In the latter, we find that under special conditions one-photon transition is completely suppressed, while two-photon transition is maintained with a high probability.

  14. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  15. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    PubMed

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion. PMID:26774722

  16. RAW264.7 Cell Activating Glucomannans Extracted from Rhizome of Polygonatum sibiricum

    PubMed Central

    Yelithao, Khamphone; Surayot, Utoomporn; Lee, Ju Hun; You, SangGuan

    2016-01-01

    Water-soluble polysaccharides isolated from the rhizome of Polygonatum sibiricum and fractionated using ion-exchange chromatography were investigated to determine their structure and immunostimulating activity. Crude and fractions (F1 and F2) consisted of carbohydrates (85.1~88.3%) with proteins (4.51~11.9%) and uronic acid (1.79~7.47%), and included different levels of mannose (62.3~76.3%), glucose (15.2~20.3%), galactose (4.35~15.3%), and arabinose (4.00~7.65%). The crude contained two peaks with molecular weights (Mw) of 151×103 and 31.8×103, but F1 and F2 exhibited one major peak with Mw of 103×103 and 628×103, respectively. Little immunostimulatory activity was observed by the crude; however, F1 and F2 significantly activated RAW264.7 cells to release nitric oxide and various cytokines, suggesting they were potent immunostimulators. The backbone of the most immunostimulating fraction (F1) was (1→4)-manno- and (1→4)-gluco-pyranosyl residues with galactose and glucose attached to O-6 of manno-pyranoside. PMID:27752501

  17. Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells.

    PubMed Central

    Harding, D; Fournel-Gigleux, S; Jackson, M R; Burchell, B

    1988-01-01

    A rat kidney phenol UDP-glucuronosyltransferase cDNA was used to isolate a human liver phenol UDP-glucuronosyltransferase cDNA by screening of a human liver cDNA library in the expression vector lambda gt11. The 2.4-kilobase cDNA contained an open reading frame of 1593 base pairs coding for a protein of 531 residues. The human liver cDNA was subcloned into the vector pKCRH2. Transfection of this recombinant plasmid into COS-7 cells allowed the expression of a protein of approximately 55 kDa. The enzyme synthesized was a glycoprotein, as indicated by a reduction in molecular mass of approximately 3 kDa after biosynthesis in the presence of tunicamycin. The expressed enzyme rapidly catalyzed the glucuronidation of 1-naphthol, 4-methylumbelliferone, and 4-nitrophenol. The use of a related series of simple phenols provided an outline description of the substituent restrictions imposed upon the phenolic structures accepted as substrates. The glucuronidation of testosterone, androsterone, and estrone was not catalyzed by this cloned UDP-glucuronosyltransferase. Images PMID:3141926

  18. Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells

    SciTech Connect

    Jiang Haiping; Yu Jinming Guo Hongbo; Song Hao; Chen Shaoqing

    2008-03-28

    Leptin and its receptors are overexpressed in breast cancer tissues and correlate with poor prognosis. Survivin, a member of the inhibitor of apoptosis protein (IAP) gene family, is generally upregulated in tumor tissues and prevents tumor cells from apoptosis. Here we showed that leptin upregulated survivin mRNA and protein expression in MCF-7 breast cancer cells. Meanwhile, leptin suppressed docetaxel-induced apoptosis by inhibiting caspase activity. Knockdown of signal transducer and activator transcription 3 (STAT3) expression by small interfering RNA (siRNA) blocked leptin-induced upregulation of survivin. TransAM ELISA showed that leptin increased nuclear translocation of active STAT3. In addition, chromatin immunoprecipitation (ChIP) assay detected an enhanced binding of STAT3 to survivin promoter in MCF-7 cells after treatment by leptin. Further studies showed that leptin enhanced the transcriptional activity of survivin promoter. Collectively, our findings identify leptin/STAT3 signaling as a novel pathway for survivin expression in breast cancer cells.

  19. Fenugreek induced apoptosis in breast cancer MCF-7 cells mediated independently by fas receptor change.

    PubMed

    Alshatwi, Ali Abdullah; Shafi, Gowhar; Hasan, Tarique Noorul; Syed, Naveed Ahmed; Khoja, Kholoud Khalid

    2013-01-01

    Trigonella foenum in graecum (Fenugreek) is a traditional herbal plant used to treat disorders like diabetes, high cholesterol, wounds, inflammation, gastrointestinal ailments, and it is believed to have anti-tumor properties, although the mechanisms for the activity remain to be elucidated. In this study, we prepared a methanol extract from Fenugreek whole plants and investigated the mechanism involved in its growth-inhibitory effect on MCF- 7 human breast cancer cells. Apoptosis of MCF-7 cells was evidenced by investigating trypan blue exclusion, TUNEL and Caspase 3, 8, 9, p53, FADD, Bax and Bak by real-time PCR assays inducing activities, in the presence of FME at 65 μg/mL for 24 and 48 hours. FME induced apoptosis was mediated by the death receptor pathway as demonstrated by the increased level of Fas receptor expression after FME treatment. However, such change was found to be absent in Caspase 3, 8, 9, p53, FADD, Bax and Bak, which was confirmed by a time-dependent and dose-dependent manner. In summary, these data demonstrate that at least 90% of FME induced apoptosis in breast cell is mediated by Fas receptor-independently of either FADD, Caspase 8 or 3, as well as p53 interdependently. PMID:24289578

  20. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    PubMed

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  1. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells.

    PubMed

    Kim, Sun Suk; Oh, O-Jin; Min, Hye-Young; Park, Eun-Jung; Kim, Youngleem; Park, Hyen Joo; Nam Han, Yong; Lee, Sang Kook

    2003-06-01

    Inducible cyclooxygenase (COX-2) has been implicated in the processes of inflammation and carcinogenesis. Thus, the potential COX-2 inhibitors have been considered as anti-inflammatory or cancer chemopreventive agents. In this study, the methanolic extract of the cortex of Eugenia caryophyllata Thunberg (Myrtaceae) was found to potently inhibit the prostaglandin E(2) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells (98.3% inhibition at the test concentration of 10 microg/ml). Further, hexane-soluble layer was the most active partition compared to ethyl acetate, n-butanol, and water-soluble parts. By bioassay-guided fractionation of hexane-soluble partition, eugenol was isolated and exhibited a significant inhibition of PGE(2) production (IC(50) = 0.37 microM). In addition, eugenol suppressed the cyclooxygenase-2 (COX-2) gene expression in LPS-stimulated mouse macrophage cells. On the line of COX-2 playing an important role in colon carcinogenesis further study was designed to investigate the effect of eugenol on the growth and COX-2 expression in HT-29 human colon cancer cells. Eugenol inhibited the proliferation of HT-29 cells and the mRNA expression of COX-2, but not COX-1. This result suggests that eugenol might be a plausible lead candidate for further developing the COX-2 inhibitor as an anti-inflammatory or cancer chemopreventive agent.

  2. Neuropeptide FF inhibits LPS-mediated osteoclast differentiation of RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Li, Di-Jie; Zhao, Fan; Ma, Xiao-Li; Shang, Peng; Yang, Tuanming; Qian, Airong

    2014-01-01

    Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

  3. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  4. Photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  5. Photon + jets at D0

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  6. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    PubMed Central

    Pitchai, Daisy; Roy, Anita; Ignatius, Cybil

    2014-01-01

    Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A) and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism. PMID:25364696

  7. Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells.

    PubMed

    Liu, Yitong; Flynn, Thomas J; Xia, Menghang; Wiesenfeld, Paddy L; Ferguson, Martine S

    2015-10-01

    A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1 % dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 > HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC 50 within 2.5-fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity.

  8. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  9. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  11. PHOTON: A user's manual

    SciTech Connect

    Chapman, D.

    1988-01-01

    PHOTON has proven very useful in the development of the X17 superconducting wiggler beamline. Its use has determined the shielding required from the wiggler device to the very end of the beamline in the hutches and angiography section. Doses calculated by this program have been compared with experimental results from conventional bending magnet beamline with great success. In each case the program consistently overestimated the dose by factors ranging from 2 to 10. The reason for this overestimation is understood and was not refined further in the program in order to maintain some level of safety in the shielding calculations. PHOTON should prove useful in the design of any beamline. Its ability to calculate power deposited and spectra transmitted through nearly arbitrary beamline configurations as well as the scattered radiation doses through shielding walls make it a very powerful tool.

  12. Photons in a ball

    NASA Astrophysics Data System (ADS)

    Mück, Wolfgang

    2015-12-01

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  13. Optics of photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Vardeny, Z. Valy; Nahata, Ajay; Agrawal, Amit

    2013-03-01

    The physics of periodic systems are of fundamental importance and result in various phenomena that govern wave transport and interference. However, deviations from periodicity may result in higher complexity and give rise to a number of surprising effects. One such deviation can be found in the field of optics in the realization of photonic quasicrystals, a class of structures made from building blocks that are arranged using well-designed patterns but lack translational symmetry. Nevertheless, these structures, which lie between periodic and disordered structures, still show sharp diffraction patterns that confirm the existence of wave interference resulting from their long-range order. In this Review, we discuss the beautiful physics unravelled in photonic quasicrystals of one, two and three dimensions, and describe how they can influence optical transmission and reflectivity, photoluminescence, light transport, plasmonics and laser action.

  14. Surface nanoscale axial photonics.

    PubMed

    Sumetsky, M; Fini, J M

    2011-12-19

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schrödinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. Extremely low loss of SNAP devices is achieved due to the low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration has intriguing potential applications in filtering, switching, slowing light, and sensing.

  15. Photon activation therapy.

    PubMed

    Fairchild, R G; Bond, V P

    1984-12-01

    It is suggested here that significant advantages should accrue from the use of 40 keV photons from implanted sources of 145Sm. These energies should stimulate Auger electron cascades from IdUrd, as well as produce non-repairable damage from radiosensitization. The use of low dose rates (approximately 10 rd/hr) should allow repair in normal tissues exposed to the activating photons. Utilization of this technique with brain tumors should minimize problems associated with radiosensitization of normal tissues, as CNS tissues do not synthesize DNA. The deposition of high LET radiations selectively in tumor cells provides unique advantages not available to either conventional therapy or other forms of particle therapy (fast neutrons, protons, pions, heavy ions). PMID:6515666

  16. The photodamage effect and ROS generation induced by PDT with HMME in MCF-7cells in vitro

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Liu, Jianzhong; Li, Yan

    2007-05-01

    Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). We use the human breast cancer MCF-7 cells to investigate the photodamage effect of HMME and reactive oxygen species (ROS) generation in HMME-PDT. Methods: The growth rates of MCF-7 cells at 24h after irradiation by 532nm laser with HMME of 5~20μg/ml and light dose of 0.3~4.8J/cm2 were determined by CCK-8 assays. Hoechst33342 staining was used to investigate the morphological change of the tumor cell. Flow cytometry combined with dual Annexin V/PI staining was used to identify the death mode of the cells following PDT. The changes of ROS labeled by DCFH-DA were observed by Laser Scanning Confocal Microscopy (LSCM). Our results show that HMME-based PDT induced significant cell death, and the photocytotoxity to MCF-7 cells is dose-dependent at the range of HMME concentration 5~20μg/ml and the light dose 0.3~4.8J/cm2. The nucleolus underwent apoptosis and/or necrosis observed by LSCM with Hoechst33342 staining. The necrosis and apoptosis rate were 16.0% and 12.4% respectively by FCM, showing the number of necrosic cells was more than that of apoptosis. There was an intense increase of fluorescence intensity standing for ROS generation within 30min post-PDT, and the peak was at about 10min after PDT. Our results suggest that HMME-PDT could inhibit the proliferation of MCF-7 cells remarkably. Because the MCF-7 cells lack procaspase-3, the apoptosis rate is lower. ROS played an important role in the photodamage with HMME.

  17. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    SciTech Connect

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation.

  18. Photonics for accelerator instrumentation

    SciTech Connect

    Stillman, A.

    1993-12-31

    Nonlinear optical effects in certain types of crystals have the capacity to improve the performance of sampling circuits by a large margin. The theory on nonlinear optics and the associated devices is rather straightforward. I will present some of the relevant ideas and illustrate how these principles can result in order of magnitude improvements in sampling circuits. As an example of the photonic technique, I will illustrate how to design a beam position monitor that uses a nonlinear crystal.

  19. Photon-neutrino interactions

    SciTech Connect

    Dicus, D.A.; Repko, W.W.

    1997-12-01

    The cross sections for the processes {gamma}{nu} {yields} {gamma}{gamma} {yields} {nu}{anti {nu}} are calculated with the aid of an effective Lagrangian derived from the Standard model. These cross sections are shown to be much larger than the elastic cross section {sigma}({gamma}{nu} {yields} {gamma}{nu}) for photon energies {omega} {ge} 1 keV. Possible astrophysical implications are discussed.

  20. Photonic crystal optical memory

    NASA Astrophysics Data System (ADS)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  1. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  2. Trefoil factor-2, human spasmolytic polypeptide, promotes branching morphogenesis in MCF-7 cells.

    PubMed

    Lalani, E N; Williams, R; Jayaram, Y; Gilbert, C; Chaudhary, K S; Siu, L S; Koumarianou, A; Playford, R; Stamp, G W

    1999-05-01

    Members of the trefoil factor (TFF) family are highly expressed in endodermal ulcerative wound healing and selectively in neoplastic proliferation of various glandular epithelia. There is some evidence that TFF1 and TFF3 affect cell motility, are indirectly involved in growth suppression, and are associated with mucin expression. TFF2 is co-expressed with TFF1 in gastric surface epithelial cells, but its potential role in vivo is unclear. We analyzed potential effects on cell proliferation and morphogenesis of TFF2 on a panel of epithelial and mesenchymal cell lines. TFF2 had no measurable effect on the proliferation of any of the cell lines tested. In type 1 collagen lattices, TFF2 at a low concentration (25-100 nM) induced the formation of highly complex branched structures in the breast carcinoma cell line MCF-7 over a period of 14 to 42 days. No significant effect was shown with other cell lines. This morphogenic effect was abolished by monoclonal antibodies specific for either TFF2 or TFF1. TFF2 did not affect cell motility in MCF-7 cells as measured by videomicroscopy, in contrast to previous studies using TFF1. TFF2-treated MCF-7 colonies showed a 30% reduction in the number of apoptotic bodies, corroborated by trypan blue exclusion and DNA fragmentation ELISA, indicating TFF2 promotes cell survival via inhibition of apoptosis and can act as a morphogen in the presence of TFF1. These properties may complement the actions of TFF1 as a motogen and may explain differential expression in endodermal wound healing.

  3. Lipogenesis in Huh7 cells is promoted by increasing the fructose: Glucose molar ratio

    PubMed Central

    Windemuller, Fernando; Xu, Jiliu; Rabinowitz, Simon S; Hussain, M Mahmood; Schwarz, Steven M

    2016-01-01

    AIM: To determine whether hepatocyte lipogenesis, in an in vitro cell culture model, is modulated by adjusting culture media monosaccharide content and concentration. METHODS: Hepatocytes (Huh7), demonstrating glucose and fructose uptake and lipid biosynthesis, were incubated in culture media containing either glucose alone (0.65-0.72 mmol/L) or isosmolar monosaccharide (0.72 mmol/L) comprising fructose:glucose (F:G) molar ratios ranging from 0.58-0.67. Following a 24-h incubation, cells were harvested and analyzed for total protein, triglyceride (TG) and cholesterol (C) content. Significant differences (P < 0.05) among groups were determined using analysis of variance followed by Dunnett’s test for multiple comparisons. RESULTS: After a 24 h incubation period, Huh7 cell mass and viability among all experimental groups were not different. Hepatocytes cultured with increasing concentrations of glucose alone did not demonstrate a significant change either in C or in TG content. However, when the culture media contained increasing F:G molar ratios, at a constant total monosaccharide concentration, synthesis both of C and of TG increased significantly [F:G ratio = 0.58, C/protein (μg/μg) = 0.13; F:G = 0.67, C/protein = 0.18, P < 0.01; F:G ratio = 0.58, TG/protein (μg/μg) = 0.06; F:G ratio = 0.67, TG/protein = 0.11, P < 0.01]. CONCLUSION: In an in vitro hepatocyte model, glucose or fructose plus glucose support total cell mass and lipogenic activity. Increasing the fructose:glucose molar ratio (but not glucose alone) enhances triglyceride and cholesterol synthesis. These investigations demonstrate fructose promotes hepatocellular lipogenesis, and they provide evidence supporting future, in vivo studies of fructose’s role in the development of hepatic steatosis and non-alcoholic fatty liver disease. PMID:27458503

  4. Photonics Explorer Workshop

    NASA Astrophysics Data System (ADS)

    Prasad, Amrita; Debaes, Nathalie

    2014-07-01

    The Photonics Explorer is an intra-curricular educational kit developed in a European project with a pan-European collaboration of over 35 teachers and science education professors. Unlike conventional educational outreach kits, the Photonics Explorer is specifically designed to integrate seamlessly in school curricula and enhance and complement the teaching and learning of science and optics in the classroom. The kit equips teachers with class sets of experimental components, provided within a supporting didactic framework and is designed for lower and upper secondary students (12-18 years). The kit is provided completely free of charge to teachers in conjunction with teacher training courses. The workshop will provide an overview of the Photonics Explorer intra-curricular kit and give teachers the opportunity to work hands-on with the material and didactic content of two modules, `Light Signals' (lower secondary) and `Diffraction and Interference'(upper secondary). We also aim to receive feedback regarding the content, components and didactic framework from teachers from non- European countries, to understand the relevance of the kit for their teaching and the ability for such a kit to integrate into non-EU curricula.

  5. Photon-activation therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable /sup 127/I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors. (ERB)

  6. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  7. Slotted photonic crystal sensors.

    PubMed

    Scullion, Mark G; Krauss, Thomas F; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  8. Super Photon Counters

    NASA Technical Reports Server (NTRS)

    Mather, John

    1999-01-01

    The perfect photon detector would measure the arrival time, the energy, the polarization, and the position of every arriving quantum, but that is easier said than done. Two groups have now succeeded in doing time-resolved spectroscopy on the Crab Nebula pulsar, measuring everything but the polarization, with reports from Romani et al. at Stanford and from Perryman et al. at ESTEC. Both groups use superconducting detectors to gain the necessary speed and sensitivity. The photon can heat the electrons in a superconductor biased in the middle of its resistive transition, or break bound superconducting electron-hole pairs, which can then be collected. Three years ago, Peacock et al. reported that they had detected single optical photons with a superconducting tunnel junction (STJ), and Paresce wrote a News and Views article. A tunnel junction uses two pieces of conductive material, separated by a tiny gap of insulating material or even vacuum. If the gap is thin enough, electrons can tunnel across anyway, and if the conductors are superconductors, the junction displays very useful quantum mechanical properties and electrical nonlinearities. Amplifiers, detectors, oscillators, and computer circuits can all be made from them. Their special advantage is that they operate at very low temperatures, dissipate very little power, operate very fast, and are very small.

  9. Integrated photonic quantum walks

    NASA Astrophysics Data System (ADS)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  10. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  11. Nonlocal Structures: Bilocal Photon

    NASA Astrophysics Data System (ADS)

    Clapp, Roger E.

    1980-01-01

    As a starting point, it is postulated that all particles and fields are built from a single primitive field, which must then be a massless fermion with a σ spin of one-half. Two helicities are embodied in a τ spin of one-half. The vacuum is an open Fermi sea whose height is a wave number κ. Elementary particles are structures having the form of standing-wave systems floating on the vacuum sea, with the height κ providing both the scale of inner structural size and the mass unit for the elementary particle mass spectrum. A bilocal photon starts with a function describing two primitive quanta with parallel σ spin and opposite τ spin. A centroid-time wave equation then couples-in an infinite set of orthogonal functions. The introduction of an operator Q λ permits the reduction of the infinite secular determinant to a finite six-by-six determinant. Solutions (for the infinite expansion) are obtained describing photons with right-handed and left-handed polarizations. Superpositions of these give linearly polarized photons. Electric and magnetic field vectors, satisfying the vacuum Maxwell equations, are obtained from a bilocal Hertz vector given by п= (2/κ3 c)(∂/∂ t r)∇rΨ(1,2), where Ψ(1,2) is the bilocal wave function, and tr and r are the relative time and relative position variables.

  12. Topological Photonic States

    NASA Astrophysics Data System (ADS)

    He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all

  13. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  14. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  15. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock-Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen-Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  16. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons. PMID:27281214

  17. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  18. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    PubMed

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  19. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-01-01

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  20. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  1. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  2. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    PubMed Central

    Chen, Daozhen; Tang, Qiusha; Li, Xiangdong; Zhou, Xiaojin; Zang, Jia; Xue, Wen-qun; Xiang, Jing-ying; Guo, Cai-qin

    2012-01-01

    Background The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells. Methods Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays. Results Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS) X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929) cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50) was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7

  3. All-photonic quantum repeaters.

    PubMed

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories.

  4. Quantum simulation with interacting photons

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael J.

    2016-10-01

    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.

  5. Nonlinear interaction between single photons.

    PubMed

    Guerreiro, T; Martin, A; Sanguinetti, B; Pelc, J S; Langrock, C; Fejer, M M; Gisin, N; Zbinden, H; Sangouard, N; Thew, R T

    2014-10-24

    Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution.

  6. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  7. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  8. Silicon photonic integration in telecommunications

    NASA Astrophysics Data System (ADS)

    Doerr, Christopher

    2015-08-01

    Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  9. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  10. Spaceborne Photonics Institute

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  11. Robust Photon Locking

    SciTech Connect

    Bayer, T.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T.

    2009-01-16

    We experimentally demonstrate a strong-field coherent control mechanism that combines the advantages of photon locking (PL) and rapid adiabatic passage (RAP). Unlike earlier implementations of PL and RAP by pulse sequences or chirped pulses, we use shaped pulses generated by phase modulation of the spectrum of a femtosecond laser pulse with a generalized phase discontinuity. The novel control scenario is characterized by a high degree of robustness achieved via adiabatic preparation of a state of maximum coherence. Subsequent phase control allows for efficient switching among different target states. We investigate both properties by photoelectron spectroscopy on potassium atoms interacting with the intense shaped light field.

  12. Generalized Fibonacci photon sieves.

    PubMed

    Ke, Jie; Zhang, Junyong

    2015-08-20

    We successfully extend the standard Fibonacci zone plates with two on-axis foci to the generalized Fibonacci photon sieves (GFiPS) with multiple on-axis foci. We also propose the direct and inverse design methods based on the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones, according to the generalized Fibonacci sequences, we not only realize adjustable multifocal distances but also fulfill the adjustable compression ratio of focal spots in different directions. PMID:26368763

  13. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  14. Growth inhibition and apoptotic effects of total flavonoids from Trollius chinensis on human breast cancer MCF-7 cells

    PubMed Central

    Wang, Shuhua; Tian, Qingqing; An, Fang

    2016-01-01

    Dried flowers of Trollius chinensis have long been used as an important traditional Chinese medicine. Previous studies have demonstrated the ability of T. chinensis flavonoids to reduce the proliferation of human breast cancer MCF-7 cells. The present study further investigated the influence of T. chinensis flavonoids on the growth and proliferation of MCF-7 cells and observed clear inhibitory effects within the concentration range of 0.0991–1.5856 mg/ml. Apoptosis was triggered by T. chinensis flavonoids treatment that was evaluated by differential interference contrast software, the Hoechst 33258 method, scanning electron microscopy, hematoxylin/eosin staining and laser confocal light microscopy. Cells treated with T. chinensis flavonoids selectively reduced bcl-2 and NF-κB expression and increased the expression of caspase-9 and caspase-3 indicating that the inhibition of cellular proliferation occurred through activation of a mitochondrial pathway. Taken together, the results confirmed the ability of T. chinensis flavonoids to inhibit cell proliferation.

  15. Studies on tamoxifen encapsulated in lipid vesicles: effect on the growth of human breast cancer MCF-7 cells.

    PubMed

    Bhatia, Amit; Bhushan, Shashi; Singh, Bhupinder; Katare, Om Prakash

    2009-01-01

    Tamoxifen is a nonsteroidal estrogen-receptor modulator widely used in the treatment of breast cancer. Apoptosis has been reported to be a major mechanism for its antitumor effect. In the current studies, an endeavor was made to investigate the efficacy of vesicularly encapsulated tamoxifen on human breast cancer MCF-7 cells. Phospholipid-based vesicular systems viz. conventional liposomes and elastic-membrane liposomes were employed to encapsulate the drug. The MTT colorimetric assay was used to determine the efficacy of the tested formulations. The results demonstrated composition-dependent strong inhibition in the viability of MCF-7 cells with encapsulated tamoxifen vis-à-vis free drug. The encouraging findings from the current work construe immense potential of the lipid-based vesicular systems in the treatment of breast cancer.

  16. Phenomenology of photon-jets

    NASA Astrophysics Data System (ADS)

    Ellis, Stephen D.; Roy, Tuhin S.; Scholtz, Jakub

    2013-01-01

    One of the challenges of collider physics is to unambiguously associate detector-based objects with the corresponding elementary physics objects. A particular example is the association of calorimeter-based objects such as “jets,” identified with a standard (IR-safe) jet algorithm, with the underlying physics objects, which may be QCD-jets (arising from a scattered parton), electrons, photons or, as discussed here, photon-jets (a group of collinear photons). This separation is especially interesting in the context of Higgs search, where the signal includes events with two photons (in the Standard Model) as well as events with two photon-jets (in a variety of Beyond the Standard Model scenarios), while QCD provides ever-present background. Here we describe the implementation of techniques from the rapidly evolving area of jet substructure studies, not only to enhance the more familiar photon-QCD separation, but also to separately distinguish photon-jets, i.e., to separate usual jets into three categories: single photons, photon-jets and QCD-jets. The efficacy of these techniques for separation is illustrated through studies of simulated data.

  17. Hologram of a single photon

    NASA Astrophysics Data System (ADS)

    Chrapkiewicz, Radosław; Jachura, Michał; Banaszek, Konrad; Wasilewski, Wojciech

    2016-09-01

    The spatial structure of single photons is becoming an extensively explored resource to facilitate free-space quantum communication and quantum computation as well as for benchmarking the limits of quantum entanglement generation with orbital angular momentum modes or reduction of the photon free-space propagation speed. Although accurate tailoring of the spatial structure of photons is now routinely performed using methods employed for shaping classical optical beams, the reciprocal problem of retrieving the spatial phase-amplitude structure of an unknown single photon cannot be solved using complementary classical holography techniques that are known for excellent interferometric precision. Here, we introduce a method to record a hologram of a single photon that is probed by another reference photon, on the basis of a different concept of the quantum interference between two-photon probability amplitudes. As for classical holograms, the hologram of a single photon encodes the full information about the photon's ‘shape’ (that is, its quantum wavefunction) whose local amplitude and phase are retrieved in the demonstrated experiment.

  18. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  19. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells.

    PubMed

    Hooshmand, Shirin; Kumar, Ajay; Zhang, Ji Yao; Johnson, Sarah A; Chai, Sheau C; Arjmandi, Bahram H

    2015-05-01

    This study presents the anti-inflammatory and antioxidative properties of dried plum (Prunus domestica L.) polyphenols in macrophage RAW 264.7 cells. We hypothesized that dried plum polyphenols have strong anti-inflammatory and antioxidant properties against lipopolysaccharide (LPS)-induced production of the pro-inflammatory markers, nitric oxide (NO) and cyclooxygenase-2 (COX-2), and the lipid peroxidation product, malondialdehyde, in activated macrophage RAW 264.7 cells. To test this hypothesis, macrophage RAW 264.7 cells were stimulated with either 1 μg ml(-1) (for measurement of NO production) or 1 ng ml(-1) (for measurement of COX-2 expression) of LPS to induce inflammation and were treated with different doses of dried plum polyphenols (0.0, 0.1, 1, 10, 100 and 1000 μg ml(-1)). Dried plum polyphenols at a dose of 1000 μg ml(-1) was able to significantly (P < 0.05) reduce NO production by 43%. Additionally, LPS-induced expression of COX-2 was significantly (P < 0.05) reduced by 100 and 1000 μg ml(-1) dried plum polyphenols. To investigate the antioxidant activity of dried plum polyphenols, macrophage RAW 264.7 cells were stimulated with 100 μg ml(-1) of FeSO4 + 1 mM ml(-1) of H2O2 to induce lipid peroxidation. Dried plum polyphenols at a dose of 1000 μg ml(-1) showed a 32% reduction in malondialdehyde production. These findings indicate that dried plum polyphenols are potent anti-inflammatory and antioxidative agents in vitro.

  20. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  1. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells.

    PubMed

    Yan, Yitang; Cummings, Connie A; Sutton, Deloris; Yu, Linda; Castro, Lysandra; Moore, Alicia B; Gao, Xiaohua; Dixon, Darlene

    2016-04-01

    Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells.

  2. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.

    PubMed

    Ma, Wei-Dong; Zou, Yong-Peng; Wang, Peng; Yao, Xiao-Hui; Sun, Yao; Duan, Ming-Hui; Fu, Yu-Jie; Yu, Bo

    2014-08-01

    Chimaphilin, 2,7-dimethyl-1,4-naphthoquinone, is extracted from pyrola [Passiflora incarnata Fisch.]. In this study, the anticancer activity and underlying mechanisms of chimaphilin toward human breast cancer MCF-7 cells are firstly investigated. Chimaphilin could inhibit the viability of MCF-7 cells in a concentration-dependent manner, and the IC50 value was 43.30μM for 24h. Chimaphilin markedly induced apoptosis through the investigation of characteristic apoptotic morphological changes, nuclear DNA fragmentation, annexin V-FITC/propidium iodide (PI) double staining. Flow cytometry assay revealed that chimaphilin triggered a significant generation of ROS and disruption of mitochondrial membrane potential. Additionally, western blotting assay showed that chimaphilin suppressed Bcl-2 level and enhanced Bad level, then activated caspase-9 and caspase-3, and further activated the poly ADP-ribose polymerase (PARP), finally induced cell apoptosis involving the mitochondrial pathway. Furthermore, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment test testified that chimaphilin could increase the generation of ROS, then induce cell apoptosis. In general, the present results demonstrated that chimaphilin induced apoptosis in human breast cancer MCF-7 cells via a ROS-mediated mitochondrial pathway. PMID:24793375

  3. Effect of cancer procoagulant (CP) on the growth and adhesion of MCF-7 cells to vitronectin in vitro.

    PubMed

    Kamocka, Małgorzata; Rózalski, Marek; Krajewska, Urszula; Wierzbicki, Ryszard; Mielicki, Wojciech P

    2005-05-10

    Cancer procoagulant (CP) is a cysteine protease produced by fetal and malignant tissues, activating in vitro blood coagulation factor X. It has been demonstrated that CP is able to stimulate blood platelet adhesion to fibrinogen and collagen. The pro-adhesive properties of CP could play an important role in metastatic spread of cancer as well as in primary tumor growth. Effects of anti-CP antibody on the growth of MCF-7 breast cancer cells and on the cells adhesion to vitronectin have been analyzed in vitro. Addition of polyclonal anti-CP antibody to MCF-7 cell culture resulted in 16-18% (P < 0.001) decrease in the cells viability as compared with the control (other antibody or no antibody in the culture). Preincubation of MCF-7 cells with anti-CP antibody reduced the cells adhesion to vitronectin. Further addition of purified CP (0.5-8 microg/ml) to the MCF-7 cells preincubated with anti-CP antibody resulted in complete recovery of adhesive properties of the cells. However, when high concentration (16 microg/ml) of CP was added to the sample, only partial recovery of the adhesive properties by the cells was observed. Results of the experiments support the hypothesis that CP is involved in the growth of cancer cells, but its pro-coagulative properties are of secondary importance. One of the possible mechanisms of the interactions between CP and malignant cell could be the regulation of the cell adhesion processes.

  4. Antioxidant and Anti-inflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells.

    PubMed

    Hwang, Joon-Ho; Lim, Sang-Bin

    2014-06-01

    Broccoli (Brassica oleracea var. italia) florets were extracted with 80% methanol and the extract was sequentially fractionated with n-hexane, ethyl acetate, n-butanol, and distilled water. The extract and the fractions were evaluated for total phenolic content, sulforaphane content, antioxidant activity, and anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The total phenolic content and sulforaphane content of the ethyl acetate fraction (EF) were 35.5 mg gallic acid equivalents/g and 620.2 μg/g, respectively. These values were higher than those of the 80% methanol extract and organic solvent fractions. The oxygen radical absorbance capacity of the EF [1,588.7 μM Trolox equivalents (TE)/mg] was 11-fold higher than that of the distilled water fraction (143.7 μM TE/mg). The EF inhibited nitric oxide release from LPS-stimulated RAW 264.7 cells in a dose-dependent manner and inhibited IκB-α degradation and nuclear factor-κB activation in LPS-stimulated RAW 264.7 cells. In conclusion, the EF of broccoli florets exerted potent antioxidant and anti-inflammatory effects. PMID:25054107

  5. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells.

    PubMed

    Li, Yanchun; Luo, Qiyu; Yuan, Lei; Miao, Caixia; Mu, Xiaoshuo; Xiao, Wei; Li, Jianchun; Sun, Tiemin; Ma, Enlong

    2012-08-15

    N-Benzoyl-O-(N'-(1-benzyloxycarbonyl-4-piperidiylcarbonyl)-D-phenylalanyl)-D-phenylalaninol (BBP), a novel synthesized asperphenamate derivative with the increased solubility, showed growth inhibitory effect on human breast carcinoma MCF-7 cells in a time- and concentration-dependent manner. The growth inhibitory effect of BBP was associated with induction of autophagy, which was demonstrated by the development of acidic vesicular organelles, cleavage of LC3 and upregulation of Atg4 in BBP-treated MCF-7 cells. Since the application of Atg4 siRNA totally blocked the cleavage of LC3, we demonstrated a central role of Atg4 in BBP-induced autophagy. The further studies showed that BBP increased the levels of reactive oxygen species (ROS), and pretreatment with NAC effectively blocked the accumulation of ROS, autophagy and growth inhibition triggered by BBP. Moreover, BBP induced the activation of JNK, and JNK inhibitor SP600125 reversed autophagy, the increase of Atg4 levels, conversion of LC3 and growth inhibition induced by BBP. Knockdown of JNK by siRNA efficiently inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by BBP, indicating that JNK activation may be a upstream signaling of ROS and should be a core component in BBP-induced autophagic signaling pathway. These results suggest that BBP produces its growth inhibitory effect through induction of the autophagic cell death in MCF-7 cells, which is modulated by a JNK-dependent Atg4 upregulation involving ROS production. PMID:22668848

  6. Japanese encephalitis virus upregulates the expression of SOCS3 in mouse brain and Raw264.7 Cells.

    PubMed

    Li, Xiangmin; Zhu, Qiaoyan; Cao, Qishu; Chen, Huanchun; Qian, Ping

    2014-11-01

    Japanese encephalitis virus (JEV) is one of the pathogens that can invade the central nervous system, causing acute infection and inflammation of brain. SOCS3 protein plays a vital role in immune processes and inflammation of the central nervous system. In this study, Raw264.7 cells and suckling mice were infected with JEV, and SOCS3 expression was analyzed by the gene expression profile, semiquantitative RT-PCR, qRT-PCR, immunohistochemistry (IHC) and Western blot. Results indicated that 520 genes were found to be differentially expressed (fold change ≥ 2.0, p < 0.05) in total. The differentially regulated genes were involved in biological processes, such as stimulus response, biological regulation and immune system processes. JEV early infection could induce SOCS3 expression, upregulating both the mRNA and protein levels in Raw264.7 cells in a time-dependent manner. The SOCS3 expression was much lower in Raw264.7 cells infected with inactivated JEV than wild-type JEV. In vivo, SOCS3 protein was also found to upregulate the expression of mRNA and protein in JEV-infected mouse brain. Taken together, our data showed that JEV early infection could induce the upregulation of SOCS3 expression, both in vitro and in vivo, providing the basic theoretical foundation for future research on the invasion mechanism of JEV. PMID:25390684

  7. Photon Molecules in Atomic Gases Trapped Near Photonic Crystal Waveguides

    NASA Astrophysics Data System (ADS)

    Douglas, James S.; Caneva, Tommaso; Chang, Darrick E.

    2016-07-01

    Realizing systems that support robust, controlled interactions between individual photons is an exciting frontier of nonlinear optics. To this end, one approach that has emerged recently is to leverage atomic interactions to create strong and spatially nonlocal interactions between photons. In particular, effective photonic interactions have been successfully created via interactions between atoms excited to Rydberg levels. Here, we investigate an alternative approach, in which atomic interactions arise via their common coupling to photonic crystal waveguides. This technique takes advantage of the ability to separately tailor the strength and range of interactions via the dispersion engineering of the structure itself, which can lead to qualitatively new types of phenomena. For example, much of the work on photon-photon interactions relies on the linear optical effect of electromagnetically induced transparency, in combination with the use of interactions to shift optical pulses into or out of the associated transparency window. Here, we identify a large new class of "correlated transparency windows," in which photonic states of a certain number and shape selectively propagate through the system. Through this technique, we show that molecular bound states of photon pairs can be created.

  8. The ubiquitous photonic wheel

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Banzer, Peter

    2016-08-01

    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its longitudinal spin angular momentum (AM) density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding transverse spin AM density. Electric field configurations of this kind have been suggestively dubbed ‘photonic wheels’. It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves propagating along a well defined direction, and carrying transverse spin AM density. We show that depending on the shape of these waves, the spin density may be either perpendicular to the mean linear momentum (globally transverse spin) or to the linear momentum density (locally transverse spin). We find that the latter case generically occurs only for non-diffracting beams, such as the Bessel beams. Moreover, we introduce the concept of meridional Stokes parameters to operationally quantify the transverse spin density. To illustrate our theory, we apply it to the exemplary cases of Bessel beams and evanescent waves. These results open a new and accessible route to the understanding, generation and manipulation of optical beams with transverse spin AM density.

  9. Smart photonic carbon brush

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Kuznetsov, Artem A.; Morozov, Gennady A.; Nureev, Ilnur I.; Sakhabutdinov, Airat Z.; Faskhutdinov, Lenar M.; Artemev, Vadim I.

    2016-03-01

    Aspects of the paper relate to a wear monitoring system for smart photonic carbon brush. There are many applications in which regular inspection is not feasible because of a number of factors including, for example, time, labor, cost and disruptions due to down time. Thus, there is a need for a system that can monitor the wear of a component while the component is in operation or without having to remove the component from its operational position. We propose a new smart photonic method for characterization of carbon brush wear. It is based on the usage of advantages of the multiplicative response of FBG and LPFG sensors and its double-frequency probing. Additional measuring parameters are the wear rate, the brush temperature, the engine rotation speed, the hangs control, and rotor speed. Sensor is embedded in brush. Firstly the change of sensor length is used to measure wear value and its central wavelength shift for temperature ones. The results of modeling and experiments are presented.

  10. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  11. Photonic Band Engineering

    NASA Astrophysics Data System (ADS)

    Yabonovitch, Eli

    2001-09-01

    Scientists at UCLA, Caltech, and Polytechnic University have developed a new concept in Electromagnetics called "Photonic Bandgaps' that permits unprecedented control of Electromagnetic Waves, at both radio frequencies, and optical frequencies. This new paradigm of Electromagnetics is based on Nature's design for semiconductor crystals, but it is a crystal structure that is artificially engineered for electromagnetic waves rather than for electron waves. Beginning in 1996, new frontiers in the engineered control of electromagnetic waves have emerged from this design paradigm. For example, the very tiniest, most miniaturized electromagnetic cavity ever created was engineered, and demonstrated, under this MURI; trapping optical energy in the smallest volume ever achieved. This world's most tiny light trap was also made into the most miniaturized laser ever made, occupying a volume smaller than a cubic wavelength. At the same time this MURI advanced the electromagnetic bandgap concept into microwaves and radio waves that are so important for military systems. This required new concepts that permitted the bandgap structure to be much smaller than the electromagnetic wavelength. As in the optical version of photonic crystals, these electromagnetic bandgaps permit unprecedented control over radio frequency electromagnetic waves. For example new antenna structures have been invented that permit near field control over radio emissions from antennas, so that the hand-held radio transmitters can be more efficient.

  12. Octonacci photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Costa, C. H.; Vasconcelos, M. S.; Anselmo, D. H. A. L.; Mello, V. D.

    2015-08-01

    We study theoretically the transmission spectra in one-dimensional photonic quasicrystals, made up of SiO2(A) and TiO2(B) materials, organized following the Octonacci sequence, where the nth-stage of the multilayer Sn is given by the rule Sn =Sn-1Sn-2Sn-1 , for n ⩾ 3 and with S1 = A and S2 = B . The expression for transmittance was obtained by employing a theoretical calculation based on the transfer-matrix method. For normally incident waves, we observe that, for a same generation, the transmission spectra for transverse electric (TE) and transverse magnetic (TM) waves are equal, at least qualitatively, and they present a scaling property where a self-similar behavior is obtained, as an evidence that these spectra are fractals. The spectra show regions where the omnidirectional band gaps emerges for specific generations of Octonacci photonic structure, except to TM waves. For TE waves, we note that all of them have almost the same width, for different generations. We also report the localization of modes as a consequence of the quasiperiodicity of the heterostructure.

  13. Single photonics: Generation and detection of heralded single photons

    NASA Astrophysics Data System (ADS)

    Kim, Jungsang

    Single photons are useful for experiments where the quantum nature of a particle plays a key role, since they make an ideal candidate for a single quantum system. Such a single quantum system is indispensable in fundamental tests of quantum mechanics where nonclassical properties, like non-locality and entanglement, are studied. Such a system is also useful in a more recently developed field of quantum information technology where these properties are utilized to perform secure communication and information processing. In the source of single photons utilized in these experiments, the arrival time of the photon is completely random and obeys Poissonian statistics. Efficiency of these experiments can be greatly enhanced when the arrival time of the photons can be controlled. Also, a technology that provides high quantum efficiency and low noise detection of single photons is crucial to improve the performance of these experimental schemes. This thesis reports an experimental effort towards realization of a single photon turnstile device where the emission time of a single photon can be controlled by means of an external modulation signal. This is achieved in a mesoscopic double barrier p- i-n junction operating in an ultra-low temperature environment, where the Coulomb charging energy of a single electron and a single hole is large enough to suppress the thermal fluctuation of carrier injection. One and only one electron-hole pair is injected into the active region, resulting in the emission of a single photon per modulation period. This thesis also reports a single photon counting system using a visible light photon counter (VLPC), which utilizes the impact ionization of As impurity atoms in Si as the multiplication process. Our system features a fast (~2 ns) detection of single photons with high quantum efficiency (~88%) and low multiplication noise (excess noise factor ~1.02). The detector system also has a unique capability of distinguishing a single photon

  14. Photonic module: An on-demand resource for photonic entanglement

    SciTech Connect

    Devitt, Simon J.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.; Ionicioiu, Radu; O'Brien, Jeremy L.; Munro, William J.

    2007-11-15

    Photonic entanglement has a wide range of applications in quantum computation and communication. Here we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large class of entangled photon states. The module is an application independent, ''plug and play'' device, with sufficient flexibility to prepare entanglement for all major quantum computation and communication applications in a completely deterministic fashion without number-discriminated photon detection. We present two alternative constructions for the module, one using free-space components and one in a photonic band-gap structure. The natural operation of the module is to generate states within the stabilizer formalism and we present an analysis on the cavity requirements to experimentally realize this device.

  15. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  16. Double stranded RNA-dependent protein kinase is involved in osteoclast differentiation of RAW264.7 cells in vitro

    SciTech Connect

    Teramachi, Junpei; Morimoto, Hiroyuki; Baba, Ryoko; Doi, Yoshiaki; Hirashima, Kanji; Haneji, Tatsuji

    2010-11-15

    Double-stranded RNA-dependent protein kinase (PKR) plays a critical role in antiviral defence of the host cells. PKR is also involved in cell cycle progression, cell proliferation, cell differentiation, tumorigenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification of osteoblasts. However, it is unknown about the role of PKR in osteoclast differentiation. A dominant-negative PKR mutant cDNA, in which the amino acid lysine at 296 was replaced with arginine, was transfected into RAW264.7 cells. We have established the cell line that stably expresses the PKR mutant gene (PKR-K/R). Phosphorylation of PKR and {alpha}-subunit of eukaryotic initiation factor 2 was not stimulated by polyinosic-polycytidylic acid in the PKR-K/R cells. RANKL stimulated the formation of TRAP-positive multinuclear cells in RAW264.7 cells. However, TRAP-positive multinuclear cells were not formed in the PKR-K/R cells even when the cells were stimulated with higher doses of RANKL. A specific inhibitor of PKR, 2-aminopurine, also suppressed the RANKL-induced osteoclast differentiation in RAW264.7 cells. The expression of macrophage fusion receptor and dendritic cell-specific transmembrane protein significantly decreased in the PKR-K/R cells by real time PCR analysis. The results of RT-PCR revealed that the mRNA expression of osteoclast markers (cathepsin K and calcitonin receptor) was suppressed in the PKR-K/R cells and RAW264.7 cells treated with 2-aminopurine. Expression of NF-{kappa}B protein was suppressed in the PKR-K/R cells and 2-aminopurine-treated RAW264.7 cells. The level of STAT1 protein expression was elevated in the PKR-K/R cells compared with that of the wild-type cells. Immunohistochemical study showed that PKR was localized in osteoclasts of metatarsal bone of newborn mouse. The finding that the PKR-positive multinuclear cells should be osteoclasts was confirmed by TRAP-staining. Our present study indicates that PKR plays important

  17. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  18. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  19. Single Photon diffraction and interference

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2015-04-01

    A previous paper based on the Scalar Theory of Everything studied photon diffraction and interference (IntellectualArchive, Vol.1, No. 3, P. 20, Toronto, Canada July 2012. http://intellectualarchive.com/?link=item&id=597). Several photons were required in the experiment at the same time. Interference experiments with one photon in the experiment at a time also showed interference patterns. The previous paper with the Bohm Interpretation, models of the screen and mask, and the Transaction Interpretation of Quantum Mechanics were combined. The reverse wave required by the Transaction Interpretation was provided by a reflected plenum wave rather than a reverse time wave. The speed of the plenum wave was assumed to be much faster than the speed of photons/light. Using the assumptions of Fraunhofer diffraction resulted in the same equation for the photon distribution on a screen as the intensity pattern of the Fraunhofer diffraction. (http://myplace.frontier.com/ ~ jchodge/)

  20. Collimator-free photon tomography

    DOEpatents

    Dilmanian, F. Avraham; Barbour, Randall L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  1. Collimator-free photon tomography

    DOEpatents

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  2. Photon enhanced thermionic emission

    SciTech Connect

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  3. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  4. Photonic Crystal Nanolaser Biosensors

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Otsuka, Shota; Hachuda, Shoji; Endo, Tatsuro; Imai, Yasunori; Nishijima, Yoshiaki; Misawa, Hiroaki; Baba, Toshihiko

    High-performance and low-cost sensors are critical devices for high-throughput analyses of bio-samples in medical diagnoses and life sciences. In this paper, we demonstrate photonic crystal nanolaser sensor, which detects the adsorption of biomolecules from the lasing wavelength shift. It is a promising device, which balances a high sensitivity, high resolution, small size, easy integration, simple setup and low cost. In particular with a nanoslot structure, it achieves a super-sensitivity in protein sensing whose detection limit is three orders of magnitude lower than that of standard surface-plasmon-resonance sensors. Our investigations indicate that the nanoslot acts as a protein condenser powered by the optical gradient force, which arises from the strong localization of laser mode in the nanoslot.

  5. The Advanced Photon Source

    SciTech Connect

    Galayda, John N.

    1996-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  6. Advances in DNA photonics

    NASA Astrophysics Data System (ADS)

    Heckman, Emily M.; Aga, Roberto S.; Fehrman Cory, Emily M.; Ouchen, Fahima; Lesko, Alyssa; Telek, Brian; Lombardi, Jack; Bartsch, Carrie M.; Grote, James G.

    2012-10-01

    In this paper we present our current research in exploring a DNA biopolymer for photonics applications. A new processing technique has been adopted that employs a modified soxhlet-dialysis (SD) rinsing technique to completely remove excess ionic contaminants from the DNA biopolymer, resulting in a material with greater mechanical stability and enhanced performance reproducibility. This newly processed material has been shown to be an excellent material for cladding layers in poled polymer electro-optic (EO) waveguide modulator applications. Thin film poling results are reported for materials using the DNA biopolymer as a cladding layer, as are results for beam steering devices also using the DNA biopolymer. Finally, progress on fabrication of a Mach Zehnder EO modulator with DNA biopolymer claddings using nanoimprint lithography techniques is reported.

  7. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  8. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  9. Photonic quantum information: science and technology.

    PubMed

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  10. An Amphiphilic BODIPY-Porphyrin Conjugate: Intense Two-Photon Absorption and Rapid Cellular Uptake for Two-Photon-Induced Imaging and Photodynamic Therapy.

    PubMed

    Zhang, Tao; Lan, Rongfeng; Gong, Longlong; Wu, Baoyan; Wang, Yuzhi; Kwong, Daniel W J; Wong, Wai-Kwok; Wong, Ka-Leung; Xing, Da

    2015-11-01

    The new amphiphilic BODPY-porphyrin conjugate BZnPP and its precursor BZnPH were synthesised, and their linear and two-photon photophysical properties, together with their cellular uptake and photo-cytotoxicity, were studied. This amphiphilic conjugate consists of a hydrophobic BODIPY moiety and a hydrophilic tetra(ethylene glycol) chain bridging a cationic triphenylphosphonium group to an amphiphilic porphyrin ZnP through acetylide linkers at its meso positions. A large two-photon absorption cross-section (σ=1725 GM) and a high singlet oxygen quantum yield (0.52) were recorded. Intense linear- and two-photon-induced red emissions were also observed for both BZnPP and BZnPH. Further in vitro studies showed that BZnPP exhibited very efficient cellular uptake and strong photocytotoxic but weak dark cytotoxic properties towards human breast carcinoma MCF-7 cells. In summary, the two-photon-induced emission and the potent photo-cytotoxicity of BZnPP make it an efficacious dual-purpose tumour-imaging and photodynamic therapeutic agent in the tissue-transparent spectral windows.

  11. How photons start vision.

    PubMed Central

    Baylor, D

    1996-01-01

    Recent studies have elucidated how the absorption of a photon in a rod or cone cell leads to the generation of the amplified neural signal that is transmitted to higher-order visual neurons. Photoexcited visual pigment activates the GTP-binding protein transducin, which in turn stimulates cGMP phosphodiesterase. This enzyme hydrolyzes cGMP, allowing cGMP-gated cationic channels in the surface membrane to close, hyperpolarize the cell, and modulate transmitter release at the synaptic terminal. The kinetics of reactions in the cGMP cascade limit the temporal resolution of the visual system as a whole, while statistical fluctuations in the reactions limit the reliability of detection of dim light. Much interest now focuses on the processes that terminate the light response and dynamically regulate amplification in the cascade, causing the single photon response to be reproducible and allowing the cell to adapt in background light. A light-induced fall in the internal free Ca2+ concentration coordinates negative feedback control of amplification. The fall in Ca2+ stimulates resynthesis of cGMP, antagonizes rhodopsin's catalytic activity, and increases the affinity of the light-regulated cationic channel for cGMP. We are using physiological methods to study the molecular mechanisms that terminate the flash response and mediate adaptation. One approach is to observe transduction in truncated, dialyzed photoreceptor cells whose internal Ca2+ and nucleotide concentrations are under experimental control and to which exogenous proteins can be added. Another approach is to observe transduction in transgenic mouse rods in which specific proteins within the cascade are altered or deleted. PMID:8570595

  12. Photon-efficient imaging with a single-photon camera

    PubMed Central

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-01-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time. PMID:27338821

  13. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  14. Nonlocal hyperconcentration on entangled photons using photonic module system

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-06-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  15. Photon-efficient imaging with a single-photon camera

    NASA Astrophysics Data System (ADS)

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-06-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ~1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ~10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ~ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

  16. Purification of Lectin from Larvae of the fly, Musca domestica, and in Vitro Anti-Tumor Activity in MCF-7 Cells

    PubMed Central

    Cao, X.; Huo, Z.; Lu, M.; Mao, D.; Zhao, Q.; Xu, C.; Wang, C.; Zeng, B.

    2010-01-01

    A new lectin was purified from larvae of the fly, Musca domestica L. (Diptera: Muscidae) (MLL-2, 38 kDa) using affinity chromatography and HPLC. Anti-tumor activity of MLL-2 was demonstrated by its inhibition of proliferation of human breast cancer (MCF-7) cells in a time-and dose-dependent manner. The results of acridine orange staining indicated that MLL-2 caused apoptosis in MCF-7 cells. DNA fragmentation in MCF-7 cells has been detected by TUNEL. Flow cytometric analysis also demonstrated that MLL-2 caused dose-dependent apoptosis of MCF-7 cells through cell arrest at G2/M phase. The MLL-2 induced a sustained increase in concentration of intracellular free calcium. Western blot revealed that MLL-2 induced apoptosis in MCF-7 cells was associated with typical apoptosis proteins in the mitochondrial pathway. In addition, the caspase-3 activity in MCF-7 cells treated with MLL-2 for 48 hours was significantly increased compared to controls (407.4 ± 3.0 vs. 1749.2 ± 6.0, P <0.01). Since MLL-2 induced apoptosis in MCF-7cells the mitochondrial pathway may be the main pathway of antitumor activity. PMID:21067415

  17. Higher-order photon correlations in pulsed photonic crystal nanolasers

    SciTech Connect

    Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.

    2011-12-15

    We report on the higher-order photon correlations of a high-{beta} nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g{sup (n)}(0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.

  18. Two-photon interferences with degenerate and nondegenerate paired photons

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Chen, J. F.; Zhang, Shanchao; Zhou, Shuyu; Kim, Yoon-Ho; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2012-02-01

    We generate narrow-band frequency-tunable entangled photon pairs from spontaneous four-wave mixing in three-level cold atoms and study their two-photon quantum interference after a beam splitter. We find that the path-exchange symmetry plays a more important role in the Hong-Ou-Mandel interference than the temporal or frequency indistinguishability, and observe coalescence interference for both degenerate and nondegenerate photons. We also observe a quantum beat in the same experimental setup using either slow or fast detectors.

  19. Participation of tenascin and transforming growth factor-beta in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts.

    PubMed

    Chiquet-Ehrismann, R; Kalla, P; Pearson, C A

    1989-08-01

    The tumor stroma is essential for the development of the tumor epithelium. Tenascin is an extracellular matrix protein highly expressed in the stroma of malignant mammary tumors. We therefore tested whether in vitro MCF7 cells were able to induce fibroblasts to synthesize tenascin. Indeed MCF7 cell-conditioned medium contained tenascin-inducing activity. This activity was shown to be transforming growth factor-beta. The morphology of the MCF7 cells was in turn affected by the addition of tenascin to the culture medium. The cells partially detached from the substratum and lost their cell-cell contracts.

  20. Electron Photon Interaction Cross Sections

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  1. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  2. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  3. Enrichment of estradiol-receptor complexes in a transcriptionally active fraction of chromatin from MCF-7 cells

    PubMed Central

    Scott, Richard W.; Frankel, Fred R.

    1980-01-01

    We have examined the interaction of the estradiol receptor molecule with chromatin in MCF-7 cells, a human breast tumor cell line responsive to estradiol. Receptor was found associated with the various nucleosomal products produced by digestion with micrococcal nuclease. In order to determine whether these receptor binding sites were distributed in a random or nonrandom manner within the chromatin, we have fractionated MCF-7 cell chromatin into transcriptionally active and inactive fractions by limited micrococcal nuclease digestion followed by Mg2+ precipitation. A comparison of the Mg2+-soluble and insoluble chromatin fractions showed that the Mg2+-soluble fraction: (i) was composed predominantly of mononucleosomes; (ii) was enriched in nonhistone proteins; (iii) apparently lacked histone H1; (iv) was enriched approximately 5-fold in transcribed sequences as measured by a cDNA probe to cytoplasmic poly(A)-RNA sequences; and (v) was depleted at least 5-fold of globin sequences, which is presumably a nontranscribed gene in these cells. When these cells were stimulated with β-[3H]estradiol, the Mg2+-soluble fraction showed a significant enrichment in chromatin-bound estradiol receptor: the Mg2+-soluble mononucleosomes showed a 3- to 4-fold enrichment and the di- and trinucleosomes, a 7- to 19-fold enrichment, when compared to the corresponding subunits in the Mg2+-insoluble chromatin fraction. This cofractionation of chromatin enriched in transcribed sequences and bound estradiol receptor indicated that receptor binding to MCF-7 cell chromatin was not random but, rather, occurred preferentially in specific regions of the chromatin. PMID:6929487

  4. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells

    SciTech Connect

    Li, Yanchun; Luo, Qiyu; Yuan, Lei; Miao, Caixia; Mu, Xiaoshuo; Xiao, Wei; Li, Jianchun; Sun, Tiemin; Ma, Enlong

    2012-08-15

    N-Benzoyl-O-(N′-(1-benzyloxycarbonyl-4-piperidiylcarbonyl) -D-phenylalanyl)-D-phenylalaninol (BBP), a novel synthesized asperphenamate derivative with the increased solubility, showed growth inhibitory effect on human breast carcinoma MCF-7 cells in a time- and concentration-dependent manner. The growth inhibitory effect of BBP was associated with induction of autophagy, which was demonstrated by the development of acidic vesicular organelles, cleavage of LC3 and upregulation of Atg4 in BBP-treated MCF-7 cells. Since the application of Atg4 siRNA totally blocked the cleavage of LC3, we demonstrated a central role of Atg4 in BBP-induced autophagy. The further studies showed that BBP increased the levels of reactive oxygen species (ROS), and pretreatment with NAC effectively blocked the accumulation of ROS, autophagy and growth inhibition triggered by BBP. Moreover, BBP induced the activation of JNK, and JNK inhibitor SP600125 reversed autophagy, the increase of Atg4 levels, conversion of LC3 and growth inhibition induced by BBP. Knockdown of JNK by siRNA efficiently inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by BBP, indicating that JNK activation may be a upstream signaling of ROS and should be a core component in BBP-induced autophagic signaling pathway. These results suggest that BBP produces its growth inhibitory effect through induction of the autophagic cell death in MCF-7 cells, which is modulated by a JNK-dependent Atg4 upregulation involving ROS production. -- Highlights: ► Asperphenamate derivative BBP with increased solubility was synthesized. ► BBP selectively inhibited the growth of human breast tumor cells. ► The growth inhibitory effect of BBP was associated with induction of autophagy. ► JNK-dependent Atg4 upregulation mediated BBP-induced autophagy.

  5. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines

    PubMed Central

    Louisa, Melva; Suyatna, Frans D.; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Background: Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. Materials and Methods: This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Results: Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. Conclusion: This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters. PMID:27376043

  6. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  7. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line.

    PubMed

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil Bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2'-Hydroxy-4',6'-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with (1)H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet ((1)H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug.

  8. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line.

    PubMed

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil Bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2'-Hydroxy-4',6'-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with (1)H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet ((1)H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug. PMID:27358555

  9. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    SciTech Connect

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su; Kang, Wonku; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  10. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.

    PubMed

    Ishita, Ishrat Jahan; Nurul Islam, Md; Kim, Yeong Shik; Choi, Ran Joo; Sohn, Hee Sook; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    Angelica decursiva has long been used in Korean traditional medicine as an antitussive, analgesic, antipyretic, and cough remedy. In this study, the anti-inflammatory activity of 9 coumarin derivatives isolated from a 90 % methanol fraction was evaluated via inhibition of production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among the tested compounds, edulisin II (1) exhibited the most potent NO production inhibitory activity, followed by decursidin (2), Pd-C-III (3), 4-hydroxy Pd-C-III (4), Pd-C-I (5), and Pd-C-II (6). In contrast, (+)-trans-decursidinol (7) did not exhibit NO suppressive effects on LPS-stimulated RAW 264.7 cells. Structure-activity relationships revealed that esterification of the hydroxyl at C-3' or C-4' of 7 with an angeloyl/senecioyl/acetyl group is essential for its inhibitory activity against NO production, while the number of angeloyl or senecioyl groups, and their positions greatly affect the potency of these coumarins. Coumarins 1-6 also inhibited TNF-α production and iNOS protein expression, while compounds 1-4 inhibited COX-2 protein expression in LPS-stimulated RAW 264.7 cells. These results suggest that coumarins isolated from A. decursiva might be used as potential leads for the development of therapeutic agents for inflammation-associated disorders.

  11. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    PubMed Central

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2′-Hydroxy-4′,6′-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug. PMID:27358555

  12. Quantum imaging with undetected photons.

    PubMed

    Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton

    2014-08-28

    Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected. PMID:25164751

  13. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    SciTech Connect

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  14. Single photon source characterization with a superconducting single photon detector.

    PubMed

    Hadfield, Robert H; Stevens, Martin J; Gruber, Steven S; Miller, Aaron J; Schwall, Robert E; Mirin, Richard P; Nam, Sae Woo

    2005-12-26

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)( ?). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  15. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  16. Random photonic crystal optical memory

    NASA Astrophysics Data System (ADS)

    Wirth Lima, A., Jr.; Sombra, A. S. B.

    2012-10-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects.

  17. Slow Images and Entangled Photons

    SciTech Connect

    Swordy, Simon

    2007-06-20

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  18. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  19. Partial confinement photonic crystal waveguides

    SciTech Connect

    Saini, S.; Hong, C.-Y.; Pfaff, N.; Kimerling, L. C.; Michel, J.

    2008-12-29

    One-dimensional photonic crystal waveguides with an incomplete photonic band gap are modeled and proposed for an integration application that exploits their property of partial angular confinement. Planar apodized photonic crystal structures are deposited by plasma enhanced chemical vapor deposition and characterized by reflectivity as a function of angle and polarization, validating a partial confinement design for light at 850 nm wavelength. Partial confinement identifies an approach for tailoring waveguide properties by the exploitation of conformal film deposition over a substrate with angularly dependent topology. An application for an optoelectronic transceiver is demonstrated.

  20. Summary of Lepton Photon 2011

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2012-03-14

    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  1. Manufacturing method of photonic crystal

    SciTech Connect

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  2. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  3. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  4. Ultrafast optical switching using photonic molecules in photonic crystal waveguides.

    PubMed

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-04-01

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a pumping source in one waveguide, which can be read out by another waveguide. Finally, we demonstrate that the designed structure can be used for ultrafast optical switching with a time scale of a few picoseconds.

  5. EDITORIAL: Photonic terahertz technology

    NASA Astrophysics Data System (ADS)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  6. Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number

    PubMed Central

    2016-01-01

    Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3–4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especially triplet excited states. The maximal photon stream restricts the attainable enhancement. Furthermore, the total number of photons emitted is limited by photobleaching. The limited brightness and observation time are a drawback for applications, especially in biology. Here we challenge this photon limit, showing that nanoantennas can actually increase both saturation intensity and photostability. So far, this limit-shifting role of nanoantennas has hardly been explored. Specifically, we demonstrate that single light-harvesting complexes, under saturating excitation conditions, show over a 50-fold antenna-enhanced photon emission stream, with 10-fold more total photons, up to 108 detected photons, before photobleaching. This work shows yet another facet of the great potential of nanoantennas in the world of single-molecule biology. PMID:27082249

  7. Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number.

    PubMed

    Wientjes, Emilie; Renger, Jan; Cogdell, Richard; van Hulst, Niek F

    2016-05-01

    Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3-4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especially triplet excited states. The maximal photon stream restricts the attainable enhancement. Furthermore, the total number of photons emitted is limited by photobleaching. The limited brightness and observation time are a drawback for applications, especially in biology. Here we challenge this photon limit, showing that nanoantennas can actually increase both saturation intensity and photostability. So far, this limit-shifting role of nanoantennas has hardly been explored. Specifically, we demonstrate that single light-harvesting complexes, under saturating excitation conditions, show over a 50-fold antenna-enhanced photon emission stream, with 10-fold more total photons, up to 10(8) detected photons, before photobleaching. This work shows yet another facet of the great potential of nanoantennas in the world of single-molecule biology.

  8. The Photon Underproduction Crisis

    NASA Astrophysics Data System (ADS)

    Kollmeier, Juna A.; Weinberg, David H.; Oppenheimer, Benjamin D.; Haardt, Francesco; Katz, Neal; Davé, Romeel; Fardal, Mark; Madau, Piero; Danforth, Charles; Ford, Amanda B.; Peeples, Molly S.; McEwen, Joseph

    2014-07-01

    We examine the statistics of the low-redshift Lyα forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate (ΓHI) required by our simulations to match the observed properties of the low-redshift Lyα forest is a factor of five larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch in ΓHI results in the mean flux decrement of the Lyα forest being overpredicted by at least a factor of two (a 10σ discrepancy with observations) and a column density distribution of Lyα forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must contribute considerably more than current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.

  9. Anti-photon

    NASA Astrophysics Data System (ADS)

    Lamb, W. E.

    1995-02-01

    It should be apparent from the title of this article that the author does not like the use of the word “photon”, which dates from 1926. In his view, there is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists and optical scientists. I admit that the word is short and convenient. Its use is also habit forming. Similarly, one might find it convenient to speak of the “aether” or “vacuum” to stand for empty space, even if no such thing existed. There are very good substitute words for “photon”, (e.g., “radiation” or “light”), and for “photonics” (e.g., “optics” or “quantum optics”). Similar objections are possible to use of the word “phonon”, which dates from 1932. Objects like electrons, neutrinos of finite rest mass, or helium atoms can, under suitable conditions, be considered to be particles, since their theories then have viable non-relativistic and non-quantum limits. This paper outlines the main features of the quantum theory of radiation and indicates how they can be used to treat problems in quantum optics.

  10. Photonic MEMS switch applications

    NASA Astrophysics Data System (ADS)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  11. THE PHOTON UNDERPRODUCTION CRISIS

    SciTech Connect

    Kollmeier, Juna A.; Weinberg, David H.; McEwen, Joseph; Oppenheimer, Benjamin D.; Danforth, Charles; Haardt, Francesco; Katz, Neal; Fardal, Mark; Davé, Romeel; Madau, Piero; Ford, Amanda B.; Peeples, Molly S.

    2014-07-10

    We examine the statistics of the low-redshift Lyα forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate (Γ{sub HI}) required by our simulations to match the observed properties of the low-redshift Lyα forest is a factor of five larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch in Γ{sub HI} results in the mean flux decrement of the Lyα forest being overpredicted by at least a factor of two (a 10σ discrepancy with observations) and a column density distribution of Lyα forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must contribute considerably more than current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.

  12. Towards four-dimensional photonics

    NASA Astrophysics Data System (ADS)

    Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan; Zilberberg, Oded; Carusotto, Iacopo

    2016-03-01

    Recent advances in silicon ring-resonator arrays have stimulated the development of topological lattices for photons, with potential applications in integrated photonic devices. Taking inspiration from ultracold atoms, we propose how such arrays can be extended into an additional synthetic dimension by coupling together the different modes of each ring resonator.1 In this way, a 1D resonator chain can become an effective 2D system, while a 3D resonator array can be exploited as a 4D photonic lattice. As an example of the power of this approach, we discuss how to experimentally realise an optical analogue of the 4D quantum Hall effect for the first time. This opens up the way towards the exploration of higher-dimensional lattices in integrated photonics.

  13. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  14. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  15. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-07-01

    An electromagnetic field sensor apparatus which measures the field strength and phase of an incident electromagnetic field as well as the angle of arrival of an incident electromagnetic field is presented. The electromagnetic field sensor apparatus comprises a Luneberg lens which focuses an incoming planar electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A photonic sensor is positioned on the Luneberg lens at the point upon which the electromagnetic wave is focused. A light source is located along an optical path which passes through the photonic sensor for transmitting polarized light through the sensor. The photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  16. Photonic electromagnetic field sensor apparatus

    NASA Astrophysics Data System (ADS)

    Hilliard, Donald P.; Mensa, Dean L.

    1993-09-01

    An electromagnetic field sensor apparatus which measures the amplitude, phase, frequency and polarization of an incoming electromagnetic field as well as the angle of arrival of an incident electromagnetic field is introduced. A Luneberg lens focuses an incoming electromagnetic wave entering on one side of the Luneberg lens onto a point on the opposite side of the lens. A pair of photonic sensor which may be electro-optic modulators or Pockel cells are positioned on the Luneberg lens at the point upon which the incident electromagnetic wave is focused. The sensing axis of one of the electro-optic modulators is perpendicular to the sensing axis of the other electro-optic modulator. Polarized light is provided to each photonic sensor along an optical path which passes through the sensor. Each photonic sensor modulates the polarized light passing therethrough when the photonic sensor detects the incident electromagnetic wave.

  17. Photon scattering in muon collisions.

    SciTech Connect

    Klasen, M.

    1997-12-18

    The authors estimate the benefit of muon colliders for photon physics. They calculate the rate at which photons are emitted from muon beams in different production mechanisms. Bremsstrahlung is reduced, beamstrahlung disappears, and laser backscattering suffers from a bad conversion of the incoming to the outgoing photon beam in addition to requiring very short wavelengths. As a consequence, the cross sections for jet photoproduction in {mu}p and {mu}{sup +} {mu}{sup {minus}} collisions are reduced by factors of 2.2 and 5 compared to ep and e{sup +} e{sup {minus}} machines. However, the cross sections remain sizable and measurable giving access to the photon and proton parton densities down to x values of 10{sup {minus}3} to 10{sup {minus}4}.

  18. PKC{eta} confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    SciTech Connect

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-09-10

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKC{eta}, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKC{eta} in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKC{eta}. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKC{eta} expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKC{eta} is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKC{eta} could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  19. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  20. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    PubMed

    Tran, Nhu-Mai; Dufresne, Murielle; Helle, François; Hoffmann, Thomas Walter; François, Catherine; Brochot, Etienne; Paullier, Patrick; Legallais, Cécile; Duverlie, Gilles; Castelain, Sandrine

    2014-01-01

    Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV) infection for a hepatic cell line (HuH-7) normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.