Science.gov

Sample records for 7-dehydrocholesterol reductase dhcr7

  1. Phosphorylation regulates activity of 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme of cholesterol synthesis.

    PubMed

    Prabhu, Anika V; Luu, Winnie; Sharpe, Laura J; Brown, Andrew J

    2017-01-01

    Cholesterol is essential for survival, but too much or too little can cause disease. Thus, cholesterol levels must be kept within close margins. 7-dehydrocholesterol reductase (DHCR7) is a terminal enzyme of cholesterol synthesis, and is essential for embryonic development. Largely, DHCR7 research is associated with the developmental disease Smith-Lemli-Opitz syndrome, which is caused by mutations in the DHCR7 gene. However, little is known about what regulates DHCR7 activity. Here we provide evidence that phosphorylation plays a role in controlling DHCR7 activity, which may provide a means to divert flux from cholesterol synthesis to vitamin D production. DHCR7 activity was significantly decreased when we used pharmacological inhibitors against two important kinases, AMP-activated protein kinase and protein kinase A. Moreover, mutating a known phosphorylated residue, S14, also decreased DHCR7 activity. Thus, we demonstrate that phosphorylation modulates DHCR7 activity in cells, and contributes to the overall synthesis of cholesterol, and probably vitamin D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rapid suppression of 7-dehydrocholesterol reductase activity in keratinocytes by vitamin D.

    PubMed

    Zou, Ling; Porter, Todd D

    2015-04-01

    7-Dehydrocholesterol (7DHC) serves as the sterol substrate for both cholesterol and vitamin D3 (cholecalciferol) synthesis. The pivotal enzyme in these two pathways is 7-dehydrocholesterol reductase (DHCR7), which converts 7DHC to cholesterol. Treatment of adult human epidermal keratinocytes (HEKa) with 10μM cholecalciferol resulted in a rapid decrease in DHCR7 activity (19% of control activity at 2h). This loss of activity was observed only in HEKa cells, a primary cell line cultured from normal human skin, and not in an immortalized skin cell line (HaCaT cells) nor in two hepatoma cell lines. The decrease in DHCR7 activity was not due to direct inhibition or to dephosphorylation of the enzyme, and enzyme protein levels were not decreased. 25-Hydroxyvitamin D3 had a lesser effect on DHCR7 activity, while 1α,25-dihydroxyvitamin D3 had no effect on DHCR7, indicating that the vitamin D receptor is not involved. Treatment with cholecalciferol did not lead to the accumulation of 7-dehydrocholesterol, and a 50% decrease in lanosterol synthesis in these cells suggests that cholecalciferol down-regulates the entire cholesterolgenic pathway. As vitamin D has been reported to be an inhibitor of hedgehog (Hh) signaling through Smo, we tested the effect of cyclopamine, an established inhibitor of the Hh pathway, on DHCR7 activity. Cyclopamine (10μM) also rapidly decreased DHCR7 activity (50% of control activity at 3h), suggesting that vitamin D3 may modulate DHCR7 activity and cholesterol/vitamin D3 synthesis by inhibiting hedgehog signaling. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  3. Increasing cholesterol synthesis in 7-dehydrosterol reductase (DHCR7) deficient mouse models through gene transfer

    PubMed Central

    Matabosch, Xavier; Ying, Lee; Serra, Montserrat; Wassif, Christopher A.; Porter, Forbes D.; Shackleton, Cedric; Watson, Gordon

    2010-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is caused by deficiency in the terminal step of cholesterol biosynthesis: the conversion of 7-dehydrocholesterol (7DHC) to cholesterol (C), catalyzed by 7-dehydrocholesterol reductase (DHCR7). This disorder exhibits several phenotypic traits including dysmorphia and mental retardation with a broad range of severity. There are few proven treatment options. That most commonly used is a high cholesterol diet that seems to enhance the quality of life and improve behavioral characteristics of patients, although these positive effects are controversial. The goal of our study was to investigate the possibility of restoring DHCR7 activity by gene transfer. We constructed an adeno-associated virus (AAV) vector containing the DHCR7 gene. After we infused this vector into affected mice, the introduced DHCR7 gene could be identified in liver, mRNA was expressed and a functional enzyme was produced. Evidence of functionality came from the ability to partially normalize the serum ratio of 7DHC/C in treated animals, apparently by increasing cholesterol production with concomitant decrease in 7DHC precursor. By five weeks after treatment the mean ratio (for 7 animals) had fallen to 0.05 while the ratio for untreated littermate controls had risen to 0.14. This provides proof of principle that gene transfer can ameliorate the genetic defect causing SLOS and provides a new experimental tool for studying the pathogenesis of this disease. If effective in humans, it might also offer a possible alternative to exogenous cholesterol therapy. However, it would not offer a complete cure for the disorder as many of the negative implications of defective synthesis are already established during prenatal development. PMID:20800683

  4. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review

    PubMed Central

    Boland, M R; Tatonetti, N P

    2016-01-01

    Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment. PMID:27401223

  5. Varying relationship between 25-hydroxy-vitamin D, high density lipoprotein cholesterol, and serum 7-dehydrocholesterol reductase with sunlight exposure.

    PubMed

    Patwardhan, Vivek G; Khadilkar, Anuradha V; Chiplonkar, Shashi A; Mughal, Zulf M; Khadilkar, Vaman V

    2015-01-01

    Cholesterol and cholecalciferol are synthesized from a common substrate 7-dehydrocholesterol. 7-dehydrocholesterol is converted to cholesterol by 7-dehydrocholesterol reductase enzyme (DHCR7) and to cholecalciferol by ultraviolet B radiation from sunlight. To examine the effect of sunlight exposure and serum DHCR7 levels on cholecalciferol and cholesterol levels and studying any interrelationship. In a cross-sectional observational study, 307 apparently healthy men (aged 40-60 years) were assessed for sunlight exposure, lipid levels, serum DHCR7, 25 hydroxyvitamin D (25(OH)D), body composition, and dietary milk calcium intake. Vitamin D deficiency (25(OH)D <20 ng/mL, 1 ng/mL = 2.496 nmols/L) was found in 56% of subjects. Serum 25(OH)D concentrations increased significantly with increasing duration of sunlight exposure (P < .05). At lower sunlight exposure (<1 h/d), serum 25(OH)D levels were positively associated with high-density lipoprotein cholesterol (HDL-C) levels (P < .05) but at moderate sunlight exposure (1-2 h/d), there was no significant association. However, with higher sunlight exposure (>2 h/d), serum 25(OH)D concentrations were significantly negatively associated with HDL-C (P < .05). At moderate and higher sunlight exposure, an inverse significant relationship was observed between 25(OH)D and serum DHCR7 (P < .05); however, at lower sunlight exposure, no significant relationship was seen. 25(OH)D seems to show a varying relationship with HDL-C and serum DHCR7 at different durations of sunlight exposure. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  6. The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts.

    PubMed

    Korade, Zeljka; Kim, Hye-Young H; Tallman, Keri A; Liu, Wei; Koczok, Katalin; Balogh, Istvan; Xu, Libin; Mirnics, Karoly; Porter, Ned A

    2016-02-11

    Well-established cell culture models were combined with new analytical methods to assess the effects of small molecules on the cholesterol biosynthesis pathway. The analytical protocol, which is based on sterol derivation with the dienolphile PTAD, was found to be reliable for the analysis of 7-DHC and desmosterol. The PTAD method was applied to the screening of a small library of pharmacologically active substances, and the effect of compounds on the cholesterol pathway was determined. Of some 727 compounds, over 30 compounds decreased 7-DHC in Dhcr7-deficient Neuro2a cells. The examination of chemical structures of active molecules in the screen grouped the compounds into distinct categories. In addition to statins, our screen found that SERMs, antifungals, and several antipsychotic medications reduced levels of 7-DHC. The activities of selected compounds were verified in human fibroblasts derived from Smith-Lemli-Opitz syndrome (SLOS) patients and linked to specific transformations in the cholesterol biosynthesis pathway.

  7. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome

    PubMed Central

    Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric

    2010-01-01

    Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ7 sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100X that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. PMID:20804844

  8. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome.

    PubMed

    Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric

    2010-11-01

    Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols

    PubMed Central

    Tint, G. S.; Yu, Hongwei; Shang, Quan; Xu, Guorong; Patel, Shailendra B.

    2006-01-01

    Mice with a targeted mutation of 3β-hydroxysterol Δ7-reductase (Dhcr7) that cannot convert 7-dehydrocholesterol to cholesterol were used to identify the origin of fetal sterols. Because their heterozygous mothers synthesize cholesterol normally, virtually all sterols found in a Dhcr7 knockout fetus having a Δ7 or a Δ8 double bond must have been synthesized by the fetus itself but any cholesterol had to have come from the mother. Early in gestation, most fetal sterols were of maternal origin, but at approximately E13–14, in situ synthesis became increasingly important, and by birth, 55–60% of liver and lung sterols had been made by the fetus. In contrast, at E10–11, upon formation of the blood-brain barrier, the brain rapidly became the source of almost all of its own sterols (90% at birth). New, rapid, de novo sterol synthesis in brain was confirmed by the observation that concentrations of C24,25-unsaturated sterols were low in the brains of all very young fetuses but increased rapidly beginning at approximately E11–12. Reduced activity of sterol C24,25-reductase (Dhcr24) in brain, suggested by the abundance of C24,25-unsaturated compounds, seems to be the result of suppressed Dhcr24 expression. The early fetal brain also appears to conserve cholesterol by keeping cholesterol 24-hydroxylase expression low until approximately E18. PMID:16651660

  10. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome.

    PubMed

    Liu, Wei; Xu, Libin; Lamberson, Connor; Haas, Dorothea; Korade, Zeljka; Porter, Ned A

    2014-02-01

    We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD "ene" reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis.

  11. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome[S

    PubMed Central

    Liu, Wei; Xu, Libin; Lamberson, Connor; Haas, Dorothea; Korade, Zeljka; Porter, Ned A.

    2014-01-01

    We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD “ene” reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis. PMID:24259532

  12. Steroid production and Excretion by the pregnant mouse, particularly in relation to pregnancies with fetuses deficient in Δ7-sterol reductase (Dhcr7), the enzyme associated with Smith-Lemli-Opitz syndrome

    PubMed Central

    Matabosch, Xavier; Rahman, Mahbuba; Hughes, Beverly; Patel, Shailendra B.; Watson, Gordon; Shackleton, Cedric

    2010-01-01

    This study has shown that the mouse has a great increase in steroid production during pregnancy in similar fashion to the human. Many steroids were provisionally identified in maternal urine of the wild-type mouse. The major progesterone metabolites appear to be hydroxylated pregnanolones, particularly with hydroxyl groups in the 16α position. Rather than estriol being the major end-product of feto-placental steroid synthesis as in the human, the pregnant mouse produces and excretes large amounts of androgen metabolites, ranging in polarity from androstanetriols to androstanepentols. These steroids have 15α- or 18-hydroxyl groups with additional hydroxylation at uncharacterized positions. From metabolite data the peak of pregnancy progesterone production appears to be between 7.5-14.5 gestational days, while for C19 metabolites peak excretion is later. The starting-point of the studies was to study pregnancy steroid production by a mouse model for Smith-Lemli-Opitz syndrome, 7-dehydrosterol reductase (DHCR7) deficiency. In human pregnancies with DHCR7 deficient fetuses large amounts of 7- and 8-dehydrosteroids are excreted, products secondary to high fetal 7- and 8-dehydrocholesterol (DHC) accumulation. This agrees with existing evidence that human feto-placental steroid synthesis utilizes little maternal cholesterol as precursor. In contrast, this study has shown that pregnant mice carrying dhcr7 deficient fetuses with relatively high DHC production had essentially undetectable maternal excretions of steroids with Δ7- and Δ8- unsaturation. As mutant mouse mothers have essentially normal cholesterol production (little or no DHC build-up), this suggests maternal cholesterol is primarily utilized for pregnancy steroid synthesis in the mouse. PMID:19406241

  13. Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7.

    PubMed

    Zwerger, Monika; Kolb, Thorsten; Richter, Karsten; Karakesisoglou, Iakowos; Herrmann, Harald

    2010-01-15

    Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.

  14. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  15. Homozygosity for the W151X stop mutation in the delta7-sterol reductase gene (DHCR7) causing a lethal form of Smith-Lemli-Opitz syndrome: retrospective molecular diagnosis.

    PubMed

    Löffler, J; Trojovsky, A; Casati, B; Kroisel, P M; Utermann, G

    2000-11-13

    Smith-Lemli-Opitz syndrome (SLOS) is a multiple congenital anomalies syndrome caused by an abnormality in cholesterol metabolism. The clinical severity may vary from very mild to lethality in utero, making diagnosis difficult at both ends of the spectrum. Patients with severe SLOS might often escape diagnosis because they die before the correct diagnosis is made. We describe an Austrian family whose first child died neonatally with multiple congenital anomalies. The second pregnancy was terminated because the fetus showed similar severe anomalies ultrasonographically. A further pregnancy ended in a spontaneous first trimester abortion. Clinical diagnosis of SLOS was not considered until the autopsy of the fetus of the terminated pregnancy. Because no material for biochemical testing was available we performed mutational analysis of the DHCR7 gene from paraffin-embedded tissue and a Guthrie card focusing on mutations known to cause a severe SLOS phenotype. This demonstrated homozygosity for the mutation W151X, which has been demonstrated to be a functional null mutation. Our data confirm the concept that homozygosity for functional null alleles of the DHCR7 locus results in intrauterine or perinatal lethality. Furthermore, our findings suggest the usefulness of molecular studies of stored material in similarly affected cases where no material for biochemical analysis is available. Copyright 2000 Wiley-Liss, Inc.

  16. Aripiprazole and trazodone cause elevations of 7-dehydrocholesterol in the absence of Smith-Lemli-Opitz Syndrome.

    PubMed

    Hall, Patricia; Michels, Virginia; Gavrilov, Dimitar; Matern, Dietrich; Oglesbee, Devin; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia

    2013-01-01

    Screening for Smith-Lemli-Opitz Syndrome (SLOS) using elevated 7-dehydrocholesterol (7DHC) as a marker is sensitive, but not always specific. Elevations of 7DHC can be seen in patients who do not have a defect in 7-dehydrocholesterol reductase. These results have often been attributed to medication artifacts, but specific causes have not been well reported. We examined the medical records of patients with elevated 7DHC to determine if they had been diagnosed with SLOS; and if they had not, to identify any common medications that may have caused the elevations. We found three individuals who were affected with SLOS, and 22 with elevated 7DHC in the absence of SLOS. Seven of these individuals underwent molecular testing which showed no mutations, while the other 15 were excluded based on clinical findings and other testing. The medication history of these individuals revealed aripiprazole and trazodone as common medications to all the false positive results.

  17. A colorimetric assay for 7-dehydrocholesterol with potential application to screening for Smith-Lemli-Opitz syndrome.

    PubMed

    Xiong, Quanbo; Ruan, Benfang; Whitby, Frank G; Tuohy, Richard P; Belanger, Thomas L; Kelley, Richard I; Wilson, William K; Schroepfer, George J

    2002-05-01

    Smith-Lemli-Opitz syndrome (SLOS; MIM 270400) is a genetic disorder characterized by hypocholesterolemia and elevated 7-dehydrocholesterol (7DHC) levels resulting from mutations affecting 7-dehydrocholesterol reductase. We describe a colorimetric assay for 7DHC with potential application to large-scale screening for SLOS. Reaction of 7DHC and its esters with the Liebermann-Burchard reagent resulted in a brief initial absorbance at 510 nm (pink color) followed by an absorbance at 620 nm (blue color) after 2 min, while cholesterol samples were essentially colorless. The assay could identify typical SLOS blood samples by their pink color and increased absorbance at 620 nm after 2 min. Colorimetric identification of mild SLOS cases requires monitoring of the transient absorbance at 510 nm, which must be detected immediately after rapid, consistent mixing of the reagents. The need for special mixing devices and rigorous validation precludes sporadic use of the assay for diagnosing suspected SLOS cases. We also studied the stability of 7DHC in dried SLOS blood spots on Guthrie cards, which are widely used for archiving neonatal blood. Decomposition of 7DHC was effectively retarded by storage at low temperature and by precoating of the cards with antioxidants. The combined results provide a foundation for development of a simple, automated test for SLOS screening.

  18. Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol.

    PubMed

    Ehrhardt, Maximilian; Gerber, Adrian; Hannemann, Frank; Bernhardt, Rita

    2016-01-20

    In the current work the ability of Bacillus megaterium to take up hydrophobic substrates and efficiently express eukaryotic membrane proteins was utilized for establishing a CYP27A1-based biocatalyst. The human mitochondrial cytochrome P450CYP27A1 was co-expressed with its redox partners adrenodoxin reductase (Adr) and adrenodoxin (Adx). CYP27A1 could be localized at the cell's polyhydroxybutyrate (PHB) granules, carbon storage serving organelle-like vesicles that can take up cholesterol, resulting in bioreactor-like structures in B. megaterium . The resulting whole cell system allowed the efficient biotechnological conversion of the CYP27A1 substrates cholesterol, 7-dehydrocholesterol (7-DHC) and vitamin D3. After 48 h, nearly 100% of cholesterol was metabolized producing a final concentration of 113.14 mg/l 27-hydroxycholesterol (27-HC). Moreover, 70% of vitamin D3 was converted into 25-hydroxyvitamin D3 (25-OH-D3) with a final concentration of 80.81 mg/l. Also more than 97% of 7-DHC were found to be metabolized into two products, corresponding to 26/27-hydroxy-7-dehydrocholesterol (P1) and 25-hydroxy-7-dehydrocholesterol (P2). To our knowledge this is the first CYP27A1-based whole-cell system, allowing the efficient and low-cost production of pharmaceutically interesting metabolites of this enzyme from relatively cheap substrates.

  19. Photosensitization of TRPA1 and TRPV1 by 7-dehydrocholesterol: implications for the Smith- Lemli-Opitz syndrome.

    PubMed

    Babes, Alexandru; Ciotu, Cosmin I; Hoffmann, Tal; Kichko, Tatjana I; Selescu, Tudor; Neacsu, Cristian; Sauer, Susanne K; Reeh, Peter W; Fischer, Michael J M

    2017-09-01

    Loss of function mutations in the enzyme 7-dehydrocholesterol reductase are responsible for the Smith-Lemli-Opitz syndrome, in which 7-dehydrocholesterol (7-DHC) levels are markedly increased in the plasma and tissues of patients. This increase in 7-DHC is probably associated with the painful and itchy photosensitivity reported by the large majority of Smith-Lemli-Opitz syndrome patients. In order to identify the molecular targets involved in the activation and photosensitization of primary afferents by 7-DHC we focused on TRPA1 and TRPV1, two ion channels expressed in nociceptive nerve endings and previously shown to respond to ultraviolet and visible light under pathophysiological circumstances. Recombinant human TRPA1 is activated and photosensitized in the presence of 7-DHC. Prolonged pre-exposure to 7-DHC causes more pronounced photosensitization, and while TRPV1 contributes less to the acute effect, it too becomes highly photosensitive upon pre-incubation with 7-DHC for 1-15 hours. Dorsal root ganglion (DRG) neurons in primary culture display acute sensitivity to 7-DHC in the dark and also light-evoked responses in the presence of 7-DHC, which are exclusively dependent on TRPA1 and TRPV1. Similarly, prolonged exposure of mouse DRG neurons to 7-DHC renders these cells photosensitive in a largely TRPA1- and TRPV1-dependent manner. Single-fiber recordings in mouse skin-nerve preparations demonstrate violet light-evoked activation and a sensitization to 7-DHC exposure. Vice versa, 7-DHC pre-treatment of the isolated trachea leads to a TRPA1- and TRPV1-dependent increase of the light-induced CGRP release. Taken together our results implicate TRPA1 and TRPV1 channels as potential pharmacological targets to address the 7-DHC-induced hypersensitivity to light in patients.

  20. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome

    PubMed Central

    Gou-Fàbregas, Myriam; Macià, Anna; Anerillas, Carlos; Vaquero, Marta; Jové, Mariona; Jain, Sanjay; Ribera, Joan; Encinas, Mario

    2016-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS. PMID:27334845

  1. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome.

    PubMed

    Gou-Fàbregas, Myriam; Macià, Anna; Anerillas, Carlos; Vaquero, Marta; Jové, Mariona; Jain, Sanjay; Ribera, Joan; Encinas, Mario

    2016-06-23

    Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7(-/-) mice, or in Dhcr7(-/-) mice lacking one copy of Ret. Although kidneys from Dhcr7(-/-) mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS.

  2. Occurrence of 7-dehydrocholesterol in the uropygial gland of domestic fowls.

    PubMed

    Uva, B M; Ghiani, P; Deplano, S; Mandich, A; Vaccari, L; Vallarino, M

    1978-01-01

    Histochemical studies on the uropygial gland of domestic fowls have shown the presence of sterols (among which cholesterol and its esters) in the lipidic fraction of the gland secret. beta-Glucuronidase activity beside A5 3beta- and 17beta-hydroxysteroid dehydrogenase activities suggests that uropygial gland might be involved in sterols metabolism. By thin layer chromatography cholesterol and 7-dehydrocholesterol can be separated from the uropygial extracts and these compounds can be identified in gas liquid chromatography.

  3. Synthesis of [3 alpha-3H]7-dehydrocholesterol via stable tritiated 4-phenyl-1,2,4-triazoline-3,5-dione derivative.

    PubMed

    Batta, A K; Salen, G; Tint, G S; Honda, A; Shefer, S

    1997-11-01

    Synthesis of [3 alpha-3H]7-dehydrocholesterol is described via protection of the 5,7-diene system in 7-dehydrocholesterol as the Diels-Alder adduct with 4-phenyl-1,2,4-triazoline-3,5-dione followed by oxidation of the hydroxyl group to give the 3-oxo adduct. Reduction of the keto adduct with [3H]sodium borohydride produced the adduct of [3 alpha-3H]7-dehydrocholesterol from which the radiolabeled sterol was obtained via treatment with lithium aluminum hydride. The advantage of the method is that highly labeled [3 alpha-3H]7-dehydrocholesterol can be prepared. Further, unlike 7-dehydrocholesterol, its adduct with 4-phenyl-1,2,4-triazoline-3,5-dione is stable and can be stored. This allows the preparation of small batches of [3 alpha-3H]7-dehydrocholesterol for immediate use in biological experiments, and losses due to decomposition of excess radiolabeled 7-dehydrocholesterol are minimized.

  4. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin.

    PubMed

    Slominski, Andrzej; Zjawiony, Jordan; Wortsman, Jacobo; Semak, Igor; Stewart, Jeremy; Pisarchik, Alexander; Sweatman, Trevor; Marcos, Josep; Dunbar, Chuck; C Tuckey, Robert

    2004-11-01

    Following up on our previous findings that the skin possesses steroidogenic activity from progesterone, we now show widespread cutaneous expression of the full cytochrome P450 side-chain cleavage (P450scc) system required for the intracellular catalytic production of pregnenolone, i.e. the genes and proteins for P450scc enzyme, adrenodoxin, adrenodoxin reductase and MLN64. Functionality of the system was confirmed in mitochondria from skin cells. Moreover, purified mammalian P450scc enzyme and, most importantly, mitochondria isolated from placenta and adrenals produced robust transformation of 7-dehydrocholesterol (7-DHC; precursor to cholesterol and vitamin D3) to 7-dehydropregnenolone (7-DHP). Product identity was confirmed by comparison with the chemically synthesized standard and chromatographic, MS and NMR analyses. Reaction kinetics for the conversion of 7-DHC into 7-DHP were similar to those for cholesterol conversion into pregnenolone. Thus, 7-DHC can form 7-DHP through P450scc side-chain cleavage, which may serve as a substrate for further conversions into hydroxy derivatives through existing steroidogenic enzymes. In the skin, 5,7-steroidal dienes (7-DHP and its hydroxy derivatives), whether synthesized locally or delivered by the circulation, may undergo UVB-induced intramolecular rearrangements to vitamin D3-like derivatives. This novel pathway has the potential to generate a variety of molecules depending on local steroidogenic activity and access to UVB.

  5. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin

    PubMed Central

    Slominski, Andrzej; Zjawiony, Jordan; Wortsman, Jacobo; Semak, Igor; Stewart, Jeremy; Pisarchik, Alexander; Sweatman, Trevor; Marcos, Josep; Dunbar, Chuck; Tuckey, Robert C.

    2005-01-01

    Following up on our previous findings that the skin possesses steroidogenic activity from progesterone, we now show widespread cutaneous expression of the full cytochrome P450 side-chain cleavage (P450scc) system required for the intracellular catalytic production of pregnenolone, i.e. the genes and proteins for P450scc enzyme, adrenodoxin, adrenodoxin reductase and MLN64. Functionality of the system was confirmed in mitochondria from skin cells. Moreover, purified mammalian P450scc enzyme and, most importantly, mitochondria isolated from placenta and adrenals produced robust transformation of 7-dehydrocholesterol (7-DHC; precursor to cholesterol and vitamin D3) to 7-dehydropregnenolone (7-DHP). Product identity was confirmed by comparison with the chemically synthesized standard and chromatographic, MS and NMR analyses. Reaction kinetics for the conversion of 7-DHC into 7-DHP were similar to those for cholesterol conversion into pregnenolone. Thus, 7-DHC can form 7-DHP through P450scc side-chain cleavage, which may serve as a substrate for further conversions into hydroxy derivatives through existing steroidogenic enzymes. In the skin, 5,7-steroidal dienes (7-DHP and its hydroxy derivatives), whether synthesized locally or delivered by the circulation, may undergo UVB-induced intramolecular rearrangements to vitamin D3-like derivatives. This novel pathway has the potential to generate a variety of molecules depending on local steroidogenic activity and access to UVB. PMID:15511223

  6. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  7. The effects of 7-dehydrocholesterol on the structural properties of membranes

    NASA Astrophysics Data System (ADS)

    Liu, Yingzhe; Chipot, Christophe; Shao, Xueguang; Cai, Wensheng

    2011-10-01

    Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of 7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of 7DHC on the biological membrane is, however, still fragmentary. In this study, large-scale atomistic molecular dynamics simulations, employing two distinct force fields, have been conducted to elucidate differences in the structural properties of a hydrated dimyristoylphosphatidylcholine bilayer due to CHOL and 7DHC. The present series of results indicate that CHOL and 7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.

  8. Mechanism and stereoselectivity of biologically important oxygenation reactions of the 7-dehydrocholesterol radical.

    PubMed

    Rajeev, Ramanan; Sunoj, Raghavan B

    2013-07-19

    The mechanism of free radical oxygenation of 7-dehydrocholesterol (7-DHC), one of the biologically important sterols, is investigated by using density functional theory. The energetic origin of the product distribution and the stereoelectronic factors involved in various mechanistic pathways are delineated. The addition of triplet molecular oxygen to two types of conjugatively stabilized radicals, generated by the removal of the reactive allylic hydrogens from C9 or C14 positions, respectively denoted as H9 and H14 pathways, is studied. The distortion-interaction analysis of the C-O bond formation transition states suggests that the energetic preference toward the α prochiral face stems from reduced skeletal distortions of the cholesterol backbone as compared to that in the corresponding β prochiral face. This insight derived through a detailed quantitative analysis of the stereocontrolling transition states suggests that the commonly found interpretations solely based on steric interactions between the incoming oxygen and the protruding angular methyl groups (C10, C13 methyls) in the β face calls for adequate refinement. The relative energies of the transition states for molecular oxygen addition to C9, C5, and C14 (where spin densities are higher) and the ensuing products thereof are in agreement with the experimentally reported distribution of oxygenated 7-DHCs.

  9. Oxysterols from Free Radical Chain Oxidation of 7-Dehydrocholesterol: Product and Mechanistic Studies

    PubMed Central

    Xu, Libin; Korade, Zeljka; Porter, Ned A.

    2010-01-01

    Free radical chain oxidation of highly oxidizable 7-dehydrocholesterol (7-DHC) initiated by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) was carried out at 37°C in benzene for 24 hours. Fifteen oxysterols derived from 7-DHC were isolated and characterized with 1D- and 2D-NMR spectroscopy and mass spectrometry. A mechanism that involves abstraction of hydrogen atoms at C-9 and/or C-14 is proposed to account for the formation of all of the oxysterols and the reaction progress profile. In either the H-9 or H-14 mechanism, a pentadienyl radical intermediate is formed after abstraction of H-9 or H-14 by a peroxyl radical. This step is followed by the well-precedented transformations observed in peroxidation reactions of polyunsaturated fatty acids such as oxygen addition, peroxyl radical 5-exo cyclization, and SHi carbon radical attack on the peroxide bond. The mechanism for peroxidation of 7-DHC also accounts for the formation of numerous oxysterol natural products isolated from fungal species, marine sponges, and cactaceous species. In a cell viability test, the oxysterol mixture from 7-DHC peroxidation was found to be cytotoxic to Neuro2a neuroblastoma cells in the micromolar concentration range. We propose that the high reactivity of 7-DHC and the oxysterols generated from its peroxidation may play important roles in the pathogenesis of Smith-Lemli-Opitz syndrome (SLOS), X-linked dominant chondrodysplasia punctata (CDPX2), and cerebrotendinous xanthomatosis (CTX), all of these being metabolic disorders having an elevated level of 7-DHC. PMID:20121089

  10. 7-Dehydrocholesterol Enhances Ultraviolet A-Induced Oxidative Stress in Keratinocytes: Roles of Nadph Oxidase, Mitochondria and Lipid Rafts

    PubMed Central

    Valencia, Antonio; Rajadurai, Anpuchchelvi; Carle, A. Bjorn; Kochevar, Irene E.

    2006-01-01

    Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E2 (PGE2), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A2 activity, PGE2, and NADPH oxidase activity. UVA-induced ROS and PGE2 production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE2. Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE2 formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA-photosensitivity in SLOS. PMID:17145559

  11. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: roles of NADPH oxidase, mitochondria, and lipid rafts.

    PubMed

    Valencia, Antonio; Rajadurai, Anpuchchelvi; Carle, A Bjorn; Kochevar, Irene E

    2006-12-01

    Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.

  12. Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI

    NASA Astrophysics Data System (ADS)

    Xu, Libin; Kliman, Michal; Forsythe, Jay G.; Korade, Zeljka; Hmelo, Anthony B.; Porter, Ned A.; McLean, John A.

    2015-06-01

    Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10-25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol + Ag]+ and [7-DHC + Ag]+ signals while minimizing dehydrogenation products ([M + Ag-2H]+). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC + 107Ag]+) and 495 (specific for [cholesterol + 109Ag]+) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro.

  13. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.

    PubMed

    Endo-Umeda, Kaori; Yasuda, Kaori; Sugita, Kazuyuki; Honda, Akira; Ohta, Miho; Ishikawa, Minoru; Hashimoto, Yuichi; Sakaki, Toshiyuki; Makishima, Makoto

    2014-03-01

    7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.

  14. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    PubMed

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  15. Differential Cytotoxic Effects of 7-Dehydrocholesterol-derived Oxysterols on Cultured Retina-derived Cells: Dependence on Sterol Structure, Cell Type, and Density

    PubMed Central

    Pfeffer, Bruce A.; Xu, Libin; Porter, Ned A.; Rao, Sriganesh Ramachandra; Fliesler, Steven J.

    2016-01-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL >> DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  16. A routine method for cholesterol and 7-dehydrocholesterol analysis in dried blood spot by GC-FID to diagnose the Smith-Lemli-Opitz syndrome.

    PubMed

    Gelzo, Monica; Clericuzio, Stefano; Barone, Rosalba; D'Apolito, Oceania; Dello Russo, Antonio; Corso, Gaetano

    2012-10-15

    This work was aimed to implement a fast and simple method to quantify cholesterol (CHOL) and 7-dehydrocholesterol (7-DHC) in dried blood spot (DBS) to diagnose the Smith-Lemli-Opitz syndrome (SLOS), an inborn error of CHOL biosynthesis. We developed and validated a GC-FID method for separation and quantification of underivatized CHOL and 7-DHC using a DBS disc of 6mm with a run time of 9 min. Correlation coefficients (r) of calibration curves ranged from 0.998 to 0.999 for CHOL and from 0.997 to 0.998 for 7-DHC. Within-day and between-day imprecision (CV%), accuracy (%), carry-over, and extraction efficacy (%) were also evaluated for validation. CHOL and 7-DHC were analyzed in DBS and plasma samples from 8 SLOS patients and 30 unaffected subjects. In SLOS patients, 7-DHC/CHOL ratios in DBS and plasma samples ranged from 0.035 to 1.448 and from 0.012 to 0.926, respectively. Results from calibration curves, quality controls and patient samples reveal that the method is suitable to analyze DBS to screen patients affected by SLOS.

  17. 7-Dehydrocholesterol (7-DHC), But Not Cholesterol, Causes Suppression of Canonical TGF-β Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD).

    PubMed

    Huang, Shuan Shian; Liu, I-Hua; Chen, Chun-Lin; Chang, Jia-Ming; Johnson, Frank E; Huang, Jung San

    2016-11-16

    For several decades, cholesterol has been thought to cause ASCVD. Limiting dietary cholesterol intake has been recommended to reduce the risk of the disease. However, several recent epidemiological studies do not support a relationship between dietary cholesterol and/or blood cholesterol and ASCVD. Consequently, the role of cholesterol in atherogenesis is now uncertain. Much evidence indicates that TGF-β, an anti-inflammatory cytokine, protects against ASCVD and that suppression of canonical TGF-β signaling (Smad2-dependent) is involved in atherogenesis. We had hypothesized that cholesterol causes ASCVD by suppressing canonical TGF-β signaling in vascular endothelium. To test this hypothesis, we determine the effects of cholesterol, 7-dehydrocholesterol (7-DHC; the biosynthetic precursor of cholesterol), and other sterols on canonical TGF-β signaling. We use Mv1Lu cells (a model cell system for studying TGF-β activity) stably expressing the Smad2-dependent luciferase reporter gene. We demonstrate that 7-DHC (but not cholesterol or other sterols) effectively suppresses the TGF-β-stimulated luciferase activity. We also demonstrate that 7-DHC suppresses TGF-β-stimulated luciferase activity by promoting lipid raft/caveolae formation and subsequently recruiting cell-surface TGF-β receptors from non-lipid raft microdomains to lipid rafts/caveolae where TGF-β receptors become inactive in transducing canonical signaling and undergo rapid degradation upon TGF-β binding. We determine this by cell-surface (125) I-TGF-β-cross-linking and sucrose density gradient ultracentrifugation. We further demonstrate that methyl-β-cyclodextrin (MβCD), a sterol-chelating agent, reverses 7-DHC-induced suppression of TGF-β-stimulated luciferase activity by extrusion of 7-DHC from resident lipid rafts/caveolae. These results suggest that 7-DHC, but not cholesterol, promotes lipid raft/caveolae formation, leading to suppression of canonical TGF-β signaling and atherogenesis. J

  18. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Semak, Igor; Sweatman, Trevor; Janjetovic, Zorica; Li, Wei; Zjawiony, Jordan K; Tuckey, Robert C

    2009-01-01

    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3betaHSD for 7DHP (V(m)/K(m)) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC-->22(OH)7DHC-->20,22(OH)(2)7DHC-->7DHP, with potential further metabolism of 7DHP mediated by 3betaHSD or CYP17, depending on mammalian species. The 5-7 dienal intermediates of the pathway can be a source

  19. Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    PubMed Central

    Slominski, Andrzej T.; Zmijewski, Michal A.; Semak, Igor; Sweatman, Trevor; Janjetovic, Zorica; Li, Wei; Zjawiony, Jordan K.; Tuckey, Robert C.

    2009-01-01

    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of

  20. UV-irradiated 7-dehydrocholesterol coating on polystyrene surfaces is converted to active vitamin D by osteoblastic MC3T3-E1 cells.

    PubMed

    Satué, María; Córdoba, Alba; Ramis, Joana M; Monjo, Marta

    2013-06-01

    The aim of the present study was to determine the effects of UV irradiation on the conversion of 7-dehydrocholesterol (7-DHC), which has been coated onto a polystyrene surface, to cholecalciferol (D3), and the resulting effect on the formation of vitamin D (1,25-D3) by MC3T3-E1 cells. The changes in gene expression of the enzymes regulating its hydroxylation, Cyp27b1 and Cyp27a1, were monitored as well as the net effect of the UV-treated 7-DHC coating on cell viability and osteoblast differentiation. MC3T3-E1 cells were found to express the enzymes required for synthesizing active 1,25-D3, and we found a dose-dependent increase in the production of both 25-D3 and 1,25-D3 levels for UV-activated 7-DHC samples unlike UV-untreated ones. Cell viability revealed no cytotoxic effect for any of the treatments, but only for the highest dose of 7-DHC (20 nmol per well) that was UV-irradiated. Furthermore, osteoblast differentiation was increased in cells treated with some of the higher doses of 7-DHC when UV-irradiated, as shown by collagen-I, osterix and osteocalcin relative mRNA levels. The conversion of 7-DHC to preD3 exogenously by UV irradiation and later to 25-D3 by MC3T3-E1 cells was determined for the optimum 7-DHC dose (0.2 nmol per well), i.e. 8.6 ± 0.7% of UV-activated 7-DHC was converted to preD3 and 6.7 ± 2.8% of preD3 was finally converted to 25-D3 under the conditions studied. In conclusion, we demonstrate that an exogenous coating of 7-DHC, when UV-irradiated, can be used to endogenously produce active vitamin D. We hereby provide the scientific basis for UV-activated 7-DHC coating as a feasible approach for implant therapeutics focused on bone regeneration.

  1. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome

    SciTech Connect

    Weinhofer, Isabelle; Kunze, Markus; Stangl, Herbert; Porter, Forbes D.; Berger, Johannes . E-mail: johannes.berger@meduniwien.ac.at

    2006-06-23

    Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-{sup 14}C]C24:0 for peroxisomal {beta}-oxidation to generate [1-{sup 14}C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-{sup 14}C]acetate and [1-{sup 14}C]C8:0 but not from [1-{sup 14}C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-{sup 14}C]C24:0-derived [1-{sup 14}C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.

  2. Mutational Spectrum of Smith-Lemli-Opitz Syndrome Patients in Hungary

    PubMed Central

    Balogh, I.; Koczok, K.; Szabó, G.P.; Török, O.; Hadzsiev, K.; Csábi, G.; Balogh, L.; Dzsudzsák, E.; Ajzner, É.; Szabó, L.; Csákváry, V.; Oláh, A.V.

    2012-01-01

    Smith-Lemli-Opitz (SLO) syndrome is an autosomal recessive disorder characterized by multiple congenital abnormalities and mental retardation. The condition is caused by the deficiency of 7-dehydrocholesterol reductase (DHCR7) which catalyzes the final step in cholesterol biosynthesis. Biochemical diagnosis is based on increased concentration of 7-dehydrocholesterol (7-DHC) in the patient serum. Both life expectancy and quality of life are severely affected by the disease. The estimated prevalence of SLO syndrome ranges between 1:20,000 and 1:40,000 among Caucasians. Although the mutational spectrum of the disease is wide, approximately 10 mutations are responsible for more than 80% of the cases. These mutations show a large interethnic variability. There are no mutation distribution data from Hungary to date. Thirteen patients were diagnosed with SLO syndrome in our laboratory. As first-line tests, serum 7-DHC and total cholesterol were measured and, in positive cases, molecular genetic analysis of the DHCR7 gene was performed. Complete genetic background of the disease could be identified in 12 cases. In 1 case only 1 mutation was detected in a heterozygote form. One patient was homozygous for the common splice site mutation c.964–1G>C, while all other patients were compound heterozygotes. One novel missense mutation, c.374A>G (p.Tyr125Cys) was identified. PMID:23293579

  3. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome.

    PubMed

    Blassberg, Robert; Macrae, James I; Briscoe, James; Jacob, John

    2016-02-15

    Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium. © The Author 2015. Published by Oxford University Press.

  4. Nanostructure-Initiator Mass Spectrometry (NIMS) Imaging of Brain Cholesterol Metabolites in Smith-Lemli-Opitz Syndrome

    PubMed Central

    Patti, Gary J.; Shriver, Leah P.; Wassif, Christopher A.; Woo, Hin-Koon; Uritboonthai, Wilasinee; Apon, Jon; Manchester, Marianne; Porter, Forbes D.; Siuzdak, Gary

    2010-01-01

    Cholesterol is an essential component of cellular membranes that is required for normal lipid organization and cell signaling. While the mechanisms associated with maintaining cholesterol homeostasis in the plasma and peripheral tissues have been well studied, the role and regulation of cholesterol biosynthesis in normal brain function and development have proven much more challenging to investigate. Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol synthesis characterized by mutations of DHCR7 (7-dehydrocholesterol reductase) that impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol and lead to neurocognitive deficits, including cerebellar hypoplasia and austism behaviors. Here we have used a novel mass spectrometry-based imaging technique called cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for the in situ detection of intact cholesterol molecules from biological tissues. We provide the first images of brain sterol localization in a mouse model for SLOS (Dhcr7−/−). In SLOS mice, there is a striking localization of both 7DHC and residual cholesterol in the abnormally developing cerebellum and brainstem. In contrast, the distribution of cholesterol in 1-day old healthy pups was diffuse throughout the cerebrum and comparable to that of adult mice. This study represents the first application of NIMS to localize perturbations in metabolism within pathological tissues and demonstrates that abnormal cholesterol biosynthesis may be particularly important for the development of these brain regions. PMID:20670678

  5. Engineering Yarrowia lipolytica for Campesterol Overproduction

    PubMed Central

    Zhang, Yu; Liu, Duo; Yuan, Ying-Jin

    2016-01-01

    Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydrocortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7) encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus norvegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate binding sites. In presence of glucose as the carbon source, higher biomass conversion yield and product yield were achieved in shake flask compared to that using glycerol and sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sunflower seed oil as the sole carbon source. Through high cell density fed-batch fermentation under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was achieved with sunflower seed oil as the carbon source, which is the highest reported microbial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica, providing new insight into producing complex and desired molecules in microbes. PMID:26751680

  6. Allelic determinants of vitamin d insufficiency, bone mineral density, and bone fractures.

    PubMed

    Trummer, Olivia; Schwetz, Verena; Walter-Finell, Daniela; Lerchbaum, Elisabeth; Renner, Wilfried; Gugatschka, Markus; Dobnig, Harald; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2012-07-01

    Low 25-hydroxycholecalciferol [25(OH) vitamin D] status is known to play an important role in many diseases with focus on bone health. Based on recently reported genetic determinants of vitamin D insufficiency, we aimed to analyze genetic variants of group-specific component (GC), 7-dehydrocholesterol reductase (DHCR7), and cytochrome P450IIR-1 (CYP2R1) for association with vitamin D levels, bone mineral density (BMD), and bone fractures. We conducted a cross-sectional BMD and fracture study and a prospective cohort study. The cross-sectional study comprised participants of a BMD screening study, and the prospective cohort study comprised nursing home subjects. The cross-sectional study included 342 subjects (mean age, 55.3 ± 12.0 yr), and the prospective study included 1093 subjects (mean age, 84.0 ± 6.0 yr). Patients were stratified by GC, DHCR7, and CYP2R1 genotypes. For each gene, the allele associated with lower 25(OH) vitamin D levels was designated as "risk allele." The potential role of these risk alleles in fracture risk was analyzed by logistic regression analysis including age and sex as confounders. We measured BMD and fractures. GC genotypes were significantly associated with lower mean 25(OH) vitamin D levels in both cohorts (P = 0.001 and P = 0.048, respectively). There was no significant association of BMD with any of the genotypes. None of the alleles was associated with past fractures, whereas the DHCR7 G-allele was significantly associated with prospective fractures (odds ratio, 0.68; 95% confidence interval, 0.51-0.92; P = 0.011). The DHCR7 gene polymorphism may be a predictor for fracture risk.

  7. Identification of Environmental Quaternary Ammonium Compounds as Direct Inhibitors of Cholesterol Biosynthesis

    PubMed Central

    Herron, Josi; Reese, Rosalyn C.; Tallman, Keri A.; Narayanaswamy, Rohini; Porter, Ned A.; Xu, Libin

    2016-01-01

    In this study, we aim to identify environmental molecules that can inhibit cholesterol biosynthesis, potentially leading to the same biochemical defects as observed in cholesterol biosynthesis disorders, which are often characterized by congenital malformations and developmental delay. Using the Distributed Structure-Searchable Toxicity (DSSTox) Database Network developed by EPA, we first carried out in silico screening of environmental molecules that display structures similar to AY9944, a known potent inhibitor of 3β-hydroxysterol-Δ7-reductase (DHCR7)—the last step of cholesterol biosynthesis. Molecules that display high similarity to AY9944 were subjected to test in mouse and human neuroblastoma cells for their effectiveness in inhibiting cholesterol biosynthesis by analyzing cholesterol and its precursor using gas chromatography-mass spectrometry. We found that a common disinfectant mixture, benzalkonium chlorides (BACs), exhibits high potency in inhibiting DHCR7, as suggested by greatly elevated levels of the cholesterol precursor, 7-dehydrocholesterol (7-DHC). Subsequent structure-activity studies suggested that the potency of BACs as Dhcr7 inhibitors decrease with the length of their hydrocarbon chain: C10 > C12 ≫ C14 > C16. Real-time qPCR analysis revealed upregulation of the genes related to cholesterol biosynthesis and downregulation of the genes related to cholesterol efflux, suggesting a feedback response to the inhibition. Furthermore, an oxidative metabolite of 7-DHC that was previously identified as a biomarker in vivo was also found in cells exposed to BACs by liquid chromatography-mass spectrometry. Our findings suggest that certain environmental molecules could potently inhibit cholesterol biosynthesis, which could be a new link between environment and developmental disorders. PMID:26919959

  8. Novel oxysterols observed in tissues and fluids of AY9944-treated rats: a model for Smith-Lemli-Opitz syndrome[S

    PubMed Central

    Xu, Libin; Liu, Wei; Sheflin, Lowell G.; Fliesler, Steven J.; Porter, Ned A.

    2011-01-01

    Treatment of Sprague-Dawley rats with AY9944, an inhibitor of 3β-hydroxysterol-Δ7-reductase (Dhcr7), leads to elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in all biological tissues, mimicking the key biochemical hallmark of Smith-Lemli-Opitz syndrome (SLOS). Fourteen 7-DHC-derived oxysterols previously have been identified as products of free radical oxidation in vitro; one of these oxysterols, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), was recently identified in Dhcr7-deficient cells and in brain tissues of Dhcr7-null mouse. We report here the isolation and characterization of three novel 7-DHC-derived oxysterols (4α- and 4β-hydroxy-7-DHC and 24-hydroxy-7-DHC) in addition to DHCEO and 7-ketocholesterol (7-kChol) from the brain tissues of AY9944-treated rats. The identities of these five oxysterols were elucidated by HPLC-ultraviolet (UV), HPLC-MS, and 1D- and 2D-NMR. Quantification of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol in rat brain, liver, and serum were carried out by HPLC-MS using d7-DHCEO as an internal standard. With the exception of 7-kChol, these oxysterols were present only in tissues of AY9944-treated, but not control rats, and 7-kChol levels were markedly (>10-fold) higher in treated versus control rats. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the pathogenesis of SLOS.—. PMID:21817059

  9. Vitamin D insufficiency in Arabs and South Asians positively associates with polymorphisms in GC and CYP2R1 genes.

    PubMed

    Elkum, Naser; Alkayal, Fadi; Noronha, Fiona; Ali, Maisa M; Melhem, Motasem; Al-Arouj, Monira; Bennakhi, Abdullah; Behbehani, Kazem; Alsmadi, Osama; Abubaker, Jehad

    2014-01-01

    A number of genetic studies have reported an association between vitamin D related genes such as group-specific component gene (GC), Cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1) and 7-dehydrocholesterol reductase/nicotinamide-adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) and serum levels of the active form of Vitamin D, 25 (OH) D among African Americans, Caucasians, and Chinese. Little is known about how genetic variations associate with, or contribute to, 25(OH)D levels in Arabs populations. Allele frequencies of 18 SNPs derived from CYP2R1, GC, and DHCR7/NADSYN1 genes in 1549 individuals (Arabs, South Asians, and Southeast Asians living in Kuwait) were determined using real time genotyping assays. Serum levels of 25(OH)D were measured using chemiluminescence immunoassay. GC gene polymorphisms (rs17467825, rs3755967, rs2282679, rs7041 and rs2298850) were found to be associated with 25(OH)D serum levels in Arabs and South Asians. Two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one of GC SNPs (rs1155563) were found to be significantly associated with 25(OH)D serum levels only in people of Arab origin. Across all three ethnicities none of the SNPs of DHCR7/NADSYN1 were associated with serum 25(OH)D levels and none of the 18 SNPs were significantly associated with serum 25(OH)D levels in people from South East Asia. Our data show for the first time significant association between the GC (rs2282679 and rs7041), CYP2R1 (rs10741657) SNPs and 25(OH)D levels. This supports their roles in vitamin D Insufficiency in Arab and South Asian populations respectively. Interestingly, two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one GC SNP (rs1155563) were found to correlate with vitamin D in Arab population exclusively signifying their importance in this population.

  10. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid biosynthesis pathway.

    PubMed

    Niwa, Ryusuke; Namiki, Toshiki; Ito, Katsuhiko; Shimada-Niwa, Yuko; Kiuchi, Makoto; Kawaoka, Shinpei; Kayukawa, Takumi; Banno, Yutaka; Fujimoto, Yoshinori; Shigenobu, Shuji; Kobayashi, Satoru; Shimada, Toru; Katsuma, Susumu; Shinoda, Tetsuro

    2010-06-01

    In insects, the precise timing of molting and metamorphosis is strictly guided by a principal steroid hormone, ecdysone. Among the multiple conversion steps for synthesizing ecdysone from dietary cholesterol, the conversion of 7-dehydrocholesterol to 5beta-ketodiol, the so-called 'Black Box', is thought to be the important rate-limiting step. Although a number of genes essential for ecdysone synthesis have recently been revealed, much less is known about the genes that are crucial for functioning in the Black Box. Here we report on a novel ecdysteroidgenic gene, non-molting glossy (nm-g)/shroud (sro), which encodes a short-chain dehydrogenase/reductase. This gene was first isolated by positional cloning of the nm-g mutant of the silkworm Bombyx mori, which exhibits a low ecdysteroid titer and consequently causes a larval arrest phenotype. In the fruit fly, Drosophila melanogaster, the closest gene to nm-g is encoded by the sro locus, one of the Halloween mutant members that are characterized by embryonic ecdysone deficiency. The lethality of the sro mutant is rescued by the overexpression of either sro or nm-g genes, indicating that these two genes are orthologous. Both the nm-g and the sro genes are predominantly expressed in tissues producing ecdysone, such as the prothoracic glands and the ovaries. Furthermore, the phenotypes caused by the loss of function of these genes are restored by the application of ecdysteroids and their precursor 5beta-ketodiol, but not by cholesterol or 7-dehydrocholesterol. Altogether, we conclude that the Nm-g/Sro family protein is an essential enzyme for ecdysteroidogenesis working in the Black Box.

  11. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  12. microRNAs: a connection between cholesterol metabolism and neurodegeneration

    PubMed Central

    Goedeke, Leigh; Fernández-Hernando, Carlos

    2014-01-01

    Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer’s disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington’s disease and Parkinson’s disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer’s disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer’s disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer’s disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases. PMID:24907491

  13. Genome-wide association study of circulating vitamin D levels.

    PubMed

    Ahn, Jiyoung; Yu, Kai; Stolzenberg-Solomon, Rachael; Simon, K Claire; McCullough, Marjorie L; Gallicchio, Lisa; Jacobs, Eric J; Ascherio, Alberto; Helzlsouer, Kathy; Jacobs, Kevin B; Li, Qizhai; Weinstein, Stephanie J; Purdue, Mark; Virtamo, Jarmo; Horst, Ronald; Wheeler, William; Chanock, Stephen; Hunter, David J; Hayes, Richard B; Kraft, Peter; Albanes, Demetrius

    2010-07-01

    The primary circulating form of vitamin D, 25-hydroxy-vitamin D [25(OH)D], is associated with multiple medical outcomes, including rickets, osteoporosis, multiple sclerosis and cancer. In a genome-wide association study (GWAS) of 4501 persons of European ancestry drawn from five cohorts, we identified single-nucleotide polymorphisms (SNPs) in the gene encoding group-specific component (vitamin D binding) protein, GC, on chromosome 4q12-13 that were associated with 25(OH)D concentrations: rs2282679 (P=2.0x10(-30)), in linkage disequilibrium (LD) with rs7041, a non-synonymous SNP (D432E; P=4.1x10(-22)) and rs1155563 (P=3.8x10(-25)). Suggestive signals for association with 25(OH)D were also observed for SNPs in or near three other genes involved in vitamin D synthesis or activation: rs3829251 on chromosome 11q13.4 in NADSYN1 [encoding nicotinamide adenine dinucleotide (NAD) synthetase; P=8.8x10(-7)], which was in high LD with rs1790349, located in DHCR7, the gene encoding 7-dehydrocholesterol reductase that synthesizes cholesterol from 7-dehydrocholesterol; rs6599638 in the region harboring the open-reading frame 88 (C10orf88) on chromosome 10q26.13 in the vicinity of ACADSB (acyl-Coenzyme A dehydrogenase), involved in cholesterol and vitamin D synthesis (P=3.3x10(-7)); and rs2060793 on chromosome 11p15.2 in CYP2R1 (cytochrome P450, family 2, subfamily R, polypeptide 1, encoding a key C-25 hydroxylase that converts vitamin D3 to an active vitamin D receptor ligand; P=1.4x10(-5)). We genotyped SNPs in these four regions in 2221 additional samples and confirmed strong genome-wide significant associations with 25(OH)D through meta-analysis with the GWAS data for GC (P=1.8x10(-49)), NADSYN1/DHCR7 (P=3.4x10(-9)) and CYP2R1 (P=2.9x10(-17)), but not C10orf88 (P=2.4x10(-5)).

  14. Vitamin D Insufficiency in Arabs and South Asians Positively Associates with Polymorphisms in GC and CYP2R1 Genes

    PubMed Central

    Elkum, Naser; Alkayal, Fadi; Noronha, Fiona; Ali, Maisa M.; Melhem, Motasem; Al-Arouj, Monira; Bennakhi, Abdullah; Behbehani, Kazem; Alsmadi, Osama; Abubaker, Jehad

    2014-01-01

    Background A number of genetic studies have reported an association between vitamin D related genes such as group-specific component gene (GC), Cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1) and 7-dehydrocholesterol reductase/nicotinamide-adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) and serum levels of the active form of Vitamin D, 25 (OH) D among African Americans, Caucasians, and Chinese. Little is known about how genetic variations associate with, or contribute to, 25(OH)D levels in Arabs populations. Methods Allele frequencies of 18 SNPs derived from CYP2R1, GC, and DHCR7/NADSYN1 genes in 1549 individuals (Arabs, South Asians, and Southeast Asians living in Kuwait) were determined using real time genotyping assays. Serum levels of 25(OH)D were measured using chemiluminescence immunoassay. Results GC gene polymorphisms (rs17467825, rs3755967, rs2282679, rs7041 and rs2298850) were found to be associated with 25(OH)D serum levels in Arabs and South Asians. Two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one of GC SNPs (rs1155563) were found to be significantly associated with 25(OH)D serum levels only in people of Arab origin. Across all three ethnicities none of the SNPs of DHCR7/NADSYN1 were associated with serum 25(OH)D levels and none of the 18 SNPs were significantly associated with serum 25(OH)D levels in people from South East Asia. Conclusion Our data show for the first time significant association between the GC (rs2282679 and rs7041), CYP2R1 (rs10741657) SNPs and 25(OH)D levels. This supports their roles in vitamin D Insufficiency in Arab and South Asian populations respectively. Interestingly, two of the CYP2R1 SNPs (rs10500804 and rs12794714) and one GC SNP (rs1155563) were found to correlate with vitamin D in Arab population exclusively signifying their importance in this population. PMID:25405862

  15. [Smith-Lemli-Opitz syndrome--case report, diagnostics and therapeutic options].

    PubMed

    Oberthür, A; Heller, R; Vogel, M; Körber, F; Rahimi, G; Hoopmann, M; Emmel, M; Roth, B; Vierzig, A

    2009-10-01

    Smith-Lemli-Opitz syndrome (SLOS) is an autosomal-recessive disease characterised by the combination of (foetal) growth retardation, mental retardation and a typical malformation pattern. In particular, the combination of cardiovascular defects, Y-shaped syndactyly of the 2 (nd) and 3 (rd) toes and a distinctive craniofacial appearance, often including a cleft palate, are characteristic of SLOS. The disease is caused by a defect in cholesterol synthesis resulting in a reduced or absent activity of the enzyme 7-dehydrocholesterol reductase (DHCR7). As a consequence, a lack of cholesterol and an increase of toxic cholesterol precursors are observed in the majority of patients. We report on a female patient who was born at 37 weeks of gestation and was both small and light for gestational age who displayed typical signs of SLOS. After the diagnosis had been confirmed, a therapeutic approach with oral substitution of cholesterol and the administration of simvastatin was initiated. In spite of this strategy, the patient died at the age of 12 weeks from the disease. Based on the case presented, we review and discuss current diagnostic and therapeutic options for patients with SLOS.

  16. No Association of Vitamin D Pathway Genetic Variants with Cancer Risks in a Population-Based Cohort of German Older Adults.

    PubMed

    Ordóñez-Mena, José Manuel; Schöttker, Ben; Saum, Kai U; Holleczek, Bernd; Burwinkel, Barbara; Wang, Thomas J; Brenner, Hermann

    2017-09-01

    Background: Several investigations assessed the association of vitamin D receptor (VDR) SNPs with cancer risk. Less is known about the implications of other vitamin D pathway SNPs on cancer risk.Methods: In a population-based cohort study of 9,949 German older adults, we used Cox regression to assess the association of 6 SNPs in the VDR, vitamin D-binding protein (GC), 7-dehydrocholesterol reductase (DHCR7), vitamin D 25-hydroxylase (CYP2R1), and vitamin D 24-hydroxylase (CYP24A1) genes with total and site-specific cancer incidence endpoints.Results: Overall, no association of SNPs with cancer incidence endpoints was observed, except for a genotype score based on SNPs associated with lower 25(OH)D, which was associated with higher lung cancer risk [HR, 1.20; 95% confidence intervals (CI), 1.03-1.39], although this was no longer significant after correcting for multiple testing.Conclusions: Our data provide little to no evidence of a major influence of vitamin D genetic predisposition on cancer risks.Impact: Large-scale genetic epidemiology consortia and meta-analysis of smaller published studies are needed to verify a potential modest influence of genetic variation in the association of vitamin D with the risk of cancer. Cancer Epidemiol Biomarkers Prev; 26(9); 1459-61. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. A Placebo-Controlled Trial of Simvastatin Therapy in Smith-Lemli-Opitz Syndrome

    PubMed Central

    Wassif, Christopher A.; Kratz, Lisa; Sparks, Susan E.; Wheeler, Courtney; Bianconi, Simona; Gropman, Andrea; Calis, Karim A.; Kelley, Richard I.; Tierney, Elaine; Porter, Forbes D.

    2016-01-01

    Background Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation/cognitive impairment syndrome characterized by the accumulation of 7-dehydrocholesterol (7DHC), a precursor sterol of cholesterol. Simvastatin, an HMG-CoA reductase inhibitor that crosses the blood-brain-barrier, has been proposed for treatment of SLOS based on in vitro and in vivo studies suggesting that simvastatin increases expression of hypomorphic DHCR7 alleles. Methods Safety and efficacy of simvastatin therapy in 23 mild to typical SLOS patients was evaluated in a randomized, double-blind, placebo-controlled trial. The cross-over trial consisted of two 12 month treatment phases separated by a 2 month wash-out period. Results No safety issues were identified in this study. Plasma dehydrocholesterol levels decreased significantly 8.9 ± 8.4% on placebo to 6.1 ± 5.5% on simvastatin (p<0.005) and we observed a trend toward decreased cerebral spinal fluid dehydrocholesterol levels. A significant improvement (p=0.017, paired t-test) was observed in the Aberrant Behavior Checklist-C Irritability when subjects were on simvastatin. Conclusions This paper reports the first randomized, placebo-controlled trial designed to test the safety and efficacy of simvastatin therapy in SLOS. Simvastatin appears to be relatively safe in SLOS patients, improves the serum dehydrocholesterol/total sterol ratio, and significantly improves irritability symptoms in mild to classical SLOS patients. PMID:27513191

  18. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  19. Common Variants in Cholesterol Synthesis- and Transport-Related Genes Associate with Circulating Cholesterol Responses to Intakes of Conventional Dairy Products in Healthy Individuals.

    PubMed

    Abdullah, Mohammad Mh; Cyr, Audrey; Lépine, Marie-Claude; Eck, Peter K; Couture, Patrick; Lamarche, Benoît; Jones, Peter Jh

    2016-05-01

    Dairy intake has been associated with varying impacts on circulating cholesterol concentrations across nutritional epidemiology and intervention studies, with findings attributed mainly to differences in the nature of dairy products consumed or study designs. The contribution of the genomic architecture to such observations has yet to be revealed. We assessed the impact of multiple common genetic variations in cholesterol-related genes on responses of serum cholesterol to the recommended amount of dairy product intake in Canada. In a multicenter, randomized crossover design, 101 normolipidemic adults (n = 29 men and 72 women), with a mean ± SD age of 41.7 ± 16.7 y and a body mass index (BMI, in kg/m(2)) of 25.9 ± 4.3 consumed 3 servings/d of dairy [375 mL 1% milk-fat (MF) milk, 175 g 1.5% MF yogurt, and 30 g of 34% MF cheese] or energy-matched control products (juice, cashews, and cookies) provided within a prudent background diet for 4 wk each, separated by a 4- to 8-wk washout period. Serum lipid variables were determined by standard enzymatic methods by using an autoanalyzer. Candidate single nucleotide polymorphisms were assessed by TaqMan genotyping assay. The responsiveness of serum total cholesterol (TC) and LDL cholesterol to the dairy compared with the control diet was associated with individuals' genotypes. The cholesterol transport gene ATP-binding cassette subfamily G, member 5 (ABCG5) rs6720173-GG homozygotes had higher concentrations of TC (+0.18 mmol/L; P = 0.0118) and LDL cholesterol (+0.17 mmol/L; P = 0.0056) relative to C-allele carriers (-0.07 and -0.06 mmol/L, respectively). The bile acid synthesis gene cholesterol 7α-hydroxylase (CYP7A1) rs3808607-G-allele carriers had higher TC (+0.20 to +0.28 mmol/L; P = 0.0026) and LDL cholesterol (+0.19 mmol/L for GT genotype; P = 0.0260) relative to TT homozygotes (-0.11 and -0.03 mmol/L, respectively). In addition, the cholesterol synthesis gene 7-dehydrocholesterol reductase (DHCR7) rs760241-A

  20. Genetics, Diet, and Season Are Associated with Serum 25-Hydroxycholecalciferol Concentration in a Yup'ik Study Population from Southwestern Alaska.

    PubMed

    Fohner, Alison E; Wang, Zhican; Yracheta, Joseph; O'Brien, Diane M; Hopkins, Scarlett E; Black, Jynene; Philip, Jacques; Wiener, Howard W; Tiwari, Hemant K; Stapleton, Patricia L; Tsai, Jesse M; Thornton, Timothy A; Boyer, Bert B; Thummel, Kenneth E

    2016-02-01

    Low blood vitamin D concentration is a concern for people living in circumpolar regions, where sunlight is insufficient for vitamin D synthesis in winter months and the consumption of traditional dietary sources of vitamin D is decreasing. The objective was to characterize the effects of diet, genetic variation, and season on serum 25-hydroxycholecalciferol [25(OH)D3] concentrations in Yup'ik Alaska Native people living in rural southwest Alaska. This study was a cross-sectional design that assessed the associations of traditional diet (via a biomarker, the RBC δ(15)N value), age, gender, body mass index (BMI), community location, and genotype of select single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2, subfamily R, peptide 1 (CYP2R1), 7-dehydrocholesterol reductase (DHCR7), and vitamin D binding protein (GC) with serum 25(OH)D3 concentrations in 743 Yup'ik male and female participants, aged 14-93 y, recruited between September 2009 and December 2013. Yup'ik participants, on average, had adequate concentrations of serum 25(OH)D3 (31.1 ± 1.0 ng/mL). Variations in diet, BMI, age, gender, season of sample collection, and inland or coastal community geography were all significantly associated with serum 25(OH)D3 concentration. In models not adjusting for other covariates, age, diet, and seasonal effects explained 33.7%, 20.7%, and 9.8%, respectively, of variability in serum 25(OH)D3 concentrations. Of the 8 SNPs interrogated in CYP2R1 and DHCR7, only rs11023374 in CYP2R1 was significantly associated with serum 25(OH)D3, explaining 1.5% of variability. The GC haplotype explained an additional 2.8% of variability. Together, age, diet, gender, season of sample collection, BMI, geography of the community, and genotype at rs11023374 explained 52.5% of the variability in serum 25(OH)D3 concentrations. Lower consumption of the traditional diet was associated with lower serum concentrations of 25(OH)D3. Younger adults and youth in this community may be at

  1. Genetics, Diet, and Season Are Associated with Serum 25-Hydroxycholecalciferol Concentration in a Yup’ik Study Population from Southwestern Alaska123

    PubMed Central

    Fohner, Alison E; Wang, Zhican; Yracheta, Joseph; O’Brien, Diane M; Hopkins, Scarlett E; Black, Jynene; Philip, Jacques; Wiener, Howard W; Tiwari, Hemant K; Stapleton, Patricia L; Tsai, Jesse M; Thornton, Timothy A; Boyer, Bert B; Thummel, Kenneth E

    2016-01-01

    Background: Low blood vitamin D concentration is a concern for people living in circumpolar regions, where sunlight is insufficient for vitamin D synthesis in winter months and the consumption of traditional dietary sources of vitamin D is decreasing. Objective: The objective was to characterize the effects of diet, genetic variation, and season on serum 25-hydroxycholecalciferol [25(OH)D3] concentrations in Yup’ik Alaska Native people living in rural southwest Alaska. Methods: This study was a cross-sectional design that assessed the associations of traditional diet (via a biomarker, the RBC δ15N value), age, gender, body mass index (BMI), community location, and genotype of select single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2, subfamily R, peptide 1 (CYP2R1), 7-dehydrocholesterol reductase (DHCR7), and vitamin D binding protein (GC) with serum 25(OH)D3 concentrations in 743 Yup’ik male and female participants, aged 14–93 y, recruited between September 2009 and December 2013. Results: Yup’ik participants, on average, had adequate concentrations of serum 25(OH)D3 (31.1 ± 1.0 ng/mL). Variations in diet, BMI, age, gender, season of sample collection, and inland or coastal community geography were all significantly associated with serum 25(OH)D3 concentration. In models not adjusting for other covariates, age, diet, and seasonal effects explained 33.7%, 20.7%, and 9.8%, respectively, of variability in serum 25(OH)D3 concentrations. Of the 8 SNPs interrogated in CYP2R1 and DHCR7, only rs11023374 in CYP2R1 was significantly associated with serum 25(OH)D3, explaining 1.5% of variability. The GC haplotype explained an additional 2.8% of variability. Together, age, diet, gender, season of sample collection, BMI, geography of the community, and genotype at rs11023374 explained 52.5% of the variability in serum 25(OH)D3 concentrations. Conclusions: Lower consumption of the traditional diet was associated with lower serum concentrations of 25(OH

  2. Modeling Smith-Lemli-Opitz syndrome with iPS cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes

    PubMed Central

    Francis, Kevin R.; Ton, Amy N.; Xin, Yao; O’Halloran, Peter E.; Wassif, Christopher A.; Malik, Nasir; Williams, Ian M.; Cluzeau, Celine V.; Trivedi, Niraj S.; Pavan, William J.; Cho, Wonhwa; Westphal, Heiner; Porter, Forbes D.

    2016-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, impairing the reduction of 7-dehydrocholesterol to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities, and nervous system defects, though neither cellular targets nor affected signaling pathways are defined. Whether 7-dehydrocholesterol accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from SLOS subjects, we identified cellular defects leading to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7-dehydrocholesterol accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/β-catenin signaling as a key initiator of aberrant SLOS iPSCs differentiation through the direct inhibitory effects of 7-dehydrocholesterol on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS. PMID:26998835

  3. Adrenal function in Smith-Lemli-Opitz Syndrome

    PubMed Central

    Bianconi, Simona E; Conley, Sandra K; Keil, Meg F; Sinaii, Ninet; Rother, Kristina I; Porter, Forbes D; Stratakis, Constantine A

    2012-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation syndrome due to mutations of the 7-dehydrocholesterol reductase gene (DHCR7), which leads to a deficiency of cholesterol synthesis and an accumulation of 7-dehydrocholesterol and related metabolites. The SLOS clinical spectrum ranges from multiple major malformations to a mild phenotype with dysmorphic features, intellectual disability and a specific behavioral presentation. Several cases of SLOS with adrenal insufficiency have been described. We performed ovine corticotropin (oCRH) testing in 35 SLOS patients and 16 age- and gender-matched controls. We reviewed prior ACTH stimulation tests of our SLOS patients (19 of 35 available) and reviewed ACTH stimulation tests from additional 10 other SLOS patients. Results from oCRH testing showed that patients with SLOS had significantly higher ACTH baseline values than healthy controls (24.8 ± 15.3 pg/mL vs. 17.8 ± 7.5 pg/mL, p=0.034). However, no statistically significant differences were noted for peak ACTH values (74.4 ± 35.0 pg/mL vs. 64.0 ± 24.9 pg/mL, p=0.303) and for baseline (14.2 ± 7.8 mcg/dL vs. 14.2 ± 6.3 mcg/dL, p=0.992) and peak cortisol values (28.2 ± 7.9 mcg/dL vs. 24.8 ± 8.1 mcg/dL, p=0.156). The area-under-the-curve (AUC) was not significantly different in SLOS patients compared to controls for both ACTH (250.1 ± 118.7 pg/mL vs. 195.3 ± 96.6 pg/mL, p=0.121) as well as cortisol secretion (83.1 ± 26.1 mcg/dL vs. 77.8 ± 25.9 mcg/dL, p=0.499). ACTH stimulation test was normal in 28 of 29 tests. The individual with the abnormal ACTH stimulation test had a normal oCRH test during the same evaluation. The slightly increased baseline ACTH level seen during oCRH testing may be due to compensated mild adrenocortical insufficiency. However, we were able to show that our cohort affected with SLOS had an adequate stress response and that in mild to moderate cases of SLOS stress steroid coverage should not be required. PMID:21990131

  4. Common genetic variants are associated with lower serum 25-hydroxyvitamin D concentrations across the year among children at northern latitudes.

    PubMed

    Petersen, Rikke A; Larsen, Lesli H; Damsgaard, Camilla T; Sørensen, Louise B; Hjorth, Mads F; Andersen, Rikke; Tetens, Inge; Krarup, Henrik; Ritz, Christian; Astrup, Arne; Michaelsen, Kim F; Mølgaard, Christian

    2017-04-06

    In a longitudinal study including 642 healthy 8-11-year-old Danish children, we investigated associations between vitamin D dependent SNP and serum 25-hydroxyvitamin D (25(OH)D) concentrations across a school year (August-June). Serum 25(OH)D was measured three times for every child, which approximated measurements in three seasons (autumn, winter, spring). Dietary and supplement intake, physical activity, BMI and parathyroid hormone were likewise measured at each time point. In all, eleven SNP in four vitamin D-related genes: Cytochrome P450 subfamily IIR1 (CYP2R1); 7-dehydrocholesterol reductase/nicotinamide adenine dinucleotide synthetase-1(DHCR7/NADSYN1); group-specific complement (GC); and vitamin D receptor were genotyped. We found minor alleles of CYP2R1 rs10500804, and of GC rs4588 and rs7041 to be associated with lower serum 25(OH)D concentrations across the three seasons (all P<0·01), with estimated 25(OH)D differences of -5·8 to -10·6 nmol/l from major to minor alleles homozygosity. In contrast, minor alleles homozygosity of rs10741657 and rs1562902 in CYP2R1 was associated with higher serum 25(OH)D concentrations compared with major alleles homozygosity (all P<0·001). Interestingly, the association between season and serum 25(OH)D concentrations was modified by GC rs7041 (P interaction=0·044), observed as absence of increase in serum 25(OH)D from winter to spring among children with minor alleles homozygous genotypes compared with the two other genotypes of rs7041 (P<0·001). Our results suggest that common genetic variants are associated with lower serum 25(OH)D concentrations across a school year. Potentially due to modified serum 25(OH)D response to UVB sunlight exposure. Further confirmation and paediatric studies investigating vitamin D-related health outcomes of these genotypic differences are needed.

  5. Variants in CPT1A, FADS1, and FADS2 are Associated with Higher Levels of Estimated Plasma and Erythrocyte Delta-5 Desaturases in Alaskan Eskimos

    PubMed Central

    Voruganti, V. Saroja; Higgins, Paul B.; Ebbesson, Sven O. E.; Kennish, John; Göring, Harald H. H.; Haack, Karin; Laston, Sandra; Drigalenko, Eugene; Wenger, Charlotte R.; Harris, William S.; Fabsitz, Richard R.; Devereux, Richard B.; MacCluer, Jean W.; Curran, Joanne E.; Carless, Melanie A.; Johnson, Matthew P.; Moses, Eric K.; Blangero, John; Umans, Jason G.; Howard, Barbara V.; Cole, Shelley A.; Comuzzie, Anthony Gean

    2012-01-01

    The delta-5 and delta-6 desaturases (D5D and D6D), encoded by fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes, respectively, are rate-limiting enzymes in the metabolism of ω-3 and ω-6 fatty acids. The objective of this study was to identify genes influencing variation in estimated D5D and D6D activities in plasma and erythrocytes in Alaskan Eskimos (n = 761) participating in the genetics of coronary artery disease in Alaska Natives (GOCADAN) study. Desaturase activity was estimated by product: precursor ratio of polyunsaturated fatty acids. We found evidence of linkage for estimated erythrocyte D5D (eD5D) on chromosome 11q12-q13 (logarithm of odds score = 3.5). The confidence interval contains candidate genes FADS1, FADS2, 7-dehydrocholesterol reductase (DHCR7), and carnitine palmitoyl transferase 1A, liver (CPT1A). Measured genotype analysis found association between CPT1A, FADS1, and FADS2 single-nucleotide polymorphisms (SNPs) and estimated eD5D activity (p-values between 10−28 and 10−5). A Bayesian quantitative trait nucleotide analysis showed that rs3019594 in CPT1A, rs174541 in FADS1, and rs174568 in FADS2 had posterior probabilities > 0.8, thereby demonstrating significant statistical support for a functional effect on eD5D activity. Highly significant associations of FADS1, FADS2, and CPT1A transcripts with their respective SNPs (p-values between 10−75 and 10−7) in Mexican Americans of the San Antonio Family Heart Study corroborated our results. These findings strongly suggest a functional role for FADS1, FADS2, and CPT1A SNPs in the variation in eD5D activity. PMID:22701466

  6. Maternal VDR variants rather than 25-hydroxyvitamin D concentration during early pregnancy are associated with type 1 diabetes in the offspring.

    PubMed

    Miettinen, Maija E; Smart, Melissa C; Kinnunen, Leena; Mathews, Christopher; Harjutsalo, Valma; Surcel, Heljä-Marja; Lamberg-Allardt, Christel; Tuomilehto, Jaakko; Hitman, Graham A

    2015-10-01

    We investigated whether single nucleotide polymorphisms (SNPs) associated with 25-hydroxyvitamin D concentration in the metabolic pathway of vitamin D show different genotype distributions between Finnish families with an offspring with type 1 diabetes (cases) and families with a healthy offspring (controls). A total of 31 SNPs in eight genes were studied in case and control mothers and family members (offspring with type 1 diabetes and healthy siblings, healthy control children and fathers) (n = 2,854). The 25-hydroxyvitamin D concentration was studied in 474 case and 348 matched control mothers during pregnancy. The genotype distributions of 13 SNPs (in the following genes: 7-dehydrocholesterol reductase NADSYN1/DHCR7, vitamin D receptor VDR, group-specific component GC and CYP27A1) that showed a nominal association with 25-hydroxyvitamin D concentration (p < 0.05) were compared between case and control families. SNPs in VDR had different genotype distributions between the case and control mothers (rs1544410, p = 0.007; rs731236, p = 0.003; rs4516035, p = 0.015), two SNPs (rs1544410 and rs731236) remaining significant after correction for multiple testing using a false discovery rate. The mean 25-hydroxyvitamin D concentrations during pregnancy did not differ between the case and control mothers. Our preliminary results suggest that the maternal genotypes of SNPs in VDR may influence the in utero environment and thus contribute to the early programming of type 1 diabetes in the fetus. It is possible that the effects are only relevant in the presence of vitamin D insufficiency.

  7. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  8. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  9. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  10. Histochemical localization of nitrate reductase.

    PubMed

    Vaughn, K C; Duke, S O

    1981-01-01

    NADH-dependent nitrate reductase (E.C. 1.6.6.1) was ultrastructurally localized in norflurazon-treated and control soybean cotyledons [Glycine max (L.) Merr.] by a method based upon the increase in osmiophilia due to the formation of an azo dye. The reaction product was observed in small vesicles throughout the cytoplasm. An apparent transport of nitrite to the plastid, the site of nitrite reduction, may occur through fusion of the nitrite-containing vesicles with the chloroplast envelope. Plants grown in tungstate lacked nitrate reductase activity as measured by standard assay procedures, and showed no increase in osmiophilia, suggesting a degree of specificity of this cytochemical procedure.

  11. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  12. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  13. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  14. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism.

    PubMed

    Crosas, Bernat; Hyndman, David J; Gallego, Oriol; Martras, Sílvia; Parés, Xavier; Flynn, T Geoffrey; Farrés, Jaume

    2003-08-01

    Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all- trans -, 9- cis - and 13- cis -retinal ( k (cat)/ K (m)=1100-10300 mM(-1).min(-1)), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor ( K (i)=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All- trans -retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from beta-carotene and the control of retinal bioavailability.

  15. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  16. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  17. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  18. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  19. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  20. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  1. Relationship between polymorphisms in vitamin D metabolism-related genes and the risk of rickets in Han Chinese children

    PubMed Central

    2013-01-01

    Background Vitamin D deficiency rickets is common in China. Genetic factors may play an important role in the susceptibility to rickets. Our study aimed to identify the relationship between three vitamin D-related genes (group specific component [GC], cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1), and 7-dehydrocholesterol reductase/nicotinamide-adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) and rickets in Han Chinese children from northeastern China. Methods A total of 506 Han children from northeastern China were enrolled in the current study. Twelve SNPs in three candidate genes were genotyped using the SNaPshot assay. Linear regression was used to examine the effect of 12 single-nucleotide polymorphisms (SNPs) on the risk of rickets. Results In our case–control cohort, six alleles of the 12 SNPs conferred a significantly increased risk of rickets in GC (rs4588 C, P = 0.003, OR: 0.583, 95% CI: 0.412-0.836; rs222020 C, P = 0.009, OR: 1.526, 95% CI: 1.117-2.0985; rs2282679 A, P = 0.010, OR: 0.636, 95% CI: 0.449-0.900; and rs2298849 C, P = 0.001, OR: 1.709, 95% CI: 1.250-2.338) and in CYP2R1 (rs10741657 G, P = 0.019, OR: 1.467, 95% CI: 1.070-2.011; and rs2060793 G, P = 0.023, OR: 0.689, 95% CI: 0.502-0.944). The results remained significant after adjustment for sex and body mass index. We further analyzed the effect of genotypes under three different genetic models. After using Bonferroni’s method for multiple corrections, rs4588, rs2282679, and rs2298849 of the GC gene were significantly associated with rickets under the dominant (P =0.003 for rs4588, P =0.024 for rs2282679, and P =0.005 for rs2298849) and additive models (P = 0.006 for rs4588, P = 0.024 for rs2282679, and P = 0.005 for rs2298849). Haplotype analysis showed that the CAT haplotype of the GC gene (P = 0.005) and the GAA haplotype of the CYP2R1 gene (P = 0.026) were associated with susceptibility to rickets. Conclusions This case

  2. Relationship between polymorphisms in vitamin D metabolism-related genes and the risk of rickets in Han Chinese children.

    PubMed

    Zhang, Yuling; Yang, Shufen; Liu, Ye; Ren, Lihong

    2013-09-30

    Vitamin D deficiency rickets is common in China. Genetic factors may play an important role in the susceptibility to rickets. Our study aimed to identify the relationship between three vitamin D-related genes (group specific component [GC], cytochrome P450, family 2, subfamily R, polypeptide 1 (CYP2R1), and 7-dehydrocholesterol reductase/nicotinamide-adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) and rickets in Han Chinese children from northeastern China. A total of 506 Han children from northeastern China were enrolled in the current study. Twelve SNPs in three candidate genes were genotyped using the SNaPshot assay. Linear regression was used to examine the effect of 12 single-nucleotide polymorphisms (SNPs) on the risk of rickets. In our case-control cohort, six alleles of the 12 SNPs conferred a significantly increased risk of rickets in GC (rs4588 C, P = 0.003, OR: 0.583, 95% CI: 0.412-0.836; rs222020 C, P = 0.009, OR: 1.526, 95% CI: 1.117-2.0985; rs2282679 A, P = 0.010, OR: 0.636, 95% CI: 0.449-0.900; and rs2298849 C, P = 0.001, OR: 1.709, 95% CI: 1.250-2.338) and in CYP2R1 (rs10741657 G, P = 0.019, OR: 1.467, 95% CI: 1.070-2.011; and rs2060793 G, P = 0.023, OR: 0.689, 95% CI: 0.502-0.944). The results remained significant after adjustment for sex and body mass index. We further analyzed the effect of genotypes under three different genetic models. After using Bonferroni's method for multiple corrections, rs4588, rs2282679, and rs2298849 of the GC gene were significantly associated with rickets under the dominant (P =0.003 for rs4588, P =0.024 for rs2282679, and P =0.005 for rs2298849) and additive models (P = 0.006 for rs4588, P = 0.024 for rs2282679, and P = 0.005 for rs2298849). Haplotype analysis showed that the CAT haplotype of the GC gene (P = 0.005) and the GAA haplotype of the CYP2R1 gene (P = 0.026) were associated with susceptibility to rickets. This case-control study confirmed the strong effect of GC

  3. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  4. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  5. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  6. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  7. The tyrosyl free radical in ribonucleotide reductase.

    PubMed Central

    Gräslund, A; Sahlin, M; Sjöberg, B M

    1985-01-01

    The enzyme, ribonucleotide reductase, catalyses the formation of deoxyribonucleotides from ribonucleotides, a reaction essential for DNA synthesis in all living cells. The Escherichia coli ribonucleotide reductase, which is the prototype of all known eukaryotic and virus-coded enzymes, consists of two nonidentical subunits, proteins B1 and B2. The B2 subunit contains an antiferromagnetically coupled pair of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of an electron, has its unpaired spin density delocalized in the aromatic ring of tyrosine. Effects of iron-radical interaction indicate a relatively close proximity between the iron center and the radical. The EPR signal of the radical can be studied directly in frozen packed cells of E. coli or mammalian origin, if the cells are made to overproduce ribonucleotide reductase. The hypothetic role of the tyrosyl free radical in the enzymatic reaction is not yet elucidated, except in the reaction with the inhibiting substrate analogue 2'-azido-CDP. In this case, the normal tyrosyl radical is destroyed with concomitant appearance of a 2'-azido-CDP-localized radical intermediate. Attempts at spin trapping of radical reaction intermediates have turned out negative. In E. coli the activity of ribonucleotide reductase may be regulated by enzymatic activities that interconvert a nonradical containing form and the fully active protein B2. In synchronized mammalian cells, however, the cell cycle variation of ribonucleotide reductase, studied by EPR, was shown to be due to de novo protein synthesis. Inhibitors of ribonucleotide reductase are of medical interest because of their ability to control DNA synthesis. One example is hydroxyurea, used in cancer therapy, which selectively destroys the tyrosyl free radical. PMID:3007085

  8. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  9. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  10. Fumarate Reductase Activity of Streptococcus faecalis

    PubMed Central

    Aue, B. J.; Diebel, R. H.

    1967-01-01

    Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The Km value of the enzyme for reduced flavin mononucleotide was 2 × 10−4 m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive. PMID:4960892

  11. Post-translational Regulation of Nitrate Reductase

    USDA-ARS?s Scientific Manuscript database

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  12. Synthesis of symmetric disulfides as potential alternative substrates for trypanothione reductase and glutathione reductase: Part 1.

    PubMed

    Jaouhari, R; Besheya, T; McKie, J H; Douglas, K T

    1995-12-01

    The synthesis of a series of symmetrical disulfides as potential substrates of trypanothione reductase and glutathione reductase was described. The key intermediate in the synthetic approach was the choice of S-(t)butylmercapto-L-cysteine (1). The spermidine ring in the native substrate, trypanothione disulfide (TSST), was replaced with 3-dimethyl-aminopropylamine (DMAPA), while theγ-Glu moiety was replaced by phenylalanyl or tryptophanyl residues. The same modifications in theγ-Glu moiety of glutathione disulfide (GSSG) were applied.

  13. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  14. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  15. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  16. Characterization of human platelet glutathione reductase.

    PubMed

    Moroff, G; Kosow, D P

    1978-12-08

    Glutathione reductase (NAD(P)h:oxidized glutathione oxidoreductase, EC 1.6.4.2) has been purified 1000-fold from the cytoplasmic fraction of human platelets. Salts, including the heretofore unreported effect of sodium citrate, activate the NADPH-dependent reduction of oxidized glutathione. Sodium citrate and monovalent salt activation appears to involve multiple sites having different binding affinities. At sub-saturating sodium phosphate, non-linear double reciprocal plots indicative of substrate activation by oxidized glutathione were observed. Initial velocity double reciprocal plots at sub-saturating and saturating concentrations of phosphate generate a family of converging lines. NADP+ is a partial inhibitor, indicating that the reduction of oxidized glutathione can proceed by more than one pathway. FMN, FAD, and riboflavin inhibit platelet glutathione reductase by influencing only the V while nitrofurantoin inhibition is associated with an increase Koxidized glutathione and a decreased V.

  17. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  18. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  19. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Levine, Rodney L.

    2012-01-01

    Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild. PMID:22521563

  20. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  1. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  2. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  3. The orphan protein bis-γ-glutamylcystine reductase joins the pyridine nucleotide-disulfide reductase family

    PubMed Central

    Kim, Juhan; Copley, Shelley D.

    2014-01-01

    Facile DNA sequencing became possible decades after many enzymes had been purified and characterized. Consequently, there are still “orphan” enyzmes whose activity is known but the genes that encode them have not been identified. Identification of the genes encoding orphan enzymes is important because it allows correct annotation of genes of unknown function or with mis-assigned function. Bis-γ-glutamylcystine reductase (GCR) is an orphan protein that was purified in 1988. This enzyme catalyzes the reduction of bis-γ-glutamylcystine. γ-Glutamylcysteine (γ-Glu-Cys) is the major low molecular weight thiol in halobacteria. We purified GCR from Halobacterium sp. NRC-1 and identified the sequence of 23 tryptic peptides by NanoLC electrospray ionization tandem mass spectrometry. These peptides cover 62% of the protein predicted to be encoded by a gene in Halobacterium sp. NRC-1 that is annotated as mercuric reductase. GCR and mercuric reductase activities were assayed using enzyme that was expressed in E. coli and re-folded from inclusion bodies. The enzyme had robust GCR activity, but no mercuric reductase activity. The genomes of most, but not all, halobacteria for which whole genome sequences are available have close homologs of GCR, suggesting that there is more to be learned about the low molecular weight thiols used in halobacteria. PMID:23560638

  4. 3-Methyleneoxindole Reductase of Peas 1

    PubMed Central

    Moyed, H. S.; Williamson, Valerie

    1967-01-01

    A 100-fold purification of a reduced triphosphopyridine nucleotide/3-methyleneoxindole reductase of peas has been achieved using conventional protein fractionation procedures. Reduced diphosphopyridine nucleotide is 25-fold less effective than reduced triphosphopyridine nucleotide as the reductant. The preparation is free of other reductase activities including those linking the oxidation of reduced pyridine nucleotide coenzymes to the reduction of cytochrome c; vitamins K1, K2, and K3; O2; nitrate; oxidized glutathione; and thiazolyl blue tetrazolium. The affinity of the enzyme for 3-methyleneoxindole (Ks = 0.5 mm 3-methyleneoxindole) is relatively high. It is, therefore, reasonable to assume that 3-methyleneoxindole is the normal substrate. The enzyme is inhibited by indole-3-acetic acid, indole-3-aldehyde, and by l-naph-thaleneacetic acid. While these are not especially powerful inhibitors (K1 = 1.9-4.0 mm) the competitive relationship with 3-methyleneoxindole indicates that significant inhibition might occur at low intracellular concentrations of the substrate. PMID:6042360

  5. Enzyme toolbox: novel enantiocomplementary imine reductases.

    PubMed

    Scheller, Philipp N; Fademrecht, Silvia; Hofelzer, Sebastian; Pleiss, Jürgen; Leipold, Friedemann; Turner, Nicholas J; Nestl, Bettina M; Hauer, Bernhard

    2014-10-13

    Reducing reactions are among the most useful transformations for the generation of chiral compounds in the fine-chemical industry. Because of their exquisite selectivities, enzymatic approaches have emerged as the method of choice for the reduction of C=O and activated C=C bonds. However, stereoselective enzymatic reduction of C=N bonds is still in its infancy-it was only recently described after the discovery of enzymes capable of imine reduction. In our work, we increased the spectrum of imine-reducing enzymes by database analysis. By combining the currently available knowledge about the function of imine reductases with the experimentally uncharacterized diversity stored in protein sequence databases, three novel imine reductases with complementary enantiopreference were identified along with amino acids important for catalysis. Furthermore, their reducing capability was demonstrated by the reduction of the pharmaceutically relevant prochiral imine 2-methylpyrroline. These novel enzymes exhibited comparable to higher catalytic efficiencies than previously described enzymes, and their biosynthetic potential is highlighted by the full conversion of 2-methylpyrroline in whole cells with excellent selectivities.

  6. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  7. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  8. Structural and biochemical characterization of cinnamoyl-coa reductases

    USDA-ARS?s Scientific Manuscript database

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  9. [Inborn error of cholesterol biosynthesis: Smith-Lemli-Opitz syndrome].

    PubMed

    Koczok, Katalin; V Oláh, Anna; P Szabó, Gabriella; Oláh, Éva; Török, Olga; Balogh, István

    2015-10-18

    Smith-Lemli-Opitz syndrome is an autosomal recessive mental retardation and multiple malformation syndrome caused by deficiency of the 7-dehydrocholesterol reductase, the enzyme catalyzing the last step in cholesterol biosynthesis. The authors summarize the pathophysiology, epidemiology, clinical picture, diagnostics and therapy of the disease based on a review of the international literature. Since 2004, fourteen patients have been diagnosed with Smith-Lemli-Opitz syndrome in Hungary, which suggests an underdiagnosis of the disease based upon estimated incidence data. Due to deficiency of the 7-dehydrocholesterol reductase, serum cholesterol concentration is low and 7-dehydrocholesterol concentration is elevated in blood and tissues; the latter being highly specific for the syndrome. Detection of disease-causing mutations makes the prenatal diagnosis possible. The clinical spectrum is wide, the most common symptom is syndactyly of the second and third toes. Standard therapy is cholesterol supplementation. Recent publications suggest that oxidative compounds of 7-dehydrocholesterol may play a role in the pathophysiology of the disease as well.

  10. Smith-Lemli-Opitz syndrome produced in rats with AY 9944 treated by intravenous injection of lipoprotein cholesterol.

    PubMed

    Chambers, C M; McLean, M P; Ness, G C

    1997-01-31

    A limitation to treating Smith-Lemli-Opitz infants by giving dietary cholesterol is their impaired ability to absorb cholesterol due to a deficiency of bile acids. Since intravenously administered lipoprotein cholesterol should not require bile acids for uptake into tissues, we tested the effects of this form of cholesterol on tissue cholesterol and 7-dehydrocholesterol levels in an animal model of SLO, created by feeding rats 0.02% AY 9944. Intravenous administration of 15 mg of bovine cholesterol supertrate twice daily increased serum cholesterol levels from 11 to over 250 mg/dl. This treatment increased liver cholesterol levels from 309 to over 900 micrograms/g and lowered hepatic 7-dehydrocholesterol levels from 1546 to 909 micrograms/g. A combination of iv cholesterol and 2% dietary cholesterol was most effective as it raised hepatic cholesterol levels to 1950 micrograms/g, which is 50% above normal. 7-Dehydrocholesterol levels were decreased to 760 micrograms/g. Similar responses were seen for heart, lung, kidney, and testes. Brain sterol levels were not significantly affected. AY 9944 caused a modest increase in hepatic HMG-CoA reductase activity. Administration of dietary cholesterol together with iv cholesterol lowered hepatic HMG-CoA reductase activity to barely detectable levels. The data indicate that the combination of iv and dietary cholesterol was most effective in raising cholesterol levels, lowering 7-dehydrocholesterol levels, and inhibiting de novo cholesterol biosynthesis.

  11. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-05

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  12. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  13. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  14. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  15. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  16. Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA 1

    PubMed Central

    Campbell, Wilbur H.

    1992-01-01

    A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction. ImagesFigure 2Figure 3 PMID:16668941

  17. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-05-15

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes.

  18. Kinetic mechanism of pulmonary carbonyl reductase.

    PubMed Central

    Matsuura, K; Nakayama, T; Nakagawa, M; Hara, A; Sawada, H

    1988-01-01

    The kinetic mechanism of guinea-pig lung carbonyl reductase was studied at pH 7 in the forward reaction with five carbonyl substrates and NAD(P)H and in the reverse reaction with propan-2-ol and NAD(P)+. In each case the enzyme mechanism was sequential, and product-inhibition studies were consistent with a di-iso ordered bi bi mechanism, in which NAD(P)H binds to the enzyme first and NAD(P)+ leaves last and the binding of cofactor induces isomerization. The kinetic and binding studies of the cofactors and several inhibitors such as pyrazole, benzoic acid, Cibacron Blue and benzamide indicate that the cofactor and Cibacron Blue bind to the free enzyme whereas the other inhibitors bind to the binary and/or ternary complexes. PMID:3048244

  19. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.

    PubMed

    Trimmer, Elizabeth E

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5-methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer's disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.

  20. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  1. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  2. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.

    PubMed

    Vaidyanathan, Ramanathan; Gopalram, Shubaash; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Pandian, Sureshbabu Ram Kumar; Gurunathan, Sangiliyandi

    2010-01-01

    Nanostructure materials are attracting a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. The generation of silver nanoparticles using optimized nitrate reductase for the reduction of Ag(+) with the retention of enzymatic activity in the complex is being reported. This report involves the optimization of enzyme activity to bring about enhanced nanoparticle synthesis. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of nitrate reductase by Bacillus licheniformis at pH 8. The four variables involved in the study of nitrate reductase were Glucose, Peptone, Yeast extract and KNO(3). Glucose had a significant effect on nitrate reductase production. The optimized medium containing (%) Glucose: 1.5, Peptone: 1, Yeast extract: 0.35 and KNO(3): 0.35 resulted in a nitrate reductase activity of 452.206 U/ml which is same as that of the central level. The medium A (showing least nitrate reductase activity) and the medium B (showing maximum nitrate reductase activity) were compared for the synthesis. Spectrophotometric analysis revealed that the particles exhibited a peak at 431 nm and the A(431) for the medium B was 2-fold greater than that of the medium A. The particles were also characterized using TEM. The particles synthesized using the optimized enzyme activity ranged from 10 to 80 nm and therefore can be extended to various medicinal applications.

  3. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase

    PubMed Central

    Erb, Tobias J.; Brecht, Volker; Fuchs, Georg; Müller, Michael; Alber, Birgit E.

    2009-01-01

    Chemo- and stereoselective reductions are important reactions in chemistry and biology, and reductases from biological sources are increasingly applied in organic synthesis. In contrast, carboxylases are used only sporadically. We recently described crotonyl-CoA carboxylase/reductase, which catalyzes the reduction of (E)-crotonyl-CoA to butyryl-CoA but also the reductive carboxylation of (E)-crotonyl-CoA to ethylmalonyl-CoA. In this study, the complete stereochemical course of both reactions was investigated in detail. The pro-(4R) hydrogen of NADPH is transferred in both reactions to the re face of the C3 position of crotonyl-CoA. In the course of the carboxylation reaction, carbon dioxide is incorporated in anti fashion at the C2 atom of crotonyl-CoA. For the reduction reaction that yields butyryl-CoA, a solvent proton is added in anti fashion instead of the CO2. Amino acid sequence analysis showed that crotonyl-CoA carboxylase/reductase is a member of the medium-chain dehydrogenase/reductase superfamily and shares the same phylogenetic origin. The stereospecificity of the hydride transfer from NAD(P)H within this superfamily is highly conserved, although the substrates and reduction reactions catalyzed by its individual representatives differ quite considerably. Our findings led to a reassessment of the stereospecificity of enoyl(-thioester) reductases and related enzymes with respect to their amino acid sequence, revealing a general pattern of stereospecificity that allows the prediction of the stereochemistry of the hydride transfer for enoyl reductases of unknown specificity. Further considerations on the reaction mechanism indicated that crotonyl-CoA carboxylase/reductase may have evolved from enoyl-CoA reductases. This may be useful for protein engineering of enoyl reductases and their application in biocatalysis. PMID:19458256

  4. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  5. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  6. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  7. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis

    PubMed Central

    Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M. S.; Barh, Debmalya

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets. PMID:28316974

  8. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis.

    PubMed

    Almeida, Sintia; Sousa, Cassiana; Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M S; Lage, Andrey P; Barh, Debmalya; Azevedo, Vasco

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets.

  9. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.

    PubMed

    Gamenara, Daniela; Domínguez de María, Pablo

    2014-05-21

    Adding value to organic synthesis. Novel imine reductases enable the enantioselective reduction of imines to afford optically active amines. Likewise, novel bioinspired artificial metalloenzymes can perform the same reaction as well. Emerging proof-of-concepts are herein discussed.

  10. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed

    Sengupta, S; Shaila, M S; Rao, G R

    1996-07-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

  11. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  12. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  13. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  14. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    PubMed

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  15. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s(-1). This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  16. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  17. Microsecond subdomain folding in dihydrofolate reductase.

    PubMed

    Arai, Munehito; Iwakura, Masahiro; Matthews, C Robert; Bilsel, Osman

    2011-07-08

    The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.

  18. Aldose reductase mediates retinal microglia activation

    SciTech Connect

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  19. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  20. Sulfite reductase protects plants against sulfite toxicity.

    PubMed

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  1. Purification and properties of proline reductase from Clostridium sticklandii.

    PubMed

    Seto, B; Stadtman, T C

    1976-04-25

    Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.

  2. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  3. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  4. Bacterial morphinone reductase is related to Old Yellow Enzyme.

    PubMed Central

    French, C E; Bruce, N C

    1995-01-01

    Morphinone reductase, produced by Pseudomonas putida M10, catalyses the NADH-dependent saturation of the carbon-carbon double bond of morphinone and codeinone, and is believed to be involved in the metabolism of morphine and codeine. The structural gene encoding morphinone reductase, designated morB, was cloned from Ps. putida M10 genomic DNA by the use of degenerate oligonucleotide probes based on elements of the amino acid sequence of the purified enzyme. Sequence analysis and structural characteristics indicated that morphinone reductase is related to the flavoprotein alpha/beta-barrel oxidoreductases, and is particularly similar to Old Yellow Enzyme of Saccharomyces spp. and the related oestrogen-binding protein of Candida albicans. Expressed sequence tags from several plant species show high homology to these enzymes, suggesting the presence of a family of enzymes conserved in plants and fungi. Although related bacterial proteins are known, morphinone reductase appears to be more similar to the eukaryotic proteins. Morphinone reductase was overexpressed in Escherichia coli, and has potential applications for the industrial preparation of semisynthetic opiates. Images Figure 1 Figure 5 PMID:8554504

  5. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  6. Dynamic Control of Electron Transfers in Diflavin Reductases

    PubMed Central

    Aigrain, Louise; Fatemi, Fataneh; Frances, Oriane; Lescop, Ewen; Truan, Gilles

    2012-01-01

    Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases. PMID:23203109

  7. [Methylenetetrahydrofolate reductase and methionine synthase reductase gene polymorphisms in ethnic Han women from Linyi].

    PubMed

    Zhang, Yan-li; Lu, Yan-qiang; Li, Hua-feng; Rui, Xin-yi; Zhang, Li-jun; Wu, Chuan-ye; Fang, Ai-min; Wang, Gui-xi

    2012-12-01

    To explore the distribution of genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) 677C/T, 1298A/C and methionine synthase reductase (MTRR) 66A/G among ethnic Han females from Linyi, and to correlate it with serum level of homocysteine (Hcy). A cross-sectional study was carried out. Oral epithelial cell samples were collected from 825 subjects. MTHFR and MTRR gene polymorphisms were determined with a Taqman-Minor Groove Binder (MGB) method. Distribution of gene polymorphisms was analyzed and compared with others regions of China including Weifang, Zhengzhou, Deyang and Hainan. A biochemical assay was also carried out to determine the total Hcy in plasma of 281 subjects. The reductase activity of MTHFR was classified into decreased and stable groups according to genetic polymorphism of MTHFR. Correlation between MTHFR groups and total Hcy level were also explored. (1) The frequencies of MTHFR677CC, CT and TT genotypes of the selected subjects were 16.7%, 48.3% and 35.0%, respectively. The frequencies of MTHFR 1298AA, AC and CC genotypes were 76.0%, 21.6% and 2.4%, respectively. And those of MTRR 66AA, AG and GG genotypes were 54.7%, 39.4% and 5.9%, respectively. For the selected subjects, their frequency of MTHFR 677TT genotype was higher than that of Deyang and Hainan (P< 0.01), whilst the frequency of MTHFR 1298CC genotype was lower than that of Deyang and Hainan (P < 0.01), and the frequency of MTRR 66 GG genotype was lower than that of Hainan (P< 0.01). (2) The Hcy level for those with decreased MTHFR activity was significantly higher than those with stable MTHFR activity (P< 0.05). MTHFR gene 677C/T, 1298A/C and MTRR 66A/G polymorphisms in ethnic Han women from Linyi have differed significantly from other regions of China. Decreased MTHFR activity caused by genetic polymorphisms is a risk factor for raised Hcy level.

  8. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601

  9. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    PubMed

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  10. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  11. Selenium in thioredoxin reductase: a mechanistic perspective.

    PubMed

    Lacey, Brian M; Eckenroth, Brian E; Flemer, Stevenson; Hondal, Robert J

    2008-12-02

    Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to

  12. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  13. Do cytochromes function as oxygen sensors in the regulation of nitrate reductase biosynthesis?

    PubMed Central

    MacGregor, C H; Bishop, C W

    1977-01-01

    The observation that oxygen represses nitrate reductase biosynthesis in a hemA mutant grown aerobically with or without delta-aminolevulinic acid indicates that cytochromes are not responsible for nitrate reductase repression in aerobically grown cells. PMID:326768

  14. Studies on the regulation of assimilatory nitrate reductase in Ankistrodesmus braunii.

    PubMed

    Diez, J; Chaparro, A; Vega, J M; Relimpio, A

    1977-01-01

    In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg(2+), presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.

  15. Dihydrofolate Reductase Activity in Strains of Streptococcus faecium var. durans Resistant to Methasquin and Amethopterin1

    PubMed Central

    Rader, Jeanne I.; Hutchison, Dorris J.

    1972-01-01

    Resistance to the antifolates methasquin and amethopterin has been studied in new strains of Streptococcus faecium var. durans. Two methasquin-resistant strains (SF/MQ, SF/MQT) and an amethopterin-resistant strain (SF/AM) were selected independently from the wild-type S. faecium var. durans (SF/O). SF/MQT is a thymine auxotroph. Total dihydrofolate reductase activity was elevated in each of the resistant strains. The greatest increase (36-fold) was observed in extracts of SF/AM. The methasquin-resistant strains, SF/MQ and SF/MQT, had 29-fold and 8-fold, respectively, more dihydrofolate reductase activity than the parental strain. Total dihydrofolate reductase activity of SF/O was separable by gel filtration into two components: a folate reductase (11%) and a specific dihydrofolate reductase (89%). Folate reductase activity was associated with 88% of the total dihydrofolate reductase activity of SF/MQT, with specific dihydrofolate reductase activity accounting for the remaining 12%. In SF/MQ and SF/AM, folate reductase activity was associated with 97% of the total dihydrofolate reductase activity. Studies of the inhibition by methasquin and amethopterin of partially purified folate reductase and specific dihydrofolate reductase of the mutant strains suggested that resistance was not accompanied by changes in the affinities of these enzymes for either antifolate. PMID:4401600

  16. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  17. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  18. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  19. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  20. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  1. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  2. Obtaining partial purified xylose reductase from Candida guilliermondii

    PubMed Central

    Tomotani, Ester Junko; de Arruda, Priscila Vaz; Vitolo, Michele; de Almeida Felipe, Maria das Graças

    2009-01-01

    The enzymatic bioconversion of xylose into xylitol by xylose reductase (XR) is an alternative for chemical and microbiological processes. The partial purified XR was obtained by using the following three procedures: an agarose column, a membrane reactor or an Amicon Ultra-15 50K Centrifugal Filter device at yields of 40%, 7% and 67%, respectively. PMID:24031408

  3. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  4. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-28

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  5. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  6. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  7. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  8. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  9. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  10. Studies on Marek's Disease Virus Encoded Ribonucleotide Reductase

    USDA-ARS?s Scientific Manuscript database

    Ribonucleotide reductase (RR) is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleotides in prokaryotic and eukaryotic cells. The enzyme consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme. Herpesviruses express a functional R...

  11. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].

    PubMed

    Belikova, Iu O; Kotliar, A B

    1988-04-01

    Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.

  12. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  13. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    PubMed

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  14. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  15. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  16. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  17. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  18. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  19. [Inhibition of aldose reductase by Chinese herbal medicine].

    PubMed

    Mao, X M; Zhang, J Q

    1993-10-01

    Seven Chinese herbal drugs were screened for experimental inhibition of lens aldose reductase activity, among which quercetin exhibited potent enzyme-inhibitory activities in vitro. Its IC50 value was 3.44 x 10(-7) mol/L. It may be helpful in the prophylaxis and treatment of diabetic complications.

  20. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  1. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  2. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  3. Comparative Studies on the Induction and Inactivation of Nitrate Reductase in Corn Roots and Leaves 1

    PubMed Central

    Aslam, Muhammad; Oaks, Ann

    1976-01-01

    A comparison of induction and inactivation of nitrate reductase and two of its component activities, namely FMNH2-nitrate reductase and NO3−-induced NADH-cytochrome c reductase, was made in roots and leaves of corn (Zea mays L. var. W64A × 182E). The three activities were induced in parallel in both tissues when NO3− was supplied. WO4= suppressed the induction of NADH- and FMNH2-nitrate reductase activities in root tips and leaves. The NO3−-induced NADH-cytochrome c reductase activity showed a normal increase in roots treated with WO4=. In leaves, on the other hand, there was a marked superinduction of the NO3−-induced NADH-cytochrome c reductase in the presence of WO4=. The half-life values of NADH-nitrate reductase and FMNH2-nitrate reductase measured by removing NO3− and adding WO4= to the medium, were 4 hours in root tips and 6 hours in excised leaves. Addition of NO3− in the induction medium together with WO4= gave partial protection of NADH-nitrate reductase and FMNH2-nitrate reductase activities in both root tips and leaves with a t0.5 of 6 and 8 hours, respectively. NO3− also reduced the loss of nitrate reductase activity from mature root sections. In the presence of cycloheximide, both NADH-nitrate reductase and NO3−-induced NADH-cytochrome c reductase activities were lost at similar rates in root tips. NO3− protected the loss of NO3−-induced NADH-cytochrome c reductase to the same extent as that of NADH-nitrate reductase. PMID:16659529

  4. Measurement of nitrous oxide reductase activity in aquatic sediments

    SciTech Connect

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N/sub 2/O reductase assay. Sediments consumed small added quantities of N/sub 2/O over short periods (a few hours). In experiments with sediment slurries, N/sub 2/O reductase activity was inhibited by 0/sub 2/, C/sub 2/H/sub 2/, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 ..mu..M) did not influence activity, and moderate levels (about 150 ..mu..M) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N/sub 2/O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater, estuarine, and alkaline-saline environments. An in situ assay was devised in which a solution of N/sub 2/O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N/sub 2/O per m/sup 2/ per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N/sub 2/O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N/sub 2/O per m/sup 2/ per h made with the acetylene block assay.

  5. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  6. Identification of 5α-reductase isoenzymes in canine skin.

    PubMed

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  7. Leukemia L1210 cell lines resistant to ribonucleotide reductase inhibitors.

    PubMed

    Cory, J G; Carter, G L

    1988-02-15

    Leukemia L1210 cell lines, ED1 and ED2, were generated which were resistant to the cytotoxic effects of deoxyadenosine/erythro-9-(2-hydroxyl-3-nonyl)adenine and deoxyadenosine/erythro-9-(2-hydroxyl-3-nonyl)adenine plus 2,3-dihydro-1H-pyrazole[2,3a]imidazole/Desferal, respectively. The ED1 and ED2 were characterized to show that these cell lines had increased levels of ribonucleotide reductase as measured by CDP reduction. The reductase activity in crude cell-free extracts from the ED1 and ED2 cells was not inhibited by dATP. For CDP reductase, the activation by adenylylimido diphosphate and inhibition by dGTP and dTTP in these extracts from the ED1 and ED2 cells were the same as for the wild-type L1210 cells. The ED1 and ED2 cells were highly cross-resistant, as measured by growth inhibition, to deoxyguanosine/8-aminoguanosine, 2-fluorodeoxyadenosine, and 2-fluoroadenine arabinoside. While the ED2 cells showed resistance to 2,3-dihydro-1H-pyrazole-[2,3a]-imidazole/Desferal (6-fold), the ED1 and ED2 cell lines showed less resistance to hydroxyurea, 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone, and the dialdehyde of inosine. These data indicate that the mechanisms of resistance to the ribonucleotide reductase inhibitors are related to the increased level of ribonucleotide reductase activity and to the decreased sensitivity of the effector-binding subunit to dATP.

  8. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  9. Treatment of hirsutism with 5 alpha-reductase inhibitors.

    PubMed

    Brooks, J R

    1986-05-01

    Much os the evidence gathered from studies of 5 alpha-reductase activity levels and androgen metabolism in the skin of hirsute women and the excretion of androgen metabolites by hirsute women indicates that 5 alpha-reduced androgens are probably of primary importance in hirsutism. Unfortunately, until very recently, the lack of a suitable 5 alpha-reductase inhibitor made it very difficult to adequately test the hypothesis that such an inhibitor might be useful in the treatment of hirsutism and certain other androgen-related diseases. No substance was available which had good, unambiguous activity in vivo as a 5 alpha-reductase inhibitor. A number of 4-azasteroids have now been found to possess excellent 5 alpha-reductase inhibitory activity both in vitro and in vivo. Among other properties, several of these compounds show little or no affinity for the androgen receptor of rat prostate cytosol, they attenuate the growth promoting effect of T, but not DHT, on the ventral prostate of castrated male rats, they cause a marked reduction in prostatic DHT concentration in acutely treated rats and dogs and they bring about a significant decline in prostate size in chronically treated rats and dogs. It is expected that, in the near future, one or more of these highly active 5 alpha-reductase inhibitors will be tested in the clinic as a treatment for hirsutism. The results of those studies will be awaited with a great deal of interest since they should considerably advance our understanding of this disease and possibly contribute to its control.

  10. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  11. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  12. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  13. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii.

    PubMed

    Díez, J; López-Ruiz, A

    1989-02-01

    The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.

  14. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  15. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  16. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  17. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  18. Ranirestat as a therapeutic aldose reductase inhibitor for diabetic complications.

    PubMed

    Giannoukakis, Nick

    2008-04-01

    There are currently very few drugs available to directly treat diabetic complications. Those that are indicated clinically provide symptomatic relief and do not address the underlying biochemical problems. The involvement of the sorbitol pathway in complications has provided mechanistic insights into the biochemistry of complications and the key enzyme, aldose reductase, has become an attractive pharmacologic target. Among the aldose reductase inhibitors, the most promising is ranirestat. This review outlines the studies with ranirestat and compares its efficacy with other similar inhibitors. A survey of in vitro and in vivo studies was conducted, and with publicly available data from clinical trials, ranirestat efficacy was compared with other similar agents. Ranirestat is safe, exhibits some efficacy and is perhaps the only agent advanced enough in clinical trials to warrant further consideration for diabetic complications.

  19. Pyrroline-5-Carboxylate Reductase in Soybean Nodules 1

    PubMed Central

    Chilson, Oscar P.; Kelly-Chilson, Anne E.; Schneider, Julie D.

    1992-01-01

    Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable. PMID:16668837

  20. Characterization of 12-Oxo-Phytodienoic Acid Reductase in Corn

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1986-01-01

    12-Oxo-phytodienoic acid reductase, an enzyme of the biosynthetic pathway that converts linolenic acid to jasmonic acid, has been characterized from the kernel and seedlings of corn (Zea mays L.). The molecular weight of the enzyme, estimated by gel filtration, was 54,000. Optimum enzyme activity was observed over a broad pH range, from pH 6.8 to 9.0. The enzyme had a Km of 190 micromolar for its substrate, 12-oxo-phytodienoic acid. The preferred reductant was NADPH, for which the enzyme exhibited a Km of 13 micromolar, compared with 4.2 millimolar for NADH. Reductase activity was low in the corn kernel but increased five-fold by the fifth day after germination and then gradually declined. PMID:16664582

  1. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  2. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala)

    PubMed Central

    Herrera-Juárez, Álvaro Miguel; Martínez-González, José de Jesús; del Arenal Mena, Irene Patricia; Flores-Herrera, Óscar

    2017-01-01

    A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR), thioredoxin-glutathione reductase (TGR), and a putative thioredoxin reductase (TrxR) was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life. PMID:28787021

  3. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  4. Autoregulation of the Synthesis of Nitrate Reductase in Aspergillus nidulans

    PubMed Central

    Cove, D. J.; Pateman, J. A.

    1969-01-01

    In Aspergillus nidulans, the syntheses of nitrate and nitrite reductases are induced by nitrate, and are repressed by ammonium. It is possible in wild-type strains to overcome partially the repressive effect of ammonium, by the addition of high concentrations of nitrate to the growth medium. Mutations which lead to the production of abnormal nitrate reductase affect in addition the control of the synthesis of the nitrate-metabolizing enzymes, which in these strains are produced constitutively. That this is not due to the accumulation of an internal inducer has now been shown, as these mutants have been found to be unable to respond to nitrate induction in the presence of ammonium in the same way as do wild-type strains. To explain these findings, we propose that the nitrate reductase molecule provides the recognition site for nitrate in the control system, such that when it is not complexed with nitrate it acts as a co-repressor, and, when it is complexed, as a co-inducer. PMID:5776531

  5. The effect of quercetin and galangin on glutathione reductase.

    PubMed

    Paulíková, Helena; Berczeliová, Elena

    2005-12-01

    Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.

  6. Structural and functional diversity of ferredoxin-NADP(+) reductases.

    PubMed

    Aliverti, Alessandro; Pandini, Vittorio; Pennati, Andrea; de Rosa, Matteo; Zanetti, Giuliana

    2008-06-15

    Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.

  7. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues*

    PubMed Central

    Youngblut, Matthew D.; Tsai, Chi-Lin; Clark, Iain C.; Carlson, Hans K.; Maglaqui, Adrian P.; Gau-Pan, Phonchien S.; Redford, Steven A.; Wong, Alan; Tainer, John A.; Coates, John D.

    2016-01-01

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO32− bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  8. Rat liver thioredoxin and thioredoxin reductase: purification and characterization.

    PubMed

    Luthman, M; Holmgren, A

    1982-12-21

    A reproducible scheme has been developed for the preparation of rat liver thioredoxin and thioredoxin reductase (EC 1.6.4.5) by using assays based on reduction of insulin and 5,5'-dithiobis(2-nitrobenzoic acid), respectively. Both proteins were purified to homogeneity, as judged from polyacrylamide gel electrophoresis. Thioredoxin had a molecular weight of 12 000 and contained about 110 amino acids including 4 half-cystines and an NH2-terminal valine. Peptide maps of reduced and carboxymethylated thioredoxin showed that the protein had the active center sequence -Cys-Gly-Pro-Cys-Lys-Met- characteristic of thioredoxins also from procaryotes. Prolonged air oxidation of fully reduced thioredoxin created inactive, aggregated disulfide-containing molecules. Thioredoxin reductase showed a subunit molecular weight of 58 000 and a native molecular weight of 116 000. The enzyme was highly specific for NADPH with a Km of 6 microM. It contained FAD as prosthetic group and was sensitive to inhibition by arsenite. Thioredoxin reductase had a Km of 2.5 microM for rat and calf liver thioredoxin and a Kcat of 3000 min-1.

  9. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis.

    PubMed

    Gahloth, Deepankar; Dunstan, Mark S; Quaglia, Daniela; Klumbys, Evaldas; Lockhart-Cairns, Michael P; Hill, Andrew M; Derrington, Sasha R; Scrutton, Nigel S; Turner, Nicholas J; Leys, David

    2017-09-01

    Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation-PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP-reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.

  10. Early diagnosis and management of 5 alpha-reductase deficiency.

    PubMed Central

    Odame, I; Donaldson, M D; Wallace, A M; Cochran, W; Smith, P J

    1992-01-01

    Two siblings of Pakistani origin, karyotype 46 XY, were born with predominantly female external genitalia with minute phallus, bifid scrotum, urogenital sinus, and palpable gonads. The older sibling at the age of 8 days showed an adequate testosterone response to human chorionic gonadotrophin (hCG) stimulation. The diagnosis of 5 alpha-reductase deficiency was made at age 6 years when no 5 alpha-reduced glucocorticoid metabolites were detectable in urine even after tetracosactrin (Synacthen) stimulation. In the younger sibling the diagnosis of 5 alpha-reductase deficiency was provisionally made at the early age of 3 days on the basis of high urinary tetrahydrocortisol (THF)/allotetrahydrocortisol (5 alpha-THF) ratio and this ratio increased with age confirming the diagnosis. Plasma testosterone: dihydrotestosterone (DHT) ratio before and after hCG stimulation was within normal limits at age 3 days but was raised at age 9 months. Topical DHT cream application to the external genitalia promoted significant phallic growth in both siblings and in the older sibling corrective surgery was facilitated. In prepubertal male pseudohermaphrodites with normal or raised testosterone concentrations, phallic growth in response to DHT cream treatment could be an indirect confirmation of 5 alpha-reductase deficiency. Images Figure 1 PMID:1626992

  11. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase

    NASA Astrophysics Data System (ADS)

    Lay, Angelina J.; Jiang, Xing-Mai; Kisker, Oliver; Flynn, Evelyn; Underwood, Anne; Condron, Rosemary; Hogg, Philip J.

    2000-12-01

    Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.

  12. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  13. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  14. Quinone Reductase Induction as a Biomarker for Cancer Chemoprevention⊥

    PubMed Central

    Cuendet, Muriel; Oteham, Carol P.; Moon, Richard C.; Pezzuto, John M.

    2007-01-01

    Chemoprevention involves the use of natural or synthetic substances to reduce the risk of developing cancer. Strategies for protecting cells from initiation events include decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) while increasing phase II enzymes that can deactivate radicals and electrophiles known to intercede in normal cellular processes. Reduction of electrophilic quinones by quinone reductase is an important detoxification pathway. Following evaluation of approximately 3000 plant and marine organism extracts, the number characterized as “active” was established in the range of 12% of the total, and over 60 active compounds have been isolated as quinone reductase inducers. One of them, isoliquiritigenin (1), isolated from tonka bean, was shown to be a monofunctional inducer by having similar quinone reductase inducing ability in wild-type Hepa 1c1c7 cells and two mutant cell lines. To further investigate the mechanism of induction, HepG2 human hepatoma cells stably transfected with ARE-luciferase plasmid were used. Isoliquiritigenin (1) significantly induced the luciferase activity in a dose-dependent manner. On the basis of these results, a full-term cancer chemoprevention study was conducted with 7,12-dimethylbenz[a]anthracene (DMBA)-treated female Sprague-Dawley rats. Dietary administration of 1 increased tumor latency. Based on these promising preliminary results, additional mechanistic studies are underway, as well as full-term carcinogenesis studies with chronic administration schedules. PMID:16562858

  15. The existence and significance of a mitochondrial nitrite reductase.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V

    2005-01-01

    The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.

  16. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  17. Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

    PubMed Central

    Rouf, Syed Fazle; Kitowski, Vera; Böhm, Oliver M.; Rhen, Mikael; Jäger, Timo; Bange, Franz-Christoph

    2011-01-01

    Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium. PMID:22073230

  18. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  19. Structure of the Molybdenum Site of EEcherichia Coli Trimethylamine N-Oxide Reductase

    SciTech Connect

    Zhang, L.; Nelson, K.Johnson; Rajagopalan, K.V.; George, G.N.

    2009-05-28

    We report a structural characterization of the molybdenum site of recombinant Escherichia coli trimethylamine N-oxide (TMAO) reductase using X-ray absorption spectroscopy. The enzyme active site shows considerable similarity to that of dimethyl sulfoxide (DMSO) reductase, in that, like DMSO reductase, the TMAO reductase active site can exist in multiple forms. Examination of the published crystal structure of TMAO oxidase from Shewanella massilia indicates that the postulated Mo coordination structure is chemically impossible. The presence of multiple active site structures provides a potential explanation for the anomalous features reported from the crystal structure.

  20. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  1. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  2. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  3. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  5. Components of glycine reductase from Eubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA.

    PubMed

    Lübbers, M; Andreesen, J R

    1993-10-15

    The genes encoding thioredoxin reductase (trxB), thioredoxin (trxA), protein PA of glycine reductase (grdA) and the first 23 amino acids of the large subunit of protein PC of glycine reductase (grdC) belonging to the reductive deamination systems present in Eubacterium acidaminophilum were cloned and sequenced. The proteins were products of closely linked genes with 314 codons (thioredoxin reductase), 110 codons (thioredoxin), and 158 codons (protein PA). The protein previously called 'atypically small lipoamide dehydrogenase' or 'electron transferring flavoprotein' could now conclusively be identified as a thioredoxin reductase (subunit mass of 34781 Da) by the alignment with the enzyme of Escherichia coli showing the same typical order of the corresponding domains. The thioredoxin (molecular mass of 11742 Da) deviated considerably from the known consensus sequence, even in the most strongly conserved redox-active segment WCGPC that was now GCVPC. The selenocysteine of protein PA (molecular mass of 16609 Da) was encoded by TGA. The protein was highly similar to those of Clostridium purinolyticum and Clostridium sticklandii involved in glycine reductase. Thioredoxin reductase and thioredoxin of E. acidaminophilum could be successfully expressed in E. coli.

  6. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes.

    PubMed

    Francis, Kevin R; Ton, Amy N; Xin, Yao; O'Halloran, Peter E; Wassif, Christopher A; Malik, Nasir; Williams, Ian M; Cluzeau, Celine V; Trivedi, Niraj S; Pavan, William J; Cho, Wonhwa; Westphal, Heiner; Porter, Forbes D

    2016-04-01

    Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from subjects with SLOS, we identified cellular defects that lead to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7DHC accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/β-catenin signaling as a key initiator of aberrant SLOS iPSC differentiation through the direct inhibitory effects of 7DHC on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS.

  7. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases.

    PubMed

    Sattler, Steven A; Walker, Alexander M; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-02-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species.

  9. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  10. Purification and properties of nitrate reductase from Mitsuokella multiacidus.

    PubMed

    Yamamoto, I; Shimizu, H; Tsuji, T; Ishimoto, M

    1986-03-01

    Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).

  11. Modulating hemoglobin nitrite reductase activity through allostery: a mathematical model.

    PubMed

    Rong, Zimei; Alayash, Abdu I; Wilson, Michael T; Cooper, Chris E

    2013-11-30

    The production of nitric oxide by hemoglobin (Hb) has been proposed to play a major role in the control of blood flow. Because of the allosteric nature of hemoglobin, the nitrite reductase activity is a complex function of oxygen partial pressure PO2. We have previous developed a model to obtain the micro rate constants for nitrite reduction by R state (kR) and T state (kT) hemoglobin in terms of the experimental maximal macro rate constant kNmax and the corresponding oxygen concentration PO2max. However, because of the intrinsic difficulty in obtaining accurate macro rate constant kN, from available experiments, we have developed an alternative method to determine the micro reaction rate constants (kR and kT) by fitting the simulated macro reaction rate curve (kN versus PO2) to the experimental data. We then use our model to analyze the effect of pH (Bohr Effect) and blood ageing on the nitrite reductase activity, showing that the fall of bisphosphoglycerate (BPG) during red cell storage leads to increase NO production. Our model can have useful predictive and explanatory power. For example, the previously described enhanced nitrite reductase activity of ovine fetal Hb, in comparison to the adult protein, may be understood in terms of a weaker interaction with BPG and an increase in the value of kT from 0.0087M(-1)s(-1) to 0.083M(-1)s(-1). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  13. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    SciTech Connect

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  14. The dynamic energy landscape of dihydrofolate reductase catalysis.

    PubMed

    Boehr, David D; McElheny, Dan; Dyson, H Jane; Wright, Peter E

    2006-09-15

    We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.

  15. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    PubMed

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease. © The Author(s) 2015.

  16. Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings 1

    PubMed Central

    Kakefuda, Genichi; Duke, Stanley H.; Duke, Stephen O.

    1983-01-01

    Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3−, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3− and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3− and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3−. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3−, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3− requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3− requirement for induction were quite different. Km values for NO3− were identical for both nitrate reductases. PMID:16663185

  17. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  18. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  19. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  20. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase.

    PubMed

    Xie, Maohua; Yen, Yun; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Curran, Walter J; Doetsch, Paul W; Deng, Xingming

    2014-01-01

    DNA replication stress is an inefficient DNA synthesis process that leads replication forks to progress slowly or stall. Two main factors that cause replication stress are alterations in pools of deoxyribonucleotide (dNTP) precursors required for DNA synthesis and changes in the activity of proteins required for synthesis of dNTPs. Ribonucleotide reductase (RNR), containing regulatory hRRM1 and catalytic hRRM2 subunits, is the enzyme that catalyzes the conversion of ribonucleoside diphosphates (NDP) to deoxyribonucleoside diphosphates (dNDP) and thereby provides dNTP precursors needed for the synthesis of DNA. Here, we demonstrate that either endogenous or exogenous expression of Bcl2 results in decreases in RNR activity and intracellular dNTP, retardation of DNA replication fork progression, and increased rate of fork asymmetry leading to DNA replication stress. Bcl2 colocalizes with hRRM1 and hRRM2 in the cytoplasm and directly interacts via its BH4 domain with hRRM2 but not hRRM1. Removal of the BH4 domain of Bcl2 abrogates its inhibitory effects on RNR activity, dNTP pool level, and DNA replication. Intriguingly, Bcl2 directly inhibits RNR activity by disrupting the functional hRRM1/hRRM2 complex via its BH4 domain. Our findings argue that Bcl2 reduces intracellular dNTPs by inhibiting ribonucleotide reductase activity, thereby providing insight into how Bcl2 triggers DNA replication stress.

  1. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  2. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    PubMed Central

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  3. Metabolic regulation of aldose reductase activity by nitric oxide donors.

    PubMed

    Dixit, B L; Ramana, K V; Chandra, D; Jackson, E B; Srivastava, S; Bhatnagar, A; Srivastava, S K

    2001-01-30

    Regulation of aldose reductase (AR), a member of the aldo-keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(beta-D-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37 degrees C led to approximately 71% decrease in the enzyme activity with DL-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).

  4. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  5. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  6. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  7. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  8. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  9. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  10. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  11. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  12. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    USDA-ARS?s Scientific Manuscript database

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  13. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  14. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  15. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed

    French, C E; Nicklin, S; Bruce, N C

    1996-11-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one.

  16. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed Central

    French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one. PMID:8932320

  17. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings.

    PubMed

    Warner, R L; Huffaker, R C

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  18. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  19. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  20. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  1. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.

    PubMed

    Bando, Masayasu; Inoue, Takashi; Oka, Mikako; Nakamura, Kayako; Kawai, Kenji; Obazawa, Hajime; Kobayashi, Shizuko; Takehana, Makoto

    2004-12-01

    Ascorbate free radical (AFR) reductase with diaphorase activity was isolated from the rabbit lens soluble fraction to characterise some molecular properties of the enzyme. The isolation was accomplished using gel filtration (Sephadex G-75 superfine or Sephacryl S-200 HR), affinity chromatography (Affi-Gel Blue), native isoelectric focusing and two-dimensional gel electrophoresis. A major soluble AFR reductase was found at an isoelectric point of 8.4 and a molecular weight of 31 kDa, and a few minor enzymes were also detected in the range of pI 7.0-8.6. An unknown N-terminal partial amino acid sequence was determined in one peptide fragment prepared from the major enzyme fraction. From the sequence analysis, it is discussed that the lens soluble AFR reductase may differ from NADH-cytochrome b5 reductase reported to be involved in the membrane-bound AFR reductase activity of mitochondria, microsomes and plasma membrane.

  2. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  3. NADPH-dependent reductases and polyol formation in human leukemia cell lines.

    PubMed

    Sato, Sanai; Secchi, E Filippo; Sakurai, Shinichi; Ohta, Nobuo; Fukase, Shigeru; Lizak, Martin J

    2003-02-01

    Because of the limited availability of human tissues, leukemia cell lines are often utilized as the models for human leukocytes. In this study, we investigated the NADPH-dependent reductases and polyol pathway in commonly utilized human leukemia cell lines. The relative amounts of aldose and aldehyde reductases were estimated by separating two enzymes with chromatofocusing. The flux of glucose through the polyol pathway was examined by 19F-NMR using 3-fluoro-3-deoxy-D-glucose (3FG) as substrate. Sugar alcohol analysis was conducted by gas chromatography. In myelocytic leukemia cells, the major reductase was aldehyde reductase, and levels of aldose reductase were extremely low. Although lymphocytic cells also contained both aldose and aldehyde reductases, the levels of aldose reductase appeared to be higher in lymphocytic cells than myeolcytic cells. In two lymphocytic cells MOLT-4 and SKW6.4, aldose reductase is clearly dominant. When incubated in medium containing D-galactose, all cell lines quickly accumulated galactitol. There was correlation between galactitol levels and aldose reductase levels. The aldose reductase inhibitor FK 366 significantly reduced the formation of galactitol. 19F-NMR of the cells cultured with 3FG as substrate demonstrated the formation of 3-fluoro-3-dexoy-sorbitol in all the cell lines examined in this study. The relative amounts of sorbitol and fructose varied significantly among the cells. The data confirm that the polyol pathway is present in both myelocytic and lymphocytic leukemia cell lines. However, there is a large variation among the cell lines in the levels of enzymes and flux of glucose through the polyol pathway.

  4. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined.

  5. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  6. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution.

    PubMed Central

    Quandt, K S; Hultquist, D E

    1994-01-01

    Flavin reductase catalyzes electron transfer from reduced pyridine nucleotides to methylene blue or riboflavin, and this catalysis is the basis of the therapeutic use of methylene blue or riboflavin in the treatment of methemoglobinemia. A cDNA for a mammalian flavin reductase has been isolated and sequenced. Degenerate oligonucleotides, with sequences based on amino acid sequences of peptides derived from bovine erythrocyte flavin reductase, were used as primers in PCR to selectively amplify a partial cDNA that encodes the bovine reductase. The template used in the PCR was first strand cDNA synthesized from bovine liver total RNA using oligo(dT) primers. A PCR product was used as a specific probe to screen a bovine liver cDNA library. The sequence determined from two overlapping clones contains an open reading frame of 621 nucleotides and encodes 206 amino acids. The amino acid sequence deduced from the bovine liver flavin reductase cDNA matches the amino acid sequences determined for erythrocyte reductase-derived peptides, and the predicted molecular mass of 22,001 Da for the liver reductase agrees well with the molecular mass of 21,994 Da determined for the erythrocyte reductase by electrospray mass spectrometry. The amino acid sequence at the N terminus of the reductase has homology to sequences of pyridine nucleotide-dependent enzymes, and the predicted secondary structure, beta alpha beta, resembles the common nucleotide-binding structural motif. RNA blot analysis indicates a single 1-kilobase reductase transcript in human heart, kidney, liver, lung, pancreas, placenta, and skeletal muscle. Images PMID:7937764

  7. Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans

    PubMed Central

    Cove, D. J.

    1967-01-01

    In an earlier paper (Cove, 1966) it was reported that the kinetics of appearance of nitrate reductase (NADPH–nitrate oxidoreductase, EC 1.6.6.3) on the addition of nitrate to a growing culture of Aspergillus nidulans were different in certain respects from those found for many Escherichia coli enzymes. When urea is used as an initial nitrogen source, a further difference is found: enzyme synthesis is no longer continuous. This interruption of synthesis does not appear to be due to synchronous cell division in the culture, nor to be due to accumulation of ammonia. Fluctuations in the intracellular concentration of nitrate, though appearing to be partly responsible for the discontinuity of enzyme syntheses, cannot account for all the observations. Two related hypotheses are put forward to explain this discontinuity of synthesis; each suggests that nitrate reductase is intimately concerned with its own synthesis. One possibility is that the enzyme when it is not in the form of a complex with nitrate is a co-repressor of its own synthesis, and the other that the enzyme is its own repressor. PMID:6049855

  8. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    PubMed

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  9. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    PubMed

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  10. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  11. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  12. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    PubMed

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  13. Purification of NADPH-cytochrome c reductase from swine testis microsomes by chromatofocusing and characterization of the purified reductase.

    PubMed

    Kuwada, M; Ohsawa, Y; Horie, S

    1985-07-18

    A purified NADPH-cytochrome c reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was prepared from swine testis microsomes by detergent solubilization followed by a procedure including chromatofocusing. The reductase was eluted at an isoelectric point of 4.8 from the chromatofocusing column. 730-fold purification was achieved with an overall yield of 1.2%. The preparation was found to be homogeneous upon polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate (SDS). Upon SDS-polyacrylamide gel electrophoresis, however, the purified preparation resolved into one major band (Mr 78 000) and two minor bands (Mr 60 000 and 15 000). The enzyme contained about 1 mol each of FMN and FAD, which were both extractable with trichloroacetic acid and also boiling water. The oxidized form of the enzyme showed the absorption spectrum of a typical flavoprotein. Aerobic reduction with NADPH resulted in conversion of the spectrum into one of an air-stable semiquinone form. The activity of the purified preparation was 26 mumol cytochrome c reduced/min per mg protein under the standard assay conditions at 22 degrees C. The enzyme catalyzed the reaction through a ping-pong mechanism.

  14. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase[S

    PubMed Central

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Spina, Michele; Tran, Chi Nhan; Falconi, Maurizio; Eleuteri, Anna Maria; Angeletti, Mauro

    2011-01-01

    Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (Ki in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration. PMID:21357570

  15. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  16. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  17. B-factor Analysis and Conformational Rearrangement of Aldose Reductase.

    PubMed

    Balendiran, Ganesaratnam K; Pandian, J Rajendran; Drake, Evin; Vinayak, Anubhav; Verma, Malkhey; Cascio, Duilio

    2014-01-01

    The NADPH-dependent reduction of glucose reaction that is catalyzed by Aldose Reductase (AR) follows a sequential ordered kinetic mechanism in which the co-factor NADPH binds to the enzyme prior to the aldehyde substrate. The kinetic/structural experiments have found a conformational change involving a hinge-like movement of a surface loop (residues 213-224) which is anticipated to take place upon the binding of the diphosphate moiety of NADPH. The reorientation of this loop, expected to permit the release of NADP(+), represents the rate-limiting step of the catalytic mechanism. This study reveals: 1) The Translation/Libration/Screw (TLS) analysis of absolute B-factors of apo AR crystal structures indicates that the 212-224 loop might move as a rigid group. 2) Residues that make the flexible loop slide in the AR binary and ternary complexes. 3) The normalized B-factors separate this segment into three different clusters with fewer residues.

  18. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  19. Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana.

    PubMed

    Kalimuthu, Palraj; Fischer-Schrader, Katrin; Schwarz, Günter; Bernhardt, Paul V

    2013-06-27

    Herein we report the mediated electrocatalytic voltammetry of the plant molybdoenzyme nitrate reductase (NR) from Arabidopsis thaliana using the established truncated molybdenum-heme fragment at a glassy carbon (GC) electrode. Methyl viologen (MV), benzyl viologen (BV), and anthraquinone-2-sulfonic acid (AQ) are employed as effective artificial electron transfer partners for NR, differing in redox potential over a range of about 220 mV and delivering different reductive driving forces to the enzyme. Nitrate is reduced at the Mo active site of NR, yielding the oxidized form of the enzyme, which is reactivated by the electro-reduced form of the mediator. Digital simulation was performed using a single set of enzyme dependent parameters for all catalytic voltammetry obtained under different sweep rates and various substrate or mediator concentrations. The kinetic constants from digital simulation provide new insight into the kinetics of the NR catalytic mechanism.

  20. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  1. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  2. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase.

    PubMed

    French, C E; Rosser, S J; Davies, G J; Nicklin, S; Bruce, N C

    1999-05-01

    Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.

  3. 5-Alpha-Reductase Inhibitors and Combination Therapy.

    PubMed

    Füllhase, Claudius; Schneider, Marc P

    2016-08-01

    By inhibiting the conversion from testosterone to dihydrotestosterone 5-Alpha reductase inhibitors (5ARIs) are able to hinder prostatic growth, shrink prostate volumes, and improve BPH-related LUTS. 5ARIs are particularly beneficial for patients with larger prostates (>30-40ml). Generally the side effects of 5ARI treatment are mild, and according to the FORTA classification 5ARIs are suitable for frail elderly. 5ARI / alpha-blocker (AB) combination therapy showed the best symptomatic outcome and risk reduction for clinical progression. Combining Phosphodieseterase type 5 inhbibitors (PDE5Is) with 5ARIs counteracts the negative androgenic sexual side effects of 5ARIs, and simultaneously combines their synergistic effects on LUTS. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Purification and characterization of 5-ketofructose reductase from Erwinia citreus.

    PubMed Central

    Schrimsher, J L; Wingfield, P T; Bernard, A; Mattaliano, R; Payton, M A

    1988-01-01

    5-Ketofructose reductase [D(-)fructose:(NADP+) 5-oxidoreductase] was purified to homogeneity from Erwinia citreus and demonstrated to catalyse the reversible NADPH-dependent reduction of 5-ketofructose (D-threo-2,5-hexodiulose) to D-fructose. The enzyme appeared as a single species upon analyses by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing with an apparent relative molecular mass of 40,000 and an isoelectric point of 4.4. The amino acid composition of the enzyme and the N-terminal sequence of the first 39 residues are described. The steady-state kinetic mechanism was an ordered one with NADPH binding first to the enzyme and then to 5-ketofructose, and the order of product release was D-fructose followed by NADP+. The reversible nature of the reaction offers the possibility of using this enzyme for the determination of D-fructose. Images Fig. 1. Fig. 2. PMID:3178725

  5. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators

    DOE PAGES

    Ahmad, Md. Faiz; Huff, Sarah E.; Pink, John; ...

    2015-10-21

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibitionmore » determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Finally, together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.« less

  6. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators

    SciTech Connect

    Ahmad, Md. Faiz; Huff, Sarah E.; Pink, John; Alam, Intekhab; Zhang, Andrew; Perry, Kay; Harris, Michael E.; Misko, Tessianna; Porwal, Suheel K.; Oleinick, Nancy L.; Miyagi, Masaru; Viswanathan, Rajesh; Dealwis, Chris Godfrey

    2015-10-21

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Finally, together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.

  7. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  8. B-vitamins, methylenetetrahydrofolate reductase (MTHFR) and hypertension.

    PubMed

    Ward, Mary; Wilson, Carol P; Strain, J J; Horigan, Geraldine; Scott, John M; McNulty, Helene

    2011-07-01

    Hypertension is a leading risk factor for cardiovascular disease (CVD) and stroke. A common polymorphism in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR), previously identified as the main genetic determinant of elevated homocysteine concentration and also recognized as a risk factor for CVD, appears to be independently associated with hypertension. The B-vitamin riboflavin is required as a cofactor by MTHFR and recent evidence suggests it may have a role in modulating blood pressure, specifically in those with the homozygous mutant MTHFR 677 TT genotype. If studies confirm that this genetic predisposition to hypertension is correctable by low-dose riboflavin, the findings could have important implications for the management of hypertension given that the frequency of this polymorphism ranges from 3 to 32 % worldwide.

  9. Go green: the anti-inflammatory effects of biliverdin reductase.

    PubMed

    Wegiel, Barbara; Otterbein, Leo E

    2012-01-01

    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K-Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator.

  10. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  11. Kinetic and Structural Characterization of Dihydrofolate Reductase from Streptococcus pneumoniae

    PubMed Central

    Lee, Jeeyeon; Yennawar, Neela H.; Gam, Jongsik; Benkovic, Stephen J.

    2013-01-01

    Drug resistance associated with dihydrofolate reductase (DHFR) has emerged as a critical issue in the treatment of bacterial infections. In our efforts to understand the mechanism of a drug-resistant dihydrofolate reductase (DHFR) from a pathogenic bacterial source, we report the first kinetic characterization of Streptococcus pneumoniae DHFR (spDHFR) along with its X-ray structure. This study revealed that the kinetic properties of spDHFR were significantly different from E. coli DHFR. The product (tetrahydrofolate) dissociation step that is the rate limiting step in the E. coli DHFR is significantly accelerated in spDHFR so that hydride transfer or a preceding step is rate limiting. Comparison of the binding parameters of this enzyme to a mutant spDHFR (Sp9) confirmed that the Leu100 residue in spDHFR is the critical element for the trimethoprim (TMP) resistance. Steady-state kinetics exhibited a pH dependence in kcat, which prompted us to elucidate the role of the new catalytic residue (His33) in the active site of spDHFR. Structural data of the Sp9 mutant in complex with NADPH and methotrexate confirmed the participation of His33 in a hydrogen bonding network involving a water molecule, the hydroxyl group of Thr119, and carboxylate ion of Glu30. Sequence analysis of the DHFR superfamily revealed that the His residue is the major amino acid component at this position and is found mostly in pathogenic bacterial DHFRs. A mutation of Val100 to Leu demonstrated a steric clash of the leucine side chain with the side chains of Ile8 and Phe34, rationalizing weaker binding of trimethoprim to Leu100 DHFR. Understanding the role of specific amino acids in the active site coupled with detailed structural analysis will inform us on how to better design inhibitors targeting drug resistant pathogenic bacterial DHFRs. PMID:19950924

  12. Characterization of the nitric oxide reductase from Thermus thermophilus

    PubMed Central

    Schurig-Briccio, Lici A.; Venkatakrishnan, Padmaja; Hemp, James; Bricio, Carlos; Berenguer, José; Gennis, Robert B.

    2013-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471–480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca2+, a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR. PMID:23858452

  13. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  14. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  15. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  16. Fatty acyl-CoA reductases of birds.

    PubMed

    Hellenbrand, Janine; Biester, Eva-Maria; Gruber, Jens; Hamberg, Mats; Frentzen, Margrit

    2011-12-12

    Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  17. d-Apiose Reductase from Aerobacter aerogenes1

    PubMed Central

    Neal, Donna L.; Kindel, Paul K.

    1970-01-01

    A strain of Aerobacter aerogenes PRL-R3 has been isolated which utilizes d-apiose as its sole source of carbon. A new enzyme, d-apiose reductase, was discovered in this strain. The enzyme was not present when the strain was grown on d-glucose. d-Apiose reductase catalyzes the nicotinamide adenine dinucleotide-dependent interconversion of d-apiose and d-apiitol. The enzyme is specific for d-apiose and d-apiitol, with a few possible exceptions. The Km for d-apiose is 0.02 m. The Km for d-apiitol is 0.01 m. The enzyme is almost completely specific for the reduced and oxidized forms of nicotinamide adenine dinucleotide. When cell-free extracts were centrifuged at 100,000 × g for 1 hr, the enzyme remained in solution. Optimal activity for the reduction of d-apiose was obtained at pH 7.5 in glycylglycine buffer, whereas for the oxidation of d-apiitol it was obtained at pH 10.5 in glycine buffer. Enzymatic reduction of d-apiose was not appreciably affected by the presence of 0.02 m ethylenediaminetetraacetate. Paper chromatography and specific spray reagents were used to identify d-apiitol and d-apiose as the products of this reversible reaction. d-Apiose and d-apiitol did not serve as substrates for ribitol dehydrogenase and d-arabitol dehydrogenase from A. aerogenes PRL-R3. PMID:4314545

  18. Identification of imine reductase-specific sequence motifs.

    PubMed

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx(5 )[ATS]x(4) Gx(4) [VIL]WNR[TS]x(2) [KR] and the active site motif Gx[DE]x[GDA]x[APS]x(3){K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes.

  19. Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine.

    PubMed

    García-Minguillán, Carlos J; Fernandez-Ballart, Joan D; Ceruelo, Santiago; Ríos, Lídia; Bueno, Olalla; Berrocal-Zaragoza, Maria Isabel; Molloy, Anne M; Ueland, Per M; Meyer, Klaus; Murphy, Michelle M

    2014-11-01

    Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR), riboflavin-dependent enzymes, participate in homocysteine metabolism. Reported effects of riboflavin status on the association between the MTHFR 677C>T polymorphism and homocysteine vary, and the effects of the MTRR 66A>G or MTRR 524C>T polymorphisms on homocysteine are unclear. We tested the hypothesis that the effects of the MTHFR 677C>T, MTRR 66A>G and MTRR 524C>T polymorphisms on fasting plasma total homocysteine (tHcy) depend on riboflavin status (erythrocyte glutathionine reductase activation coefficient, optimum: <1.2; marginally deficient: 1.2-1.4; deficient: ≥1.4) in 771 adults aged 18-75 years. MTHFR 677T allele carriers with middle or low tertile plasma folate (<14.7 nmol/L) had 8.2 % higher tHcy compared to the 677CC genotype (p < 0.01). This effect was eliminated when riboflavin status was optimal (p for interaction: 0.048). In the lowest cobalamin quartile (≤273 pmol/L), riboflavin status modifies the relationship between the MTRR 66 A>G polymorphism and tHcy (p for interaction: 0.034). tHcy was 6.6 % higher in MTRR 66G allele carriers compared to the 66AA genotype with marginally deficient or optimal riboflavin status, but there was no difference when riboflavin status was deficient (p for interaction: 0.059). tHcy was 13.7 % higher in MTRR 524T allele carriers compared to the 524CC genotype when cobalamin status was low (p < 0.01), but no difference was observed when we stratified by riboflavin status. The effect of the MTHFR 677C>T polymorphism on tHcy depends on riboflavin status, that of the MTRR 66A>G polymorphism on cobalamin and riboflavin status and that of the MTRR 524C>T polymorphism on cobalamin status.

  20. Expression of the Klebsiella pneumoniae CG21 acetoin reductase gene in Clostridium acetobutylicum ATCC 824.

    PubMed

    Wardwell, S A; Yang, Y T; Chang, H Y; San, K Y; Rudolph, F B; Bennett, G N

    2001-10-01

    Acetoin reductase catalyzes the production of 2,3-butanediol from acetoin. The gene encoding the acetoin reductase of Klebsiella pneumoniae CG21 was cloned and expressed in Escherichia coli and Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the gene encoding the enzyme was determined to be 768 bp long. Expression of the K. pneumoniae acetoin reductase gene in E. coli revealed that the enzyme has a molecular mass of about 31,000 Da based on sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The K. pneumoniae acetoin reductase gene was cloned into a clostridial/E. coli shuttle vector, and expression of the gene resulted in detectable levels of acetoin reductase activity in both E. coli and C. acetobutylicum. While acetoin, the natural substrate of acetoin reductase, is a typical product of fermentation by C. acetobutylicum, 2,3-butanediol is not. Analysis of culture supernatants by gas chromatography revealed that introduction of the K. pneumoniae acetoin reductase gene into C. acetobutylicum was not sufficient for 2,3-butanediol production even though the cultures were producing acetoin. 2,3-Butanediol was produced by cultures of C. acetobutylicum containing the gene only when commercial acetoin was added.

  1. Transgenic Mice Overexpressing Methionine Sulfoxide Reductase A: Characterization of Embryonic Fibroblasts

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Liu, Chengyu; Levine, Rodney L.

    2012-01-01

    Methionine residues in protein can be oxidized by reactive oxygen species to generate methionine sulfoxide. Aerobic organisms have methionine sulfoxide reductases capable of reducing methionine sulfoxide back to methionine. Methionine sulfoxide reductase A acts on the S-epimer of methionine sulfoxide, and it is known that altering its cellular level by genetic ablation or overexpression has notable effects on resistance to oxidative stress and on lifespan in species from microorganisms to animals. In mammals, the enzyme is present both in the cytosol and mitochondria, and this study was undertaken to assess the contribution of each subcellular compartment’s reductase activity to resistance against oxidative stresses. Non-transgenic mouse embryonic fibroblasts lack methionine sulfoxide reductase A activity, providing a convenient cell type to determine the effect of expression of the enzyme in each compartment. We created transgenic mice with methionine sulfoxide reductase A targeted to the cytosol, mitochondria, or both and studied embryonic fibroblasts derived from each line. Unexpectedly, none of the transgenic cells gained resistance to a variety of oxidative stresses even though the expressed enzymes were catalytically active when assayed in vitro. Noting that activity in vivo requires thioredoxin and thioredoxin reductase, we determined the levels of these proteins in the fibroblasts and found that they were very low in both the non-transgenic and transgenic cells. We conclude that overexpression of methionine sulfoxide reductase A did not confer resistance to oxidative stress because the cells lacked other proteins required to constitute a functional methionine sulfoxide reduction system. PMID:20510353

  2. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  3. Investigation of the antioxidant and aldose reductase inhibitory activities of extracts from Peruvian tea plant infusions.

    PubMed

    Wang, Zhiqiang; Hwang, Seung Hwan; Guillen Quispe, Yanymee N; Gonzales Arce, Paul H; Lim, Soon Sung

    2017-09-15

    In the present study, the antioxidant and aldose reductase inhibitory activities of 24 Peruvian infusion tea plants were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and aldose reductase assays. Phoradendron sp. showed the highest inhibition of aldose reductase (IC50, 1.09±0.06μg/mL) and considerable antioxidant (IC50 of DPPH, 58.36±1.65μg/mL; IC50 of ABTS, 9.91±0.43μg/mL) effects. In order to identify the antioxidants and aldose reductase inhibitors of Phoradendron sp., DPPH-high performance liquid chromatography (HPLC) and ultrafiltration-HPLC assays were performed. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid, and 1,3,5-tri-O-caffeoylquinic acid were identified as the antioxidants and aldose reductase inhibitors; apigenin was identified as the antioxidant. Finally, Phoradendron sp. and its aldose reductase inhibitors also showed a dose-dependent anti-inflammatory effect without cellular toxicity. These results suggested that Phoradendron sp. can be a potent functional food ingredient as an antioxidant, aldose reductase inhibitor and anti-inflammatory agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of the Reversible Inactivation of Ankistrodesmus braunii Nitrate Reductase by Hydroxylamine.

    PubMed

    Balandin, T; Fernández, V M; Aparicio, P J

    1986-09-01

    The photoreversible nature of the regulation of nitrate reductase is one of the most interesting features of this enzyme. As well as other chemicals, NH(2)OH reversibly inactivates the reduced form of nitrate reductase from Ankistrodesmus braunii. From the partial activities of the enzyme, only terminal nitrate reductase is affected by NH(2)OH. To demonstrate that the terminal activity was readily inactivted by NH(2)OH, the necessary reductants of the terminal part of the enzyme had to be cleared of dithionite since this compound reacts chemically with NH(2)OH. Photoreduced flavins and electrochemically reduced methyl viologen sustain very effective inactivation of terminal nitrate reductase activity, even if the enzyme was previously deprived of its NADH-dehydrogenase activity. The early inhibition of nitrate reductase by NH(2)OH appears to be competitive versus NO(3) (-). Since NO(3) (-), as well as cyanate, carbamyl phosphate and azide (competitive inhibitors of nitrate reductase versus NO(3) (-)), protect the enzyme from NH(2)OH inactivation, it is suggested that NH(2)OH binds to the nitrate active site. The NH(2)OH-inactivated enzyme was photoreactivated in the presence of flavins, although slower than when the enzyme was previously inactivated with CN(-). NH(2)OH and NADH concentrations required for full inactivation of nitrate reductase appear to be low enough to potentially consider this inactivation process of physiological significance.

  5. Characterization of the Reversible Inactivation of Ankistrodesmus braunii Nitrate Reductase by Hydroxylamine 1

    PubMed Central

    Balandin, Teresa; Fernández, Victor M.; Aparicio, Pedro J.

    1986-01-01

    The photoreversible nature of the regulation of nitrate reductase is one of the most interesting features of this enzyme. As well as other chemicals, NH2OH reversibly inactivates the reduced form of nitrate reductase from Ankistrodesmus braunii. From the partial activities of the enzyme, only terminal nitrate reductase is affected by NH2OH. To demonstrate that the terminal activity was readily inactivted by NH2OH, the necessary reductants of the terminal part of the enzyme had to be cleared of dithionite since this compound reacts chemically with NH2OH. Photoreduced flavins and electrochemically reduced methyl viologen sustain very effective inactivation of terminal nitrate reductase activity, even if the enzyme was previously deprived of its NADH-dehydrogenase activity. The early inhibition of nitrate reductase by NH2OH appears to be competitive versus NO3−. Since NO3−, as well as cyanate, carbamyl phosphate and azide (competitive inhibitors of nitrate reductase versus NO3−), protect the enzyme from NH2OH inactivation, it is suggested that NH2OH binds to the nitrate active site. The NH2OH-inactivated enzyme was photoreactivated in the presence of flavins, although slower than when the enzyme was previously inactivated with CN−. NH2OH and NADH concentrations required for full inactivation of nitrate reductase appear to be low enough to potentially consider this inactivation process of physiological significance. PMID:16665024

  6. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    PubMed

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  7. chlD gene function in molybdate activation of nitrate reductase.

    PubMed Central

    Sperl, G T; DeMoss, J A

    1975-01-01

    chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme. Images PMID:1097396

  8. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.

    PubMed

    Laliberté, G; Hellebust, J A

    1989-11-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent K(m) values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments.

  9. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2015-04-01

    The human mitochondrial outer membrane protein mitoNEET is a newly discovered target of the type 2 diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane α helix tethered to the mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox-active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, the specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase from reducing the mitoNEET [2Fe-2S] clusters, indicating that the redox-active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation 1

    PubMed Central

    Laliberté, Gilles; Hellebust, Johan A.

    1989-01-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent Km values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments. PMID:16667157

  11. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2015-01-01

    Human mitochondrial outer membrane protein mitoNEET is a newly discovered target of type II diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane alpha helix tethered to mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters, indicating that the redox active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. PMID:25645953

  12. Fe3+-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots 1

    PubMed Central

    Holden, Marcia J.; Luster, Douglas G.; Chaney, Rufus L.; Buckhout, Thomas J.; Robinson, Curtis

    1991-01-01

    Reduction of Fe3+ to Fe2+ is a prerequisite for Fe uptake by tomato roots. Ferric chelate reductase activity in plasma membranes (PM) isolated from roots of both iron-sufficient (+Fe) and iron-deficient (−Fe) tomatoes (Lycopersicon esculentum Mill.) was measured as NADH-dependent ferric citrate reductase and exhibited simple Michaelis-Menten kinetics for the substrates, NADH and Fe3+(citrate3−)2. NADH and Fe3+(citrate3−)2 Km values for reductase in PM from +Fe and −Fe tomato roots were similar, whereas Vmax values were two- to threefold higher for reductase from −Fe tomatoes. The pH optimum for Fe-chelate reductase was 6.5. Fe-chelate reductases from −Fe and +Fe tomato roots were equally sensitive to several triazine dyes. Reductase was solubilized with n-octyl β-d-glucopyranoside and electrophoresed in nondenaturing isoelectric focusing gels. Three bands, with isoelectric points of 5.5 to 6.2, were resolved by enzyme activity staining of electrofocused PM proteins isolated from +Fe and −Fe tomato roots. Activity staining was particularly enhanced in the isoelectric point 5.5 and 6.2 bands solubilized from −Fe PM. We conclude that PM from roots of +Fe and −Fe plants contain Fe-chelate reductases with similar characteristics. The response to iron deficiency stress likely involves increased expression of constitutive Fe-chelate reductase isoforms in expanding epidermal root PM. ImagesFigure 6 PMID:16668432

  13. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  14. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 μM. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer.

  15. Comparison of the Stereospecificity and Immunoreactivity of NADH-Ferricyanide Reductases in Plant Membranes.

    PubMed Central

    Fredlund, K. M.; Struglics, A.; Widell, S.; Askerlund, P.; Kader, J. C.; Moller, I. M.

    1994-01-01

    The substrate stereospecificity of NADH-ferricyanide reductase activities in the inner mitochondrial membrane and peroxisomal membrane of potato (Solanum tuberosum L.) tubers, spinach (Spinacea oleracea L.) leaf plasma membrane, and red beetroot (Beta vulgaris L.) tonoplast were all specific for the [beta]-hydrogen of NADH, whereas the reductases in wheat root (Triticum aestivum L.) endoplasmic reticulum and potato tuber outer mitochondrial membrane were both [alpha]-hydrogen specific. In all isolated membrane fractions one or several polypeptides with an apparent size of 45 to 55 kD cross-reacted with antibodies raised against a microsomal NADH-ferricyanide reductase on western blots. PMID:12232391

  16. The appearance of nitrate reductase activity in nitrogen-starved cells of Ankistrodesmus braunii.

    PubMed

    Syrett, P J; Hipkin, C R

    1973-03-01

    Nitrate reductase activity was detectable in ammonium-grown cells of Ankistrodesmus braunii after 50 minutes of nitrogen starvation. The rate of formation of nitrate reductase was stimulated by addition of nitrate and inhibited completely by cycloheximide (20 μg/ml). Nitrogen-starved cells assimilated added nitrate or nitrite rapidly and no nitrite or nitrate was detectable in either cells or culture medium from cultures subjected to nitrogen starvation. It is concluded that nitrate is not obligatory for the formation of nitrate reductase.

  17. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population.

    PubMed

    Kwak, Sun Young; Kim, Un Kyung; Cho, Hyo Jin; Lee, Hee Keun; Kim, Hye Jin; Kim, Nam Keun; Hwang, Seong Gyu

    2008-01-01

    Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer death in South Korea, but genetic susceptibility factors of HCC have not been examined extensively. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) play an essential role in both DNA synthesis and methylation and polymorphisms in the MTHFR gene, 677C>T, 1298A>C and the MTRR gene, 66A>G, are associated with several types of malignancy. In this study, the allelic frequencies and genotype distribution of three polymorphisms in the MTHFR and MTRR genes from 96 hepatocellular carcinoma (HCC) patients and 201 controls were examined to assess the association between these polymorphisms and the development of HCC in this Korean population. The 66AG+GG (G allele-bearing) genotype of the MTRR gene was significantly associated with an increased risk of HCC (odds ratio, OR, 1.687; 95% confidence interval, CI=1.022-2.787). Moreover, the combination of MTHFR 1298AA/MTRR 66AG+GG (OR=1.854, 95% CI=1.005-3.420) and MTHFR 1298AC+CC/MTRR 66AG+GG (OR=2.733, 95% CI=1.195-6.249) showed a significant association with HCC risk. In the data classified by age and etiology, MTRR 66A>G over the age of 65 years, MTHFR 1298A>C under the age of 65 years and the MTRR 66AG+GG genotype in the hepatitis B virus (HBV) patients were increased risk factors for the disease. The MTHFR 1298A>C and the MTRR 66A>G genotypes were associated with an increased risk of HCC in this Korean population. Further studies involving larger and varied populations could provide a potential tool for cancer risk assessment in patients who are at risk of developing HCC.

  18. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.

    PubMed

    Bogs, Jochen; Downey, Mark O; Harvey, John S; Ashton, Anthony R; Tanner, Gregory J; Robinson, Simon P

    2005-10-01

    Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.

  19. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA(-/-)) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA(+/+)) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA(-/-) than in MsrA(+/+) hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA(-/-) than in MsrA(+/+) hepatocytes, while TXNRD1 depletion in both MsrA(-/-) and MsrA(+/+) cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA(-/-) hepatocytes, while no significant change was observed in MsrA(+/+) cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA(-/-) hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.

    PubMed

    Rother, M; Böck, A; Wyss, C

    2001-12-01

    Assessment of the nutritional requirements of Treponema denticola disclosed a strict growth dependence on selenium. In vivo labeling of cells of this organism with (75)Se and electrophoretic analysis revealed three labeled bands, two of which were selenoproteins correlating in size with subunits A and B of glycine reductase. Antibodies directed against glycine- or betaine-reductase subunits of Eubacterium acidaminophilum specifically also reacted with proteins from cell lysates of T. denticola. Moreover, ORFs within the T. denticola genome sequence were found whose products display high sequence similarity to glycine-reductase subunits. These findings strongly support the notion that T. denticola ferments amino acids via the activity of glycine reductase, an enzyme previously thought to be restricted to gram-positive bacteria.

  1. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  2. Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

    PubMed

    Imamura, Yorishige; Narumi, Rika; Shimada, Hideaki

    2007-02-01

    The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone > butyrophenone > propiophenone. The inhibitory potencies of acetophenone and nonanophenone were much lower. A significant relationship was observed between Vmax/Km values for the reduction of alkyl phenyl ketones and their inhibitory potencies for carbonyl reductase activity in pig heart cytosol. Furthermore, hexanophenone was a competitive inhibitor for the enzyme activity. These results indicate that several alkyl phenyl ketones including hexanophenone inhibit carbonyl reductase activity in pig heart cytosol, by acting as substrate inhibitors.

  3. Methotrexate-resistant form of dihydrofolate reductase protects transgenic murine embryos from teratogenic effects of methotrexate.

    PubMed

    Sutton, C; McIvor, R S; Vagt, M; Doggett, B; Kapur, R P

    1998-01-01

    Methotrexate, a potent inhibitor of the ubiquitously expressed enzyme dihydrofolate reductase, induces limb and facial anomalies that resemble vascular disruptions in their evolution and final outcome. Previous studies suggest that inhibition of dihydrofolate reductase is responsible for methotrexate-induced embryopathy, although specific sites of methotrexate activity have not been well defined. In this report, we show that constitutive expression of a methotrexate-resistant form of dihydrofolate reductase in transgenic embryos and their placentas ameliorates methotrexate teratogenicity. However, expression of the transgene in maternal tissues had no significant protective effect. The results confirm the role of dihydrofolate reductase inhibition in the pathogenesis of methotrexate-induced birth defects and provide a foundation for future studies of targeted transgene expression in select embryonic or placental cell populations.

  4. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus.

    PubMed

    Sann, R; Kostka, S; Friedrich, B

    1994-01-01

    Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd1-type nitrite reductase. It appeared to be a dimer of kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.

  5. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase : physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase.

    PubMed

    Suzuki, A; Oaks, A; Jacquot, J P; Vidal, J; Gadal, P

    1985-06-01

    A non-heme iron containing protein which bears an antigenic similarity to ferredoxin from spinach leaves (Spinacia oleracea L.) has been identified in extracts prepared from young roots of maize (Zea mays L., hybrid W64A x W182E). The ferredoxin-like root electron carrier could substitute for ferredoxin in a cytochrome c reduction system in which pyridine nucleotide (NADPH) reduces the root electron carrier in a reaction catalyzed by ferredoxin-NADP(+) reductase (EC 1.6.7.1) from spinach leaves. However, the root electron carrier did not mediate the photoreduction of NADP(+) in an illuminated reconstituted chloroplast system.A pyridine nucleotide reductase which shares identical immunological determinants with the ferredoxin-NADP(+) reductase from spinach leaves has also been characterized from maize roots. Root pyridine nucleotide reductase mediated the transfer of electrons from either NADPH or NADH to cytochrome c via ferredoxin or the root electron carrier. Under chemical reducing conditions with sodium dithionite and bicarbonate, the ferredoxin-like root electron carrier served as an electron carrier for the ferredoxin-requiring glutamate synthase (EC 1.4.7.1) and nitrite reductase (EC 1.7.7.1) obtained from maize roots or leaves. In the presence of root pyridine nucleotide reductase and root electron carrier, either NADPH or NADH served as the primary electron donor for glutamate synthesis in extracts from maize roots or leaves. The electron transport system originating with NADH or NADPH, was, however, not able to mediate the reduction of NO(2) (-) to NH(3).

  6. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2012-06-25

    Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD(600) (isobutanol) vs 0.14 g/L/OD(600) (isobutyraldehyde)). Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR) activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD(600)) and decreased isobutanol production (0.4 g/L/OD(600)). By assessing production by overexpression of each candidate

  7. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  8. Determination of aldose reductase activity in the eye by localized magnetic resonance spectroscopy.

    PubMed

    Lizak, M J; Mori, K; Kador, P F

    2001-10-01

    The polyol pathway plays an important role in the formation of diabetic complications of the eye. Due to variations in the pharmacokinetic properties of aldose reductase inhibitors and variations in the degradation of the blood-ocular barrier, it is often difficult to determine the proper intraocular levels of aldose reductase inhibitor required for inhibition of aldose reductase activity in ocular tissues. Utilizing localized magnetic resonance spectroscopy (MRS), the present method can determine adequate inhibition of aldose reductase activity in the lens by noninvasively measuring polyol pathway activity in the eye. New Zealand White rabbits, under anesthesia, were administered an intravitreal injection of 3-fluoro-3-deoxy-D-glucose (3FDG). Localized MRS was then used to assess polyol pathway activity by determining the levels of 3-fluoro-3-deoxy-D-sorbitol (3FS) and 3-fluoro-3-deoxy-D-fructose (3FF) metabolite formation from 3FDG in the eye. MRS was able to follow the loss of 3FDG from the vitreous into the anterior segment of the eye and particularly into the lens and aqueous. The primary metabolism of 3FDG observed by MRS was the formation of 3FS in the lens that is catalyzed by aldose reductase. Production of 3FS was linear in time and decreased with the oral administration of an aldose reductase inhibitor.

  9. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  10. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  11. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  12. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum.

    PubMed

    Afshar, S; Johnson, E; de Vries, S; Schröder, I

    2001-10-01

    The nitrate reductase of the hyperthermophilic archaeon Pyrobaculum aerophilum was purified 137-fold from the cytoplasmic membrane. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the enzyme complex consists of three subunits with apparent molecular weights of 130,000, 52,000, and 32,000. The enzyme contained molybdenum (0.8-mol/mol complex), iron (15.4-mol/mol complex) and cytochrome b (0.49-mol/mol complex) as cofactors. The P. aerophilum nitrate reductase distinguishes itself from nitrate reductases of mesophilic bacteria and archaea by its very high specific activity using reduced benzyl viologen as the electron donor (V(max) with nitrate, 1,162 s(-1) (326 U/mg); V(max) with chlorate, 1,348 s(-1) (378 U/mg) [assayed at 75 degrees C]). The K(m) values for nitrate and chlorate were 58 and 140 microM, respectively. Azide was a competitive inhibitor and cyanide was a noncompetitive inhibitor of the nitrate reductase activity. The temperature optimum for activity was > 95 degrees C. When incubated at 100 degrees C, the purified nitrate reductase had a half-life of 1.5 h. This study constitutes the first description of a nitrate reductase from a hyperthermophilic archaeon.

  13. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  14. Genetic and Physiologic Characterization of Ferric/Cupric Reductase Constitutive Mutants of Cryptococcus neoformans

    PubMed Central

    Nyhus, Karin J.; Jacobson, Eric S.

    1999-01-01

    Cryptococcus neoformans is a pathogenic yeast that causes meningitis in immunocompromised patients. Because iron acquisition is critical for growth of a pathogen in a host, we studied the regulation of the ferric reductase and ferrous uptake system of this organism. We isolated 18 mutants, representing four independent loci, with dysregulated ferric reductase. The mutant strains had >10-fold higher than wild-type WT reductase activity in the presence of iron. Two of the strains also had >7-fold higher than WT iron uptake in the presence of iron but were not markedly iron sensitive. Both were sensitive to the oxidative stresses associated with superoxide and hydrogen peroxide. One strain exhibited only 23% of the WT level of iron uptake in the absence of iron and grew poorly without iron supplementation of the medium, phenotypes consistent with an iron transport deficiency; it was sensitive to superoxide but not to hydrogen peroxide. The fourth strain had high reductase activity but normal iron uptake; it was not very sensitive to oxidative stress. We also demonstrated that the ferric reductase was regulated by copper and could act as a cupric reductase. Sensitivity to oxidants may be related to iron acquisition by a variety of mechanisms and may model the interaction of the yeast with the immune system. PMID:10225895

  15. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.

    PubMed

    Bando, M; Obazawa, H

    1995-12-01

    Major and minor ascorbate free radical (AFR) reductases, with diaphorase activity, and three other diaphorases were separated from the human lens soluble fraction by DEAE-cellulose ion-exchange column chromatography. They were characterized for adsorptivity to ion-exchange and 5'AMP-Sepharose 4B affinity columns, kinetic properties, and substrate specificity. The latter diaphorases were closely correlated with NADH-cytochrome beta 5 reductase. The major and minor AFR reductases were regarded as a major diaphorase group different from two ubiquitous diaphorases, i.e., NADH-cytochrome beta 5 reductase and DT-diaphorase. A major AFR reductase was partially purified approximately 50 fold over the lens soluble fraction by ion-exchange, affinity, and gel filtration (Sephacryl S-200 HR) column chromatography. From the partially purified enzyme, 2 bands, one sharp and one diffuse, were obtained by native polyacrylamide gel electrophoresis. Two proteins, of 20 and 24 kDa, were identified in the active enzyme bands by SDS-polyacrylamide gel electrophoresis. This suggests that the 20 and/or 24 kDa proteins may be components of the major AFR reductase.

  16. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  17. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei.

    PubMed

    Metz, Benjamin; Mojzita, Dominik; Herold, Silvia; Kubicek, Christian P; Richard, Peter; Seiboth, Bernhard

    2013-04-09

    L-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of L-xylulose to xylitol in L-arabinose and glucuronic acid catabolism. Here we report the identification of a novel L-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of L-xylulose to xylitol via NADPH and is also able to convert D-xylulose, D-ribulose, L-sorbose, and D-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by L-arabinose and L-arabitol. Deletion of lxr3 affects growth on L-arabinose and L-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known L-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus niger L-xylulose reductase LxrA and, moreover, that all identified true L-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of L-xylulose in L-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the L-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs.

  18. Cyclohexanol and methylcyclohexanols. A family of inhibitors of hepatic HMGCoA reductase in vivo.

    PubMed

    Miciak, A; White, D A; Middleton, B

    1986-10-15

    Oral dosing of rats with cyclohexanol and methylcyclohexanols resulted in the inhibition of hepatic HMGCoA reductase. Neither cyclohexane or cyclohexane diols exerted any effects. Inhibition was not due to alcohol dehydrogenase mediated changes in redox state since 3,3',5-trimethylcyclohexanol (TMC), a non substrate for alcohol dehydrogenase, was a potent inhibitor of HMGCoA reductase. Following a single dose of TMC there was no alteration in total hepatic HMGCoA reductase activity for more than 6 hr after which the enzyme activity was depressed in a dose-dependent manner. The normal diurnal rhythm of HMGCoA reductase was reduced in amplitude following TMC administration but the phase was unaltered and the t 1/2 for activity decay following the peak of activity was unaffected. Prior to the inhibitory effect of a TMC dose becoming apparent in total HMGCoA reductase activity we found that the expressed activity of the enzyme (after isolation in F- medium to suppress endogenous protein phosphatase) was depressed by 43%. The inhibitory effect of TMC on total HMGCoA reductase activity seen 8 hr or more after dosing was reflected by inhibition of sterol synthesis in liver measured in vivo after [3H]-H2O administration.

  19. Identification of Critical Ligand Binding Determinants in Mycobacterium tuberculosis Adenosine-5′-Phosphosulfate Reductase

    PubMed Central

    Hong, Jiyoung A.; Bhave, Devayani P.; Carroll, Kate S.

    2009-01-01

    Mycobacterium tuberculosis adenosine 5′-phosphosulfate (APS) reductase is an iron-sulfur protein and a validated target to develop new anti-tubercular agents, particularly for the treatment of latent infection. To facilitate the development of potent and specific inhibitors of APS reductase, we have probed the molecular determinants that underlie binding and specificity through a series of substrate and product analogs. Our study highlights the importance of specific substitutent groups for substrate binding and provides functional evidence for ligand-specific conformational states. An active site model has been developed for M. tuberculosis APS reductase that is in accord with the results presented here as well as prior structural data reported for Pseudomonas aeruginosa APS reductase and related enzymes. This model illustrates the functional features required for the interaction of APS reductase with a ligand and provides a pharmacological road map for the rational design of small-molecules as potential inhibitors of APS reductase present in human pathogens, including M. tuberculosis. PMID:19678707

  20. A Novel l-Xylulose Reductase Essential for l-Arabinose Catabolism in Trichoderma reesei

    PubMed Central

    2013-01-01

    l-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of l-xylulose to xylitol in l-arabinose and glucuronic acid catabolism. Here we report the identification of a novel l-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of l-xylulose to xylitol via NADPH and is also able to convert d-xylulose, d-ribulose, l-sorbose, and d-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by l-arabinose and l-arabitol. Deletion of lxr3 affects growth on l-arabinose and l-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known l-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus nigerl-xylulose reductase LxrA and, moreover, that all identified true l-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of l-xylulose in l-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the l-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs. PMID:23506391

  1. Vibrational structure of dihydrofolate bound to R67 dihydrofolate reductase.

    PubMed

    Deng, H; Callender, R; Howell, E

    2001-12-28

    R67 is a Type II dihydrofolate reductase (DHFR) that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate by facilitating the addition of a proton to N5 of DHF and the transfer of a hydride ion from NADPH to C6. Because this enzyme is a plasmid-encoded DHFR from trimethoprim-resistant bacteria, extensive studies on R67 with various methods have been performed to elucidate its reaction mechanism. Here, Raman difference measurements, conducted on the ternary complex of R67.NADP(+).DHF believed to be an accurate mimic of the productive DHFR.NADPH.DHF complex, show that the pK(a) of N5 in the complex is less than 4. This is in clear contrast to the behavior observed in Escherichia coli DHFR, a substantially more efficient enzyme, where the pK(a) of bound DHF at N5 is increased to 6.5 compared with its solution value of 2.6. A comparison of the ternary complexes in R67 and E. coli DHFRs suggests that enzymic raising of the pK(a) at N5 can significantly increase the catalytic efficiency of the hydride transfer step. However, R67 shows that even without such a strategy an effective DHFR can still be designed.

  2. Catalytic cycle of human glutathione reductase near 1 Å resolution

    PubMed Central

    Berkholz, Donald S.; Faber, H. Richard; Savvides, Savvas N.; Karplus, P. Andrew

    2008-01-01

    Summary Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity, a net deviation of 53° across 5 residues. But this apparent strain is not a factor in catalysis as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds. PMID:18638483

  3. Lausannevirus Encodes a Functional Dihydrofolate Reductase Susceptible to Proguanil

    PubMed Central

    Mueller, L.; Hauser, P. M.; Gauye, F.

    2017-01-01

    ABSTRACT Lausannevirus belongs to the family Marseilleviridae within the group of nucleocytoplasmic large DNA viruses (NCLDVs). These giant viruses exhibit unique features, including a large genome, ranging from 100 kb to 2.5 Mb and including from 150 to more than 2,500 genes, as well as the presence of genes coding for proteins involved in transcription and translation. The large majority of Lausannevirus open reading frames have unknown functions. Interestingly, a bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is encoded in the Lausannevirus genome. The enzyme plays central roles in DNA precursor biosynthesis. DHFR is the pharmacological target of antifolates, such as trimethoprim, pyrimethamine, and proguanil. First, the functionality of Lausannevirus DHFR-TS was demonstrated by the successful complementation of a DHFR-deficient Saccharomyces cerevisiae strain with a plasmid expressing the heterologous gene. Additionally, using this heterologous expression system, we demonstrated the in vitro susceptibility of Lausannevirus DHFR-TS to proguanil and its resistance to pyrimethamine and trimethoprim. Proguanil may provide a unique and useful treatment if Lausannevirus proves to be a human pathogen. To our knowledge, this is the first time that a DHFR-TS has been described and characterized in an NCLDV. PMID:28137801

  4. Phosphorylation and proteolysis of HMGCoA reductase

    SciTech Connect

    Parker, R.A.; Lanier, T.L.; Miller, S.J.; Gibson, D.M.

    1987-05-01

    The phosphorylation of rat liver microsomal 97 kDa HMGCoA reductase (HMGR) was examined by immunoprecipitation and SDS-PAGE using antibodies to 53 kDa HMGR. MgATP preincubation decreased expressed HMGR activity from 10.1 +/- 2.4 to 0.81 +/- 0.2 U/mg. Concomitant incorporation of TSP from el-TSP-ATP into 97 kDa HMGR protein was observed. Competitive antibody binding by affinity-purified 53 kDa HMGR showed that the 97 kDa TSP band was authentic HMGR. HMGR was reactivated and the TSP label was removed by protein phosphatase in a concentration-dependent manner: the increase in expressed/total activity ratio (E/T) correlated linearly with a decrease in 97 kDa TSP. Therefore, the E/T ratio provides a valid index of the phosphorylation state of microsomal 97 kDa HMGR. Protease cleavage patterns of HMGR mass and TSP were compared using calpain: a 52-56 kDa doublet of HMGR mass was observed in immunoblots under conditions in which only the 56 kDa band contained TSP. Further proteolysis decreased the TSP label as the 52 kDa mass product increased. The data suggest that the major phosphorylation site in 97 kDa HMGR lies between two main calpain cleavage sites in the linker region joining the cytoplasmic domain to the membrane-spanning domain of the native enzyme.

  5. Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation

    PubMed Central

    Kuhns, Lisa G.; Mahawar, Manish; Sharp, Joshua S.; Benoit, Stéphane; Maier, Robert J.

    2014-01-01

    The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions. PMID:23181726

  6. Chromate reductase activity in Streptomyces sp. MC1.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2010-02-01

    Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments.

  7. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  8. Analyses of glutathione reductase hypomorphic mice indicate a genetic knockout.

    PubMed

    Rogers, Lynette K; Tamura, Toshiya; Rogers, Bryan J; Welty, Stephen E; Hansen, Thomas N; Smith, Charles V

    2004-12-01

    A strain of mice (Gr1a1Neu) that exhibited tissue glutathione reductase (GR) activities that were substantially lower (less than 10% in liver) than the corresponding activities in control mice has been reported. The present report describes characterization of the mutation(s) in the GR gene of these mice. RT-PCR of mRNA from the Neu mice indicated a substantial deletion in the normal GR coding sequence. Southern blots revealed that the deletion involved a region spanning from intron 1 through intron 5. The exact breakpoints of the deletion were characterized by PCR and sequencing through the region encompassing the deletion. The deletion involves nucleotides 10840 through 23627 of the genomic GR gene and functionally deletes exons 2 through 5. In addition, the deletion produces a frame shift in exon 6 and introduces a stop codon in exon 7 that would prevent translation of the remainder of the protein. Consequently, the Neu mice are incapable of producing a functional GR protein and appear to be genetic knockouts for GR. The Neu mice offer live animal models with which to test hypotheses regarding oxidant mechanisms of tissue injury in vivo.

  9. Constitutive nitrate reductase expression and inhibition in winged bean

    SciTech Connect

    Wu, Shenchuan; Harper, J.E. )

    1990-05-01

    It was found that NO{sub 3}{sup {minus}} had no effect on winged bean nitrate reductase activity (NRA). Similar NRA was expressed in plants grown on NO{sub 3}{sup {minus}}, urea, NH{sub 4}{sup +}, and nil N. This indicated that the primary NR expressed in winged bean was constitutive, rather than substrate-inducible. Maximum NRA in winged bean was obtained in the light. KClO{sub 3} was capable of inhibiting NRA of leaves if added to the root growth medium or to the NR assay medium, indicating possible competition with NO{sub 3}{sup {minus}} at the reduction site. While it has previously been shown that either cycloheximide alone, or both cycloheximide and chloramphenicol impair the synthesis of NR protein, our data unexpectedly demonstrated that cycloheximide had little effect on NRA, whereas chloramphenicol greatly inhibited the expression of NRA in winged bean. One interpretation is that chloroplasts may influence the activity and/or synthesis of constitutive NR proteins.

  10. Severe scoliosis in a patient with severe methylenetetrahydrofolate reductase deficiency.

    PubMed

    Munoz, Tatiana; Patel, Jinesh; Badilla-Porras, Ramses; Kronick, Jonathan; Mercimek-Mahmutoglu, Saadet

    2015-01-01

    Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessively inherited inborn error of folate metabolism. We report a new patient with severe MTHFR deficiency who presented at age 4 months with early onset severe scoliosis associated with severe hypotonia. Markedly decreased MTHFR enzyme activity (0.3 nmoles CHO/mg protein/h; reference range>9) and compound heterozygous mutations (c. 1304T>C; p.Phe435Ser and c.1539dup; p.Glu514Argfs∗24) in the MTHFR gene confirmed the diagnosis. She was treated with vitamin B12, folic acid and betaine supplementation and showed improvements in her developmental milestones and hypotonia. To the best of our knowledge, this is the first patient with MTHFR deficiency reported with severe early onset scoliosis. Despite the late diagnosis and treatment initiation, she showed favorable short-term neurodevelopmental outcome. This case suggests that homocysteine measurement should be included in the investigations of patients with developmental delay, hypotonia and scoliosis within first year of life prior to organizing genetic investigations.

  11. Short-chain dehydrogenases/reductases (SDR): the 2002 update.

    PubMed

    Oppermann, Udo; Filling, Charlotta; Hult, Malin; Shafqat, Naeem; Wu, Xiaoqiu; Lindh, Monica; Shafqat, Jawed; Nordling, Erik; Kallberg, Yvonne; Persson, Bengt; Jörnvall, Hans

    2003-02-01

    Short-chain dehydrogenases/reductases (SDR) form a large, functionally heterogeneous protein family presently with about 3000 primary and about 30 3D structures deposited in databases. Despite low sequence identities between different forms (about 15-30%), the 3D structures display highly similar alpha/beta folding patterns with a central beta-sheet, typical of the Rossmann-fold. Based on distinct sequence motifs functional assignments and classifications are possible, making it possible to build a general nomenclature system. Recent mutagenetic and structural studies considerably extend the knowledge on the general reaction mechanism, thereby establishing a catalytic tetrad of Asn-Ser-Tyr-Lys residues, which presumably form the framework for a proton relay system including the 2'-OH of the nicotinamide ribose, similar to the mechanism found in horse liver ADH. Based on their cellular functions, several SDR enzymes appear as possible and promising pharmacological targets with application areas spanning hormone-dependent cancer forms or metabolic diseases such as obesity and diabetes, and infectious diseases.

  12. Crystallization and preliminary characterization of dihydropteridine reductase from Dictyostelium discoideum

    PubMed Central

    Chen, Cong; Seo, Kyung Hye; Kim, Hye Lim; Zhuang, Ningning; Park, Young Shik; Lee, Kon Ho

    2008-01-01

    Dihydropteridine reductase from Dictyostelium discoideum (dicDHPR) can produce d-threo-BH4 [6R-(1′R,2′R)-5,6,7,8-tetrahydrobiopterin], a stereoisomer of l-erythro-BH4, in the last step of tetrahydrobiopterin (BH4) recycling. In this reaction, DHPR uses NADH as a cofactor to reduce quinonoid dihydro­biopterin back to BH4. To date, the enzyme has been purified to homogeneity from many sources. In this report, the dicDHPR–NAD complex has been crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as a precipitant. Rectangular-shaped crystals were obtained. Crystals grew to maximum dimensions of 0.4 × 0.6 × 0.1 mm. The crystal belonged to space group P21, with unit-cell parameters a = 49.81, b = 129.90, c = 78.76 Å, β = 100.00°, and contained four molecules in the asymmetric unit, forming two closely interacting dicDHPR–NAD dimers. Diffraction data were collected to 2.16 Å resolution using synchrotron radiation. The crystal structure has been determined using the molecular-replacement method. PMID:18997329

  13. Structural Basis for Activation of Class Ib Ribonucleotide Reductase

    SciTech Connect

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne; Rosenzweig, Amy C.

    2010-12-03

    The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn{sub 2}{sup III}-tyrosyl radical (Y{sm_bullet}) or a Fe{sub 2}{sup III}-Y{sm_bullet} cofactor in the NrdF subunit. Whereas Fe{sub 2}{sup III}-Y{sm_bullet} can self-assemble from Fe{sub 2}{sup II}-NrdF and O{sub 2}, activation of Mn{sub 2}{sup II}-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O{sub 2}. The crystal structures reported here of E. coli Mn{sub 2}{sup II}-NrdF and Fe{sub 2}{sup II}-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn{sub 2}{sup II}-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn{sub 2}{sup II} active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly.

  14. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  15. Composition and structure of assimilatory nitrate reductase from Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A; Vega, J M; Zumft, W G

    1981-06-10

    Assimilatory NAD(P)H-nitrate reductase (EC 1.6.6.2) from Ankistrodesmus braunii has been purified to homogeneity by affinity chromatography on blue Sepharose. The specific activity of the purified enzyme is in the range of 72 to 80 units/mg of protein. The electronic spectrum of the native enzyme shows absorption maxima at 278, 414 (Soret), 532 (beta), 562 (alpha), and 669 nm and shoulders at 455 and 484 nm, with an A278/A414 ratio of 2.56. The reduced enzyme shows absorption maxima at 424 (Soret), 528 (beta), 557 (alpha),and 669 n. The enzyme complex (Mr = 467,400) is composed of eight similar subunits (Mr = 58,750) and contains 4 molecules of FAD, 4 heme groups, and 2 atoms of molybdenum. Labile sulfide and nonheme iron were not detected. Electron micrographs show the eight subunits arranged alternately in two planes, and an 8-fold rotational symmetry was deduced from highly magnified images processed by optical superposition.

  16. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  17. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  18. Transgenic overexpression of ribonucleotide reductase improves cardiac performance

    PubMed Central

    Nowakowski, Sarah G.; Kolwicz, Stephen C.; Korte, Frederick Steven; Luo, Zhaoxiong; Robinson-Hamm, Jacqueline N.; Page, Jennifer L.; Brozovich, Frank; Weiss, Robert S.; Tian, Rong; Murry, Charles E.; Regnier, Michael

    2013-01-01

    We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function. Isolated cardiomyocytes from TgRR mice had enhanced contraction and relaxation, with no change in Ca2+ transients, suggesting targeted improvement of myofilament function. TgRR hearts had normal ATP and only slightly decreased phosphocreatine levels by 31P NMR spectroscopy, and they maintained rate responsiveness to dobutamine challenge. These data demonstrate long-term (at least 5-mo) elevation of cardiac [dATP] results in sustained elevation of basal left ventricular performance, with maintained β-adrenergic responsiveness and energetic reserves. Combined with results from previous studies, we conclude that this occurs primarily via enhanced myofilament activation and contraction, with similar or faster ability to relax. The data are sufficiently compelling to consider elevated cardiac [dATP] as a therapeutic option to treat systolic dysfunction. PMID:23530224

  19. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  20. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.

    PubMed

    Testa, Fabrizio; Mastronicola, Daniela; Cabelli, Diane E; Bordi, Eugenio; Pucillo, Leopoldo P; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro; Teixeira, Miguel

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  1. [Molecular characterizations of two dehydroascorbate reductases from Selaginella moellendorffii].

    PubMed

    Cheng, Zishuo; Lan, Ting; Li, Di; Yang, Hailing; Zeng, Qingyin

    2011-01-01

    Plant dehydroascorbate reductase (DHAR) is a physiologically important reducing enzyme in the ascorbate-glutathione recycling reaction. In this study, two DHARs genes (SmDHAR1 and SmDHAR2) were isolated from Selaginella moellendorffii. The SmDHAR1 and SmDHAR2 genes encode two proteins of 218 and 241 amino acid residues, with a calculated molecular mass of 23.97 kDa and 27.33 kDa, respectively. The genomic sequence analysis showed SmDHAR1 and SmDHAR2 contained five and six introns, respectively. Reverse transcription PCR revealed that the SmDHAR1 and SmDHAR2 were constitutive expression genes in S. moellendorffii. The recombinant SmDHAR1 and SmDHAR2 proteins were overexpressed in E. coli, and were purified by Ni-affinity chromatography. The recombinant SmDHAR1 showed 116-fold higher enzymatic activity towards the substrate dehydroascorbate than recombinant SmDHAR2. The recombinant SmDHAR1 showed higher thermal stability than recombinant SmDHAR2. These results indicated obvious functional divergence between the duplicate genes SmDHAR1 and SmDHAR2.

  2. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.

    PubMed

    Chardin, B; Giudici-Orticoni, M-T; De Luca, G; Guigliarelli, B; Bruschi, M

    2003-12-01

    The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H(2)S produced by the bacteria, and enzymatically, by polyhemic cytochromes c(3). We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is widespread among [Fe], [NiFe], and [NiFeSe] hydrogenases isolated from SRB of the genera Desulfovibrio and Desulfomicrobium. Among them, the [Fe] hydrogenase from Desulfovibrio vulgaris strain Hildenborough reduces Cr(VI) with the highest rate. Both [Fe] and [NiFeSe] enzymes exhibit the same K(m) towards Cr(VI), suggesting that Cr(VI) reduction rates are directly correlated with hydrogen consumption rates. Electron paramagnetic resonance spectroscopy enabled us to probe the oxidation by Cr(VI) of the various metal centers in both [NiFe] and [Fe] hydrogenases. These experiments showed that Cr(VI) is reduced to paramagnetic Cr(III), and revealed inhibition of the enzyme at high Cr(VI) concentrations. The significant decrease of both hydrogenase and Cr(VI)-reductase activities in a mutant lacking [Fe] hydrogenase demonstrated the involvement of this enzyme in Cr(VI) reduction in vivo. Experiments with [3Fe-4S] ferredoxin from Desulfovibrio gigas demonstrated that the low redox [Fe-S] (non-heme iron) clusters are involved in the mechanism of metal reduction by hydrogenases.

  3. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  4. Metabolic effects of aldose reductase inhibition in diabetic man.

    PubMed

    Krentz, A J; Ellis, S H; Hardman, M; Nattrass, M

    1992-01-01

    The metabolic effects of 52 weeks treatment with the aldose reductase inhibitor ponalrestat were examined in 32 diabetic patients (16 insulin treated) in a randomized, double-blind, placebo-controlled clinical trial. Twelve hour metabolic profiles were performed on two separate occasions in each patient (a) during a single-blind placebo run-in period and (b) after 52 weeks treatment with either ponalrestat 600 mg/day or matching placebo. No effects attributable to ponalrestat were evident in glucose, pyruvate, or alanine metabolism. A significant overall treatment effect was observed for lactate concentration (ponalrestat vs. placebo 12 h least square mean at 52 weeks: 1.35 vs. 1.65 mmol/l, p = 0.024). For glycerol (p = 0.018), non-esterified fatty acids (p = 0.003) and total ketone bodies (p = 0.045) there was evidence for a variation of treatment with time between the insulin treated and non-insulin treated patients, although no statistically significant overall treatment effects were observed for any metabolite. Fasting total ketone body concentration at 52 weeks was significantly elevated in the insulin-treated patients receiving ponalrestat (antilog LS mean: 0.12 vs. 0.01 mmol/l, p = 0.01). In conclusion, ponalrestat has no effect on glucose metabolism in diabetic patients. A potentially beneficial effect on lactate metabolism was accompanied by a minor ketogenic effect in insulin-treated patients.

  5. CHARACTERIZATION OF THE METHIONINE SULFOXIDE REDUCTASES OF SCHISTOSOMA MANSONI

    PubMed Central

    Oke, Tolulope T.; Moskovitz, Jackob; Williams, David L.

    2013-01-01

    Schistosomiasis, also known as Bilharzia, is an infectious disease caused by several species of Schistosoma. Twenty million individuals suffer severe symptoms and 200,000 people die annually from the disease. The host responds to the presence of S. mansoni by producing reactive oxygen species that cause oxidative stress. We hypothesized that schistosomes produce antioxidants in response to oxidative stress. A known antioxidant protein is methionine sulfoxide reductase (Msr). Methionine residues can be oxidized to methionine sulfoxide in the presence of oxidizing agents, which is readily reversed by the action of the Msr system. Two S. mansoni MsrB genes (MsrB1 and MsrB2) were cloned and the recombinant proteins expressed in bacteria and purified. The S. mansoni MsrB proteins contained the common conserved catalytic and zinc coordinating cysteines. Analysis of the proteins showed that both proteins promote the reduction of both free methionine sulfoxide (Met[O]) and dabsyl-Met(O) to free methionine (Met) and dabsyl-Met, respectively, while exhibiting differences in their specific activities towards these substrates. Using real-time PCR, both proteins were found to be expressed in all stages of the parasite’s life cycle with the highest level of expression of both proteins in the egg stage. This is the first description of MsrB proteins from a parasite. PMID:19604033

  6. Prognostic Relevance of Methylenetetrahydrofolate Reductase Polymorphisms for Prostate Cancer

    PubMed Central

    Lin, Victor C.; Lu, Te-Ling; Yin, Hsin-Ling; Yang, Sheau-Fang; Lee, Yung-Chin; Liu, Chia-Chu; Huang, Chao-Yuan; Yu, Chia-Cheng; Chang, Ta-Yuan; Huang, Shu-Pin; Bao, Bo-Ying

    2016-01-01

    Folate metabolism has been associated with cancers via alterations in nucleotide synthesis, DNA methylation, and DNA repair. We hypothesized that genetic variants in methylenetetrahydrofolate reductase (MTHFR), a key enzyme of folate metabolism, would affect the prognosis of prostate cancer. Three haplotype-tagging single-nucleotide polymorphisms (SNPs) across the MTHFR gene region were genotyped in a cohort of 458 patients with clinically localized prostate cancer treated with radical prostatectomy. One SNP, rs9651118, was associated with disease recurrence, and the association persisted after multivariate analyses adjusting for known risk factors. Public dataset analyses suggested that rs9651118 affects MTHFR expression. Quantitative real-time polymerase chain reaction analysis revealed that MTHFR expression is significantly upregulated in prostate tumor tissues when compared with adjacent normal tissues. Furthermore, overexpression of MTHFR correlates with cancer recurrence and death in two independent publicly available prostate cancer datasets. In conclusion, our data provide rationale to further validate the clinical utility of MTHFR rs9651118 as a biomarker for prognosis in prostate cancer. PMID:27916838

  7. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase

    PubMed Central

    Reddish, Michael J.; Vaughn, Morgan B.; Fu, Rong; Dyer, R. Brian

    2016-01-01

    Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein–ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not. PMID:26901612

  8. Structure of Escherichia coli Flavodiiron Nitric Oxide Reductase.

    PubMed

    Romão, Célia V; Vicente, João B; Borges, Patrícia T; Victor, Bruno L; Lamosa, Pedro; Silva, Elísio; Pereira, Luís; Bandeiras, Tiago M; Soares, Cláudio M; Carrondo, Maria A; Turner, David; Teixeira, Miguel; Frazão, Carlos

    2016-11-20

    Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-β-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a μ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.

  9. Nitrate Reductase of Primary Roots of Red Spruce Seedlings 1

    PubMed Central

    Yandow, Tim S.; Klein, Richard M.

    1986-01-01

    Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3−. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl− salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots. PMID:16664891

  10. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  11. Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin.

    PubMed

    Mano, S; Hayashi, M; Nishimura, M

    1999-02-01

    Hydroxypyruvate reductase (HPR) is a leaf peroxisomal enzyme that functions in the glycolate pathway of photorespiration in plants. We have obtained two highly similar cDNAs for pumpkin HPR (HPR1 and HPR2). It has been revealed that two HPR mRNAs might be produced by alternative splicing from a single type of pre-mRNA. The HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into leaf peroxisomes at the C-terminus, suggesting that alternative splicing controls the subcellular localization of the two HPR proteins. Immunoblot analysis and subcellular fractionation experiments showed that HPR1 and HPR2 proteins are localized in leaf peroxisomes and the cytosol, respectively. Moreover, indirect fluorescence microscopy and analyses of transgenic tobacco cultured cells and Arabidopsis thaliana expressing fusion proteins with green fluorescent protein (GFP) revealed the different subcellular localizations of the two HPR proteins. Both mRNAs were induced developmentally and by light, but with quantitative differences. Almost equal amounts of the mRNAs were detected in pumpkin cotyledons grown in darkness, but treatment with light greatly enhanced the production of HPR2 mRNA. These findings indicate that light regulates alternative splicing of HPR mRNA, suggesting the presence of a novel mechanism of mRNA maturation, namely light-regulated alternative splicing, in higher plants.

  12. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency

    PubMed Central

    2004-01-01

    MTHFR (methylenetetrahydrofolate reductase) catalyses the synthesis of 5-methyltetrahydrofolate, the folate derivative utilized in homocysteine remethylation to methionine. A severe deficiency of MTHFR results in hyperhomocysteinaemia and homocystinuria. Betaine supplementation has proven effective in ameliorating the biochemical abnormalities and the clinical course in patients with this deficiency. Mice with a complete knockout of MTHFR serve as a good animal model for homocystinuria; early postnatal death of these mice is common, as with some neonates with low residual MTHFR activity. We attempted to rescue Mthfr−/− mice from postnatal death by betaine supplementation to their mothers throughout pregnancy and lactation. Betaine decreased the mortality of Mthfr−/− mice from 83% to 26% and significantly improved somatic development from postnatal day 1, compared with Mthfr−/− mice from unsupplemented dams. Biochemical evaluations demonstrated higher availability of betaine in suckling pups, decreased accumulation of homocysteine, and decreased flux through the trans-sulphuration pathway in liver and brain of Mthfr−/− pups from betaine-supplemented dams. We observed disturbances in proliferation and differentiation in the cerebellum and hippocampus in the knockout mice; these changes were ameliorated by betaine supplementation. The dramatic effects of betaine on survival and growth, and the partial reversibility of the biochemical and developmental anomalies in the brains of MTHFR-deficient mice, emphasize an important role for choline and betaine depletion in the pathogenesis of homocystinuria due to MTHFR deficiency. PMID:15217352

  13. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling.

    PubMed

    Gupta, Ankita; Kesherwani, Manish; Velmurugan, Devadasan; Tripathi, Timir

    2016-08-01

    Platyhelminth thioredoxin glutathione reductase (TGR) is a multifunctional enzyme that crosstalk between the conventional thioredoxin (Trx) and glutathione (GSH) system. It has been validated as a potential drug target in blood flukes. In the present study, we have performed a biochemical study on Fasciola gigantica TGR with substrates DTNB and GSSG. The Michaelis constant (Km) with DTNB was found to be 4.34±0.12μM while it was 61.15±1.50μM with GSSG. The kinetic results were compared with the TGR activities of other helminths. FgTGR showed typical hysteretic behavior with GSSG as other TGRs. We also described a homology-based structure of FgTGR. The cofactors (NADPH and FAD) and substrates (GSSG and DTNB) were docked, and two possible binding sites for substrates were identified in a single chain. The substrates were found to bind more favorably in the second site of TrxR domains. We also presented the first report on binding interaction of DTNB with a TGR. DTNB forms H-bond with His204 and Arg450 of chain A, Sec597, and Gly598 from chain B, salt-bridge with Lys124, and numerous other hydrophobic interactions. Helminth TGR represents an important enzyme in the redox and antioxidant system; hence, its inhibition can be used as an effective strategy against liver flukes.

  14. Glutathione reductase in wheat grain. 1. Isolation and characterization.

    PubMed

    de Lamotte, F; Vianey-Liaud, N; Duviau, M P; Kobrehel, K

    2000-10-01

    Durum wheat (Triticum durum, Desf.) endosperm of mature kernels contained a single form of glutathione reductase (GR); it appeared about the 18th day after anthesis while another isoform, present at the early stages of grain development, disappeared between the 20th and 30th days after flowering. The form that was present at grain maturity was isolated and characterized. It was composed of two monomers, each one having an apparent molecular mass of about 60 kDa. The K(m) values for NADPH and for GSSG were 3.7 and 9.1 microM, respectively, and the V(m) values for NADPH and for GSSG were 594 and 575 microkat.mg(-)(1) protein, respectively. The pH(i) of the enzyme was situated between pH 4.4 and 4.5. At a constant temperature of 25 degrees C, the optimum GR activity was found to be between pH 7.5 and 8.0. It was relatively resistant to high temperatures and was very resistant to very low temperatures.

  15. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  16. Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase.

    PubMed

    Serrão, Vitor Hugo Balasco; Romanello, Larissa; Cassago, Alexandre; de Souza, Juliana Roberta Torini; Cheleski, Juliana; DeMarco, Ricardo; Brandão-Neto, José; Pereira, Humberto D'Muniz

    2017-03-11

    The parasite Schistosoma mansoni possesses all pathways for pyrimidine biosynthesis, in which dihydrofolate reductase (DHFR), thymidylate cycle participants, is essential for nucleotide metabolism to obtain energy and structural nucleic acids. Thus, DHFRs have been widely suggested as therapeutic targets for the treatment of infectious diseases. In this study, we expressed recombinant SmDHFR in a heterologous manner to obtain structural, biochemical and kinetic information. X-ray diffraction of recombinant SmDHFR at 1.95Å resolution showed that the structure exhibited the canonical DHFR fold. Isothermal titration calorimetry was used to determine the kinetic constants for NADP(+) and dihydrofolate. Moreover, inhibition assays were performed using the commercial folate analogs methotrexate and aminopterin; these analogs are recognized as folate competitors and are used as chemotherapeutic agents in cancer and autoimmune diseases. This study provides information that may prove useful for the future discovery of novel drugs and for understanding these metabolic steps from this pathway of S. mansoni, thus aiding in our understanding of the function of these essential pathways for parasite metabolism.

  17. Ribonucleotide reductases: influence of environment on synthesis and activity.

    PubMed

    Gon, Stéphanie; Beckwith, Jon

    2006-01-01

    Ribonucleotide reductases (RNRs) are enzymes that provide deoxyribonucleotides (dNTPs), the building blocks required for de novo DNA synthesis and repair. They are found in all organisms from prokaryotes to eukaryotes. Interestingly, in the microbial world, several organisms possess the genes encoding two, or even three different RNRs that present different structures and allosteric regulation. The finding of an increasing number of bacterial species that possess more than one RNR might suggest particular functions for these enzymes in different growth conditions. Recent support for this proposal comes from studies indicating that expression and activity of the different RNRs depends on the environment. The oxygen content as well as the redox and oxidative stresses regulate RNR activity and synthesis in various organisms. This regulation has a direct consequence on dNTP pools. An excess of dNTP pools that leads to misincorporation of dNTPs results in genetic abnormalities in eukaryotes as in prokaryotes. In contrast, increased dNTP concentrations help cells to survive under conditions where DNA has been damaged. Hence the use of different RNRs in response to various environmental conditions allows the cell to regulate the amount precisely of dNTP in both a positive and negative manner so that enough, yet not excessive, dNTPs are synthesized.

  18. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  19. Effects of galactose feeding on aldose reductase gene expression.

    PubMed Central

    Wu, R R; Lyons, P A; Wang, A; Sainsbury, A J; Chung, S; Palmer, T N

    1993-01-01

    Aldose reductase (AR) is implicated in the pathogenesis of the diabetic complications and osmotic cataract. AR has been identified as an osmoregulatory protein, at least in the renal medulla. An outstanding question relates to the response of AR gene expression to diet-induced galactosemia in extrarenal tissues. This paper shows that AR gene expression in different tissues is regulated by a complex multifactorial mechanism. Galactose feeding in the rat is associated with a complex and, on occasions, multiphasic pattern of changes in AR mRNA levels in kidney, testis, skeletal muscle, and brain. These changes are not in synchrony with the temporal sequence of changes in tissue galactitol, galactose, and myoinositol concentrations. Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels. It is concluded that AR gene expression and tissue AR activities are regulated by mechanisms that are not purely dependent on nonspecific alterations in intracellular metabolite concentrations. This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney. PMID:8325980

  20. Prognostic Relevance of Methylenetetrahydrofolate Reductase Polymorphisms for Prostate Cancer.

    PubMed

    Lin, Victor C; Lu, Te-Ling; Yin, Hsin-Ling; Yang, Sheau-Fang; Lee, Yung-Chin; Liu, Chia-Chu; Huang, Chao-Yuan; Yu, Chia-Cheng; Chang, Ta-Yuan; Huang, Shu-Pin; Bao, Bo-Ying

    2016-11-29

    Folate metabolism has been associated with cancers via alterations in nucleotide synthesis, DNA methylation, and DNA repair. We hypothesized that genetic variants in methylenetetrahydrofolate reductase (MTHFR), a key enzyme of folate metabolism, would affect the prognosis of prostate cancer. Three haplotype-tagging single-nucleotide polymorphisms (SNPs) across the MTHFR gene region were genotyped in a cohort of 458 patients with clinically localized prostate cancer treated with radical prostatectomy. One SNP, rs9651118, was associated with disease recurrence, and the association persisted after multivariate analyses adjusting for known risk factors. Public dataset analyses suggested that rs9651118 affects MTHFR expression. Quantitative real-time polymerase chain reaction analysis revealed that MTHFR expression is significantly upregulated in prostate tumor tissues when compared with adjacent normal tissues. Furthermore, overexpression of MTHFR correlates with cancer recurrence and death in two independent publicly available prostate cancer datasets. In conclusion, our data provide rationale to further validate the clinical utility of MTHFR rs9651118 as a biomarker for prognosis in prostate cancer.

  1. Mutation Update and Review of Severe Methylenetetrahydrofolate Reductase Deficiency.

    PubMed

    Froese, D Sean; Huemer, Martina; Suormala, Terttu; Burda, Patricie; Coelho, David; Guéant, Jean-Louis; Landolt, Markus A; Kožich, Viktor; Fowler, Brian; Baumgartner, Matthias R

    2016-05-01

    Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations. © 2016 WILEY PERIODICALS, INC.

  2. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection.

    PubMed

    Fodil-Cornu, N; Kozij, N; Wu, Q; Rozen, R; Vidal, S M

    2009-10-01

    Folates provide one-carbon units for nucleotide synthesis and methylation reactions. A common polymorphism in the MTHFR gene (677C --> T) results in reduced enzymatic activity, and is associated with an increased risk for neural tube defects and cardiovascular disease. The high prevalence of this polymorphism suggests that it may have experienced a selective advantage under environmental pressure, possibly an infectious agent. To test the hypothesis that methylenetetrahydrofolate reductase (MTHFR) genotype influences the outcome of infectious disease, we examined the response of Mthfr-deficient mice against mouse cytomegalovirus (MCMV) infection. Acute MCMV infection of Mthfr(-/-) mice resulted in early control of cytokine secretion, decreased viral titer and preservation of spleen immune cells, in contrast to Mthfr wild-type littermates. The phenotype was abolished in MTHFR transgenic mice carrying an extra copy of the gene. Infection of primary fibroblasts with MCMV showed a decrease in viral replication and in the number of productively infected cells in Mthfr(+/-) fibroblasts compared with wild-type cells. These results indicate that Mthfr deficiency protects against MCMV infection in vivo and in vitro, suggesting that human genetic variants may provide an advantage in the host response against certain pathogens.

  3. Drug susceptibility testing of Mycobacterium tuberculosis with nitrate reductase assay.

    PubMed

    Coban, Ahmet Yilmaz; Birinci, Asuman; Ekinci, Bora; Durupinar, Belma

    2004-09-01

    The nitrate reductase assay (NRA) was evaluated for susceptibility testing of Mycobacterium tuberculosis using 80 clinical isolates of M. tuberculosis and H37Rv as a control strain. All isolates were tested by the proportion method and the NRA for isoniazid (INH), rifampicin (RIF), streptomycin (STR) and ethambutol (ETM). The proportion method was carried out according to NCCLS on Löwenstein-Jensen (LJ) medium and the NRA on LJ medium containing 1000 microg/ml potassium nitrate (KNO(3)). After incubation for 7, 10, 14 and 21 days, Griess reagent was added to each LJ medium and nitrate reduction was determined by a colour change. Comparing the NRA with the proportion method, sensitivities were 100, 100, 82.1 and 92.2% for INH, RIF, STR and ETM, respectively. Specificities were 100, 100, 92.3 and 100% for INH, RIF, STR and ETM, respectively. The results of 2, 22 and 56 isolates were obtained after 7, 10 and 14 days, respectively. The proportion method result were read at 21-28 days. The NRA is rapid, inexpensive and easy to perform. Our results indicated that the NRA is suitable for the early determination of INH and RIF resistance in countries where sophisticated procedures are not always available.

  4. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.

    PubMed

    Loveridge, E Joel; Tey, Lai-Hock; Allemann, Rudolf K

    2010-01-27

    Hydride transfer catalyzed by dihydrofolate reductase (DHFR) has been described previously within an environmentally coupled model of hydrogen tunneling, where protein motions control binding of substrate and cofactor to generate a tunneling ready conformation and modulate the width of the activation barrier and hence the reaction rate. Changes to the composition of the reaction medium are known to perturb protein motions. We have measured kinetic parameters of the reaction catalyzed by DHFR from Escherichia coli in the presence of various cosolvents and cosolutes and show that the dielectric constant, but not the viscosity, of the reaction medium affects the rate of reaction. Neither the primary kinetic isotope effect on the reaction nor its temperature dependence were affected by changes to the bulk solvent properties. These results are in agreement with our previous report on the effect of solvent composition on catalysis by DHFR from the hyperthermophile Thermotoga maritima. However, the effect of solvent on the temperature dependence of the kinetic isotope effect on hydride transfer catalyzed by E. coli DHFR is difficult to explain within a model, in which long-range motions couple to the chemical step of the reaction, but may indicate the existence of a short-range promoting vibration or the presence of multiple nearly isoenergetic conformational substates of enzymes with similar but distinct catalytic properties.

  5. Molecular Cloning of Complementary DNA Encoding Maize Nitrite Reductase

    PubMed Central

    Lahners, Kristine; Kramer, Vance; Back, Eduard; Privalle, Laura; Rothstein, Steven

    1988-01-01

    Complementary DNA has been isolated that codes for maize nitrite reductase (NiR) by using the corresponding spinach gene (E Back et al. 1988 Mol Gen Genet 212:20-26) as a heterologous probe. The sequences of the complementary DNAs from the two species are 66% homologous while the deduced amino acid sequences are 86% similar when analogous amino acids are included. A high percentage of the differences in the DNA sequences is due to the extremely strong bias in the corn gene to have a G/C base in the third codon position with 559/569 codons ending in a G or C. Using a hydroponic system, maize seedlings grown in the absence of an exogenous nitrogen source were induced with nitrate or nitrite. Nitrate stimulated a rapid induction of the NiR mRNA in both roots and leaves. There is also a considerable induction of this gene in roots upon the addition of nitrite, although under the conditions used the final mRNA level was not as high as when nitrate was the inducer. There is a small but detectable level of NiR mRNA in leaves prior to induction, but no constitutive NiR mRNA can be seen in the roots. Analysis of genomic DNA supports the notion that there are at least two NiR genes in maize. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666376

  6. Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.

    1998-01-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442

  7. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  8. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase.

    PubMed

    French, C E; Nicklin, S; Bruce, N C

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  9. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  10. Recombinant bovine dihydrofolate reductase produced by mutagenesis and nested PCR of murine dihydrofolate reductase cDNA.

    PubMed

    Cody, Vivian; Mao, Qilong; Queener, Sherry F

    2008-11-01

    Recent reports of the slow-tight binding inhibition of bovine liver dihydrofolate reductase (bDHFR) in the presence of polyphenols isolated from green tea leaves has spurred renewed interest in the biochemical properties of bDHFR. Earlier studies were done with native bDHFR but in order to validate models of polyphenol binding to bDHFR, larger quantities of bDHFR are necessary to support structural studies. Bovine DHFR differs from its closest sequence homologue, murine DHFR, by 19 amino acids. To obtain the bDHFR cDNA, murineDHFR cDNA was transformed by a series of nested PCRs to reproduce the amino acid coding sequence for bovine DHFR. The bovine liver DHFR cDNA has an open reading frame of 561 base pairs encoding a protein of 187 amino acids that has a high level of conservation at the primary sequence level with other DHFR enzymes, and more so for the amino acid residues in the active site of the mammalian DHFR enzymes. Expression of the bovine DHFR cDNA in bacterial cells produced a stable recombinant protein with high enzymatic activity and kinetic properties similar to those previously reported for the native protein.

  11. Molecular basis for thermoprotection in Bemisia: structural differences between whitefly ketose reductase and other medium-chain dehydrogenases/reductases.

    PubMed

    Wolfe, G R; Smith, C A; Hendrix, D L; Salvucci, M E

    1999-02-01

    The silverleaf whitefly (Bemisia argentifolii, Bellows and Perring) accumulates sorbitol as a thermoprotectant in response to elevated temperature. Sorbitol synthesis in this insect is catalyzed by an unconventional ketose reductase (KR) that uses NADPH to reduce fructose. A cDNA encoding the NADPH-KR from adult B. argentifolii was cloned and sequenced to determine the primary structure of this enzyme. The cDNA encoded a protein of 352 amino acids with a calculated molecular mass of 38.2 kDa. The deduced amino acid sequence of the cDNA shared 60% identity with sheep NAD(+)-dependent sorbitol dehydrogenase (SDH). Residues in SDH involved in substrate binding were conserved in the whitefly NADPH-KR. An important structural difference between the whitefly NADPH-KR and NAD(+)-SDHs occurred in the nucleotide-binding site. The Asp residue that coordinates the adenosyl ribose hydroxyls in NAD(+)-dependent dehydrogenases (including NAD(+)-SDH), was replaced by an Ala in the whitefly NADPH-KR. The whitefly NADPH-KR also contained two neutral to Arg substitutions within four residues of the Asp to Ala substitution. Molecular modeling indicated that addition of the Arg residues and loss of the Asp decreased the electric potential of the adenosine ribose-binding pocket, creating an environment favorable for NADPH-binding. Because of the ability to use NADPH, the whitefly NADPH-KR synthesizes sorbitol under physiological conditions, unlike NAD(+)-SDHs, which function in sorbitol catabolism.

  12. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  13. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes.

    PubMed

    Vander Jagt, D L; Hunsaker, L A; Vander Jagt, T J; Gomez, M S; Gonzales, D M; Deck, L M; Royer, R E

    1997-04-25

    4-Hydroxynonenal, a product of oxidative degradation of unsaturated lipids, is an endogenous reactive alpha,beta-unsaturated aldehyde with numerous biological activities. 4-Hydroxynonenal rapidly inactivated glutathione reductase in an NADPH-dependent reaction. Inactivation appears to involve the initial formation of an enzyme-inactivator complex, K(D) = 0.5 microM, followed by the inactivation reaction, k = 1.3 x 10(-2) min(-1). alpha,beta-Unsaturated aldehydes such as acrolein, crotonaldehyde, and cinnamaldehyde also inactivated glutathione reductase, although rates varied widely. Inactivation of glutathione reductase by alpha,beta-unsaturated aldehydes was followed by slower NADPH-independent reactions that led to formation of nonfluorescent cross-linked products, accompanied by loss of lysine and histidine residues. Other reactive endogenous aldehydes such as methylglyoxal, 3-deoxyglucosone, and xylosone inactivated glutathione reductase by an NADPH-independent mechanism, with methylglyoxal being the most reactive. However, 2-oxoaldehydes were much less effective than 4-hydroxynonenal. Inactivation of glutathione reductase by these 2-oxoaldehydes was followed by slower reactions that led to the formation of fluorescent cross-linked products over a period of several weeks. These changes were accompanied by loss of arginine residues. Thus, the sequence of events is different for inactivation and modification of glutathione reductase by alpha,beta-unsaturated aldehydes compared with 2-oxoaldehydes with respect to kinetics, NADPH requirements, fluorescence changes, and loss of amino acid residues. The ability of 4-hydroxynonenal at low concentrations to inactivate glutathione reductase, a central antioxidant enzyme, suggests that oxidative degradation of unsaturated lipids may initiate a positive feedback loop that enhances the potential for oxidative damage.

  14. Genetic Diversity of Benzoyl Coenzyme A Reductase Genes Detected in Denitrifying Isolates and Estuarine Sediment Communities

    PubMed Central

    Song, Bongkeun; Ward, Bess B.

    2005-01-01

    Benzoyl coenzyme A (benzoyl-CoA) reductase is a central enzyme in the anaerobic degradation of organic carbon, which utilizes a common intermediate (benzoyl-CoA) in the metabolism of many aromatic compounds. The diversity of benzoyl-CoA reductase genes in denitrifying bacterial isolates capable of degrading aromatic compounds and in river and estuarine sediment samples from the Arthur Kill in New Jersey and the Chesapeake Bay in Maryland was investigated. Degenerate primers were developed from the known benzoyl-CoA reductase genes from Thauera aromatica, Rhodopseudomonas palustris, and Azoarcus evansii. PCR amplification detected benzoyl-CoA reductase genes in the denitrifying isolates belonging to α-, β-, or γ-Proteobacteria as well as in the sediment samples. Phylogenetic analysis, sequence similarity comparison, and conserved indel determination grouped the new sequences into either the bcr type (found in T. aromatica and R. palustris) or the bzd type (found in A. evansii). All the Thauera strains and the isolates from the genera Acidovorax, Bradyrhizobium, Paracoccus, Ensifer, and Pseudomonas had bcr-type benzoyl-CoA reductases with amino acid sequence similarities of more than 97%. The genes detected from Azarocus strains were assigned to the bzd type. A total of 50 environmental clones were detected from denitrifying consortium and sediment samples, and 28 clones were assigned to either the bcr or the bzd type of benzoyl-CoA reductase genes. Thus, we could determine the genetic capabilities for anaerobic degradation of aromatic compounds in sediment communities of the Chesapeake Bay and the Arthur Kill on the basis of the detection of two types of benzoyl-CoA reductase genes. The detected genes have future applications as genetic markers to monitor aromatic compound degradation in natural and engineered ecosystems. PMID:15812036

  15. Nitrogen fixation in transposon mutants from Bradyrhizobium japonicum USDA 110 impaired in nitrate reductase.

    PubMed

    Camacho, María; Burgos, Araceli; Chamber-Pérez, Manuel A

    2003-04-01

    Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA.

  16. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  17. The Role of Cys-298 in Aldose Reductase Function*

    PubMed Central

    Balendiran, Ganesaratnam K.; Sawaya, Michael R.; Schwarz, Frederick P.; Ponniah, Gomathinayagam; Cuckovich, Richard; Verma, Malkhey; Cascio, Duilio

    2011-01-01

    Diabetic tissues are enriched in an “activated” form of human aldose reductase (hAR), a NADPH-dependent oxidoreductase involved in sugar metabolism. Activated hAR has reduced sensitivity to potential anti-diabetes drugs. The C298S mutant of hAR reproduces many characteristics of activated hAR, although it differs from wild-type hAR only by the replacement of a single sulfur atom with oxygen. Isothermal titration calorimetry measurements revealed that the binding constant of NADPH to the C298S mutant is decreased by a factor of two, whereas that of NADP+ remains the same. Similarly, the heat capacity change for the binding of NADPH to the C298S mutant is twice increased; however, there is almost no difference in the heat capacity change for binding of the NADP+ to the C298S. X-ray crystal structures of wild-type and C298S hAR reveal that the side chain of residue 298 forms a gate to the nicotinamide pocket and is more flexible for cysteine compared with serine. Unlike Cys-298, Ser-298 forms a hydrogen bond with Tyr-209 across the nicotinamide ring, which inhibits movements of the nicotinamide. We hypothesize that the increased polarity of the oxidized nicotinamide weakens the hydrogen bond potentially formed by Ser-298, thus, accounting for the relatively smaller effect of the mutation on NADP+ binding. The effects of the mutant on catalytic rate constants and binding constants for various substrates are the same as for activated hAR. It is, thus, further substantiated that activated hAR arises from oxidative modification of Cys-298, a residue near the nicotinamide binding pocket. PMID:21084309

  18. Restricted Role for Methionine Synthase Reductase Defined by Subcellular Localization

    PubMed Central

    Froese, DS; Wu, X; Zhang, J; Dumas, R; Schoel, WM; Amrein, M; Gravel, RA

    2009-01-01

    Methionine synthase reductase (MSR; gene name MTRR) is responsible for the reductive activation of methionine synthase. Cloning of the MTRR gene had revealed two major transcription start sites which, by alternative splicing, allows for two potential translation products of 698 and 725 amino acids. While the shorter protein was expected to target to the cytosol where methionine synthase is located, the additional sequence in the longer protein was consistent with a role as a mitochondrial leader sequence. The possibility that MSR might target to mitochondria was also suggested by the work of Leal et al. (2004) who showed that it can act as the reducing enzyme in combination with MMAB (ATP:cob(I)alamin adenosyltransferase) to generate adenosylcobalamin from cob(II)alamin in vitro. Here we examined directly whether MSR protein is found in mitochondria. We show that, while two transcripts are produced by alternative splicing, the N-terminal segment of the putative mitochondrial form of MSR fused to GFP does not contain a sufficiently strong mitochondrial leader sequence to direct the fusion protein to the mitochondria of human fibroblasts. Further, antibodies to MSR protein localized MSR to the cytosol but not to the mitochondria of human fibroblasts or the human hepatoma line Huh-1, as determined by Western blot analysis and immunofluorescence of cells in situ. These data confirm that MSR protein is restricted to the cytosol but, based on the Leal study, suggest that a similar protein may interact with MMAB to reduce the mitochondrial cobalamin substrate in the generation of adenosylcobalamin. PMID:18221906

  19. Immunological Approach to Structural Comparisons of Assimilatory Nitrate Reductases 1

    PubMed Central

    Smarrelli, John; Campbell, Wilbur H.

    1981-01-01

    Homogeneous squash cotyledon reduced nicotinamide-adenine dinucleotide (NADH):nitrate reductase (NR) was isolated using blue-Sepharose and polyacrylamide gel electrophoresis. Gel slices containing NR were pulverized and injected into a previously unimmunized rabbit. This process was repeated weekly and antiserum to NR was obtained after four weeks. Analysis of the antiserum by Ouchterlony double diffusion using a blue-Sepharose preparation of NR resulted in a single precipitin band while immunoelectrophoresis revealed two minor contaminants. The antiserum was found to inhibit the NR reaction and the partial reactions to different degrees. When the NADH:NR and the reduced methyl viologen:NR activities were inhibited 90% by specifically diluted antiserum, the reduction of cytochrome c was inhibited 50%, and the reduction of ferricyanide was inhibited only 30%. Antiserum was also used to compare the cross reactivities of NR from squash cotyledons, spinach, corn, and soybean leaves, Chlorella vulgaris, and Neurospora crassa. These tests revealed a high degree of similarity between NADH:NR from the squash and spinach, while NADH:NR from corn and soybean and the NAD(P)H:NR from soybean were less closely related to the squash NADH:NR. The green algal (C. vulgaris) NADH:NR and the fungal (N. crassa) NADPH:NR were very low in cross reactivity and are apparently quite different from squash NADH:NR in antigenicity. Antiserum to N. crassa NADPH:NR failed to give a positive Ouchterlony result with higher plant or C. vulgaris NADH:NR, but this antiserum did inhibit the activity of squash NR. Thus, it can be concluded from these immunological comparisons that all seven forms of assimilatory NR studied here have antigenic determinants in common and are probably derived from a common ancestor. Although these assimilatory NR have similar catalytic characteristics, they appear to have diverged to a great degree in their structural features. Images PMID:16662083

  20. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  1. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal.

    PubMed

    Doorn, Jonathan A; Maser, Edmund; Blum, Andreas; Claffey, David J; Petersen, Dennis R

    2004-10-19

    4-Oxonon-2-enal (4ONE) was demonstrated to be a product of lipid peroxidation, and previous studies found that it was highly reactive toward DNA and protein. The present study sought to determine whether carbonyl reductase (CR) catalyzes reduction of 4ONE, representing a potential pathway for metabolism of the lipid peroxidation product. Recombinant CR was cloned from a human liver cDNA library, expressed in Escherichia coli, and purified by metal chelate chromatography. Both 4ONE and its glutathione conjugate were found to be substrates for CR, and kinetic parameters were calculated. TLC analysis of reaction products revealed the presence of three compounds, two of which were identified as 4-hydroxynon-2-enal (4HNE) and 1-hydroxynon-2-en-4-one (1HNO). GC/MS analysis confirmed 4HNE and 1HNO and identified the unknown reaction product as 4-oxononanal (4ONA). Analysis of oxime derivatives of the reaction products via LC/MS confirmed the unknown as 4ONA. The time course for CR-mediated, NADPH-dependent 4ONE reduction and appearance of 4HNE and 1HNO was determined using HPLC, demonstrating 4HNE to be a major product and 1HNO and 4ONA to be minor products. Simulated structures of 4ONE in the active site of CR/NADPH calculated via docking experiments predict the ketone positioned as primary hydride acceptor. Results of the present study demonstrate that 4ONE is a substrate for CR/NADPH and the enzyme may represent a pathway for biotransformation of the lipid. Furthermore, these findings reveal that CR catalyzes hydride transfer selectively to the ketone but also to the aldehyde and C=C of 4ONE, resulting in 4HNE, 1HNO, and 4ONA, respectively.

  2. Metabolism of bupropion by carbonyl reductases in liver and intestine.

    PubMed

    Connarn, Jamie N; Zhang, Xinyuan; Babiskin, Andrew; Sun, Duxin

    2015-07-01

    Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites. U.S. Government work not protected by U.S. copyright.

  3. Characterization of thioredoxin glutathione reductase in Schiotosoma japonicum.

    PubMed

    Han, Yanhui; Zhang, Min; Hong, Yang; Zhu, Zhu; Li, Dong; Li, Xiangrui; Fu, Zhiqiang; Lin, Jiaojiao

    2012-09-01

    Schistosomiasis is one of the most prevalent and serious parasitic diseases in the world and remains an important public health problem in China. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, we cloned a cDNA encoding Schistosoma japonicum (S. japonicum) thioredoxin glutathione reductase (SjTGR) from the cDNA of 42-day-old adult worms. The open reading frame (ORF) of the gene was 1791 base pairs (bp) encoding a protein of 596 amino acids. SjTGR was subcloned into pET-32a (+) and expressed in Escherichia coli (E. coli) BL21 (DE3). The recombinant protein rSjTGR exhibited enzymatic activity of 5.13U/mg with DTNB as the substrate, and showed strong immunogenecity. Real-time PCR results indicated that SjTGR was expressed at a higher level in 35-day-old schistosome worms in transcript. We vaccinated BALB/c mice with rSjTGR in combination with MONTANIDE™ ISA 206 VG (ISA 206) and observed a 33.50% to 36.51% (P<0.01) decrease in the adult worm burden and a 33.73%to 43.44% (P<0.01) decrease in the number of eggs counted compared to the ISA 206 or blank control groups in two independent vaccination tests. ELISA analysis demonstrated that rSjTGR induced a high level of SjTGR-specific IgG, IgG1, and IgG 2a antibodies and induced elevated production of IFN-γ. This study provides the basis for further investigations into the biological function of SjTGR and further evaluation of the potential use of this molecule as a vaccine candidate or new drug target is warranted.

  4. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on kcat were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The Ki for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis. PMID:26637016

  5. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.

  6. Environmental Adaptation of Dihydrofolate Reductase from Deep-Sea Bacteria.

    PubMed

    Ohmae, Eiji; Gekko, Kunihiko; Kato, Chiaki

    2015-01-01

    In order to elucidate the molecular adaptation mechanisms of enzymes to the high hydrostatic pressure of the deep sea, we cloned, purified, and characterized more than ten dihydrofolate reductases (DHFRs) from bacteria living in deep-sea and ambient atmospheric pressure environments. The nucleotide and amino acid sequences of these DHFRs indicate the deep-sea bacteria are adapted to their environments after the differentiation of their genus from ancestors inhabiting atmospheric pressure environments. In particular, the backbone structure of the deep-sea DHFR from Moritella profunda (mpDHFR) almost overlapped with the normal homolog from Escherichia coli (ecDHFR). Thus, those of other DHFRs would also overlap on the basis of their sequence similarities. However, the structural stability of both DHFRs was quite different: compared to ecDHFR, mpDHFR was more thermally stable but less stable against urea and pressure unfolding. The smaller volume changes due to unfolding suggest that the native structure of mpDHFR has a smaller cavity and/or enhanced hydration compared to ecDHFR. High hydrostatic pressure reduced the enzymatic activity of many DHFRs, but three deep-sea DHFRs and the D27E mutant of ecDHFR exhibited pressure-dependent activation. The inverted activation volumes from positive to negative values indicate the modification of their structural dynamics, conversion of the rate-determining step of the enzymatic reaction, and different contributions of the cavity and hydration to the transition-state structure. Since the cavity and hydration depend on amino acid side chains, DHFRs would adapt to the deep-sea environment by regulating the cavity and hydration by substituting their amino acid side chains without altering their backbone structure. The results of this study clearly indicate that the cavity and hydration play important roles in the adaptation of enzymes to the deep-sea environment.

  7. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.

    PubMed

    Wu, Sheng-Yi; Rothery, Richard A; Weiner, Joel H

    2015-10-09

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase*

    PubMed Central

    Wu, Sheng-Yi; Rothery, Richard A.; Weiner, Joel H.

    2015-01-01

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser719, NarG-His1163, and NarG-His1184); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His1092 and NarG-His1098). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of −88 and −36 mV, respectively). Ala variants of His1092 and His1098 also elicit large ΔEm values of −143 and −101 mV, respectively. An Arg variant of His1092 elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. PMID:26297003

  9. The Reaction Mechanism of Methyl-Coenzyme M Reductase

    PubMed Central

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-01-01

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mm). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(NiI)·CH3SCoM) is highly favored (Kd = 79 μm). Only then can the chemical reaction occur (kobs = 20 s−1 at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(NiII)·CoB7S−·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates. PMID:25691570

  10. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  11. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.

    PubMed Central

    Maglia, Giovanni; Javed, Masood H; Allemann, Rudolf K

    2003-01-01

    DHFR (dihydrofolate reductase) catalyses the metabolically important reduction of 7,8-dihydrofolate by NADPH. DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR), which shares similarity with DHFR from Escherichia coli, has previously been characterized structurally. Its tertiary structure is similar to that of DHFR from E. coli but it is the only DHFR characterized so far that relies on dimerization for stability. The midpoint of the thermal unfolding of TmDHFR was at approx. 83 degrees C, which was 30 degrees C higher than the melting temperature of DHFR from E. coli. The turnover and the hydride-transfer rates in the kinetic scheme of TmDHFR were derived from measurements of the steady-state and pre-steady-state kinetics using absorbance and stopped-flow fluorescence spectroscopy. The rate constant for hydride transfer was found to depend strongly on the temperature and the pH of the solution. Hydride transfer was slow (0.14 s(-1) at 25 degrees C) and at least partially rate limiting at low temperatures but increased dramatically with temperature. At 80 degrees C the hydride-transfer rate of TmDHFR was 20 times lower than that observed for the E. coli enzyme at its physiological temperature. Hydride transfer depended on ionization of a single group in the active site with a p K(a) of 6.0. While at 30 degrees C, turnover of substrate by TmDHFR was almost two orders of magnitude slower than by DHFR from E. coli; the steady-state rates of the two enzymes differed only 8-fold at their respective working temperatures. PMID:12765545

  12. Mechanistic studies of ribonucleoside triphosphate reductase from Lactobacillus leichmannii

    SciTech Connect

    Harris, G.M.

    1984-01-01

    The mechanism of action of the adenosylcobalamin (AdoCbl)-dependent ribonucleoside triphosphate reductase (RTPR) was investigated using isotope effect and substrate specificity studies. These experiments were conducted on RTPR purified by a new method from Lactobacillus leichmannii. Isotope effect studies using (3{prime}-{sup 3}H)UTP and (3{prime}-{sup 3}H)ATP demonstrated that the 3{prime} C-H bond of the nucleotide is cleaved in order to cleave the 2{prime} C-OH bond. AdoCbl does not act as a direct H abstractor from the 3{prime} position of the substrate, but instead is thought to act as a radical chain initiator to generate an amino acid radical on the enzyme. Further support for this enzyme mediated cleavage of the 3{prime} C-H bond of the nucleotide and the novel role of AdoCbl came from studies using (3{prime}{sup 3}H)2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate ((3{prime}-{sup 3}H)CIUTP). Evidence is presented that during the course of this reaction, the {sup 3}H abstracted from the 3{prime} position of (3{prime}-{sup 3}H)CIUTP was either exchanged with the solvent or returned to the {beta} face of the 2{prime} position to produce (2{prime}{sup 3}H)-2{prime}-deoxy-3{prime}-ketoUTP. This result demonstrates that RTPR is capable of catalyzing a rearrangement reaction. The significance of the RTPR-catalyzed rearrangement with respect to the AdoCbl-dependent enzymes which catalyze rearrangements is discussed.

  13. Short-chain dehydrogenases/reductases in cyanobacteria.

    PubMed

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  14. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    SciTech Connect

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  15. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    PubMed Central

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  16. Methylenetetrahydrofolate Reductase gene polymorphism in children with allergic rhinitis.

    PubMed

    Dogru, M; Aydin, H; Aktas, A; Cırık, A A

    2015-01-01

    Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms by impairing folate metabolism may influence the development of allergic diseases. The results of studies evaluating the relationship between MTHFR polymorphisms and atopic disease are controversial. The aim of this study was to investigate the association between the polymorphisms of C677T and A1298C for MTHFR gene and allergic rhinitis (AR) in children. Ninety patients followed up with diagnosis of allergic rhinitis in our clinic and 30 children with no allergic diseases were included in the study. All participants were genotyped for the MTHFR (C677T) and (A1298C) polymorphisms. Vitamin b12, folate and homocysteine levels were measured. The mean age of patients was 9.2±2.9 years; 66.7% of the patients were male. There was no significant difference between patient and control groups regarding gender, age and atopy history of the family (p>0.05). The frequency of homozygotes for MTHFR C677T polymorphism in the patient and control groups was 3.3% and 10%, respectively. The frequency of homozygotes for MTHFR A1298C polymorphism among groups was 26.7% and 16.7%, respectively. The association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene was not statistically significant in patients compared with controls (p>0.05). There were no statistically significant differences between the patients and the control group in terms of serum vitamin b12, folate and homocysteine levels (p>0.05). We found no evidence for an association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene in children. Further studies investigating the relationship between MTHFR polymorphism and AR are required. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.

  17. Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase

    PubMed Central

    Leitsch, David; Kolarich, Daniel; Wilson, Iain B. H; Altmann, Friedrich; Duchêne, Michael

    2007-01-01

    Metronidazole, a 5-nitroimidazole drug, has been the gold standard for several decades in the treatment of infections with microaerophilic protist parasites, including Entamoeba histolytica. For activation, the drug must be chemically reduced, but little is known about the targets of the active metabolites. Applying two-dimensional gel electrophoresis and mass spectrometry, we searched for protein targets in E. histolytica. Of all proteins visualized, only five were found to form adducts with metronidazole metabolites: thioredoxin, thioredoxin reductase, superoxide dismutase, purine nucleoside phosphorylase, and a previously unknown protein. Recombinant thioredoxin reductase carrying the modification displayed reduced enzymatic activity. In treated cells, essential non-protein thiols such as free cysteine were also affected by covalent adduct formation, their levels being drastically reduced. Accordingly, addition of cysteine allowed E. histolytica to survive in the presence of otherwise lethal metronidazole concentrations and reduced protein adduct formation. Finally, we discovered that thioredoxin reductase reduces metronidazole and other nitro compounds, suggesting a new model of metronidazole activation in E. histolytica with a central role for thioredoxin reductase. By reducing metronidazole, the enzyme renders itself and associated thiol-containing proteins vulnerable to adduct formation. Because thioredoxin reductase is a ubiquitous enzyme, similar processes could occur in other eukaryotic or prokaryotic organisms. PMID:17676992

  18. Structural basis for cyclopropanation by a unique enoyl-acyl carrier protein reductase

    PubMed Central

    Khare, Dheeraj; Hale, Wendi A.; Tripathi, Ashootosh; Gu, Liangcai; Sherman, David H.; Gerwick, William H.; Håkansson, Kristina; Smith, Janet L.

    2015-01-01

    The natural product curacin A, a potent anticancer agent, contains a rare cyclopropane group. The five enzymes for cyclopropane biosynthesis are highly similar to enzymes that generate a vinyl chloride moiety in the jamaicamide natural product. The structural biology of this remarkable catalytic adaptability is probed with high-resolution crystal structures of the curacin cyclopropanase (CurF ER), an in vitro enoyl reductase (JamJ ER), and a canonical curacin enoyl reductase (CurK ER). The JamJ and CurK ERs catalyze NADPH-dependent double bond reductions typical of enoyl reductases (ERs) of the medium chain dehydrogenase reductase (MDR) superfamily. Cyclopropane formation by CurF ER is specified by a short loop which, when transplanted to JamJ ER, confers cyclopropanase activity on the chimeric enzyme. Detection of an adduct of NADPH with the model substrate crotonyl-CoA provides indirect support for a recent proposal of a C2-ene intermediate on the reaction pathway of MDR enoyl-thioester reductases. PMID:26526850

  19. Structural and biochemical properties of cloned and expressed human and rat steroid 5. alpha. -reductases

    SciTech Connect

    Andersson, S.; Russell, D.W. )

    1990-05-01

    The microsomal enzyme steroid 5{alpha}-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5{alpha}-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5{alpha}-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5{alpha}-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5{alpha}-reductases.

  20. α-Glucosidase and aldose reductase inhibitory activities from the fruiting body of Phellinus merrillii.

    PubMed

    Huang, Guan-Jhong; Hsieh, Wen-Tsong; Chang, Heng-Yuan; Huang, Shyh-Shyun; Lin, Ying-Chih; Kuo, Yueh-Hsiung

    2011-05-25

    The inhibitory activity from the isolated component of the fruiting body Phellinus merrillii (PM) was evaluated against α-glucosidase and lens aldose reductase from Sprague-Dawley male rats and compared to the quercetin as an aldose reductase inhibitor and acarbose as an α-glucosidase inhibitor. The ethanol extracts of PM (EPM) showed the strong α-glucosidase and aldose reductase activities. α-Glucosidase and aldose reductase inhibitors were identified as hispidin (A), hispolon (B), and inotilone (C), which were isolated from EtOAc-soluble fractions of EPM. The above structures were elucidated by their spectra and comparison with the literatures. Among them, hispidin, hispolon, and inotilone exhibited potent against α-glucosidase inhibitor activity with IC(50) values of 297.06 ± 2.06, 12.38 ± 0.13, and 18.62 ± 0.23 μg/mL, respectively, and aldose reductase inhibitor activity with IC(50) values of 48.26 ± 2.48, 9.47 ± 0.52, and 15.37 ± 0.32 μg/mL, respectively. These findings demonstrated that PM may be a good source for lead compounds as alternatives for antidiabetic agents currently used. The importance of finding effective antidiabetic therapeutics led us to further investigate natural compounds.

  1. Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli.

    PubMed Central

    Sambasivarao, D; Scraba, D G; Trieber, C; Weiner, J H

    1990-01-01

    Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane. Images PMID:2170332

  2. Daio-Orengedokuto inhibits HMG-CoA reductase and pancreatic lipase.

    PubMed

    Kim, Young-Suk; Jung, Eun-Ah; Shin, Ji-Eun; Chang, Jong-Chul; Yang, Hyung-Kil; Kim, Nam-Jae; Cho, Ki-Ho; Bae, Hyung-Sup; Moon, Sang-Kwan; Kim, Dong-Hyun

    2002-11-01

    To evaluate the antihyperlipidemic activities of Orengedokuto (OT) and Daio-Orengedokuto (DOT), the inhibitory effects of these polyprescriptions on HMG-CoA reductase and pancreatic lipase and on the rat hyperlipidemic model induced by Triton WR-1339 were measured. OT potently inhibited HMG-CoA reductase but did not inhibit lipase. Among their ingredients, Coptidis Rhizoma was the most potent inhibitor, followed by Rhei Rhizoma. The HMG-CoA reductase-inhibitory activity of 80% EtOH extract was superior to that of water extract. However, DOT potently inhibited HMG CoA-reductase as well as pancreatic lipase. In the rat hyperlipidemic model induced by Triton WR-1339, OT and DOT decreased serum total cholesterol and low-density lipoprotein cholesterol levels. DOT also decreased serum triglyceride levels, but OT did not decrease it. These results suggest that the antihyperlipidemic activity of DOT may originate from the inhibition of pancreatic lipase as well as HMG-CoA reductase.

  3. Purification and characterization of morphinone reductase from Pseudomonas putida M10.

    PubMed

    French, C E; Bruce, N C

    1994-07-01

    The NADH-dependent morphinone reductase from Pseudomonas putida M10 catalyses the reduction of morphinone and codeinone to hydromorphone and hydrocodone respectively. Morphinone reductase was purified from crude cell extracts to apparent homogeneity in a single affinity-chromatography step using Mimetic Yellow 2. The purified enzyme was a dimeric flavoprotein with two identical subunits of M(r) 41,100, binding non-covalently one molecule of FMN per subunit. The N-terminal sequence was PDTSFSNPGLFTPLQ. Morphinone reductase was active against morphinone, codeinone, neopinone and 2-cyclohexen-1-one, but not against morphine, codeine or isocodeine. The apparent Km values for codeinone and 2-cyclohexen-1-one were 0.26 mM and 5.5 mM respectively. The steroids progesterone and cortisone were potent competitive inhibitors; the apparent K1 for cortisone was 35 microM. The pH optimum for codeinone reduction was 8.0 in phosphate buffer. No reverse reaction could be detected, and NADPH could not be used as a reducing substrate in place of NADH. Morphinone reductase activity was strongly inhibited by 0.01 mM CuSO4 and p-hydroxymercuribenzoate, suggesting the presence of a vital thiol group. Steady-state kinetic studies suggested a Ping Pong (substituted enzyme) kinetic mechanism; however, product-inhibition patterns were inconsistent with a classical Ping Pong mechanism. Morphinone reductase may, like several other flavoprotein dehydrogenases, operate by a hybrid two-site Ping Pong mechanism.

  4. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed Central

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control. PMID:10861207

  5. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D

    2000-07-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control.

  6. Enzymatic removal of diacetyl from beer. II. Further studies on the use of diacetyl reductase.

    PubMed

    Tolls, T N; Shovers, J; Sandine, W E; Elliker, P R

    1970-04-01

    Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase.

  7. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate.

    PubMed

    Assinder, S J; Johnson, C; King, K; Nicholson, H D

    2004-12-01

    Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.

  8. Distinct Conformational Behaviors of Four Mammalian Dual-Flavin Reductases (Cytochrome P450 Reductase, Methionine Synthase Reductase, Neuronal Nitric Oxide Synthase, Endothelial Nitric Oxide Synthase) Determine their Unique Catalytic Profiles

    PubMed Central

    Haque, Mohammad Mahfuzul; Bayachou, Mekki; Tejero, Jesus; Kenney, Claire; Pearl, Naw May; Im, Sang-Choul; Waskell, Lucy; Stuehr, Dennis J.

    2014-01-01

    Multi-domain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions, and relationships between these parameters and catalytic activity is not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian di-flavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase (CPR), methionine synthase reductase (MSR), and endothelial and neuronal NO synthase (eNOS & nNOS). We used stopped-flow spectroscopy, single turnover methods, and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. Results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12 to 72% open state) and also vary 100-fold regarding their rates of conformational switching between unreactive closed and reactive open states (CPR > nNOS > MSR > eNOS). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. Our study is the first to quantify these conformational parameters among the di-flavin enzymes, and suggests how the parameters might be manipulated to speed or slow biological electron flux. PMID:25265015

  9. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-05

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  10. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  11. Expression and purification of spinach nitrite reductase in E. coli

    SciTech Connect

    Bellissimo, D.; Privalle, L. )

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth were also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.

  12. Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids

    PubMed Central

    Shaik, Ayub; Thumma, Vishnu; Kotha, Aruna Kumari; Kramadhati, Sandhya; Pochampally, Jalapathy; Bandi, Seshagiri

    2016-01-01

    The functional inference of UniProtKB nitrate reductase enzyme (UniProtKB - P0AF33) through structural modeling is of interest in plant biology. Therefore, a homology model for UniProtKB variant of the enzyme was constructed using available data with the MODELER software tool. The model was further docked with five natural flavonoid structures such as hesperetin, naringenin, leucocyanidin, quercetin and hesperetin triacetate using the AUTODOCK (version 4.2) software tool. The structure aided molecular interactions of these flavonoids with nitrate reductase is documented in this study. The binding features (binding energy (ΔG) value, H bonds and docking score) hesperetin to the enzyme model is relatively high, satisfactory and notable. This data provides valuable insights to the relative binding of several naturally occurring flavonoids to nitrate reductase enzyme and its relevance in plant biology. PMID:28405127

  13. Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution.

    PubMed

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    Physarum polycephalum cytochrome b(5) reductase catalyzes the reduction of cytochrome b(5) by NADH. The structure of P. polycephalum cytochrome b(5) reductase was determined at a resolution of 1.56 A. The molecular structure was compared with that of human cytochrome b(5) reductase, which had previously been determined at 1.75 A resolution [Bando et al. (2004), Acta Cryst. D60, 1929-1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  14. Crystallization and preliminary X-ray crystallographic studies of pig heart carbonyl reductase

    SciTech Connect

    Aoki, Ken-ichi; Tanaka, Nobutada; Ishikura, Shuhei; Araki, Naoko; Imamura, Yorishige; Hara, Akira; Nakamura, Kazuo T.

    2006-10-01

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.

  15. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  16. [Progress in research of aldose reductase inhibitors in traditional medicinal herbs].

    PubMed

    Feng, Chang-Gen; Zhang, Lin-Xia; Liu, Xia

    2005-10-01

    The traditional medicinal herbs are natural product, and have no obviously toxic action and side effect, and their resources are extensive. The adverse effects produced by aldose reductase inhibitors in traditional medicinal herbs are less than those from chemical synthesis and micro-organism, they can effectively prevent and delay diabetic complication, such as diabetic nephropathy, vasculopathy, retinopathy, peripheral neuropathy, and so on. They will have a wonderful respect. Flavonoid compounds and their derivates from traditional medicinal herbs are active inhibitors to aldose reductase, such as quercetin, silymarin, puerarin, baicalim, berberine and so on. In addition, some compound preparations show more strongly activity in inhibiting aldose reductase and degrading sorbitol contents, such as Shendan in traditional medicinal herbs being active inhibitors and Jianyi capsule, Jinmaitong composita, Liuwei Di-huang pill, et al. The progresses definite functions of treating diabetes complications have been reviewed.

  17. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  18. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity

    PubMed Central

    Takao, Haruna; Hirabayashi, Kei; Nishigaya, Yuki; Kouriki, Haruna; Nakaniwa, Tetsuko; Hagiwara, Yoshinori; Harada, Jiro; Sato, Hideaki; Yamazaki, Toshimasa; Sakakibara, Yoichi; Suiko, Masahito; Asada, Yujiro; Takahashi, Yasuhiro; Yamamoto, Ken; Fukuyama, Keiichi; Sugishima, Masakazu; Wada, Kei

    2017-01-01

    Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proximal and distal biliverdins, bind with stacked geometry in the active site. The nicotinamide ring of the NADP+ is located close to the reaction site on the proximal biliverdin, supporting that the hydride directly attacks this position of the proximal biliverdin. The results of mutagenesis studies suggest that a conserved Arg185 is essential for the catalysis. The distal biliverdin probably acts as a conduit to deliver the proton from Arg185 to the proximal biliverdin, thus yielding bilirubin. PMID:28169272

  19. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    PubMed Central

    Beierlein, Jennifer M.; Frey, Kathleen M.; Bolstad, David B.; Pelphrey, Phillip M.; Joska, Tammy M.; Smith, Adrienne E.; Priestley, Nigel D.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 Å resolution. The structure reveals several features that can be exploited for further development of this lead series. PMID:19007108

  20. Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Moura, I.; Lino, A. R.; Moura, J. J. G.; Legall, J.

    1988-02-01

    Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas. For each molecule of desulforubidin, there are two sirohemes and four [4Fe-4S] clusters. The [4Fe-4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe-4S]2+ cluster. Such an exchange-coupled siroheme-[4Fe-4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli/1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris/2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe-4S]2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

  1. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  2. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  3. Partial Purification and Characterization of d-Ribose-5-phosphate Reductase from Adonis vernalis L. Leaves

    PubMed Central

    Negm, Fayek B.; Marlow, Gary C.

    1985-01-01

    This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+ → d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis. PMID:16664320

  4. Synthesis of nitrate reductase components in chlorate-resistant mutants of Escherichia coli.

    PubMed Central

    MacGregor, C H

    1975-01-01

    Specific antibody to purified nitrate reductase from Escherichia coli was used to identify enzyme components present in mutants which lack functional nitrate reductase. chlA and B mutants contained all three subunits present in the wild-type enzyme. Different peptides with a broad range of molecular weights could be precipitated from chlCmutants, and chlE mutants contained either slightly degraded enzyme subunits or no precipitable protein. No mutants produced significant amounts of cytoplasmic enzyme. The chlA and B loci are suggested to function in the synthesis and attachment of a molybdenum-containing factor. The chlC locus is suggested to be the structural gene for nitrate reductase subunit A and chlE is suggested to be involved in the synthesis of the cytochrome b1 apoprotein. PMID:1090592

  5. A DFT-based QSAR study on inhibition of human dihydrofolate reductase.

    PubMed

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy

    2016-11-01

    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R(2)=0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors.

  6. [Iron content and electron donor specificity of the nitrate reductase from Ankistrodesmus].

    PubMed

    Zumft, W G; Spiller, H; Yeboah-Smith, I

    1972-09-01

    Nitrate reductase (EC 1.6.6.1-2) purified from nitrogen-deficient cells of Ankistrodesmus braunii has the same characteristics previously described for the enzyme from Chlorella fusca. Nitrogen-deficient cells were chosen as a source for nitrate reductase because of a pronounced rise of enzymatic activity after about 20 days of growth, which surpassed even the specific activity present in normal cells. This nitrate reductase exhibits a twofold specificity towards NADH and NADPH which shows a constant ratio during enzyme purification and cannot be separated by gelfiltration or density gradient centrifugation. By growing Ankistrodesmus in the presence of radioactive (55)Fe, the incorporation of this metal into the purified enzyme could be demonstrated. A scheme is presented for the enzymatic mechanism of nitrate reduction in green algae.

  7. Circadian variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in swine liver and ileum.

    PubMed

    Rogers, D H; Kim, D N; Lee, K T; Reiner, J M; Thomas, W A

    1981-07-01

    The temporal variation of HMG-CoA reductase activity in the liver and intestine of swine was investigated. The thin-layer chromatographic method widely used in the assay of the reductase was successfully applied to the porcine enzymes. Parallel circadian rhythms were demonstrated in both hepatic and ileal reductases from mash-fed animals. Peak activity occurred approximately 6 hr after feeding, 2.7-fold over the basal level in the liver, and 1.6-fold in the ileum. A milk-cholesterol diet caused a marked depression of both rhythms (90% in liver, 50% in ileum); however, the hourly variation in activity persisted in both organs. Cholestyramine was found to elevate hepatic activity (2.7-fold throughout the rhythm) without affecting that of the intestine. Clofibrate had no effect on either enzyme at any time during the cycle despite a 34% reduction in serum cholesterol concentrations.

  8. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  9. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism

    PubMed Central

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J. B.

    2016-01-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  10. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum

    PubMed Central

    2013-01-01

    The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of “-ene” reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover “-ene” reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,β-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE “-ene” reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme. PMID:27547488

  11. Rnr4p, a novel ribonucleotide reductase small-subunit protein.

    PubMed Central

    Wang, P J; Chabes, A; Casagrande, R; Tian, X C; Thelander, L; Huffaker, T C

    1997-01-01

    Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex. PMID:9315671

  12. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.

  13. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review

    PubMed Central

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.

    2016-01-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  14. Biological Role of Aldo–Keto Reductases in Retinoic Acid Biosynthesis and Signaling

    PubMed Central

    Ruiz, F. Xavier; Porté, Sergio; Parés, Xavier; Farrés, Jaume

    2012-01-01

    Several aldo–keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance. PMID:22529810

  15. Two new phenylpropanoids from Swertia atroviolacea and their anti-5α-reductase activity.

    PubMed

    Wu, Hai-Yan; Kan, Xue-Qing; Sheng, Yu; Mou, Lin-Yun; Yang, Qing-Song; Hu, Qiu-Feng; Li, Gan-Peng

    2017-06-01

    Two new phenylpropanoids (1-2), together with two known lignans (3-4), were isolated from whole herb of Swertia atroviolacea. The structures of the new metabolites were established on the basis of detailed spectroscopic analysis. Compounds 1 and 2 were evaluated for their anti-5α-reductase activity. The results revealed that 1 and 2 showed weak activity with reductase inhibitions of 45.6 ± 2.8% and 38.4 ± 2.5%, respectively.

  16. Interaction of Product Analogues With the Active Site of Rhodobacter Sphaeroides Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Nelson, K.J.; Harris, H.H.; Doonan, C.J.; Rajagopalan, K.V.; /Saskatchewan U. /Duke U. /Sydney U.

    2007-07-09

    We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethylsulfoxide (DMSO) reductase reduced with trimethylarsine, and show that this is structurally analogous to the physiologically relevant dimethylsulfide-reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species, and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The similarity of the trimethylarsine and dimethylsulfide complexes suggests in turn that the dimethylsulfide reduced enzyme possesses a classical coordination of DMSO with no special elongation of the S-O bond, as previously suggested.

  17. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae

    SciTech Connect

    Takuma, Shinya; Nakashima, Noriyuki; Tantirungkij, Manee

    1991-12-31

    A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast, Pichia stipitis. DNA sequence analysis showed that the gene consists of 951 bp. The gene introduced in Saccharomyces cerevisiae was transcribed to mRNA, and a considerable amount of enzyme activity was observed constitutively, whereas transcription and translation in P steps were inducible. S. cerevisiae carrying the xylose reductase gene could not, however, grow on xylose medium, and could not produce ethanol from xylose. Since xylose uptake and accumulation of xylitol by S. cerevisiae were observed, the conversion of xylitol to xylulose seemed to be limited.

  18. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  19. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase.

    PubMed Central

    Goldberg, I; Lonberg-Holm, K; Bagley, E A; Stieglitz, B

    1983-01-01

    Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains. Images PMID:6349526

  20. Influence of Nickel on the Detection of Nitrate Reductase Activity in Sorghum Extracts 1

    PubMed Central

    Maranville, Jerry W.

    1970-01-01

    The addition of nickel (4 × 10−3m) to the extracting buffer enhances the nitrate reductase activity in preparations of young grain sorghum (Sorghum bicolor L. [Moench] leaf tissue by as much as 6-fold. Activities comparable to other plant species are obtained over an extraction pH range of 7 to 8 with tris buffer and reduced nicotinamide adenine dinucleotide as a cofactor for the reaction when the ratio of plant material to extraction medium is 1:20. The method also enhances nitrate reductase activity in sudangrass (Sorghum sudanense P. [Stapf]). PMID:16657349

  1. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  2. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  3. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  4. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  5. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase.

    PubMed

    Barber, M J; Quinn, G B

    2001-11-01

    A gene has been constructed coding for a unique fusion protein, NADH:cytochrome c reductase, that comprises the soluble heme-containing domain of rat hepatic cytochrome b(5) as the amino-terminal portion of the protein and the soluble flavin-containing domain of rat hepatic cytochrome b(5) reductase as the carboxyl terminus. The gene has been expressed in Escherichia coli resulting in the highly efficient production of a functional hybrid hemoflavoprotein which has been purified to homogeneity by a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP agarose, and size-exclusion chromatography. The purified protein exhibited a molecular mass of approximately 46 kDa by polyacrylamide gel electrophoresis and 40,875 Da, for the apoprotein, using mass spectrometry which also confirmed the presence of both heme and FAD prosthetic groups. The fusion protein showed immunological cross-reactivity with both anti-rat cytochrome b(5) and anti-rat cytochrome b(5) reductase antibodies indicating the conservation of antigenic determinants from both native domains. Spectroscopic analysis indicated the fusion protein contained both a b-type cytochrome and flavin chromophors with properties identical to those of the native proteins. Amino-terminal and internal amino acid sequencing confirmed the identity of peptides derived from both the heme- and flavin-binding domains with sequences identical to the deduced amino acid sequence. The isolated fusion protein retained NADH:ferricyanide reductase activity (k(cat) = 8.00 x 10(2) s(-1), K(NADH)(m) = 4 microM, K(FeCN(6))(m) = 11 microM) comparable to that of that of native NADH:cytochrome b(5) reductase and also exhibited both NADH:cytochrome c reductase activity (k(cat) = 2.17 x 10(2) s(-1), K(NADH)(m) = 2 microM, K(FeCN(6))(m) = 11 microM, K(Cyt.c)(m) = 1 microM) and NADH:methemoglobin reductase activity (k(cat) = 4.40 x 10(-1) s(-1), K(NADH)(m) = 3 microM, K(mHb)(m) = 47 microM), the latter two activities

  6. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase.

    PubMed

    Lee, C Y; Meighen, E A

    1997-04-04

    The channelling of fatty acids into the fatty aldehyde substrate for the bacterial bioluminescence reaction is catalyzed by a fatty acid reductase multienzyme complex, which channels fatty acids through the thioesterase (LuxD), synthetase (LuxE) and reductase (LuxC) components. Although all three components can be readily acylated in extracts of different luminescent bacteria, this complex has been successfully purified only from Photobacterium phosphoreum and the sites of acylation identified on LuxD and LuxE. To identify the acylation site on LuxC, the nucleotide sequence of P. phosphoreum luxC has been determined and the gene expressed in a mutant Escherichia coli strain. Even in crude extracts, the acylated reductase intermediate as well as acyl-CoA reductase activity could be readily detected, providing the basis for analysis of mutant reductases. Comparison of the amino-acid sequences of LuxC from P. phosphoreum, P. leiognathi and other luminescent bacteria, showed that only three cysteine residues (C171, C279, and C286) were conserved. As a cysteine residue on LuxC has been implicated in fatty acyl transfer, each of the conserved cysteine residues of the P. phosphoreum and P. leiognathi reductases was converted to a serine residue, and the properties of the mutant proteins examined. Only mutation of C286-blocked reductase activity and prevented formation of the acylated reductase intermediate, showing that C286 is the site of acylation on LuxC.

  7. The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II.

    PubMed

    Lobo, Susana A L; Almeida, Claúdia C; Carita, João N; Teixeira, Miguel; Saraiva, Lígia M

    2008-12-01

    The genome of the sulphate reducing bacterium Desulfovibrio vulgaris Hildenborough, still considered a strict anaerobe, encodes two oxygen reductases of the bd and haem-copper types. The haem-copper oxygen reductase deduced amino acid sequence reveals that it is a Type A2 enzyme, which in its subunit II contains two c-type haem binding motifs. We have characterized the cytochrome c domain of subunit II and confirmed the binding of two haem groups, both with Met-His iron coordination. Hence, this enzyme constitutes the first example of a ccaa3 haem-copper oxygen reductase. The expression of D. vulgaris haem-copper oxygen reductase was found to be independent of the electron donor and acceptor source and is not altered by stress factors such as oxygen exposure, nitrite, nitrate, and iron; therefore the haem-copper oxygen reductase seems to be constitutive. The KCN sensitive oxygen reduction by D. vulgaris membranes demonstrated in this work indicates the presence of an active haem-copper oxygen reductase. D. vulgaris membranes perform oxygen reduction when accepting electrons from the monohaem cytochrome c553, thus revealing the first possible electron donor to the terminal oxygen reductase of D. vulgaris. The physiological implication of the presence of the oxygen reductase in this organism is discussed.

  8. Biliverdin Reductase-A Protein Levels and Activity in the Brains of Subjects with Alzheimer Disease and Mild Cognitive Impairment

    PubMed Central

    Barone, Eugenio; Di Domenico, Fabio; Cenini, Giovanna; Sultana, Rukhsana; Cini, Chiara; Preziosi, Paolo; Perluigi, Marzia; Mancuso, Cesare; Butterfield, D. Allan

    2011-01-01

    Biliverdin reductase-A is a pleiotropic enzyme involved not only in the reduction of biliverdin-IX -alpha into bilirubin-IX-alpha, but also in the regulation of glucose metabolism and cell growth secondary to its serine/threonine/tyrosine kinase activity. Together with heme oxygenase, whose metabolic role is to degrade heme into biliverdin-IX-alpha, it forms a powerful system involved in the cell stress response during neurodegenerative disorders. In this paper, an up-regulation of the biliverdin reductase-A protein levels was found in the hippocampus of the subjects with Alzheimer disease and arguably its earliest form, mild cognitive impairment. Moreover a significant reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A was found, and this was paralleled by a marked reduction in its reductase activity. Interestingly, the levels of both total and phosphorylated biliverdin reductase-A was unchanged as well as its enzymatic activity in the cerebella. These results demonstrated a dichotomy between biliverdin reductase-A protein levels and activity in the hippocampus of subjects affected by Alzheimer disease and mild cognitive impairment, and this effect likely is attributable to a reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A. Consequently, not just the increased levels of biliverdin reductase-A, but also its changed activity and phosphorylation state, should be taken into account when considering potential biomarkers for Alzheimer disease and mild cognitive impairment. PMID:21241799

  9. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from membranes of permeabilized cells.

    PubMed

    Elsabrouty, Rania; Jo, Youngah; Dinh, Tammy T; DeBose-Boyd, Russell A

    2013-11-01

    The polytopic endoplasmic reticulum (ER)-localized enzyme 3-hydroxy-3-methylglutaryl CoA reductase catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids. Excess sterols cause the reductase to bind to ER membrane proteins called Insig-1 and Insig-2, which are carriers for the ubiquitin ligases gp78 and Trc8. The resulting gp78/Trc8-mediated ubiquitination of reductase marks it for recognition by VCP/p97, an ATPase that mediates subsequent dislocation of reductase from ER membranes into the cytosol for proteasomal degradation. Here we report that in vitro additions of the oxysterol 25-hydroxycholesterol (25-HC), exogenous cytosol, and ATP trigger dislocation of ubiquitinated and full-length forms of reductase from membranes of permeabilized cells. In addition, the sterol-regulated reaction requires the action of Insigs, is stimulated by reagents that replace 25-HC in accelerating reductase degradation in intact cells, and is augmented by the nonsterol isoprenoid geranylgeraniol. Finally, pharmacologic inhibition of deubiquitinating enzymes markedly enhances sterol-dependent ubiquitination of reductase in membranes of permeabilized cells, leading to enhanced dislocation of the enzyme. Considered together, these results establish permeabilized cells as a viable system in which to elucidate mechanisms for postubiquitination steps in sterol-accelerated degradation of reductase.

  10. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    PubMed Central

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  11. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  12. Multiple types of 8-vinyl reductases for (bacterio)chlorophyll biosynthesis occur in many green sulfur bacteria.

    PubMed

    Liu, Zhenfeng; Bryant, Donald A

    2011-09-01

    Two 8-vinyl reductases, BciA and BciB, have been identified in chlorophototrophs. The bciA gene of Chlorobaculum tepidum was replaced with genes similar to bciB from other green sulfur bacteria. Pigment analyses of the complemented strains showed that the bciB homologs encode 8-vinyl reductases similar to those of cyanobacteria.

  13. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma.

    PubMed

    Takahashi, M; Hoshi, A; Fujii, J; Miyoshi, E; Kasahara, T; Suzuki, K; Aozasa, K; Taniguchi, N

    1996-04-01

    We examined age-related changes in the protein and the mRNA expression of aldose reductase in livers of Long-Evans with a cinnamon-like color (LEC) rats, which develop hereditary hepatitis and hepatoma with aging, using Long-Evans with an agouti color rats as controls. The levels of the protein and mRNA of aldose reductase increased after 20 weeks, at the stage of acute hepatitis, and were maintained at 60 weeks of age, while those of aldehyde reductase seemed to be constant at all ages. The expression of aldose reductase was marked in cancerous lesions in hepatoma-bearing LEC rat liver compared to uninvolved surrounding tissues. These results indicated that elevation of aldose reductase accompanied hepatocarcinogenesis and may be related to the acquisition of immortality of the cancer cells through detoxifying cytotoxic aldehyde compounds.

  14. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata

    SciTech Connect

    McEwan, A.G.; Greenfield, A.J.; Wetzstein, H.G.; Jackson, J.B.; Ferguson, S.J.

    1985-11-01

    After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.

  15. Physarum polycephalum expresses a dihydropteridine reductase with selectivity for pterin substrates with a 6-(1', 2'-dihydroxypropyl) substitution.

    PubMed

    Wild, Claudia; Golderer, Georg; Gröbner, Peter; Werner-Felmayer, Gabriele; Werner, Ernst R

    2003-07-01

    Physarum polycephalum is one of few non-animal organisms capable of synthesizing tetrahydrobiopterin from GTP. Here we demonstrate developmentally regulated expression of quinoid dihydropteridine reductase (EC 1.6.99.7), an enzyme required for recycling 6,7-[8H]-dihydrobiopterin. Physarum also expresses phenylalanine-4-hydroxylase activity, an enzyme that depends on dihydropteridine reductase. The 24.4 kDa Physarum dihydropteridine reductase shares 43% amino acid identity with the human protein. A number of residues important for function of the mammalian enzyme are also conserved in the Physarum sequence. In comparison to sheep liver dihydropteridine reductase, purified recombinant Physarum dihydropteridine reductase prefers pterin substrates with a 6-(1', 2'-dihydroxypropyl) group. Our results demonstrate that Physarum synthesizes, utilizes and metabolizes tetrahydrobiopterin in a way hitherto thought to be restricted to the animal kingdom.

  16. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27587903

  17. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  18. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure.

    PubMed

    Governa, Paolo; Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

  19. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure

    PubMed Central

    Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets. PMID:27904805

  20. HMG CoA reductase inhibitors (statins) for dialysis patients.

    PubMed

    Palmer, Suetonia C; Navaneethan, Sankar D; Craig, Jonathan C; Johnson, David W; Perkovic, Vlado; Nigwekar, Sagar U; Hegbrant, Jorgen; Strippoli, Giovanni F M

    2013-09-11

    People with advanced kidney disease treated with dialysis experience mortality rates from cardiovascular disease that are substantially higher than for the general population. Studies that have assessed the benefits of statins (HMG CoA reductase inhibitors) report conflicting conclusions for people on dialysis and existing meta-analyses have not had sufficient power to determine whether the effects of statins vary with severity of kidney disease. Recently, additional data for the effects of statins in dialysis patients have become available. This is an update of a review first published in 2004 and last updated in 2009. To assess the benefits and harms of statin use in adults who require dialysis (haemodialysis or peritoneal dialysis). We searched the Cochrane Renal Group's Specialised Register to 29 February 2012 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Randomised controlled trials (RCTs) and quasi-RCTs that compared the effects of statins with placebo, no treatment, standard care or other statins on mortality, cardiovascular events and treatment-related toxicity in adults treated with dialysis were sought for inclusion. Two or more authors independently extracted data and assessed study risk of bias. Treatment effects were summarised using a random-effects model and subgroup analyses were conducted to explore sources of heterogeneity. Treatment effects were expressed as mean difference (MD) for continuous outcomes and risk ratios (RR) for dichotomous outcomes together with 95% confidence intervals (CI). The risk of bias was high in many of the included studies. Random sequence generation and allocation concealment was reported in three (12%) and four studies (16%), respectively. Participants and personnel were blinded in 13 studies (52%), and outcome assessors were blinded in five studies (20%). Complete outcome reporting occurred in nine studies (36%). Adverse events were only reported in nine studies (36