Science.gov

Sample records for 7-tesla magnetic resonance

  1. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  2. Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation

    PubMed Central

    Sanchez Panchuelo, Rosa Maria; Ackerley, Rochelle; Glover, Paul M; Bowtell, Richard W; Wessberg, Johan

    2016-01-01

    Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit’s receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12812.001 PMID:27154626

  3. Brain of rats intoxicated with acrylamide: observation with 4.7 tesla magnetic resonance.

    PubMed

    Kinoshita, Y; Matsumura, H; Igisu, H; Yokota, A

    2000-10-01

    When rats were injected intraperitoneally with acrylamide (50 mg/kg per day) for 8 days, all animals developed ataxia and weakness in the hindlimbs. On examining their brain with an ultrahigh-field (4.7 T) magnetic resonance (MR) spectrometer, the lateral ventricles on both sides and the third ventricle were dilated. The aqueduct and cisterns were also enlarged. The size of the cerebral cortex was quantified in three MR image slices covering the cerebrum. Compared with the images of the brain of body weight-matched controls, the cerebral cortex of rats intoxicated with acrylamide was found to be smaller in the primary motor area in all slices, and in the primary or secondary sensory area in two slices. Taken together with previous enzymatic analyses, rats intoxicated with acrylamide (50 mg/kg per day for 8 days) seem to represent an animal model of acrylamide encephalopathy not only biochemically but also structurally.

  4. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  5. Comparison of 3 and 7 Tesla Magnetic Resonance Imaging of Obstructive Hydrocephalus Caused by Tectal Glioma

    PubMed Central

    Moon, Hyeong Cheol; Baek, Hyeon-Man

    2016-01-01

    Obstructive hydrocephalus caused by tectal glioma, which relived by neuroendoscopy, have been described using 3.0 Tesla magnetic resonance imaging (3T MRI) so far, we present the results obtained from 3T and 7T MRI in this patient. A 21-year-old woman presented at our hospital with gait disturbance, hormonal insufficiency, and urinary incontinence that began prior to 6 years of age. 3.0T MRI revealed a non-enhancing tectal mass along with obstructive hydrocephalus. The mass measured approximately 1.1×1.0×1.2 cm. An endoscopic third ventriculostomy was performed to relieve the hydrocephalus. We compared hydrocephalus and cerebrospinal fluid (CSF) flow findings from 3T and 7T MRI, both preoperative and postoperative at 1, 6 months. Intraventricular CSF voiding on T2-weighted images obtained with 7T MRI showed greater fluid inversion than those obtained with 3T MRI. This study shows that 7T brain MRI can provide detailed information on hydrocephalus caused by tectal glioma. Further studies are needed to develop refined 7T MRI protocols for better images of hydrocephalus. PMID:27867929

  6. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  7. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    PubMed Central

    2010-01-01

    Background To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. Results ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms. Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). Conclusions The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T. PMID:21080933

  8. Assessment of Age-Related Morphometric Changes of Subcortical Structures in Healthy People Using Ultra-High Field 7 Tesla Magnetic Resonance Imaging

    PubMed Central

    Wang, Xue-Yuan; Zhao, Lei; Yu, Tao; Qiao, Liang; Ni, Duan-Yu; Zhang, Guo-Jun; Li, Yong-Jie

    2016-01-01

    Objective: To assess the age-related morphometric changes of subcortical structures in healthy people. Materials and Methods: Ultra-high field 7 tesla magnetic resonance (MR) imaging in humans was used to visualize the subcortical structures of healthy young, middle-aged and elderly participants. Using the magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence, we assessed the visibility of the margins of the thalamus and white matter in the thalamus, as well as the anterior commissure (AC) and posterior commissure (PC) length, the maximal height of the thalamus, the half width of the third ventricle and the distance between the AC and the center of the mammillothalamic tract (MTT) at the level of the AC-PC plane. All quantitative data were statistically evaluated. Results: The AC-PC length did not differ significantly among the three groups. The maximal height of the thalamus decreased with age (rs(53) = −0.719, p < 0.001). The half width of the third ventricle (rs(53) = 0.705, p < 0.001) and the distance between the AC and the center of the MTT (rs(53) = 0.485, p < 0.001) increased with age. The distance between the AC and the center of the MTT of the young and the elderly participants differed significantly (p = 0.007). Conclusion: The AC-PC length is not a good candidate for proportional correction during atlas-to-patient registration. The maximal height of the thalamus and the half width of the third ventricle correlated strongly with age, and the MTT position in relation to the AC shifted posteriorly as age increased. These age-related morphometric changes of subcortical structures should be considered in targeting for functional neurosurgery. PMID:27725800

  9. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging.

    PubMed

    Erni, Daniel; Liebig, Thorsten; Rennings, Andreas; Koster, Norbert H L; Fröhlich, Jürg

    2011-01-01

    We propose an adaptive RF antenna system for the excitation (and manipulation) of the fundamental circular waveguide mode (TE(11)) in the context of high-field (7T) traveling-wave magnetic resonance imaging (MRI). The system consists of composite right-/left-handed (CRLH) meta-material ring antennas that fully conforms to the inner surface of the MRI bore. The specific use of CRLH metamaterials is motivated by its inherent dispersion engineering capabilities, which is needed when designing resonant ring structures for virtually any predefined diameter operating at the given Larmor frequency (i.e. 298 MHz). Each functional group of the RF antenna system consists of a pair of subsequently spaced and correspondingly fed CRLH ring antennas, allowing for the unidirectional excitation of propagating, circularly polarized B(1) mode fields. The same functional group is also capable to simultaneously mold an incoming, counter-propagating mode. Given these functionalities we are proposing now a compound scheme (i.e. periodically arranged multiple antenna pairs)--termed as "MetaBore"--that is apt to provide a tailored RF power distribution as well as full wave reflection compensation virtually at any desired location along the bore.

  10. Development and evaluation of an algorithm for the computer-assisted segmentation of the human hypothalamus on 7-Tesla magnetic resonance images.

    PubMed

    Schindler, Stephanie; Schönknecht, Peter; Schmidt, Laura; Anwander, Alfred; Strauß, Maria; Trampel, Robert; Bazin, Pierre-Louis; Möller, Harald E; Hegerl, Ulrich; Turner, Robert; Geyer, Stefan

    2013-01-01

    Post mortem studies have shown volume changes of the hypothalamus in psychiatric patients. With 7T magnetic resonance imaging this effect can now be investigated in vivo in detail. To benefit from the sub-millimeter resolution requires an improved segmentation procedure. The traditional anatomical landmarks of the hypothalamus were refined using 7T T1-weighted magnetic resonance images. A detailed segmentation algorithm (unilateral hypothalamus) was developed for colour-coded, histogram-matched images, and evaluated in a sample of 10 subjects. Test-retest and inter-rater reliabilities were estimated in terms of intraclass-correlation coefficients (ICC) and Dice's coefficient (DC). The computer-assisted segmentation algorithm ensured test-retest reliabilities of ICC≥.97 (DC≥96.8) and inter-rater reliabilities of ICC≥.94 (DC = 95.2). There were no significant volume differences between the segmentation runs, raters, and hemispheres. The estimated volumes of the hypothalamus lie within the range of previous histological and neuroimaging results. We present a computer-assisted algorithm for the manual segmentation of the human hypothalamus using T1-weighted 7T magnetic resonance imaging. Providing very high test-retest and inter-rater reliabilities, it outperforms former procedures established at 1.5T and 3T magnetic resonance images and thus can serve as a gold standard for future automated procedures.

  11. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field

    PubMed Central

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Introduction Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. Methods The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. Results The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. Conclusion The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system. PMID:26066653

  12. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    PubMed Central

    Sciorati, Clara; Esposito, Antonio; Campana, Lara; Canu, Tamara; Monno, Antonella; Palmisano, Anna; De Cobelli, Francesco; Del Maschio, Alessandro; Ascheman, Dana P.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2014-01-01

    Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI) provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS). Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase) was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement. PMID:24895622

  13. An inverted-microstrip resonator for human head proton MR imaging at 7 tesla.

    PubMed

    Zhang, Xiaoliang; Ugurbil, Kamil; Sainati, Robert; Chen, Wei

    2005-03-01

    As an extension of the previously developed microstrip transmission line (MTL) RF coil design, a high-frequency RF volume coil using multiple inverted MTL (iMTL) resonators for human head imaging at high magnetic field strength of 7 tesla (T) is reported. Compared to conventional MTL resonators, iMTL resonators can operate at higher frequency with lower losses and, thus, are suitable for designs of high-frequency RF volume coils with large coil size for human MR imaging and spectroscopy at high fields. An approach using capacitive terminations was analyzed and applied to the design of the iMTL volume coil for improving RF field homogeneity and broadening frequency-tuning range. A performance-comparison study was conducted between the prototype iMTL volume coil and a custom-built TEM volume coil at 7 T. The iMTL volume coil presents a comparable SNR and intrinsic B1 homogeneity to the TEM volume coil. Phantom and the human head images acquired using the iMTL volume coil are also presented. The proposed iMTL volume coil provides an efficient and alternative solution to design high-frequency and large-size volume coils for human MR applications at very high fields.

  14. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    PubMed Central

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of

  15. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  16. Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet.

    PubMed

    de Vocht, F; Stevens, T; Glover, P; Sunderland, A; Gowland, P; Kromhout, H

    2007-05-01

    The study investigates the impact of exposure to the stray magnetic field of a whole-body 7 T MRI scanner on neurobehavioral performance and cognition. Twenty seven volunteers completed four sessions, which exposed them to approximately 1600 mT (twice), 800 mT and negligible static field exposure. The order of exposure was assigned at random and was masked by placing volunteers in a tent to hide their position relative to the magnet bore. Volunteers completed a test battery assessing auditory working memory, eye-hand co-ordination, and visual perception. During three sessions the volunteers were instructed to complete a series of standardized head movements to generate additional time-varying fields ( approximately 300 and approximately 150 mT.s(-1) r.m.s.). In one session, volunteers were instructed to keep their heads as stable as possible. Performance on a visual tracking task was negatively influenced (P<.01) by 1.3% per 100 mT exposure. Furthermore, there was a trend for performance on two cognitive-motor tests to be decreased (P<.10). No effects were observed on working memory. Taken together with results of earlier studies, these results suggest that there are effects on visual perception and hand-eye co-ordination, but these are weak and variable between studies. The magnitude of these effects may depend on the magnitude of time-varying fields and not so much on the static field. While this study did not include exposure above 1.6 T, it suggests that use of strong magnetic fields is not a significant confounder in fMRI studies of cognitive function. Future work should further assess whether ultra-high field may impair performance of employees working in the vicinity of these magnets.

  17. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia

    PubMed Central

    Rommer, Paulus S.; Wiest, Gerald; Kronnerwetter, Claudia; Zach, Heidemarie; Loader, Benjamin; Elwischger, Kirsten; Trattnig, Siegfried

    2015-01-01

    Vestibular parxoysmia (VP) is a rare vestibular disorder. A neurovascular cross-compression (NVCC) between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. An NVCC can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI), and whether high field MRI may help to differentiate symptomatic from asymptomatic subjects. 7 Tesla MRI was performed in six patients with VP and confirmed NVCC seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic NVCC and that the symptoms of VP are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with VP has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders. PMID:26106306

  18. 7-Tesla MRI demonstrates absence of structural lesions in patients with vestibular paroxysmia.

    PubMed

    Rommer, Paulus S; Wiest, Gerald; Kronnerwetter, Claudia; Zach, Heidemarie; Loader, Benjamin; Elwischger, Kirsten; Trattnig, Siegfried

    2015-01-01

    Vestibular parxoysmia (VP) is a rare vestibular disorder. A neurovascular cross-compression (NVCC) between the vestibulochochlear nerve and an artery seems to be responsible for short attacks of vertigo in this entity. An NVCC can be seen in up to every fourth subject. The significance of these findings is not clear, as not all subjects suffer from symptoms. The aim of the present study was to assess possible structural lesions of the vestibulocochlear nerve by means of high field magnetic resonance imaging (MRI), and whether high field MRI may help to differentiate symptomatic from asymptomatic subjects. 7 Tesla MRI was performed in six patients with VP and confirmed NVCC seen on 1.5 and 3.0 MRI. No structural abnormalities were detected in any of the patients in 7 Tesla MRI. These findings imply that high field MRI does not help to differentiate between symptomatic and asymptomatic NVCC and that the symptoms of VP are not caused by structural nerve lesions. This supports the hypothesis that the nystagmus associated with VP has to be conceived pathophysiologically as an excitatory vestibular phenomenon, being not related to vestibular hypofunction. 7 Tesla MRI outperforms conventional MRI in image resolution and may be useful in vestibular disorders.

  19. Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke

    PubMed Central

    Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

    2014-01-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

  20. Preattentive mechanisms of change detection in early auditory cortex: a 7 Tesla fMRI study.

    PubMed

    Szycik, G R; Stadler, J; Brechmann, A; Münte, T F

    2013-12-03

    The auditory system continuously monitors the environment for irregularities in an automatic, preattentive fashion. This is presumably accomplished by two mechanisms: a sensory mechanism detects a deviant sound on the basis of differential refractoriness of neural populations sensitive to the standard and deviant sounds, whereas the cognitive mechanism reveals deviance by comparing incoming auditory information with a template derived from previous input. Using fast event-related high-resolution functional magnetic resonance imaging at 7 Tesla we show that both mechanisms can be mapped to different parts of the auditory cortex both at the group level and the single-subject level. The sensory mechanism is supported by primary auditory areas in Heschl's gyrus whereas the cognitive mechanism is implemented in more anterior secondary auditory areas. Both mechanisms are equally engaged by simple sine-wave tones and speech-related phonemes indicating that streams of speech and non-speech stimuli are processed in a similar fashion.

  1. MRI at 7 Tesla and above: demonstrated and potential capabilities.

    PubMed

    Kraff, Oliver; Fischer, Anja; Nagel, Armin M; Mönninghoff, Christoph; Ladd, Mark E

    2015-01-01

    With more than 40 installed MR systems worldwide operating at 7 Tesla or higher, ultra-high-field (UHF) imaging has been established as a platform for clinically oriented research in recent years. Along with technical developments that, in part, have also been successfully transferred to lower field strengths, MR imaging and spectroscopy at UHF have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. In terms of applications, this overview article focuses on already achieved advantages for in vivo imaging, i.e., in imaging the brain and joints of the musculoskeletal system, but also considers developments in body imaging, which is particularly challenging. Furthermore, new applications for clinical diagnostics such as X-nuclei imaging and spectroscopy, which only really become feasible at ultra-high magnetic fields, will be presented.

  2. Quantitative techniques for musculoskeletal MRI at 7 Tesla.

    PubMed

    Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J

    2016-12-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

  3. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  4. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  5. Structural and Magnetic Characterization of Superparamagnetic Iron Platinum Nanoparticle Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Esch, Victor; Sillerud, Laurel O.

    2012-01-01

    We report the synthesis, from simple salts, and the physical characterization of superparamagnetic iron platinum nanoparticles (SIPPs) suitable for use as contrast agents in magnetic resonance imaging. The properties of these particles were determined by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), superconducting quantum interference device (SQUID) magnetometry, and nuclear magnetic resonance (NMR) relaxivity at 4.7 Tesla. TEM showed that the diameters of the particles ranged from 9.3 nm to 10 nm, depending on the mole ratio of iron to platinum precursors, and on the concentration of Octadecylamine (ODA) used in their preparation. The iron to platinum stoichiometry determined by ICP-OES varied from 1.4:1 to 3.7:1 and was similarly dependant on the initial mole ratios of iron and platinum salts, as well as on the concentration of ODA in the reaction. SQUID magnetometry showed that the SIPPs were superparamagnetic and had magnetic moments that increased with increasing iron content from 62 to 72 A•m2/kg Fe. The measured relaxivities of the SIPPs at 4.7 Tesla were higher than commercially available superparamagnetic iron oxide nanoparticles (SPIONs), suggesting that these particles may be superior contrast agents in T2-weighted magnetic resonance imaging (MRI). PMID:22872817

  6. Quantitative techniques for musculoskeletal MRI at 7 Tesla

    PubMed Central

    Taylor, Meredith D.; Tarbox, Grayson J.; Palmer, Antony J.; Park, Daniel J.

    2016-01-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems. PMID:28090448

  7. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    PubMed Central

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  8. The Interventional Loopless Antenna at 7 Tesla

    PubMed Central

    Ertürk, Mehmet Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2012-01-01

    The loopless antenna MRI detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at sub-millimeter diameters for inteventional use in guidewires, catheters or needles. Prior work up to 4.7T suggests a near-quadratic gain in signal-to-noise ratio (SNR) with field strength, and safe operation at 3T. Here for the first time, the SNR performance and RF safety of the loopless antenna is investigated both theoretically, using the electro-magnetic method-of-moments, and experimentally in a standard 7T human scanner. The results are compared with equivalent 3T devices. An absolute SNR gain of 5.7±1.5-fold was realized at 7T vs. 3T: more than 20-fold higher than at 1.5T. The effective field-of-view (FOV) area also increased approximately 10-fold compared to 3T. Testing in a saline gel phantom suggested safe operation is possible with maximum local 1-g average specific absorption rates of <12W/kg and temperature increases of <1.9°C, normalized to a 4W/kg RF field exposure at 7T. The antenna did not affect the power applied to the scanner's transmit coil. The SNR gain enabled MRI microscopy at 40-50μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-FOV or endoscopic MRI for targeted intervention in focal disease. PMID:22161992

  9. In vivo 7 Tesla imaging of the dentate granule cell layer in Schizophrenia

    PubMed Central

    Kirov, Ivan I.; Hardy, Caitlin J.; Matsuda, Kant; Messinger, Julie; Cankurtaran, Ceylan Z.; Warren, Melina; Wiggins, Graham C.; Perry, Nissa N.; Babb, James S.; Goetz, Raymond R.; George, Ajax; Malaspina, Dolores; Gonen, Oded

    2013-01-01

    PURPOSE The hippocampus is central to the pathophysiology of schizophrenia. Histology shows abnormalities in the dentate granule cell layer (DGCL), but its small size (~100 micron thickness) has precluded in vivo human studies. We used ultra high field magnetic resonance imaging (MRI) to compare DGCL morphology of schizophrenic patients to matched controls’. METHOD Bilateral hippocampi of 16 schizophrenia patients (10 male) 40.7±10.6 years old (mean ±standard deviation) were imaged at 7 Tesla MRI with heavily T2*-weighted gradient-echo sequence at 232 micron in-plane resolution (0.08 μL image voxels). Fifteen matched controls (8 male, 35.6±9.4 years old) and one ex vivo post mortem hippocampus (that also underwent histopathology) were scanned with same protocol. Three blinded neuroradiologists rated each DGCL on a qualitative scale of 1 to 6 (from “not discernible” to “easily visible, appearing dark gray or black”) and mean left and right DGCL scores were compared using a non-parametric Mann-Whitney test. RESULTS MRI identification of the DGCL was validated with histopathology. Mean right and left DGCL ratings in patients (3.2±1.0 and 3.5±1.2) were not statistically different from controls’ (3.9±1.1 and 3.8±0.8), but patients’ had a trend for lower right DGCL score (p=0.07), which was significantly associated with patient diagnosis (p=0.05). The optimal 48% sensitivity and 80% specificity for schizophrenia was achieved with a DGCL rating of ≤2. CONCLUSION Decreased contrast in the right DGCL in schizophrenia was predictive of schizophrenia diagnosis. Better utility of this metric as a schizophrenia biomarker may be achieved in future studies of patients with homogeneous disease subtypes and progression rates. PMID:23664589

  10. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  11. Automated hippocampal subfield segmentation at 7 tesla MRI

    PubMed Central

    Wisse, Laura E.M.; Kuijf, Hugo J.; Honingh, Anita M.; Wang, Hongzhi; Pluta, John B.; Das, Sandhitsu R.; Wolk, David A.; Zwanenburg, Jaco J.M.; Yushkevich, Paul A.; Geerlings, Mirjam I.

    2015-01-01

    Purpose We aimed to evaluate an automated technique to segment hippocampal subfields and the entorhinal cortex (ERC) at 7 tesla MRI. Materials and Methods Cornu Ammonis (CA)1, CA2, CA3, dentate gyrus (DG), subiculum (SUB) and ERC were manually segmented, covering most of the long axis of the hippocampus, on 0.70 mm3 T2-weighted 7 tesla images of twenty-six participants (59±9 years, 46% men). The Automated Segmentation of Hippocampal Subfields (ASHS) approach was applied and evaluated using leave-one-out cross-validation. Results Comparison of automated segmentations with corresponding manual segmentation yielded a Dice similarity coefficient (DSC) of >0.75 for CA1, DG, SUB and ERC; and >0.54 for CA2 and CA3. Intraclass correlation coefficients (ICC) were >0.74 for CA1, DG and SUB; and >0.43 for CA2, CA3 and the ERC. Restricting the comparison of the ERC segmentation to a smaller range along the anterior-posterior axis improved both ICCs (left: 0.71; right: 0.82) and DSCs (left: 0.78; right: 0.77). The accuracy of ASHS vs a manual rater was lower, though only slightly for most subfields, than the intra-rater reliability of an expert manual rater, but was similar or slightly higher than the accuracy of an expert vs. a manual rater with ~170h of training for almost all subfields. Conclusion This work demonstrates the feasibility of using a computational technique to automatically label hippocampal subfields and the ERC at 7 tesla MRI, with a high accuracy for most subfields that is competitive with the labor intensive manual segmentation. The software and atlas are publicly available: http://www.nitrc.org/projects/ashs/. PMID:26846925

  12. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  13. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  14. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  15. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  16. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  17. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  18. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  19. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  20. Windows on the human body--in vivo high-field magnetic resonance research and applications in medicine and psychology.

    PubMed

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph S; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in "medical sensor-systems", i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.

  1. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    PubMed

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  2. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  3. Magnetic Resonance Safety

    PubMed Central

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy and the potential risks of MRI contrast agents will also be discussed and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  4. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  5. Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794

  6. Bloch‐Siegert B1+‐mapping for human cardiac 31P‐MRS at 7 Tesla

    PubMed Central

    Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose Phosphorus MR spectroscopy (31P‐MRS) is a powerful tool for investigating tissue energetics in vivo. Cardiac 31P‐MRS is typically performed using surface coils that create an inhomogeneous excitation field across the myocardium. Accurate measurements of B1+ (and hence flip angle) are necessary for quantitative analysis of 31P‐MR spectra. We demonstrate a Bloch‐Siegert B1+‐mapping method for this purpose. Theory and Methods We compare acquisition strategies for Bloch‐Siegert B1+‐mapping when there are several spectral peaks. We optimize a Bloch‐Siegert sensitizing (Fermi) pulse for cardiac 31P‐MRS at 7 Tesla (T) and apply it in a three‐dimensional (3D) chemical shift imaging sequence. We validate this in phantoms and skeletal muscle (against a dual‐TR method) and present the first cardiac 31P B1+‐maps at 7T. Results The Bloch‐Siegert method correlates strongly (Pearson's r = 0.90 and 0.84) and has bias <25 Hz compared with a multi‐TR method in phantoms and dual‐TR method in muscle. Cardiac 3D B1+‐maps were measured in five normal volunteers. B1+ maps based on phosphocreatine and alpha‐adenosine‐triphosphate correlated strongly (r = 0.62), confirming that the method is T1 insensitive. Conclusion The 3D 31P Bloch‐Siegert B1+‐mapping is consistent with reference methods in phantoms and skeletal muscle. It is the first method appropriate for 31P B1+‐mapping in the human heart at 7T. Magn Reson Med 76:1047–1058, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26509652

  7. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  8. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  9. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  10. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  11. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging.

    PubMed

    Pang, Yong; Xie, Zhentian; Li, Ye; Xu, Duan; Vigneron, Daniel; Zhang, Xiaoliang

    2011-07-28

    In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF) field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD) method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  12. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  13. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  14. Partially orthogonal resonators for magnetic resonance imaging

    PubMed Central

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-01-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density. PMID:28186135

  15. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  16. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  17. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    PubMed Central

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  18. Judging roughness by sight--a 7-Tesla fMRI study on responsivity of the primary somatosensory cortex during observed touch of self and others.

    PubMed

    Kuehn, Esther; Trampel, Robert; Mueller, Karsten; Turner, Robert; Schütz-Bosbach, Simone

    2013-08-01

    Observing another person being touched activates our own somatosensory system. Whether the primary somatosensory cortex (S1) is also activated during the observation of passive touch, and which subregions of S1 are responsible for self- and other-related observed touch is currently unclear. In our study, we first aimed to clarify whether observing passive touch without any action component can robustly increase activity in S1. Secondly, we investigated whether S1 activity only increases when touch of others is observed, or also when touch of one's own body is observed. We were particularly interested in which subregions of S1 are responsible for either process. We used functional magnetic resonance imaging at 7 Tesla to measure S1 activity changes when participants observed videos of their own or another's hand in either egocentric or allocentric perspective being touched by different pieces of sandpaper. Participants were required to judge the roughness of the different sandpaper surfaces. Our results clearly show that S1 activity does increase in response to observing passive touch, and that activity changes are localized in posterior but not in anterior parts of S1. Importantly, activity increases in S1 were particularly related to observing another person being touched. Self-related observed touch, in contrast, caused no significant activity changes within S1. We therefore assume that posterior but not anterior S1 is part of a system for sharing tactile experiences with others.

  19. Low field magnetic resonance imaging

    SciTech Connect

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  20. Introduction to nuclear magnetic resonance.

    PubMed

    Mlynárik, Vladimír

    2016-05-19

    Nuclear magnetic resonance spectroscopy is a useful tool for studying normal and pathological biochemical processes in tissues. In this review, the principles of nuclear magnetic resonance and methods of obtaining nuclear magnetic resonance spectra are briefly outlined. The origin of the most important spectroscopic parameters-chemical shifts, coupling constants, longitudinal and transverse relaxation times, and spectroscopic line intensities-is explained, and the role of these parameters in interpretation of spectra is addressed. Basic methodological concepts of localized spectroscopy and spectroscopic imaging for the study of tissue metabolism in vivo are also described.

  1. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  2. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  3. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  4. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  5. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  6. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  7. Early History of Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ramsey, N. F.

    1999-06-01

    The early history of magnetic resonance to around 1950 is discussed from the point of view of a participant in it. I. I. Rabi's theory of space quantization in a gyrating magnetic field and his molecular beam experiments in the 1930s laid the foundation of the magnetic resonance method, which he and his associates subsequently pursued and developed further at Columbia University, leading eventually to the development of NMR after World War II and the invention of the separated oscillatory fields method in 1950.

  8. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  9. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  10. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  11. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  12. Magnetic resonance imaging of hypoxic injury to the murine placenta.

    PubMed

    Tomlinson, Tracy M; Garbow, Joel R; Anderson, Jeff R; Engelbach, John A; Nelson, D Michael; Sadovsky, Yoel

    2010-02-01

    We assessed the use of magnetic resonance imaging (MRI) to define placental hypoxic injury associated with fetal growth restriction. On embryonic day 18.5 (E18.5) we utilized dynamic contrast-enhanced (DCE)-MRI on a 4.7-tesla small animal scanner to examine the uptake and distribution of gadolinium-based contrast agent. Quantitative DCE parameter analysis was performed for the placenta and fetal kidneys of three groups of pregnant C57BL/6 mice: 1) mice that were exposed to Fi(O(2)) = 12% between E15.5 and E18.5, 2) mice in normoxia with food restriction similar to the intake of hypoxic mice between E15.5 and E18.5, and 3) mice in normoxia that were fed ad libitum. After imaging, we assessed fetoplacental weight, placental histology, and gene expression. We found that dams exposed to hypoxia exhibited fetal growth restriction (weight reduction by 28% and 14%, respectively, P < 0.05) with an increased placental-to-fetal ratio. By using MRI-based assessment of placental contrast agent kinetics, referenced to maternal paraspinous muscle, we found decreased placental clearance of contrast media in hypoxic mice, compared with either control group (61%, P < 0.05). This was accompanied by diminished contrast accumulation in the hypoxic fetal kidneys (23%, P < 0.05), reflecting reduced transplacental gadolinium transport. These changes were associated with increased expression of placental Phlda2 and Gcm1 transcripts. Exposure to hypoxia near the end of mouse pregnancy reduces placental perfusion and clearance of contrast. MRI-based DCE imaging provides a novel tool for dynamic, in vivo assessment of placental function.

  13. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  14. Magnetic Resonance (MR) Defecography

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  15. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... cholangiopancreatography or MRCP uses a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  16. Interventional Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Saikus, Christina E.; Lederman, Robert J.

    2010-01-01

    Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic. PMID:19909937

  17. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  18. Magnetic Resonance Image Wavelet Enhancer

    DTIC Science & Technology

    2007-11-02

    1Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico−DF, 09340, Mexico email:arog@xanum.uam.mx. Magnetic Resonance Centre, School of Physics...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico-DF

  19. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  20. The principles of magnetic resonance.

    PubMed

    Longmore, D B

    1989-10-01

    Magnetic Resonance (MR), which has no known biological hazard, is capable of producing high resolution thin tomographic images in any plane and blocks of 3-dimensional information. It can be used to study blood flow and to gain information about the composition of important materials seen and quantified on dimensionally accurate images. The MR image is a thin tomographic slice or a true three dimensional block of data which can be reconstructed in any desired way rather than a shadowgram of all the structures in the beam. It is the only imaging technique which can acquire data in a 3-dimensional format. CT images can be reconstructed to form a pseudo 3-D image or a hologram but the flexibility conferred by acquiring the data as a true 3-D block gives many advantages. The spatial resolution of MR images are theoretically those of low powered microscopy, the practical limits with the present generation of equipment are voxel sizes of one third by one third by two millimetres. The term Magnetic Resonance Imaging (MRI) is used commonly, particularly in the USA, avoiding association with the term, nuclear, and emphasizing the imaging potential of the technique. The terms Nuclear Magnetic Resonance (NMR) or Magnetic Resonance (MR) more correctly describe the most powerful diagnostic instrument yet devised. The simplified description of the phenomena involved in MR which follows is intended to be comprehensive and does not require foreknowledge of classical physics, quantum mechanics, fluency with mathematical formulae or an understanding of image reconstruction. There are many explanations of MR, some omitting the more difficult concepts. An accurate, comprehensive description is found on the textbook on MR by Gadian, Nuclear Magnetic Resonance and its Applications for Living Systems (Oxford University Press, 1982).

  1. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... to 2-Year-Old Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  2. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. ...

  3. Proton magnetic resonance spectrum of polywater.

    PubMed

    Petsko, G A

    1970-01-09

    With the aid of a time average computer, the proton magnetic resonance spectrum of anomalous water (polywater) is obtained. The spectrum conisists of a single broad resonance shifted approximately 300 hertz downfield from the resonance of ordinary water.

  4. Pediatric Body Magnetic Resonance Imaging.

    PubMed

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information.

  5. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  6. Nerves on magnetic resonance imaging.

    PubMed Central

    Collins, J. D.; Shaver, M. L.; Batra, P.; Brown, K.

    1989-01-01

    Nerves are often visualized on magnetic resonance imaging (MRI) studies of the soft tissues on the chest and shoulder girdle. To learn the reasons for the contrast between the nerves and adjacent tissues, the authors obtained a fresh specimen containing part of the brachial plexus nerves from the left axilla and compared MRI with x-ray projections and photomicrographs of histologic sections. The results suggest that the high signals from the nerves stand out in contrast to the low signals from their rich vascular supply. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6A Figure 6B Figure 7 PMID:2733051

  7. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  8. Gynecologic masses: value of magnetic resonance imaging.

    PubMed

    Hricak, H; Lacey, C; Schriock, E; Fisher, M R; Amparo, E; Dooms, G; Jaffe, R

    1985-09-01

    Forty-two women with gynecologic abnormalities were studied with the use of magnetic resonance imaging. Magnetic resonance imaging correctly assessed the origin of the pelvic mass in all patients. In the evaluation of leiomyoma, magnetic resonance imaging accurately depicted the number, size, and location of the lesion. In the evaluation of endometrial carcinoma, magnetic resonance imaging depicted the location of the lesion, the presence of cervical extension, and the depth of myometrial penetration in the majority of the cases. In the analysis of adnexal cysts, magnetic resonance imaging was sensitive in localizing the lesion and was able to distinguish serous from hemorrhagic fluid. This preliminary report indicates that magnetic resonance imaging may become a valuable imaging modality in the diagnosis of gynecologic abnormalities.

  9. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  10. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  11. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  12. MAGNETIC RESONANCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    Mariappan, Yogesh K; Glaser, Kevin J; Ehman, Richard L

    2011-01-01

    Magnetic Resonance Elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging (MRI) technique. The technique essentially involves three steps: generating shear waves in the tissue,acquiring MR images depicting the propagation of the induced shear waves andprocessing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. PMID:20544947

  13. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  14. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices.

  15. Noninvasive magnetic resonance imaging of the development of individual colon cancer tumors in rat liver.

    PubMed

    Mook, Olaf R F; Jonker, Ard; Strang, Aart C; Veltien, Andor; Gambarota, Giulio; Frederiks, Wilma M; Heerschap, Arend; Van Noorden, Cornelis J F

    2008-04-01

    Monitoring tumor development is essential for the understanding of mechanisms involved in tumor progression and to determine efficacy of therapy. One of the evolving approaches is longitudinal noninvasive magnetic resonance imaging (MRI) of tumors in experimental models. We applied high-resolution MRI at 7 Tesla to study the development of colon cancer tumors in rat liver. MRI acquisition was triggered to the respiratory cycle to minimize motion artifacts. A special radio frequency (RF) coil was designed to acquire detailed T1-weighted and T2-weighted images of the liver. T2-weighted images identified hyperintense lesions representing tumors with a minimum diameter of 2 mm, enabling the determination of growth rates and morphological aspects of individual tumors. It is concluded that high-resolution MRI using a dedicated RF coil and triggering to the respiratory cycle is an excellent tool for quantitative and morphological analysis of individual diffusely distributed tumors throughout the liver. However, at present, MRI requires expensive equipment and expertise and is a time-consuming methodology. Therefore, it should preferably be used for dedicated applications rather than for high-throughput assessment of total tumor load in animals.

  16. Neurometabolic abnormalities in schizophrenia and depression observed with magnetic resonance spectroscopy at 7 T

    PubMed Central

    Osuch, Elizabeth A.; Schaefer, Betsy; Rajakumar, Nagalingam; Neufeld, Richard W. J.; Théberge, Jean; Williamson, Peter C.

    2017-01-01

    Background Examining neurometabolic abnormalities in critical brain areas in schizophrenia and major depressive disorder (MDD) may help guide future pharmacological interventions including glutamate-modulating treatments. Aims To measure metabolite concentrations within the anterior cingulate cortex (ACC) and thalamus of people with schizophrenia and people with MDD. Methods Spectra were acquired from 16 volunteers with schizophrenia, 17 with MDD and 18 healthy controls using magnetic resonance spectroscopy on a 7 Tesla scanner. Results In the thalamus, there were lower glycine concentrations in the schizophrenia group relative to control (P=0.017) and MDD groups (P=0.012), and higher glutamine concentrations relative to healthy controls (P=0.009). In the thalamus and the ACC, the MDD group had lower myo-inositol concentrations than the control (P=0.014, P=0.009, respectively) and schizophrenia (P=0.004, P=0.002, respectively) groups. Conclusion These results support the glutamatergic theory of schizophrenia and indicate a potential glycine deficiency in the thalamus. In addition, reduced myo-inositol concentrations in MDD suggest its involvement in the disorder. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28243459

  17. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible.

  18. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    PubMed Central

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  19. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  20. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  1. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  2. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  3. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  4. Tracking Iron in Multiple Sclerosis: A Combined Imaging and Histopathological Study at 7 Tesla

    ERIC Educational Resources Information Center

    Bagnato, Francesca; Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R[subscript 2][superscript *] and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a…

  5. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  6. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  7. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  8. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  9. Reproducibility and Reliability of Quantitative and Weighted T1 and T2∗ Mapping for Myelin-Based Cortical Parcellation at 7 Tesla

    PubMed Central

    Haast, Roy A. M.; Ivanov, Dimo; Formisano, Elia; Uludaǧ, Kâmil

    2016-01-01

    Different magnetic resonance (MR) parameters, such as R1 (=1/T1) or T2∗, have been used to visualize non-invasively the myelin distribution across the cortical sheet. Myelin contrast is consistently enhanced in the primary sensory and some higher order cortical areas (such as MT or the cingulate cortex), which renders it suitable for subject-specific anatomical cortical parcellation. However, no systematic comparison has been performed between the previously proposed MR parameters, i.e., the longitudinal and transversal relaxation values (or their ratios), for myelin mapping at 7 Tesla. In addition, usually these MR parameters are acquired in a non-quantitative manner (“weighted” parameters). Here, we evaluated the differences in ‘parcellability,’ contrast-to-noise ratio (CNR) and inter- and intra-subject variability and reproducibility, respectively, between high-resolution cortical surface maps based on these weighted MR parameters and their quantitative counterparts in ten healthy subjects. All parameters were obtained in a similar acquisition time and possible transmit- or receive-biases were removed during post-processing. It was found that CNR per unit time and parcellability were lower for the transversal compared to the longitudinal relaxation parameters. Further, quantitative R1 was characterized by the lowest inter- and intra-subject coefficient of variation (5.53 and 1.63%, respectively), making R1 a better parameter to map the myelin distribution compared to the other parameters. Moreover, quantitative MRI approaches offer the advantage of absolute rather than relative characterization of the underlying biochemical composition of the tissue, allowing more reliable comparison within subjects and between healthy subjects and patients. Finally, we explored two parcellation methods (thresholding the MR parameter values vs. surface gradients of these values) to determine areal borders based on the cortical surface pattern. It is shown that both

  10. Magnetic resonance imaging of the temporomandibular joint.

    PubMed

    Hayt, M W; Abrahams, J J; Blair, J

    2000-04-01

    The spectrum of disease that affects the temporomandibular joint (TMJ) can be varied. To differentiate among the diseases that cause pain and dysfunction, an intimate knowledge of the anatomy, physiology, and pathology of this region is necessary. Due to the joint's complex anatomy and relationship to the skin, it has been difficult to image in the past. Magnetic resonance imaging is ideally suited for visualizing TMJ because of its superb contrast resolution when imaging soft tissues. Magnetic resonance imaging allows simultaneous bilateral visualization of both joints. The ability to noninvasively resolve anatomic detail can be performed easily and quickly using magnetic resonance imaging. The development of magnetic resonance imaging has greatly aided the diagnosis of TMJ disorders. An understanding of TMJ anatomy and pathogenesis of TMJ pain is crucial for interpretation of magnetic resonance imaging and subsequent treatment.

  11. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  12. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease

    PubMed Central

    Zeineh, Michael M.; Chen, Yuanxin; Kitzler, Hagen H.; Hammond, Robert; Vogel, Hannes; Rutt, Brian K.

    2016-01-01

    Although amyloid plaques and neurofibrillary pathology play important roles in Alzheimer disease (AD), our understanding of AD is incomplete, and the contribution of microglia and iron to neurodegeneration is unknown. High-field magnetic resonance imaging (MRI) is exquisitely sensitive to microscopic iron. To explore iron-associated neuroinflammatory AD pathology, we studied AD and control human brain specimens by (1) performing ultra-high resolution ex vivo 7 Tesla MRI, (2) coregistering the MRI with successive histologic staining for iron, microglia, amyloid beta, and tau, and (3) quantifying the relationship between magnetic resonance signal intensity and histological staining. In AD, we identified numerous small MR hypointensities primarily within the subiculum that were best explained by the combination of microscopic iron and activated microglia (p = 0.025), in contradistinction to the relatively lesser contribution of tau or amyloid. Neuropathologically, this suggests that microglial-mediated neurodegeneration may occur in the hippocampal formation in AD and is detectable by ultra-high resolution MRI. PMID:26190634

  13. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... If You Have Questions en español Resonancia magnética: columna lumbar What It Is Magnetic resonance imaging (MRI) ... MORE ON THIS TOPIC Magnetic Resonance Imaging (MRI): Cervical Spine Lumbar Puncture (Spinal Tap) Magnetic Resonance Imaging ( ...

  14. Stepped impedance resonators for high-field magnetic resonance imaging.

    PubMed

    Akgun, Can E; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J Thomas

    2014-02-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high-field magnetic resonance imaging. In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections, referred to as stepped impedance resonators (SIRs), is investigated. Single-element simulation results in free space and in a phantom at 7 T (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 T in a phantom and human head illustrate the improvements in a transmit magnetic field, as well as RF efficiency (transmit magnetic field versus specific absorption rate) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements.

  15. Magnetic resonance elastometry using a single-sided permanent magnet

    NASA Astrophysics Data System (ADS)

    Tan, Carl S.; Marble, Andrew E.; Ono, Yuu

    2012-04-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system.

  16. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  17. [Presurgical functional magnetic resonance imaging].

    PubMed

    Stippich, C

    2010-02-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI.

  18. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  19. Miniature Magnet for Electron Spin Resonance Experiments

    ERIC Educational Resources Information Center

    Rupp, L. W.; And Others

    1976-01-01

    Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

  20. Magnetic resonance imaging of the cryptorchid testis.

    PubMed

    Landa, H M; Gylys-Morin, V; Mattrey, R F; Krous, H F; Kaplan, G W; Packer, M G

    1987-01-01

    Magnetic resonance imaging was used to evaluate seven patients with undescended testes. In six patients the presence or absence of testicular tissue was predicted correctly prior to surgery. Spermatic cord structures, if present, were accurately visualized in all patients.

  1. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  2. Coronary computed tomography and magnetic resonance imaging.

    PubMed

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C

    2009-04-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use.

  3. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  4. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Join the ISMRM Journals History & Mission Central Office Society Award Winners Strategic Plan Policies Corporate Members Contact ... E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton Road, ...

  5. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  6. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  7. Single Nuclear Spin Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2010-05-02

    Lab. In work not directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of...directly supported by this grant, these projects advanced MRFM detected Ferromagnetic Resonance ( FMR ) to enable studies of submicron magnetic structures...our earlier NMR detection of 19F spins in CaF2 we have conducted 65Cu, 63Cu NMR stud- ies for studies of interface phenomena in multilayered magnetic

  8. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  9. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    PubMed Central

    Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D

    2015-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. Results The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Conclusion Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. Magn Reson Med 73:2390–2397, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:24986525

  10. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  11. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to ... in most of the body's tissues. The applied radio waves then cause these protons to produce signals that ...

  12. Magnetic Resonance Spectroscopy: An Objective Technique for the Quantification of Prostate Cancer Pathologies

    DTIC Science & Technology

    2007-02-01

    named after Nikola Tesla 1856-1943). To give context to this magnitude, the average Earth field strength is on the order of 0.00005T. For readers who...transferred on ice into a human 7- tesla MR scanner. A single loop surface coil was placed in the middle and around the prostate, though which localized MRS...discussed in this review, if not otherwise specified, were measured at the magnetic field strength of 1.5T (T – Tesla , the unit for magnetic field strength

  13. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  14. Examining the McGurk illusion using high-field 7 Tesla functional MRI

    PubMed Central

    Szycik, Gregor R.; Stadler, Jörg; Tempelmann, Claus; Münte, Thomas F.

    2012-01-01

    In natural communication speech perception is profoundly influenced by observable mouth movements. The additional visual information can greatly facilitate intelligibility but incongruent visual information may also lead to novel percepts that neither match the auditory nor the visual information as evidenced by the McGurk effect. Recent models of audiovisual (AV) speech perception accentuate the role of speech motor areas and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for speech perception. In this event-related 7 Tesla fMRI study we used three naturally spoken syllable pairs with matching AV information and one syllable pair designed to elicit the McGurk illusion. The data analysis focused on brain sites involved in processing and fusing of AV speech and engaged in the analysis of auditory and visual differences within AV presented speech. Successful fusion of AV speech is related to activity within the STS of both hemispheres. Our data supports and extends the audio-visual-motor model of speech perception by dissociating areas involved in perceptual fusion from areas more generally related to the processing of AV incongruence. PMID:22529797

  15. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.

  16. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  17. Coherence of magnetic resonators in a metamaterial

    SciTech Connect

    Hou, Yumin

    2013-12-15

    The coherence of periodic magnetic resonators (MRs) under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.

  18. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  19. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-07-01

    Several demonstrations of resonance phenomena associated with nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are described. The demonstrations comprise common orienteering compasses, whose needles represent magnetic dipoles, along with three collinear permanent magnets and a magnetic stir plate or pulseable electromagnets. The trio of permanent magnets provides a laterally uniform magnetic field, whose strength decreases with distance from the magnets. Resonance can be observed by adjusting the frequency of the magnetic stirrer to match the resonant frequency of the compass needle, which is shown to depend on magnetic field strength, that is, the needle's position relative to the permanent magnets. Another demonstration involves pulsing electromagnets that apply a perpendicular magnetic field that causes the compass needles to oscillate. The effects of shielding, spin-spin coupling, magnetogyric ratio, and free induction decay can also be demonstrated. By moving the trio of permanent magnets relative to the compasses, the MRI experiment can be mimicked. Complete instructions for the construction of the demonstrations, which can be used on an overhead projector, are included.

  20. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  1. Pediatric obesity phenotyping by magnetic resonance methods

    PubMed Central

    Shen, Wei; Liu, Haiying; Punyanitya, Mark; Chen, Jun; Heymsfield, Steven B.

    2007-01-01

    Purpose of review Accurate measurement of adiposity in obese children is required for characterizing the condition’s phenotype, severity, and treatment effects in vivo. Non-invasive and safe, magnetic resonance imaging and spectroscopy provide an important new approach for characterizing key aspects of pediatric obesity. This review focuses on recent advances in non-invasive magnetic resonance imaging and spectroscopy for quantifying total body and regional adiposity, mapping adipose tissue distribution, and evaluating selected metabolic disturbances in children. The aim is to provide an investigator-focused overview of magnetic resonance methods for use in the study of pediatric body composition and metabolism. Recent findings Whole body axial images can be rapidly acquired on most clinical magnetic resonance imaging scanners. The images can then be semi-automatically segmented into subcutaneous, visceral, and intramuscular adipose tissue. Specific pediatric studies of errors related to slice gap and number are available. The acquisition of scans in healthy and premature infants is now feasible with recent technological advances. Spectroscopic, Dixon, and other approaches can be used to quantify the lipid content of liver, skeletal muscle, and other organs. Protocol selection is based on factors such as subject age and cost. Particular attention should be directed towards identification of landmarks in growth studies. Recent advances promise to reduce the requirement of subjects to remain motionless for relatively long periods. Summary Magnetic resonance imaging and spectroscopy are safe, practical, and widely available methods for phenotyping adiposity in children that open new opportunities for metabolism and nutritional research. PMID:16205458

  2. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  3. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.

    2016-03-01

    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.

  4. Gadofosveset-enhanced magnetic resonance angiography

    PubMed Central

    Goyen, Mathias

    2008-01-01

    Gadofosveset (Vasovist®, Bayer Schering Pharma AG, Berlin/Germany) is the first intravascular contrast agent approved for use with magnetic resonance angiography in the European Union, Switzerland, Turkey, Canada, and Australia. Gadofosveset reversibly binds to albumin providing extended intravascular enhancement compared wth existing extracellular magnetic resonance contrast agents. Prior to approval, gadofosveset underwent extensive testing to evaluate the safety and efficacy of the drug; the clinical trials show that gadofosveset-enhanced magnetic resonance angiography (MRA) is safe and well tolerated in patients with vascular disease and effective for the detection of vascular stenosis and aneurysms gadofosveset has the potential to open new horizons in diagnostic MRA by increasing the spatial resolution and the robustness of MRA examinations and facilitating the examination of multiple vascular beds. PMID:18629367

  5. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  6. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  7. Non-Invasive Magnetic Resonance Imaging of Nanoparticle Migration and Water Velocity Inside Sandstone

    NASA Astrophysics Data System (ADS)

    Phoenix, V. R.; Shukla, M.; Vallatos, A.; Riley, M. S.; Tellam, J. H.; Holmes, W. M.

    2015-12-01

    Manufactured nanoparticles (NPs) are already utilized in a diverse array of applications, including cosmetics, optics, medical technology, textiles and catalysts. Problematically, once in the natural environment, NPs can have a wide range of toxic effects. To protect groundwater from detrimental NPs we must be able to predict nanoparticle movement within the aquifer. The often complex transport behavior of nanoparticles ensures the development of NP transport models is not a simple task. To enhance our understanding of NP transport processes, we utilize novel magnetic resonance imaging (MRI) which enables us to look inside the rock and image the movement of nanoparticles within. For this, we use nanoparticles that are paramagnetic, making them visible to the MRI and enabling us to collect spatially resolved data from which we can develop more robust transport models. In this work, a core of Bentheimer sandstone (3 x 7 cm) was saturated with water and imaged inside a 7Tesla Bruker Biospec MRI. Firstly the porosity of the core was mapped using a MSME MRI sequence. Prior to imaging NP transport, the velocity of water (in absence on nanoparticles) was mapped using an APGSTE-RARE sequence. Nano-magnetite nanoparticles were then pumped into the core and their transport through the core was imaged using a RARE sequence. These images were calibrated using T2 parameter maps to provide fully quantitative maps of nanoparticle concentration at regular time intervals throughout the column (T2 being the spin-spin relaxation time of 1H nuclei). This work demonstrated we are able to spatially resolve porosity, water velocity and nanoparticle movement, inside rock, using a single technique (MRI). Significantly, this provides us with a unique and powerful dataset from which we are now developing new models of nanoparticle transport.

  8. Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.

    PubMed

    Sawada, K; Hikishima, K; Murayama, A Y; Okano, H J; Sasaki, E; Okano, H

    2014-01-17

    The present study characterized fetal sulcation patterns and gyrification in the cerebrum of the New World monkey group, common marmosets, using a 3D T2-weighted high-resolution anatomical magnetic resonance imaging (MRI) sequence from the fixed brain at 7-tesla ex vivo. Fetal sulcation in the marmoset cerebrum began to indent the lateral fissure and hippocampal sulcus in gestational week (GW) 12, and then the following sulci emerged: the callosal and calcarine sulci on GW 15; the superior temporal sulcus on GW 17; and the circular and occipitotemporal sulci on GW 18. The degree of cortical convolution was evaluated quantitatively based on 2D MRI slices by the gyrification index (GI) and based on 3D MRI data by sulcation index (SI). Both the mean GI and SI increased from GW 16, and were closely correlated with the cortical volume and the cortical surface area during fetal periods (their correlation coefficients marked more than 0.95). After birth, both the mean GI and SI decreased slightly by 2years of age, whereas the cortical volume and surface area continuously increased. Notably, histological analysis showed that the outer subventricular zone (oSVZ) in non-sulcal regions was thicker than that in the presumptive calcarine sulcal region on GW 13, preceding the infolding of the calcarine sulcus. The present results showed definite sulcal infolding on the cerebral cortical surface of the marmosets, with similar pattern and sequence of their emergences to other higher-order primates such as macaques and humans. Differential expansion of the oSVZ may be involved in gyral convolution and sulcal infolding in the developing cerebrum.

  9. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    MedlinePlus

    ... if your child has any implanted medical or electronic devices. Inform your doctor and the technologist prior ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  12. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... by a receiver within the MR scanner. The signals are specially characterized using the rapidly changing magnetic field, and, with the help of computer processing, images of tissues are created as "slices" that ...

  13. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  14. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  15. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  16. Cardiovascular magnetic resonance of anomalous coronary arteries.

    PubMed

    Varghese, Anitha; Keegan, Jennifer; Pennell, Dudley J

    2005-09-01

    Cardiovascular magnetic resonance of anomalous coronary arteries is a class I indication. The term anomalous coronary artery encompasses those with an abnormal origin (from the incorrect sinus, too-high or too-low from the correct sinus, or from the pulmonary artery) and/or number of ostia. Their clinical significance results from the increased risk of myocardial infarction and sudden cardiac death associated with those traversing an interarterial course between the aorta and main pulmonary artery/right ventricular outflow tract. In this article, we review the role and practice of cardiovascular magnetic resonance in this field.

  17. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.

    PubMed

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-27

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  18. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  19. Magnetic resonance microscopy in biomedical research.

    PubMed

    Serša, I

    2012-01-01

    Magnetic resonance (MR) microscopy is a special modality of MRI with an emphasis on high spatial resolution. While its main principle is identical to conventional clinical MRI, there are several differences between the two that are mainly associated with a use of stronger magnets and gradients. MR microscopy has numerous interesting applications in material and bio sciences in which high spatial resolution is demanded and long experiment times are allowed.

  20. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  1. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  2. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  3. Giant infantile gliosarcoma: magnetic resonance imaging findings.

    PubMed

    Sanal, Hatice Tuba; Bulakbasi, Nail; Kocaoglu, Murat; Onguru, Onder; Chen, Lina

    2008-08-01

    Gliosarcoma is an uncommon variant of glioblastoma multiforme, which is composed of gliomatous and sarcomatous elements. The tumor is rarely encountered in childhood. This case report presents the magnetic resonance imaging characteristics of a giant gliosarcoma in a 3-year-old girl. Size and location of the tumor are described.

  4. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  5. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  6. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  7. Pituitary magnetic resonance imaging in Cushing's disease.

    PubMed

    Vitale, Giovanni; Tortora, Fabio; Baldelli, Roberto; Cocchiara, Francesco; Paragliola, Rosa Maria; Sbardella, Emilia; Simeoli, Chiara; Caranci, Ferdinando; Pivonello, Rosario; Colao, Annamaria

    2017-03-01

    Adrenocorticotropin-secreting pituitary tumor represents about 10 % of pituitary adenomas and at the time of diagnosis most of them are microadenomas. Transsphenoidal surgery is the first-line treatment of Cushing's disease and accurate localization of the tumor within the gland is essential for selectively removing the lesion and preserving normal pituitary function. Magnetic resonance imaging is the best imaging modality for the detection of pituitary tumors, but adrenocorticotropin-secreting pituitary microadenomas are not correctly identified in 30-50 % of cases, because of their size, location, and enhancing characteristics. Several recent studies were performed with the purpose of better localizing the adrenocorticotropin-secreting microadenomas through the use in magnetic resonance imaging of specific sequences, reduced contrast medium dose and high-field technology. Therefore, an improved imaging technique for pituitary disease is mandatory in the suspect of Cushing's disease. The aims of this paper are to present an overview of pituitary magnetic resonance imaging in the diagnosis of Cushing's disease and to provide a magnetic resonance imaging protocol to be followed in case of suspicion adrenocorticotropin-secreting pituitary adenoma.

  8. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  9. Magnetic Resonance Imaging in Biomedical Engineering

    NASA Astrophysics Data System (ADS)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  10. Optimal magnetic resonance imaging of the brain.

    PubMed

    Robertson, Ian

    2011-01-01

    Quality magnetic resonance (MR) imaging is complex and requires optimization of many technical factors. The most important factors are: magnet field and gradient strengths, coil selection, receiver bandwidth, field of view and image matrix size, number of excitations, slice thickness, image weighting and contrast, imaging planes and the direction of the phase, and frequency gradients. The ability to augment a standard MR study with additional sequences, and the need to ensure the completed study is comprehensive and robust must be balanced against the time the patient spends under anesthesia in the magnet.

  11. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  12. Nuclear Magnetic Resonance Imaging. South Carolina Health Service Area 2

    SciTech Connect

    Not Available

    1984-12-01

    Contents include: Nuclear Magnetic Resonance Imaging (NMRI); (Clinical applications, Magnet types, Comparisons with other systems, Manpower, Manufacturers, Contraindications); Analysis of systems; (Availability, Accessibility, Cost, Quality, Continuity, Acceptability).

  13. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization.

    PubMed

    Chen, Lei; Longenecker, Jonilyn G; Moore, Eric W; Marohn, John A

    2013-07-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide's electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal's dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients.

  14. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  15. Magnetic resonance imaging in inflammatory rheumatoid diseases.

    PubMed

    Sudoł-Szopińska, Iwona; Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination.

  16. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  17. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  18. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  19. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  20. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  1. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  2. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  3. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  4. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Magnetic resonance diagnostic device. 892.1000... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance...

  5. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  6. Effect of N-acetylaspartic acid on the diffusion coefficient of water: a proton magnetic resonance phantom method for measurement of osmolyte-obligated water.

    PubMed

    Baslow, Morris H; Guilfoyle, David N

    2002-12-15

    N-acetyl-L-aspartic acid (NAA) is an amino acid present in the vertebrate brain that is synthesized and stored primarily in neurons, although it cannot be hydrolyzed in these cells. Nonetheless, neuronal NAA is dynamic and turns over more than once each day by cycling, via extracellular fluids (ECF), between neurons and catabolic compartments in oligodendrocytes. One important role of the NAA intercompartmental cycle appears to be osmoregulatory, and in this role it may be the primary mechanism for the removal of metabolic water, against a water gradient, from myelinated neurons. However, the number of water molecules that might be cotransported to ECF per NAA molecule released is as yet unclear. In this investigation, using a proton nuclear magnetic resonance method and diffusion measurements at two magnetic field strengths on water and NAA phantoms in vitro, the effect of NAA on the diffusion coefficient of water has been measured, and a ratio (K) of obligated water molecules per molecule of NAA has been determined. For NAA measured at 100mM and 3 Tesla K=24 and at 7 Tesla K=14. Based on these results, apparent K(NAA) varies inversely with field strength, and with a computed field strength factor of 2.55mmol water/unit Tesla, K(NAA) in the absence of any applied magnetic field strength would be 32.

  7. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  8. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  9. Resonantly Detecting Axion-Mediated Forces with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Geraci, Andrew A.

    2014-10-01

    We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 109 and 1012 GeV or axion masses between 10-6 and 10-3 eV, independent of the cosmic axion abundance.

  10. Magnetic resonance imaging of the elbow.

    PubMed

    Stevens, Kathryn J

    2010-05-01

    Elbow pain is frequently encountered in clinical practice and can result in significant morbidity, particularly in athletes. Magnetic resonance imaging (MRI) is an excellent diagnostic imaging tool for the evaluation of soft tissue and osteochondral pathology around the elbow. Recent advances in magnetic field strength and coil design have lead to improved spatial resolution and superior soft tissue contrast, making it ideal for visualization of complex joint anatomy. This article describes the normal imaging appearances of anatomy around the elbow and reviews commonly occurring ligamentous, myotendinous, neural, and bursal pathology around the elbow.

  11. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  12. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  13. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  14. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  15. Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging.

    PubMed

    Otazo, Ricardo; Mueller, Bryon; Ugurbil, Kamil; Wald, Lawrence; Posse, Stefan

    2006-12-01

    This study characterizes gains in sensitivity and spectral resolution of proton echo-planar spectroscopic imaging (PEPSI) with increasing magnetic field strength (B(0)). Signal-to-noise ratio (SNR) per unit volume and unit time, and intrinsic linewidth (LW) of N-acetyl-aspartate (NAA), creatine (Cr), and choline (Cho) were measured with PEPSI at 1.5, 3, 4, and 7 Tesla on scanners that shared a similar software and hardware platform, using circularly polarized (CP) and eight-channel phased-array (PA) head coils. Data were corrected for relaxation effects and processed with a time-domain matched filter (MF) adapted to each B(0). The SNR and LW measured with PEPSI were very similar to those measured with conventional point-resolved spectroscopy (PRESS) SI. Measurements with the CP coil demonstrated a nearly linear SNR gain with respect to B(0) in central brain regions. For the PA coil, the SNR-B(0) relationship was less than linear, but there was a substantial SNR increase in comparison to the CP coil. The LW in units of ppm decreased with B(0), resulting in improved spectral resolution. These studies using PEPSI demonstrated linear gains in SNR with respect to B(0), consistent with theoretical expectations, and a decrease in ppm LW with increasing B(0).

  16. 7-Tesla Susceptibility-Weighted Imaging to Assess the Effects of Radiotherapy on Normal-Appearing Brain in Patients With Glioma

    SciTech Connect

    Lupo, Janine M.; Chuang, Cynthia F.; Chang, Susan M.; Barani, Igor J.; Jimenez, Bert; Hess, Christopher P.; Nelson, Sarah J.

    2012-03-01

    Purpose: To evaluate the intermediate- and long-term imaging manifestations of radiotherapy on normal-appearing brain tissue in patients with treated gliomas using 7T susceptibility-weighted imaging (SWI). Methods and Materials: SWI was performed on 25 patients with stable gliomas on a 7 Tesla magnet. Microbleeds were identified as discrete foci of susceptibility that did not correspond to vessels. The number of microbleeds was counted within and outside of the T2-hyperintense lesion. For 3 patients, radiation dosimetry maps were reconstructed and fused with the 7T SWI data. Results: Multiple foci of susceptibility consistent with microhemorrhages were observed in patients 2 years after chemoradiation. These lesions were not present in patients who were not irradiated. The prevalence of microhemorrhages increased with the time since completion of radiotherapy, and these lesions often extended outside the boundaries of the initial high-dose volume and into the contralateral hemisphere. Conclusions: High-field SWI has potential for visualizing the appearance of microbleeds associated with long-term effects of radiotherapy on brain tissue. The ability to visualize these lesions in normal-appearing brain tissue may be important in further understanding the utility of this treatment in patients with longer survival.

  17. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  18. Neurosurgical uses for intraprocedural magnetic resonance imaging.

    PubMed

    Mutchnick, Ian S; Moriarty, Thomas M

    2005-10-01

    Neurosurgical procedures demand precision, and efforts to create accurate neurosurgical navigation have been central to the profession through its history. Magnetic resonance image (MRI)-guided navigation offers the possibility of real-time, image-based stereotactic information for the neurosurgeon, which makes possible a number of diagnostic and therapeutic procedures. This article will review both current options for intraoperative MRI operative suite arrangements and the current therapeutic/diagnostic uses of intraoperative MRI.

  19. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  20. Magnetic resonance venography and liver transplant complications.

    PubMed

    Strovski, Evgeny; Liu, Dave; Scudamore, Charles; Ho, Stephen; Yoshida, Eric; Klass, Darren

    2013-09-28

    Hepatic vein stenosis is a rare but serious complication following liver transplantation. Multiple modalities can be utilized to image the hepatic vasculature. Magnetic resonance venography (MRV) provides certain advantages over ultrasound, computed tomography angiography and digital subtraction venography. MRV utilizes the same imaging principles of magnetic resonance angiography in order to image the venous system. Blood pool contrast agents, specifically gadofosveset trisodium, allow for steady state imaging up to 1 h following injection, with improved visualisation of vital venous structures by utilising delayed steady state imaging. Additionally, the inherent physics properties of magnetic resonance imaging also provide excellent soft tissue detail and thus help define the extent of complications that often plague the post-liver transplant patient. This case report describes the use of gadofosveset trisodium in a patient with hepatic venous stenosis following liver transplantation. Initial venography failed to outline the stenoses and thus MRV using a blood pool contrast agent was utilised in order to delineate the anatomy and plan a therapeutic endovascular procedure.

  1. Magnetic resonance acoustic radiation force imaging.

    PubMed

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  2. Artifacts in magnetic resonance imaging from metals

    NASA Astrophysics Data System (ADS)

    Bennett, L. H.; Wang, P. S.; Donahue, M. J.

    1996-04-01

    Metallic biomedical implants, such as aneurysm clips, endoprostheses, and internal orthopedic devices give rise to artifacts in the magnetic resonance image (MRI) of patients. Such artifacts impair the information contained in the image in precisely the region of most interest, namely near the metallic device. Ferromagnetic materials are contraindicated because of the hazards associated with their movement during the MRI procedure. In less-magnetic metals, it has been suggested that the extent of the artifact is related to the magnetic susceptibility of the metal, but no systematic data appear to be available. When the susceptibility is sufficiently small, an additional artifact due to electrical conductivity is observed. We present an initial systematic study of MRI artifacts produced by two low susceptibility metals, titanium (relative permeability μr≊1.0002) and copper (μr≊0.99998), including experimental, theoretical, and computer simulation results.

  3. Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals

    PubMed Central

    Kanakia, Shruti; Toussaint, Jimmy; Hoang, Dung Minh; Mullick Chowdhury, Sayan; Lee, Stephen; Shroyer, Kenneth R.; Moore, William; Wadghiri, Youssef Z.; Sitharaman, Balaji

    2015-01-01

    Current clinical Gd3+-based T1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe. PMID:26625867

  4. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s-1 mM-1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s-1 mM-1) and 3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.

  5. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    PubMed Central

    Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. PMID:22121333

  6. Gadolinium-Enhanced Magnetic Resonance Angiography for Pulmonary Embolism

    PubMed Central

    Stein, Paul D.; Chenevert, Thomas L.; Fowler, Sarah E.; Goodman, Lawrence R.; Gottschalk, Alexander; Hales, Charles A.; Hull, Russell D.; Jablonski, Kathleen A.; Leeper, Kenneth V.; Naidich, David P.; Sak, Daniel J.; Sostman, H. Dirk; Tapson, Victor F.; Weg, John G.; Woodard, Pamela K.

    2011-01-01

    Background The accuracy of gadolinium-enhanced magnetic resonance pulmonary angiography and magnetic resonance venography for diagnosing pulmonary embolism has not been determined conclusively. Objective To investigate performance characteristics of magnetic resonance angiography, with or without magnetic resonance venography, for diagnosing pulmonary embolism. Design Prospective, multicenter study from 10 April 2006 to 30 September 2008. (ClinicalTrials.gov registration number: NCT00241826) Setting 7 hospitals and their emergency services. Patients 371 adults with diagnosed or excluded pulmonary embolism. Measurements Sensitivity, specificity, and likelihood ratios were measured by comparing independently read magnetic resonance imaging with the reference standard for diagnosing pulmonary embolism. Reference standard diagnosis or exclusion was made by using various tests, including computed tomographic angiography and venography, ventilation–perfusion lung scan, venous ultra-sonography, D-dimer assay, and clinical assessment. Results Magnetic resonance angiography, averaged across centers, was technically inadequate in 25% of patients (92 of 371). The proportion of technically inadequate images ranged from 11% to 52% at various centers. Including patients with technically inadequate images, magnetic resonance angiography identified 57% (59 of 104) with pulmonary embolism. Technically adequate magnetic resonance angiography had a sensitivity of 78% and a specificity of 99%. Technically adequate magnetic resonance angiography and venography had a sensitivity of 92% and a specificity of 96%, but 52% of patients (194 of 370) had technically inadequate results. Limitation A high proportion of patients with suspected embolism was not eligible or declined to participate. Conclusion Magnetic resonance pulmonary angiography should be considered only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated. Magnetic

  7. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  8. Magnetic resonance imaging in inflammatory rheumatoid diseases

    PubMed Central

    Mróz, Joanna; Ostrowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Magnetic resonance (MR) is used more and more frequently to diagnose changes in the musculoskeletal system in the course of rheumatic diseases, at their initial assessment, for treatment monitoring and for identification of complications. The article presents the history of magnetic resonance imaging, the basic principles underlying its operation as well as types of magnets, coils and MRI protocols used in the diagnostic process of rheumatic diseases. It enumerates advantages and disadvantages of individual MRI scanners. The principles of MRI coil operation are explained, and the sequences used for MR image analysis are described, particularly in terms of their application in rheumatology, including T1-, T2-, PD-weighted, STIR/TIRM and contrast-enhanced T1-weighted images. Furthermore, views on the need to use contrast agents to optimise diagnosis, particularly in synovitis-like changes, are presented. Finally, methods for the assessment of MR images are listed, including the semi-quantitative method by RAMRIS and quantitative dynamic examination. PMID:27826171

  9. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  10. Thoracic outlet syndromes and magnetic resonance imaging.

    PubMed

    Panegyres, P K; Moore, N; Gibson, R; Rushworth, G; Donaghy, M

    1993-08-01

    The thoracic outlet syndromes encompass the diverse clinical entities affecting the branchial plexus or subclavian artery including cervical ribs or bands. Thoracic outlet syndrome are often difficult to diagnose on existing clinical and electrophysiological criteria and new diagnostic methods are necessary. This study reports our experience with magnetic resonance imaging (MRI) of the brachial plexus in 20 patients with suspected thoracic outlet syndrome. The distribution of pain and sensory disturbance varied widely, weakness and wasting usually affected C8/T1 innervated muscles, and electrophysiology showed combinations of reduced sensory nerve action potentials from the fourth and fifth digits, and prolonged F-responses or tendon reflex latencies. The MRI study was interpreted blind. Deviation of the brachial plexus was recorded in 19 out of the 24 symptomatic sides (sensitivity 79%). Absence of distortion was correctly identified in 14 out of 16 asymptomatic sides (specificity 87.5%). The false positive rate was 9.5%. Magnetic resonance imaging demonstrated all seven cervical ribs visible on plain cervical spine radiographs. Magnetic resonance imaging also showed a band-like structure extending from the C7 transverse process in 25 out of 33 sides; similar structures were detected in three out of 18 sides in control subjects. These MRI bands often underlay the brachial plexus distortion observed in our patients. We also observed instances of plexus distortion by post-traumatic callus of the first rib, and by a hypertrophied serratus anterior muscle. If they did not demonstrate a cervical rib, plain cervical spine radiographs had no value in predicting brachial plexus distortion. We believe MRI to be of potential value in the diagnosis of thoracic outlet syndrome by: (i) demonstrating deviation or distortion of nerves or blood vessels; (ii) suggesting the presence of radiographically invisible bands; (iii) disclosing other causes of thoracic outlet syndrome

  11. Achilles Impingement Tendinopathy on Magnetic Resonance Imaging.

    PubMed

    Bullock, Mark J; Mourelatos, Jan; Mar, Alice

    2017-02-28

    Haglund's syndrome is impingement of the retrocalcaneal bursa and Achilles tendon caused by a prominence of the posterosuperior calcaneus. Radiographic measurements are not sensitive or specific for diagnosing Haglund's deformity. Localization of a bone deformity and tendinopathy in the same sagittal section of a magnetic resonance imaging scan can assist with the diagnosis in equivocal cases. The aim of the present cross-sectional study was to determine the prevalence of Haglund's syndrome in patients presenting with Achilles tendinopathy and note any associated findings to determine the criteria for a diagnosis of Haglund's syndrome. We reviewed 40 magnetic resonance imaging scans with Achilles tendinopathy and 19 magnetic resonance imaging scans with Achilles high-grade tears and/or ruptures. Achilles tendinopathy was often in close proximity to the superior aspect of the calcaneal tuberosity, consistent with impingement (67.5%). Patients with Achilles impingement tendinopathy were more often female (p < .04) and were significantly heavier than patients presenting with noninsertional Achilles tendinopathy (p = .014) or Achilles tendon rupture (p = .010). Impingement tendinopathy occurred medially (8 of 20) and centrally (10 of 20) more often than laterally (2 of 20) and was associated with a posterior prominence or hyperconvexity with a loss of calcaneal recess more often than a superior projection (22 of 27 versus 8 of 27; p < .001). Haglund's deformity should be reserved for defining a posterior prominence or hyperconvexity with loss of calcaneal recess because this corresponds with impingement. Achilles impingement tendinopathy might be more appropriate terminology for Haglund's syndrome, because the bone deformity is often subtle. Of the 27 images with Achilles impingement tendinopathy, 10 (37.0%) extended to a location prone to Achilles tendon rupture. Given these findings, insertional and noninsertional Achilles tendinopathy are not mutually

  12. Basic principles of magnetic resonance imaging.

    PubMed

    McGowan, Joseph C

    2008-11-01

    Magnetic resonance (MR) imaging has become the dominant clinical imaging modality with widespread, primarily noninvasive, applicability throughout the body and across many disease processes. The flexibility of MR imaging enables the development of purpose-built optimized applications. Concurrent developments in digital image processing, microprocessor power, storage, and computer-aided design have spurred and enabled further growth in capability. Although MR imaging may be viewed as "mature" in some respects, the field is rich with new proposals and applications that hold great promise for future research health care uses. This article delineates the basic principles of MR imaging and illuminates specific applications.

  13. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  14. Magnetic Resonance Imaging of the Retina

    PubMed Central

    Duong, Timothy Q.; Muir, Eric R.

    2010-01-01

    This paper reviews recent developments in high-resolution magnetic resonance imaging (MRI) and its application to image anatomy, physiology, and function in the retina of animals. It describes technical issues and solutions in performing retinal MRI, anatomical MRI, blood oxygenation level-dependent functional MRI (fMRI), and blood-flow MRI both of normal retinas and of retinal degeneration. MRI offers unique advantages over existing retinal imaging techniques, including the ability to image multiple layers without depth limitation and to provide multiple clinically relevant data in a single setting. Retinal MRI has the potential to complement existing retinal imaging techniques. PMID:19763752

  15. Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

    PubMed Central

    Horton, Jonathan C.; Miller, Steven

    2015-01-01

    Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation, in addition to infection of the conjunctival surface. PMID:26022084

  16. Magnetic resonance imaging of the nasopharynx

    SciTech Connect

    Dillon, W.P.; Mills, C.M.; Kjos, B.; DeGroot, J.; Brant-Zawadzki, M.

    1984-09-01

    Thirty subjects with normal nasopharyngeal anatomy and 12 patients with a variety of abnormalities were examined with computed tomography (CT) and magnetic resonance imaging (MR), using a prototype 0.35-T superconducting system. MR was superior to CT for display of both superficial and deep nasopharyngeal soft tissues in all 30 normal subjects and 10 of the 12 abnormal patients. MR was also superior to CT in distinguishing tumor from soft tissues and more sensitive to carotid sheath adenopathy. Bones, calcification, and subtle abnormalities at the base of the skull were shown better by CT. The specificity of MR and its ability to differentiate nodal metastases from reactive lymphadenopathy require further evaluation.

  17. Optically pumped nuclear magnetic resonance of semiconductors.

    PubMed

    Hayes, Sophia E; Mui, Stacy; Ramaswamy, Kannan

    2008-02-07

    Optically pumped NMR (OPNMR) of direct gap and indirect gap semiconductors has been an area of active research interest, motivated by both basic science and technological perspectives. Proposals to enhance and to spatially localize nuclear polarization have stimulated interest in this area. Recent progress in OPNMR has focused on exploring the experimental parameter space in order to elucidate details of the underlying photophysics of optical pumping phenomena. The focus of this review is on recent studies of bulk samples of GaAs and InP, namely, the photon energy dependence, the magnetic field dependence, and the phase dependence of OPNMR resonances. Models for the development of nuclear polarization are discussed.

  18. Imaging of myocardial perfusion with magnetic resonance.

    PubMed

    Barkhausen, Jörg; Hunold, Peter; Jochims, Markus; Debatin, Jörg F

    2004-06-01

    Coronary artery disease (CAD) is currently the leading cause of death in developed nations. Reflecting the complexity of cardiac function and morphology, noninvasive diagnosis of CAD represents a major challenge for medical imaging. Although coronary artery stenoses can be depicted with magnetic resonance (MR) and computed tomography (CT) techniques, its functional or hemodynamic impact frequently remains elusive. Therefore, there is growing interest in other, target organ-specific parameters such as myocardial function at stress and first-pass myocardial perfusion imaging to assess myocardial blood flow. This review explores the pathophysiologic background, recent technical developments, and current clinical status of first-pass MR imaging (MRI) of myocardial perfusion.

  19. [Magnetic resonance imaging of the temporomandibular joint].

    PubMed

    Ros Mendoza, L H; Cañete Celestino, E; Velilla Marco, O

    2008-01-01

    The temporomandibular joint (TMJ) is a small joint with complex anatomy and function. Diverse pathologies with very different symptoms can affect the TMJ. While various imaging techniques such as plain-film radiography and computed tomography can be useful, magnetic resonance imaging's superior contrast resolution reveals additional structures like the articular disk, making this technique essential for accurate diagnosis and treatment planning. We analyze the MRI signs of the different pathologies that can affect the TMJ from the structural and functional points of view.

  20. Creating a magnetic resonance imaging ontology

    PubMed Central

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  1. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  2. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  3. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  4. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  5. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  6. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  7. [Surface coils for magnetic-resonance images].

    PubMed

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  8. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described.

  9. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  10. Magnetic resonance imaging of fetal pelvic cysts.

    PubMed

    Archontaki, Styliani; Vial, Yvan; Hanquinet, Sylviane; Meuli, Reto; Alamo, Leonor

    2016-12-01

    The detection of fetal anomalies has improved in the last years as a result of the generalization of ultrasound pregnancy screening exams. The presence of a cystic imaging in the fetal pelvis is a relatively common finding, which can correspond to a real congenital cystic lesion or result from the anomalous liquid accumulation in a whole pelvic organ, mainly the urinary bladder, the uterus, or the vagina. In selected cases with poor prognosis and/or inconclusive echographic findings, magnetic resonance may bring additional information in terms of the characterization, anatomical location, and real extension of the pathology. This pictorial essay describes the normal pelvic fetal anatomy, as well as the most common pelvic cysts. It also describes the causes of an anomalous distension of the whole pelvic organs detected in utero, with emphasis on prenatal magnetic resonance imaging exams. Moreover, it proposes practical teaching points to reduce the differential diagnosis of these lesions based on the sex of the fetus, the division of the pelvis in anatomical spaces, and the imaging findings of the pathology. Finally, it discusses the real utility of complementary MRI.

  11. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  12. Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Daniel, W. B.; Rutgers, M. A.; Pennington, C. H.

    2000-11-01

    There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ˜100 μm or less) if one employs NMR "micro" receiver coils, "microcoils," which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ˜1-2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ˜10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

  13. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Polimeni, Jonathan R; Evans, Karleyton C; Bhat, Himanshu; Keil, Boris; Rosen, Bruce R; Boas, David A; Wald, Lawrence L

    2016-05-13

    The influence of cardiac activity on the viscoelastic properties of intracranial tissue is one of the mechanisms through which brain-heart interactions take place, and is implicated in cerebrovascular disease. Cerebrovascular disease risk is not fully explained by current risk factors, including arterial compliance. Cerebrovascular compliance is currently estimated indirectly through Doppler sonography and magnetic resonance imaging (MRI) measures of blood velocity changes. In order to meet the need for novel cerebrovascular disease risk factors, we aimed to design and validate an MRI indicator of cerebrovascular compliance based on direct endogenous measures of blood volume changes. We implemented a fast non-gated two-dimensional MRI pulse sequence based on echo-planar imaging (EPI) with ultra-short repetition time (approx. 30-50 ms), which stepped through slices every approximately 20 s. We constrained the solution of the Bloch equations for spins moving faster than a critical speed to produce an endogenous contrast primarily dependent on spin volume changes, and an approximately sixfold signal gain compared with Ernst angle acquisitions achieved by the use of a 90° flip angle. Using cardiac and respiratory peaks detected on physiological recordings, average cardiac and respiratory MRI pulse waveforms in several brain compartments were obtained at 7 Tesla, and used to derive a compliance indicator, the pulsatility volume index (pVI). The pVI, evaluated in larger cerebral arteries, displayed significant variation within and across vessels. Multi-echo EPI showed the presence of significant pulsatility effects in both S0 and [Formula: see text] signals, compatible with blood volume changes. Lastly, the pVI dynamically varied during breath-holding compared with normal breathing, as expected for a compliance indicator. In summary, we characterized and performed an initial validation of a novel MRI indicator of cerebrovascular compliance, which might prove useful

  14. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    PubMed

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  15. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.

  16. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  17. Multidataset Refinement Resonant Diffraction, and Magnetic Structures

    PubMed Central

    Attfield, J. Paul

    2004-01-01

    The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599

  18. Ferromagnetic resonance of particulate magnetic recording tapes

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.

    1990-08-01

    The room-temperature ferromagnetic resonance (FMR) spectra of γ-Fe2O3, CrO2, and barium ferrite particulate magnetic recording tapes have been measured at microwave frequencies of 9.35 and 35 GHz for various orientations of the static and high-frequency magnetic fields with respect to the tape. For CrO2 tapes, the influence of the width of the angular distribution of the particle orientations on the FMR spectra has been studied from the nearly isotropic case up to the highly oriented case. Hysteretic behavior for a CrO2 tape as well as the effect of tape calendering for a γ-Fe2O3 tape has been observed by FMR. Experimental results are found to be in reasonable agreement with results of theoretical calculations based on a model of an ellipsoidal single-domain particle with both shape and magnetocrystalline anisotropy. Magnetostatic interaction inside the magnetic film has been introduced by expressing the total magnetostatic energy as a combination of a part dependent on particle shape and a part dependent on the shape of the tape. As a result of a comparison of experimental data with calculated data from the model, the magnetocrystalline easy axis of the CrO2 particles is found to be parallel with the particle axis.

  19. Design, Synthesis, and Evaluation of 1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic Acid-Derived, Redox-Sensitive Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Raghunand, Natarajan; Guntle, Gerald P.; Gokhale, Vijay; Nichol, Gary S.; Mash, Eugene A.; Jagadish, Bhumasamudram

    2010-01-01

    The design and synthesis of three 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) derivatives bearing linkers with terminal thiol groups and a preliminary evaluation of their potential for use in assembling redox-sensitive Magnetic Resonance Imaging (MRI) contrast agents are reported. The linkers were selected based on computational docking with a crystal structure of human serum albumin (HSA). Gd(III)-DO3A and Eu(III)-DO3A complexes were synthesized, and the structure of one complex was established by X-ray crystallographic analysis. The binding to HSA of a Gd(III)-DO3A complex bearing a thiol-terminated 3,6-dioxanonyl chain was competitively inhibited by homocysteine and by the corresponding Eu chelate. Binding to HSA was abolished when the terminal thiol group of this complex was absent. The longitudinal water-proton relaxivities (r1) of the three Gd(III)-DO3A complexes and of two Gd(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complexes were measured in saline at 7 Tesla. The DO3A complexes exhibited smaller r1 values, in both bound and free states, than the DOTA complexes. PMID:20722424

  20. A 4.7 tesla meter solenoid for a partial Siberian Snake

    SciTech Connect

    Ratner, L.; Leonhardt, W.; Otter, A.; Ellstrom, L.

    1994-07-01

    The authors describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9,500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993.

  1. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Osipov, V. Yu; Boudou, J. P.; Panich, A. M.; von Bardeleben, H. J.; Treussart, F.; Vul', A. Ya

    2015-04-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150 μm contain ~5  ×  1018 spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp3 C-C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense ‘forbidden’ g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (~5  ×  1017 spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV-). This is supported by EPR observations of the ‘allowed’ transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (≤100 nm), the relative abundance of EPR active NV- defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size <20 nm), which are contained in the dried supernatant of ultracentrifuged aqueous dispersion of FNDs, the NV- content is found to be reduced by one order of magnitude whereas the singlet defects content increases up to ~2  ×  1019 spins/g. In addition, another triplet-type defect, which is characterized by the g = 4.00 ‘forbidden’ line, appears. On reduction of the particle size below the 20 nm limit, the ‘allowed’ EPR lines become practically unobservable, whereas the ‘forbidden’ lines remain as a reliable fingerprint of the presence of NV- centers in small ND systems. The same size reduction causes the disappearance of the

  2. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    PubMed Central

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  3. Nuclear magnetic resonance studies of lens transparency

    SciTech Connect

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ({sup 31}P) NMR spectroscopy was used to measure the {sup 31}P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. {sup 1}H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T{sub 1} and T{sub 2} with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T{sub 1} and T{sub 2} at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T{sub 1} or T{sub 2}, consistent with the phase separation being a low-energy process. {sup 1}H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T{sub 1} relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine {gamma}-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T{sub 1} with increasing magnetic field.

  4. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  5. Infected aortoiliofemoral grafts: magnetic resonance imaging.

    PubMed

    Justich, E; Amparo, E G; Hricak, H; Higgins, C B

    1985-01-01

    Three patients with proved infected aortoiliofemoral grafts were examined by magnetic resonance (MR) imaging using a spin echo technique. MR clearly identified the perigraft abscess, the involvement of adjacent structures, and the longitudinal extent of the process in all patients. The MR findings were: Abscesses create a high signal intensity, somewhat less than fat. The perigraft abscess has a great contrast with the signal void of flowing blood in the graft. Inflammatory changes cause an inhomogeneous intermediate signal, slightly more intense than muscle. Both abscesses and edematous areas increase their signal intensity with long repetition rates and long echo delays. Areas of gas appear black. They cannot be distinguished from calcified plaques. Additional information is gained about the graft patency. Although the specificity has to be proved, MR imaging is sensitive in the detection of infected grafts and for defining the longitudinal extent of the perigraft abscess.

  6. Nuclear magnetic resonance imaging in medicine

    PubMed Central

    McKinstry, C S

    1986-01-01

    Using the technique of nuclear magnetic resonance (NMR, MR, MRI), the first images displaying pathology in humans were published in 1980.1 Since then, there has been a rapid extension in the use of the technique, with an estimated 225 machines in use in the USA at the end of 1985.2 Considerable enthusiasm has been expressed for this new imaging technique,3 although awareness of its high cost in the present economic climate has led to reservations being expressed in other quarters.2 The aim of this article is to give an outline of the present state of NMR, and indicate some possible future developments. ImagesFig 1Fig 2Fig 3(a)Fig 3 (b)Fig 4Fig 5Fig 6Fig 7 (a)Fig 7 (b)Fig 8Fig 9Fig 10 PMID:3811023

  7. Cardiovascular magnetic resonance: deeper insights through bioengineering.

    PubMed

    Young, A A; Prince, J L

    2013-01-01

    Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.

  8. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  9. Prostate magnetic resonance imaging: challenges of implementation.

    PubMed

    Loch, Ronald; Fowler, Kathryn; Schmidt, Ryan; Ippolito, Joseph; Siegel, Cary; Narra, Vamsi

    2015-01-01

    Prostate cancer is among the most common causes of cancer and cancer deaths in men. Screening methods and optimal treatments have become controversial in recent years. Prostate magnetic resonance imaging (MRI) is gaining popularity as a tool to assist diagnosis, risk assessment, and staging. However, implementation into clinical practice can be difficult, with many challenges associated with image acquisition, postprocessing, interpretation, reporting, and radiologic-pathologic correlation. Although state-of-the-art technology is available at select sites for targeting tissue biopsy and interpreting multiparametric prostate MRI, many institutions struggle with adapting this new technology into an efficient multidisciplinary model of patient care. This article reviews several of the challenges that radiologists should be aware of when integrating prostate MRI into their clinical practice.

  10. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  11. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  12. Magnetic resonance imaging of pancreatitis: An update

    PubMed Central

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  13. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  14. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Astrophysics Data System (ADS)

    Spaniol, Craig

    1993-06-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  15. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  16. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  17. Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen; Wald, Lawrence L.

    2017-01-01

    This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization. PMID:26915119

  18. Magnetic resonance image segmentation using multifractal techniques

    NASA Astrophysics Data System (ADS)

    Yu, Yue-e.; Wang, Fang; Liu, Li-lin

    2015-11-01

    In order to delineate target region for magnetic resonance image (MRI) with diseases, the classical multifractal spectrum (MFS)-segmentation method and latest multifractal detrended fluctuation spectrum (MF-DFS)-based segmentation method are employed in our study. One of our main conclusions from experiments is that both of the two multifractal-based methods are workable for handling MRIs. The best result is obtained by MF-DFS-based method using Lh10 as local characteristic. The anti-noises experiments also suppot the conclusion. This interest finding shows that the features can be better represented by the strong fluctuations instead of the weak fluctuations for the MRIs. By comparing the multifractal nature between lesion and non-lesion area on the basis of the segmentation results, an interest finding is that the gray value's fluctuation in lesion area is much severer than that in non-lesion area.

  19. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  20. Bilateral filtering of magnetic resonance phase images.

    PubMed

    McPhee, Kelly C; Denk, Christian; Al-Rekabi, Zeinab; Rauscher, Alexander

    2011-09-01

    High-pass filtering is required for the removal of background field inhomogeneities in magnetic resonance phase images. This high-pass filtering smooths across boundaries between areas with large differences in phase. The most prominent boundary is the surface of the brain where areas with large phase values inside the brain are located close to areas outside the brain where the phase is, on average, zero. Cortical areas, which are of great interest in brain MRI, are therefore often degraded by high-pass filtering. Here, we propose the use of the bilateral filter for the high-pass filtering step. The bilateral filter is essentially a Gaussian filter that stops smoothing at boundaries. We show that the bilateral filter improves image quality at the brain's surface, without sacrificing contrast within the brain.

  1. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  2. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  3. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  4. Chronic subdural hematoma: demonstration by magnetic resonance

    SciTech Connect

    Sipponen, J.T.; Sepponen, R.E.; Sivula, A.

    1984-01-01

    The ability of magnetic resonance (MR) to identify intracranial hematomas was tested in five patients with clinical and computed tomographic signs of chronic subdural hematoma. The extracerebral collections were displayed as a zone of bright intensity using the T1-weighted inversion recovery (IR 1500/400) sequence, reflecting the lesions' short T1 relaxation times. The collections also showed high intensity using the spin echo (SE) sequence, with a longer delay of 100ms and 160ms, reflecting the long T2 relaxation time. The spin echo sequence with a repetition time of 500ms and an echo delay of 160ms (SE 500/160) almost effaced other structures in the image, thus increasing the specificity of this pulse scheme for detection of chronic blood collections. Although in two of the five patients the subdural hematomas were in the isodense CT phase, all were easily visualized with MR.

  5. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  6. Cardiac magnetic resonance imaging: patient safety considerations.

    PubMed

    Giroletti, Elio; Corbucci, Giorgio

    Magnetic Resonance Imaging (MRI) is widely used in medicine. In cardiology, it is used to assess congenital or acquired diseases of the heat: and large vessels. Unless proper precautions are taken, it is generally advisable to avoid using this technique in patients with implanted electronic stimulators, such as pacemakers and defibrillators, on account of the potential risk of inducing electrical currents on the endocardial catheters, since these currents might stimulate the heart at a high frequency, thereby triggering dangerous arrhythmias. In addition to providing some basic information on pacemakers, defibrillators and MRI, and on the possible physical phenomena that may produce harmful effects, the present review examines the indications given in the literature, with particular reference to coronary stents, artificial heart valves and implantable cardiac stimulators.

  7. Could magnetic resonance provide in vivo histology?

    PubMed

    Dominietto, Marco; Rudin, Markus

    2014-01-13

    THE DIAGNOSIS OF A SUSPECTED TUMOR LESION FACES TWO BASIC PROBLEMS: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization.

  8. Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images

    DTIC Science & Technology

    2009-04-01

    GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification

  9. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  10. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  11. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  12. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  13. Rotational resonance of nonaxisymmetric magnetic braking in the KSTAR tokamak.

    PubMed

    Park, J-K; Jeon, Y M; Menard, J E; Ko, W H; Lee, S G; Bae, Y S; Joung, M; You, K-I; Lee, K-D; Logan, N; Kim, K; Ko, J S; Yoon, S W; Hahn, S H; Kim, J H; Kim, W C; Oh, Y-K; Kwak, J-G

    2013-08-30

    One of the important rotational resonances in nonaxisymmetric neoclassical transport has been experimentally validated in the KSTAR tokamak by applying highly nonresonant n=1 magnetic perturbations to rapidly rotating plasmas. These so-called bounce-harmonic resonances are expected to occur in the presence of magnetic braking perturbations when the toroidal rotation is fast enough to resonate with periodic parallel motions of trapped particles. The predicted and observed resonant peak along with the toroidal rotation implies that the toroidal rotation in tokamaks can be controlled naturally in favorable conditions to stability, using nonaxisymmetric magnetic perturbations.

  14. Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Zhao, Qian; Zhao, Hongjie; Zhou, Ji

    2008-10-01

    We experimentally demonstrate a magnetic tuning of electrically resonant metamaterial (EMM) at microwave frequencies by introducing microwave ferrite rods into the periodic array of electrically resonant element. Different from those based on controlling the capacitance of equivalent LC circuit, this tunability arises from a mechanism of magnetically tuning the inductance of resonant element via the active ambient effective permeability. For magnetic fields from 0 to 5000 Oe, resonance frequency of the EMM can be continuously and reversibly tuned in a range of about 800 MHz. The active effective permittivity has also been investigated through the simulated scattering parameters.

  15. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  16. Torque-mixing magnetic resonance spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan T.; Diao, Zhu; Belov, Miro; Burgess, Jacob A.; Compton, Shawn R.; Hiebert, Wayne K.; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory E.; Thomson, Douglas J.; Freeman, Mark R.

    2016-10-01

    An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics. To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques. The authors are very grateful for support from NSERC, CRC, AITF, and NINT. Reference: Science 350, 798 (2015).

  17. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S.

  18. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  19. Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla.

    PubMed

    Ibrahim, Tamer S; Mitchell, Chad; Schmalbrock, Petra; Lee, Robert; Chakeres, Donald W

    2005-09-01

    In this work experimental and numerical studies of the MR signal were performed at frequencies ranging from 64 MHz to 485 MHz, utilizing three different MRI coils: a single-strut transverse electromagnetic (TEM)-based coil, a TEM resonator, and a high-pass birdcage coil. The experimental analyses were conducted using 1.5 and 8 Tesla whole-body systems and volume RF head coils. The simulation data were obtained utilizing an in-house-developed finite difference time domain (FDTD) model. Pertinent data from the numerical and experimental setups were compared, and a remarkable agreement between the two methods was found that clearly demonstrates the effectiveness of the FDTD method when it is applied rigorously. The numerical and experimental studies demonstrate the complexity of the electromagnetic (EM) fields and their role in the MR signal. These studies also reveal unique similarities and differences between the transmit and receive field distributions at various field strengths. Finally, for ultra high-field operations, it was demonstrated mathematically, numerically, and experimentally that highly asymmetric inhomogeneous images can be acquired even for linear excitation, symmetrical load geometries, and symmetrical load positioning within the coil.

  20. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  1. In vivo high-resolution localized 1H MR spectroscopy in the awake rat brain at 7 Tesla

    PubMed Central

    Xu, Su; Ji, Yadong; Chen, Xi; Yang, Yihong; Gullapalli, Rao; Masri, Radi

    2012-01-01

    In vivo localized high-resolution 1H MR spectroscopy was performed in multiple brain regions without the use of anesthetic or paralytic agents in awake head-restrained rats that were previously trained in a simulated MRI environment using a 7 Tesla MR system. Spectra were obtained using a short echo time single-voxel point-resolved spectroscopy technique with voxel size ranging from 27–32.4 mm3 in the regions of anterior cingulate cortex, somatosensory cortex, hippocampus, and thalamus. Quantifiable spectra, without the need for any additional post-processing to correct for possible motion were reliably detected including the metabolites of interest such as γ-aminobutyric acid, glutamine, glutamate, myo-inositol, N-acetylaspartate, taurine, glycerophosphorylcholine/phosphorylcholine, creatine/phosphocreatine, and N-acetylaspartate/N-acetylaspartylglutamate. The spectral quality was comparable to spectra from anesthetized animals with sufficient spectral dispersion to separate metabolites such as glutamine and glutamate. Results from this study suggest that reliable information on major metabolites can be obtained without the confounding effects of anesthesia or paralytic agents in rodents. PMID:22570299

  2. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    NASA Astrophysics Data System (ADS)

    Ip, Flora S.

    Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons

  3. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  4. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  5. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  6. Magnetic resonance urography in evaluation of duplicated renal collecting systems.

    PubMed

    Adeb, Melkamu; Darge, Kassa; Dillman, Jonathan R; Carr, Michael; Epelman, Monica

    2013-11-01

    Duplex renal collecting systems are common congenital anomalies of the upper urinary tract. In most cases they are incidental findings and not associated with additional pathologies. They demonstrate, however, higher incidences of hydroureteronephrosis, ureteroceles, and ectopic ureters. The most comprehensive morphologic and functional evaluation of duplex systems can be achieved using magnetic resonance urography. Functional magnetic resonance urography allows better separation of the renal poles, thus more accurate calculation of the differential renal functions compared with renal scintigraphy. Magnetic resonance urography is the study of choice when upper urinary tract anatomy is complex or when functional evaluation is needed.

  7. Magnetic resonance imaging of fetal developmental anomalies.

    PubMed

    Girard, Nadine J

    2011-02-01

    Fetal developmental anomalies consist of central nervous system malformations, brain injury, and tumors. Overlap is often seen especially between malformation and injury because malformation may be genetically determined or related to external causative agent, whereas brain injury may be, on one hand, caused by malformation as with intracranial vascular malformation and, on another, can cause brain malformation when cerebral insult occurs during organogenesis and histogenesis. The goal of this review was not to describe by magnetic resonance imaging (MRI) all fetal developmental anomalies encountered in utero; it is most likely to focus on fetal brain anomalies that either are most commonly seen in fetal tertiary care facility or are extremely challenging for MRI. Consequently, the potential of advanced MR techniques such as proton MR spectroscopy and diffusion tensor imaging is also described especially when a challenge is highlighted. This review is therefore organized in subchapters as follows. The first section gives the place of MRI in prenatal development and cites the standard protocol and the advanced techniques. The rules of fetal brain MRI, the challenge and pitfalls, and the selection of MRI cases follow as 3 subchapters. Also, abnormalities are described as 3 separate subchapters entitled ventriculomegalies (hydrocephalus), malformations, and brain injury.

  8. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  9. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  10. Wernicke encephalopathy with atypical magnetic resonance imaging.

    PubMed

    Liou, Kuang-Chung; Kuo, Shu-Fan; Chen, Lu-An

    2012-11-01

    Wernicke encephalopathy (WE) is a medical emergency caused by thiamine (vitamin B1) deficiency. Typical clinical manifestations are mental change, ataxia, and ocular abnormalities. Wernicke encephalopathy is an important differential diagnosis in all patients with acute mental change. However, the disorder is greatly underdiagnosed. Clinical suspicion, detailed history taking, and neurologic evaluations are important for early diagnosis. Magnetic resonance imaging (MRI) is currently considered the diagnostic method of choice. Typical MRI findings of WE are symmetrical involvement of medial thalamus, mammillary body, and periaqueductal gray matter. Prompt thiamine supplement is important in avoiding unfavorable outcomes. Here, we report a case of alcoholic WE with typical clinical presentation but with atypical MRI. Axial fluid-attenuated inversion recovery images showing symmetrical hyperintensity lesions in dentate nuclei of cerebellum, olivary bodies, and dorsal pons. Although atypical MRI findings are more common in nonalcoholic WE, it can also occur in alcoholic WE. This article is aimed to highlight the potential pitfalls in diagnosing acute mental change, the importance of clinical suspicion, and early treatment in WE.

  11. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  12. Cardiovascular magnetic resonance in pericardial diseases

    PubMed Central

    Bogaert, Jan; Francone, Marco

    2009-01-01

    The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases. PMID:19413898

  13. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  14. Magnetic resonance imaging of skeletal muscle disease.

    PubMed

    Damon, Bruce M; Li, Ke; Bryant, Nathan D

    2016-01-01

    Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made.

  15. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  16. Magnetic resonance imaging structured reporting in infertility.

    PubMed

    Montoliu-Fornas, Guillermina; Martí-Bonmatí, Luis

    2016-06-01

    Our objective was to define and propose a standardized magnetic resonance (MR) imaging structured report in patients with infertility to have clinical completeness on possible diagnosis and severity. Patients should be studied preferable on 3T equipment with a surface coil. Standard MR protocol should include high-resolution fast spin-echo T2-weighted, diffusion-weighted images and gradient-echo T1-weighted fat suppression images. The report should include ovaries (polycystic, endometrioma, tumor), oviduct (hydrosalpinx, hematosalpinx, pyosalpinx, peritubal anomalies), uterus (agenesia, hypoplasia, unicornuate, uterus didelphys, bicornuate, septate uterus), myometrium (leiomyomas, adenomyosis), endometrium (polyps, synechia, atrophy, neoplasia), cervix and vagina (isthmoceles, mucosal-parietal irregularity, stenosis, neoplasia), peritoneum (deep endometriosis), and urinary system-associated abnormalities. To be clinically useful, radiology reports must be structured, use standardized terminology, and convey actionable information. The structured report must comprise complete, comprehensive, and accurate information, allowing radiologists to continuously interact with patients and referring physicians to confirm that the information is used properly to affect the decision making process.

  17. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  18. Magnetic resonance imaging for characterizing myocardial diseases.

    PubMed

    Saeed, Maythem; Liu, Hui; Liang, Chang-Hong; Wilson, Mark W

    2017-03-31

    The National Institute of Health defined cardiomyopathy as diseases of the heart muscle. These myocardial diseases have different etiology, structure and treatment. This review highlights the key imaging features of different myocardial diseases. It provides information on myocardial structure/orientation, perfusion, function and viability in diseases related to cardiomyopathy. The standard cardiac magnetic resonance imaging (MRI) sequences can reveal insight on left ventricular (LV) mass, volumes and regional contractile function in all types of cardiomyopathy diseases. Contrast enhanced MRI sequences allow visualization of different infarct patterns and sizes. Enhancement of myocardial inflammation and infarct (location, transmurality and pattern) on contrast enhanced MRI have been used to highlight the key differences in myocardial diseases, predict recovery of function and healing. The common feature in many forms of cardiomyopathy is the presence of diffuse-fibrosis. Currently, imaging sequences generating the most interest in cardiomyopathy include myocardial strain analysis, tissue mapping (T1, T2, T2*) and extracellular volume (ECV) estimation techniques. MRI sequences have the potential to decode the etiology by showing various patterns of infarct and diffuse fibrosis in myocarditis, amyloidosis, sarcoidosis, hypertrophic cardiomyopathy due to aortic stenosis, restrictive cardiomyopathy, arrythmogenic right ventricular dysplasia and hypertension. Integrated PET/MRI system may add in the future more information for the diagnosis and progression of cardiomyopathy diseases. With the promise of high spatial/temporal resolution and 3D coverage, MRI will be an indispensible tool in diagnosis and monitoring the benefits of new therapies designed to treat myocardial diseases.

  19. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  20. Magnetic resonance imaging of the normal placenta.

    PubMed

    Blaicher, Wibke; Brugger, Peter C; Mittermayer, Christoph; Schwindt, Jens; Deutinger, Josef; Bernaschek, Gerhard; Prayer, Daniela

    2006-02-01

    The goal of this study was to provide a representative description of the normal placenta with contrast medium-free magnetic resonance imaging (MRI) in order to determine a standard of reference. One hundred consecutive singleton pregnancies were investigated by MRI without application of a contrast medium. The mean gestational age (GA) at the time of investigation was 29.5 weeks (range 19-40). Patients with suspected utero-placental insufficiency (UPI) or placental anomalies were excluded. Signal intensities were assessed and correlated with the respective GA. Antenatal MRI without contrast medium was able to depict placental status and morphological changes during gestation. A regular homogeneous structure was found in weeks 19-23. Subsequently, sporadic, slightly marked lobules appeared, which increased in number and markedness with ongoing gestation. Stratification of the lobules was observed after 36 weeks. The ratio of placental and amniotic fluid signal intensities decreased significantly with higher GA and with placental grading. MRI is well suited as an imaging method for the placenta. Our data may be used as a reference in the assessment of the placenta on MRI, and may have further clinical impact with respect to the determination of UPI.

  1. Adaptive fuzzy segmentation of magnetic resonance images.

    PubMed

    Pham, D L; Prince, J L

    1999-09-01

    An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, we fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, we also describe a new faster multigrid-based algorithm for its implementation. We show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.

  2. Magnetic resonance imaging of the kidneys

    SciTech Connect

    Leung, A.W.L.; Bydder, G.M.; Steinter, R.E.; Bryant, D.J.; Young, I.R.

    1984-12-01

    A study of the magnetic resonance imaging (MRI) appearance of the kidneys in six normal volunteers and 52 patients is reported. Corticomedullary differentiation was seen with the inversion-recovery (IR 1400/400) sequence in the normal volunteers and in patients with functioning transplanted kidneys and acute tubular necrosis. Partial or total loss of corticomedullary differentiation was seen in glomerulonephritis, acute and chronic renal failure, renal artery stenosis, and transplant rejection. The T1 of the kidneys was increased in glomerulonephritis with neuphrotic syndrome, but the T1 was within the normal range for renal medulla in glomerulonephritis without nephrotic syndrome, renal artery stenosis, and chronic renal failure. A large staghorn calculus was demonstrated with MRI, but small calculi were not seen. Fluid within the hydonephrosis, simple renal cysts, and polycystic kidneys displayed very low signal intensity and long T1 values. Tumors displayed varied appearances. Hypernephromas were shown to be hypo- or hyperintense with the renal medulla on the IR 1400/400 sequence. After intravenous injection of gadolinium-DTPA, there was marked decrease in the tumor T1.

  3. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  4. Cavity resonator coil for high field magnetic resonance imaging.

    PubMed

    Solis, S E; Tomasi, D; Rodriguez, A O

    2007-01-01

    A variant coil of the high frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. This coil design is similar to the popular birdcage coil but it has the advantage that it can be easily built following the physical principles of the cavity resonators [1]. The equivalent circuit approach was used to compute the resonant frequency of this coil design, and compared the results with those frequency values obtained with theory. A transceiver coil composed of 4 cavities with a rod length of 4.5 cm, and a resonant frequency of 170.29 MHz was built. Phantom images were then acquired to test its viability using standard imaging sequences. The theory facilitates its development for high frequency MRI applications of animal models.

  5. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  6. Cardiac magnetic resonance imaging of a patient with an magnetic resonance imaging conditional permanent pacemaker

    PubMed Central

    Hogarth, Andrew J.; Artis, Nigel J.; Sivananthan, U. Mohan; Pepper, Chris B.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) is increasingly used as the optimum modality for cardiac imaging. An aging population and rising numbers of patients with permanent pacemakers means many such individuals may require cardiac MRI scanning in the future. Whilst the presence of a permanent pacemaker is historically regarded as a contra-indication to MRI scanning, pacemaker systems have been developed to limit any associated risks. No reports have been published regarding the use of such devices with cardiac MRI in a clinical setting. We present the safe, successful cardiac MRI scan of a patient with an MRI-conditional permanent pacing system. PMID:22355486

  7. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  8. Magnetic resonance in ferromagnetic films, multilayers and nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Bates, Brittany; Greene, Nicole

    2014-03-01

    Incorporation of magnetic materials into metamaterial systems provides an opportunity to tune microwave permeability with external magnetic field. We studied magnetically dependent microwave properties of polymer composites with iron oxide nanoparticles, ferromagnetic films and ferromagnetic/dielectric multilayers. We show that the permeability of such systems can be magnetically tuned from positive to negative values in the range of ferromagnetic resonance, strongly affecting wave propagation. Strong changes in mu-metal permeability in low field range provides an additional possibility of tuning.

  9. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  10. Magnetism of gold nanorods probed using electron spin resonance

    NASA Astrophysics Data System (ADS)

    Inagaki, Y.; Yonemura, H.; Sakai, N.; Makihara, Y.; Kawae, T.; Yamada, S.

    2016-08-01

    Electron spin resonance (ESR) spectroscopy has been performed for gold nanorods (AuNRs) of four different sizes covered with a diamagnetic stabilizing component, cetyltrimethylammonium bromide. ESR signals were detected in AuNRs except the largest one. Two smallest AuNRs showed an abrupt change in the temperature dependence of resonance field and line width at around 60 K, indicating ferromagnetic phase transition. In medium-size AuNRs, the resonance with a large shift was observed below 100 K. The resonance field shifts at the lowest temperature exhibit systematic variation with the system size, which is explained by considering magnetic anisotropy for the ferromagnetic resonance.

  11. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  12. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  13. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  14. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  15. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  16. Magnetic resonance imaging of sports injuries of the ankle.

    PubMed

    Morrison, William B

    2003-04-01

    Basic sports-related injuries of the ankle include ligament tear, tendon degeneration and tear, bone bruise, fracture, impingement, osteochondral defect, and plantar fasciitis. This article discusses the magnetic resonance imaging appearance of these injuries.

  17. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances.

    PubMed

    Arthurs, Owen J; Barber, Joy L; Taylor, Andrew M; Sebire, Neil J

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present.

  18. Nuclear magnetic resonance data of C9H20OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  19. Nuclear magnetic resonance data of C8H18OSi

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  20. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  1. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  2. Nuclear magnetic resonance data of C10H15

    NASA Astrophysics Data System (ADS)

    Kalinowski, H.-O.; Kumar, M.; Gupta, V.; Gupta, R.

    This document is part of Part 1 `Aliphatic Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  3. Magnetic Resonance Fiber Tracking in a Neonate with Hemimegalencephaly

    PubMed Central

    Re, Thomas J; Scarciolla, Laura; Takahashi, Emi; Specchio, Nicola; Bernardi, Bruno; Longo, Daniela

    2015-01-01

    A magnetic resonance diffusion fiber tracking study in neonate diagnosed with left hemisphere hemimegalencephaly is presented. Despite diffuse morphologic deformities identified in conventional imaging, all major pathways were identifiable bilaterally with minor aberrations in vicinity of morphologic lesions. PMID:25655045

  4. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study

    PubMed Central

    Schallmo, Michael-Paul; Grant, Andrea N.; Burton, Philip C.; Olman, Cheryl A.

    2016-01-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports. PMID:27565016

  5. Single Session Imaging of Cerebellum at 7 Tesla: Obtaining Structure and Function of Multiple Motor Subsystems in Individual Subjects

    PubMed Central

    Batson, Melissa A.; Petridou, Natalia; Klomp, Dennis W. J.; Frens, Maarten A.; Neggers, Sebastiaan F. W.

    2015-01-01

    The recent increase in the use of high field MR systems is accompanied by a demand for acquisition techniques and coil systems that can take advantage of increased power and accuracy without being susceptible to increased noise. Physical location and anatomical complexity of targeted regions must be considered when attempting to image deeper structures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are overcome, the concomitant increase in signal strength at higher field strength should allow for faster acquisition of MR images. Here we show that it is technically feasible to quickly and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a single one-hour session. Images were obtained using two high-density multi-element surface coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmission, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb activations. BOLD signal changes during motor activity resulted in concentrated clusters of activity within the Cb lobules associated with each task, observed consistently and independently in each subject: Oculomotor vermis (VI/VII) and CrusI/II for pro- and anti-saccades; ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and hand- activations in hemispheres VI and VIIb/VIII. Though fast temporal resolution was not attempted here, these functional patches of highly specific BOLD signal changes may reflect small-scale shunting of blood in the microvasculature of Cb. The observed improvements in acquisition time and signal detection are ideal for individualized investigations such as differentiation of

  6. Single session imaging of cerebellum at 7 Tesla: obtaining structure and function of multiple motor subsystems in individual subjects.

    PubMed

    Batson, Melissa A; Petridou, Natalia; Klomp, Dennis W J; Frens, Maarten A; Neggers, Sebastiaan F W

    2015-01-01

    The recent increase in the use of high field MR systems is accompanied by a demand for acquisition techniques and coil systems that can take advantage of increased power and accuracy without being susceptible to increased noise. Physical location and anatomical complexity of targeted regions must be considered when attempting to image deeper structures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are overcome, the concomitant increase in signal strength at higher field strength should allow for faster acquisition of MR images. Here we show that it is technically feasible to quickly and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a single one-hour session. Images were obtained using two high-density multi-element surface coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmission, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb activations. BOLD signal changes during motor activity resulted in concentrated clusters of activity within the Cb lobules associated with each task, observed consistently and independently in each subject: Oculomotor vermis (VI/VII) and CrusI/II for pro- and anti-saccades; ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and hand- activations in hemispheres VI and VIIb/VIII. Though fast temporal resolution was not attempted here, these functional patches of highly specific BOLD signal changes may reflect small-scale shunting of blood in the microvasculature of Cb. The observed improvements in acquisition time and signal detection are ideal for individualized investigations such as differentiation of

  7. Simultaneous Imaging of Radiation-Induced Cerebral Microbleeds, Arteries and Veins, Using a Multiple Gradient Echo Sequence at 7 Tesla

    PubMed Central

    Bian, Wei; Banerjee, Suchandrima; Kelly, Douglas A.C.; Hess, Christopher P.; Larson, Peder E.Z.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2016-01-01

    Background The purpose of this study was to implement and evaluate the utility of a multi-echo sequence at 7 Tesla (T) for simultaneous time-of-flight (TOF) MR-angiography (MRA) and susceptibility-weighted imaging (SWI) of radiation-induced cerebral microbleeds (CMBs), intracranial arteries, and veins. Methods A four-echo gradient-echo sequence was implemented on a 7T scanner. The first echo was used to create TOF-MRA images, while the remaining echoes were combined to visualize CMBs and veins on SWI images. The sequence was evaluated on eight brain tumor patients with known radiation-induced CMBs. Single-echo images were also acquired to visually and quantitatively compare the contrast-to-noise ratio (CNR) of small- and intermediate-vessels between acquisitions. The number of CMBs detected with each acquisition was also quantified. Statistical significance was determined using a Wilcoxon signed-rank test. Results Compared with the single-echo sequences, the CNR of small and intermediate arteries increased 7.6% (P < 0.03) and 9.5% (P = 0.06), respectively, while the CNR of small and intermediate veins were not statistically different between sequences (P = 0.95 and P = 0.46, respectively). However, these differences were not discernible by visual inspection. Also the multi-echo sequence detected 18.3% more CMBs (P < 0.008) due to higher slice resolution. Conclusion The proposed 7T multi-echo sequence depicts arteries, veins, and CMBs on a single image to facilitate quantitative evaluation of radiation-induced vascular injury. PMID:25471321

  8. Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy

    SciTech Connect

    Atlas, S.W.; Grossman, R.I.; Packer, R.J.; Goldberg, H.I.; Hackney, D.B.; Zimmerman, R.A.; Bilaniuk, L.T.

    1987-01-01

    Disseminated necrotizing leukoencephalopathy is a rare syndrome of progressive neurologic deterioration seen most often in patients who have received central nervous system irradiation combined with intrathecal or systemic chemotherapy in the treatment or prophylaxis of various malignancies. Magnetic resonance imaging was more sensitive than computed tomography in detecting white matter abnormalities in the case of disseminated necrotizing leukoencephalopathy reported here. Magnetic resonance imaging may be useful in diagnosing incipient white matter changes in disseminated necrotizing leukoencephalopathy, thus permitting early, appropriate therapeutic modifications.

  9. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  10. Magnetic resonance imaging in the diagnosis of spinal cord diseases.

    PubMed Central

    Aichner, F; Poewe, W; Rogalsky, W; Wallnöfer, K; Willeit, J; Gerstenbrand, F

    1985-01-01

    Experience with magnetic resonance imaging in 22 patients with diseases of the spinal cord is reported. Important additional diagnostic information as compared to conventional neuroradiological techniques (myelography, spinal CT) was gained especially in cases of hydrosyringomyelia, intraspinal tumour and multiple sclerosis. It is suggested that magnetic resonance imaging may become the method of choice in the diagnosis of structural spinal cord diseases. Images PMID:3936900

  11. Fetal magnetic resonance imaging in obstetric practice.

    PubMed

    Köşüş, Aydın; Köşüş, Nermin; Usluoğulları, Betül; Duran, Müzeyyen; Turhan, Nilgün Öztürk; Tekşam, Mehmet

    2011-01-01

    Ultrasonography (USG) is the primary imaging method for prenatal diagnosis of fetal abnormalities since its discovery. Although it is the primary method of fetal imaging, it cannot provide sufficient information about the fetus in some conditions such as maternal obesity, oligohydramnios and engagement of the fetal head. At this stage, magnetic resonance imaging (MRI) facilitates examination by providing more specific information. The need and importance of fetal MRI applications further increased by the intrauterine surgery which is currently gaining popularity. Some advantages of fetal MRI over USG are the good texture of contrast, a greater study area and visualization of the lesion and neighbourhood relations, independence of the operators. Also it is not affected by maternal obesity and severe oligohydramnios. However, MRI is inadequate in detecting fetal limb and cardiac abnormalities when compared to USG. MRI is not used routinely in pregnancy. It is used in situations where nonionizing imaging methods are inadequate or ionizing radiation is required in pregnant women. It is not recommended during the first trimester. Contrast agent (Godalinium) is not used during pregnancy. It is believed that MRI is not harmful to the fetus, although the biological risk of MRI application is not known. MRI technique is superior to USG in the detection of corpus callosum dysgenesis, third-trimester evaluation of posterior fossa malformations, bilateral renal agenesis, diaphragmatic hernia and assessment of lung maturation. Especially, it is the method of choice for evaluation of central nervous system (CNS) abnormalities. Fetal MRI has a complementary role with USG. It provides important information for prenatal diagnosis, increases diagnostic accuracy, and in turn affects the prenatal treatment, prenatal interventions and birth plan.

  12. Magnetic resonance imaging of experimental testicular torsion.

    PubMed

    Kaipia, A; Ryymin, P; Mäkelä, E; Aaltonen, M; Kähärä, V; Kangasniemi, M

    2005-12-01

    We investigated the feasibility of contrast enhanced (CE)-dynamic magnetic resonance imaging (MRI) for the detection of testicular torsion induced hypoperfusion in an experimental rat model. Adult Sprague-Dawley rats were subjected to unilateral testicular torsion of 360 or 720 degrees. After 1 h, the tail veins of the anaesthetized rats were cannulated and T2 -, diffusion-weighted and T1-weighted CE-dynamic MRI were subsequently performed by a 1.5 T MRI scanner. On apparent diffusion coefficient (ADC) images, the region of interest values of the ischaemic and control testes was compared. From CE-dynamic MR images, the maximal slopes of contrast enhancement were calculated and compared. In testicular torsion of 360 degrees, the maximal slope of contrast enhancement was 0.072%/s vs. 0.47%/s in the contralateral control testis (p < 0.001). A torsion of 720 degrees diminished the slope of contrast enhancement to 0.046%/s vs. 0.37%/s in the contralateral testis (p < 0.001). Diminished blood flow during torsion also followed in decreased ADC values in both 360 degrees (12.4% decrease; p < 0.05) and 720 degrees (10.8% decrease; p < 0.001) of torsion. Torsion of the testis causes ipsilateral hypoperfusion and decreased gadolinium uptake in a rat model that can be easily detected and quantified by CE-dynamic MRI. In diffusion-weighted MRI images, acute hypoperfusion results in a slight decrease of ADC values. Our results suggest that CE-dynamic MRI in combination with diffusion-weighted MRI can be used to detect compromised blood flow due to acute testicular torsion.

  13. Identification of cortex in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    VanMeter, John W.; Sandon, Peter A.

    1992-06-01

    The overall goal of the work described here is to make available to the neurosurgeon in the operating room an on-line, three-dimensional, anatomically labeled model of the patient brain, based on pre-operative magnetic resonance (MR) images. A stereotactic operating microscope is currently in experimental use, which allows structures that have been manually identified in MR images to be made available on-line. We have been working to enhance this system by combining image processing techniques applied to the MR data with an anatomically labeled 3-D brain model developed from the Talairach and Tournoux atlas. Here we describe the process of identifying cerebral cortex in the patient MR images. MR images of brain tissue are reasonably well described by material mixture models, which identify each pixel as corresponding to one of a small number of materials, or as being a composite of two materials. Our classification algorithm consists of three steps. First, we apply hierarchical, adaptive grayscale adjustments to correct for nonlinearities in the MR sensor. The goal of this preprocessing step, based on the material mixture model, is to make the grayscale distribution of each tissue type constant across the entire image. Next, we perform an initial classification of all tissue types according to gray level. We have used a sum of Gaussian's approximation of the histogram to perform this classification. Finally, we identify pixels corresponding to cortex, by taking into account the spatial patterns characteristic of this tissue. For this purpose, we use a set of matched filters to identify image locations having the appropriate configuration of gray matter (cortex), cerebrospinal fluid and white matter, as determined by the previous classification step.

  14. Magnetic resonance imaging of thyroid nodules

    SciTech Connect

    Kroop, S.A.; Margouleff, D.; Stein, H.L.; Zanzi, I.; Susin, M.; Goldman, M.A.

    1985-05-01

    The capacity of Magnetic Resonance (MR) imaging to characterize the nature of palpable thyroid nodules was prospectively evaluated in 9 patients. Seven nodules were nonfunctioning and 2 showed function on radio-iodine Nuclear Medicine (NM) scans. Each patient underwent high-resolution real time ultrasound (US) examination followed by MR imaging with a 0.6 Tesla superconducting whole body coil utilizing T/sub 1/ and T/sub 2/ weighted inversion recovery and spin-echo pulse sequences in coronal, transverse and sagittal planes. All NM, US and MR studies were evaluated independently by each of two physicians. Diagnoses were established by surgical pathology (n=7) or by radiologic and clinical correlation (n=2). There were 3 cases of solitary adenoma, 4 cases of adenomatous goiter, 1 case of papillary carcinoma and 1 case of epidermoid carcinoma. Lesions demonstrated variable signal intensity on T/sub 1/ weighted images. All lesions demonstrated nonspecific increased signal intensity on T/sub 2/ weighted images. One malignancy was correctly diagnosed by the identification of adjacent cervical lymph nodes of increased signal intensity and another by demonstration of tracheal invasion on MR images, both not visible by other imaging modalities. Regions of hemorrhage and cystic degeneration as well as additional non-palpable thyroid nodules could be detected on MR images. Vascular displacement, tracheal compression and deviation, and substernal thyroid extension were also well demonstrated. The findings suggest that qualitative assessment of MR signal intensity alone cannot reliably differentiate benign from malignant thyroid lesions, but that MR images can provide other useful information to aid in this differentiation.

  15. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  16. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus.

  17. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  18. Prostate Cancer: The Role of Multiparametric Magnetic Resonance Imaging.

    PubMed

    Dias, João Lopes; Pina, João Magalhães; João, Raquel; Fialho, Joana; Carmo, Sandra; Leal, Cecília; Bilhim, Tiago; Marques, Rui Mateus; Pinheiro, Luís Campos

    2015-01-01

    Multiparametric magnetic resonance imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 weighted-imaging and at least two functional techniques, which include dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance imaging spectroscopy. Although the combined use of a pelvic phased-array and an endorectal coil is considered the state-of-the-art for magnetic resonance imaging evaluation of prostate cancer, endorectal coil is only absolute mandatory for magnetic resonance imaging spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 weighted-imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-magnetic resonance imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.

  19. Virtual special issue: Magnetic resonance at low fields

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2017-01-01

    It appears to be a common understanding that low magnetic fields need to be avoided in magnetic resonance, as sensitivity and the frequency dispersion of the chemical shift increase with increasing field strength. But there many reasons to explore magnetic resonance at low fields. The instrumentation tends to be far less expensive than high-field equipment, magnets are smaller and lighter, internal gradients in heterogeneous media are smaller, conductive media and even metals become transparent at low frequencies to electromagnetic fields, and new physics and phenomena await to be discovered. On account of an increasing attention of the scientific community to magnetic resonance at low field, we have decided to launch JMR's Virtual Special Issue Series with this compilation about Low-Field Magnetic Resonance. This topic, for which we have chosen to focus on articles reporting measurements at fields lower than 2 T, is of widespread interest to our readership. We are therefore happy to offer to this constituency a selected outlook based on papers published during the last five years (volumes 214-270) in the pages of The Journal of Magnetic Resonance. A brief survey of the topics covered in this Virtual Special Issue follows.

  20. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    PubMed Central

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-01-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices. PMID:28186145

  1. Dissipation and resonance frequency shift of a resonator magnetically coupled to a semiclassical spin

    NASA Astrophysics Data System (ADS)

    de Voogd, J. M.; Wagenaar, J. J. T.; Oosterkamp, T. H.

    2017-02-01

    We calculate the change of the properties of a resonator, when coupled to a semiclassical spin by means of the magnetic field. Starting with the Lagrangian of the complete system, we provide an analytical expression for the linear response function for the motion in the case of a mechanical resonator and the current for the case of an electromagnetic resonator, thereby considering the influence of the resonator on the spin and vice versa. This analysis shows that the resonance frequency and effective dissipation factor can change significantly due to the relaxation times of the spin. We first derive this for a system consisting of a spin and mechanical resonator and thereafter apply the same calculations to an electromagnetic resonator. Moreover, the applicability of the method is generalized to a resonator coupled to two-level systems and more, providing a key to understand some of the problems of two-level systems in quantum devices.

  2. Magnetic Resonance Imaging (MRI) (For Parents)

    MedlinePlus

    ... painless test that uses a magnetic field and radio waves to produce detailed pictures of the body's ... in hospitals and radiology centers. During the examination, radio waves manipulate the magnetic position of the atoms ...

  3. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  4. A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures.

    PubMed

    Gorgolewski, Krzysztof J; Mendes, Natacha; Wilfling, Domenica; Wladimirow, Elisabeth; Gauthier, Claudine J; Bonnen, Tyler; Ruby, Florence J M; Trampel, Robert; Bazin, Pierre-Louis; Cozatl, Roberto; Smallwood, Jonathan; Margulies, Daniel S

    2015-01-01

    Here we present a test-retest dataset of functional magnetic resonance imaging (fMRI) data acquired at rest. 22 participants were scanned during two sessions spaced one week apart. Each session includes two 1.5 mm isotropic whole-brain scans and one 0.75 mm isotropic scan of the prefrontal cortex, giving a total of six time-points. Additionally, the dataset includes measures of mood, sustained attention, blood pressure, respiration, pulse, and the content of self-generated thoughts (mind wandering). This data enables the investigation of sources of both intra- and inter-session variability not only limited to physiological changes, but also including alterations in cognitive and affective states, at high spatial resolution. The dataset is accompanied by a detailed experimental protocol and source code of all stimuli used.

  5. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications.

  6. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  7. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  8. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  9. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.

    PubMed

    Li, Xianli; Ding, Hui

    2012-12-15

    All-fiber magnetic-field sensor based on a device consisting of a microfiber knot resonator and magnetic fluid is proposed for the first time in this Letter. Sensor principles and package technology are introduced in detail. Experimental results show that the resonance wavelength of the proposed sensor regularly varies with changes to the applied magnetic field. When the magnetic field is increased to 600 Oe, the wavelength shift reaches nearly 100 pm. Moreover, the sensor responding to the 50 Hz alternating magnetic field is also experimentally investigated, and a minimal detectable magnetic-field strength of 10 Oe is successfully achieved.

  10. A Faraday effect position sensor for interventional magnetic resonance imaging.

    PubMed

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  11. Magnetically tunable Mie resonance-based dielectric metamaterials.

    PubMed

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-11-11

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route.

  12. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  13. Magnetically tunable Mie resonance-based dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-11-01

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route.

  14. Broadband ferromagnetic resonance linewidth measurement of magnetic tunnel junction multilayers

    NASA Astrophysics Data System (ADS)

    Sierra, J. F.; Aliev, F. G.; Heindl, R.; Russek, S. E.; Rippard, W. H.

    2009-01-01

    The broadband ferromagnetic resonance (FMR) linewidth of the free layer of magnetic tunnel junctions is used as a simple diagnostic of the quality of the magnetic structure. The FMR linewidth increases near the field regions of free layer reversal and pinned layer reversal, and this increase correlates with an increase in magnetic hysteresis in unpatterned films, low-frequency noise in patterned devices, and previous observations of magnetic domain ripple by use of Lorentz microscopy. Postannealing changes the free layer FMR linewidth, indicating that considerable magnetic disorder, originating in the exchange-biased pinned layer, is transferred to the free layer.

  15. Catheter steering using a Magnetic Resonance Imaging system.

    PubMed

    Lalande, Viviane; Gosselin, Frederick P; Martel, Sylvain

    2010-01-01

    A catheter is successfully bent and steered by applying magnetic gradients inside a Magnetic Resonance Imaging system (MRI). One to three soft ferromagnetic spheres are attached at the distal tip of the catheter with different spacing between the spheres. Depending on the interactions between the spheres, progressive or discontinuous/jumping displacement was observed for increasing magnetic load. This phenomenon is accurately predicted by a simple theoretical dipole interaction model.

  16. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  17. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  18. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Characterization of magnetically actuated resonant cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Vančura, Cyril; Lichtenberg, Jan; Hierlemann, Andreas; Josse, Fabien

    2005-10-01

    The vibration behavior of magnetically actuated resonant microcantilevers immersed in viscous fluids has been studied. A dependence of the resonance frequency and the quality factor (Q factor) on the fluid properties, such as density and viscosity and on the cantilever geometry is described. Various cantilever geometries are analyzed in pure water and glycerol solutions, and the results are explained in terms of the added displaced fluid mass and the fluid damping force for both the resonance frequency and the quality factor. An in-depth knowledge and understanding of such systems is necessary when analyzing resonant cantilevers as biochemical sensors in liquid environments.

  2. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  3. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  4. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging.

    PubMed

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.

  5. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    NASA Astrophysics Data System (ADS)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  6. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions.

  7. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    SciTech Connect

    Jin, L.

    2016-07-15

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  8. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  9. The use of magnetic resonance spectroscopy and magnetic resonance imaging in alcohol research.

    PubMed

    Nagel, Bonnie J; Kroenke, Christopher D

    2008-01-01

    The recent emergence of magnetic resonance (MR)-based neuroimaging techniques has dramatically improved researchers' ability to understand the neuropathology of alcoholism. These techniques range from those that directly monitor the metabolism and the biochemical and physiological effects (i.e., the pharmacodynamics) of alcohol within the brain to techniques that examine the impact of heavy alcohol use on brain structure and function. In general, MR-based techniques measure electromagnetic signals (the same type of signals detected by a radio antenna) generated by nuclei of endogenous molecules in the body of a person placed in a powerful magnet field. When influenced by a magnet, tissue itself transiently becomes magnetic. In part, this is because of the properties of atomic nuclei. Different MR-based techniques have been developed to utilize nuclear magnetism induced in tissue to generate images of internal structure. The most commonly used MR imaging (MRI) techniques rely on signals derived from hydrogen nuclei in water, which is by far the most concentrated molecular species in the body. The physical properties of water molecules vary from one region of tissue to another, and this influences the nuclear magnetism generated by water hydrogen nuclei. As a result, MRI can differentiate regions in soft tissue at a high level of detail. A second approach-MR spectroscopy (MRS)- uses the same strategy to detect electromagnetic signals, but they are derived from nuclei of atoms (hydrogen as well as some other atoms) on molecules other than water, such as lipids, amino acids, or even alcohol (i.e., ethanol). The resulting data on the molecule(s) under investigation can provide detailed information about the metabolic activity of various tissues, including the brain. The main advantage of MR-based techniques is that they do not expose the subject to radioactive tracers and therefore can be used repeatedly in the same subject, allowing researchers to track metabolic or

  10. Three-dimensional magnetic recording using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie

    2016-07-01

    To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.

  11. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  12. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  13. Dynamic magnetic susceptibility and electrical detection of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wang, X. S.; Yuan, H. Y.; Kang, S. S.; Zhang, H. W.; Wang, X. R.

    2017-03-01

    The dynamic magnetic susceptibility of magnetic materials near ferromagnetic resonance (FMR) is very important in interpreting the dc voltage obtained in its electrical detection. Based on the causality principle and the assumption that the usual microwave absorption lineshape of a homogeneous magnetic material around FMR is Lorentzian, the general forms of the dynamic magnetic susceptibility of an arbitrary sample and the corresponding dc voltage lineshapes of its electrical detection were obtained. Our main findings are as follows. (1) The dynamic magnetic susceptibility is not a Polder tensor for a material with an arbitrary magnetic anisotropy. The two off-diagonal matrix elements of the tensor near FMR are not, in general, opposite to each other. However, the linear response coefficient of the magnetization to the total radio frequency (rf) field (the sum of the external and internal rf fields due to precessing magnetization is a quantity which cannot be measured directly) is a Polder tensor. This may explain why the two off-diagonal susceptibility matrix elements were always wrongly assumed to be opposite to each other in almost all analyses. (2) The frequency dependence of dynamic magnetic susceptibility near FMR is fully characterized by six real numbers, while its field dependence is fully characterized by seven real numbers. (3) A recipe of how to determine these numbers by standard microwave absorption measurements for a sample with an arbitrary magnetic anisotropy is proposed. Our results allow one to unambiguously separate the contribution of the anisotropic magnetoresistance to the dc voltage signals from the anomalous Hall effect. With these results, one can reliably extract the information of spin pumping and the inverse spin-Hall effect, and determine the spin-Hall angle. (4) In the case that resonance frequency is not sensitive to the applied static magnetic field, the field dependence of the matrix elements of dynamic magnetic susceptibility, as

  14. Spin torque ferromagnetic resonance with magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. M.; Barsukov, I.; Chen, Y.-J.; Yang, L.; Katine, J. A.; Krivorotov, I. N.

    2013-10-01

    We demonstrate a technique of broadband spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation for measurements of spin wave properties in magnetic nanostructures. This technique gives great improvement in sensitivity over the conventional ST-FMR measurements, and application of this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR measurements with micromagnetic simulations of the spin wave spectrum allows us to explain the character of low-frequency magnetic excitations in nanoscale MTJs.

  15. Current-induced spin torque resonance of a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Chiba, Takahiro; Niedermayr, Arthur; Lotze, Johannes; Huebl, Hans; Geprägs, Stephan; Takahashi, Saburo; Bauer, Gerrit E. W.; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-10-01

    We report the observation of current-induced spin torque resonance in yttrium iron garnet/platinum bilayers. An alternating charge current at GHz frequencies in the platinum gives rise to dc spin pumping and spin Hall magnetoresistance rectification voltages, induced by the Oersted fields of the ac current and the spin Hall effect-mediated spin transfer torque. In ultrathin yttrium iron garnet films, we observe spin transfer torque actuated magnetization dynamics which are significantly larger than those generated by the ac Oersted field. Spin transfer torques thus efficiently couple charge currents and magnetization dynamics also in magnetic insulators, enabling charge current-based interfacing of magnetic insulators with microwave devices.

  16. Some principles in choosing parameters of magnetic resonance tomographs

    NASA Astrophysics Data System (ADS)

    Volobuev, A. N.

    2017-01-01

    The problem of amplifying the signal that ensures the visualization of internal organs in the magnetic resonance tomograph due to the optimal selection of some of its parameters has been considered. The operating principle of the tomograph has been analyzed. The relation between the angle of the magnetic moment precession in hydrogen nuclei in an organism, the frequency of the ac magnetic field exciting this precession, and the constant magnetic field used has been determined using quantum-mechanical concepts. This relation makes it possible to determine the optimal parameters for tomograph operation.

  17. On-wafer magnetic resonance of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.; Russek, Stephen E.; Booth, James C.; Kabos, Pavel; Usselman, Robert J.

    2015-11-01

    Magnetic resonance measurements of ferumoxytol and TEMPO were made using an on-wafer transmission line technique with a vector network analyzer, allowing for broadband measurements of small sample volumes (4 nL) and small numbers of spins (1 nmol). On-wafer resonance measurements were compared with standard single-frequency cavity-based electron paramagnetic resonance (EPR) measurements using a new power conservation approach and the results show similar line shape. On-wafer magnetic resonance measurements using integrated microfluidics and microwave technology can significantly reduce the cost and sample volumes required for EPR spectral analysis and allow for integration of EPR with existing lab-on-a-chip processing and characterization techniques for point-of-care medical diagnostic applications.

  18. Stacked magnetic resonators for MRI RF coils decoupling

    NASA Astrophysics Data System (ADS)

    Georget, Elodie; Luong, Michel; Vignaud, Alexandre; Giacomini, Eric; Chazel, Edouard; Ferrand, Guillaume; Amadon, Alexis; Mauconduit, Franck; Enoch, Stefan; Tayeb, Gérard; Bonod, Nicolas; Poupon, Cyril; Abdeddaim, Redha

    2017-02-01

    Parallel transmission is a very promising method to tackle B1+ field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR). By combining numerical and experimental methodologies, we prove that this novelty passive solution allows an efficient decoupling of elements of a phased-array coil. We demonstrate the ability of this technique to significantly reduce by more than 10 dB the coupling preserving the quality of images compared to ideally isolated linear resonators on a spherical salty agar gel phantom in a 7 T MRI scanner.

  19. Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla

    NASA Astrophysics Data System (ADS)

    Nikiel-Osuchowska, Anna; Collier, Guilhem; Głowacz, Bartosz; Pałasz, Tadeusz; Olejniczak, Zbigniew; Wȩglarz, Władysław P.; Tastevin, Geneviève; Nacher, Pierre-Jean; Dohnalik, Tomasz

    2013-09-01

    Metastability exchange optical pumping (MEOP) is experimentally investigated in 3He at 4.7 T, at room temperature and for gas pressures ranging from 1 to 267 mbar. The 23S-23P transition at 1083 nm is used for optical pumping and for detection of the laser-induced orientation of 3He atoms in the rf discharge plasma. The collisional broadening rate is measured (12.0 ± 0.4 MHz mbar-1 FHWM) and taken into account for accurate absorption-based measurements of both nuclear polarization in the ground state and atom number density in the metastable 23S state. The results lay the ground for a comprehensive assessment of the efficiency of MEOP, by comparison with achievements at lower field (1 mT-2 T) over an extended range of operating conditions. Stronger hyperfine decoupling in the optically pumped 23S state is observed to systematically lead to slower build-up of 3He orientation in the ground state, as expected. The nuclear polarizations obtained at 4.7 T still decrease at high pressure but in a less dramatic way than observed at 2 T in the same sealed glass cells. To date, thanks to the linear increase in gas density, they correspond to the highest nuclear magnetizations achieved by MEOP in pure 3He gas. The improved efficiency puts less demanding requirements for compression stages in polarized gas production systems and makes high-field MEOP particularly attractive for magnetic resonance imaging of the lungs, for instance.

  20. Simulation of a birdcage and a ceramic cavity HF-resonator for high magnetic fields in magnetic resonance imaging.

    PubMed

    Eriksen, E; Golombeck, M A; Junge, S; Dössel, O

    2002-01-01

    The aim of this work was the 3D-simulation of a dielectric resonator for high-field-MRI. A 12-rod-bird-cage-resonator was simulated in a first step, in order to verify the capability of the commercial simulation software MAFIA to simulate homogeneous, transversal B-fields in resonators. The second step was the simulation of frequency-independent dielectric ceramic resonators for static magnetic field strengths of 7 T and 12 T (294 MHz and 504 MHz respectively). The results were compared to the measured results of a manufactured TiO2- and a Al2O3-resonator. Only minor deviations showed up. These results led to the conclusion that dielectric resonators for high field MRI can be optimised using numerical field calculation software.

  1. Magnetic resonance imaging findings in acute canine distemper virus infection.

    PubMed

    Bathen-Noethen, A; Stein, V M; Puff, C; Baumgaertner, W; Tipold, A

    2008-09-01

    Demyelination is the prominent histopathological hallmark in the acute stage of canine distemper virus infection. Magnetic resonance imaging is an important diagnostic tool in human beings to determine demyelination in the brain, for example in multiple sclerosis. Five young dogs with clinically suspected canine distemper virus infection were subjected to magnetic resonance imaging of the brain and histopathological and immunohistochemical examinations. Hyperintense lesions and loss of contrast between grey and white matter were detected in T2-weighted images in the cerebellum and/or in the brainstem of three dogs, which correlated with demyelination demonstrated in histopathological examination. Furthermore, increased signal intensities in T2-weighted images were seen in the temporal lobe of four dogs with no evidence of demyelination. Magnetic resonance imaging seems to be a sensitive tool for the visualisation of in vivo myelination defects in dogs with acute canine distemper virus infection. Postictal oedema and accumulation of antigen positive cells have to be considered an important differential diagnosis.

  2. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies.

  3. Coronary magnetic resonance imaging: current state-of-the-art.

    PubMed

    Appelbaum, Evan; Botnar, René M; Yeon, Susan B; Manning, Warren J

    2005-09-01

    Over the past decade, coronary magnetic resonance imaging has been transformed from a scientific curiosity to a clinically useful imaging tool for patients with known or suspected anomalous coronary arteries or coronary artery aneurysms and for assessment of coronary artery bypass graft patency. Coronary magnetic resonance imaging also appears to be of clinical value for assessment of native vessel integrity in selected patients, especially those patients with suspected left main/multivessel disease. Among patients referred for X-ray angiography, a normal coronary magnetic resonance imaging strongly suggests the absence of severe multivessel disease. Technical and methodological advances in motion suppression, along with increasing clinical experience will no doubt facilitate improved visualization of the distal and branch vessel.

  4. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  5. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  6. [Diagnostic approach to cardiopathies by means of magnetic resonance imaging].

    PubMed

    Gutiérrez Zamora, Agustín

    2005-01-01

    Cardiomyopathies encompass a broad spectrum of heart pathologies having a basic principle, the intrinsic injury of the myocardial fiber. By definition, cardiomyopathies could be primary (dilated cardiomyopathy), or can be a consequence of another cardiovascular illness (high blood pressure), or of genetic anomalies, such as hypertrophic cardiomyopathy, or due to alterations in myocytes due to fibrolipidic material as occurs in right ventricle arrhythmogenic dysplasia. Currently, magnetic resonance imaging is the best method to approach the diagnosis of these pathologies. Magnetic resonance imaging has allowed us to study histological sections through adequate sequences and using gadolinium as contrast agent. We present herein a simple way to approach the diagnosis of cardiomyopathies by means of magnetic resonance imaging methods.

  7. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... cause a problem near a strong magnetic field. Electronic devices aren't permitted in the MRI room. ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  8. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... noninvasive test that uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  9. Biological effects of exposure to magnetic resonance imaging: an overview

    PubMed Central

    Formica, Domenico; Silvestri, Sergio

    2004-01-01

    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797

  10. Travelling wave magnetic resonance imaging at 3 T

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Martin, R.; Marrufo, O.; Rodriguez, A. O.

    2013-08-01

    Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore diameter limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies in magnetic resonance imaging and spectroscopy. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transverse electromagnetic modes and it can propagate any frequency. To study the potential benefits of travelling-wave excitation for whole-body imaging at 3 T, we compare numerical simulations of the principal mode propagation for a parallel-plate waveguide filled with a cylindrical phantom and two surface coils for all simulations at 1.5 T, 3 T, 4.7, 7 T, and 9.4 T. The principal mode shows very little variation of the field magnitude along the propagation direction at 3 T when compared to other higher resonant frequencies. Unlike the standard method for travelling-wave magnetic resonance imaging, a parallel-plate waveguide prototype was built and used together with a whole-body birdcage coil for signal transmission and a pair of circular coils for reception. Experimental B1 mapping was computed to investigate the feasibility of this approach and, the point spread function method was used to measure the imager performance. Human leg images were acquired to experimentally validate this approach. The numerical magnetic field and specific absorption rate of a simulated leg were computed and results are within the safety limits. The B1 mapping and point spread function results showed that it is possible to conduct travelling-wave imaging experiments with good imager performance. Human leg images were also obtained with the whole-body birdcage coil for comparison purposes. The simulated and in vivo travelling-wave results of the human leg correspond very well for the signal received. A similar image signal-to-noise ratio was observed for the

  11. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  12. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  13. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  14. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  15. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  16. Unusual Presentation of Popliteal Cyst on Magnetic Resonance Imaging

    PubMed Central

    Takahashi, Masaaki; Suzuki, Daisuke; Matsuyama, Yukihiro

    2016-01-01

    Popliteal cyst commonly presents as an ellipsoid mass with uniform low signal intensity on T1-weighted magnetic resonance images and high signal intensity on T2-weighted images. Here, we describe a popliteal cyst with unusual appearance on magnetic resonance imaging, including heterogeneous intermediate signal intensity on T2-weighted images. Arthroscopic cyst decompression revealed that the cyst was filled with necrotic synovial villi, indicative of rheumatoid arthritis. Arthroscopic enlargement of unidirectional valvular slits with synovectomy was useful for the final diagnosis and treatment. PMID:27999700

  17. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy.

    PubMed

    Webb, A G

    2013-04-01

    Small radiofrequency coils, often termed "microcoils", have found extensive use in many areas of magnetic resonance. Their advantageous properties include a very high intrinsic sensitivity, a high (several MHz) excitation and reception bandwidth, the fact that large arrays can fit within the homogeneous volume of the static magnetic field, and the very high resonance frequencies (several GHz) that can be achieved. This review concentrates on recent developments in the construction of single and multiple RF microcoil systems, and new types of experiments that can be performed using such assemblies.

  18. Cranial and spinal magnetic resonance imaging: A guide and atlas

    SciTech Connect

    Daniels, D.L.; Haughton, V.M.

    1987-01-01

    This atlas provides a clinical guide to interpreting cranial and spinal magnetic resonance images. The book includes coverage of the cerebrum, temporal bone, and cervical, thoracic, and lumbar spine, with more than 400 scan images depicting both normal anatomy and pathologic findings. Introductory chapters review the practical physics of magnetic resonance (MR) imaging, offer guidelines for interpreting cranial MR scans, and provide coverage of each anatomic region of the cranium and spine. For each region, scans accompanied by captions, show normal anatomic sections matched with MR images. These are followed by MR scans depicting various disease states.

  19. Magnetic Resonance Imaging to Visualize Disintegration of Oral Formulations.

    PubMed

    Curley, Louise; Hinton, Jordan; Marjoribanks, Cameron; Mirjalili, Ali; Kennedy, Julia; Svirskis, Darren

    2017-03-01

    This article demonstrates that magnetic resonance imaging can visualize the disintegration of a variety of paracetamol containing oral formulations in an in vitro setting and in vivo in the human stomach. The different formulations had unique disintegration profiles which could be imaged both in vitro and in vivo. No special formulation approaches or other contrast agents were required. These data demonstrate the potential for further use of magnetic resonance imaging to investigate and understand the disintegration behavior of different formulation types in vivo, and could potentially be used as a teaching tool in pharmaceutical and medical curricula.

  20. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  1. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  2. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  3. Proton magnetic resonance spectroscopy of a gray matter heterotopia.

    PubMed

    Marsh, L; Lim, K O; Sullivan, E V; Lane, B; Spielman, D

    1996-12-01

    We used proton magnetic resonance spectroscopy to examine resonances representing metabolites containing N-acetyl (NA) groups (predominantly N-acetyl aspartate), choline, and creatine within a large left-hemispheric gray matter heterotopia (GMH) in a 35-year-old man with corpus callosum agenesis. In contrast to normal brain tissue, including gray matter regions, heterotopic gray matter was characterized by relatively increased choline and creatine resonances and a normal NA signal. These data suggest increased cellular activity or persistent immature neuronal tissue in GMH relative to unaffected tissue.

  4. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  5. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  6. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    SciTech Connect

    Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V.

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

  7. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  8. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging.

    PubMed

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-03-17

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.

  9. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-03-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.

  10. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  11. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus Videos and Cool Tools

    Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... it’s commonly known, MRA. MRA is a noninvasive test that uses a powerful magnetic field and a ...

  12. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  13. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  14. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  15. Magnetic resonance segmentation with the bubble wave algorithm

    NASA Astrophysics Data System (ADS)

    Cline, Harvey E.; Ludke, Siegwalt

    2003-05-01

    A new bubble wave algorithm provides automatic segmentation of three-dimensional magnetic resonance images of both the peripheral vasculature and the brain. Simple connectivity algorithms are not reliable in these medical applications because there are unwanted connections through background noise. The bubble wave algorithm restricts connectivity using curvature by testing spherical regions on a propagating active contour to eliminate noise bridges. After the user places seeds in both the selected regions and in the regions that are not desired, the method provides the critical threshold for segmentation using binary search. Today, peripheral vascular disease is diagnosed using magnetic resonance imaging with a timed contrast bolus. A new blood pool contrast agent MS-325 (Epix Medical) binds to albumen in the blood and provides high-resolution three-dimensional images of both arteries and veins. The bubble wave algorithm provides a means to automatically suppress the veins that obscure the arteries in magnetic resonance angiography. Monitoring brain atrophy is needed for trials of drugs that retard the progression of dementia. The brain volume is measured by placing seeds in both the brain and scalp to find the critical threshold that prevents connections between the brain volume and the scalp. Examples from both three-dimensional magnetic resonance brain and contrast enhanced vascular images were segmented with minimal user intervention.

  16. Magnetic-field-induced bistability in resonant tunneling

    NASA Astrophysics Data System (ADS)

    Brown, S. A.; Macks, L. D.

    1998-07-01

    We report an unusual magnetic-field-induced bistability in the current-voltage characteristic of an asymmetric double-barrier resonant tunneling structure. It is suggested that this bistability is the experimental manifestation of self-sustained current oscillations that have recently been predicted by Orellana, Anda, and Claro [Phys. Rev. Lett. 79, 1118 (1997)].

  17. Development of contrast enhancing agents in magnetic resonance imaging.

    PubMed

    Lex, L

    1989-01-01

    Magnetic Resonance Imaging (MRI) is a powerful new diagnostic tool in medicine. In MRI there is a great need to improve the specific identification of different tissues i.e. to enhance the contrast between them. This review tries to cover most of the approaches known for solving this problem.

  18. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  19. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  20. Magnetic resonance imaging of ductus arteriosus Botalli apertus in adulthood.

    PubMed

    Schmidt, M; Theissen, P; Deutsch, H J; Erdmann, E; Schicha, H

    1999-02-28

    Ductus arteriosus Botalli apertus is a congenital cardiovascular malformation usually diagnosed in childhood by echocardiography and/or cardiac catheterization. Reports about magnetic resonance imaging of ductus arteriosus Botalli apertus are rare. We report about three adult female patients and one adult male patient in whom magnetic resonance imaging was able to demonstrate the pathology. In all four patients quantitative data about right ventricular function were calculated. Pulmonary hypertension with Eisenmenger syndrome detected by cardiac catheterization had developed in three of the four patients excluding operative closure of the ductus. The patient in whom pulmonary hypertension had not developed underwent successful operative closure of the ductus. Magnetic resonance imaging is a non-invasive tool that can be used for diagnosis of ductus arteriosus Botalli apertus and it allows to quantify right ventricular function. Magnetic resonance imaging can be used repetitively in patients with Eisenmenger syndrome which may be helpful for better timing of combined heart-lung transplantation as ultimate therapeutic strategy because deterioration of right ventricular function can be monitored.

  1. Magnetic Resonance Perfusion Imaging in the Study of Language

    ERIC Educational Resources Information Center

    Hillis, Argye E.

    2007-01-01

    This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow…

  2. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  3. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging (MRI) and approaches to mitigate risks. The overall goal is to discuss strategies to minimize patient and staff risk in the MRI environment. DATES: The...

  4. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  5. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  6. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  7. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  8. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    NASA Astrophysics Data System (ADS)

    Marrufo, O.; Vasquez, F.; Solis, S. E.; Rodriguez, A. O.

    2011-04-01

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  9. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  10. Tunable magnetic resonance in double layered metallic structures.

    PubMed

    Zhou, L; Zhu, Y Y

    2011-12-01

    Double layered metallic gratings have been investigated both theoretically and experimentally. The authors have reported that tunable magnetic resonance (MR) can be achieved by modulating the vertical chirped width dh which could be controlled conveniently in the common electron and/or ion beam microfabrications. The linear relationship between MR wavelength and dh has been reported. By introducing the difference of electric and magnetic penetration depth, an analytic formula deduced from a modified LC model has shown good agreement with the simulation results, and an effective width for trapezoidal sandwiched microstructures has been presented. Our results may provide an alternative choice for tunable MR and broad bandwidth of magnetic metamaterials.

  11. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  12. Parametric Resonance of Magnetization Excited by Electric Field.

    PubMed

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan A; Barsukov, Igor; Tiberkevich, Vasil; Xiao, John Q; Slavin, Andrei N; Krivorotov, Ilya N

    2017-01-11

    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

  13. Low-field magnetic resonance imaging of gases

    SciTech Connect

    Schmidt, D.M.; Espy, M.A.

    1998-11-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main goal of this project was to develop the capability to conduct low-field magnetic resonance imaging of hyper-polarized noble gas nuclei and of thermally polarized protons in water. The authors constructed a versatile low-field NMR system using a SQUID gradiometer detector inside a magnetically shielded room. This device has sufficient low-field sensitivity to detect the small signals associated with NMR at low magnetic fields.

  14. Ultracold Molecule Production via a Resonant Oscillating Magnetic Field

    SciTech Connect

    Thompson, S.T.; Hodby, E.; Wieman, C.E.

    2005-11-04

    A novel atom-molecule conversion technique has been investigated. Ultracold {sup 85}Rb atoms sitting in a dc magnetic field near the 155 G Feshbach resonance are associated by applying a small sinusoidal oscillation to the magnetic field. There is resonant atom to molecule conversion when the modulation frequency closely matches the molecular binding energy. We observe that the atom to molecule conversion efficiency depends strongly on the frequency, amplitude, and duration of the applied modulation and on the phase space density of the sample. This technique offers high conversion efficiencies without the necessity of crossing or closely approaching the Feshbach resonance and allows precise spectroscopic measurements. Efficiencies of 55% have been observed for pure Bose-Einstein condensates.

  15. A variable torque motor compatible with magnetic resonance imaging.

    PubMed

    Roeck, W W; Ha, S-H; Farmaka, S; Nalcioglu, O

    2009-04-01

    High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.

  16. Magnetic resonance imaging at frequencies below 1 kHz.

    PubMed

    Hilschenz, Ingo; Körber, Rainer; Scheer, Hans-Jürgen; Fedele, Tommaso; Albrecht, Hans-Helge; Mario Cassará, Antonino; Hartwig, Stefan; Trahms, Lutz; Haase, Jürgen; Burghoff, Martin

    2013-02-01

    Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.

  17. Selective actuation of arrays of carbon nanotubes using magnetic resonance.

    PubMed

    Volodin, Alexander; Santini, Claudia A; De Gendt, Stefan; Vereecken, Philippe M; Van Haesendonck, Chris

    2013-07-23

    We introduce the use of ferromagnetic resonance (FMR) to actuate mechanical resonances in as grown arrays of carbon nanotubes (CNTs) loaded with Ni particles (Ni-CNTs). This contactless method is closely related to the magnetic resonance force microscopy technique and provides spatial selectivity of actuation along the array. The Ni-CNT arrays are grown by chemical vapor deposition and are composed of homogeneous CNTs with uniform length (~600 nm) and almost equal diameter (~20 nm), which are loaded with Ni catalyst particles at their tips due to the tip growth mode. The vibrations of the Ni-CNTs are actuated by relying on the driving force that appears due to the FMR excited at about 2 GHz in the Ni particles (diameter ~100 nm). The Ni-CNT oscillations (frequency ~40 MHz) are detected mechanically by atomic force microscopy. The acquired oscillation images of the Ni-CNT uniform array reveal clear maxima in the spatial distribution of the oscillation amplitudes. We attribute these maxima to the "sensitive slices", i.e., the spatial regions of the Ni-CNT array where the FMR condition is met. Similar to magnetic resonance imaging, the sensitive slice is determined by the magnetic field gradient and moves along the Ni-CNT array as the applied magnetic field is ramped. Our excitation method does not require the presence of any additional microfabricated electrodes or coils near the CNTs and is particularly advantageous in cases where the traditional electrical actuation methods are not effective or cannot be implemented. The remote actuation can be effectively implemented also for arrays of other magnetic nanomechanical resonators.

  18. Magnetic resonance spectroscopy may hold promise in studying metabolites, tissues

    SciTech Connect

    Not Available

    1989-02-24

    Almost 15 years ago, in a basement at Chicago's University of Illinois Medical Center, Michael Barany, MD, PhD, measured phosphorus metabolites in an intact frog muscle using magnetic resonance spectroscopy (MRS). Prior to that, chemists used spectroscopy solely to analyze the contents of test tubes. Only a British group preceded Barany in proving that it would work in tissue as well. Today, he does spectroscopy clinically, one day a week, at the Greenberg Radiology Institute in Highland Park, IL, north of Chicago. Barany says that he can distinguish malignant from benign tumors in the living brain. The tool he uses is a standard magnetic resonance imaging (MRI) machine. While MRI capabilities have forged ahead, human MRS has been awaiting improvements in magnet and computer technology. Barany is one of a number of researchers who, since the early 1980s, have been developing MRS technology and techniques so that it can be done in the human body.

  19. Magnetically tunable Mie resonance-based dielectric metamaterials

    PubMed Central

    Bi, Ke; Guo, Yunsheng; Liu, Xiaoming; Zhao, Qian; Xiao, Jinghua; Lei, Ming; Zhou, Ji

    2014-01-01

    Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless communication and radar technology. However, the tunability of electromagnetic parameters is an immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route. PMID:25384397

  20. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  1. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    PubMed Central

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-01-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials. PMID:27503610

  2. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-08-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

  3. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  4. AGS Fast spin resonance jump, magnets and power supplies

    SciTech Connect

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  5. Cross-linked magnetic nanoparticles from poly(ethylene glycol) and dodecyl grafted poly(succinimide) as magnetic resonance probes.

    PubMed

    Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Park, Sung-Il; Chung, Bong Hyun; Kim, Jong-Duk

    2011-12-14

    Cross-linked magnetic nanoparticles were developed to improve the structural stability of amphiphilic polymer coated magnetic nanoparticles. These nanoparticles show strong potential for biomedical applications such as magnetic resonance imaging (MRI).

  6. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks.

    PubMed

    Chen, Quan; Marble, Andrew E; Colpitts, Bruce G; Balcom, Bruce J

    2005-08-01

    When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.

  7. Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles.

    PubMed

    Gharehaghaji, Nahideh; Oghabian, Mohammad Ali; Sarkar, Saeed; Amirmohseni, Saeedeh; Ghanaati, Hossein

    2009-07-01

    Magnetic resonance imaging pulse sequences have an important role in detection of lymph nodes using magnetic nanoparticles as a contrast agent. Current imaging sequences lack an optimum pulse sequence based on lymph node relaxation times after accumulation of magnetic nanoparticles. This deficiency is due to the limited information regarding the particle uptake in tissues, and their related magnetic properties used by magnetic resonance imaging. The aim of this study is to optimize the imaging pulse sequences based on in vivo measurement of relaxation times for obtaining the best contrast-enhanced images of axillary lymph nodes. In vivo studies were performed on normal rats on a 1.5 T clinical magnetic resonance imaging system. The used contrast agent was dextran coated iron oxide nanoparticles with a mean diameter of 20 nm. Relaxation time measurements were performed for enhanced (after injection) and nonenhanced axillary lymph nodes, and the surrounding tissue. Since magnetic resonance signal depends highly on tissue parameters; T1, T2, and T2*, as well as magnetic resonance acquisition parameters; repetition time and echo time, knowing the tissue characteristics is important in order to design a right magnetic resonance protocol for each application. Based on our proposed approach, the relaxivity characteristic of the lymph node after accumulation of a contrast agent and its corresponding relaxation rate is used to define optimum imaging parameters (i.e., repetition time and echo time) for maximum contrast. According to these imaging parameter values, various T1, T2, T2* and proton density weighted sequences were applied. Optimum pulse sequences were found to be T2*-weighted fast gradient echo, T1-weighted fast spoiled gradient echo and proton density-weighted fast spin echo sequences.

  8. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    SciTech Connect

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  9. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.

    PubMed

    Zhang, Qing; Wen, Xinglin; Li, Guangyuan; Ruan, Qifeng; Wang, Jianfang; Xiong, Qihua

    2013-12-23

    Plasmonic Fano resonance, enabled by the weak interaction between a bright super-radiant and a subradiant resonance mode, not only is fundamentally interesting, but also exhibits potential applications ranging from extraordinary optical transmission to biosensing. Here, we demonstrate strong Fano resonances in split-ring resonators/disk (SRR/D) nanocavities. The high-order magnetic modes are observed in SRRs by polarization-resolved transmission spectroscopy. When a disk is centered within the SRRs, multiple high-order magnetic modes are coupled to a broad electric dipole mode of SRR/D, leading to significant Fano resonance spectral features in near-IR regime. The strength and line shape of the Fano resonances are tuned through varying the SRR split-angle and interparticle distance between SRR and disk. Finite-difference-time-domain (FDTD) simulations are conducted to understand the coupling mechanism, and the results show good agreement with experimental data. Furthermore, the coupled structure gives a sensitivity of ∼282 nm/RIU with a figure of merit ∼4.

  10. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  11. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  12. Cardiovascular magnetic resonance assessment of myocardial infarction and post-infarct complications.

    PubMed

    Assomull, Ravi; Cannell, Timothy M; Prasad, Sanjay K

    2005-09-01

    The article discusses the growing role of cardiovascular magnetic resonance in both the diagnosis of myocardial infarction and its subsequent management, including the management of any resulting complications. The current roles of magnetic resonance coronary angiography and magnetic resonance perfusion are also reviewed.

  13. Magnetic resonance imaging of pediatric muscular disorders: recent advances and clinical applications.

    PubMed

    Kim, Hee Kyung; Lindquist, Diana M; Serai, Suraj D; Mariappan, Yogesh K; Wang, Lily L; Merrow, Arnold C; McGee, Kiaran P; Ehman, Richard L; Laor, Tal

    2013-07-01

    This review describes various quantitative magnetic resonance imaging techniques that can be used to objectively analyze the composition (T2 relaxation time mapping, Dixon imaging, and diffusion-weighted imaging), architecture (diffusion tensor imaging), mechanical properties (magnetic resonance elastography), and function (magnetic resonance spectroscopy) of normal and pathologic skeletal muscle in the pediatric population.

  14. Electric and magnetic resonance in metal strip tetramer

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Li, Hongjian; Chen, Qiao; Xiao, Gang

    2015-11-01

    We have numerically investigated the transmission and plasmon resonance properties of the metal strip tetramer. The results show that in the symmetric model there are three sharp transparent windows, the first and third peaks' transmittance are more than 75%. When decreasing metal strips size or increasing gap distance, the transmission spectra blue-shift and intensities change. While introducing asymmetry, the transmission spectra and Plasmon resonance significantly change, whether to modify the size or the gap distance, a new dip exist on the second peak, and one or two new peaks exist on the third dip. Through analysis of the electric-magnetic properties, we find that the new dip results from asymmetric second-order magnetic resonance, while the peak is originated from the strong electric resonance. It is also demonstrated that the sensor sensitivity in this proposed system can reach of 380 nm/RIU. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.

  15. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  16. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  17. Nuclear magnetic resonance imaging with 90-nm resolution.

    PubMed

    Mamin, H J; Poggio, M; Degen, C L; Rugar, D

    2007-05-01

    Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF(2) test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) T m(-1), and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

  18. In vivo static field perturbations in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Koch, Kevin Matthew

    2007-12-01

    Fundamental magnetic resonance (MR) theory assumes the spatial homogeneity of a dominating static magnetic field B = B 0ẑ. When this assumption is violated, a myriad of artifacts and compromising factors are introduced to MR spectra and images. Though in vivo nuclear magnetic resonance (NMR) is one of the most widely used scientific and diagnostic tools in medicine and biology, it remains haunted by the continual and persistant ghost of B0 inhomogeneity. An inclusive list of in vivo NMR applications severely impacted by B0 inhomogeneity could go on ad infinitum. Examples of such applications include neurosurgical utility in functional magnetic resonance imaging (fMRI), cerebral metabolic flux mapping, cerebral diffusion tractography, and abdominal diagnostic imaging. Given this wide impact on in vivo NMR, significant effort has been exerted in developing methods of compensating B0 inhomogeneity. Complicating this task is the sample-specific nature of in vivo B 0 inhomogeneity and its exacerbation with ever increasing B 0 field strengths. State of the art B 0 inhomogeneity compensation is currently at a critical juncture where homogenization demands are overwhelming the outer capabilities of existing technology and methods. This thesis addresses the B 0 inhomogeneity problem in the mammalian brain and presents novel solutions to the homogenization technology stalemate.

  19. Surprising connections: the diverse world of magnetic resonance

    NASA Astrophysics Data System (ADS)

    Callaghan, Paul

    2004-10-01

    When Rutherford discovered the atomic nucleus he could not possibly have imagined that it might be a window to understanding molecular biology, or how the brain works. And yet so it has come to pass. It is the through the magnetism of the nucleus that these insights, and so much more, are possible. The phenomenon of ``Nuclear Magnetic Resonance'' has proven an essential tool in physics, it has revolutionised chemistry and biochemistry, it has made astonishing contributions to medicine, and is now making an impact in geophysics, chemical engineering and food technology. It is even finding applications in new security technologies and in testing fundamental ideas concerning quantum computing. But the story of Magnetic Resonance is much more than the application of a well-established method to new areas of science. The technique itself continues to evolve. Magnetic Resonance has now garnered 6 Nobel prizes, two of them in the last two years. For a technique that has been around for nearly 60 years, it is really quite extraordinary that such accolades are still being given to new developments in the methodology. This talk will explain why the nuclear spin is so ubiquitous and interdisciplinary, and so rich in its fundamental physics. It will illustrate how unpredictable and surprising are the consequences of a major scientific discovery. For funding agencies determined to direct research activities towards predicted benefits, the conclusion drawn may provide a salutary lesson.

  20. Synthesis of Fe 3O 4 magnetic fluid used for magnetic resonance imaging and hyperthermia

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Cao, X.; Liu, G. H.; Hong, R. Y.; Chen, Y. M.; Chen, X. F.; Li, H. Z.; Xu, B.; Wei, D. G.

    2011-12-01

    Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.

  1. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  2. Spin amplification in solution magnetic resonance using radiation damping.

    PubMed

    Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya

    2007-08-07

    The sensitive detection of dilute solute spins is critical to biomolecular NMR. In this work, a spin amplifier for detecting dilute solute magnetization is developed using the radiation damping interaction in solution magnetic resonance. The evolution of the solvent magnetization, initially placed along the unstable -z direction, is triggered by the radiation damping field generated by the dilute solute magnetization. As long as the radiation damping field generated by the solute is larger than the corresponding thermal noise field generated by the sample coil, the solute magnetization can effectively trigger the evolution of the water magnetization under radiation damping. The coupling between the solute and solvent magnetizations via the radiation damping field can be further improved through a novel bipolar gradient scheme, which allows solute spins with chemical shift differences much greater than the effective radiation damping field strength to affect the solvent magnetizations more efficiently. Experiments performed on an aqueous acetone solution indicate that solute concentrations on the order of 10(-5) that of the solvent concentration can be readily detected using this spin amplifier.

  3. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  4. Patterns in Saccharomyces cerevisiae yeast colonies via magnetic resonance imaging.

    PubMed

    Tenório, Rômulo P; Barros, Wilson

    2017-01-23

    We report the use of high-resolution magnetic resonance imaging methods to observe pattern formation in colonies of Saccharomyces cerevisiae. Our results indicate substantial signal loss localized in specific regions of the colony rendering useful imaging contrast. This imaging contrast is recognizable as being due to discontinuities in magnetic susceptibility (χ) between different spatial regions. At the microscopic pixel level, the local variations in the magnetic susceptibility (Δχ) induce a loss in the NMR signal, which was quantified via T2 and T2* maps, permitting estimation of Δχ values for different regions of the colony. Interestingly the typical petal/wrinkling patterns present in the colony have a high degree of correlation with the estimated susceptibility distribution. We conclude that the presence of magnetic susceptibility inclusions, together with their spatial arrangement within the colony, may be a potential cause of the susceptibility distribution and therefore the contrast observed on the images.

  5. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

    SciTech Connect

    Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry

    2014-11-10

    We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/√(Hz) and measure a technical noise floor of 40fT/√(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

  6. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  7. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  8. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  9. Stochastic dipolar recoupling in nuclear magnetic resonance of solids

    PubMed Central

    Tycko, Robert

    2008-01-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems. PMID:17995438

  10. High-field small animal magnetic resonance oncology studies

    NASA Astrophysics Data System (ADS)

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, chemical exchange saturation transfer imaging and hyperpolarized 13C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

  11. Flat RF coils in static field gradient nuclear magnetic resonance.

    PubMed

    Stork, H; Gädke, A; Nestle, N; Fujara, F

    2009-10-01

    The use of flat RF coils allows considerable gains in the sensitivity of static field gradient (SFG) nuclear magnetic resonance (NMR) experiments. In this article, this effect is studied theoretically as well as experimentally. Additionally, the flat coil geometry has been studied theoretically depending on magnetic field gradient, pulse sequence and amplifier power. Moreover, detecting the signal directly from the free induction decay (FID) turned out to be quite attractive for STRAFI-like microimaging experiments, especially when using flat coils. In addition to wound rectangular flat coils also spiral flat coils have been developed which can be manufactured by photolithography from printed circuit boards.

  12. Stochastic dipolar recoupling in nuclear magnetic resonance of solids.

    PubMed

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems.

  13. Stochastic Dipolar Recoupling in Nuclear Magnetic Resonance of Solids

    SciTech Connect

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body system000.

  14. Influence of the magnetic tip in ferromagnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Charbois, V.; Naletov, V. V.; Youssef, J. Ben; Klein, O.

    2002-06-01

    We compare mechanically detected ferromagnetic resonance spectra for different separations h between the magnetic tip and sample surface. When the bias field generated by the tip is smaller than a few hundred gauss, the prominent changes are shifts of the entire spectrum (without line shape distortions) to higher frequency as h decreases. These results are in agreement with the Damon and Eshbach model for spin waves propagating in a potential perturbed by the additional field of the probe magnet. It is used to predict the spatial resolution limit for magnetostatic modes bounded by the stray field of the tip. The answer is approx4 mum for yttrium iron garnet.

  15. New magnetic resonance imaging modalities for Crohn disease.

    PubMed

    Yacoub, Joseph H; Oto, Aytekin

    2014-02-01

    Magnetic resonance (MR) enterography has an increasing role in the evaluation of the small bowel in patients with Crohn disease. MR enterography is accurate for disease assessment and can influence the choice of therapy. Functional sequences may increase the role of MR enterography in Crohn disease. Techniques such as high-resolution MR enterography, diffusion-weighted imaging, dynamic contrast-enhanced MR imaging, magnetization transfer, and MR motility imaging may allow better assessment of disease extent, activity, and severity. Quantitative analysis using these advanced techniques as well as the standard techniques may provide methods for evaluating and following the disease in the future.

  16. Magnetic resonance in a Cu-Cr-S structure

    SciTech Connect

    Vorotynov, A. M. Abramova, G. M.; Pankrats, A. I.; Petrakovskii, G. A.; Zharkov, S. M.; Zeer, G. M.; Tugarinov, V. I.; Rautskii, M. V.; Sokolov, V. V.

    2013-11-15

    A layered Cu-Cr-S structure composed of single-crystal CuCrS{sub 2} layers and thin CuCr{sub 2}S{sub 4} plates embedded in them has been investigated by the magnetic resonance and scanning electron microscopy methods. The Curie temperature and saturation magnetization of the spinel phase of the investigated samples have been determined. The thickness of the CuCr{sub 2}S{sub 4} layers has been estimated. The dependence of the growncrystal topology on synthesis conditions has been established. An interpretation of the anomalous behavior of the magnetostatic oscillation intensity is offered.

  17. Technical considerations for functional magnetic resonance imaging analysis.

    PubMed

    Conklin, Chris J; Faro, Scott H; Mohamed, Feroze B

    2014-11-01

    Clinical application of functional magnetic resonance imaging (fMRI) based on blood oxygenation level-dependent (BOLD) effect has increased over the past decade because of its ability to map regional blood flow in response to brain stimulation. This mapping is primarily achieved by exploiting the BOLD effect precipitated by changes in the magnetic properties of hemoglobin. BOLD fMRI has utility in neurosurgical planning and mapping neuronal functional connectivity. Conventional echo planar imaging techniques are used to acquire stimulus-driven fMR imaging BOLD data. This article highlights technical aspects of fMRI data analysis to make it more accessible in clinical settings.

  18. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  19. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  20. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    SciTech Connect

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; Park, J. -K.; Menard, J. E.

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  1. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  2. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  3. Introduction to Cardiovascular Magnetic Resonance: Technical Principles and Clinical Applications

    PubMed Central

    Tseng, Wen-Yih Isaac; Su, Mao-Yuan Marine; Tseng, Yao-Hui Elton

    2016-01-01

    Cardiovascular magnetic resonance (CMR) is a set of magnetic resonance imaging (MRI) techniques designed to assess cardiovascular morphology, ventricular function, myocardial perfusion, tissue characterization, flow quantification and coronary artery disease. Since MRI is a non-invasive tool and free of radiation, it is suitable for longitudinal monitoring of treatment effect and follow-up of disease progress. Compared to MRI of other body parts, CMR faces specific challenges from cardiac and respiratory motion. Therefore, CMR requires synchronous cardiac and respiratory gating or breath-holding techniques to overcome motion artifacts. This article will review the basic principles of MRI and introduce the CMR techniques that can be optimized for enhanced clinical assessment. PMID:27122944

  4. Magnetic resonance imaging and electromyography as indexes of muscle function

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Duvoisin, Marc R.; Dudley, Gary A.

    1992-01-01

    A hypothesis is tested that exercise-induced magnetic resonance (MR) contrast shifts would relate to electromyography (EMG) amplitude if both measures reflect muscle use during exercise. Both magnetic resonance images (MRI) and EMG data were obtained for separate eccentric (ECC) and cocentric (CON) exercise of increasing intensity for seven subjects 30-32 yr old. CON and ECC actions caused increased integrated EMG (IEMG) and T2 values which were strongly related with relative resistance. The rate of increase and absolute value of both T2 and IEMG were found to be greater for CON than for ECC actions. For both actions IEMG and T2 were correlated. Data obtained suggest that surface IEMG accurately reflects the contractile behavior of muscle and exercise-induced increases in MRI T2 values reflect certain processes that scale with muscle use.

  5. Role of magnetic resonance imaging in musculoskeletal trauma.

    PubMed

    Ahn, Joong Mo; El-Khoury, Georges Y

    2007-06-01

    The unique ability of magnetic resonance (MR) imaging to visualize injuries of bone, cartilage, bone marrow, and supporting soft tissue structure makes it ideally suited for the evaluation of musculoskeletal trauma. Magnetic resonance imaging also offers exquisitely detailed anatomical information on the musculoskeletal system. The widespread availability of MR imaging and the constantly improving technology make it the imaging modality of choice for the patients with a musculoskeletal trauma. This review discusses the role and applications of MR imaging for musculoskeletal trauma. It covers traumatic conditions of the musculoskeletal system, including hemarthrosis, lipohemarthrosis, stress fracture, occult fractures, cartilage injuries, the muscle and tendon trauma, avulsion injuries, extensor mechanism injuries, and traumatic conditions of joints.

  6. Familial Essential Tremor Studied With Functional Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Salgado, P.; Gil, A.; Barrios, F. A.

    2003-09-01

    Functional Magnetic Resonance Imaging has become an important analytical tool to study neurodegenerative diseases. We applied the EPI-BOLD functional Magnetic Resonance Imaging technique to acquire functional images of patients with familial essential tremor (FET) disorder and healthy control volunteers, during a motor task activity. Functional and anatomic images were used to produce the brain activation maps of the patients and volunteers. These functional maps of the primary somatosensorial and motor cortexes of patients and control subjects were compared for functional differences per subject. The averaged functional brain images of eight of each case were acquired were, it can be clearly observed the differences in active zones. The results presented in this work show that there are differences in the functional maps during motor task activation between control subjects and FET patients suggesting a cerebral functional reorganization that can be mapped with BOLD-fMRI.

  7. Isotropic anomalous filtering in Diffusion-Weighted Magnetic Resonance Imaging.

    PubMed

    da S Senra Filho, Antonio Carlos; Jinzenji Duque, Juliano; Murta Junior, Luiz Otávio

    2013-01-01

    Noise is inherent to Diffusion-Weighted Magnetic Resonance Imaging (DWI) and noise reduction methods are necessary. Although process based on classical diffusion is one of the most used approaches for digital image, anomalous diffusion has the potential for image enhancement and it has not been tested for DWI noise reduction. This study evaluates Anomalous Diffusion (AD) filter as DWI enhancement method. The proposed method was applied to magnetic resonance diffusion weighted images (DW-MRI) with different noise levels. Results show better performance for anomalous diffusion when compared to classical diffusion approach. The proposed method has shown potential in DWI enhancement and can be an important process to improve quality in DWI for neuroimage-based diagnosis.

  8. Functional magnetic resonance imaging in oncology: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  9. Magnetic resonance imaging for prostate cancer clinical application

    PubMed Central

    Li, Bing; Du, Yong; Huang, Yayong; Meng, Jun; Xiao, Dongmei

    2013-01-01

    As prostate cancer is a biologically heterogeneous disease for which a variety of treatment options are available, the major objective of prostate cancer imaging is to achieve more precise disease characterization. In clinical practice, magnetic resonance imaging (MRI) is one of the imaging tools for the evaluation of prostate cancer, the fusion of MRI or dynamic contrast-enhanced MRI (DCE-MRI) with magnetic resonance spectroscopic imaging (MRSI) is improving the evaluation of cancer location, size, and extent, while providing an indication of tumor aggressiveness. This review summarizes the role of MRI in the application of prostate cancer and describes molecular MRI techniques (including MRSI and DCE-MRI) for aiding prostate cancer management. PMID:23592906

  10. Innovative computing for diagnoses from medical, magnetic-resonance imaging

    SciTech Connect

    Diegert, C.

    1997-01-01

    The author presents a final report on a Laboratory-Directed Research and Development (LDRD) project, Innovative Computing for Diagnoses from Medical, Magnetic-Resonance Imaging, performed during fiscal years 1992 and 1993. The project defined a role for high-performance computing in surgery: the supercomputer can automatically summarize the three-dimensional extents of lesions and other clinically-relevant structures, and can deliver these summaries to workstation-based, augmented-reality environments at the clinical site. The author developed methods and software to make these summaries from the digital data already acquired using clinical, magnetic-resonance machines. In joint work with Albuquerque`s Department of Veterans Affairs Hospital, the author applied this work, and obtained a basis for planning, for rehearsal, and for guidance during surgery.

  11. Functional magnetic resonance imaging in oncology: state of the art*

    PubMed Central

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate. PMID:25741058

  12. [Safety of magnetic resonance imaging after coronary stenting].

    PubMed

    Sinitsyn, V E; Stukalova, O V; Kupriianova, O M; Ternovoĭ, S K

    2007-01-01

    Magnetic resonance imaging (MRI) is contraindicated to some patients with certain types of metallic devices and implants (e.g. cerebral surgical clips, defibrillators). There are some controversies concerning safety of MRI in patients with metallic coronary stents in cases when MRI examination is performed earlier then one month after stent implantation. Analysis of published data has shown that MRI performed with systems having field strength up to 3 Tesla does not cause migration and heating of both bare and coated stent and is not associated with increased risk of coronary artery thrombosis. MRI can be performed safely in first days after coronary stent implantation. Small local artifacts on MRI images do not influence interpretation of the data (except for cases of coronary magnetic resonance angiography).

  13. Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function

    PubMed Central

    2015-01-01

    Hyperpolarized magnetic resonance allows for noninvasive measurements of biochemical reactions in vivo. Although this technique provides a unique tool for assaying enzymatic activities in intact organs, the scope of its application is still elusive for the wider scientific community. The purpose of this review is to provide key principles and parameters to guide the researcher interested in adopting this technology to address a biochemical, biomedical, or medical issue. It is presented in the form of a compendium containing the underlying essential physical concepts as well as suggestions to help assess the potential of the technique within the framework of specific research environments. Explicit examples are used to illustrate the power as well as the limitations of hyperpolarized magnetic resonance. PMID:25369537

  14. Computed tomography and magnetic resonance imaging comparisons in boxers

    SciTech Connect

    Jordan, B.D. ); Zimmerman, R.D. )

    1990-03-23

    The efficacy of computed tomography (CT) and magnetic resonance imaging (MRI) in identifying traumatic injuries of the brain was compared in a referred population of 21 amateur and professional boxers. Three boxers displayed CT scans with equivocal findings that were verified as artifacts by MRI. Eleven boxers had both CT and MRI scans with normal findings, and 7 boxers had both CT and MRI scans with abnormal findings. There were no instances where abnormalities demonstrated on CT scanning were not detected by MRI. However, some abnormalities detected on MRI were not detected on CT scans. These included a subdural hematoma, white-matter changes, and a focal contusion. Magnetic resonance imaging appears to be the neuroradiodiagnostic test of choice compared with CT.

  15. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications.

    PubMed

    Schuster, Andreas; Hor, Kan N; Kowallick, Johannes T; Beerbaum, Philipp; Kutty, Shelby

    2016-04-01

    Heart failure-induced cardiovascular morbidity and mortality constitute a major health problem worldwide and result from diverse pathogeneses, including coronary artery disease, nonischemic cardiomyopathies, and arrhythmias. Assessment of cardiovascular performance is important for early diagnosis and accurate management of patients at risk of heart failure. During the past decade, cardiovascular magnetic resonance myocardial feature tracking has emerged as a useful tool for the quantitative evaluation of cardiovascular function. The method allows quantification of biatrial and biventricular mechanics from measures of deformation: strain, torsion, and dyssynchrony. The purpose of this article is to review the basic principles, clinical applications, accuracy, and reproducibility of cardiovascular magnetic resonance myocardial feature tracking, highlighting the prognostic implications. It will also provide an outlook on how this field might evolve in the future.

  16. [Fetal magnetic resonance imaging evaluation of congenital diaphragmatic hernia].

    PubMed

    Sebastià, C; Garcia, R; Gomez, O; Paño, B; Nicolau, C

    2014-01-01

    A diaphragmatic hernia is defined as the protrusion of abdominal viscera into the thoracic cavity through a normal or pathological orifice. The herniated viscera compress the lungs, resulting in pulmonary hypoplasia and secondary pulmonary hypertension, which are the leading causes of neonatal death in patients with congenital diaphragmatic hernia. Congenital diaphragmatic hernia is diagnosed by sonography in routine prenatal screening. Although magnetic resonance imaging is fundamentally used to determine whether the liver is located within the abdomen or has herniated into the thorax, it also can provide useful information about other herniated structures and the degree of pulmonary hypoplasia. The aim of this article is to review the fetal magnetic resonance findings for congenital diaphragmatic hernia and the signs that enable us to establish the neonatal prognosis when evaluating pulmonary hypoplasia.

  17. A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.

    PubMed

    Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F

    2004-01-30

    A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.

  18. Tearing mode velocity braking due to resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2012-10-01

    The effect of resonant magnetic perturbations (RMPs) on the tearing mode (TM) velocity is studied in EXTRAP T2R. Experimental results show that the RMP produces TM braking until a new steady velocity or wall locking is reached. The braking is initially localized at the TM resonance and then spreads to the other TMs and to the rest of the plasma producing a global velocity reduction via the viscous torque. The process has been used to experimentally estimate the kinematic viscosity profile, in the range 2-40 m2 s-1, and the electromagnetic torque produced by the RMP, which is strongly localized at the TM resonance. Experimental results are then compared with a theoretical model which gives a reasonable qualitative explanation of the entire process.

  19. Dressler's syndrome demonstrated by late gadolinium enhancement cardiovascular magnetic resonance

    PubMed Central

    Steadman, Christopher D; Khoo, Jeffrey; Kovac, Jan; McCann, Gerry P

    2009-01-01

    A 49-year old patient presented late with an anterolateral ST-elevation myocardial infarction and was treated with rescue angioplasty to an occluded left anterior descending artery. Her recovery was complicated by low-grade pyrexia and raised inflammatory markers. Cardiovascular magnetic resonance 5 weeks after the acute presentation showed transmural infarction and global late gadolinium enhancement of the pericardium in keeping with Dressler's syndrome. PMID:19627595

  20. Resonant magnetic scattering of polarized soft x rays

    SciTech Connect

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.; Underwood, J.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.