Science.gov

Sample records for 70oc h2 producing

  1. Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain.

    PubMed

    Kimura, Yuka; Toyofuku, Yukiko; Koike, Shin; Shibuya, Norihiro; Nagahara, Noriyuki; Lefer, David; Ogasawara, Yuki; Kimura, Hideo

    2015-10-06

    Hydrogen polysulfides (H2Sn) have a higher number of sulfane sulfur atoms than hydrogen sulfide (H2S), which has various physiological roles. We recently found H2Sn in the brain. H2Sn induced some responses previously attributed to H2S but with much greater potency than H2S. However, the number of sulfur atoms in H2Sn and its producing enzyme were unknown. Here, we detected H2S3 and H2S, which were produced from 3-mercaptopyruvate (3 MP) by 3-mercaptopyruvate sulfurtransferase (3MST), in the brain. High performance liquid chromatography with fluorescence detection (LC-FL) and tandem mass spectrometry (LC-MS/MS) analyses showed that H2S3 and H2S were produced from 3 MP in the brain cells of wild-type mice but not 3MST knockout (3MST-KO) mice. Purified recombinant 3MST and lysates of COS cells expressing 3MST produced H2S3 from 3 MP, while those expressing defective 3MST mutants did not. H2S3 was localized in the cytosol of cells. H2S3 was also produced from H2S by 3MST and rhodanese. H2S2 was identified as a minor H2Sn, and 3 MP did not affect the H2S5 level. The present study provides new insights into the physiology of H2S3 and H2S, as well as novel therapeutic targets for diseases in which these molecules are involved.

  2. The H2S Donor NaHS Changes the Expression Pattern of H2S-Producing Enzymes after Myocardial Infarction.

    PubMed

    Li, Na; Wang, Ming-Jie; Jin, Sheng; Bai, Ya-Dan; Hou, Cui-Lan; Ma, Fen-Fen; Li, Xing-Hui; Zhu, Yi-Chun

    2016-01-01

    Aims. To examine the expression patterns of hydrogen sulphide- (H2S-) producing enzymes in ischaemic heart tissue and plasma levels of H2S after 2 weeks of NaHS treatment after myocardial infarction (MI) and to clarify the role of endogenous H2S in the MI process. Results. After MI surgery, 2 weeks of treatment with the H2S donor NaHS alleviated ischaemic injury. Meanwhile, in ischemia myocardium, three H2S-producing enzymes, cystathionine γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) significantly increased. Plasma H2S levels were also elevated. In vitro, NaHS treatment protected cardiomyocytes from hypoxic injury and raised CBS levels in a concentration-dependent manner. Different from in vivo results, however, CSE or 3-MST expression did not change. NaHS treatment increased the activity of CSE/CBS but not of 3-MST. When CSE was either knocked down (in vitro) or knocked out (in vivo), H2S levels significantly decreased, which subsequently exacerbated the ischaemic injury. Meanwhile, the expressions of CBS and 3-MST increased due to compensation. Conclusions. Exogenous H2S treatment changed the expressions of three H2S-producing enzymes and H2S levels after MI, suggesting a new and indirect regulatory mechanism for H2S production and its contribution to cardiac protection. Endogenous H2S plays an important role in protecting ischaemic tissue after MI.

  3. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  4. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, Stacey L.; Pratson, Lincoln F.; Karson, Jeffrey A.; Klein, Emily M.

    2016-06-01

    It has recently been estimated that serpentinization within continental lithosphere produces H2 at rates comparable to oceanic lithosphere (both are ~1011 mol H2/yr). Here we present a simple model that suggests that H2 production rates along the mid-oceanic ridge alone (i.e., excluding other marine settings) may exceed continental production by an order of magnitude (~1012 mol H2/yr). In our model, H2 production rates increase with spreading rate and the net thickness of serpentinizing peridotite (S-P) in a column of lithosphere. Lithosphere with a faster spreading rate therefore requires a relatively smaller net thickness of S-P to produce H2 at the same rate as lithosphere with a slower rate and greater thickness of S-P. We apply our model globally, incorporating an inverse relationship between spreading rate and net thickness of S-P to be consistent with observations that serpentinization is more common within lithosphere spreading at slower rates.

  5. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).

    PubMed

    Zhang, Liping; Happe, Thomas; Melis, Anastasios

    2002-02-01

    Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.

  6. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell.

    PubMed

    Milton, Ross D; Cai, Rong; Abdellaoui, Sofiene; Leech, Dónal; De Lacey, Antonio L; Pita, Marcos; Minteer, Shelley D

    2017-03-01

    Nitrogenases are the only enzymes known to reduce molecular nitrogen (N2 ) to ammonia (NH3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N2 reduction to NH3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH3 from H2 and N2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H2  /N2 EFCs, which resulted in the formation of 286 nmol NH3  mg(-1) MoFe protein, corresponding to a Faradaic efficiency of 26.4 %.

  7. Inhibited growth of Clostridium butyricum in efficient H2-producing co-culture with Rhodobacter sphaeroides.

    PubMed

    Laurinavichene, Tatyana; Laurinavichius, Kestutis; Shastik, Evgeny; Tsygankov, Anatoly

    2016-12-01

    Cell number of Clostridium butyricum and Rhodobacter sphaeroides in co-culture was measured using q-PCR approach. During efficient H2 photoproduction from starch (6.2 mol H2/mol glucose), Clostridia growth and starch-hydrolyzing activity was partly suppressed. Apparently, the effect of R. sphaeroides towards C. butyricum was not attributed to altered Eh or pH values in the presence of purple bacteria. Further, disk-diffusion test proved that R. sphaeroides was capable of producing inhibitors against another purple bacterium, Rhodospirillum rubrum, but not against C. butyricum. We suggested that at initial cell number ratio C. butyricum:R. sphaeroides 1:1 purple bacteria outcompeted C. butyricum for yeast extract at its low concentration (80 mg/L). Under these conditions, the H2 yield was rather high (5.7 mol/mol). When the yeast extract concentration increased to 320 mg/L, this process was replaced by the low-yield H2 production (1.8 mol/mol) characteristic of Clostridia. However, increased percentage of purple bacteria in inoculum under these conditions prevented this shift. The outcome of competition depended on both the yeast extract concentration and cell number ratio. Apparently, the competition for yeast extract helped to maintain balance between fast-growing C. butyricum and slower-growing R. sphaeroides for efficient H2 photoproduction.

  8. Velocity distributions of H and OH produced through solar photodissociation of H2O

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Chen, F. Z.; Judge, D. L.

    1992-01-01

    The calculated velocity distributions of atomic hydrogen and hydroxyl radicals produced through solar photodissociation of gaseous water molecules are presented. Under collisionless conditions, the calculation was carried out using the most recent available data for the production of H and OH through photodissociation of H2O from its dissociation onset throughout the EUV region. Because the lack of data in certain spectral regions, only upper and lower bounds to the velocity distributions can be obtained. The results show that the H atoms and OH radicals produced exhibit multiple velocity groups. Since most of the current cometary modeling uses a single velocity of 20 km/s associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of cometary atomic hydrogen.

  9. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  10. Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov., isolated from H2-producing UASB granules.

    PubMed

    Song, Lei; Dong, Xiuzhu

    2009-02-01

    Two strictly anaerobic bacterial strains, designated SW512(T) and W72, were isolated from a laboratory-scale H(2)-producing up-flow anaerobic sludge blanket (UASB) reactor. Cells were Gram-stain-negative, non-motile and 0.3-0.4x2.0-14.5 mum; they did not form spores. Both strains grew at 24-45 degrees C (no growth at or=46 degrees C), with optimum growth at 37 degrees C. The pH range for growth was 4.5-9.0 (no growth at pHor=9.3), with optimum growth at pH 6.5-7.0. Several kinds of mono-, di- and oligosaccharides supported growth. The main end products of glucose fermentation were ethanol, acetate, hydrogen and carbon dioxide (according to the equation 1 mol glucose-->1.1 mol acetate+0.6 mol ethanol+2.6 mol H(2)+1.6 mol CO(2)). The DNA G+C contents of strains SW512(T) and W72 were 41.9+/-0.5 and 42.8+/-0.4 mol% (T(m) method), respectively. Phylogenetic analysis based on 16S rRNA gene sequence similarities indicated that the two strains represent a new phyletic sublineage within the family 'Ruminococcaceae', with <91.3 % 16S rRNA gene sequence similarity to recognized species. On the basis of the polyphasic evidence in this study, it is proposed that the two strains represent a novel species in a new genus, for which the name Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov. is proposed; the type strain of the type species is SW512(T) (=AS 1.5070(T)=JCM 14861(T)).

  11. Genome-wide primary transcriptome analysis of H2-producing archaeon Thermococcus onnurineus NA1.

    PubMed

    Cho, Suhyung; Kim, Min-Sik; Jeong, Yujin; Lee, Bo-Rahm; Lee, Jung-Hyun; Kang, Sung Gyun; Cho, Byung-Kwan

    2017-02-20

    In spite of their pivotal roles in transcriptional and post-transcriptional processes, the regulatory elements of archaeal genomes are not yet fully understood. Here, we determine the primary transcriptome of the H2-producing archaeon Thermococcus onnurineus NA1. We identified 1,082 purine-rich transcription initiation sites along with well-conserved TATA box, A-rich B recognition element (BRE), and promoter proximal element (PPE) motif in promoter regions, a high pyrimidine nucleotide content (T/C) at the -1 position, and Shine-Dalgarno (SD) motifs (GGDGRD) in 5' untranslated regions (5' UTRs). Along with differential transcript levels, 117 leaderless genes and 86 non-coding RNAs (ncRNAs) were identified, representing diverse cellular functions and potential regulatory functions under the different growth conditions. Interestingly, we observed low GC content in ncRNAs for RNA-based regulation via unstructured forms or interaction with other cellular components. Further comparative analysis of T. onnurineus upstream regulatory sequences with those of closely related archaeal genomes demonstrated that transcription of orthologous genes are initiated by highly conserved promoter sequences, however their upstream sequences for transcriptional and translational regulation are largely diverse. These results provide the genetic information of T. onnurineus for its future application in metabolic engineering.

  12. Genome-wide primary transcriptome analysis of H2-producing archaeon Thermococcus onnurineus NA1

    PubMed Central

    Cho, Suhyung; Kim, Min-Sik; Jeong, Yujin; Lee, Bo-Rahm; Lee, Jung-Hyun; Kang, Sung Gyun; Cho, Byung-Kwan

    2017-01-01

    In spite of their pivotal roles in transcriptional and post-transcriptional processes, the regulatory elements of archaeal genomes are not yet fully understood. Here, we determine the primary transcriptome of the H2-producing archaeon Thermococcus onnurineus NA1. We identified 1,082 purine-rich transcription initiation sites along with well-conserved TATA box, A-rich B recognition element (BRE), and promoter proximal element (PPE) motif in promoter regions, a high pyrimidine nucleotide content (T/C) at the −1 position, and Shine-Dalgarno (SD) motifs (GGDGRD) in 5′ untranslated regions (5′ UTRs). Along with differential transcript levels, 117 leaderless genes and 86 non-coding RNAs (ncRNAs) were identified, representing diverse cellular functions and potential regulatory functions under the different growth conditions. Interestingly, we observed low GC content in ncRNAs for RNA-based regulation via unstructured forms or interaction with other cellular components. Further comparative analysis of T. onnurineus upstream regulatory sequences with those of closely related archaeal genomes demonstrated that transcription of orthologous genes are initiated by highly conserved promoter sequences, however their upstream sequences for transcriptional and translational regulation are largely diverse. These results provide the genetic information of T. onnurineus for its future application in metabolic engineering. PMID:28216628

  13. Polysulfides (H2Sn) produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels

    PubMed Central

    Miyamoto, Ryo; Koike, Shin; Takano, Yoko; Shibuya, Norihiro; Kimura, Yuka; Hanaoka, Kenjiro; Urano, Yasuteru; Ogasawara, Yuki; Kimura, Hideo

    2017-01-01

    Hydrogen sulfide (H2S) exerts synergistic effects with another gaseous signaling molecule nitric oxide (NO) on ion channels and vasculature. However, the mechanism of the synergy is not well understood. Here, we show that the interaction between H2S and NO generates polysulfides (H2Sn), which activate transient receptor potential ankyrin 1 (TRPA1) channels. High performance liquid chromatography with tandem mass spectrometry analysis, along with the imaging of intracellular Ca2+ and H2Sn, showed that H2Sn and their effects were abolished by cyanolysis and by reducing substances such as dithiothreitol (DTT), cysteine, and glutathione (GSH). However, the effects of nitroxyl or nitrosopersulfide, other potential products of H2S and NO interaction, are not affected by cyanolysis or reducing substances. This study demonstrates that H2Sn are products of synergy between H2S and NO and provides a new insight into the signaling mechanisms. PMID:28378773

  14. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.

    PubMed

    Ratti, Regiane Priscila; Delforno, Tiago Palladino; Okada, Dagoberto Yukio; Varesche, Maria Bernadete Amâncio

    2015-04-01

    In this study, the composition and diversity of the bacterial community in thermophilic H2-producing reactors fed with glucose were investigated using pyrosequencing. The H2-producing experiments in batch were conducted using 0.5 and 2.0 g l(-1) glucose at 550 °C. Under the two conditions, the H2 production and yield were 1.3 and 1.6 mol H2 mol glucose(-1), respectively. Acetic, butyric, iso-butyric, lactic and propionic acids were detected in the two reactors. The increase in substrate concentration favored a high H2 yield. In this reactor, a predominance of acetic and iso-butyric acids, 27.7% and 40%, were measured, respectively. By means of pyrosequencing, a total of 323 and 247 operational taxonomic units were obtained, with a predominance of the phylum Firmicutes (68.73-67.61%) for reactors with 0.5 and 2.0 g l(-1) glucose, respectively. Approximately 40.55% and 62.34% of sequences were affiliated with Thermoanaerobacterium and Thermohydrogenium, microorganisms that produce H2 under thermophilic conditions.

  15. Excitations from dissociative fragments produced in H++H2O collisions

    NASA Astrophysics Data System (ADS)

    Monce, Michael N.; Pan, Sihui; Radeva, Nadezhda L.; Pepper, Jaime L.

    2009-01-01

    We report on photon emissions in the 200 800nm region resulting from collisions of 200keV protons with H2O . The most prominent features observed in the spectrum are the Balmer series of hydrogen and two OH molecular bands. Several less intense O+ as well as neutral O lines are also observed. The absolute photon emission cross sections of the major lines and bands were measured. The results indicate that a primary dissociation pathway involves the formation of H2O+ by removing a 1b2 electron. The unstable H2O+ ion further dissociates into H++OH or OH++H . The dominant presence of neutral hydrogen lines and O+ lines leads to the conclusion that the subsequent dissociation of OH+ into H+O+ prevails over the other possible dissociation pathway leading to H+ and neutral oxygen fragments.

  16. Influence of chemically produced singlet delta oxygen molecules on thermal ignition of O2-H2 mixtures

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Kochetov, I. V.; Napartovich, A. P.; Yuryshev, N. N.

    2016-02-01

    Thermal ignition of the H2-O2 mixture with O2(a 1Δ g ) addition is studied experimentally and theoretically. The singlet delta oxygen was produced in a chemical generator. In this way, the competing chemical processes involving plasma produced chemically active O atoms and ozone (O3) were excluded. A satisfactory agreement is achieved between experimentally observed and numerically predicted values of the ignition time at the initial gas temperature (900-950) K and gas pressure (9-10) Torr. The percentage of the reactive channel in the binary collisions O2(a 1Δg) H is evaluated on the level (10-20)% for the H2-O2 mixture.

  17. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. III. Diffusion of photo-produced H2 as a function of temperature

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2016-06-01

    Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.

  18. Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells

    PubMed Central

    1986-01-01

    Using primary culture methods, we show that purified astrocytes from embryonic mouse or rat central nervous system (CNS) can be induced to produce interferon (IFN) activity when pretreated with a standard IFN- superinducing regimen of polyribonucleotide, cycloheximide, and actinomycin D, whereas IFN activity was not inducible in neuronal cultures derived from mouse CNS. Astrocyte IFN displays inductive, kinetic, physicochemical, and antigenic properties similar to those of IFN-alpha/beta, but is dissimilar to lymphocyte IFN (IFN-gamma). Treatment of pure astrocytic cultures or astrocytes cultured with neurons with astrocyte IFN or IFN-alpha/beta induced a dramatic increase in the expression of H-2 antigens on a subpopulation of astrocytes. Neither neurons nor oligodendroglia expressed detectable levels of H-2 antigens when exposed to astrocyte IFN, IFN-alpha/beta, or to IFN-beta. Injection of astrocyte IFN or IFN-alpha/beta directly into brains of newborn mice indicated that H-2 antigens were also induced in vivo. None of the IFNs (astrocyte, alpha/beta, or beta) tested induced Ia antigens on CNS cells in vitro or in vivo. Since H-2 antigens have a critical role in immune responses, astrocyte IFN may initiate and participate in immune reactions that contribute to immunoprotective and immunopathological responses in the CNS. PMID:2423537

  19. Solid organic residues produced by irradiation of hydrocarbon-containing H2O and H2O/NH3 ices - Infrared spectroscopy and astronomical implications

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Thompson, W. R.; Murray, B. G. J. P. T.; Chyba, C. F.; Sagan, C.; Arakawa, E. T.

    1989-06-01

    Plasma-discharge irradiations were conducted for the methane clathrate expected in outer solar system satellites and cometary nuclei; also irradiated were ices prepared from other combinations of H2O with CH4, C2H6, or C2H2. Upon evaporation of the yellowish-to-tan irradiated ices, it is found that a colored solid film adheres to the walls of the reaction vessel at room temperature. These organic films are found to exhibit IR band identifiable with alkane, aldehide, alcohol, and perhaps alkene, as well as substituted aromatic functional groups. These spectra are compared with previous studies of UV- or photon-irradiated nonclathrated hydrocarbon-containing ices.

  20. Nonidentity of Lyt phenotypes and radiosensitivity of ''early'' and ''late'' mif producers responding to h-2 antigens

    SciTech Connect

    Berkova, N.P.; Suslov, A.P.

    1985-07-01

    The aim of this investigation was to compare Lyt markers and some properties of ''early'' and ''late'' macrophage migration inhibition factor (MIF) producers specific for H-2 antigens. BALB/c mice were immunized by injection of spleen cells of C57BL/6 mice, irradiated in a dose of 20 Gy (/sup 137/Cs, 7.4 Gy/min). Immune lymphocytes were irradiated on a /sup 137/Cs apparatus in doses of 500, 1500, and 3000 rads. To study subpopulations of MIF producers cells formed in the course of secondary allogeneic stimulation were investigated. The study of radioresistance of the MIF producers showed that ''early'' and ''late'' MIF producers differ in their sensitivity to gamma-irradiation.

  1. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes.

    PubMed

    Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H

    2015-12-15

    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S.

  2. Emergence and prevalence of non-H2S-producing Salmonella enterica serovar Senftenberg isolates belonging to novel sequence type 1751 in China.

    PubMed

    Yi, Shengjie; Xie, Jing; Liu, Nan; Li, Peng; Xu, Xuebin; Li, Hao; Sun, Jichao; Wang, Jian; Liang, Beibei; Yang, Chaojie; Wang, Xu; Hao, Rongzhang; Wang, Ligui; Wu, Zhihao; Zhang, Jianmin; Wang, Yong; Huang, Liuyu; Sun, Yansong; Klena, John D; Meng, Jianghong; Qiu, Shaofu; Song, Hongbin

    2014-07-01

    Salmonella enterica serovar Senftenberg is a common nontyphoidal Salmonella serotype which causes human Salmonella infections worldwide. In this study, 182 S. Senftenberg isolates, including 17 atypical non-hydrogen sulfide (H2S)-producing isolates, were detected in China from 2005 to 2011. The microbiological and genetic characteristics of the non-H2S-producing and selected H2S-producing isolates were determined by using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs operons were amplified and sequenced. The 17 non-H2S-producing and 36 H2S-producing isolates belonged to 7 sequence types (STs), including 3 new STs, ST1751, ST1757, and ST1758. Fourteen of the 17 non-H2S-producing isolates belonged to ST1751 and had very similar PFGE patterns. All 17 non-H2S-producing isolates had a nonsense mutation at position 1621 of phsA. H2S-producing and non-H2S-producing S. Senftenberg isolates were isolated from the same stool sample from three patients; isolates from the same patients displayed the same antimicrobial susceptibility, ST, and PFGE pattern but could be discriminated based on CRISPR spacers. Non-H2S-producing S. Senftenberg isolates belonging to ST1751 have been prevalent in Shanghai, China. It is possible that these emerging organisms will disseminate further, because they are difficult to detect. Thus, we should strengthen the surveillance for the spread of this atypical S. Senftenberg variant.

  3. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    PubMed

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  4. Multiwalled carbon nanotubes mass-produced by dc arc discharge in He-H2 gas mixture

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Guo, Y.; Inoue, S.; Zhao, X.; Ohkohchi, M.; Ando, Y.

    2006-04-01

    Uniform cathode deposits (longer than 15 mm), containing multiwalled carbon nanotubes (MWNTs) inside, were produced by dc arc discharge evaporation with a computer-controlled feeder of a pure-carbon electrode without a metal catalyst in a He-H2 gas mixture. The purification of MWNTs was carried out to remove amorphous carbon and carbon nanoparticles. High-resolution transmission electron microscopy observations and Raman scattering studies show that the MWNTs possess a high crystallinity and a mean outermost diameter of ˜ ˜10 nm. It has been confirmed that the current density in the electron field emission from a purified MWNT mat can reach 77.92 mA/cm2, indicating that the purified MWNTs are a promising candidate electron source in a super high-luminance light-source tube or a miniature X-ray source.

  5. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.

    PubMed

    Kazemi, M; Biria, D; Rismani-Yazdi, H

    2015-05-21

    Bio-electrosynthesis is one of the significant developments in reverse microbial fuel cell technology which is potentially capable of creating organic compounds by combining CO2 with H2O. Accordingly, the main objective in the current study was to present a model of microbial electrosynthesis for producing organic compounds (acetate) based on direct conduction of electrons in biofilms. The proposed model enjoys a high degree of rigor because it can predict variations in the substrate concentration, electrical potential, current density and the thickness of the biofilm. Additionally, coulombic efficiency was investigated as a function of substrate concentration and cathode potential. For a system containing CO2 as the substrate and Sporomusa ovata as the biofilm forming microorganism, an increase in the substrate concentration at a constant potential can lead to a decrease in coulombic efficiency as well as an increase in current density and biofilm thickness. On the other hand, an increase in the surface cathodic voltage at a constant substrate concentration may result in an increase in the coulombic efficiency and a decrease in the current density. The maximum coulombic efficiency was revealed to be 75% at a substrate concentration of 0.025 mmol cm(-3) and 55% at a surface cathodic voltage of -0.3 V producing a high range of acetate production by creating an optimal state in the concentration and potential intervals. Finally, the validity of the model was verified by comparing the obtained results with related experimental findings.

  6. Reversion of stressed and unstressed hydrogen sulfide (H2S) producing strains of Salmonella in different media.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella can be difficult to assess and isolate in poultry feed due to uneven distribution and poor growth. Previous studies have shown that several strains of Salmonella can be affected by changes in environment, resulting in the growth of H2S-negative colonies. This is concerning, as H2S produ...

  7. Cantilever enhanced photoacoustic spectrometry: Quantitative analysis of the trace H2S produced by SF6 decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Cheng, Zheng; Li, Xin

    2016-09-01

    As one of the key characteristic components that result from sulfur hexafluoride (SF6) decomposition in SF6 gas-insulated equipment, hydrogen sulfide (H2S) can reflect the severity of the internal insulation faults and indicate whether or not such faults involve solid insulation material effectively. The decomposition of SF6 and its reaction with other impurities to form H2S are simulated in this study via Materials Studio. The simulation verifies that H2S is generated only when serious faults occur in the equipment; thus, the online monitoring of the trace H2S is highly necessary. To achieve a high detection accuracy and avoid cross interference, the spectral line R (8) of the H2S ν1 + ν2 + ν3 co-frequency absorption band is taken as the absorption line for the gas detection by online simulation based on the HITRAN on the Web. In addition, this study develops a cantilever-enhanced photoacoustic spectrometry trace gas detection platform and conducts experimental research on the quantitative detection of trace H2S/SF6 and H2S/N2. Experimental results show that the detection sensitivity of the detection platform to trace H2S under the background gas N2 and SF6 is 0.84 and 1.75 μL/L, respectively, and a strong linear relationship exists between the trace H2S concentration and its corresponding PA signal. Moreover, based on both the theoretical simulation and experiment, the influence of temperature and pressure on the detection platform is discussed and analyzed. The results indicate that the change in the PA signal amplitude decreases with an increase in the pressure or temperature of the PA cell, and the detection platform is more sensitive to pressure.

  8. Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F.

    PubMed

    Ishii, Masakazu; Shimizu, Shunichi; Hara, Yuji; Hagiwara, Tamio; Miyazaki, Akira; Mori, Yasuo; Kiuchi, Yuji

    2006-06-01

    The melastatin-related transient receptor potential channel TRPM2 is a Ca(2+)-permeable channel that is activated by H(2)O(2), and the Ca(2+) influx through TRPM2 mediates cell death. However, the responsible oxidants for TRPM2 activation remain to be identified. In the present study, we investigated the involvement of hydroxyl radical on TRPM2 activation in TRPM2-expressing HEK293 cells and the rat beta-cell line RIN-5F. In both cell types, H(2)O(2) induced Ca(2+) influx in a concentration-dependent manner. However, the addition of hydroxyl radical, which was produced by mixing FeSO(4) and H(2)O(2), to the cells, did not increase intracellular Ca(2+) concentration. Interestingly, when H(2)O(2) was added to the cells under intracellular Fe(2+)-accumulated conditions, Ca(2+) influx was markedly enhanced compared to H(2)O(2) alone. In addition, the H(2)O(2)-induced Ca(2+) influx was reduced by hydroxyl radical scavengers and an iron chelator. Under intracellular Fe(2+)-accumulated conditions, H(2)O(2)-induced RIN-5F cell death through TRPM2 activation was also markedly enhanced. Hydroxyl radical scavengers and an iron chelator suppressed the RIN-5F cell death by H(2)O(2). These results strongly suggest that the intracellular hydroxyl radical plays a key role in the activation of TRPM2 during H(2)O(2) treatment, and TRPM2 activation mediated by hydroxyl radical is implicated in H(2)O(2)-induced cell death in the beta-cell line RIN-5F.

  9. Radiolytic corrosion of uranium dioxide induced by He2+ localized irradiation of water: Role of the produced H2O2 distance

    NASA Astrophysics Data System (ADS)

    Traboulsi, Ali; Vandenborre, Johan; Blain, Guillaume; Humbert, Bernard; Haddad, Ferid; Fattahi, Massoud

    2015-12-01

    The short-range (few μm in water) of the α-emitting from the spent fuel involves that the radiolytic corrosion of this kind of sample occurs at the solid/solution interface. In order to establish the role of localization of H2O2 species produced by the He2+ particle beam in water from the surface, we perform UO2 radiolytic corrosion experiment with different distance between H2O2 production area and UO2 surface. Then, in this work, the radiolytic corrosion of UO2 particles by oxidative species produced by 4He2+ radiolysis of water was investigated in open to air atmosphere. The dose rate, the localization of H2O2 produced by water radiolysis and the grain boundaries present on the surface of the particles were investigated. UO2 corrosion was investigated by in situ (during irradiation) characterization of the solid surface, analysis of H2O2 produced by water radiolysis and quantification of the uranium species released into the solution during irradiation. Characterization of the UO2 particles, surface and volume, was realized by Raman spectroscopy. UV-vis spectrophotometry was used to monitor H2O2 produced by water radiolysis and in parallel the soluble uranium species released into the solution were quantified by inductively coupled plasma mass spectrometry. During the He2+ irradiation of ultra-pure water in contact with the UO2 particles, metastudtite phase was formed on the solid surface indicating an oxidation process of the particles by the oxidative species produced by water radiolysis. This oxidation occurred essentially on the grain boundaries and was accompanied by migration of soluble uranium species (U(VI)) into the irradiated solution. Closer to the surface the localization of H2O2 formation, higher the UO2 oxidation process occurs, whereas the dose rate had no effect on it. Simultaneously, closer to the surface the localization of H2O2 formation lower the H2O2 concentration measured in solution. Moreover, the metastudtite was the only secondary

  10. Discovery and Mechanistic Characterization of Selective Inhibitors of H2S-producing Enzyme: 3-Mercaptopyruvate Sulfurtransferase (3MST) Targeting Active-site Cysteine Persulfide

    PubMed Central

    Hanaoka, Kenjiro; Sasakura, Kiyoshi; Suwanai, Yusuke; Toma-Fukai, Sachiko; Shimamoto, Kazuhito; Takano, Yoko; Shibuya, Norihiro; Terai, Takuya; Komatsu, Toru; Ueno, Tasuku; Ogasawara, Yuki; Tsuchiya, Yukihiro; Watanabe, Yasuo; Kimura, Hideo; Wang, Chao; Uchiyama, Masanobu; Kojima, Hirotatsu; Okabe, Takayoshi; Urano, Yasuteru; Shimizu, Toshiyuki; Nagano, Tetsuo

    2017-01-01

    Very recent studies indicate that sulfur atoms with oxidation state 0 or −1, called sulfane sulfurs, are the actual mediators of some physiological processes previously considered to be regulated by hydrogen sulfide (H2S). 3-Mercaptopyruvate sulfurtransferase (3MST), one of three H2S-producing enzymes, was also recently shown to produce sulfane sulfur (H2Sn). Here, we report the discovery of several potent 3MST inhibitors by means of high-throughput screening (HTS) of a large chemical library (174,118 compounds) with our H2S-selective fluorescent probe, HSip-1. Most of the identified inhibitors had similar aromatic ring-carbonyl-S-pyrimidone structures. Among them, compound 3 showed very high selectivity for 3MST over other H2S/sulfane sulfur-producing enzymes and rhodanese. The X-ray crystal structures of 3MST complexes with two of the inhibitors revealed that their target is a persulfurated cysteine residue located in the active site of 3MST. Precise theoretical calculations indicated the presence of a strong long-range electrostatic interaction between the persulfur anion of the persulfurated cysteine residue and the positively charged carbonyl carbon of the pyrimidone moiety of the inhibitor. Our results also provide the experimental support for the idea that the 3MST-catalyzed reaction with 3-mercaptopyruvate proceeds via a ping-pong mechanism. PMID:28079151

  11. Subtilase cytotoxin encoding genes are present in human, sheep and deer intimin-negative, Shiga toxin-producing Escherichia coli O128:H2.

    PubMed

    Sánchez, Sergio; Beristain, Xabier; Martínez, Remigio; García, Alfredo; Martín, Carmen; Vidal, Dolors; Díaz-Sánchez, Sandra; Rey, Joaquín; Alonso, Juan M; Herrera-León, Silvia

    2012-10-12

    Shiga toxin-producing Escherichia coli (STEC) O128:H2 is recognised worldwide to be an important non-O157 STEC associated with human illness and in particular with causing haemolytic uraemic syndrome. This serotype is commonly isolated from sheep and is being increasingly isolated from deer. We determined the virulence profile and genetic relationships of one human, six sheep and five deer intimin-negative STEC O128:H2 strains isolated in Spain over a 7-year period. Our goals were to establish the presence of other virulence-associated factors, such as SubAB, in intimin-negative STEC O128:H2 strains involved in human disease and in that case, to determine if sheep and/or deer represent a reservoir of SubAB-positive STEC O128:H2. All the strains lacked the eae gene and carried subtilase cytotoxin (SubAB) encoding genes (subAB) and tia genes, but not saa gene, suggesting the presence of the recently identified new variant of SubAB, encoded on a putative pathogenicity island together with tia. We report for the first time the presence of subtilase cytotoxin encoding genes in intimin-negative STEC O128:H2 strains pathogenic for humans and how this finding might explain their clinical relevance despite neither carrying eae nor stx subtypes associated with severe clinical outcomes, but only stx1c and stx2b. Multilocus sequence typing analysis revealed that STEC O128:H2 strains from sheep and deer belong to the clonal lineage of STEC O128:H2 strains involved in diarrhoeal and haemorrhagic diseases in humans. Our results indicate that sheep and deer represent a reservoir of SubAB-positive STEC O128:H2 strains and thus a potential source of human infection.

  12. The kinetic energy spectrum of protons produced by the dissociative ionization of H2 by electron impact

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1985-01-01

    The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.

  13. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    PubMed Central

    2012-01-01

    Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the

  14. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst.

    PubMed

    Li, Chunshan; Hirabayashi, Daisuke; Suzuki, Kenzi

    2010-01-01

    Series nickel catalysts Ni/MgO(x)/CaO(1-)(x) (x=0.3, 0.5, 0.7, Ni: 5 wt%) were prepared and tested in fixed-bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Different ratios of MgO and CaO were mixed to simulate dolomite as Ni support. Two preparation methods: solid mixing with (SMW) and without water (SM) were used, the preparation methods and concentration of MgO had an important influence on toluene conversion and products. Catalysts prepared by SM method exhibited higher performance on toluene conversion, resulted in higher H(2) yield, and also, higher CO(2) and lower CO selectivity with higher temperature. For the same preparation method, higher concentration of MgO resulted in higher toluene conversion, and also influence on CO, CO(2) selectivity, but no obvious influence on the H(2) yield. Catalysts were characterized by BET, X-ray diffraction (XRD), SEM.

  15. Novel, band-controlled metal oxide compositions for semiconductor-mediated photocatalytic splitting of water to produce H2

    NASA Astrophysics Data System (ADS)

    Gupta, Narendra M.

    2013-02-01

    Semiconductor-mediated photo-catalytic dissociation of water offers a unique opportunity for the production of H2, a sustainable source of energy. More efficient and chemically stable photo-catalysts, however, remain a vital requirement for commercial viability of this process. The recent research in my group has focused on the synthesis of several new metal oxide (MO) photo-catalysts, such as: LaInO3, GaFeO3, InVO4, In2TiO5 and nanotubular TiO2. These samples of controlled grain morphology have been synthesized by using different synthesis protocols and with and without coating of a noble metal co-catalyst. The doping of an impurity, either at cationic or at anionic lattice site, has helped in the tailoring of band structure and making these oxides visible-light-sensitive. Our study has revealed that the surface characteristics, grain morphology, band structure, and doping-induced lattice imperfections control the photo-physical properties and overall photo-catalytic water splitting activity of these metal/MO composites [1-6]. We have demonstrated that, besides promoting certain charge-transfer steps, metal-semiconductor interfaces influence the adsorption of water molecules and their subsequent interaction with photo-generated electron-hole pair at the catalyst surface. The role played by the above-mentioned micro-structural properties in photo-catalytic water splitting process will be discussed.

  16. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2.

    PubMed

    Andre, Carl; Kim, Sung Won; Yu, Xiao-Hong; Shanklin, John

    2013-02-19

    Biologically produced alkanes represent potential renewable alternatives to petroleum-derived chemicals. A cyanobacterial pathway consisting of acyl-Acyl Carrier Protein reductase and an aldehyde-deformylating oxygenase (ADO) converts acyl-Acyl Carrier Proteins into corresponding n-1 alkanes via aldehyde intermediates in an oxygen-dependent manner (K(m) for O(2), 84 ± 9 µM). In vitro, ADO turned over only three times, but addition of more ADO to exhausted assays resulted in additional product formation. While evaluating the peroxide shunt to drive ADO catalysis, we discovered that ADO is inhibited by hydrogen peroxide (H(2)O(2)) with an apparent K(i) of 16 ± 6 µM and that H(2)O(2) inhibition is of mixed-type with respect to O(2). Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H(2)O(2), which originated from poor coupling of reductant consumption with alkane formation. Kinetic analysis showed that long-chain (C14-C18) substrates follow Michaelis-Menten kinetics, whereas short and medium chains (C8-C12) exhibit substrate inhibition. A bifunctional protein comprising an N-terminal CAT coupled to a C-terminal ADO (CAT-ADO) prevents H(2)O(2) inhibition by converting it to the cosubstrate O(2). Indeed, alkane production by the fusion protein is observed upon addition of H(2)O(2) to an anaerobic reaction mix. In assays, CAT-ADO turns over 225 times versus three times for the native ADO, and its expression in Escherichia coli increases catalytic turnovers per active site by fivefold relative to the expression of native ADO. We propose the term "protection via inhibitor metabolism" for fusion proteins designed to metabolize inhibitors into noninhibitory compounds.

  17. Characterization of precipitates formed by H(2)S-producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste.

    PubMed

    Ikkert, Olga P; Gerasimchuk, Anna L; Bukhtiyarova, Polina A; Tuovinen, Olli H; Karnachuk, Olga V

    2013-06-01

    The purpose of this study was to characterize precipitates formed in anaerobic, H2S-producing cultures of two Tissierella isolates and Desulfosporosinus strain DB. The cultures were grown in Cu-containing media as part of a larger study of Cu resistance in anaerobic sulfidogens. The Tissierella strains produced H2S from peptone. Desulfosporosinus formed H2S from peptone or through dissimilatory sulfate reduction with lactate. Tissierella cultures precipitated iron phosphate, vivianite, but no crystalline phases or Cu sulfides were detected. Multiple Cu sulfides, including chalcopyrite and covellite, were detected in Desulfosporosinus cultures but vivianite was not formed. Ion microprobe spectra and electron microscopic examination showed major variation in the elemental composition and morphological differences depending on incubation conditions. Extended incubation time for at least 1-2 months increased the crystallinity of the precipitates. The results highlight biogeochemical differences in sulfide and phosphate precipitates between the two major groups of Firmicutes although they may share the same habitat including the human intestinal tract.

  18. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish.

    PubMed

    Fonnesbech Vogel, Birte; Venkateswaran, Kasthuri; Satomi, Masataka; Gram, Lone

    2005-11-01

    Shewanella putrefaciens has been considered the main spoilage bacteria of low-temperature stored marine seafood. However, psychrotropic Shewanella have been reclassified during recent years, and the purpose of the present study was to determine whether any of the new Shewanella species are important in fish spoilage. More than 500 H2S-producing strains were isolated from iced stored marine fish (cod, plaice, and flounder) caught in the Baltic Sea during winter or summer time. All strains were identified as Shewanella species by phenotypic tests. Different Shewanella species were present on newly caught fish. During the warm summer months the mesophilic human pathogenic S. algae dominated the H2S-producing bacterial population. After iced storage, a shift in the Shewanella species was found, and most of the H2S-producing strains were identified as S. baltica. The 16S rRNA gene sequence analysis confirmed the identification of these two major groups. Several isolates could only be identified to the genus Shewanella level and were separated into two subgroups with low (44%) and high (47%) G+C mol%. The low G+C% group was isolated during winter months, whereas the high G+C% group was isolated on fish caught during summer and only during the first few days of iced storage. Phenotypically, these strains were different from the type strains of S. putrefaciens, S. oneidensis, S. colwelliana, and S. affinis, but the high G+C% group clustered close to S. colwelliana by 16S rRNA gene sequence comparison. The low G+C% group may constitute a new species. S. baltica, and the low G+C% group of Shewanella spp. strains grew well in cod juice at 0 degrees C, but three high G+C Shewanella spp. were unable to grow at 0 degrees C. In conclusion, the spoilage reactions of iced Danish marine fish remain unchanged (i.e., trimethylamine-N-oxide reduction and H2S production); however, the main H2S-producing organism was identified as S. baltica.

  19. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  20. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts

    PubMed Central

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-01-01

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  1. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH = 2-11)

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku; Bao, Huiming

    2011-04-01

    Aqueous oxidation of sulfide minerals to sulfate is an integral part of the global sulfur and oxygen cycles. The current model for pyrite oxidation emphasizes the role of Fe 2+-Fe 3+ electron shuttling and repeated nucleophilic attack by water molecules on sulfur. Previous δ 18O-labeled experiments show that a variable fraction (0-60%) of the oxygen in product sulfate is derived from dissolved O 2, the other potential oxidant. This indicates that nucleophilic attack cannot continue all the way to sulfate and that a sulfoxyanion of intermediate oxidation state is released into solution. The observed variability in O 2% may be due to the presence of competing oxidation pathways, variable experimental conditions (e.g. abiotic, biotic, or changing pH value), or uncertainties related to the multiple experiments needed to effectively use the δ 18O label to differentiate sulfate-oxygen sources. To examine the role of O 2 and Fe 3+ in determining the final incorporation of O 2 oxygen in sulfate produced during pyrite oxidation, we designed a set of aerated, abiotic, pH-buffered (pH = 2, 7, 9, 10, and 11), and triple-oxygen-isotope labeled solutions with and without Fe 3+ addition. While abiotic and pH-buffered conditions help to eliminate variables, triple oxygen isotope labeling and Fe 3+ addition help to determine the oxygen sources in sulfate and examine the role of Fe 2+-Fe 3+ electron shuttling during sulfide oxidation, respectively. Our results show that sulfate concentration increased linearly with time and the maximum concentration was achieved at pH 11. At pH 2, 7, and 9, sulfate production was slow but increased by 4× with the addition of Fe 3+. Significant amounts of sulfite and thiosulfate were detected in pH ⩾ 9 reactors, while concentrations were low or undetectable at pH 2 and 7. The triple oxygen isotope data show that at pH ⩾ 9, product sulfate contained 21-24% air O 2 signal, similar to pH 2 with Fe 3+ addition. Sulfate from the pH 2 reactor

  2. Surface characterization and H2S-sensing potential of iron molybdate particles produced by supercritical solvothermal method and subsequent oxidation

    NASA Astrophysics Data System (ADS)

    Kersen, Ü.; Holappa, L.

    2006-12-01

    The mostly crystalline polymorph β-FeMoO4 was prepared by solvothermal synthesis from organic precursors, followed by high temperature supercritical drying in an autoclave. Crystallization of the synthesized particles occurred during subsequent heat treatment at 350 °C, confirmed by X-ray diffraction pattern analysis. The presence of Fe3+ ions in the powder, both well-crystallized and amorphous after heat treatment at 500 °C, was confirmed by room temperature Mössbauer spectrum. Thick-film gas sensors were prepared by conventional hand coating of a paste, the Fe2(MoO4)3 powder mixed with an α-terpineol-based solvent, over the Au electrodes. The response of the prepared sensors to H2S gas in the low concentration range 1-10 ppm in air was investigated. Moderately fast response and recovery times were observed. The iron molybdate, produced at low temperature, may be successfully used in the preparation of a H2S gas sensor.

  3. Hexagonal plate-like magnetite nanocrystals produced in komatiite-H2O-CO2 reaction system at 450°C

    NASA Astrophysics Data System (ADS)

    Hao, Xi-Luo; Li, Yi-Liang

    2015-10-01

    Batch experiments of komatiite-H2O-CO2 system with temperatures from 200 to 450°C were performed to simulate the interactions between the newly formed ultramafic crust and the proto-atmosphere on Earth before the formation of its earliest ocean. Particularly, magnetite nanocrystals were observed in the experiment carried out at 450°C that are characterized by their hexagonal platelet-like morphology and porous structure. Exactly the same set of lattice fringes on the two opposite sides of one pore suggests post-crystallization erosion. The results demonstrate that magnetite could be produced by the direct interactions between the ultramafic rocky crust and the atmosphere before the formation of the ocean on the Hadean Earth. These magnetite nanoparticles could serve as a catalyst in the synthesis of simple organic molecules during the organochemical evolution towards life.

  4. Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions.

    PubMed

    Zhao, Jian-Shen; Manno, Dominic; Hawari, Jalal

    2009-03-01

    A Gram-negative and obligately anaerobic marine bacterium, strain HAW-EB21(T), was isolated in a previous study from marine sediment from the Atlantic Ocean, near Halifax Harbor, Canada, and found to have the potential to degrade both hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. In the present study, phylogenetic analyses showed that strain HAW-EB21(T) was only distantly related to the genera Propionigenium and Ilyobacter with 6.6-7.5 % and 8.2-10.5 % dissimilarity as measured by 16S rRNA and 23S rRNA gene sequence analyses, respectively. Strain HAW-EB21(T) displayed unique properties in being psychrotrophic (18.5 degrees C optimum) and unable to utilize any of the carbon substrates (succinate, l-tartrate, 3-hydroxybutyrate, quinate or shikimate) used for isolating members of the genera Propionigenium and Ilyobacter. Strain HAW-EB21(T) utilized glucose, fructose, maltose, N-acetyl-d-glucosamine, citrate, pyruvate, fumarate and Casitone as carbon sources and produced H(2) and acetate as the major fermentation products. Cells grown at 10 degrees C produced C(15 : 1) (30 %), C(16 : 1)omega7 (15 %) and C(16 : 0) (16 %) as major membrane fatty acids. The novel strain had a genomic DNA G+C content of 28.1 mol%, lower than the values of the genera Ilyobacter and Propionigenium. Based on the present results, the novel isolate is suggested to be a member of a new genus for which the name Psychrilyobacter atlanticus gen. nov., sp. nov. is proposed. The type strain of the type species is HAW-EB21(T) (=DSM 19335(T)=JCM 14977(T)).

  5. H2 blockers

    MedlinePlus

    ... ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers ... blockers are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  6. Impact of salinity and pH on the UVC/H2O2 treatment of reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Liu, Kai; Roddick, Felicity A; Fan, Linhua

    2012-06-15

    While reverse osmosis (RO) technology is playing an increasingly important role in the reclamation of municipal wastewater, safe disposal of the resulting RO concentrate (ROC), which can have high levels of effluent organic pollutants, remains a challenge to the water industry. The potential of UVC/H(2)O(2) treatment for degrading the organic pollutants and increasing their biodegradability has been demonstrated in several studies, and in this work the impact of the water quality variables pH, salinity and initial organic concentration on the UVC/H(2)O(2) (3 mM) treatment of a municipal ROC was investigated. The reduction in chemical oxygen demand and dissolved organic carbon was markedly faster and greater under acidic conditions, and the treatment performance was apparently not affected by salinity as increasing the ROC salinity 4-fold had only minimal impact on organics reduction. The biodegradability of the ROC (as indicated by biodegradable dissolved organic carbon (BDOC) level) was at least doubled after 2 h UVC/H(2)O(2) treatment under various reaction conditions. However, the production of biodegradable intermediates was limited after 30 min treatment, which was associated with the depletion of the conjugated compounds. Overall, more than 80% of the DOC was removed after 2 h UVC/3 mM H(2)O(2) treatment followed by biological treatment (BDOC test) for the ROC at pH 4-8.5 and electrical conductivity up to 11.16 mS/cm. However, shorter UV irradiation time gave markedly higher energy efficiency (e.g., EE/O 50 kWh/m(3) at 30 min (63% DOC removal) cf. 112 kWh/m(3) at 2 h). No toxicity was detected for the treated ROC using Microtox(®) tests. Although the trihalomethane formation potential increased after the UVC/H(2)O(2) treatment, it was reduced to below that of the raw ROC after the biological treatment.

  7. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott

    2012-01-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  8. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Lu, Jie; Fan, Linhua; Roddick, Felicity A

    2013-10-01

    The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS~10000 mg L(-1)) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L(-1).

  9. In vitro effect of H2O 2, some transition metals and hydroxyl radical produced via fenton and fenton-like reactions, on the catalytic activity of AChE and the hydrolysis of ACh.

    PubMed

    Méndez-Garrido, Armando; Hernández-Rodríguez, Maricarmen; Zamorano-Ulloa, Rafael; Correa-Basurto, José; Mendieta-Wejebe, Jessica Elena; Ramírez-Rosales, Daniel; Rosales-Hernández, Martha Cecilia

    2014-11-01

    It is well known that the principal biomolecules involved in Alzheimer's disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (Aβ42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of Aβ42 forms oligomers and fibrils, which form senile plaques in the brain. The Aβ42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe(2+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)) present at high concentrations in the brain of AD patients, generating the hydroxyl radical ((·)OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe(3+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)), H2O2 (without Aβ42), and (·) OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the (·)OH radical causes a decrease in it. On the other hand, metals, H2O2 and (·)OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the (·)OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from Aβ42.

  10. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway

    PubMed Central

    Guo, Chunmei; Liu, Shuqing; Dong, Panpan; Zhao, Dongting; Wang, Chengyi; Tao, Zhiwei; Sun, Ming-Zhong

    2015-01-01

    Previously, we characterized the biological properties of Akbu-LAAO, a novel L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom (SV). Current work investigated its in vitro anti-tumor activity and underlying mechanism on HepG2 cells. Akbu-LAAO inhibited HepG2 growth time and dose-dependently with an IC50 of ~38.82 μg/mL. It could induce the apoptosis of HepG2 cells. Akbu-LAAO exhibited cytotoxicity by inhibiting growth and inducing apoptosis of HepG2 as it showed no effect on its cell cycle. The inhibition of Akbu-LAAO to HepG2 growth partially relied on enzymatic-released H2O2 as catalase only partially antagonized this effect. cDNA microarray results indicated TGF-β signaling pathway was linked to the cytotoxicity of Akbu-LAAO on HepG2. TGF-β pathway related molecules CYR61, p53, GDF15, TOB1, BTG2, BMP2, BMP6, SMAD9, JUN, JUNB, LOX, CCND1, CDK6, GADD45A, CDKN1A were deregulated in HepG2 following Akbu-LAAO stimulation. The presence of catalase only slightly restored the mRNA changes induced by Akbu-LAAO for differentially expressed genes. Meanwhile, LDN-193189, a TGF-β pathway inhibitor reduced Akbu-LAAO cytotoxicity on HepG2. Collectively, we reported, for the first time, SV-LAAO showed anti-tumor cell activity via TGF-β pathway. It provides new insight of SV-LAAO exhibiting anti-tumor effect via a novel signaling pathway. PMID:26655928

  11. Biogeochemistry of dihydrogen (H2).

    PubMed

    Hoehler, Tori M

    2005-01-01

    of water-rock interaction could have supported an early chemosynthetic biosphere. Such processes offer the continued potential for a deep, rock-hosted biosphere on Earth or other bodies in the solar system. The continued evolution of metabolic and community-level versatility among microbes led to an expanded ability to completely exploit the energy available in complex organic matter. Under the anoxic conditions that prevailed on the early Earth, this was accomplished through the linked and sequential action of several metabolic classes of organisms. By transporting electrons between cells, H2 provides a means of linking the activities of these organisms into a highly functional and interactive network. At the same time, H2 concentrations exert a powerful thermodynamic control on many aspects of metabolism and biogeochemical function in these systems. Anaerobic communities based on the consumption of organic matter continue to play an important role in global biogeochemistry even into the present day. As the principal arbiters of chemistry in most aquatic sediments and animal digestive systems, these microbes affect the redox and trace-gas chemistry of our oceans and atmosphere, and constitute the ultimate biological filter on material passing into the rock record. It is in such communities that the significance of H2 in mediating biogeochemical function is most strongly expressed. The advent of phototrophic metabolism added another layer of complexity to microbial communities, and to the role of H2 therein. Anoxygenic and oxygenic phototrophs retained and expanded on the utilization of H2 in metabolic processes. Both groups produce and consume H2 through a variety of mechanisms. In the natural world, phototrophic organisms are often closely juxtaposed with a variety of other metabolic types, through the formation of biofilms and microbial mats. In the few examples studied, phototrophs contribute an often swamping term to the H2 economy of these communities, with

  12. Stratospheric H2O

    NASA Technical Reports Server (NTRS)

    Ellsaesser, H. W.; Harries, J. E.; Kley, D.; Penndorf, R.

    1980-01-01

    The present state of our knowledge and understanding of H2O in the stratosphere is reviewed. This reveals continuing discrepancies between observations and expectations following from the Brewer-Dobson hypothesis of stratospheric circulation. In particular, available observations indicate unexplained upward and poleward directed H2O gradients immediately downstream from the tropical tropopause and variable vertical gradients above 20 km which generally disagree with those expected from oxidation of CH4.

  13. Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification

    SciTech Connect

    Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

    2010-06-04

    The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

  14. γH2AX and cancer

    PubMed Central

    Bonner, William M.; Redon, Christophe E.; Dickey, Jennifer S.; Nakamura, Asako J.; Sedelnikova, Olga A.; Solier, Stéphanie; Pommier, Yves

    2011-01-01

    Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs. PMID:19005492

  15. Infrared Absorption of CH_3O/CD_3O Radicals Produced upon Photolysis of CH_3ONO/CD_3ONO in a {p}-H2 Matrix

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Chou, Wei-Te; Johnson, Britta; Sibert, Edwin; Lee, Yuan-Pern

    2014-06-01

    The methoxy radical, CH_3O, has attracted much attention because of its important molecular structure and also as a reaction intermediate in combustion and atmospheric chemistry. Previous investigations include laser-induced fluorescence, laser magnetic resonance, and stimulated emission pumping. High-resolution infrared spectrum of jet-cooled CH_3O, produced by laser photolysis of CH_3ONO, in the C-H stretching region 2850-2940 cm-1 has been reported. However, direct infrared absorption spectrum of CH_3O other than the C-H stretching region remains unreported. Irradiation of a {p}-H2 matrix containing CH_3ONO at 3.2 K with UV light produced main features at 1365.4, 1427.5 (21-, 21+), 1041.8 (31-), 1346.8, 1427.5, 1520.9, 1520.9 (51-, 51+, 51-, 51+), and 689.3/694.9, 945.9/951.7, 1233.5, 1235.9 cm-1 (61-, 61+, 61-, 61+); labels 2-6 in parentheses indicate transitions to vibrational states attributable to the umbrella, C-O stretching, CH_2 scissoring, and HCO deformation modes of CH_3O, respectively. These features appeared upon photolysis and diminished after five minutes; formation of CH_2OH was observed as CH_3O decayed. The assignments were based on comparison of observed vibrational wavenumbers with those predicted with the quadratic potential energy force field and quadratic dipole moment expansion calculated with the CCSD(T)/cc-pVTZ method. Jahn-Teller and anharmonic vibrational contributions were included in the full Hamiltonian to estimate the correlation diagram connecting the harmonic eigenvalues to those of the fully coupled problem. Similarly, lines of CD_3O were observed upon UV photolysis of CD_3ONO, but became diminished within five minutes. These observations demonstrates the advantage of diminished cage effect of solid {p}-H2; CH_3O and CD_3O are produced via {in situ} UV photodissociation of CH_3ONO isolated in {p}-H2, but not in Ar or Ne. J.-X. Han, Y. G. Utkin, H.-B. Chen, L. A. Burns and R. F. Curl, J. Chem. Phys., 117, 6538 (2009). J. Nagesh

  16. Feeding of [5,5-2H(2)]-1-desoxy-D-xylulose and [4,4,6,6,6-2H(5)]-mevalolactone to a geosmin-producing Streptomyces sp. and Fossombronia pusilla.

    PubMed

    Spiteller, Dieter; Jux, Andreas; Piel, Jörn; Boland, Wilhelm

    2002-12-01

    The biosynthesis of the trisnor sesquiterpenoid geosmin (4,8a-dimethyl-octahydro-naphthalen-4a-ol) (1) was investigated by feeding labeled [5,5-2H(2)]-1-desoxy-D-xylulose (11), [4,4,6,6,6-(2)H(5)]-mevalolactone (7) and [2,2-2H(2)]-mevalolactone (9) to Streptomyces sp. JP95 and the liverwort Fossombronia pusilla. The micro-organism produced geosmin via the 1-desoxy-D-xylulose pathway, whereas the liverwort exclusively utilized mevalolactone for terpenoid biosynthesis. Analysis of the labeling pattern in the resulting isotopomers of geosmin (1) by mass spectroscopy (EI/MS) revealed that geosmin is synthesized in both organisms by cyclization of farnesyl diphosphate to a germacradiene-type intermediate 4. Further transformations en route to geosmin (1) involve an oxidative dealkylation of an i-propyl substituent, 1,2-reduction of a resulting conjugated diene, and bicyclization of a germacatriene intermediate 13. The transformations largely resemble the biosynthesis of dehydrogeosmin (2) in cactus flowers but differ with respect to the regioselectivity of the side chain dealkylation and 1,2-reduction

  17. MELCOR-H2

    SciTech Connect

    2009-11-10

    Before this LDRD research, no single tool could simulate a very high temperature reactor (VHTR) that is coupled to a secondary system and the sulfur iodine (SI) thermochemistry. Furthermore, the SI chemistry could only be modeled in steady state, typically via flow sheets. Additionally, the MELCOR nuclear reactor analysis code was suitable only for the modeling of light water reactors, not gas-cooled reactors. We extended MELCOR in order to address the above deficiencies. In particular, we developed three VHTR input models, added generalized, modular secondary system components, developed reactor point kinetics, included transient thermochemistry for the most important cycles [SI and the Westinghouse hybrid sulfur], and developed an interactive graphical user interface for full plant visualization. The new tool is called MELCOR-H2, and it allows users to maximize hydrogen and electrical production, as well as enhance overall plant safety. We conducted validation and verification studies on the key models, and showed that the MELCOR-H2 results typically compared to within less than 5% from experimental data, code-to-code comparisons, and/or analytical solutions.

  18. Hydrogen isotope systematics of H2-H2O-CH4 during hydrogenotrophic methanogenesis

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Kawagucci, S.; Hattori, S.; Yamada, K.; Ueno, Y.; Takai, K.; Yoshida, N.

    2011-12-01

    Hydrogen and carbon isotopes of CH4 have been utilized to trace microbial processes. The isotope fractionations during hydrogenotrophic methanogenesis, one of the major processes of environmental CH4, have been studied by several laboratory incubations. For the carbon isotope, H2 concentration is thought to be the major parameter controlling the carbon isotope fractionation by hydrogenotrophic methanogenesis. For the hydrogen, on the other hand, factors controlling isotope fractionation remain poorly understood, although H2 concentration is suggested to be important. This uncertainty prevents us to utilize δD-CH4 value as the tracer. The most important and principal question is whether all hydrogen atoms in microbially-generated CH4 come from environmental H2O or not. To answer the question, we investigated the D/H systematics of H2-H2O-CH4 during hydrogenotrophic methanogenesis by pure culture incubation with softly deuterium-enriched H2 and/or H2O. Our results demonstrate that δD-CH4 value produced by hydrogenotrophic methanogens depends not only on δD-H2O value but also on δD-H2 value. We observed constant correlation between δD-H2 and δD-CH4 values as well as between δD-H2O and δD-CH4 values, which suggests that hydrogen (/deuterium) atom of substrate H2 is also transferred to the product CH4. This implies that the range of δD-CH4 value produced by hydrogenotrophic methanogenesis should be re-evaluated considering the distribution of δD-H2 and δD-H2O values in natural environments.

  19. Efficient H2 production via Chlamydomonas reinhardtii.

    PubMed

    Esquível, Maria G; Amaro, Helena M; Pinto, Teresa S; Fevereiro, Pedro S; Malcata, F Xavier

    2011-12-01

    Molecular hydrogen (H(2)) obtained from biological sources provides an alternative to bulk chemical processes that is moving towards large-scale, economical generation of clean fuel for automotive engines. This opinion article examines recent improvements in H(2) production by wild and mutant strains of Chlamydomonas reinhardtii - the green microalga currently considered the best eukaryotic H(2) producer. Here, we review various aspects of genetic and metabolic engineering of C. reinhardtii, as well as of process engineering. Additionally, we lay out possible scenarios that would lead to more efficient research approaches in the near future, as part of a consistent strategy for sustainable biohydrogen supply.

  20. H2 Detection via Polarography

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus; Barile, Ron

    2006-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  1. Antiproton stopping in H2 and H2O

    NASA Astrophysics Data System (ADS)

    Bailey, J. J.; Kadyrov, A. S.; Abdurakhmanov, I. B.; Fursa, D. V.; Bray, I.

    2015-11-01

    Stopping powers of antiprotons in H2 and H2O targets are calculated using a semiclassical time-dependent convergent close-coupling method. In our approach the H2 target is treated using a two-center molecular multiconfiguration approximation, which fully accounts for the electron-electron correlation. Double-ionization and dissociative ionization channels are taken into account using an independent-event model. The vibrational excitation and nuclear scattering contributions are also included. The H2O target is treated using a neonization method proposed by C. C. Montanari and J. E. Miraglia [J. Phys. B 47, 015201 (2014), 10.1088/0953-4075/47/1/015201], whereby the ten-electron water molecule is described as a dressed Ne-like atom in a pseudospherical potential. Despite being the most comprehensive approach to date, the results obtained for H2 only qualitatively agree with the available experimental measurements.

  2. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  3. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at thirdmore » generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  4. Non-Franck-Condon electron-impact dissociative-excitation cross sections of molecular hydrogen producing H(1s)+H(2l) through X 1Σ+g(v=0)-->\\{B 1Σ+u, B' 1Σ+u, C 1Πu\\}

    NASA Astrophysics Data System (ADS)

    Borges, Itamar, Jr.; Jalbert, Ginette; Bielschowsky, Carlos Eduardo

    1998-02-01

    Dissociation cross sections of H2 for high-energy electron impact (100-1000 eV) producing H(1s), H(2s), and H(2p) for excitation from the ground vibrational state (v=0) to the continuum of the B1Σ+u, B' 1Σ+u, and C 1Πu states were computed in the first Born approximation. Configuration-interaction electronic wave functions were used and vibrational degrees of freedom taken in account. The dissociative excitation cross sections as a function of the continuum energy for each final state were presented, and the accuracy of the wave function, including the importance of relaxation effects and the validity of the Franck-Condon approximation, is analyzed in comparison to available previous theoretical results. The computed dissociation cross sections were compared to experimental results making use of the separation of the various breakup channels proposed by Ajello, Shemansky, and James [Astrophys. J. 371, 422 (1991)]. The obtained cross sections to produce H(2p)+H(1s) fragments via dissociative excitation to the B and C states have agreed well with the decomposed experimental results within the error bars. The dissociation cross sections to produce H(2s)+H(1s) through the B' state were in most cases somewhat larger than the reported experimental error bars. In the most favorable case our theoretical B' dissociation cross section was 3.1% within the reported error bar at 300 eV electron impact energy. A possible experimental reason for this discrepancy was raised.

  5. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    PubMed

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-03-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO2 conversion and utilization. Here, we discuss in detail the approaches of CO2 conversion, the developmental history, the basic principles, the economic feasibility of CO2/H2O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  6. Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO).

    PubMed

    Kimura, Hideo

    2016-11-01

    Hydrogen sulfide (H2S) is a physiological mediator with various roles, including neuro-modulation, vascular tone regulation, and cytoprotection against ischemia-reperfusion injury, angiogenesis, and oxygen sensing. Hydrogen polysulfide (H2S n ), which possesses a higher number of sulfur atoms than H2S, recently emerged as a potential signaling molecule that regulates the activity of ion channels, a tumor suppressor, transcription factors, and protein kinases. Some of the previously reported effects of H2S are now attributed to the more potent H2S n . H2S n is produced by 3-mercaptopyruvate sulfurtransferase (3MST) from 3-mercaptopyruvate (3MP) and is generated by the chemical interaction of H2S with nitric oxide (NO). H2S n sulfhydrates (sulfurates) cysteine residues of target proteins and modifies their activity, whereas H2S sulfurates oxidized cysteine residues as well as reduces cysteine disulfide bonds. This review focuses on the recent progress made in studies concerning the production and physiological roles of H2S n and H2S.

  7. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.

    PubMed

    Capitanio, Giuseppe; Martino, Pietro Luca; Capitanio, Nazzareno; De Nitto, Emanuele; Papa, Sergio

    2006-02-14

    A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.

  8. Quasiclassical trajectory study of formaldehyde unimolecular dissociation: H2CO→H2+CO, H +HCO

    NASA Astrophysics Data System (ADS)

    Zhang, Xiubin; Rheinecker, Jaime L.; Bowman, Joel M.

    2005-03-01

    We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H2CO→H2+CO and the radical H2CO→H+HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H2. The low-jCO and high-νH2 products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.

  9. The role of H2O in the Saturn ionosphere

    NASA Astrophysics Data System (ADS)

    Shemansky, Donald; Liu, Xianming

    2010-05-01

    Stellar occultations in the Cassini Ultraviolet Imaging Spectrograph Experiment observation program have provided measurements of the vertical profiles of H2 and and minor components of the atmosphere. The minor species identified and measured in the extinction spectra to date are CH4, C2H2, and C2H4. Measurements of abundance profiles are reported here, with limits on H2O content. The focus of this paper is on H2O because of the importance of this species to the understanding of upper atmospheric physical chemistry with significant consequences for ionospheric properties and energy budget. Ionospheric theory published in several papers beginning as early as 1984 have a common critical dependence on a sufficiently large H2O mixing ratio to control the lifetime of the assumed dominant ion, H+. The vertical extinction profiles, which extend down to an impact parameter of 300 km above the 1 bar pressure level, show no evidence of H2O in the spectrum at mid and low latitudes, establishing a mixing ratio [H2O]/[H2] ≤ 4 × 10-8, compatible with earlier global average measurements. The upper limit on H2O abundance at mid latitude establishes a mixing ratio more an order of magnitude too low to influence the ionosphere population in competition with calculated H+ + H2 X(v:J) charge capture reaction rates. The analysis of the extinction spectra produces densities and mixing ratios of the observed species and these results are reported and discussed.

  10. Legumes, N2 fixation and the H2 cycle

    NASA Astrophysics Data System (ADS)

    Layzell, D. B.

    2004-12-01

    Legume plants such as soybean or pea can form symbiotic, N2 fixing associations with bacteria that exist in root nodules. For every N2 fixed, 1 to 3 H2 are produced as a by-product of the nitrogenase reaction. Therefore, a typical N2 fixing legume crop produces about 200,000 L H2 gas (at STP) per hectare per crop season. This paper will summarize our current understanding of the processes leading to H2 production in legumes, the magnitude of H2 production associated with global cropping systems, and the implications for its production and oxidation on both the legumes and the soils in which they grow. Specific points may include: ˜ In symbioses lacking uptake hydrogenase (HUP) activity (thought to be the majority of crop legumes), the H2 diffuses into the soil where it is oxidized by soil microbes that grow up around the legume nodules. The kinetic properties of these microbes are very different (higher Km and Vmax) from that of microbes in soils exposed to normal air (ca. 0.5 ppm H2); ˜ Laboratory studies indicate that 60% of the reducing power from H2 is coupled to O2 uptake, whereas 40% is coupled to autotrophic CO2 fixation. The latter process should increase soil carbon stocks by about 25 kg C/ha/yr; ˜ At the site of the nitrogenase enzyme, H2 production is autocatalytic such that the higher the H2 concentration, the more H2 is produced and the less N2 fixed. The variable O2 diffusion barrier in legumes can act to restrict H2 diffusion from the nodule, thereby increasing the relative magnitude of H2 production versus N2 fixation; ˜ Studies to understand why legume symbioses make such an energy investment in H2 production have led to the discovery that H2 treated soils have improved fertility, supporting the growth and yield of legume and non-legume crops. This observation may account for the benefits of legumes when used in rotation with cereal crops, a phenomenon that has been used by farmers for over 2000 years, but which has remained unexplained. An

  11. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  12. H2S and Blood Vessels: An Overview.

    PubMed

    Yang, Guangdong; Wang, Rui

    2015-01-01

    The physiological and biomedical importance of hydrogen sulfide (H2S) has been fully recognized in the cardiovascular system as well as in the rest of the body. In blood vessels, cystathionine γ-lyase (CSE) is a major H2S-producing enzyme expressed in both smooth muscle and endothelium as well as periadventitial adipose tissues. Regulation of H2S production from CSE is controlled by a complex integration of transcriptional, posttranscriptional, and posttranslational mechanisms in blood vessels. In smooth muscle cells, H2S regulates cell apoptosis, phenotypic switch, relaxation and contraction, and calcification. In endothelial cells, H2S controls cell proliferation, cellular senescence, oxidative stress, inflammation, etc. H2S interacts with nitric oxide and acts as an endothelium-derived relaxing factor and an endothelium-derived hyperpolarizing factor. H2S generated from periadventitial adipose tissues acts as an adipocyte-derived relaxing factor and modulates the vascular tone. Extensive evidence has demonstrated the beneficial roles of the CSE/H2S system in various blood vessel diseases, such as hypertension, atherosclerosis, and aortic aneurysm. The important roles signaling in the cardiovascular system merit further intensive and extensive investigation. H2S-releasing agents and CSE activators will find their great applications in the prevention and treatment of blood vessel-related disorders.

  13. Infrared spectroscopy of V2+(H2O) complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Duncan, M. A.

    2012-03-01

    Doubly charged vanadium-water complexes are produced by laser vaporization in a pulsed supersonic expansion. Size-selected ions are studied with infrared photodissociation spectroscopy in the O-H stretch region using argon complex predissociation. Density functional theory calculations provide structures and vibrational spectra of these ions. The O-H stretches of V2+(H2O) appear at lower frequencies than those of the free water molecule or V+(H2O). The symmetric stretch is more intense than the asymmetric stretch in both V+(H2O) and V2+(H2O) complexes. Spectra of V2+(H2O)Arn (n = 2-7) show that the coordination of the V2+ is filled with six ligands, i.e. one water and five argon atoms.

  14. H2S, a novel gasotransmitter, involves in gastric accommodation.

    PubMed

    Xiao, Ailin; Wang, Hongjuan; Lu, Xin; Zhu, Jianchun; Huang, Di; Xu, Tonghui; Guo, Jianqiang; Liu, Chuanyong; Li, Jingxin

    2015-11-04

    H2S is produced mainly by two enzymes:cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), using L-cysteine (L-Cys) as the substrate. In this study, we investigated the role of H2S in gastric accommodation using CBS(+/-) mice, immunohistochemistry, immunoblot, methylene blue assay, intragastric pressure (IGP) recording and electrical field stimulation (EFS). Mouse gastric fundus expressed H2S-generating enzymes (CBS and CSE) and generated detectable amounts of H2S. The H2S donor, NaHS or L-Cys, caused a relaxation in either gastric fundus or body. The gastric compliance was significantly increased in the presence of L-Cys (1 mM). On the contrary, AOAA, an inhibitor for CBS, largely inhibited gastric compliance. Consistently, CBS(+/-) mice shows a lower gastric compliance. However, PAG, a CSE inhibitor, had no effect on gastric compliances. L-Cys enhances the non-adrenergic, non-cholinergic (NANC) relaxation of fundus strips, but AOAA reduces the magnitude of relaxations to EFS. Notably, the expression level of CBS but not CSE protein was elevated after feeding. Consistently, the production of H2S was also increased after feeding in mice gastric fundus. In addition, AOAA largely reduced food intake and body weight in mice. Furthermore, a metabolic aberration of H2S was found in patients with functional dyspepsia (FD). In conclusion, endogenous H2S, a novel gasotransmitter, involves in gastric accommodation.

  15. Histamine H2 receptor - Involvement in gastric ulceration

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos-Danellis, J.; Brown, T. H.

    1976-01-01

    The involvement of the H1 and H2 receptors for histamine in the pathogenesis of gastric ulcers was investigated in rats. Metiamide, an H2 receptor antagonist, reliably reduced ulceration produced by stress alone or by a combination of stress and aspirin. In contrast, pyrilamine, which blocks only the H1 receptor, was without effect under these same conditions. The results support the hypothesis that histamine mediates both stress and stress plus aspirin induced ulceration by a mechanism involving the H2 receptor.

  16. H2AFV — EDRN Public Portal

    Cancer.gov

    H2AFV is a variant histone H2A which replaces conventional H2A in a subset of nucleosomes. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Additionally, H2AFV may be involved in the formation of constitutive heterochromatin, and may be required for chromosome segregation during cell division.

  17. H2S concentrations in the heart after acute H2S administration: methodological and physiological considerations.

    PubMed

    Sonobe, Takashi; Haouzi, Philippe

    2016-12-01

    In this study, we have tried to characterize the limits of the approach typically used to determine H2S concentrations in the heart based on the amount of H2S evaporating from heart homogenates-spontaneously, after reaction with a strong reducing agent, or in a very acidic solution. Heart homogenates were prepared from male rats in control conditions or after H2S infusion induced a transient cardiogenic shock (CS) or cardiac asystole (CA). Using a method of determination of gaseous H2S with a detection limit of 0.2 nmol, we found that the process of homogenization could lead to a total disappearance of free H2S unless performed in alkaline conditions. Yet, after restoration of neutral pH, free H2S concentration from samples processed in alkaline and nonalkaline milieus were similar and averaged ∼0.2-0.4 nmol/g in both control and CS homogenate hearts and up to 100 nmol/g in the CA group. No additional H2S was released from control, CS, or CA hearts by using the reducing agent tris(2-carboxyethyl)phosphine or a strong acidic solution (pH < 2) to "free" H2S from combined pools. Of note, the reducing agent DTT produced a significant sulfide artifact and was not used. These data suggest that 1) free H2S found in heart homogenates is not a reflection of H2S present in a "living" heart and 2) the pool of combined sulfides, released in a strong reducing or acidic milieu, does not increase in the heart in a measurable manner even after toxic exposure to sulfide.

  18. The ultraviolet photochemistry of diacetylene - Direct detection of primary products of the metastable C4H2* + C4H2 reaction

    NASA Technical Reports Server (NTRS)

    Bandy, Ralph E.; Lakshminarayan, Chitra; Frost, Rex K.; Zwier, Timothy S.

    1993-01-01

    The products of diacetylene's ultraviolet photochemistry over the 245-220 nm region were directly determined in experiments where C4H2 was excited within a small reaction tube attached to a pulsed nozzle. The products formed in the collisions of C4H2* with C4H2 were subsequently ionized by vacuum UV radiation (at 118 nm) in the ion source of a time-of-flight mass spectrometer. It was found that the reaction of C4H2* with C4H2 produces C6H2 (+C2H2), C8H2 (+2H,H2), and C8H3 (+H), confirming the results of Glicker and Okabe (1987). Under certain conditions, secondary products were observed. Mechanisms for the observed reactions are proposed.

  19. Relaxation of H2O from its |04>- vibrational state in collisions with H2O, Ar, H2, N2, and O2

    NASA Astrophysics Data System (ADS)

    Barnes, Peter W.; Sims, Ian R.; Smith, Ian W. M.

    2004-03-01

    We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited |04>± vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the |04>- state is populated by direct absorption of radiation from a pulsed dye laser tuned to ˜719 nm. Evolution of the population in the (|04>±) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(|04>±), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(|04>±) obtained from these experiments, in units of cm3 molecule-1 s-1, are: k(H2O)=(4.1±1.2)×10-10, k(Ar)=(4.9±1.1)×10-12, k(H2)=(6.8±1.1)×10-12, k(N2)=(7.7±1.5)×10-12, k(O2)=(6.7±1.4)×10-12. The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.

  20. Relaxation of H2O from its /04>- vibrational state in collisions with H2O, Ar, H2, N2, and O2.

    PubMed

    Barnes, Peter W; Sims, Ian R; Smith, Ian W M

    2004-03-22

    We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited /04>(+/-) vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the mid R:04(-) state is populated by direct absorption of radiation from a pulsed dye laser tuned to approximately 719 nm. Evolution of the population in the (/04>(+/-)) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(/04>(+/-)), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(/04>(+/-)) obtained from these experiments, in units of cm3 molecule(-1) s(-1), are: k(H2O)=(4.1+/-1.2) x 10(-10), k(Ar)=(4.9+/-1.1) x 10(-12), k(H2)=(6.8+/-1.1) x 10(-12), k(N2)=(7.7+/-1.5) x 10(-12), k(O2)=(6.7+/-1.4) x 10(-12). The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.

  1. Solution structure of the isolated histone H2A-H2B heterodimer

    PubMed Central

    Moriwaki, Yoshihito; Yamane, Tsutomu; Ohtomo, Hideaki; Ikeguchi, Mitsunori; Kurita, Jun-ichi; Sato, Masahiko; Nagadoi, Aritaka; Shimojo, Hideaki; Nishimura, Yoshifumi

    2016-01-01

    During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1–β1–α2–β2–α3–αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {1H}-15N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27–34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin. PMID:27181506

  2. H2 distribution during the formation of multiphase molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick; Gérin, Maryvonne; Lesaffre, Pierre

    2016-03-01

    Context. H2 is the simplest and the most abundant molecule in the interstellar medium (ISM), and its formation precedes the formation of other molecules. Aims: Understanding the dynamical influence of the environment and the interplay between the thermal processes related to the formation and destruction of H2 and the structure of the cloud is mandatory to understand correctly the observations of H2. Methods: We performed high-resolution magnetohydrodynamical colliding-flow simulations with the adaptive mesh refinement code RAMSES in which the physics of H2 has been included. We compared the simulation results with various observations of the H2 molecule, including the column densities of excited rotational levels. Results: As a result of a combination of thermal pressure, ram pressure, and gravity, the clouds produced at the converging point of HI streams are highly inhomogeneous. H2 molecules quickly form in relatively dense clumps and spread into the diffuse interclump gas. This in particular leads to the existence of significant abundances of H2 in the diffuse and warm gas that lies in between clumps. Simulations and observations show similar trends, especially for the HI-to-H2 transition (H2 fraction vs. total hydrogen column density). Moreover, the abundances of excited rotational levels, calculated at equilibrium in the simulations, turn out to be very similar to the observed abundances inferred from FUSE results. This is a direct consequence of the presence of the H2 enriched diffuse and warm gas. Conclusions: Our simulations, which self-consistently form molecular clouds out of the diffuse atomic gas, show that H2 rapidly forms in the dense clumps and, due to the complex structure of molecular clouds, quickly spreads at lower densities. Consequently, a significant fraction of warm H2 exists in the low-density gas. This warm H2 leads to column densities of excited rotational levels close to the observed ones and probably reveals the complex intermix between

  3. H2 Metabolism in Photosynthetic Organisms

    PubMed Central

    Ben-Amotz, Ami; Erbes, David L.; Riederer-Henderson, Mary Ann; Peavey, Dwight G.; Gibbs, Martin

    1975-01-01

    Dark H2 metabolism was studied in marine and fresh water red algae, the green alga, Chlamydomonas, and mosses. A time variable and temperature-sensitive anaerobic incubation was required prior to H2 evolution. H2 evolution was sensitive to disalicylidenepropanediamine. An immediate H2 uptake was observed in these algae. Immediate dark H2 uptake but no evolution was observed in the mosses. A cell-free hydrogenase preparation was obtained from anaerobically adapted Chlamydomonas reinhardii by means of sonic oscillation. The hydrogenase was not sedimented at 100,000g. It catalyzed the reduction of methylene blue, p-benzoquinone, NAD, NADP, but not spinach ferredoxin. H2 evolution was noted with dithionite and with reduced methyl viologen as donors but not with reduced spinach ferredoxin. Similarly, hydrogenase activities were not affected by disalicylidenepropanediamine. The pH optima for H2 evolution and for H2 uptake were 7.2 and 7.5 to 9.5, respectively. Extracts prepared from the anaerobically adapted red alga, Chondrus crispus, and the moss, Leptobryum pyriforme, consumed but did not evolve H2. Uptake was slightly stimulated by methylene blue. It is proposed that red algae and mosses appear to metabolize H2 by a different pathway than Chlamydomonas. PMID:16659260

  4. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  5. Flammability and Explosion Limits of H2 and H2/CO: A Literature Review

    DTIC Science & Technology

    1992-09-10

    I, SMC-TR-93-19 AD-A2 4 896AEROSPACE REPORT NOAD-A264 896 TR-92(2534)- ° Flammability and Explosion Limits of H2 and H2/CO: A Literature Review ...ELEMENT NO. NO. NO. ACCESSION NO 11. TITLE (Include Semrmly Ctassltjcation) Flammability and Explosion Limits of H2 and H2 /CO: A Literature Review 12...The literature related to the flammability and explosion limits of H2/O2 H2/0 2 /diluent. CO/O 2 . CO/H,/O 2 , and CO/H2/air mixtures is reviewed

  6. NMR Evidence of Cage-to-Cage Diffusion of H2 in H2-Clathrates

    NASA Astrophysics Data System (ADS)

    Senadheera, Lasitha; Conradi, Mark

    2008-03-01

    H2 and heavy-ice at P>1 kbar and T ˜250 K form H2-D2O clathrate; four and one H2 may occupy each large (L) and small (S) cage, respectively. In H2-THF-H2O clathrate, H2 occupies singly and only S cages. Previous electronic-structure calculations estimate the barriers for H2 passage though hexagonal and pentagonal faces of cages as ˜6 and ˜25 kcal/mol, respectively. Our H2 NMR linewidth data reflect random crystal fields from frozen cage-wall D2O orientations. We find dramatic reductions in linewidth starting at 120 K (175 K) for H2-D2O (H2-TDF-D2O) indicating time-averaging of the crystal fields. Assuming Arrhenius behavior, our data imply energies for escape from L (S) cages of about ˜4 (˜6) kcal/mol. For L cages, the agreement with the calculated (cages were treated as rigid) barrier is reasonable. For H2 in S cages, in H2-TDF-D2O, the extreme disagreement with theory points to another mechanism of time-averaging, reorientations of the cage-wall D2O molecules, as suggested by previous work in TDH-H2O clathrate. Our limited NMR spectra at high T ˜145 K in H2-D2O show evidence of distinct resonances from diffusionally mobile and immobile H2 molecules, as expected.

  7. H2AFJ — EDRN Public Portal

    Cancer.gov

    H2AFJ is a core component of the nucleosome. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

  8. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  9. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  10. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  11. Vibrational relaxation of H2O(|04> ) in collisions with H2O, Ar, H2, N2 and O2: dynamical and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Barnes, P. W.; Sims, I. R.; Smith, I. W.

    2003-04-01

    It has been suggested that sequential two-photon dissociation of water might provide a mechanism for the atmospheric production of OH radical. ^1 This mechanism requires that photodissociation of vibrationally excited molecules must occur at a rate competitive with their relaxation by collisions with atmospheric gases. In this paper, we shall describe new experiments on the collisional relaxation of H_2O molecules from the highly excited mid04>± vibrational state in collisions with H_2O, Ar, H_2, N_2 and O_2. In our experiments, the mid04>^- state is populated by direct absorption of radiation from a pulsed dye laser tuned to ca. 719 nm. Evolution of the population in the (mid04>±) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H_2O(mid04>±), and a frequency-doubled dye laser, which observes the OH(v = 0) produced via laser-induced fluorescence (LIF). The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation obtained from these experiments, in units of cm^3 molecule-1 s-1, are: k(H_2O) = (4.1 ± 1.2) x 10-10, k(Ar) = (4.9 ± 1.1) x 10-12, k(H_2) = (6.8 ± 1.1) x 10-12, k(N_2) = (7.7 ± 1.5) x 10-12, k(O_2) = (6.7 ± 1.4) x 10-12. The results will be discussed in two contexts. First, we shall consider the implications of our new results for the interpretation of our previous experiments on the reactions of vibrationally excited H_2O with H atoms.^2 Second, we shall consider the proposal of Goss et al.1 in the light of our finding that the collisional relaxation of H_2O(mid04>±) by N_2 and O_2 is rather rapid. ^1 L. M Goss, V. Vaida, J. W. Brault and R. T. Skodje, J. Phys. Chem. A, 05, 70 (2001). ^2 (a) G. Hawthorne, P. Sharkey and I. W. M. Smith, J. Chem. Phys., 108, 4693(1998); (b) P. W. Barnes, P. Sharkey, I. R. Sims and I. W. M. Smith, Faraday Discuss. Chem. Soc., 13, 167

  12. Fast metastable hydrogen atoms from H2 molecules: twin atoms

    NASA Astrophysics Data System (ADS)

    Trimèche, A.; Houdoux, D.; Rahmat, G.; Dulieu, O.; Schneider, I. F.; Medina, A.; Jalbert, G.; Zappa, F.; de Carvalho, C. R.; Nascimento, R. F.; de Castro Faria, N. V.; Robert, J.

    2015-01-01

    It is a difficult task to obtain "twin atoms", i.e. pairs of massive particles such that one can perform experiments in the same fashion that is routinely done with "twin photons". One possible route to obtain such pairs is by dissociating homonuclear diatomic molecules. We address this possibility by investigating the production of metastable H(2s) atoms coming from the dissociation of cold H2 molecules produced in a Campargue nozzle beam crossing an electron beam from a high intensity pulsed electron gun. Dissociation by electron impact was chosen to avoid limitations of target molecular excited states due to selection rules. Detectors placed several centimeters away from the collision center, and aligned with respect to possible common molecular dissociation channel, analyze the neutral fragments as a function of their time-of-flight (TOF) through Lyman-α detection. Evidence for the first time observed coincidence of pairs of H(2s) atoms obtained this way is presented.

  13. A Global PLASIMO Model for H2O Chemistry

    NASA Astrophysics Data System (ADS)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Graef, Wouter; Mihailova, Diana; van Dijk, Jan; EPG/ Applied Physics/ Eindhoven University of Technology Team; Plasma Matters B. V. Team

    2016-09-01

    Global warming is one of the critical contemporary problems for mankind. Transformation of CO2 into fuels, like CH4, that are transportable with the current infrastructure seems a promising idea to solve this threatening issue. The final aim of this research is to produce CH4 by using microwave plasma in CO2 -H2 O mixture and follow-up catalytic processes. In this contribution we present a global model for H2 O chemistry that is based on the PLASIMO plasma modeling toolkit. The time variation of the electron energy and the species' densities are calculated based on the source and loss terms in plasma due to chemical reactions. The short simulation times of such models allow an efficient assessment and chemical reduction of the H2O chemistry, which is required for full spatially resolved simulations.

  14. Electron ionization of H2O

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2008-11-01

    Relative partial ionization cross-sections and precursor-specific relative partial ionization cross-sections for fragment ions formed by electron ionization of H2O have been measured using time-of-flight mass spectrometry coupled with a 2D ion coincidence technique. We report data for the formation of H+, H2+, O2+, O+ and OH+ relative to the formation of H2O+, as a function of ionizing electron energy from 30 to 200 eV. This data includes, for the first time, measurements on the formation all positive ion pairs and ion triples by dissociative multiple electron ionization of H2O. Through determinations of the kinetic energy release involved in ion pair formation we provide further evidence that indirect processes contribute significantly to the yield of H+ + OH+ ion pairs below the vertical double ionization threshold.

  15. Super-dissociative recombination of H2+?

    NASA Astrophysics Data System (ADS)

    Mitchell, J. B. A.; Yousif, F. B.; van der Donk, P. J. T.; Morgan, T. J.; Chibisov, M. I.

    1995-11-01

    The dissociative recombination of vibrationally excited H2+ ions to form products in high Rydberg states has been measured. Surprisingly large cross-sections are found for this channel. This seems to be an example of super-dissociative recombination.

  16. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Howard, J.; Quinn, R. C.

    2000-01-01

    The adsorptive equilibration of H2O with montomorillonite has been measured. At low temperatures and pressures equilibration can require many hours, effectively preventing smectites at the martian surface from responding to diurnal pressure and temperature variations.

  17. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  18. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  19. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  20. Role of Metabolic H2O2 Generation

    PubMed Central

    Sies, Helmut

    2014-01-01

    Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound. PMID:24515117

  1. Cigarette sidestream smoke induces phosphorylated histone H2AX.

    PubMed

    Toyooka, Tatsushi; Ibuki, Yuko

    2009-05-31

    Cigarette sidestream smoke (CSS) is a widespread environmental pollutant having highly genotoxic potency. In spite of the overwhelming evidence that CSS induces a wide range of DNA damage such as oxidative base damage and DNA adducts, evidence that CSS can result in DNA double strand breaks (DSBs) is little. In this study, we showed that CSS generated phosphorylated histone H2AX (gamma-H2AX), recently considered as a sensitive marker of the generation of DSBs, in a human pulmonary epithelial cell model, A549. Treatment with CSS drastically induced discrete foci of gamma-H2AX within the nucleus in a dose-dependent manner. CSS increased intracellular oxidation, and N-acetylcysteine (NAC), an antioxidant, significantly attenuated the formation of gamma-H2AX, suggesting that reactive oxygen species produced from CSS partially contributed to the phosphorylation. The generation of gamma-H2AX is considered to be accompanied the induction of DSBs. CSS in fact induced DSBs, which was also inhibited by NAC. DSBs are the worst type of DNA damage, related to genomic instability and carcinogenesis. Our results would increase the evidence of the strong genotoxicity of passive smoking.

  2. A shock origin for interstellar H2O masers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Elitzur, Moshe; Mckee, Christopher F.

    1993-01-01

    We present a comprehensive model for the powerful H2O masers observed in starforming regions. In this model the masers occur behind dissociative shocks propagating in dense regions. This paper focuses on high-velocity dissociative shocks in which the heat of H2 reformation on dust grains maintains a large column of 300 - 400 K gas, where the chemistry drives a considerable fraction of the oxygen not in CO to form H2O. The H2O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action, where the maser is excited by thermal collisions with H atoms and H2 molecules. A critical ingredient in determining the shock structure is the magnetic pressure, and the fields required by our models are in agreement with recent observations. The observed brightness temperatures are the result of coherent velocity regions which have dimensions in the shock plane that are five to 50 times the postshock thickness.

  3. A practical guide to working with H2S at the interface of chemistry and biology.

    PubMed

    Hartle, Matthew D; Pluth, Michael D

    2016-11-07

    Hydrogen sulfide (H2S) is the most recently accepted endogenously produced gasotransmitter and is now implicated in a variety of physiological functions. In this tutorial review, our goal is to provide researchers new to the field of H2S chemical biology with practical considerations, pitfalls, and best practices to enable smooth entry into investigations focused on biological H2S. We present practical handling and safety considerations for working with this reactive biomolecule, and cover basic roles of H2S biogenesis and action. Experimental methods for modulating H2S levels, including enzymatic knockout, RNA silencing, enzymatic inhibition, and use of small molecule H2S donors are highlighted. Complementing H2S modulation techniques, we also highlight current strategies for H2S detection and quantification.

  4. H-2 alleles contribute to antigen 85-specific interferon-gamma responses during Mycobacterium tuberculosis infection.

    PubMed

    Beamer, Gillian L; Cyktor, Joshua; Carruthers, Bridget; Turner, Joanne

    2011-01-01

    The in vitro immune responses to mycobacterial antigens have been linked to the H-2 loci in mice. We evaluated in vitro and in vivo immune responses during early Mycobacterium tuberculosis (M.tb) pulmonary infection of C57BL/6 (H-2(b)), C57BL/6 (H-2(k)), CBA/J (H-2(k)), and C3H/HeJ (H-2(k)) mice to determine H-2(k)-dependent and -independent effects. H-2(k)-dependent effects included delayed and diminished Ag85-specific Th1 cell priming, a reduced frequency of Ag85-specific IFN-γ producing cells, reduced IFN-γ protein in vivo, and increased M.tb lung burden as demonstrated by C57BL/6 H-2(k) mice vs. C57BL/6 mice. H-2(k)-independent factors controlled the amount of Ag85-specific IFN-γ produced by each cell, T cell numbers, granuloma size, and lymphocytic infiltrates in the lungs. Overall, these results suggest that an H-2(k)-dependent suboptimal generation of Ag85-specific cells impairs control of early M.tb growth in the lungs. H-2(k)-independent factors influence the potency of IFN-γ producing cells and immune cell trafficking during pulmonary M.tb infection.

  5. Novel cooperative interactions and structural ordering in H2S-H2

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydrogen sulfide (H2S) and hydrogen (H2) crystallize into a 'guest-host' structure at 3.5 GPa and, at the initial formation pressure, the rotationally disordered component molecules exhibit weak van der Waals type interactions. With increasing pressure, hydrogen bonding develops and strengthens between neighboring H2S molecules, reflected in a pronounced drop in S-H vibrational stretching frequency and also observed in first-principles calculations. At 17 GPa, an ordering process occurs where H2S molecules orient themselves to maximize hydrogen bonding and H2 molecules simultaneously occupy a chemically distinct lattice site. Intermolecular forces in the H2S+H2 system may be tuned with pressure from the weak hydrogen-bonding limit to the ordered hydrogen-bonding regime, resulting in a novel clathrate structure stabilized by cooperative interactions.

  6. Understanding H2- H2 interactions in Metal Organic Frameworks (MOFs) with unsaturated metal centers

    NASA Astrophysics Data System (ADS)

    Nijem, Nour; Veyan, Jean F.; Kong, Lingzhu; Zhao, Yonggang; Li, Jing; Langreth, David; Chabal, Yves J.

    2011-03-01

    Unsaturated Metal Organic Frameworks (MOFs) are particularly interesting due to their high H2 uptakes with relatively large isosteric heats of adsorption (Qst > 8 kJ / mol) . ThisworkexploresH 2 - H 2 interactionsbetweenadsorbedH 2 atthedifferentsitesinMOF - 74 (M 2 (dhtp) , dhtp = 2 , 5 - dihydroxyterephthalate) andcombinesIRspectroscopywithvdW - DFTcalculations . TheadsorptionsitesinMOF - 74 arefromhighesttolowestbindingenergiesthemetal , oxygen , benzeneandpore - centersites . ThefrequencyofadsorbedH 2 atthemetalsitesuffersanadditional ~ - 30 cm -1 redshift (forMgandZn) and ~ - 84 cm -1 (forCo) whentheneighboringoxygensiteisoccupied . ThedipolemomentofadsorbedH 2 isalsoaffected . TheseinteractionsextendtothebenzenesitesforMOF - 74 - Co . AdecreaseindipolemomentofH 2 adsorbedatthemetalsiteisobservedwiththepartialoccupationofthebenzenesites . However , thecompleteoccupationofthebenzenesitesinducesanadditional ~ - 10 cm -1 red shift. DOE Grant No. DE-FG02-08ER46491.

  7. H2CO in the Horsehead nebula

    NASA Astrophysics Data System (ADS)

    Guzman, Viviana

    2011-07-01

    Photodissociation region (PDR) models are used to understand the evolution of the far-UV illuminated matter both in our Galaxy and in external galaxies. The spectacular instrumental improvements, which happens in radioastronomy with the advent of Herschel, ALMA and NOEMA, call for matching progresses in PDR modeling. While it is now confirmed that some interstellar species are mostly formed in the gas phase (CO for instance) and others on grains (CH3OH, Garrod et al. 2007), the chemical routes for other species, like H2CO, are still debated because it is likely that solid and gas phase processes are both needed. The availability of well defined observations is essential here to discriminate between chemical assumptions about the important grain surface processes: adsorption, desorption and reactivity. Due to its closeness (~400 pc) and simple geometry, the Horsehead PDR is particularly well suited to investigate the grain surface chemistry. We present observations of 7 transitions of formaldehyde (H2CO) toward two positions: the edge of the nebula exposed to the UV-field (PDR), and a colder region (cold core) shielded from the UV radiation. A non-LTE Montecarlo radiative transfer code is used to determine the H2CO abundance from the observed intensities and line profiles. We find that the H2CO abundance is very similar in the warm PDR and in the cold dense core. The inferred abundances are compared with PDR models, including both gas-phase and grain surface reactions, in order to study the dominant formation routes of H2CO. Pure gas-phase chemistry models fail to reproduce the observed H2CO abundance by a factor ~10 in the PDR, while surface grain chemistry increases the H2CO abundance up to 3 orders of magnitude in the PDR.

  8. Rovibrational states of the H2O-H2 complex: An ab initio calculation

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad; Nesbitt, David J.

    2011-01-01

    All bound rovibrational levels of the H2O-H2 dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H2O and H2 as well as to inversion symmetry. Dimers containing oH2 are more strongly bound than dimers with pH2, as expected, with dissociation energies D_0 of 33.57, 36.63, 53.60, and 59.04 cm^{-1}for pH2O-pH2, oH2O-pH2, pH2O-oH2, and oH2O-oH2, respectively, on the potential of Valiron et al. that corresponds to a binding energy D_e of 235.14 cm^{-1}. Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.

  9. Rovibrational states of the H2O-H2 complex: an ab initio calculation.

    PubMed

    van der Avoird, Ad; Nesbitt, David J

    2011-01-28

    All bound rovibrational levels of the H(2)O-H(2) dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H(2)O and H(2) as well as to inversion symmetry. Dimers containing oH(2) are more strongly bound than dimers with pH(2), as expected, with dissociation energies D(0) of 33.57, 36.63, 53.60, and 59.04 cm(-1)for pH(2)O-pH(2), oH(2)O-pH(2), pH(2)O-oH(2), and oH(2)O-oH(2), respectively, on the potential of Valiron et al. that corresponds to a binding energy D(e) of 235.14 cm(-1). Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.

  10. Interstellar H2 toward HD 147888

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.

    2013-01-01

    The ultraviolet and far-ultraviolet spectra of HD 147888 allows the H2 vibrational level ν = 0 to be accessed along with higher vibrational levels of the ground H2 electronic level. The large number of H2 absorption lines in the HST spectra allows column densities to be determined even from a noisy spectra. We have determined column densities of the H2 molecule on vibrational levels ν = 0-5 and rotational levels J = 0-6 using the profile fitting method. No variations in the column densities of H2 on vibrationally excited levels were observed from 2000 through 2009. The ortho to para H2 ratio (O/P)* for the excited vibrational states ν = 1-4 equals to 1.13. For the lowest vibrational state ν = 0 and rotational level J = 1 the ortho to para H2 ratio is only 0.15. The temperature of ortho-para thermodynamical equilibrium is TOP = 42 ± 3 K. The measurements of H2 column densities on excited vibrational levels (from the HST spectra) leads to constraints on the radiation field in photon-dominated region (PDR) models of the interstellar cloud towards HD 147888. The Meudon PDR model locates the cloud 0.62 pc from the star. The modeled hydrogen cloud density (89-336 cm-3) agrees with independent density estimations based on the C2 molecule and the chemical model. The observed (O/P)J = 1 and (O/P)* H2 ratios cannot be explained by a simple model. Based on observations made with the NASA/ESA Hubble Space Telescope and with NASA/Johns Hopkins University Far Ultraviolet Spectroscopic Explorer, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Support for FUSE data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

  11. Gas-Phase Photochemical Overall H2 S Splitting by UV Light Irradiation.

    PubMed

    Baldovi, Herme G; Albero, Josep; Ferrer, Belen; Mateo, Diego; Alvaro, Mercedes; García, Hermenegildo

    2017-04-11

    Splitting of hydrogen sulfide is achieved to produce value-added chemicals. Upon irradiation at 254 nm in the gas phase and in the absence of catalysts or photocatalysts at near room temperature, H2 S splits into stoichiometric amounts of H2 and S with a quantum efficiency close to 50 %. No influence of the presence of CH4 and CO2 (typical components in natural gas and biogas in which H2 S is an unwanted component) on the efficiency of overall H2 S splitting was observed. A mechanism for the H2 and S formation is proposed.

  12. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis

    NASA Astrophysics Data System (ADS)

    Okumura, Tomoyo; Kawagucci, Shinsuke; Saito, Yayoi; Matsui, Yohei; Takai, Ken; Imachi, Hiroyuki

    2016-12-01

    Hydrogen and carbon isotope systematics of H2O-H2-CO2-CH4 in hydrogenotrophic methanogenesis and their relation to H2 availability were investigated. Two H2-syntrophic cocultures of fermentatively hydrogenogenic bacteria and hydrogenotrophic methanogens under conditions of <102 Pa-H2 and two pure cultures of hydrogenotrophic methanogens under conditions of 105 Pa-H2 were tested. Carbon isotope fractionation between CH4 and CO2 during hydrogenotrophic methanogenesis was correlated with pH2, as indicated in previous studies. The hydrogen isotope ratio of CH4 produced during rapid growth of the thermophilic methanogen Methanothermococcus okinawensis under high pH2 conditions ( 105 Pa) was affected by the isotopic composition of H2, as concluded in a previous study of Methanothermobacter thermautotrophicus. This " {δ D}_{{H}_2} effect" is a possible cause of the diversity of previously reported values for hydrogen isotope fractionation between CH4 and H2O examined in H2-enriched culture experiments. Hydrogen isotope fractionation between CH4 and H2O, defined by (1000 + {δ D}_{{CH}_4} )/(1000 + {δ D}_{{H}_2O} ), during hydrogenotrophic methanogenesis of the H2-syntrophic cocultures was in the range 0.67-0.69. The hydrogen isotope fractionation of our H2-syntrophic dataset overlaps with those obtained not only from low- pH2 experiments reported so far but also from natural samples of "young" methane reservoirs (0.66-0.74). Conversely, such hydrogen isotope fractionation is not consistent with that of "aged" methane in geological samples (≥0.79), which has been regarded as methane produced via hydrogenotrophic methanogenesis from the carbon isotope fractionation. As a possible process inducing the inconsistency in hydrogen isotope signatures between experiments and geological samples, we hypothesize that the hydrogen isotope signature of CH4 imprinted at the time of methanogenesis, as in the experiments and natural young methane, may be altered by diagenetic hydrogen

  13. H_2CO in the Horsehead nebula

    NASA Astrophysics Data System (ADS)

    Guzman, V.; Pety, J.; Goicoechea, J. R.; Gerin, M.; Roueff, E.

    2011-05-01

    Photodissociation region (PDR) models are used to understand the evolution of the far-UV illuminated matter both in our Galaxy and in external galaxies. The spectacular instrumental improvements, which happens in radioastronomy with the advent of Herschel, ALMA and NOEMA, call for matching progresses in PDR modeling. While it is now confirmed that some interstellar species are mostly formed in the gas phase (CO for instance) and others on grains (CH_3OH), the chemical routes for other species, like H_2CO, are still debated because it is likely that solid and gas phase processes are both needed. The availability of well defined observations is essential here to discriminate between chemical assumptions about the important grain surface processes: adsorption, desorption and reactivity. Due to its closeness (~400 pc) and simple geometry, the Horsehead PDR is particularly well suited to investigate the grain surface chemistry. We present observations of 7 transitions of formaldehyde (H_2CO) toward two positions: the edge of the nebula exposed to the UV-field (PDR), and a colder region (cold core) shielded from the UV radiation. A non-LTE Montecarlo radiative transfer code is used to determine the H2CO abundance from the observed intensities and line profiles. We find that the H_2CO abundance is very similar in the warm PDR and in the cold dense core. The inferred abundances are compared with PDR models, including both gas-phase and grain surface reactions, in order to study the dominant formation routes of H_2CO. Pure gas-phase chemistry models fail to reproduce the observed H2CO abundance by a factor ~10 in the PDR, while surface grain chemistry successfully reproduces the observed abundance.

  14. Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Alperin, Marc J.; Bebout, Brad M.; Martens, Christopher S.; Des Marais, David J.

    2002-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of each of these processes to H2 can be described collectively, through the quantitative language of thermodynamics. A necessary prerequisite is to understand the factors that, in turn, control H2 partial pressures. These factors are assessed for two distinctly different ecosystems. In anoxic sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja California (Mexico), H2 partial pressures are controlled by the activity of light-sensitive H2-producing organisms, and consequently fluctuate over orders of magnitude on a daily basis. The differences in H2 cycling can subsequently impact any of the H2-sensitive microbial processes in these systems. In one example, methanogenesis in Cape Lookout Bight sediments is completely suppressed through the efficient consumption of H2 by sulfate-reducing bacteria; in contrast, elevated levels of H2 prevail in the producer-controlled phototrophic system, and methanogenesis occurs readily in the presence of 40 mM sulfate.

  15. Possible sources of H2 to H2O enrichment at evaporation of parent chondritic material

    NASA Technical Reports Server (NTRS)

    Makalkin, A. B.; Dorofeyeva, V. A.; Vityazev, A. V.

    1993-01-01

    One of the results obtained from thermodynamic simulation of recondensation of the source chondritic material is that at 1500-1800 K it's possible to form iron-rich olivine by reaction between enstatite, metallic iron and water vapor in the case of (H2O)/(H2) approximately equal to 0.1. This could be reached if the gas depletion in hydrogen is 200-300 times relative to solar abundance. To get this range of depletion one needs some source material more rich in hydrogen than the carbonaceous CI material which is the richest in volatiles among chondrites. In the case of recondensation at impact heating and evaporation of colliding planetesimals composed of CI material, we obtain insufficiently high value of (H2)/(H2O) ratio. In the present paper we consider some possible source materials and physical conditions necessary to reach gas composition with (H2)/(H2O) approximately 10 at high temperature.

  16. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  17. Near Infrared Spectra of H2O/HCN Mixtures

    NASA Technical Reports Server (NTRS)

    Mastrapa, R. M.; Bernstein, M. P.; Sanford, S. A.

    2006-01-01

    Cassini's VIMS has already returned exciting results interpreting spectra of Saturn's icy satellites. The discovery of unidentified features possibly due to CN compounds inspired the work reported here. We wanted to test HCN as a possibility for explaining these features, and also explore how the features of HCN change when mixed with H2O. We have previously noted that mixing H20 and CO2 produces new spectral features and that those features change with temperature and mixing ratio.

  18. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  19. CO-Dependent H2 Production by Genetically Engineered Thermococcus onnurineus NA1

    PubMed Central

    Kim, Min-Sik; Bae, Seung Seob; Kim, Yun Jae; Kim, Tae Wan; Lim, Jae Kyu; Lee, Seong Hyuk; Choi, Ae Ran; Jeon, Jeong Ho; Lee, Jung-Hyun

    2013-01-01

    Hydrogenogenic CO oxidation (CO + H2O → CO2 + H2) has the potential for H2 production as a clean renewable fuel. Thermococcus onnurineus NA1, which grows on CO and produces H2, has a unique gene cluster encoding the carbon monoxide dehydrogenase (CODH) and the hydrogenase. The gene cluster was identified as essential for carboxydotrophic hydrogenogenic metabolism by gene disruption and transcriptional analysis. To develop a strain producing high levels of H2, the gene cluster was placed under the control of a strong promoter. The resulting mutant, MC01, showed 30-fold-higher transcription of the mRNA encoding CODH, hydrogenase, and Na+/H+ antiporter and a 1.8-fold-higher specific activity for CO-dependent H2 production than did the wild-type strain. The H2 production potential of the MC01 mutant in a bioreactor culture was 3.8-fold higher than that of the wild-type strain. The H2 production rate of the engineered strain was severalfold higher than those of any other CO-dependent H2-producing prokaryotes studied to date. The engineered strain also possessed high activity for the bioconversion of industrial waste gases created as a by-product during steel production. This work represents the first demonstration of H2 production from steel mill waste gas using a carboxydotrophic hydrogenogenic microbe. PMID:23335765

  20. Search for H2COH+ and H2(13)CO in dense interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; McGonagle, D.

    1993-01-01

    We have searched for the 2 mm transitions of H2COH+ (2(02) - 1(01)) and H2(13)CO (2(02) - 1(01), 2(12) - 1(11), and 2(11) - 1(10)) toward the dense interstellar molecular clouds Orion A, TMC-1 and L134N using the FCRAO 14m telescope. None of the transitions have been detected except the H2(13)CO transitions toward Orion-KL. We set upper limits for the abundances of the protonated formaldehyde ion (H2COH+), which are close to the abundances expected from ion-molecule chemistry.

  1. 42 CFR 52h.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS SCIENTIFIC PEER REVIEW OF RESEARCH GRANT APPLICATIONS AND RESEARCH AND DEVELOPMENT CONTRACT PROJECTS § 52h.2 Definitions. As used in this... request for proposals. (g) Development means the systematic use of knowledge gained from research...

  2. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  3. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.; Howard, Jeanie; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The adsorptive equilibration of H2O a with montomorillonite, a smectite clay has been measured. At low temperatures and pressures, equilibration can require many hours, effectively preventing smectites at the martian surface from responding rapidly to diurnal pressure and temperature variations.

  4. EPA H2O Software Tool

    EPA Science Inventory

    EPA H2O allows user to: Understand the significance of EGS in Tampa Bay watershed; visually analyze spatial distribution of the EGS in Tampa Bay watershed; obtain map and summary statistics of EGS values in Tampa Bay watershed; analyze and compare potential impacts of development...

  5. EPA H2O User Manual

    EPA Science Inventory

    EPA H2O is a software tool designed to support research being conducted in the Tampa Bay watershed to provide information, data, and approaches and guidance that communities can use to examine alternatives when making strategic decisions to support a prosperous and environmentall...

  6. Hot hydrogen atom reactions moderated by H2 and He.

    PubMed

    Aronowitz, S; Scattergood, T; Flores, J; Chang, S

    1986-01-01

    Photolysis experiments were performed on the H2-CD4-NH3 and the He-CD4-NH3 systems. The photolysis (1849 angstoms) involved only NH3. Mixtures of H2:CD4:NH3 included all combinations of the ratios (200,400,800):(10,20,40):4. Two He:CD4:NH3 mixtures were examined where the ratios equalled the combinations 100:(10,20):4. Abstraction of a D from CD4 by the photolytically produced hot hydrogen from ammonia was monitored by mass spectrometric determination of HD. Both experiment and semiempirical hot-atom theory show that H2 is a very poor thermalizer of hot hydrogens with excess kinetic energy of about 2 eV. Applications of the hard-sphere collision model to the H2-CD4-NH3 system results in predicted ratios of net HD production to NH3 decomposition that were two orders of magnitude smaller than the experimental ratios. On the other hand, helium is found to be a very efficient thermalizer; here, the classical model yields reasonable agreement with experiments. Application of a semiempirical hot-atom program gave quantitative agreement with experiment for either system.

  7. Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces.

    PubMed

    Bibbal, Delphine; Loukiadis, Estelle; Kérourédan, Monique; Peytavin de Garam, Carine; Ferré, Franck; Cartier, Philippe; Gay, Emilie; Oswald, Eric; Auvray, Frédéric; Brugère, Hubert

    2014-02-01

    Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.

  8. 20 CFR 655.132 - H-2A labor contractor (H-2ALC) filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Application for Temporary Employment Certification the following: (1) The name and location of each fixed-site... employment in which the fixed-site employer(s) to whom an H-2ALC is furnishing employees will be utilizing... dates when the H-2ALC will be providing the workers to each fixed site, and a description of the...

  9. High pressure-temperature Raman spectroscopy of H2-H2O clathrate.

    NASA Astrophysics Data System (ADS)

    Somayazulu, Maddury; Levedahl, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Hemley, Russell

    2007-03-01

    The melting curve of the C2 clathrate H2-H2O has been determined by in-situ Raman spectroscopy measurements in an externally heated diamond anvil cell. We have determined the melting curve to a maximum pressure of 27 GPa. These are the first measurements on the melting line in this clathrate. Depending on the stoichiometry of the starting mixture of H2 and H2O, we are able to study either a mixture of C2 and H2O or C2 and H2. In either case, we were able to pinpoint the melting of the clathrate from the measurements of the molecular stretching mode (vibron) in the clathrate. In the case of C2 + Ice VII, we observe the vibron in the clathrate at a frequency higher than in pure H2 at the same pressure. We have cross-calibrated the melting temperatures using the Stokes-anti Stokes ratio of the diamond first order and Raman active TO phonon of cubic Boron Nitride. We find that the clathrate melts well above the H2 melting at all pressures studied indicating that the stabilization of this clathrate at high pressures is indeed due to interactions between the host and guest molecules.

  10. Formation of low-temperature cirrus from H2SO4/H2O aerosol droplets.

    PubMed

    Bogdan, A; Molina, M J; Sassen, K; Kulmala, M

    2006-11-23

    We present experimental results obtained with a differential scanning calorimeter (DSC) that indicate the small ice particles in low-temperature cirrus clouds are not completely solid but rather coated with an unfrozen H2SO4/H2O overlayer. Our results provide a new look on the formation, development, and microphysical properties of low-temperature cirrus clouds.

  11. The Successive H2O Binding Energies for Fe(H2O)n(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The binding energy, computed using density functional theory (DFT), are in good agreement with experiment. The bonding is electrostatic (charge-dipole) in origin for all systems. The structures are therefore determined mostly by metal-ligand and ligand-ligand repulsion. The computed structure for FeH2O(+) is C(2v) where sp hybridization is important in reducing the Fe-H2O repulsion. Fe(H2O)2(+) has D2d symmetry where sdo hybridization is the primary factor leading to the linear O-Fe-O geometry. The bonding in Fe(H2O)3(+) and Fe(H2O)4(+) are very complex because ligand-ligand and metal-ligand repulsion, both for the in-plane and out-of-plane water lone-pair orbitals, are important.

  12. Comparative Ecology of H2 Cycling in Organotrophic and Phototrophic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Bebout, Brad M.; Martens, Christopher S.; DesMarais, David J.; DeVincenzi, Don (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of these many processes to H2 can be described quantitatively, at a basic thermodynamic level. This shared dependence on H2 may provide a means for interpreting the ecology and system-level biogeochemistry of widely variant microbial ecosystems on a common (and quantitative) level. Understanding the factors that control H2 itself is a critical prerequisite. Here, we examine two ecosystems that vary widely with respect to H2 cycling. In anoxic, 'organotrophic' sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja, Mexico, H2 partial pressures are instead controlled by the activity of light-sensitive H2-producing organisms. In consequence, H2 partial pressures within the system fluctuate by orders of magnitude on hour-long time scales. The differences in H2 cycling subsequently impact H2-sensitive microbial processes, such as methanogenesis. For example, the presence of sulfate in the organotrophic system always yielded low levels of H2 that were inhibitory to methanogenesis; however, the elevated levels of H2 in the phototrophic system favored methane production at significant levels, even in the presence of high sulfate concentrations. The myriad of other H2-sensitive microbial processes are expected to exhibit similar behavior.

  13. Test summary for advanced H2 cycle NI-CD cell

    NASA Technical Reports Server (NTRS)

    Miller, Lee

    1987-01-01

    To improve operational tolerances and mass, the H2 gas recombination design provisions of the Ni-H2 system were incorporated into the sealed Ni-Cd system. Produced is a cell design capable of operating on the H2 cycle versus the normal O2 cycle. Three test cells have now completed approximately 4,330 LEO (90 minute) cycles at 20 percent depth of discharge (DOD). Performance remains stable although one cell exhibited a temporary pressure anomaly.

  14. Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci

    PubMed Central

    Ooi, Xi Jia

    2016-01-01

    Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora. PMID:26801579

  15. Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci.

    PubMed

    Ooi, Xi Jia; Tan, Kai Soo

    2016-01-22

    Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora.

  16. H2S during circulatory shock: Some unresolved questions

    PubMed Central

    McCook, Oscar; Radermacher, Peter; Volani, Chiara; Asfar, Pierre; Ignatius, Anita; Kemmler, Julia; Möller, Peter; Szabó, Csaba; Whiteman, Matthew; Wood, Mark E.; Wang, Rui; Georgieff, Michael; Wachter, Ulrich

    2014-01-01

    Numerous papers have been published on the role of H2S during circulatory shock. Consequently, knowledge about vascular sulfide concentrations may assume major importance, in particular in the context of “acute on chronic disease”, i.e., during circulatory shock in animals with pre-existing chronic disease. This review addresses the questions i) of the “real” sulfide levels during circulatory shock, and, ii) to which extent injury and pre-existing co-morbidity may affect the expression of H2S producing enzymes under these conditions. In the literature there is a huge range on sulfide blood levels during circulatory shock, in part as a result of the different analytical methods used, but also due to the variable of the models and species studied. Clearly, some of the very high levels reported should be questioned in the context of the well-known H2S toxicity. As long as “real” sulfide levels during circulatory shock are unknown and/or undetectable “on line” due to the lack of appropriate techniques, it appears to be premature to correlate the measured blood levels of hydrogen sulfide with the severity of shock or the H2S therapy-related biological outcomes. The available data on the tissue expression of the H2S-releasing enzymes during circulatory shock suggest that a “constitutive” CSE expression may play a crucial role of for the maintenance of organ function, at least in the kidney. The data also indicate that increased CBS and CSE expression, in particular in the lung and the liver, represents an adaptive response to stress states. PMID:24650697

  17. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community.

    PubMed

    Hamilton, Joshua J; Calixto Contreras, Montserrat; Reed, Jennifer L

    2015-07-01

    Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei.

  18. Photodissociation dynamics of weakly bound He H2 + in intense light fields

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Yamanouchi, Kaoru

    2016-12-01

    Photoinduced dynamics of a weakly bound triatomic molecule He H2 + exposed to electromagnetic radiation is investigated by time-dependent quantum wave-packet propagation. Adopting a two-dimensional linear H-H-He model, the three lowest-lying potential energy surfaces (PESs) and corresponding dipole moment surfaces are constructed. One of the two characteristic excited PESs of He H2 + leads to the charge-transfer reaction H2 ++He → H2+H e+ and the other corresponds to the first excited state of H2 + perturbed by the presence of He. When He H2 + is exposed to a femtosecond intense ultraviolet light pulse (I =4 ×1014W c m-2 , λ =400 nm ), both of the two excited PESs are found to be coupled with the light field and a variety of reaction pathways become opened so that HeH, He H+ , H2, H2 +,H , H+ , He, and H e+ are produced. Simulations also show that the anharmonic coupling between the two stretching vibrational modes in He H2 + leads to the stabilization of the H2 + moiety against the decomposition into H + H+ compared with bare H2 +. The theoretical findings of the formation of He H+ composed of the most abundant elements in the universe are also discussed in view of the theoretical modeling of the chemical reactions proceeding in the primordial gas and in the interstellar medium.

  19. The EUV spectrum of H2O by electron impact

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1984-01-01

    The vacuum ultraviolet (VUV) spectrum of H2O produced by electron impact at 200 eV is presented. A total of 25 spectral features are identified at a resolution of 0.5 nm over the wavelength range from 40 to 280 nm. Absolute emission cross-sections were obtained for each of the features. The differences of the features are all attributed to the various excited states of the dissociation products, H, O and O(+). The Lyman-alpha feature is the brightest for electron-induced fluorescence of H2O from the UV to the near-IR, and had a cross-section of 6.3 (+ or - 1.0 x 10 to the -18th) sq cm at 200 eV. The Lyman-alpha feature contributed 74 percent of the total measured emission cross-section in the EUV.

  20. Observations of cumulene carbenes, H2CCCC and H2CCC, in TMC-1

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Kentarou; Kaifu, Norio; Ohishi, Masatoshi; Ishikawa, Shin-Ichi; Hirahara, Yasuhiro; Yamamoto, Satoshi; Saito, Shuji; Takano, Shuro; Murakami, Akinori; Vrtilek, J. M.

    1991-01-01

    Attention is given to the carbon chain molecule H2CCCC, detected in the dark cloud TMC-1 for the first time in the course of a molecular line survey using the Nobeyama 45-m telescope. From nine transitions observed in the frequency region of 17-45 GHz, the total column density of H2CCCC in TMC-1 is derived to be 7.5(+/-2.0) x 10 exp 12/sq cm, which is about half of the value reported in IRC + 10216. Five transitions of a related carbon chain molecule, H2CCC, were also detected in TMC-1. The column density of H2CCC obtained in TMC-1, 2.8(+/-0.9) x 10 exp 12/sq cm, is a factor of three smaller than that of H2CCCC. The ortho-to-para abundance ratios of H2CCCC and H2CCC were found to be 4.2 +/-1.5 and 5.9 +/-2.0, respectively. The chemical reactions of these carbon-chain molecules in dark clouds are discussed.

  1. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform

    PubMed Central

    Placek, Brandon J.; Harrison, L. Nicole; Villers, Brooke M.; Gloss, Lisa M.

    2005-01-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol−1 and 15.5 kcal mol−1, respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant. PMID:15632282

  2. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  3. A novel source of atmospheric H2: abiotic degradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H. L.

    2012-07-01

    Molecular hydrogen (H2) plays an important role in atmospheric chemistry by competing for reactions with the hydroxyl radical (·OH) and contributing to the production of H2O in the stratosphere, indirectly influencing stratospheric ozone concentrations. The dominant pathway for loss of H2 from the atmosphere is via microbially-mediated soil uptake although the magnitude of this loss is still regarded as highly uncertain. Recent studies have shown that abiotic processes such as photochemically mediated degradation (photodegradation) of organic material result in direct emissions of carbon (C) and nitrogen (N)-based trace gases as well as H2. This H2 production has important implications on source-sink dynamics of H2 at the soil-atmosphere interface and thus it is important to quantify its variability over a range of plant types and materials. Here, we show quantitative observations of H2 production and its temperature dependence during abiotic degradation of four plant litter types as well as pure cellulose and high lignin content woody material. A greater amount of H2 was produced in the absence of solar radiation than from photodegradation alone, verifying that low temperature thermal degradation of plant litter is a source of H2. In addition, we measured a significant release of H2 in the absence of O2 in addition to H2 release in the presence of O2. Our results suggest that abiotic release of H2 during organic matter is ubiquitous in terrestrial ecosystems. We propose that because these processes occur at the soil-atmosphere interface, they provide a previously unaccounted for proximal source of H2 for microbial uptake and confound interpretation of direct measurements of atmospheric uptake that are important for constraining the global H2 budget.

  4. Rovibrational transitions of H2 by collision with H+ at high temperature

    NASA Astrophysics Data System (ADS)

    González-Lezana, T.; Honvault, P.

    2017-01-01

    The H+ +H2 reaction is studied by means of both exact and statistical quantum methods. Integral cross sections for processes initiated with rotationally excited H2(v, j = 1) to produce molecular hydrogen in its rotational ground state are reported up to a value of the collision energy of 3 eV. Rate constants for state-to-state transitions between different H2 rovibrational states are calculated up to 3000 K. Special emphasis is made on ortho/para conversion processes in which the parity j of the H2(j) states changes.

  5. Theoretical study of the rovibrational spectrum of H2O-H2

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2011-01-01

    In this paper we report transition frequencies and line strengths computed for H_2O-H_2 and compare with the experimental observations of [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 110, 156 (1999)]. To compute the spectra we use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. Our results corroborate the assignments of Weida and Nesbitt and there is good agreement between calculated and observed transitions. Possible candidates for lines that Weida and Nesbitt were not able to assign are presented. Several other bands that may be observable are also discovered. Although all the observed bands are associated with states localized near the global potential minimum, at which H_2O acts as proton acceptor, a state with significant amplitude near the T-shape secondary potential minimum at which H_2O acts as proton donor is identified by examining many different probability density plots.

  6. H2 Production and Fuel Cells

    SciTech Connect

    Wang, Xianqin; Rodriguez, Jose A.

    2007-01-01

    The world demand for energy and the need for protecting our environment can be achieved by increasing energy efficiency and by developing “clean” energy sources. Among the alternative fuels, hydrogen is receiving a lot of attention around the world. In this chapter, recent applications of oxide nanostructures in H2 production and fuel cell technology are summarized. We cover in detail catalytic studies for hydrogen production via the water gas shift reaction over ceria-based nanosystems. These studies illustrate the importance of understanding the fundamental conditions necessary for optimal operation of the catalysts.

  7. A New Parameterization of H2SO4/H2O Aerosol Composition: Atmospheric Implications

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Toon, Owen B.; Clegg, Simon L.; Hamill, Patrick

    1997-01-01

    Recent results from a thermodynamic model of aqueous sulfuric acid are used to derive a new parameterization for the variation of sulfuric acid aerosol composition with temperature and relative humidity. This formulation is valid for relative humidities above 1 % in the temperature range of 185 to 260 K. An expression for calculating the vapor pressure of supercooled liquid water, consistent with the sulfuric acid model, is also presented. We show that the Steele and Hamill [1981] formulation underestimates the water partial pressure over aqueous H2SOI solutions by up to 12% at low temperatures. This difference results in a corresponding underestimate of the H2SO4 concentration in the aerosol by about 6 % of the weight percent at approximately 190 K. In addition, the relation commonly used for estimating the vapor pressure of H2O over supercooled liquid water differs by up to 10 % from our derived expression. The combined error can result in a 20 % underestimation of water activity over a H2SO4 solution droplet in the stratosphere, which has implications for the parameterization of heterogeneous reaction rates in stratospheric sulfuric acid aerosols. The influence of aerosol composition on the rate of homogeneous ice nucleation from a H2SO4 solution droplet is also discussed. This parameterization can also be used for homogeneous gas phase nucleation calculations of H2SO4 solution droplets under various environmental conditions such as in aircraft exhaust or in volcanic plumes.

  8. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  9. The Cl + H2 --> HCl + H reaction induced by IR + UV irradiation of Cl2 in solid para-H2: experiment.

    PubMed

    Kettwich, Sharon C; Raston, Paul L; Anderson, David T

    2009-07-02

    We report IR + UV coirradiation photolysis experiments conducted on Cl(2)-doped para-hydrogen (p-H(2)) crystals at 1.8 K, using pulsed 355 nm UV radiation and cw broad-band near-IR light from a FTIR tungsten source. The amount of HCl photoproduct is monitored using FTIR spectroscopy as a function of the IR + UV exposure time. Detailed analysis of the HCl growth kinetics reveals that the reaction Cl + H(2)(v=1,J=0) --> HCl + H is playing a significant (15%) role in the in situ photochemistry. In contrast, UV-only photolysis experiments conducted under similar conditions produce almost exclusively (99%) isolated Cl atom photofragments, indicating the reaction Cl + H(2)(v=0,J=0) --> HCl + H is not readily occurring. This combination of photolysis experiments confirms that under these conditions, the Cl + H(2) reaction probability increases by a factor greater than 25 for Cl atom reactions with H(2)(v=1) versus H(2)(v=0). These results are therefore consistent with the expectation that vibrational excitation of the H(2) reagent lowers the reaction threshold and increases the reaction cross section for the Cl + H(2) reaction. These experimental studies were motivated by and are compared to the quantum model simulations reported by Korolkov, Manz, and Schild in the accompanying paper.

  10. Elucidating acetogenic H2 consumption in dark fermentation using flux balance analysis.

    PubMed

    Lalman, Jerald A; Chaganti, Subba Rao; Moon, Chungman; Kim, Dong-Hoon

    2013-10-01

    In this study, a flux balance analysis (FBA) was adopted to estimate the activity of acetogenic H2-consuming reaction. Experimental data at different substrate concentrations of 10, 20, and 30 g COD/L showing the lowest, medium, and highest H2 yields, respectively, were used in the FBA to calculate the fluxes. It was interesting to note that the hydrogenase activity based on R12 (2Fd(+)+2H(+)→2Fd(2+)+H2, ferredoxin (Fd)) flux was most active at 10 g COD/L. The flux of R17 (4H2+2CO2→CH3COOH), a mechanism for reutilizing produced H2, increased in steps of 0.030, 0.119, and 0.467 as the substrate concentration decreased. Contradictory to our general understanding, acetate production found to have a negligible or even negative effect on the final H2 yield in dark fermentation.

  11. Thermodynamics of formate-oxidizing metabolism and implications for H2 production.

    PubMed

    Lim, Jae Kyu; Bae, Seung Seob; Kim, Tae Wan; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2012-10-01

    Formate-dependent proton reduction to H(2) (HCOO(-) + H(2)O → HCO(3)(-) + H(2)) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H(2) accumulation to a partial pressure of 1 × 10(5) to 7 × 10(5) Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (-1 to -3 kJ mol(-1)). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as -5 kJ mol(-1), which are less than the biological minimum energy quantum, -20 kJ mol(-1), as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H(2) storage material, the H(2) production potential of the strain was assessed. The volumetric H(2) production rate increased linearly with increasing cell density, leading to 2,820 mmol liter(-1) h(-1) at an optical density at 600 nm (OD(600)) of 18.6, and resulted in the high specific H(2) production rates of 404 ± 6 mmol g(-1) h(-1). The H(2) productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H(2)-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems.

  12. Synthesis and Anti-Candida Activity of Cobalt(II) Complexes of Benzene-1,2-Dioxyacetic Acid (bdoaH2). X-Ray Crystal Structures of [Co(bdoa)(H2O)3] ⋅3.5H2O and {[CO(phen)3](bdoa)}2⋅24H2O (phen = 1,10-Phenanthroline)

    PubMed Central

    Geraghty, Majella; McCann, Malachy; Devereux, Michael; Cronin, Fergal; Curran, Martin; McKee, Vickie

    1999-01-01

    Co(CH3CO2)2⋅4H2O reacts with benzene-1,2-dioxyacetic acid (bdoaH2) to give the Co2+ complexes [Co(bdoa)(H2O)3]⋅H2O (1a) and [Co(bdoa)(H2O)3] ⋅3.5H2O (1b). Subsequent reaction of 1a with 1,10- phenanthroline produces [CO(phen)3] bdoa⋅10H2O (2a) and {[CO(phen)3](bdoa)}2⋅24H2O (2b). Molecular structures of 1b and 2b were determined crystallographically. In 1b the bdoa2-- ligates the metal by two carboxylate oxygens and two ethereal oxygens, whereas in 2b the bdoa2- is uncoordinated. The Mn2+ and Cu2+ complexes [Mn(bdoa)(phen)2]⋅H2O (3) and [Cu(pdoa)(imid)2] (4) were also synthesised, 1a-4 and other metal complexes of bdoa H2 (metal = Mn2+, Co2+ ,Cu2+, Cu+ ) were screened for their ability to inhibit the growth ofhe yeast Candida albicans. Complexes incorporating the 1,10-phenanthroline ligand were the most active. PMID:18475879

  13. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines

    NASA Astrophysics Data System (ADS)

    Berndt, T.; Sipilä, M.; Stratmann, F.; Petäjä, T.; Vanhanen, J.; Mikkilä, J.; Patokoski, J.; Taipale, R.; Mauldin, R. Lee, III; Kulmala, M.

    2013-06-01

    Atmospheric H2SO4/H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research - Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a~possible background amine concentration in the order of 107-108 molecule cm-3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene) for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of a series of organic oxidation products arising from the parent olefins. These products (first generation mainly) showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm-3. A comparison of the results of two different particle counters (50% cut-off size: about 1.5 nm or 2.5-3 nm) suggested that the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products. An additional, H2SO4-independent process of particle (nano-CN) formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~10 7 molecule cm-3. Furthermore, the findings confirm the existence of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediate (sCI). In the case of the ozonolysis of tetramethylethylene, the H2SO4 measurements in the absence and presence of an OH radical scavenger were well described by modelling using recently obtained kinetic data for the sCI reactivity in this system. A second set of experiments has been performed in the presence of added amines (trimethylamine, dimethylamine, aniline and pyridine) in the concentration range

  14. Overview hazard analysis for the H2Fuel Bus Program

    SciTech Connect

    Hovis, G.L.

    1996-06-18

    The H2Fuel Bus project is a joint development effort to produce a safe, near-zero emission, 32 passenger bus that is propelled by electric power with continuous on-board hydrogen powered battery recharging. A key initiative in the hydrogen bus development effort is a rigorous evaluation of operational safety. Westinghouse Savannah River Co., the prime contractor at the Department of Energy`s Savannah River Site, has developed a hazard analysis methodology designed to provide a systematic, comprehensive identification and evaluation of hazards. Although originally developed to support nuclear/chemical facility safety basis documentation, the SRS Methodology has widespread applicability to operations and/or systems that utilize hazardous materials and energy. This methodology was used to perform an overview hazard analysis for the H2Fuel Bus project to focus attention on those hypothetical circumstances that pose the greatest threat to the populace and property. The hazard analysis yields a listing of all known H2Fuel Bus hazards, postulated accident scenarios describing possible hazardous releases or conditions, an assessment of the scenarios in terms of frequency of occurrence and consequence, and binning in frequency-consequence space to assess the relative severity of postulated scenarios.

  15. Infrared absorption of H_2_O toward massive young stars.

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Helmich, F. P.

    1996-11-01

    We present ISO-SWS observations of absorption lines of gas-phase water within its bending vibrational mode at 6μm toward four massive young stars, which cover a range in physical parameters. Hot water with an excitation temperature >200K is detected toward GL 2136 and GL 4176, in addition to GL 2591 discussed by Helmich et al. (1996A&A...315L.173H). The abundance of water with respect to H_2_ is high in these regions, ~(2-3)x10^-5^, and comparable to the solid H_2_O abundance. In contrast, no gas-phase water absorption lines are seen toward NGC 7538 IRS9. The amount of gas-phase water is correlated with the column density of warm gas along the line of sight. Infrared observations of a larger variety of sources may provide insight into the relative importance of evaporation of grain mantles vs. high temperature gas-phase chemistry in producing the observed high abundance of H_2_O.

  16. H2-blocker modulates heart rate variability.

    PubMed

    Ooie, T; Saikawa, T; Hara, M; Ono, H; Seike, M; Sakata, T

    1999-01-01

    The use of H2-blockers in the treatment of patients with peptic ulcer has become popular. However, this treatment has adverse cardiovascular effects. The aim of this study was to investigate proarrhythmic rhythm and autonomic nervous activity by analyzing heart rate variability in patients treated with omeprazole, ranitidine, and plaunotol. Nineteen patients (mean age 67.5 +/- 2.7 years) with active gastric ulcer were treated with omeprazole (20 mg/day) for 8 weeks, then ranitidine (300 mg/day) for the next 4 months, and finally plaunotol (240 mg/day). At each stage of the treatment, Holter electrocardiography was performed, and heart rate variability and arrhythmias analyzed. Heart rate variability yielded power in the low- (0.04-0.15 Hz) and high-frequency components (0.15-0.4 Hz). Although both ranitidine and omeprazole induced little change in cardiac rhythm, the high-frequency power was higher (10.3 +/- 0.8 vs 8.6 +/- 0.6 ms, P < 0.05) and the ratio of low-to-high frequency power was lower (1.41 +/-0.10 vs 1.59 +/- 0.09. P < 0.05) during ranitidine than during plaunotol treatment. Cosinor analysis of heart rate variability revealed a decreased amplitude of low-frequency power during omeprazole compared with during ranitidine and plaunotol treatment. Ranitidine modulated high-frequency power which may be related to the adverse cardiovascular effects of H2-blocker.

  17. The contribution of the Precambrian continental lithosphere to global H2 production

    NASA Astrophysics Data System (ADS)

    Lollar, Barbara Sherwood; Onstott, T. C.; Lacrampe-Couloume, G.; Ballentine, C. J.

    2014-12-01

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 1011 moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 1011 moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 1011 moles per year is comparable to estimates from marine systems.

  18. The contribution of the Precambrian continental lithosphere to global H2 production.

    PubMed

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  19. A novel source of atmospheric H2: abiotic degradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H. L.

    2012-11-01

    Molecular hydrogen (H2) plays an important role in atmospheric chemistry by competing for reactions with the hydroxyl radical (OH·) and contributing to the production of H2O in the stratosphere, indirectly influencing stratospheric ozone concentrations. The dominant pathway for loss of H2 from the atmosphere is via microbially-mediated soil uptake, although the magnitude of this loss is still regarded as highly uncertain. Recent studies have shown that abiotic processes such as photochemically mediated degradation (photodegradation) of organic material result in direct emissions of carbon (C) and nitrogen (N)-based trace gases as well as H2. This H2 production has important implications on source-sink dynamics of H2 at the soil-atmosphere interface and thus it is important to quantify its variability over a range of plant types and materials. Here, we show laboratory observations of H2 production and its temperature dependence during abiotic degradation of four plant litter types as well as pure cellulose and high lignin content woody material. A greater amount of H2 was produced in the absence of solar radiation than from photodegradation alone, verifying that low temperature thermal degradation of plant litter is a source of H2. In addition, we measured a significant release of H2 both in the presence and absence of O2. Our results suggest that abiotic release of H2 during organic matter degradation is ubiquitous in arid ecosystems and may also occur in other terrestrial ecosystems. We propose that because these processes occur at the soil-atmosphere interface, they provide a previously unrecognized proximal source of H2 for microbial uptake and confound interpretation of direct measurements of atmospheric uptake that are important for constraining the global H2 budget.

  20. Kinetics of HO2 + HO2 -> H2O2 + O2: Implications for Stratospheric H2O2

    NASA Astrophysics Data System (ADS)

    Christensen, L. E.; Okumura, M.; Sander, S. P.; Salawitch, R. J.; Toon, G. C.; Sen, B.; Blavier, J.-F.; Jucks, K. W.

    2002-05-01

    The reaction HO2 + HO2 -> H2O2 + O2(1) has been studied at 100 Torr and 222 K to 295 K. Experiments employing photolysis of Cl2/CH3OH/O2/N2 and F2/H2/O2/N2 gas mixtures to produce HO2 confirmed that methanol enhanced the observed reaction rate. At 100 Torr, zero methanol, k1 = (8.8 +/- 0.9) 10-13 × exp[(210 +/- 26)/T] cm3 molecule-1 s-1 (2σ uncertainties), which agrees with current recommendations at 295 K but is nearly 2 times slower at 231 K. The general expression for k1, which includes the dependence on bath gas density, is k1 = (1.5 +/- 0.2) × 10-12 × exp[(19 +/- 31)/T] + 1.7 × 10-33 × [M] × exp[1000/T], where the second term is taken from the JPL00-3 recommendation. The revised rate largely accounts for a discrepancy between modeled and measured [H2O2] in the lower to middle stratosphere.

  1. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn; Krol, Maarten; Visschedijk, Antoon; Röckmann, Thomas

    2014-05-01

    Traditionally fuelled road traffic is a major source of greenhouse gases and pollutants. Greenhouse gases (e.g. CO2 and CH4) affect the global atmosphere and contribute to global warming. The pollutants emitted by vehicles (e.g. CO, NOx, SO2, particulate matter, volatile organic compounds) are toxic for man and environment and decrease air quality especially in highly populated areas. Burning H2 produces only water, thus H2-powered vehicles are seen as a possibility to reduce greenhouse gas emissions and improve air quality; because of this, H2 usage as a fuel is foreseen to significantly increase in the future. Large scale usage of H2 as a fuel has the potential to affect the atmospheric composition in different ways. On one hand, emissions associated to fossil fuel burning will decrease. On the other hand, large quantities of H2 used will likely lead to increased H2 emissions from leakages during production, transport and storage. Additional H2 in the atmosphere will affect the chemistry of many species, in principal by decreasing the availability of OH radicals, with the result of increasing the lifetime of greenhouse gases and pollutants. Thus the net effect of H2 vehicles on the atmospheric composition depends on the relative strength of these two contrary effects. In order to evaluate the potential influence of a future H2 road transportation on local and regional air quality, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the future (2020) using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that in general the air quality in 2020 will be significantly better than at present in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict

  2. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  3. CO/H2 in Translucent Clouds

    NASA Technical Reports Server (NTRS)

    Green, James

    2005-01-01

    A thorough examination of techniques to improve the resolution of the FUSE spectrograph was undertaken. These involved co-adding time tagged data very carefully so as to remove any blurs caused by drift. In addition, data was binned by detector pulse height bin (to eliminate any positional vs. gain variations, e.g. "walk"). These techniques only resulted in an extremely modest increase in the spectral resolution, insufficient to allow the CO/H2 studies to be performed. The only remaining potential source of blur was defocus - implying the instrument was never properly focused on orbit. Private discussions with B.G. Anderson of the FUSE team resulted in my learning that this was in fact the case - the slidgrating distance was never optimized on orbit - resulting in a degradation of the peak performance of the instrument. Unfortunately, this was never publicized, even to myself, a member of the instrument tem and the spectrograph designer.

  4. Attosecond photoelectron microscopy of H2+

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Schneider, B. I.

    2009-08-01

    We present a numerical study of the ultrafast ionization dynamics of H2+ exposed to attosecond extreme ultraviolet (xuv) pulses that goes beyond the Born-Openheimer approximation. The four-dimensional, time-dependent Schrödinger equation was solved using a generalization of the finite-element discrete-variable-representation/real-space-product technique used in our previous calculations to include the dynamical motion of the nuclei. This has enabled us to expose the target to any polarized light at arbitrary angles with respect to the molecular axis. Calculations have been performed at different angles and photon energies ( ℏω=50eV up to 630 eV) to investigate the energy and orientation dependence of the photoionization probability. A strong orientation dependence of the photoionization probability of H2+ was found at a photon energy of ℏω=50eV . At this energy, we found that the ionization probability is three times larger in the perpendicular polarization than in the parallel case. These observations are explained by the different geometric “cross sections” seen by the photoejected electron as it leaves the molecule. This ionization anisotropy vanishes at the higher-photon energy of ℏω≥170eV . When these higher-energy xuv pulses are polarized perpendicular to the internuclear axis, a “double-slit-like” interference pattern is observed. However, we find that the diffraction angle only approaches the classical formula ϕn=sin-1(nλe/R0) , where n is the diffraction order, λe is the released electron wavelength, and R0 is the internuclear distance, when nλe becomes less than 65% of R0 . These results illustrate the possibility of employing attosecond pulses to perform photoelectron microscopy of molecules.

  5. Millimeter Wave Spectra of the Internal Rotation Excited States of (o)H_2-H_2O and (o)H_2-D_2O

    NASA Astrophysics Data System (ADS)

    Harada, K.; Iwasaki, Y.; Giesen, T.; Tanaka, K.

    2013-06-01

    H_2-H_2O is a weakly bound complex and it has a various states according to the internal rotation for both H_2 and H_2O moieties. In our previous study, we have reported the pure rotational transitions of the (o)H_2 complex in the ground H_2O rotational state, 0_{00}(Σ), for both H_2-H_2O and H_2-D_2O, where (o)H_2 (j_{ H2} =1) is rotating perpendicular to the intermolecular axis to give the projection of j_{ H2} to the axis k_{ H2} to be zero (i.e. Σ state). In the present study, we have observed the rotational transitions for the 0_{00} (Π) states in the millimeter-wave region up to 220 GHz, where the (o)H_2 is rotating around the intermolecular axis to give the projection k_{ H2} to be one (i.e. Π state). The center of mass bond lengths derived from the observed rotational constants for 0_{00} (Π) are longer by 5 % than those for 0_{00} (Σ), while force constants for the intermolecular stretching for 0_{00} (Π) derived from centrifugal distortion constants are smaller by 23 % than those for 0_{00} (Σ), suggesting the Π and Σ substates have quite different structures. The recent theoretical calculation indicates that for 0_{00}(Σ), (o)H_2 is bound to the oxygen site of H_2O, while for the 0_{00} (Π) state, (o)H_2 to the hydrogen site of H_2O, and the 0_{00}(Σ) state is by 14 cm^{-1} more stable than the 0_{00} (Π) state. Observed molecular constants for 0_{00}(Σ) and (Π) are consistent with the structures given by the theoretical calculation. We also observed the rotational spectrum in the 1_{01} (Σ) and (Π) states, where Σ and Π correspond to the rotation of H_2O perpendicular and parallel to the intermolecular axis and (o)H_2 is calculated to be bound to the oxygen site of H_2O. The energy difference between the 1_{01} (Σ) and (Π) states will be discussed due to the Criolis interaction between these substates. C. J. Whitham, K. Tanaka, and K. Harada, The 56th OSU Symposium, RD08 (2001). Ad. van der Avoid and D. J. Nesbit, J. Chem. Phys

  6. Low energy electron collisions in H2S and H2Se

    NASA Astrophysics Data System (ADS)

    Abouaf, Robert; Teillet-Billy, Dominique

    2008-11-01

    Dissociative electron attachment between 0 and 4 eV has been investigated in hydrogen sulfide and hydrogen selenide with an improved electron resolution (0.040 eV). HS- and HSe- cross-sections versus electron energy present vertical onsets revealing that the potential surfaces of the resonances which are reached around 2 eV are bound. A well-developed and intriguing structure is observed in HS-, S-, HSe- and Se- cross-sections. It could reveal interferences due to an attractive resonance having a lifetime of the order of one vibrational period. The strong similarity between the anion behaviour in H2S and H2Se is in contrast with H2O where no dissociative attachment process occurs in this energy range.

  7. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  8. Force-Induced H2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement.

    PubMed

    Liu, F; Wen, F; He, D; Liu, D; Yang, R; Wang, X; Yan, Y; Liu, Y; Kou, X; Zhou, Y

    2017-02-01

    Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.

  9. Enhanced antinociceptive effects of morphine in histamine H2 receptor gene knockout mice.

    PubMed

    Mobarakeh, Jalal Izadi; Takahashi, Kazuhiro; Sakurada, Shinobu; Kuramasu, Atsuo; Yanai, Kazuhiko

    2006-09-01

    We have previously shown that antinociceptive effects of morphine are enhanced in histamine H1 receptor gene knockout mice. In the present study, involvement of supraspinal histamine H2 receptor in antinociception by morphine was examined using histamine H2 receptor gene knockout (H2KO) mice and histamine H2 receptor antagonists. Antinociception was evaluated by assays for thermal (hot-plate, tail-flick and paw-withdrawal tests), mechanical (tail-pressure test) and chemical (formalin and capsaicin tests) stimuli. Thresholds for pain perception in H2KO mice were higher than wild-type mice. Antinociceptive effects of intracerebroventricularly administered morphine were enhanced in the H2KO mice compared to wild-type mice. Intracerebroventricular co-administration of morphine and cimetidine produced significant antinociceptive effects in the wild-type mice when compared to morphine or cimetidine alone. Furthermore, zolantidine, a selective and hydrophobic H2 receptor antagonist, enhanced the effects of morphine in all nociceptive assays examined. These results suggest that histamine exerts inhibitory effects on morphine-induced antinociception through H2 receptors at the supraspinal level. Our present and previous studies suggest that H1 and H2 receptors cooperatively function to modulate pain perception in the central nervous system.

  10. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  11. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S)

    PubMed Central

    Sitdikova, Guzel F.; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M.; Hermann, Anton

    2014-01-01

    Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S. PMID:25429270

  12. Luttinger parameter of quasi-one-dimensional para -H2

    NASA Astrophysics Data System (ADS)

    Ferré, G.; Gordillo, M. C.; Boronat, J.

    2017-02-01

    We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.

  13. H2CO in the Horsehead PDR: photo-desorption of dust grain ice mantles

    NASA Astrophysics Data System (ADS)

    Guzmán, V.; Pety, J.; Goicoechea, J. R.; Gerin, M.; Roueff, E.

    2011-10-01

    Aims: For the first time we investigate the role of the grain surface chemistry in the Horsehead photo-dissociation region (PDR). Methods: We performed deep observations of several H2CO rotational lines toward the PDR and its associated dense-core in the Horsehead nebula, where the dust is cold (Tdust ≃ 20-30 K). We complemented these observations with a map of the p - H2CO 303 - 202 line at 218.2 GHz (with 12'' angular resolution). We determine the H2CO abundances using a detailed radiative transfer analysis and compare these results with PDR models that include either pure gas-phase chemistry or both gas-phase and grain surface chemistry. Results: The H2CO abundances (≃2-3 × 10-10) with respect to H-nuclei are similar in the PDR and dense-core. In the dense-core the pure gas-phase chemistry model reproduces the observed H2CO abundance. Thus, surface processes do not contribute significantly to the gas-phase H2CO abundance in the core. In contrast, the formation of H2CO on the surface of dust grains and subsequent photo-desorption into the gas-phase are needed in the PDR to explain the observed gas-phase H2CO abundance, because the gas-phase chemistry alone does not produce enough H2CO. The assignments of different formation routes are strengthen by the different measured ortho-to-para ratio of H2CO: the dense-core displays the equilibrium value (~3) while the PDR displays an out-of-equilibrium value (~2). Conclusions: Photo-desorption of H2CO ices is an efficient mechanism to release a significant amount of gas-phase H2CO into the Horsehead PDR.

  14. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.

    PubMed

    Maier, R J; Merberg, D M

    1982-04-01

    The synthesis of an H2 oxidation system in free-living Rhizobium japonicum wild-type strain SR is repressed by oxygen. Maximal H2 uptake rates were obtained in strain SR after derepression in 11 microM or less dissolved oxygen. Oxygen levels above 45 microM completely repressed H2 uptake in strain SR. Five R. japonicum mutant strains that are hypersensitive to repression or H2 oxidation by oxygen were derived from strain SR. The mutants were obtained by screening H2 uptake-negative mutants that retained the ability to oxidize H2 as bacteroids from soybean nodules. As bacteroids, the five mutant strains were capable of H2 oxidation rates comparable to that of the wild type. The mutants did not take up H2 when derepressed in 22 microM dissolved oxygen, whereas strain SR had substantial activity at this oxygen concentration. The O2 repression of H2 uptake in both the wild-type and two mutant strains, SR174 and SR200, was rapid and was similar to the effect of inhibiting synthesis of H2 uptake system components with rifampin. None of the mutant strains was able to oxidize H2 when the artificial electron acceptors methylene blue or phenazine methosulfate were provided. The mutant strains were not sensitive to killing by oxygen, they took up O2 at rates similar to strain SR, and they did not produce an H2 uptake system that was oxygen labile. Cyclic AMP levels were comparable in strain SR and the five mutant strains after subjection of the cultures to the derepression conditions.

  15. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.

    PubMed Central

    Maier, R J; Merberg, D M

    1982-01-01

    The synthesis of an H2 oxidation system in free-living Rhizobium japonicum wild-type strain SR is repressed by oxygen. Maximal H2 uptake rates were obtained in strain SR after derepression in 11 microM or less dissolved oxygen. Oxygen levels above 45 microM completely repressed H2 uptake in strain SR. Five R. japonicum mutant strains that are hypersensitive to repression or H2 oxidation by oxygen were derived from strain SR. The mutants were obtained by screening H2 uptake-negative mutants that retained the ability to oxidize H2 as bacteroids from soybean nodules. As bacteroids, the five mutant strains were capable of H2 oxidation rates comparable to that of the wild type. The mutants did not take up H2 when derepressed in 22 microM dissolved oxygen, whereas strain SR had substantial activity at this oxygen concentration. The O2 repression of H2 uptake in both the wild-type and two mutant strains, SR174 and SR200, was rapid and was similar to the effect of inhibiting synthesis of H2 uptake system components with rifampin. None of the mutant strains was able to oxidize H2 when the artificial electron acceptors methylene blue or phenazine methosulfate were provided. The mutant strains were not sensitive to killing by oxygen, they took up O2 at rates similar to strain SR, and they did not produce an H2 uptake system that was oxygen labile. Cyclic AMP levels were comparable in strain SR and the five mutant strains after subjection of the cultures to the derepression conditions. PMID:6277861

  16. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China

    PubMed Central

    Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread. PMID:27552230

  17. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China.

    PubMed

    Wu, Fuli; Xu, Xuebin; Xie, Jing; Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread.

  18. Phase transition and optoelectronic properties of MgH2

    NASA Astrophysics Data System (ADS)

    Nayak, Vikas; Verma, U. P.

    2016-05-01

    In this article, structural and electronic properties of MgH2 have been studied. The aim behind this study was to find out the ground state crystal structure of MgH2. For the purpose, density functional theory (DFT)-based full-potential linearized augmented plane wave (FP-LAPW) calculations have been performed in three different space groups: P42/mnm (α-MgH2), Pa3 (β-MgH2) and Pbcn (γ-MgH2). It has been found that the ground state structure of MgH2 is α-MgH2. The present study shows that α-MgH2 transforms into γ-MgH2 at a pressure of 0.41 GPa. After further increase in pressure, γ-MgH2 transforms into β-MgH2 at a pressure of 3.67 GPa. The obtained results are in good agreement with previously reported experimental data. In all the studied phases, the behavior of MgH2 is insulating and its optical conductivity is around 6.0 eV. The α-MgH2 and γ-MgH2 are anisotropic materials while β-MgH2 is isotropic in nature.

  19. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  20. H2O2 space shuttle APU

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  1. H2 arcjet performance mapping program

    NASA Astrophysics Data System (ADS)

    1992-01-01

    Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.

  2. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors.

    PubMed Central

    Smit, M J; Leurs, R; Alewijnse, A E; Blauw, J; Van Nieuw Amerongen, G P; Van De Vrede, Y; Roovers, E; Timmerman, H

    1996-01-01

    Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use. Images Fig. 3 PMID:8692899

  3. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure.

  4. Desulfovibrio vulgaris Growth Coupled to Formate-Driven H2 Production.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Pereira, Inês A C

    2015-12-15

    Formate is recognized as a superior substrate for biological H2 production by several bacteria. However, the growth of a single organism coupled to this energetic pathway has not been shown in mesophilic conditions. In the present study, a bioreactor with gas sparging was used, where we observed for the first time that H2 production from formate can be coupled with growth of the model sulfate-reducing bacterium Desulfovibrio vulgaris in the absence of sulfate or a syntrophic partner. In these conditions, D. vulgaris had a maximum growth rate of 0.078 h(-1) and a doubling time of 9 h, and the ΔG of the reaction ranged between -21 and -18 kJ mol(-1). This is the first report of a single mesophilic organism that can grow while catalyzing the oxidation of formate to H2 and bicarbonate. Furthermore, high volumetric and specific H2 production rates (125 mL L(-1) h(-1) and 2500 mL gdcw(-1) h(-1)) were achieved in a new bioreactor designed and optimized for H2 production. This high H2 production demonstrates that the nonconventional H2-producing organism D. vulgaris is a good biocatalyst for converting formate to H2.

  5. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method.

    PubMed

    Jeong, Jinki; Kim, Min-Seuk; Kim, Byung-Su; Kim, Soo-Kyung; Kim, Won-Baek; Lee, Jae-Chun

    2005-09-30

    A diffusion dialysis method using anion exchange membrane was used to recover H2SO4 from waste sulfuric acid solution produced at the diamond manufacturing process. Effects of flow rate, operation temperature, and metal ion concentration on the recovery of H2SO4 were investigated. The recovery of H2SO4 increased with the concentration of H2SO4 and operation temperature. It also increased with the flow rate ratio of water/H2SO4 solution up to 1, above which no further increase was observed. The flow rate did not affect the rejection of Fe and Ni ions. About 80% of H2SO4 could be recovered from waste sulfuric acid which contained 4.5M free-H2SO4 at the flow rate of 0.26x10(-3) m3/hm3. The concentration of recovered H2SO4 was 4.3M and the total impurity was 2000 ppm. Preliminary economic evaluation has revealed that the dialysis system is highly attractive one that has payback period of only few months.

  6. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    NASA Technical Reports Server (NTRS)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  7. An accurate H2-H2 interaction potential from first principles

    NASA Astrophysics Data System (ADS)

    Diep, Phong; Johnson, J. Karl

    2000-03-01

    We have calculated the potential energy surface extrapolated to the complete basis set limit using coupled-cluster theory with singles, doubles, and perturbational triples excitations [CCSD(T)] for the rigid monomer model of (H2)2. There is significant anisotropy among the 37 unique angular configurations selected to represent the surface. A four term spherical harmonics expansion model was chosen to fit the surface. The calculated potential energy surface reproduces the quadrupole moment to within 0.58% and the experimental well depth to within 1%. The second virial coefficient has been computed from the fitted potential energy surface. The usual semiclassical treatment of quantum mechanical effects on the second virial coefficient was applied in the temperature range of 100-500 K. We have developed a new technique for computing the quantum second virial coefficient by combining Feynman's path integral formalism and Monte Carlo integration. The calculated virial coefficient compares very well with published experimental measurements. Integral elastic cross sections were calculated for the scattering of para-H2/para-H2 by use of the close-coupling method. The interaction potential model from this work is able to reproduce the experimental cross sections in the relative kinetic velocity range of 900-2300 m/s.

  8. Glyoxal photodissociation. An ab initio direct classical trajectory study of C2H2O2→H2+2 CO

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Millam, John M.; Schlegel, H. Bernhard

    2001-05-01

    Unimolecular dissociation of glyoxal via a three-body fragmentation channel has been studied by direct classical trajectory calculations using Hartree-Fock (HF) and hybrid density functional methods (BH&HLYP, B3LYP) with split valence and polarized basis sets [HF/3-21G, BH&HLYP/6-311G(d,p) and B3LYP/6-311G(d,p)]. The transition state for C2H2O2→H2+2 CO has a dihedral angle of 90-110° between the carbonyl groups and a calculated barrier of ˜59 kcal/mol above the trans conformer. To simulate the experimental conditions, trajectories were started from a microcanonical ensemble at the transition state with 4, 8, and 16 kcal/mol excess energy distributed among the vibrational modes and the transition vector. In agreement with experiment, the CO rotational distribution is very broad with a high . However, the calculations yielded more CO vibrational excitation for the triple dissociation channel than observed for all channels combined. Hydrogen is produced with low J but significant vibrational excitation, in accord with experiment. Similar to trajectory studies on H2CO→H2+CO, there is a good correlation between the energy released along the part of the reaction path where most of the H2 bond length change occurs and the average vibrational excitation of the H2 products.

  9. Heterogeneous degradation of precipitated hexamine from wastewater by catalytic function of silicotungstic acid in the presence of H2O2 and H2O2/Fe2+.

    PubMed

    Taghdiri, Mehdi; Saadatjou, Naghi; Zamani, Navid; Farrokhi, Reyhaneh

    2013-02-15

    The industrial wastewater produced by hexamine plants is considered as a major environmental polluting factor due to resistance to biodegradation. So the treatment of such wastewater is required. In this work, the removal of hexamine from wastewater and its degradation have been studied. Hexamine was precipitated through formation of an insoluble and stable compound with silicotungstic acid. The oxidative heterogeneous degradation of precipitated hexamine was carried out with hydrogen peroxide (H(2)O(2)) aqueous solution and H(2)O(2)/Fe(2+) under the catalysis of silicotungstic acid. The operating conditions including amount of precipitate, hydrogen peroxide and ferrous ion dosage, temperature, time and pH were optimized by evaluating the removal of total organic carbon from system. A total organic carbon conversion higher than 70% was achieved in the presence of H(2)O(2)/Fe(2+). The experimental results showed that hexamine can be effectively degraded with H(2)O(2) and H(2)O(2)/Fe(2+) under the catalysis of silicotungstic acid. It was interesting that the solution of dissolved precipitate with H(2)O(2) can re-react with hexamine after the removal of excess hydrogen peroxide. This observation indicates the catalysis role of silicotungstic acid in the degradation of hexamine. A kinetic analysis based on total organic carbon reduction was carried out. The two steps mechanism was proposed for the degradation of hexamine.

  10. Fluorescent Probes for H2S Detection and Quantification.

    PubMed

    Feng, Wei; Dymock, Brian W

    2015-01-01

    Many diverse, sensitive and structurally novel fluorescent probes have recently been reported for H2S detection. Quantification of H2S requires a selective chemosensor which will react only with H2S against a background of high concentrations of other thiols or reducing agents. Most published probes are able to quantify H2S selectively in a simple in vitro system with the most sensitive probes able to detect H2S at below 100 nM concentrations. A subset of probes also have utility in sensing H2S in living cells, and there are now several with specific sub-cellular localization and a few cases of in vivo applications. Biologists studying H2S now have a wide range of tools to assist them to aid further understanding of the role of H2S in biology.

  11. Mass spectrometric approach for characterizing the disordered tail regions of the histone H2A/H2B dimer.

    PubMed

    Saikusa, Kazumi; Nagadoi, Aritaka; Hara, Kana; Fuchigami, Sotaro; Kurumizaka, Hitoshi; Nishimura, Yoshifumi; Akashi, Satoko

    2015-02-17

    The histone H2A/H2B dimer is a component of nucleosome core particles (NCPs). The structure of the dimer at the atomic level has not yet been revealed. A possible reason for this is that the dimer has three intrinsically disordered tail regions: the N- and C-termini of H2A and the N-terminus of H2B. To investigate the role of the tail regions of the H2A/H2B dimer structure, we characterized behaviors of the H2A/H2B mutant dimers, in which these functionally important disordered regions were depleted, using mass spectrometry (MS). After verifying that the acetylation of Lys residues in the tail regions had little effect on the gas-phase conformations of the wild-type dimer, we prepared two histone H2A/H2B dimer mutants: an H2A/H2B dimer depleted of both N-termini (dN-H2A/dN-H2B) and a dimer with the N- and C-termini of H2A and the N-terminus of H2B depleted (dNC-H2A/dN-H2B). We analyzed these mutants using ion mobility-mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS). With IM-MS, reduced structural diversity was observed for each of the tail-truncated H2A/H2B mutants. In addition, global HDX-MS proved that the dimer mutant dNC-H2A/dN-H2B was susceptible to deuteration, suggesting that its structure in solution was somewhat loosened. A partial relaxation of the mutant's structure was demonstrated also by IM-MS. In this study, we characterized the relationship between the tail lengths and the conformations of the H2A/H2B dimer in solution and gas phases, and demonstrated, using mass spectrometry, that disordered tail regions play an important role in stabilizing the conformation of the core region of the dimer in both phases.

  12. Electronic states and potential energy surfaces of H2Te, H2Po, and their positive ions

    NASA Astrophysics Data System (ADS)

    Sumathi, K.; Balasubramanian, K.

    1990-06-01

    Geometries, bond energies, ionization potentials, dipole moments, other one-electron properties, and potential energy surfaces of six valence electronic states of H2Te and H2Po species are obtained using the relativistic complete active space multiconfiguration self-consistent field (CASSCF) followed by full second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) calculations including spin-orbit coupling. In addition, Rydberg states of H2Te and H2Se are studied to interpret the experimental spectra. The potential energy surfaces of two electronic states of H2Te+ and H2Po+ are obtained. The ground states of both H2Te and H2Po are found to be of X 1A1(A1) symmetry with bent (C2v) equilibrium geometries of H2Te:re =1.668 Å, θe=91.2°; and H2Po:re =1.835 Å and θe=90.9°. The ground states of H2Te+ and H2Po+ are X 2B1 with H2Te+:re =1.676 Å, θe=90.7° and H2Po+:re =1.828 Å and θe=88°. The De (HTe-H) and De (HPo-H) including spin-orbit effects are calculated as 63.2 and 39.4 kcal/mol, respectively. The X 2B1(E)-A 2A1(E) energy separations of H2Te+ and H2Po+ ions are calculated as 66.6 and 76 kcal/mol, respectively. The adiabatic IPs of H2Te and H2Po are calculated as 8.47 and 7.79 eV, respectively. In addition CASSCF/SOCI/RCI calculations are also carried out on the X 2Π3/2 and 2Π1/2 states of TeH and PoH diatomics. The X 2Π3/2-2Π1/2 energy separations of TeH and PoH are computed as 3710 and 9920 cm-1, respectively. Spin-orbit effects are thus found to be very significant for PoH and H2Po. All excited states of H2Te and H2Po are above 3.7 and 3.1 eV, respectively. Properties and energy separations of H2Te and H2Po are compared with the lighter group (VI) H2Ch species.

  13. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Dey, Sunita

    2016-10-01

    Generation of H2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln1-xAxMn1-yMyO3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 μmol/g of O2 at 1673 K and produces 757 μmol/g of CO from CO2 at 1173 K. The production of H2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly.

  14. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation

    PubMed Central

    Pazienza, Valerio; Borghesan, Michela; Mazza, Tommaso; Sheedfar, Fareeba; Panebianco, Concetta; Williams, Roger; Mazzoccoli, Gianluigi; Andriulli, Angelo; Nakanishi, Tomoko; Vinciguerra, Manlio

    2014-01-01

    Non-alcoholic-fatty-liver-disease (NAFLD) encompasses conditions associated to fat deposition in the liver, which are generally deteriorated during the aging process. MacroH2A1, a variant of histone H2A, is a key transcriptional regulator involved in tumorigenic processes and cell senescence, and featuring two alternatively splicing isoforms, macroH2A1.1 and macroH2A1.2. MacroH2A1.1 binds with high affinity O-acetyl ADP ribose, a small metabolite produced by the reaction catalysed by NAD+-dependent deacetylase SIRT1, whereas macroH2A1.2 is unable to do so. The functional significance of this binding is unknown. We previously reported that the hepatic levels of macroH2A1.1 and macroH2A1.2 are differentially expressed in mice models of NAFLD. Here we show that over-expression of macroH2A1.1, but not of macroH2A1.2, is able to protect hepatocytes against lipid accumulation. MacroH2A1.1 over-expressing cells display ameliorated glucose metabolism, reduced expression of lipidogenic genes and fatty acids content. SIRT1/macroH2A1.1-dependent epigenetic regulation of lipid metabolism may be relevant to NAFLD development. PMID:24473773

  15. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break.

    PubMed

    Lee, Cheng-Sheng; Lee, Kihoon; Legube, Gaëlle; Haber, James E

    2014-01-01

    In budding yeast, a single double-strand break (DSB) triggers extensive Tel1 (ATM)- and Mec1 (ATR)-dependent phosphorylation of histone H2A around the DSB, to form γ-H2AX. We describe Mec1- and Tel1-dependent phosphorylation of histone H2B at T129. γ-H2B formation is impaired by γ-H2AX and its binding partner Rad9. High-density microarray analyses show similar γ-H2AX and γ-H2B distributions, but γ-H2B is absent near telomeres. Both γ-H2AX and γ-H2B are strongly diminished over highly transcribed regions. When transcription of GAL7, GAL10 and GAL1 genes is turned off, γ-H2AX is restored within 5 min, in a Mec1-dependent manner; after reinduction of these genes, γ-H2AX is rapidly lost. Moreover, when a DSB is induced near CEN2, γ-H2AX spreads to all other pericentromeric regions, again depending on Mec1. Our data provide new insights in the function and establishment of phosphorylation events occurring on chromatin after DSB induction.

  16. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets)

    PubMed Central

    Oze, C.; Mousis, O.; Waite, J.H.; Guilbert-Lepoutre, A.

    2015-01-01

    Abstract Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds. Key Words: Serpentinization—Fischer-Tropsch-type synthesis—Hydrogen formation—Methane formation—Ultramafic rocks. Astrobiology 15, 587–600. PMID:26154779

  17. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets).

    PubMed

    Holm, N G; Oze, C; Mousis, O; Waite, J H; Guilbert-Lepoutre, A

    2015-07-01

    Serpentinization involves the hydrolysis and transformation of primary ferromagnesian minerals such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3) to produce H2-rich fluids and a variety of secondary minerals over a wide range of environmental conditions. The continual and elevated production of H2 is capable of reducing carbon, thus initiating an inorganic pathway to produce organic compounds. The production of H2 and H2-dependent CH4 in serpentinization systems has received significant interdisciplinary interest, especially with regard to the abiotic synthesis of organic compounds and the origins and maintenance of life in Earth's lithosphere and elsewhere in the Universe. Here, serpentinization with an emphasis on the formation of H2 and CH4 are reviewed within the context of the mineralogy, temperature/pressure, and fluid/gas chemistry present in planetary environments. Whether deep in Earth's interior or in Kuiper Belt Objects in space, serpentinization is a feasible process to invoke as a means of producing astrobiologically indispensable H2 capable of reducing carbon to organic compounds.

  18. Histone H2A (H2A.X and H2A.Z) Variants in Molluscs: Molecular Characterization and Potential Implications For Chromatin Dynamics

    PubMed Central

    González-Romero, Rodrigo; Rivera-Casas, Ciro; Frehlick, Lindsay J.; Méndez, Josefina; Ausió, Juan; Eirín-López, José M.

    2012-01-01

    Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs. PMID:22253857

  19. H2-rich fluids from serpentinization: geochemical and biotic implications.

    PubMed

    Sleep, N H; Meibom, A; Fridriksson, Th; Coleman, R G; Bird, D K

    2004-08-31

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life.

  20. Organelle-Targeted H2S Probes Enable Visualization of the Subcellular Distribution of H2S Donors.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2016-06-07

    Hydrogen sulfide (H2S) is an essential biological signaling molecule in diverse biological regulatory pathways. To provide new chemical tools for H2S imaging, we report here a fluorescent H2S detection platform (HSN2-BG) that is compatible with subcellular localization SNAP-tag fusion protein methodologies and use appropriate fusion protein constructs to demonstrate mitochondrial and lysosomal localization. We also demonstrate the efficacy of this detection platform to image endogenous H2S in Chinese hamster ovary (CHO) cells and use the developed constructs to report on the subcellular H2S distributions provided by common H2S donor molecules AP39, ADT-OH, GYY4137, and diallyltrisulfide (DATS). The developed constructs provide a platform poised to provide new insights into the subcellular distribution of common H2S donors and a useful tool for investigating H2S biochemistry.

  1. Updated H2SO4-H2O binary homogeneous nucleation look-up tables

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2008-12-01

    The calculated rates of H2SO4-H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently, we have reduced the uncertainties in the BHN rates on the basis of a kinetic quasi-unary nucleation (KQUN) model, by taking into account the measured bonding energetics of H2SO4 monomers with hydrated sulfuric acid dimers and trimers. The uncertainties were further reduced by using two independent measurements to constrain the equilibrium constants for monomer hydration. In this paper, we present updated BHN rate look-up tables derived from the improved KQUN model which can be used by anyone to obtain the BHN rates under given conditions. The look-up tables cover a wide range of key parameters that can be found in the atmosphere and laboratory studies, and their usage significantly reduces the computational costs of the BHN rate calculations, which is critical for multidimensional modeling. The look-up tables can also be used by those involved in experiments and field measurements to quickly assess the likeliness of BHN. For quick application, one can obtain the BHN rates and properties of critical clusters by browsing through the tables. A comparison of results based on the look-up tables with those from widely used classical BHN model indicates that, in addition to several orders of magnitude difference in nucleation rates, there also exists substantial difference in the predicted numbers of sulfuric acid molecules in the critical clusters and their dependence on key parameters.

  2. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    SciTech Connect

    Johnston, Mariann R.

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  3. Full CI calibration of model hamiltonian, large basis set studies of the H 2-H 2 van der Waals interaction.

    NASA Astrophysics Data System (ADS)

    Burton, P. G.

    1983-08-01

    The non-variational CEPA2 PNO ansatz, recently employed in detailed studies of the H 2-H 2 van der Waals interaction by Burton and Senff and the full CI extrapolation studies on the same system by Burton are discussed in relation to the explicit full CI study of Harrison and Handy for the planar T configuration of H 2-H 2 ( R = 6.5 ao) in a basis of 80 functions.

  4. Observations of the H2S toward OMC-1

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; Mcgonagle, D.; Ziurys, L. M.

    1990-01-01

    Observations of the 1(10) - 1(01) transition of interstellar H2S and its isotopes toward OMC-1 are reported. The fractional abundance of H2S in the quiescent regions of OMC-1 seems difficult to explain by currently known ion-molecular reactions. The fractional abundance of H2S relative to H2 is enhanced by a factor of 1000 in the hot core and the plateau relative to the quiescent clouds. The (HDS)/(H2S) abundance ratio in the hot core is estimated at 0.02 or less.

  5. H2S regulation of nitric oxide metabolism

    PubMed Central

    Kolluru, Gopi K.; Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G.

    2015-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives, and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions. PMID:25725527

  6. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

    PubMed

    Kemble, David J; McCullough, Laura L; Whitby, Frank G; Formosa, Tim; Hill, Christopher P

    2015-10-15

    FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

  7. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  8. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  9. HIST1H2AA — EDRN Public Portal

    Cancer.gov

    HIST1H2AA, a member of the histone 2A family, is a core component of the nucleosome. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. The HIST1H2AA gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene contain a palindromic termination element.

  10. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  11. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.

    PubMed

    Sobotta, Mirko C; Liou, Willy; Stöcker, Sarah; Talwar, Deepti; Oehler, Michael; Ruppert, Thomas; Scharf, Annette N D; Dick, Tobias P

    2015-01-01

    Hydrogen peroxide (H(2)O(2)) acts as a signaling messenger by oxidatively modifying distinct cysteinyl thiols in distinct target proteins. However, it remains unclear how redox-regulated proteins, which often have low intrinsic reactivity towards H(2)O(2) (k(app) ∼1-10 M(-1) s(-1)), can be specifically and efficiently oxidized by H(2)O(2). Moreover, cellular thiol peroxidases, which are highly abundant and efficient H(2)O(2) scavengers, should effectively eliminate virtually all of the H(2)O(2) produced in the cell. Here, we show that the thiol peroxidase peroxiredoxin-2 (Prx2), one of the most H(2)O(2)-reactive proteins in the cell (k(app) ∼10(7)-10(8) M(-1) s(-1)), acts as a H(2)O(2) signal receptor and transmitter in transcription factor redox regulation. Prx2 forms a redox relay with the transcription factor STAT3 in which oxidative equivalents flow from Prx2 to STAT3. The redox relay generates disulfide-linked STAT3 oligomers with attenuated transcriptional activity. Cytokine-induced STAT3 signaling is accompanied by Prx2 and STAT3 oxidation and is modulated by Prx2 expression levels.

  12. Tyrosine Kinase Signal Modulation: A Matter of H2O2 Membrane Permeability?

    PubMed Central

    Bertolotti, Milena; Bestetti, Stefano; García-Manteiga, Jose M.; Medraño-Fernandez, Iria; Dal Mas, Andrea; Malosio, Maria Luisa

    2013-01-01

    Abstract H2O2 produced by extracellular NADPH oxidases regulates tyrosine kinase signaling inhibiting phosphatases. How does it cross the membrane to reach its cytosolic targets? Silencing aquaporin-8 (AQP8), but not AQP3 or AQP4, inhibited H2O2 entry into HeLa cells. Re-expression of AQP8 with silencing-resistant vectors rescued H2O2 transport, whereas a C173A-AQP8 mutant failed to do so. Lowering AQP8 levels affected H2O2 entry into the endoplasmic reticulum, but not into mitochondria. AQP8 silencing also inhibited the H2O2 spikes and phosphorylation of downstream proteins induced by epidermal growth factor. These observations lead to the hypothesis that H2O2 does not freely diffuse across the plasma membrane and AQP8 and other H2O2 transporters are potential targets for manipulating key signaling pathways in cancer and degenerative diseases. Antioxid. Redox Signal. 19, 1447–1451. PMID:23541115

  13. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  14. Improved quasi-unary nucleation model for binary H2SO4-H2O homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2007-08-01

    Aerosol nucleation events have been observed at a variety of locations worldwide, and may have significant climatic and health implications. Binary homogeneous nucleation (BHN) of H2SO4 and H2O is the foundation of recently proposed nucleation mechanisms involving additional species such as ammonia, ions, and organic compounds, and it may dominate atmospheric nucleation under certain conditions. We have shown in previous work that H2SO4-H2O BHN can be treated as a quasi-unary nucleation (QUN) process involving H2SO4 in equilibrium with H2O vapor, and we have developed a self-consistent kinetic model for H2SO4-H2O nucleation. Here, the QUN approach is improved, and an analytical expression yielding H2SO4-H2O QUN rates is derived. Two independent measurements related to monomer hydration are used to constrain the equilibrium constants for this process, which reduces a major source of uncertainty. It is also shown that the capillarity approximation may lead to a large error in the calculated Gibbs free energy change for the evaporation of H2SO4 molecules from small H2SO4-H2O clusters, which affects the accuracy of predicted BHN nucleation rates. The improved QUN model—taking into account the recently measured energetics of small clusters—is thermodynamically more robust. Moreover, predicted QUN nucleation rates are in better agreement with available experimental data than rates calculated using classical H2SO4-H2O BHN theory.

  15. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  16. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2002-12-17

    The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.

  17. Detection of absorption by H2 in molecular clouds: A direct measurement of the H2:CO ratio

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Knacke, R.; Geballe, T. R.; Tokunaga, A. T.

    1994-01-01

    Vibrational absorption by H2 and CO has been searched for toward infrared sources embedded in molecular clouds. H2 was detected toward NGC 2024 IRS 2 and possibly toward NGC 2264 (GL 989). CO was detected toward both sources. The results are consistent with the H2 ortho:para ratio being equilibrated at the cloud temperature. Toward NGC 2024, H2:CO = (3700(sub -2600)(sup +3100)) (2 sigma limits), and toward NGC 2264, H2:CO less than 6000. Approximately one-third of all carbon is in gas-phase CO.

  18. Optimization of H2 Production in Ar/NH3 Micro-discharges

    NASA Astrophysics Data System (ADS)

    Arakoni, Ramesh; Bhoj, Ananth N.; Kushner, Mark J.

    2006-10-01

    Hydrogen powered vehicles and portable fuel cells may require real-time generation of H2 to provide fuel safely and with rapid response. One such method is to produce H2 from feedstock gases that can be more safely stored, such as NH3. Microdischarge plasmas are being investigated as a means of H2 production from NH3 and other gases. The high power densities (10s kW/cm^3) that can be obtained in microdischarges provide an intense source of electron impact as well as thermal decomposition of the feedstock gases. By operating at high pressures (> 100s Torr), reformation of the dissociated products leads to efficient production of H2. In this work, results from a computational investigation of production of H2 in high pressure microdischarges sustained in Ar/NH3 mixtures will be discussed. Plug-flow and 2-dimensional plasma hydrodynamics models were used to develop scaling laws to optimize the energy efficiency of the process (e.g., eV/H2 molecule produced). The 2-d model resolves non-equilibrium electron, ion and neutral transport using fluid equations. The microdischarge geometry of interest is a sandwich flow-through reactor with a central hole a few hundred microns in diameter, power of a few W and residence times of a few microseconds.

  19. An EELS study of the oxidation of H 2CO on Ag(110)

    NASA Astrophysics Data System (ADS)

    Stuve, E. M.; Madix, R. J.; Sexton, B. A.

    1982-07-01

    High resolution electron energy loss spectroscopy (EELS) was used to study the oxidation of H 2CO by preadsorbed oxygen atoms on Ag(110). H 2CO reacted with O (a) upon adsorption at 100 K to give a product with intense symmetric and asymmetric OCO stretching modes at 960 and 1100 cm -1, respectively. These frequencies differed from those expected for adsorbed formate. Upon heating H 2CO (g) was evolved at about 225 K. EELS data taken after annealing to 225 K suggested the presence of an η 2-methylenedioxy intermediate (H 2CO 2(a)) which dehydrogenated to give adsorbed, ordered formate (HCOO (a)) and H 2(g) above 225 K. The overall stoichiometry combined with the EELS data strongly suggested a polymeric form of H 2CO at 100 K, probably paraformaldehyde. The decomposition to HCOO (a) was complete at about 250 K leaving only formate intermediates on the surface. The formate produced in this fashion was identical to ordered formate produced upon adsorption of formic acid on oxygen precovered Ag(110).

  20. Thyroid Ca2+/NADPH-dependent H2O2 generation is partially inhibited by propylthiouracil and methimazole.

    PubMed

    Ferreira, Andrea C Freitas; de Carvalho Cardoso, Luciene; Rosenthal, Doris; de Carvalho, Denise Pires

    2003-06-01

    H2O2 generation is a limiting step in thyroid hormone biosynthesis. Biochemical studies have confirmed that H2O2 is generated by a thyroid Ca2+/NADPH-dependent oxidase. Decreased H2O2 availability may be another mechanism of inhibition of thyroperoxidase activity produced by thioureylene compounds, as propylthiouracil (PTU) and methimazole (MMI) are antioxidant agents. Therefore, we analyzed whether PTU or MMI could scavenge H2O2 or inhibit thyroid NADPH oxidase activity in vitro. Our results show that PTU and thiourea did not significantly scavenge H2O2. However, MMI significantly scavenged H2O2 at high concentrations. Only MMI was able to decrease the amount of H2O2 generated by the glucose-glucose oxidase system. On the other hand, both PTU and MMI were able to partially inhibit thyroid NADPH oxidase activity in vitro. As PTU did not scavenge H2O2 under the conditions used here, we presume that this drug may directly inhibit thyroid NADPH oxidase. Also, at the concentration necessary to inhibit NADPH oxidase activity, MMI did not scavenge H2O2, also suggesting a direct effect of MMI on thyroid NADPH oxidase. In conclusion, this study shows that MMI, but not PTU, is able to scavenge H2O2 in the micromolar range and that both PTU and MMI can impair thyroid H2O2 generation in addition to their potent thyroperoxidase inhibitory effects.

  1. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lv; Yi, Long; Song, Fanbo; Wei, Chao; Wang, Bai-Fan; Xi, Zhen

    2014-04-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signalling molecule with multiple biological functions. In order to visualize and quantify the endogenous in situ production of H2S in living cells, here we developed two new sulphide ratiometric probes (SR400 and SR550) based on fluorescence resonance energy transfer (FRET) strategy for live capture of H2S. The FRET-based probes show excellent selectivity toward H2S in a high thiol background under physiological buffer. The probe can be used to in situ visualize cysteine-dependent H2S production in a chiral-sensitive manner in living cells. The ratiometric imaging studies indicated that D-Cys induces more H2S production than that of L-Cys in mitochondria of human embryonic kidney 293 cells (HEK293). The cysteine mimics propargylglycine (PPG) has also been found to inhibit the cysteine-dependent endogenous H2S production in a chiral-sensitive manner in living cells. D-PPG inhibited D-Cys-dependent H2S production more efficiently than L-PPG, while, L-PPG inhibited L-Cys-dependent H2S production more efficiently than D-PPG. Our bioimaging studies support Kimura's discovery of H2S production from D-cysteine in mammalian cells and further highlight the potential of D-cysteine and its derivatives as an alternative strategy for classical H2S-releasing drugs.

  2. Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer

    PubMed Central

    Chang, Ching-Chien; Gao, Shaorong; Sung, Li-Ying; Corry, Gareth N.; Ma, Yinghong; Nagy, Zsolt Peter; Tian, X. Cindy

    2010-01-01

    Abstract Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization. PMID:20132012

  3. Sedimentary Catalysis of Radiolytic H2 Production, and Implications for Subseafloor Life

    NASA Astrophysics Data System (ADS)

    Sauvage, J.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; Bish, D. L.; D'Hondt, S.

    2015-12-01

    Molecular hydrogen (H2) is naturally produced by radiolysis of water in subseafloor sediment due to radiation from decay of sedimentary U, Th, and K. This process has been hypothesized as a significant source of electron donors for the deep biosphere, especially in environments where organic matter is scarce. However, to constrain the importance of radiolytic H2 for subsurface organisms, H2 yields in natural geologic settings must be understood and quantified. Although H2 production from radiolysis of pure water is well established, the effect of natural materials on H2 yield is previously unknown. Published gamma-radiation experiments show enhanced H2 production from water radiolysis in the presence of various synthetic oxides, clay and zeolite minerals, or certain dissolved anions. Except for single studies of synthetic ZrO2 and TiO2, previous alpha-radiation experiments have been limited to purely aqueous phases. To overcome this lack of information, we experimentally quantified H2 yields from gamma and alpha radiolysis of pure water, seawater, and slurries (φ = 0.85) of seawater with representative marine sediment types. The H2 yields of our pure water radiation experiments match well-established literature results for both gamma and alpha radiation (0.25 molecules H2/100eV and 1.53 molecules H2/100eV, respectively). In both our gamma and alpha experiments, H2 yields in seawater are statistically indistinguishable from yields in pure water. In contrast, our experiments with South Pacific abyssal clay increased H2 yields from gamma radiation by 3-5-fold and yields from alpha radiation by up to 6-fold, compared to pure water. These results have significant implications for understanding subseafloor ecosystems. For example, at South Pacific IODP Site U1370, comparison of our experimentally derived hydrogen yields to net oxygen reduction rates shows that radiolytic H2 is the principal electron donor available to microbes at depths greater than a few meters.

  4. 3-Methyl-1,2-BN-Cyclopentane: A Promising H2 Storage Material?

    SciTech Connect

    Luo, Wei; Neiner, Doinita; Karkamkar, Abhijeet J.; Parab, Kshitij; Garner, Edward B.; Dixon, David A.; Matson, Dean W.; Autrey, Thomas; Liu, Shih-Yuan

    2013-01-21

    We provide detailed characterization of properties for 3-methyl-1,2-BN-cyclopentane 1 that are relevant to H2 storage applications such as viscosity, thermal stability, H2 gas stream purity, and polarity. The viscosity of 1 at room temperature is 25±5 cP, about one fourth the viscosity of olive oil. TGA/MS analysis indicates that liquid carrier 1 is thermally stable at 30 °C but decomposes slowly at 50 °C. RGA data suggest that the H2 desorption from 1 is a clean process, producing relatively pure H2 gas. Compound 1 is a polar zwitterionic type liquid consistent with theoretical predictions and solvatochromic studies. "T.A. acknowledges support from the Fuel Cell Technology Program at U.S. DOE, Office of Energy Efficiency 65 and Renewable Energy. Pacific Northwest National Laboratory is operated by Battelle."

  5. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity

    DOE PAGES

    Freakley, Simon J.; He, Qian; Harrhy, Jonathan H.; ...

    2016-02-25

    The direct synthesis of hydrogen peroxide (H2O2 ) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2 . This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. In conclusion, we show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and wemore » set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.« less

  6. The rational design of a peptide-based hydrogel responsive to H2S.

    PubMed

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  7. Working with "H2S": facts and apparent artifacts.

    PubMed

    Wedmann, Rudolf; Bertlein, Sarah; Macinkovic, Igor; Böltz, Sebastian; Miljkovic, Jan Lj; Muñoz, Luis E; Herrmann, Martin; Filipovic, Milos R

    2014-09-15

    Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data.

  8. Synthesis and Biological Activity of Manganese (II) Complexes of Phthalic and Isophthalic Acid: X-Ray Crystal Structures of [Mn(ph)(Phen)2(H2O)]· 4H2O, [Mn(Phen)2(H2O)2]2(Isoph)2(Phen)· 12H2O and {[Mn(Isoph)(bipy)]4· 2.75biby}n(phH2 = Phthalic Acid; isoph = Isophthalic Acid; phen = 1,10-Phenanthroline; bipy = 2,2-Bipyridine)

    PubMed Central

    McCann, Malachy; Leon, Vanessa; Geraghty, Majella; McKee, Vickie; Wikaira, Jan

    2000-01-01

    Manganese(II) acetate reacts with phthalic acid (phH2) to give [Mn(ph)]·0.5H2O (1). Reaction of 1 with 1,10-phenanthroline produces [Mn(ph)(phen)]·2H2O (2) and [Mn(ph)(phen)2(H2O)]·4H2O (3). Reaction of isophthalic acid (isophH2) with manganese(II) acetate results in the formation of [Mn(isoph)]·2H2O (4). The addition of the N,N-donor ligands 1,10-phenanthroline or 2,2'-bipyridine to 4 leads to the formation of [Mn2 (isoph)2(phen)3)]·4H2O (5), [(Mn(phen)2(H2O)2]2(isoph)2(phen)·12H2O (6) and {[Mn(isoph)(bipy)]4·2.75 biby}n (7), respectively. Molecular structures of 3, 6 and 7 were determined crystallographically. In 3 the phthalate ligand is bound to the manganese via just one of its carboxylate groups in a monodentate mode with the remaining coordination sites filled by four phenanthroline nitrogen and one water oxygen atoms. In 6 the isophthalates are uncoordinated with the octahedral manganese center ligated by two phenanthrolines and two waters. In 7 the Isophthalate ligands act as bridges resulting in a polymeric structure. One of the carboxylate groups is chelating a single manganese with the other binding two metal centres in a bridging bidentate mode. The phthalate and isophthalate complexes, the metal free ligands and a number of simple manganes salts were each tested for their ability, to inhibit the growth of Candida albicans. Only the “metal free” 1,10-phenanthroline and its manganese complexes were found to be active. PMID:18475957

  9. Ni-H2 cell separator matrix engineering

    NASA Technical Reports Server (NTRS)

    Scott, W. E.

    1992-01-01

    This project was initiated to develop alternative separator materials to the previously used asbestos matrices which were removed from the market for health and environmental reasons. The objective of the research was to find a material or combination of materials that had the following characteristics: (1) resistant to the severe conditions encountered in Ni-H2 cells; (2) satisfactory electrical, electrolyte management, and thermal management properties to function properly; (3) environmentally benign; and (4) capable of being manufactured into a separator matrix. During the course of the research it was discovered that separators prepared from wettable polyethylene fibers along and in combination with potassium titanate pigment performed satisfactory in preliminary characterization tests. Further studies lead to the optimization of the separator composition and manufacturing process. Single ply separator sheets were manufactured with 100 percent polyethylene fibers and also with a combination of polyethylene fibers and potassium titanate pigment (PKT) in the ratio of 60 percent PKT and 40 percent fibers. A pilot paper machine was used to produce the experimental separator material by a continuous, wet laid process. Both types of matrices were produced at several different area densities (grams/sq m).

  10. Morphology of collisional nonlinear spectra in H2-Kr and H2-Xe mixtures.

    PubMed

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Maroulis, George; Haskopoulos, Anastasios

    2013-03-28

    This article reports new results of theoretical and numerical studies of spectral features of the collision-induced hyper-Rayleigh light scattered in dihydrogen-noble gas (H2-Rg) mixtures. The most massive and polarizable scattering supermolecules with Rg = Kr and Xe have been added to the previously considered systems in order to gain a more complete insight into the evolution of the spectral properties. The symmetry adapted components of the first collisional hyperpolarizabilities are obtained by means of the quantum chemistry numerical routines supplemented with appropriate theoretical methods. Roto-translational spectral lines are calculated on the grounds of the quantum-mechanical as well as semi-classical approach. The role of particular hyperpolarizability components in forming the line shapes is discussed. The intensities of the lines are compared with those obtained for less massive scatterers. Advantages of prospective application of the new scattering systems for experimental detection of the nonlinear collisional effects are indicated.

  11. Strain H2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Liu, Jianguo; Zhang, Xiaoli; Lin, Wei

    2008-05-01

    Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.

  12. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    PubMed

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  13. Quantum chemical study of ternary mixtures of: HNO3:H2SO4:H2O

    NASA Astrophysics Data System (ADS)

    Verdes, M. A.; Gómez, P. C.; Gálvez, O.

    2009-04-01

    Water, nitric acid and sulfuric acid are important atmospheric species as individual species and as hydrogen-bonded aggregates involved in many physical-chemical processes both superficial and bulk. The importance of heterogeneous chemical reactions taking place on ice surfaces, either solid water or solid water plus nitric or sulfuric acid, is well established now in relation to the ozone-depleting mechanisms. Also the importance of liquid droplets formed by HNO3.H2SO4.H2O as components of PSC was soon recognized [1-3]. Finally the physical properties of finely divided aqueous systems is an interesting and active field of research in which theoretical information on the microphysical domain systems may help to understand and rationalize the wealth of experimental information. This can also be the initial step in the study of more complex mixtures with higher amounts of water or variable proportions of their constituents. This kind of calculations have been successfully performed in the past[4]. We present here our results on the structure and spectroscopic and thermodynamic properties of the energy-lowest lying structures among those thermodynamically stable formed by linking the acids plus water. The calculations have been carried out by means of DFT methods (in particular the successful B3LYP) using different basis sets that contain appropriate sets of polarization and diffuse functions up to quadruple-Z quality (Dunninǵs aug-cc-pVQZ). Careful assessment of the dependability of the methodology used has been carried out. This work has been supported by the Spanish Ministry of Education, Projects FIS2007-61686 and CTQ2008-02578/BQU References: [1] Carslaw, K. S. et al.: Geophys. Res. Lett. 21, 2479-2482, 1994 [2] Drdla, K. Et al. :Geophys. Res. Lett. 21, 2473-2478, 1994 [3] Tabazadeh, A. et al.: Geophys. Res. Lett 21, 1619-1622, 1994 [4] Escribano, R et al.: J. J. Chem. Phys A 2003, 107, 652.

  14. Diversification of histone H2A variants during plant evolution.

    PubMed

    Kawashima, Tomokazu; Lorković, Zdravko J; Nishihama, Ryuichi; Ishizaki, Kimitsune; Axelsson, Elin; Yelagandula, Ramesh; Kohchi, Takayuki; Berger, Frederic

    2015-07-01

    Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.

  15. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  16. Oxygen related chemoreceptor drive to breathe during H2S infusion

    PubMed Central

    Philippe, Haouzi; Sonobe, Takashi; Chenuel, Bruno

    2014-01-01

    This study addresses the following question: Could the acute depression in breathing produced by hyperoxia, a reflection of the tonic drive to breathe from the arterial chemoreceptors, be accounted for by the presence a background level of local endogenous H2S? To address this question, we produced a stable but moderate increase in breathing (24 ± 11%) via continuous infusion of low levels of H2S, in 10 spontaneously breathing urethane-sedated rats. We found that acute exposure to 100% O2 (20 tests) decreased minute ventilation (VI) from 301 ± 51 to 210 ± 43 ml/min within 15 seconds in control conditions, but no additional significant drop in VI was observed during H2S induced hyperpnea. In addition, no decrease in the estimated concentrations of gaseous H2S in the arterial blood was observed during the hyperoxic tests. It is concluded that the ventilatory depression induced by high O2 appears to be limited to the tonic background peripheral chemosensory drive to breathe, but has little or no impact on the CB stimulation produced by low levels of H2S. PMID:24973475

  17. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  18. Sources of superoxide/H2O2 during mitochondrial proline oxidation.

    PubMed

    Goncalves, Renata L S; Rothschild, Daniel E; Quinlan, Casey L; Scott, Gary K; Benz, Christopher C; Brand, Martin D

    2014-01-01

    p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  19. Simulated photodetachment spectra of AlH2-

    NASA Astrophysics Data System (ADS)

    Mok, Daniel K. W.; Lee, Edmond P. F.; Chau, Foo-tim; Dyke, John M.

    2013-07-01

    We have carried out high-level ab initio calculations on AlH2 and its anion, as well as Franck-Condon factor calculations, which include anharmonicity and Duschinsky rotation, to simulate the photodetachment spectrum of AlH2-, with the aim of assigning the very recently reported photodetachment spectrum of AlH2- [X. Zhang, H. Wang, E. Collins, A. Lim, G. Ganteför, B. Kiran, H. Schnöckel, B. Eichhorn, and K. Bowen, J. Chem. Phys. 138, 124303 (2013)], 10.1063/1.4796200. However, our simulated spectra do not support the assignment of the reported experimental spectrum to AlH2-.

  20. A shock tube study of OH + H(2)O(2) --> H(2)O + HO(2) and H(2)O(2) + M --> 2OH + M using laser absorption of H(2)O and OH.

    PubMed

    Hong, Zekai; Cook, Robert D; Davidson, David F; Hanson, Ronald K

    2010-05-13

    The rate constants of the reactions: (1) H2O2+M-->2OH+M, (2) OH+H2O2-->H2O+HO2 were measured in shock-heated H(2)O(2)/Ar mixtures using laser absorption diagnostics for H(2)O and OH. Time-histories of H(2)O were monitored using tunable diode laser absorption at 2550.96 nm, and time-histories of OH were achieved using ring dye laser absorption at 306 nm. Initial H(2)O(2) concentrations were also determined utilizing the H(2)O diagnostic. On the basis of simultaneous time-history measurements of OH and H(2)O, k(2) was found to be 4.6 x 10(13) exp(-2630 K/T) [cm(3) mol(-1) s(-1)] over the temperature range 1020-1460 K at 1.8 atm; additional measurements of k(2) near 1 atm showed no significant pressure dependence. Similarly, k(1) was found to be 9.5 x 10(15) exp(-21 250 K/T) [cm(3) mol(-1) s(-1)] over the same temperature and pressure range.

  1. Particulate filtration for sorbent-based H2 storage

    NASA Astrophysics Data System (ADS)

    van Hassel, Bart A.; Karra, Jagadeswara R.

    2016-01-01

    A method was developed for sizing the particulate filter that can be used inside a sorption-based onboard hydrogen storage system for light-duty vehicles. The method is based on a trade-off between the pressure drop across the particulate filter (during the fill of the H2 storage tank or during its discharge while driving) and the effect of this pressure drop on the usable amount of H2 gas from the H2 storage system. The permeability and filtration efficiency of the particulate filters (in the absence and presence of MOF-5 particulates) was quantified in this study, with an emphasis on meeting DOE's H2 purity requirements.

  2. H2S: a novel gasotransmitter that signals by sulfhydration

    PubMed Central

    Paul, Bindu D.; Snyder, Solomon H.

    2015-01-01

    Hydrogen sulfide is a member of the growing family of gasotransmitters. Once regarded as a noxious molecule predominantly present in the atmosphere, H2S is now known to be synthesized endogenously in mammals. H2S participates in a myriad of physiological processes ranging from regulation of blood pressure to neuroprotection. Its chemical nature precludes H2S from being stored in vesicles and acting on receptor proteins in the fashion of other chemical messengers. Thus, novel cellular mechanisms have evolved to mediate its effects. This article focuses on sulfhydration (or persulfidation), which appears to be the principal post-translational modification elicited by H2S. PMID:26439534

  3. Vibrationally excited H2 in the upper atmosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Majeed, Tariq; Yelle, Roger V.; Mcconnell, John C.

    1990-01-01

    The impact of resonance fluorescense of solar EUV radiation by H2 on the distribution of the vibrational levels of H2 in the upper atmosphere of Saturn is considered. It appears that, for vibration levels, v not smaller than 3, this is the most important source, more important than those due to photoelectron induced fluorescence, recombination of molecular ions such as H3(+), and vibrational excitation of H2 by photoelectron impact. Based on the Voyager limb observations of H2 band emission, it is estimated that some of the higher vibrational levels may have effective temperatures about 3500 K. Such high vibrational densities may have an impact on ionospheric densities.

  4. Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.

    PubMed

    D'Imperio, Seth; Lehr, Corinne R; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R

    2008-09-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2

  5. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of

  6. Equations of state for H2, H2O, and H2-H2O fluid mixtures at temperatures above 0.01° C and at high pressures

    NASA Astrophysics Data System (ADS)

    Rimbach, Helmut; Chatterjee, Niranjan D.

    1987-11-01

    Modified Redlich-Kwong (MRK) equations of state have been derived for the pure fluid species H2 and H2O by expressing the parameter a as a function of T and P, and b as as a function of P only. These equations are valid above 0° and 0.01° C, respectively. For H2O, the prediction of volumes is successful not only in the supercritical, but also in the subcritical range. As a result of this, the saturation curve of H2O can be calculated with a maximum deviation of ±1.4 bar in the range 100 350° C. Between 350° C and the critical point (374.15° C), the uncertainty increases somewhat; this is due to a fundamental inadequacy of the Redlich-Kwong equation itself. These equations of state permit extrapolations to pressures of 100 kbar for H2 and at least 200 kbar for H2O and are, therefore, eminently suited for geochemical applications. Formulation of the MRK of the binary H2-H2O mixtures was achieved by assuming the quadratic mixing rule for the parameters a mix and b+mix. To derive the cross coefficients, aH2-H2Oand b H 2-H 2O, adjustable corrective factors ɛ and τ had to be introduced. The T- and P-dependences of ɛ and τ are based on P-V-T-X H 2 data (Seward and Franck 1981) to 440° C and 2500 bar. The resulting equation of state very satisfactorily reproduces the volumes observed experimentally at various sets of T, P, and X H 2. At a total pressure of 2 kbar, positive deviation from ideal mixing behaviour is still perceptible at as high a temperature as 1000° C. At some temperature around 380° C, phase separation sets in, an aqueous solution with dissolved H2 coexisting in equilibrium with an H2-rich fluid with dissolved H2O. The computed P-T-X H 2 surface of this two-phase region agrees well with that observed in Seward and Franck's (1981) experiments. An independent proof of the validity of this equation of state is the accuracy with which H {m/ex}can be predicted. Calorimetric measurements of H {m/ex}(Smith et al. 1983, Wormald and Colling 1985

  7. Gasification Mechanism of Carbon with Supercritical Water at Very High Pressures: Effects on H2 Production.

    PubMed

    Martin-Sanchez, Nicolas; Salvador, Francisco; Sanchez-Montero, M Jesus; Izquierdo, Carmen

    2014-08-07

    The scarce data concerning the gasification of carbonaceous solids with supercritical water (SCW) suggest the great potential of this method to produce a valuable green fuel such as H2. However, the extraordinary properties of SCW have not been properly applied to H2 production because the mechanism that governs gasification under these conditions remains unclear. Here, we present a study in which this reaction is explored within the largest pressure range ever assayed in this field, from 1 to 1000 bar. The amplitude of the experimental conditions investigated highlights the various pathways that govern gasification with steam and SCW. Under supercritical conditions, the clusters formed around the superficial groups of the solid reduce the energetic requirements for gasification and generate CO2 as a primary product of the reaction. Consequently, gasification with SCW is significantly faster than that using steam, and the produced gases are richer and more appropriate to obtain pure H2.

  8. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  9. The singlet-triplet splittings in AsH + 2, SbH + 2, and BiH + 2 and bond energies and ionization potentials of AsH2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1989-08-01

    The three low-lying electronic states (1A1, 3B1, 1B1) and their five spin-orbit states of AsH+2, SbH+2, and BiH+2 are investigated using complete active space MCSCF/second-order configuration interaction/relativistic CI schemes (CASSCF/SOCI/RCI). In addition the X 2B1 ground state and the excited 2A1 state of AsH2 and the X 3Σ- state of AsH are studied at the same levels of theory. The CASSCF/SOCI calculations yield De (HAs-H)=69.1 kcal/mol and De (AsH)=62.4 kcal/mol in excellent agreement with experimental values of D0(HAs-H)=66.5 kcal/mol and D0(As-H)=64.6 kcal/mol obtained by Berkowitz recently. The adiabatic CASSCF/SOCI ionization potential of the X 2B1 state of AsH2 to form the X 1A1 state of AsH+2 is 9.25 eV in comparison to an experimental value of 9.44 eV obtained by Berkowitz and Cho. The X 1A1-3B1 separations of AsH+2, SbH+2, and BiH+2 are calculated as 22, 31, and 35 kcal/mol, respectively. All the three ions were found to have bent equilibrium structures. The spin-orbit effects are found to be very significant for both BiH+2 and SbH+2, which changed the bond angle of 3B1(A1) to a considerable extent by contamination with 1A1. The relativistic density matrices and dipole moments are also obtained for all the species from the RCI wave functions.

  10. The New Synthetic H2S-Releasing SDSS Protects MC3T3-E1 Osteoblasts against H2O2-Induced Apoptosis by Suppressing Oxidative Stress, Inhibiting MAPKs, and Activating the PI3K/Akt Pathway

    PubMed Central

    Yan, Xiaofei; Wu, Haixia; Wu, Zhiyuan; Hua, Fei; Liang, Dong; Sun, Hong; Yang, Yong; Huang, Dejian; Bian, Jin-Song

    2017-01-01

    Reactive oxygen species (ROS) are important in osteoporosis development. Oxidative stress induces apoptosis of osteoblasts and arrest of their differentiation. Both Danshensu (DSS) and hydrogen sulfide (H2S) produce significant antioxidant effect in various systems. In this study, we synthesized SDSS, a novel H2S-releasing compound derived from DSS, and studied its antioxidant effect in an H2O2-induced MC3T3-E1 osteoblastic cell injury model. We first characterized the H2S releasing property of SDSS in both in vivo and in vitro models. HPLC chromatogram showed that intravenous injection of SDSS in adult rats released ADT-OH, a well proved H2S sustained-release moiety, within several minutes in the rat plasma. Using an H2S selective fluorescent probe, we further confirmed that SDSS released H2S in MC3T3-E1 osteoblastic cells. Biological studies revealed that SDSS had no significant toxic effect but produced protective effects against H2O2-induced MC3T3-E1 cell apoptosis. SDSS also reversed the arrest of cell differentiation caused by H2O2 treatment. This was caused by the stimulatory effect of SDSS on bone sialoprotein, runt-related transcription factor 2, collagen expression, alkaline phosphatase activity, and bone nodule formation. Further studies revealed that SDSS reversed the reduced superoxide dismutase activity and glutathione content, and the increased ROS production in H2O2 treated cells. In addition, SDSS significantly attenuated H2O2-induced activation of p38-, ERK1/2-, and JNK-MAPKs. SDSS also stimulated phosphatidylinositol 3-kinase/Akt signaling pathway. Blockade of this pathway attenuated the cytoprotective effect of SDSS. In conclusion, SDSS protects MC3T3-E1 cells against H2O2-induced apoptosis by suppressing oxidative stress, inhibiting MAPKs, and activating the phosphatidylinositol 3-kinase/Akt pathway. PMID:28163684

  11. The New Synthetic H2S-Releasing SDSS Protects MC3T3-E1 Osteoblasts against H2O2-Induced Apoptosis by Suppressing Oxidative Stress, Inhibiting MAPKs, and Activating the PI3K/Akt Pathway.

    PubMed

    Yan, Xiaofei; Wu, Haixia; Wu, Zhiyuan; Hua, Fei; Liang, Dong; Sun, Hong; Yang, Yong; Huang, Dejian; Bian, Jin-Song

    2017-01-01

    Reactive oxygen species (ROS) are important in osteoporosis development. Oxidative stress induces apoptosis of osteoblasts and arrest of their differentiation. Both Danshensu (DSS) and hydrogen sulfide (H2S) produce significant antioxidant effect in various systems. In this study, we synthesized SDSS, a novel H2S-releasing compound derived from DSS, and studied its antioxidant effect in an H2O2-induced MC3T3-E1 osteoblastic cell injury model. We first characterized the H2S releasing property of SDSS in both in vivo and in vitro models. HPLC chromatogram showed that intravenous injection of SDSS in adult rats released ADT-OH, a well proved H2S sustained-release moiety, within several minutes in the rat plasma. Using an H2S selective fluorescent probe, we further confirmed that SDSS released H2S in MC3T3-E1 osteoblastic cells. Biological studies revealed that SDSS had no significant toxic effect but produced protective effects against H2O2-induced MC3T3-E1 cell apoptosis. SDSS also reversed the arrest of cell differentiation caused by H2O2 treatment. This was caused by the stimulatory effect of SDSS on bone sialoprotein, runt-related transcription factor 2, collagen expression, alkaline phosphatase activity, and bone nodule formation. Further studies revealed that SDSS reversed the reduced superoxide dismutase activity and glutathione content, and the increased ROS production in H2O2 treated cells. In addition, SDSS significantly attenuated H2O2-induced activation of p38-, ERK1/2-, and JNK-MAPKs. SDSS also stimulated phosphatidylinositol 3-kinase/Akt signaling pathway. Blockade of this pathway attenuated the cytoprotective effect of SDSS. In conclusion, SDSS protects MC3T3-E1 cells against H2O2-induced apoptosis by suppressing oxidative stress, inhibiting MAPKs, and activating the phosphatidylinositol 3-kinase/Akt pathway.

  12. Radio Search for H2CCC toward HD 183143 as a Candidate for a Diffuse Interstellar Band Carrier

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Yamabe, Hiromichi; Tsukiyama, Koichi; Kuze, Nobuhiko

    2012-07-01

    To clarify the authenticity of a recently proposed identification of H2CCC (linear-C3H2) as a diffuse interstellar band (DIB) carrier, we searched for the rotational transition of H2CCC at a frequency of 103 GHz toward HD 183143 using the 45 m telescope at the Nobeyama Radio Observatory. Although rms noise levels of 32 mK in the antenna temperature were achieved, detection of H2CCC was unsuccessful, producing a 3σ upper limit corresponding to a column density of 2.0 × 1013 cm-2. The upper limit indicates that the contribution of H2CCC to the DIB at 5450 Å is less than 1/25; thus, it is unlikely that the laboratory bands of the B 1 B 1-X 1 A 1 transition of H2CCC and the DIBs at 5450 Å (and also 4881 Å) toward HD 183143 are related.

  13. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts

    USGS Publications Warehouse

    Jones, L. Camille; Rosenbauer, Robert; Goldsmith, Jonas I.; Oze, Christopher

    2010-01-01

    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H2) in ultramafic hydrothermal systems (e.g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H2 to produce methane (CH4) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200°C and 300 bar demonstrating Fe2+ being incorporated into carbonates more rapidly than Fe2+ oxidation (and concomitant H2 formation) leading to diminished yields of H2 and H2-dependent CH4. In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H2 and CH4 in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO2-mineral sequestration.

  14. Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system.

    PubMed

    Liu, Bing-Feng; Ren, Nan-Qi; Ding, Jie; Xie, Guo-Jun; Cao, Guang-Li

    2009-02-01

    The effect of different gases, CO(2) concentration, and separation of CO(2) from reaction system on photo-fermentation H(2) production was investigated by batch culture in this study. Experimental results showed that different gases (Ar,N(2),CO(2), and air) as gas phase have obviously affected on photo-H(2) production and a high concentration of CO(2) can inhibit the growth and H(2) evolution of Rhodopseudomonas faecalis RLD-53. When CO(2) concentration at 5%, cell increased most rapidly the specific growth rate of 0.489 g/l/h and the specific growth rate fell to be 0.265 g/l/h when CO(2) concentration at 40%. However, the growth of RLD-53 at CO(2) concentration of 60-100% was almost completely inhibited. At CO(2) concentrations of 5% and 10%, the maximum H(2) yield was 2.54 and 2.59 mol-H(2)/mol acetate, respectively, and it was similar with the control (2.61 mol-H(2)/mol acetate). H(2) not produced when CO(2) concentration at 60-100%. In conclusion, separation of CO(2) from reaction system can stimulate H(2) production in the entire photo-H(2) production process and H(2) yield increased about 12.8-18.85% than the control.

  15. Combustion of CH4/H2/air mixtures in catalytic microreactors.

    PubMed

    Specchia, Stefania; Vella, Luigi D; Burelli, Sara; Saracco, Guido; Specchia, Vito

    2009-03-23

    The combustion of CH(4)/H(2)/HC mixtures in a very small space represents an alternative, innovative way to produce thermal/electrical energy. Pd/NiCrO(4) catalysts are lined on SiC monoliths via in situ solution combustion synthesis (SCS), and the monoliths are then tested by feeding CH(4), H(2), and lean CH(4)/H(2) mixtures into a lab-scale test rig at an output thermal power of 7.6 MW(th) m(-3). In all cases, the combustion temperature shifts to values lower than those observed in non-catalytic combustion. When the power density is kept constant (by adding H(2) to the gas mixture), the value of CH(4)-T(50) (the half-conversion temperature of CH(4)) decreases relative to that of pure CH(4), and the slope of the conversion curve becomes steeper. The higher the H(2) concentration is, the higher the reactivity of the mixture towards CH(4) oxidation-probably due to a higher production of H(2) reactive radicals (OH).

  16. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed.

  17. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    PubMed Central

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-01-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32−, SO42−) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments. PMID:28262831

  18. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures

    NASA Astrophysics Data System (ADS)

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-09-01

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311–500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400–500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane.

  19. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures

    PubMed Central

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-01-01

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311–500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400–500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane. PMID:27666288

  20. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    PubMed

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H2S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO2 and H2S are absorbed. The dissolved H2S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H2S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H2S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H2S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation.

  1. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures.

    PubMed

    Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan

    2016-09-26

    Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane.

  2. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    PubMed Central

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  3. Infrared Response of H2 to X-Rays in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Tine, S.; Lepp, S.; Gredel, R.; Dalgarno, A.

    1997-01-01

    The excitation by X-rays and cosmic rays of molecular hydrogen in interstellar clouds is analyzed. We carried out detailed calculations of entry efficiencies in rovibrational levels of H2 following impact with fast electrons produced by X-ray ionization of the gas. The competing effect of collisional excitation, and quenching by the ambient gas is examined in detail. Up to date values for H-H2 collisional rate coefficients are adopted, and some derivations of H2-H2 rovibrational rate coefficients from existing literature data are proposed. Several models as a function of temperature, density, and ionization rate are presented. We found that H2 infrared emission in X-ray dominated regions (XDR) is potentially observable for temperatures and ionization rates lower than certain critical values (typically T < 1000 K and zeta/n(sub H) < 10(exp -15) cc/s where zeta is the ionization rate). At higher temperatures, collisional excitation by the ambient gas dominates the population of low vibrational levels, and at higher values of zeta/n(sub H) the abundance of H2 is negligible. If such conditions are satisfied, the resulting infrared emission spectrum can be used as a diagnostic of nearby X-ray sources such as in cooling flows in galaxy clusters, quasars, Seyfert galaxies and supernova remnants. The intensity ratio of the 2-1S(1) and 1-0S(1) lines measured for the Seyfert galaxy NGC 1275 is consistent with X-ray pumping.

  4. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    PubMed Central

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  5. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    NASA Astrophysics Data System (ADS)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32‑, SO42‑) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  6. Effect of H2O, and combined effects of H2O + F, H2O + CO2, and H2O + F + CO2 on the viscosity of a natural basalt from Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Knipping, J.; Scherbarth, S.; Stechern, A.; Behrens, H.

    2012-12-01

    We measured the viscosity of 5 series of remelted natural basalt from Fuego volcano, Guatemala. These series include single and multiple volatile species: H2O, F, H2O-F, H2O-CO2, and H2O-CO2-F. The hydrous glasses were synthesized at 3 kbar and 1250°C in Internally Heated Pressure Vessels. The multiple volatile series were synthesized at 5 kbar and 1250°C. CO2 was added as Ag2C2O4, F as AlF3, and H2O as distilled water. The anhydrous, F-bearing series was synthesized at 1 atm by simply remelting the Fuego basalt and adding F as CaF2.The natural, dry, remelted Fuego basalt has an NBO/T of 0.64. The following comparisons are based on parallel-plate viscosity measurements in the range ~108 to 1012 Pa s. The temperature at which the viscosity is 1012 Pa s (T12) is taken to be the viscosimetric glass transition temperature (Tg). The addition of 2 wt.% H2O results in a decrease of T12 of ~150°C for basalt. Fluorine on its own has a measurable, but much smaller effect, than the equivalent amount of water. Indeed, ~2 wt.% F results in a T12 depression of only ~30°C. When H2O and F are both present, their effects are approximately additive. For example, the viscosity of a basalt with 1.44 wt.% H2O is very similar to the viscosity of a basalt with ~1 wt.% H2O and ~1.25 wt.% F, and the viscosities of a basalt with 2.29 wt.% H2O and a basalt with ~1.65 wt.% H2O and ~1.3 wt.% F are also very similar. The effect of CO2 is somewhat ambiguous. The viscosity of a basalt with ~1.7 wt.% H2O, ~1.3 wt.% F and ~0.2 wt.% CO2 is essentially the same as the viscosity of a basalt with 2.29 wt.% H2O, so CO2 seems to have a negligible or even viscosity-increasing effect when F and H2O are also present. However, a basalt with ~0.84 wt.% H2O and ~0.09 wt.% CO2 has about the same viscosity as a basalt with 1.34 wt.% H2O, which could suggest a strong (viscosity-decreasing) effect of very small amounts of CO2. These results suggest that the effects on viscosity of F in basaltic systems are

  7. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2

    PubMed Central

    Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing

    2015-01-01

    High pressure structure, stability, metallization, and superconductivity of PbH4(H2)2, a H2-containing compound combining one of the heaviest elements with the lightest element, are investigated by the first-principles calculations. The metallic character is found over the whole studied pressure range, although PbH4(H2)2 is metastable and easily decompose at low pressure. The decomposition pressure point of 133 GPa is predicted above which PbH4(H2)2 is stable both thermodynamically and dynamically with the C2/m symmetry. Interestedly, all hydrogen atoms pairwise couple into H2 quasi-molecules and remain this style up to 400 GPa in the C2/m structure. At high-pressure, PbH4(H2)2 tends to form the Pb-H2 alloy. The superconductivity of Tc firstly rising and then falling is observed in the C2/m PbH4(H2)2. The maximum of Tc is about 107 K at 230 GPa. The softening of intermediate-frequency phonon induced by more inserted H2 molecules is the main origin of the high Tc. The results obtained represent a significant step toward the understanding of the high pressure behavior of metallic hydrogen and hydrogen-rich materials, which is helpful for obtaining the higher Tc. PMID:26559369

  8. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2

    NASA Astrophysics Data System (ADS)

    Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing

    2015-11-01

    High pressure structure, stability, metallization, and superconductivity of PbH4(H2)2, a H2-containing compound combining one of the heaviest elements with the lightest element, are investigated by the first-principles calculations. The metallic character is found over the whole studied pressure range, although PbH4(H2)2 is metastable and easily decompose at low pressure. The decomposition pressure point of 133 GPa is predicted above which PbH4(H2)2 is stable both thermodynamically and dynamically with the C2/m symmetry. Interestedly, all hydrogen atoms pairwise couple into H2 quasi-molecules and remain this style up to 400 GPa in the C2/m structure. At high-pressure, PbH4(H2)2 tends to form the Pb-H2 alloy. The superconductivity of Tc firstly rising and then falling is observed in the C2/m PbH4(H2)2. The maximum of Tc is about 107 K at 230 GPa. The softening of intermediate-frequency phonon induced by more inserted H2 molecules is the main origin of the high Tc. The results obtained represent a significant step toward the understanding of the high pressure behavior of metallic hydrogen and hydrogen-rich materials, which is helpful for obtaining the higher Tc.

  9. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  10. Role of H2S Donors in Cancer Biology.

    PubMed

    Lee, Zheng-Wei; Deng, Lih-Wen

    2015-01-01

    Hydrogen sulfide (H2S) donors including organosulfur compounds (OSC), inorganic sulfide salts, and synthetic compounds are useful tools in studies to elucidate the effects of H2S in cancer biology. Studies using such donors have shown the ability of H2S to suppress tumor growth both in vitro and in vivo, with some of them suggesting the selectivity of its cytotoxic effects to cancer cells. In addition to promoting cancer cell death, H2S donors were also found to inhibit cancer angiogenesis and metastasis. The underlying mechanisms for the anticancer activities of H2S involve (1) cell signaling pathways, such as MAPK and STAT; (2) cell cycle regulation; (3) microRNAs regulation; and (4) cancer metabolism and pH regulation. Altogether, compiling evidences have demonstrated the great potential of using H2S donors as anticancer agents. Nevertheless, the application and development of H2S for therapy are still facing challenges as identification of molecular targets of H2S awaits further investigation.

  11. Crystal growth simulations of H(2)S hydrate.

    PubMed

    Liang, Shuai; Kusalik, Peter G

    2010-07-29

    In this paper, we report a molecular simulation study exploring the crystal growth behavior of H(2)S hydrates within two-phase (H(2)S hydrate crystal and H(2)S aqueous solution) and three-phase (H(2)S hydrate crystal, liquid H(2)S, and H(2)S aqueous solution) systems. The microscopic mechanisms of growth, as well as the interfacial properties during the heterogeneous crystal growth process, are probed. We find that the H(2)S hydrate can be grown at a higher rate than methane hydrates under comparable conditions (Vatamanu, J.; Kusalik, P. G. J. Phys. Chem. B 2006, 110, 15896). The three-phase simulations, which also allow us to identify the simulation conditions on the experimental phase diagram, demonstrate that the present models reasonably reproduce the phase behavior of this system. We find that the crystal interface has a strong affinity for water molecules. We observed a relatively low level of defects in the newly formed H(2)S hydrate crystal.

  12. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  13. Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Seperuelo Duarte, E.; Domaracka, A.; Rothard, H.; Boduch, P.; da Silveira, E. F.

    2010-11-01

    An experimental study of the interaction of heavy, highly charged, and energetic ions (52 MeV 58Ni13+) with pure H2O, pure CO2 and mixed H2O:CO2 astrophysical ice analogs is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by heavy cosmic rays inside dense and cold astrophysical environments, such as molecular clouds or protostellar clouds. The measurements were performed at the heavy ion accelerator GANIL (Grand Accélérateur National d'Ions Lourds in Caen, France). The gas samples were deposited onto a CsI substrate at 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross sections of pure H2O and CO2 ices are 1.1 and 1.9 × 10-13 cm2, respectively. For mixed H2O:CO2 (10:1), the dissociation cross sections of both species are about 1 × 10-13 cm2. The measured sputtering yield of pure CO2 ice is 2.2 × 104 molec ion-1. After a fluence of 2-3 × 1012 ions cm-2, the CO2/CO ratio becomes roughly constant (~0.1), independent of the initial CO2/H2O ratio. A similar behavior is observed for the H2O2/H2O ratio, which stabilizes at 0.01, independent of the initial H2O column density or relative abundance.

  14. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    PubMed Central

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  15. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2.

    PubMed

    Guntur, Ananya R; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-10-20

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response--a function of CC cells--when they encounter strong UV, an aversive stimulus for young larvae.

  16. Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Sun, Bowen; Iza, Felipe; Xu, Dehui; Wang, Xiaohua; Rong, Mingzhe; Kong, Michael G.

    2017-04-01

    Cold atmospheric-pressure plasmas in Ar + H2O gas mixtures are a promising alternative to He + H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He + H2O plasmas have been the subject of multiple experimental and computational studies, Ar + H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar + H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32 000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He + H2O plasmas, in Ar + H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study.

  17. Scavenging of H2O2 by mouse brain mitochondria

    PubMed Central

    Starkov, Anatoly A.; Andreyev, Alexander Yu; Zhang, Steven F.; Starkova, Natalia N.; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N.

    2015-01-01

    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50–70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200–2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction. PMID:25248416

  18. Measurements of H2O2 during WATOX-86

    NASA Astrophysics Data System (ADS)

    Heikes, Brian G.; Walega, James G.; Kok, Gregory L.; Lind, John A.; Lazrus, Allan L.

    1988-03-01

    Measurements of gas phase H2O2 were made on all Western Atlantic Ocean Experiment 1986 (WATOX-86) flights aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft. These were some of the first airborne real-time H2O2 measurements made in winter. Operation of the instru- ment was limited to altitude < 3.1 km with a detection limit, determined by interference considerations, of 0.05 parts per billion by volume (ppbv), 10% calibration accuracy and 0.03-ppbv precision. Experimental measurements showed the mean H2O2 to be 0.12 ppbv (standard deviation = 0.07, maximum = 1.2 ppbv). Vertical structure was observed with maximum H2O2 above the cloud-capped marine boundary layer. Boundary layer H2O2 was typically at or below the detection limit.

  19. Long-term variation of Saturn H2 emission

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; McGrath, Melissa

    1995-01-01

    The goal of this research effort was to analyze the long-term IUE database of Saturn images for the possible presence of diffuse H2 emissions, using techniques originally developed for analysis of Jupiter images. The poor S/N ratio in many of the Saturn images proved to be a significant limitation to the possible detection of H2 emission. The creation of a satisfactory background atmosphere model was also limited by difficulties in reproducing the observed C2H2 band structure at long wavelengths. The results currently available suggest that diffuse H2 emission is present on Saturn on some occasions. However, the IUE data are not able to indicate whether H2 emission is present at all times with a magnitude proportional to solar activity, as was shown for Jupiter.

  20. Allogeneic H-2 antigen expression is insufficient for tumor rejection.

    PubMed Central

    Cole, G A; Cole, G A; Clements, V K; Garcia, E P; Ostrand-Rosenberg, S

    1987-01-01

    Murine A strain (KkDdLd) sarcoma I (SaI) tumor cells have been transfected with a cloned H-2Kb gene. The resulting clones (SKB clones) stably express high levels of a molecule that is serologically and biochemically indistinguishable from the H-2Kb antigen. SKB clones are not susceptible to cytotoxic T lymphocyte-mediated lysis by H-2Kb-specific bulk, cloned, or H-2Kb-restricted lymphocytic choriomeningitis virus-specific effectors. Survival times of A/J and B10.A mice challenged i.p. with the H-2Kb-expressing transfectants and the parental SaI cells are similar, suggesting that the presence of an allogeneic major histocompatibility complex class I antigen on the surface of this tumor line is insufficient for tumor rejection. Images PMID:3500477

  1. Modeling the Interaction of H2 on Root Exudate Degradation and Methanogenesis in Wetland Sediments

    NASA Astrophysics Data System (ADS)

    Pal, D. S.; Jaffe, P. R.

    2014-12-01

    CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are many potential sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2 while the H2 and CO2 is synthesized to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. Since H2 is used in methane production and produced in propionate fermentation, increased subsurface H2 concentrations can simultaneously inhibit propionate fermentation and acetate production and enhance hydrogenotrophic methanogenesis. For this study, we incubated soil samples from vegetated wetland sediments with propionate or acetate and four different hydrogen concentrations. The headspaces from these incubations were simultaneously analyzed for H2 and CH4 at multiple time points over two months. The comparison of methane production between different hydrogen concentrations and different carbon sources can indicate which process is most affected by increased hydrogen concentrations. The results from this study were combined with a newly formulated steady-state model of propionate degradation and formation of methane, that also accounts for the venting off both gases via plants. The resulting model indicates how methane production and emissions would be affected by plant volatilization.

  2. Mechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS

    PubMed Central

    Mehta-Kolte, Misha G.; Loutey, Dana; Wang, Ouwei; Youngblut, Matthew D.; Hubbard, Christopher G.; Wetmore, Kelly M.; Conrad, Mark E.

    2017-01-01

    ABSTRACT The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So). Although the process involving PSOX is thermodynamically favorable (ΔG°′ = −206 kJ ⋅ mol−1 H2S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H2S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H2S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H2S to So. The biogenically formed reactive intermediates (ClO2− and O2) subsequently react with additional H2S, producing polysulfide and So as end products. PMID:28223460

  3. Molecular hydrogen (H2) emissions from gasoline and diesel vehicles.

    PubMed

    Bond, S W; Alvarez, R; Vollmer, M K; Steinbacher, M; Weilenmann, M; Reimann, S

    2010-08-01

    This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141+/-38.6 mg km(-1)), approximately 5 times higher than for gasoline-powered automobiles (26.5+/-12.1 mg km(-1)). All diesel-powered vehicles emitted marginal amounts of H2 ( approximately 0.1 mg km(-1)). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1+/-17.0 mg km(-1)). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h(-1) (mean of 40.4+/-7.1 mg km(-1)). We show that H2/CO ratios (mol mol(-1)) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature.

  4. Resonant Enhancement of Ground State H2+ Formation in Low Energy Charge Transfer between Protons and H2

    NASA Astrophysics Data System (ADS)

    Andrianarijaona, V. M.; King, J. G.; Martin, M. F.; de Ruette, N.; Urbain, X.

    2013-05-01

    We investigated the charge transfer (CT) from an H2 or D2 target to various fast atomic/molecular ions for a wide span of collision energies in the laboratory frame (eV to keV). Vibrationally resolved cross sections have been obtained on a relative scale, by dissociative charge transfer of the product H2+ ions with potassium atoms, and 3-D imaging of the fragments. An absolute value of the total CT cross section has been inferred from the measured ratio of the CT yield for protons and H2+, combined with the recommended H2+ + H2 cross section (ORNL). Our results on the (H2, H+) system benchmark state-to-state calculations at 10eV and above (Phys. Rev. A 75 032703, 2007 and J. Phys. B 42, 105207 2009). In particular, they confirm the vibrational excitation mechanism responsible for the resonance at 50eV, characterized by a dominant population of the ground vibrational state of H2++. The spectra for the isotopic system (D2, H+) will be also presented along with the results of CT performed with H2++ and D2+ projectiles. Research supported by the Fund for Scientific Research - FNRS through IISN Grant No. 4.4504.10, and the National Science Foundation through Grant No. PHY-106887.

  5. H2S2014 in Kyoto: the 3rd International Conference on H2S in Biology and Medicine.

    PubMed

    Kimura, Hideo

    2015-04-30

    About 20 years ago, a pungent gas was found to be the physiological mediator of cognitive function and vascular tone. Since then, studies on hydrogen sulfide (H2S) have uncovered its numerous physiological roles such as protecting various tissues/organs from ischemia and regulating inflammation, cell growth, oxygen sensing, and senescence. These effects of H2S were extensively studied, and some of the corresponding mechanisms were also studied in detail. Previous studies on the synergistic interaction between H2S and nitric oxide (NO) have led to the discovery of several potential signaling molecules. Polysulfides are considerably potent and are one of the most active forms of H2S. H2S has a significant therapeutic potential, which is evident from the large number of novel H2S-donating compounds and substances developed for manipulating endogenous levels of H2S. The Third International Conference on H2S was held in Kyoto in June 2014. One hundred and sixty participants from 21 countries convened in Kyoto to report new advances, discuss conflicting findings, and make plans for future research. This article summarizes each oral presentation presented at the conference.

  6. Determination of the ortho to para ratio of H2Cl+ and H2O+ from submillimeter observations.

    PubMed

    Gerin, Maryvonne; de Luca, Massimo; Lis, Dariusz C; Kramer, Carsten; Navarro, Santiago; Neufeld, David; Indriolo, Nick; Godard, Benjamin; Le Petit, Franck; Peng, Ruisheng; Phillips, Thomas G; Roueff, Evelyne

    2013-10-03

    The opening of the submillimeter sky with the Herschel Space Observatory has led to the detection of new interstellar molecular ions, H2O(+), H2Cl(+), and HCl(+), which are important intermediates in the synthesis of water vapor and hydrogen chloride. In this paper, we report new observations of H2O(+) and H2Cl(+) performed with both Herschel and ground-based telescopes, to determine the abundances of their ortho and para forms separately and derive the ortho-to-para ratio. At the achieved signal-to-noise ratio, the observations are consistent with an ortho-to-para ratios of 3 for both H2O(+) and H2Cl(+), in all velocity components detected along the lines-of-sight to the massive star-forming regions W31C and W49N. We discuss the mechanisms that contribute to establishing the observed ortho-to-para ratio and point to the need for a better understanding of chemical reactions, which are important for establishing the H2O(+) and H2Cl(+) ortho-to-para ratios.

  7. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    SciTech Connect

    Adeniyi Lawal

    2008-12-09

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant to produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole

  8. Sequential hydration energies of the sulfate ion, from determinations of the equilibrium constants for the gas-phase reactions: SO4(H2O)(n)2- = SO4(H2O)(n-1)2- + H2O.

    PubMed

    Blades, Arthur T; Kebarle, Paul

    2005-09-22

    Sequential hydration energies of SO4(H2O)(n)2- were obtained from determinations of the equilibrium constants of the following reactions: SO4(H2O)(n)2- = SO4(H2O)(n-1)2- + H2O. The SO4(2-) ions were produced by electrospray and the equilibrium constants Kn,n-1 were determined with a reaction chamber attached to a mass spectrometer. Determinations of Kn,n-1 at different temperatures were used to obtain DeltaG0n,n-1, DeltaH0 n,n-1, and DeltaS0n,n-1 for n = 7 to 19. Interference of the charge separation reaction SO4(H2O)(n)2- = HSO4(H2O)(n-k)- + OH(H2O)(k-1)- at higher temperatures prevented determinations for n < 7. The DeltaS0n,n-1 values obtained are unusually low and this indicates very loose, disordered structures for the n > or = 7 hydrates. The DeltaH0n,n-1 values are compared with theoretical values DeltaEn,n-1, obtained by Wang, Nicholas, and Wang. Rate constant determinations of the dissociation reactions n,n - 1, obtained with the BIRD method by Wong and Williams, showed relatively lower rates for n = 6 and 12, which indicate that these hydrates are more stable. No discontinuities of the DeltaG0n,n-1 values indicating an unusually stable n = 12 hydrate were observed in the present work. Rate constants evaluated from the DeltaG0n,n-1 results also fail to indicate a lower rate for n = 12. An analysis of the conditions used in the two types of experiments indicates that the different results reflect the different energy distributions expected at the dissociation threshold. Higher internal energies prevail in the equilibrium measurements and allow the participation of more disordered transition states in the reaction.

  9. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  10. The reaction of O(1 D) with H2O and the reaction of OH with C3H6

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1972-01-01

    The N2O was photolyzed at 2139 A to produce O(1 D) atoms in the presence of H2O and CO. The O(1 D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative rate constant for O(1 D) removal by H2O compared to that by N2O is 2.1. In the presence of C3H6, the OH can be removed by reaction with either CO or C3H6.

  11. Arginine-Containing Ligands Enhance H-2 Oxidation Catalyst Performance

    SciTech Connect

    Dutta, Arnab; Roberts, John A.; Shaw, Wendy J.

    2014-06-16

    In H2 fuel cells, performance depends on factors controlling turnover frequency and energy efficiency in the electrocatalytic oxidation of H2. Nature uses the hydrogenase enzymes to oxidize H2 at high turnover frequencies (up to 20,000 s-1) and low overpotentials (<100 mV), while the fastest synthetic catalyst reported to date only oxidizes H2 at 50 s-1 under 1 atm H2. Here we report a water-soluble complex incorporating the amino acid arginine, [NiII(PCy2NArg2)2]6+, that operates at 210 s-1 (180 mV overpotential) under 1 atm H2 and 144,000 s-1 (460 mV overpotential) under 133 atm H2. The complex functions from pH 0-14 with rates increasing at lower pH values. The arginine groups impart water solubility and play a critical role in enhancing turnover frequency, most consistent with an intramolecular Arg-Arg interaction that controls the structure of the catalyst active site. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (JASR). PNNL is operated by Battelle for the US DOE.

  12. H2 in low-ionization structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo

    2017-02-01

    We report the detection of near-IR H2 emission from the low-ionization structures (knots) in two planetary nebulae. The deepest ever high-angular-resolution H2 (1-0) S(1) at 2.122 μm, H2 (2-1) S(1) at 2.248 μm and Brγ images of K 4-47 and NGC 7662, obtained using the Near InfraRed Imager and Spectrometer (NIRI) at Gemini-North, are analysed here. K 4-47 reveals a remarkable highly collimated bipolar structure not only in the optical but also in the molecular hydrogen emission. The H2 emission emanates from the walls of the bipolar outflows and also from the pair of knots at the tip of the outflows. The H2 (1-0) S(1)/(2-1) S(1) line ratio ranges from ∼7 to ∼10, suggesting the presence of shock interactions. Our findings can be explained by the interaction of a jet/bullet ejected from the central star with the surrounding asymptotic giant branch material. The strongest H2 line, (1-0) S(1), is also detected in several low-ionization knots located at the periphery of the elliptical planetary nebula NGC 7662, but only four of these knots are detected in the H2 (2-1) S(1) line. These four knots exhibit an H2 line ratio between 2 and 3.5, which suggests that the emission is caused by the UV ionizing flux of the central star. Our data confirm the presence of H2 gas in both fast- and slow-moving low-ionization knots, which has only been confirmed before in the nearby Helix nebula and Hu 1-2. Overall, the low-ionization structures of planetary nebulae are found to have similar traits to photodissociation regions.

  13. Pyruvate protects pathogenic spirochetes from H2O2 killing.

    PubMed

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M; Yang, X Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.

  14. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing

    PubMed Central

    Troxell, Bryan; Zhang, Jun-Jie; Bourret, Travis J.; Zeng, Melody Yue; Blum, Janice; Gherardini, Frank; Hassan, Hosni M.; Yang, X. Frank

    2014-01-01

    Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection. PMID:24392147

  15. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  16. A quantum-classical study of the OH + H2 reactive and inelastic collisions

    NASA Astrophysics Data System (ADS)

    Martí, Carles; Pacifici, Leonardo; Laganà, Antonio; Coletti, Cecilia

    2017-04-01

    We carried out a study of OH + H2 scattering using a quantum-classical method, treating quantally vibrations and classically both translations and rotations. The good agreement between the state specific quantum-classical reactive probabilities and the corresponding quantum ones prompted the extension of the study to state to state probabilities for non reactive vibrational energy exchange. The study showed that H2 reactive dynamics depends on the vibrational excitation, while the non reactive one is mainly vibrationally adiabatic. On the contrary, OH reactive dynamics is not affected by its vibrational excitation, whereas the non reactive one might produce some pumping up to higher vibrational states.

  17. One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H2O2 Evolution.

    PubMed

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2017-02-27

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H2O2) or hydroxyl radicals ((•)OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O2 evolution. We develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to (•)OH, H2O2, and O2.

  18. Cometary H2(+) and solar wind He(2+) dynamics across the Halley cometopause

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Balsiger, H.; Geiss, J.; Goldstein, B. E.; Goldstein, R.

    1988-01-01

    Two Mass/Charge (M/Q) of about 2 distributions were observed by the Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during the encounter with comet Halley. The first, present throughout the encounter, is identified as solar wind He(2+). The second, detectable only within about 600,000 km of the nucleus, is identified as H2(+) (produced primarily by dissociation and ionization of cometary H2O). When these two distributions are separated, distinct differences in their dynamics are apparent, particularly in the density and velocity profiles near the 'cometopause'.

  19. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution

    DOE PAGES

    Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...

    2017-02-23

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H2O2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H2O2, and O2.

  20. Lifetime studies in H2/Br2 fuel cells

    NASA Astrophysics Data System (ADS)

    Barna, G. G.; Frank, S. N.; Teherani, T. H.; Weedon, L. D.

    1984-09-01

    A fully computerized system has been set up for the life testing of H2 electrodes in 48 percent HBr, and of H2/Br2 fuel cells. Given a fuel cell design with dry H2 and no anolyte loop, the prime parameters influencing the operating lifetime are the hydrophobicity of the anode and the electrolyte transport property of the membrane. A systematic optimization of all the parameters has generated fuel cells that have operated for 10,000h at 2 A/sq in., with no significant degradation.

  1. The Anharmonic Force Field of BeH2 Revisited

    NASA Technical Reports Server (NTRS)

    Martin, Jan M. L.; Lee, Timothy J.

    2003-01-01

    The anharmonic force field of BeH2 has been calculated near the basis set and n-particle space limits. The computed antisymmetric stretch frequencies of BeH2 and BeD2 are in excellent agreement with recent high-resolution gas-phase measurements. The agreement between theory and experiment for the other spectroscopic constants is also excellent, except for omega(sub 3) and X(sub 33) for BeH2 and G(sub 22) for BeD2. It is concluded that further experimental work is needed in order to resolve these discrepancies.

  2. Effects of H2S on molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Anderson, G. L.

    1984-04-01

    The results of a literature survey conducted by the Institute of Gas Technology (IGT) under Phase 1 of a multiphase program to investigate and identify the mechanism(s) responsible for molten carbonate fuel cell (MCFC) performance losses when operating on sulfur containing gases are discussed. The objective was twofold: to review the reported data on the interaction of H2S with nickel containing materials; and to review reported investigations on the specific effects of H2S on the electrochemical oxidation of H2 in MCFC. The ultimate goal of the literature review was to determine the poisoning mechanism.

  3. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  4. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  5. Quantification and kinetics of H2 generation during hydrothermal serpentinisation experiments

    NASA Astrophysics Data System (ADS)

    Castelain, Teddy; Fauguerolles, Colin; Villeneuve, Johan; Pichavant, Michel

    2013-04-01

    H2-rich hydrothermal fluids generated by serpentinisation of mantle rocks at slow-spreading ridges have been revealed by recent studies [1, 2]. Fluxes and the future of the H2 produced by this process are poorly constrained [1, 3]. In this study, we aim to quantitatively evaluate the H2 production fluxes associated with these hydrothermal systems and to document the kinetics of the hydrogen-producing reaction. For this matter, hydrothermal serpentinisation experiments are being undertaken on mixtures composed of a natural peridotite from the Pindus ophiolite and olivine crystals from San Carlos. The experiments are conducted at a temperature of ~ 300° C and a pressure of 450-500 bars in large-volume Dickson-Seyfried bombs for periods of × 1 month. Starting materials are powders between 1 - 100 μm for the peridotites and individual grains ranging from 1 - 2 mm for the San Carlos olivine. They are reacted with a homemade artificial seawater in such proportion that water-rock ratio = 1.8. The reactants are loaded in a modified Ti cell fitted with a semi-permeable Au-Pd membrane simultaneously allowing direct sampling of the hydrothermal fluid and in situ monitoring of the pH2 during the advancement of the reaction. The gas fraction of the fluid sampled is then analyzed by gas chromatography (GC). The pH2 readings show traces of H2 to be present from the second day of experiment. The increase of the pH2 reaches a maximum after ~ 6 days and the pH2 finally stabilizes after ~ 16 days at ~ 12.5 bars, which corresponds to a local fO2 of about NNO-4. The GC measurements, performed after 30, 43, 51 and 65 days, yield respectively, H2 concentrations of 82.4, 89.7, 90.3 and 101 mmol.kg-1 of water, in reasonable agreement with results from previous studies [4-6]. Further experiments are being undertaken in order to: duplicate observations, especially the pH2 readings, more closely link the GC measurements and the in situ pH2 readings, especially during the first 15 days of

  6. CN radical hydrogenation from solid H2 reactions, an alternative way of HCN formation in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Borget, Fabien; Müller, Sandra; Grote, Dirk; Theulé, Patrice; Vinogradoff, Vassilissa; Chiavassa, Thierry; Sander, Wolfram

    2017-01-01

    Context. Molecular hydrogen (H2) is the most abundant molecule of the interstellar medium (ISM) in gas phase and it has been assumed to exist in solid state or as coating on grains. Aims: Our goal is to show that solid H2 can act as a hydrogenation agent, reacting with CN radicals to form HCN. Methods: In a H2 matrix, we studied the hydrogenation of the CN radical generated from the vacuum ultraviolet photolysis (VUV-photolysis) of C2N2 at 3.8 K. We modified the wavelengths and the host gas in order to be sure that CN radicals can abstract H from H2 molecules. Results: HCN monomers, dimers, and oligomers have been characterised by Fourier transform infrared spectroscopy (FTIR). H2CN as well as CN radicals have also been clearly observed during the photolysis performed at 3.8 K. Conclusions: H2 is a hydrogenation reagent towards CN radicals producing HCN. This type of reaction should be taken into account for the reactivity at low temperature in contaminated H2 ice macro-particles (CHIMPs), H2 flakes or in the first sublayers of grains where solid H2 has accumulated.

  7. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed.

  8. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  9. Evaluation of H2CHXdedpa, H2dedpa- and H2CHXdedpa-N,N'-propyl-2-NI ligands for (64)Cu(ii) radiopharmaceuticals.

    PubMed

    Ramogida, Caterina F; Boros, Eszter; Patrick, Brian O; Zeisler, Stefan K; Kumlin, Joel; Adam, Michael J; Schaffer, Paul; Orvig, Chris

    2016-08-16

    The chiral acyclic "pa" ligand (pa = picolinic acid) H2CHXdedpa (N4O2) and two NI-containing dedpa analogues (H2CHXdedpa-N,N'-propyl-2-NI, H2dedpa-N,N'-propyl-2-NI, NI = nitroimidazole) were studied as chelators for copper radiopharmaceuticals (CHX = cyclohexyl, H2dedpa = 1,2-[[carboxypyridin-2-yl]methylamino]ethane). The hexadentate ligand H2CHXdedpa was previously established as a superb system for (67/68)Ga radiochemistry. The solid state X-ray crystal structures of [Cu(CHXdedpa-N,N'-propyl-2-NI)] and [Cu(dedpa-N,N'-propyl-2-NI)] reveal the predicted hexadentate, distorted octahedral binding of the copper(ii) ion. Cyclic voltammetry of [Cu(dedpa-N,N'-propyl-2-NI)] shows that there is one reversible couple associated with the NI redox, and one irreversible but reproducible couple attributed to the Cu(ii)/Cu(i) redox cycle. Quantitative radiolabeling (>99%) of CHXdedpa(2-) and (dedpa-N,N'-propyl-2-NI)(2-) with (64)Cu was achieved under fast and efficient labeling conditions (10 min, RT, 0.5 M sodium acetate buffer, pH 5.5) at ligand concentrations as low as 10(-6) M. In vitro kinetic inertness studies of the (64)Cu labelled complexes were studied in human serum at 37 °C over 24 hours; [(64)Cu(CHXdedpa)] was found to be 98% stable compared to previously investigated [(64)Cu(dedpa)] which was only 72% intact after 24 hours.

  10. H2CO3(s): a new candidate for CO2 capture and sequestration.

    PubMed

    Tossell, J A

    2009-04-01

    To reduce the magnitude of anthropogenic global warming it is necessary to remove CO2(g) from the effluent streams of coal-fired power plants and to sequester the CO2 either as a liquid or by reaction with other compounds. A major difficulty in achieving this goal arises from the very weak acidity of CO2(g), causing it to react only incompletely with weak bases, although this weak interaction does provide a means for "stripping" the CO2 from the acid-base complex at high temperatures. Reaction with strong bases like Na0H yields more stable complexes, but massive amounts of chemical reactants would need to be purchased and chemical products like NaHCO3 then stored. However, when gas-phase CO2 reacts with the weak base water (or when bicarbonate reacts with strong acid) the unstable product monomeric "H2CO3" can be formed. The free energy required is about 16 kcal/mol in the gas phase and about 10 kcal/mol in aqueous solution. This energy can be supplied by particle or photon excitation and is only a small fraction ofthe energy released when a mole of CH4 is converted to a mole of CO2. Although this monomeric compound is highly unstable, its oligomers are considerably more stable, due to internal H-bonding, with free energies for the larger oligomers in the gas phase which are about 4 kcal/(mol of H2CO3) lower, only about 6 kcal/mol H2CO3 higher than the gas-phase combination of CO2 and H2O at room temperature. Also, at lower temperature the entropic penalty for the oligomer is less and oligomeric H2CO3 becomes stable around the sublimation temperature of dry ice. This indicates that it may be possible to capture gas-phase CO2 directly, using only cheap and abundant H2O as a reactant, and to store the resulting (H2CO3)n as a oligomeric solid at only moderately cold temperatures. These conclusions are based on quantum computations that accurately reproduce the structures, spectra, and stabilities of H2CO3 oligomers. Methods for producing and characterizing the H2CO3

  11. Electronic spectrum and photodissociation chemistry of the linear methyl propargyl cation H2C4H3+

    NASA Astrophysics Data System (ADS)

    Catani, Katherine J.; Muller, Giel; da Silva, Gabriel; Bieske, Evan J.

    2017-01-01

    The electronic spectrum of the methyl propargyl cation (2-butyn-1-yl cation, H2C4H3+) is measured over the 230-270 nm range by photodissociating the bare cation and its Ar and N2 tagged complexes in a tandem mass spectrometer. The observed '1A←'1A band system has an origin at 37 753 cm-1 for H2C4H3+ , 37738 cm-1 for H2C4H3+ - Ar, and 37 658 cm-1 for H2C4H3+ - N2. The methyl propargyl cation photodissociates to produce either C2H3++C2H2 (protonated acetylene + acetylene) or H2C4H+ +H2 (protonated diacetylene + dihydrogen). Photodissociation spectra of H2C4H3+ , H2C4H3+ - Ar, and H2C4H3+ - N2 exhibit similar vibronic structure, with a strong progression of spacing 630 cm-1 corresponding to excitation of the C—C stretch mode. Interpretation of the spectra is aided by ground and excited state calculations using time dependent density functional theory at the ωB97X-D/aug-cc-pVDZ level of theory. Ab initio calculations and master equation simulations were used to interpret the dissociation of H2C4H3+ on the ground state manifold. These calculations support the experimentally observed product branching ratios in which acetylene elimination dominates and also suggests that channel switching occurs at higher energies to favor H2 elimination.

  12. Solubility of water in lunar basalt at low pH2O

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <∼4 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 11; (5) Secondary ion mass spectrometry (SIMS) analyses of water in iron-rich glasses equilibrated under variable fO2 conditions may be strongly influenced by matrix effects, even when the concentration of water in the glasses is low; and (6) Our results can be used to constrain the entrapment pressure of lunar melt inclusions and the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads. We find that the most water-rich melt inclusion of Hauri et al. (2011) would be in equilibrium with a vapor with pH2O ∼ 3 bar and pH2 ∼ 8 bar. We constrain the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads to be 0.0005 bar and 0.0011 bar respectively. We calculate that batch degassing of lunar magmas containing initial volatile contents of 1200 ppm H2O (dissolved primarily as hydroxyl) and 4-64 ppm C would produce enough vapor to reach the critical vapor

  13. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  14. Efficient C2 functionalisation of 2H-2-imidazolines.

    PubMed

    Bon, Robin S; Sprenkels, Nanda E; Koningstein, Manoe M; Schmitz, Rob F; de Kanter, Frans J J; Dömling, Alexander; Groen, Marinus B; Orru, Romano V A

    2008-01-07

    Alkylation and oxidation of 2H-2-imidazolines, followed by regioselective deprotection, thionation and microwave-assisted Liebeskind-Srogl reaction, efficiently led to 2-aryl-2-imidazolines as new analogues of p53-hdm2 interaction inhibitors (Nutlins).

  15. Metal-graphene heterojunction modulation via H2 interaction

    NASA Astrophysics Data System (ADS)

    Cadore, A. R.; Mania, E.; de Morais, E. A.; Watanabe, K.; Taniguchi, T.; Lacerda, R. G.; Campos, L. C.

    2016-07-01

    Combining experiment and theory, we investigate how a naturally created heterojunction (pn junction) at a graphene and metallic contact interface is modulated via interaction with molecular hydrogen (H2). Due to an electrostatic interaction, metallic electrodes induce pn junctions in graphene, leading to an asymmetrical resistance in electronic transport for electrons and holes. We report that the asymmetry in the resistance can be tuned in a reversible manner by exposing graphene devices to H2. The interaction between the H2 and graphene occurs solely at the graphene-contact pn junction and induces a modification on the electrostatic interaction between graphene and metallic contacts. We explain the experimental data with theory providing information concerning the length of the heterojunction and how it changes as a function of H2 adsorption. Our results are valuable for understanding the nature of the metal-graphene interfaces and have potential application for selective sensors of molecular hydrogen.

  16. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  17. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  18. Photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-

    NASA Astrophysics Data System (ADS)

    Oliveira, Allan M.; Lehman, Julia H.; McCoy, Anne B.; Lineberger, W. Carl

    2016-09-01

    We report the negative ion photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-. The photoelectron spectra show that 3.49 eV photodetachment produces two distinct electronic states of the neutral hydroxymethoxy radical (H2C(OH)Oṡ). The H2C(OH)Oṡ ground state (X ˜ 2A) photoelectron spectrum exhibits a vibrational progression consisting primarily of the OCO symmetric and asymmetric stretches, the OCO bend, as well as combination bands involving these modes with other, lower frequency modes. A high-resolution photoelectron spectrum aids in the assignment of several vibrational frequencies of the neutral H2C(OH)Oṡ radical, including an experimental determination of the H2C(OH)Oṡ 2ν12 overtone of the H-OCO torsional vibration as 220(10) cm-1. The electron affinity of H2C(OH)Oṡ is determined to be 2.220(2) eV. The low-lying A ˜ 2A excited state is also observed, with a spectrum that peaks ˜0.8 eV above the X ˜ 2A state origin. The A ˜ 2A state photoelectron spectrum is a broad, partially resolved band. Quantum chemical calculations and photoelectron simulations aid in the interpretation of the photoelectron spectra. In addition, the gas phase acidity of methanediol is calculated to be 366(2) kcal mol-1, which results in an OH bond dissociation energy, D0(H2C(OH)O-H), of 104(2) kcal mol-1, using the experimentally determined electron affinity of the hydroxymethoxy radical.

  19. Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii

    PubMed Central

    Volgusheva, Alena; Styring, Stenbjörn; Mamedov, Fikret

    2013-01-01

    Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production. PMID:23589846

  20. Glitters of warm H2 in cold diffuse molecular gas

    NASA Astrophysics Data System (ADS)

    Falgarone, Edith; Boulanger, Francois; Combes, Francoise; Pineau Des Forets, Guillaume; Verstraete, Laurent

    2007-05-01

    Cold molecular hydrogen, a dominant gas fraction in galaxies, does not radiate due to the symmetry of the molecule. The only tracers of cold H2, the rotational lines of CO and dust thermal emission operate only in metal-rich environments. By detecting the lowest rotational lines of H2 at unexpected levels in the cold diffuse medium of the Galaxy, ISO-SWS has challenged the traditional view of the interstellar medium (ISM) by possibly revealing the existence of tiny gas fractions within the cold ISM, warm enough to excite H2 lines. The heating source of H2 there is the intermittent dissipation of supersonic turbulence, pervading the entire ISM. These glitters of H2 line emission may become the unique tracers of cold H2 in low metallicity environments. Given the fundamental importance of probing large hidden masses of gas in galaxies, for their implication on galaxy dynamics, star formation thresholds in metal-poor environments, and the hypothesis of H2 as baryonic dark matter in galaxies, the present SST/IRS proposal is dedicated to further search of this still elusive emission. The proposed observations consist in several IRS LL pointings along the major axis of two external galaxies with massive HI disks extending far beyond their optical radius, and for which the HI rotation curve cannot be accounted for by the stellar and visible gas components. These spectra also observed in the direction of the galaxy nuclei, are meant to allow the separation between the H2 emission with stellar-type excitation from that originating in gas heated by turbulence dissipation. The goal of the proposal is to strenghten the existence of pockets of warm H2 disseminated in the cold diffuse medium of galaxies. These glitters of warm H2 would be a new tracer of hitherto undetected amounts of cold H2 in low metallicity environments, and, as a more exploratory facet, might probe the presence of large amounts of baryonic dark matter in galaxies in the form of cold molecular hydrogen.

  1. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease

  2. Investigation of H2 and H2S adsorption on niobium- and copper-doped palladium surfaces.

    PubMed

    Ozdogan, Ekin; Wilcox, Jennifer

    2010-10-14

    Alloying or doping Pd may be an option for overcoming sulfur poisoning. The current investigation probes the mechanism associated with sulfur binding to determine if Nb and Cu are appropriate doping metals. In this study, the effect of doping Pd with Cu or Nb on the binding strength of H(2) and H(2)S was investigated using plane-wave density functional theory-based electronic structure calculations to determine mechanisms of adsorption. Results of this work indicate that for pure Pd and Pd-doped surfaces, H(2) dissociates with the H atoms most stable on the fcc-fcc site. The overall d-band centers calculated for H(2) adsorption at the fcc-fcc site for the pure and doped-Pd surfaces indicate that the H(2) adsorption strength trend is Pd > Cu > Nb. Regarding H(2)S adsorption on Pd and Pd-doped surfaces, it was found that Cu has a lower affinity for H(2)S compared to Pd and Nb. The calculation of the local density of states of the s-, p-, and d-orbitals of the adsorbate-surface complex reveals an increase in the occupation of s-and p-states of the adsorbate and d-states of the dopant metals upon adsorption. In addition, the H(2)S binding trend is found to be Cu < Pd < Nb, with the doped-Cu surfaces exhibiting the weakest binding and doped-Nb surfaces the strongest binding. Geometry comparisons of each H(2)S-adsorbed complex shows that the hydrogen atoms are located closest to the surface in the case of Nb, indicating that the strong H-surface interaction leads to the enhanced adsorption behavior, rather than the S-surface interaction; in fact, the sulfur atom is located furthest from the surface doped with Nb.

  3. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  4. Interaction—Induced Spectroscopy of H2 in the Fullerenes

    NASA Astrophysics Data System (ADS)

    Lewis, John Courtenay; Herman, Roger M.

    2006-11-01

    Carbon nanostructures of various sorts have been the subject of intensive research since their discoveries in the latter part of the 20th century. Much of this research has been motivated by the intrinsic interest of these structures, though their potential as hydrogen storage media has also attracted attention. It was realized that the carbon-hydrogen interactions in these media would induce dipole moments which might lead to observable absorption of infrared spectra, and this work will be reviewed and extended in this paper. The fundamental vibration-rotation spectrum, of H2 in a fcc C60 lattice (fullerite) at room temperature was first observed by S. A. FitzGerald and coworkers, who have subsequently extended their observations to near liquid nitrogen temperatures. Herman and Lewis have discussed the theoretical aspects of H2 in carbon nanotube bundles and in fullerite. We have developed a detailed theory for the spectrum of H2 in fullerite. This theory assumes that the H2 - C potential can be accurately approximated by an exp-6 potential, the parameters of which are then obtained by fitting the line frequencies in FitzGerald's spectra. We have also obtained a model for the H2 induced dipole moment based on the calculations of Frommhold and coworkers on the induced dipole in H2 - He. With one adjustable parameter this model gives a good account of the observed intensities. In work to date the line width has been taken as an empirical parameter. However, the line width is in principal determinable from the H2 - C potential and induced dipole moment, together with the known properties of the phonon modes in fullerite. We conclude this paper with a discussion of the line width problem for H2 in fullerite.

  5. The interstellar chemistry of H2C3O isomers.

    PubMed

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-03-11

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects.

  6. Interaction energy and the shift in OH stretch frequency on hydrogen bonding for the H2O --> H2O, CH3OH --> H2O, and H2O --> CH3OH dimers.

    PubMed

    Campen, Richard Kramer; Kubicki, James D

    2010-04-15

    The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries--HF, MP2, and several density functionals paired with the 6-31+G(d) and 6-311++G(d,p) basis sets--to calculate the interaction energy (D(e)) and shift in OH stretch fundamental frequency on dimerization (delta(nu)) for the H(2)O --> H(2)O, CH(3)OH --> H(2)O, and H(2)O --> CH(3)OH dimers (where for X --> Y, X is the hydrogen bond donor and Y the acceptor). We quantify the error in D(e) and delta(nu) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in D(e) propagates to delta(nu). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating delta(nu) is approximately 30-50 cm(-1) and that correcting for error in D(e) does little to heighten agreement between the calculated and experimental delta(nu). Accuracy of calculated delta(nu) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of delta(nu) for the CH(3)OH --> H(2)O dimer their performance is relatively poor in describing H(2)O --> H(2)O and H(2)O --> CH(3)OH.

  7. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  8. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  9. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  10. Cross sections for production of H(2p, 2s, 1s) by electron collisional dissociation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; James, G. K.; Shemansky, D. E.

    1991-01-01

    The excitation function of H Ly-alpha from the astrophysically important dissociation of electron-excited H2 over the range 10-700 eV has been measured. The analysis predicts the cross section to energies higher than the present experimental limit, and it is found that the predicted shape is in close agreement with measured results. At 6 eV the cross section is dominated by the electric dipole first Born component, while at 100 eV the electric dipole component constitutes 73 percent of the total H(2p) cross section. The cross sections of the H(2s) and H(1s) components are calculated.

  11. The effect of salts on the stability of the H2A-H2B histone dimer.

    PubMed

    Gloss, Lisa M; Placek, Brandon J

    2002-12-17

    The core nucleosome, which comprises an H3-H4 tetramer and two H2A-H2B dimers, is not a static DNA packaging structure. The nucleosome is a dynamic protein-DNA complex, and the modulation of its structure is an important component of transcriptional regulation. To begin to understand the molecular details of nucleosome dynamics, we have investigated the stability of the isolated H2A-H2B dimer. The urea-induced equilibrium responses of the heterodimer have been examined by far-UV circular dichroism and intrinsic tyrosine fluorescence. The two spectroscopic probes yielded coincident transitions, and global fitting of the reversible urea-induced unfolding further demonstrated that H2A-H2B unfolds by a two-state equilibrium response. At physiological ionic strengths, the free energy of unfolding in the absence of urea of H2A-H2B is 11.8 +/- 0.3 kcal mol(-)(1), moderate stability for a dimer of 26.4 kDa. The m value, or sensitivity of the unfolding to urea, is 2.9 +/- 0.1 kcal mol(-)(1) M(-)(1). This value is significantly larger than would be predicted for the unfolding of the dimerization motif alone ( approximately 2 kcal mol(-)(1) M(-)(1)), suggesting that the N-terminal tails may adopt a collapsed, solvent-excluding structure that undergoes an unfolding transition. The efficacies of several potassium salts and three chloride salts to stabilize the H2A-H2B dimer were determined. The salt-dependent stabilization of the H2A-H2B dimer shows that the Hofmeister effect is the predominant mode of stabilization. However, studies employing multiple salts suggest that there is a component of stabilization that must arise from screening of electrostatic repulsion in the highly basic heterodimer. The most highly charged regions of the dimer are the N-terminal tails, sites of posttranslational modifications such as acetylation and phosphorylation. These modifications, which alter the charge density of the tails, are involved in regulation of nucleosome dynamics.

  12. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate.

    PubMed

    Li, Xiangzhen; McInerney, Michael J; Stahl, David A; Krumholz, Lee R

    2011-10-01

    Syntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H(2)- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of Desulfovibrio alaskensis G20 was screened for loss of the ability to grow syntrophically with Methanospirillum hungatei JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained. All 20 mutants grew in pure culture on lactate under sulfidogenic conditions at a rate and to a maximum OD(600) similar to those of the parental strain. The largest number of mutations that affected syntrophic growth with lactate was in genes encoding proteins involved in H(2) oxidation, electron transfer, hydrogenase post-translational modification, pyruvate degradation and signal transduction. The qrcB gene, encoding a quinone reductase complex (Qrc), and cycA, encoding the periplasmic tetrahaem cytochrome c(3) (TpIc(3)), were required by G20 to grow syntrophically with lactate. A mutant in the hydA gene, encoding an Fe-only hydrogenase (Hyd), is also impaired in syntrophic growth with lactate. The other mutants grew more slowly than the parental strain in syntrophic culture with M. hungatei JF-1. qrcB and cycA were shown previously to be required for growth of G20 pure cultures with H(2) and sulfate. Washed cells of the parental strain produced H(2) from either lactate or pyruvate, but washed cells of qrcB, cycA and hydA mutants produced H(2) at rates similar to the parental strain from pyruvate and did not produce significant amounts of H(2) from lactate. Real-time quantitative PCR assays showed increases in expression of the above three genes during syntrophic growth compared with pure-culture growth with lactate and sulfate. Our work shows that Hyd, Qrc and TpIc(3) are involved in H(2) production during syntrophic lactate metabolism by D. alaskensis G20 and emphasizes the importance of H(2) production for

  13. H2 Fluorescence in M dwarf Systems: A Stellar Origin

    NASA Astrophysics Data System (ADS)

    Kruczek, Nicholas; France, Kevin; Evonosky, William; Youngblood, Allison; Parke Loyd, R. O.

    2017-01-01

    Observations of Lyα-driven H2 fluorescence can be a useful tool for measuring the abundance of H2 in exoplanet atmospheres. This emission has been previously observed in M dwarfs with planetary systems but at too low of a signal to determine its origin. It may have been originating in the atmospheres of planets, but conditions within these systems also mean that the H2 could be residing on the stellar surface or in a circumstellar disk. We use observations from the ``Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet Host Stars" (MUSCLES) Hubble Space Telescope (HST) Treasury Survey to study H2 fluorescence in M dwarfs with and without confirmed planets to determine the origin of the emission. The results are further supported by the direct imaging of a candidate M dwarf system using the HST-Advanced Camera for Surveys/Solar Blind Channel. We constrain the location of the fluorescing H2 through analysis of the line profiles and determine that the emission is originating on the star. We verify that this interpretation is consistent with 1D radiative transfer models that are optimized using the spectra of the MUSCLES stars and find that the H2 likely resides in starspots or a cool region of the lower chromosphere.

  14. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  15. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).

  16. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons . I. Interstellar H2 and CH4 formation rates

    NASA Astrophysics Data System (ADS)

    Alata, I.; Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Dartois, E.

    2014-09-01

    Context. The interstellar hydrogenated amorphous carbons (HAC or a-C:H) observed in the diffuse medium are expected to disappear in a few million years, according to the destruction time scale from laboratory measurements. The existence of a-C:H results from the equilibrium between photodesorption, radiolysis, hydrogenation and resilience of the carbonaceous network. During this processing, many species are therefore injected into the gas phase, in particular H2, but also small organic molecules, radicals or fragments. Aims: We perform experiments on interstellar a-C:H analogs to quantify the release of these species in the interstellar medium. Methods: The vacuum ultraviolet (VUV) photolysis of interstellar hydrogenated amorphous carbon analogs was performed at low (10 K) to ambient temperature, coupled to mass-spectrometry detection and temperature-programed desorption. Using deuterium isotopic substitution, the species produced were unambiguously separated from background contributions. Results: The VUV photolysis of hydrogenated amorphous carbons leads to the efficient production of H2 molecules, but also to small hydrocarbons. Conclusions: These species are formed predominantly in the bulk of the a-C:H analog carbonaceous network, in addition to the surface formation. Compared with species made by the recombination of H atoms and physisorbed on surfaces, they diffuse out at higher temperatures. In addition to the efficient production rate, it provides a significant formation route in environments where the short residence time scale for H atoms inhibits H2 formation on the surface, such as PDRs. The photolytic bulk production of H2 with carbonaceous hydrogenated amorphous carbon dust grains can provide a very large portion of the contribution to the H2 molecule formation. These dust grains also release small hydrocarbons (such as CH4) into the diffuse interstellar medium, which contribute to the formation of small carbonaceous radicals after being dissociated

  17. Recovery of H2SO4 from an acid leach solution by diffusion dialysis.

    PubMed

    Wei, Chang; Li, Xingbin; Deng, Zhigan; Fan, Gang; Li, Minting; Li, Cunxiong

    2010-04-15

    Diffusion dialysis with a series of anion exchange membranes was used to recover H(2)SO(4) from an acid leach solution produced during the vanadium manufacturing process. The effects of sulfuric acid, FeSO(4) and VOSO(4) concentration, flow rate and flow rate ratio on the recovery of H(2)SO(4) were investigated. The results showed that sulfuric acid permeated well through the membranes used, while metal ions were efficiently rejected. The recovery of H(2)SO(4) increased as the sulfate concentration of the feed increased and the flow rate ratio of water to feed increased. More than 80% of the H(2)SO(4) could be recovered from the leach solution which contained 61.7 g/L free H(2)SO(4), 11.2 g/L Fe and 4.60 g/L V at a flow rate of 0.19x10(-3) m(3)/h m(2). V and Fe ion rejection were within 93-95 and 92-94%, respectively. A preliminary economic evaluation revealed that an investment in this process could be recovered within 27 months.

  18. Performance study of biofilter developed to treat H2S from wastewater odour

    PubMed Central

    Omri, Ilhem; Aouidi, Fethia; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar

    2013-01-01

    Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants. PMID:23961233

  19. Design of a MT-DBD reactor for H2S control

    NASA Astrophysics Data System (ADS)

    Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG

    2017-04-01

    This study aimed to discuss the removal of hydrogen sulfide (H2S) with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor, which is useful in the field of plasma environmental applications. We explored the influence of various factors upon H2S removal efficiency ({η }{{{H}}2{{S}}}) and energy yield (Ey), such as specific energy density (SED), initial concentration, gas flow velocity and the reactor configuration. The study showed that we can achieve {η }{{{H}}2{{S}}} of 91% and the best Ey of 3100 mg kWh‑1 when we set the SED, gas flow velocity, initial H2S concentration and layers of quartz tubes at 33.2 J l‑1, 8.0 m s‑1, 30 mg m‑3 and five layers, correspondingly. The average rate constant for the decomposition of hydrogen sulfide was 0.206 g m‑3 s‑1. In addition, we also presented the optimized working conditions, by-product analysis and decomposition mechanism. Supported by programs of Research on the Technology and Equipment of Gaseous Pollutant Removal from the Emission of Household Garbage (15DZ12055904) and Jointly Decomposition of Odorous Compounds by Dielectric Combined with Excimer Ultraviolet Emission (21577023).

  20. Effect of H2 and redox condition on biotic and abiotic MTBE transformation

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2006-01-01

    Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.

  1. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2013-07-01

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.

  2. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  3. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  4. Observation of enhanced rate coefficients in the H2 + + H 2 → H3 + + H reaction at low collision energies

    NASA Astrophysics Data System (ADS)

    Allmendinger, Pitt; Deiglmayr, Johannes; Höveler, Katharina; Schullian, Otto; Merkt, Frédéric

    2016-12-01

    The energy dependence of the rate coefficient of the H2 + + H 2 → H3 + + H reaction has been measured in the range of collision energies between k B ṡ 10 K and k B ṡ 300 mK . A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below k B ṡ 1 K , which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2 molecules in the j = 1 rotational level, which make up 75% of the population of the neutral H2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya et al. [J. Chem. Phys. 145, 244315 (2016)], with which they are in agreement.

  5. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products

    PubMed Central

    2014-01-01

    Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuous photo-fermentative H2 production from lactate was attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H2 production was observed, we attempted to add ethanol (0.2% v/v) to the medium. Results As continuous operation went on, H2 production was not sustained and showed a negligible H2 yield (< 0.5 mol H2/mol lactateadded) within two weeks. Electron balance analysis showed that the reason for the gradual drop in H2 production was ascribed to the increase in production of soluble microbial products (SMPs). To see the possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased the H2 yield from 1.15 to 2.20 mol H2/mol lactateadded, by suppressing the production of SMPs. The analysis of SMPs by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low molecular weight SMPs (< 1 kDa) were consumed and used for H2 production when ethanol had been added, while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD+ and NADP+. In continuous operation, ethanol addition was effective, such that stable H2 production was attained with an H2 yield of 2.5 mol H2/mol lactateadded. Less than 15% of substrate electrons were used for SMP production, whereas 35% were used in

  6. Destruction and Sequestration of H2O on Mars

    NASA Astrophysics Data System (ADS)

    Clark, Benton

    2016-07-01

    The availability of water in biologically useable form on any planet is a quintessential resource, even if the planet is in a zone habitable with temperature regimes required for growth of organisms (above -18 °C). Mars and most other planetary objects in the solar system do not have sufficient liquid water at their surfaces that photosynthesis or chemolithoautotrophic metabolism could occur. Given clear evidence of hydrous mineral alteration and geomorphological constructs requiring abundant supplies of liquid water in the past, the question arises whether this H2O only became trapped physically as ice, or whether there could be other, more or less accessible reservoirs that it has evolved into. Salts containing S or Cl appear to be ubiquitous on Mars, having been measured in soils by all six Mars landed missions, and detected in additional areas by orbital investigations. Volcanoes emit gaseous H2S, S, SO2, HCl and Cl2. A variety of evidence indicates the geochemical fate of these gases is to be transformed into sulfates, chlorides, chlorates and perchlorates. Depending on the gas, the net reaction causes the destruction of between one and up to eight molecules of H2O per atom of S or Cl (although hydrogen atoms are also released, they are lost relatively rapidly to atmospheric escape). Furthermore, the salt minerals formed often incorporate H2O into their crystalline structures, and can result in the sequestration of up to yet another six (sometimes, more) molecules of H2O. In addition, if the salts are microcrystalline or amorphous, they are potent adsorbents for H2O. In certain cases, they are even deliquescent under martian conditions. Finally, the high solubility of the vast majority of these salts (with notable exception of CaSO4) can result in dense brines with low water activity, aH, as well as cations which can be inimical to microbial metabolism, effectively "poisoning the well." The original geologic materials on Mars, igneous rocks, also provide some

  7. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    PubMed Central

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  8. Na(H2O)[Mn(H2O)2(BP2O8)]: Crystal structure refinement

    NASA Astrophysics Data System (ADS)

    Yakubovich, O. V.; Steele, I.; Dimitrova, O. V.

    2009-01-01

    The crystal structure of synthetic manganese sodium borophosphate hydrate Na(H2O)[Mn(H2O)2(BP2O8)] was refined based on X-ray diffraction data. The compound was prepared by soft hydrothermal synthesis in the MnCl2-Na3PO4-B2O3-H2O system. The unit-cell parameters are a= 9.602(1) Å, c= 16.037(3) Å, sp. gr. P6522, Z= 6, D x = 2.57 g/cm3. The water molecules were found to be statistically distributed in the channels of the mixed anionic paraframework consisting of (BO4) and (PO4) tetrahedra and [MnO4(H2O)2] octahedra. The hydrogen atoms of the water molecules coordinated to the Mn2+ cations were located and their positional and thermal parameters were refined. The crystal-chemical features of borophosphates of the general formula A x M(H2O)2(BP2O8)(H2O) are considered.

  9. Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects.

    PubMed

    Fonseca dos Santos, S; Balakrishnan, N; Lepp, S; Quéméner, G; Forrey, R C; Hinde, R J; Stancil, P C

    2011-06-07

    We present a full dimensional quantum mechanical treatment of collisions between two H(2) molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for ortho-H(2) + para-H(2) and ortho-H(2) + ortho-H(2) collisions have been computed for different initial rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that state-to-state transitions are highly specific. Inelastic collisions that conserve the total rotational angular momentum of the diatoms and that involve small changes in the internal energy are found to be highly efficient. The effectiveness of these quasiresonant processes increases with decreasing collision energy and they become highly state-selective at ultracold temperatures. They are found to be more dominant for rotational energy exchange than for vibrational transitions. For non-reactive collisions between ortho- and para-H(2) molecules for which rotational energy exchange is forbidden, the quasiresonant mechanism involves a purely vibrational energy transfer albeit with less efficiency. When inelastic collisions are dominated by a quasiresonant transition calculations using a reduced basis set involving only the quasiresonant channels yield nearly identical results as the full basis set calculation leading to dramatic savings in computational cost.

  10. Calculation of intermolecular potentials for H2sbnd H2 and H2sbnd O2 dimers ab initio and prediction of second virial coefficients

    NASA Astrophysics Data System (ADS)

    Pham Van, Tat; Deiters, Ulrich K.

    2015-08-01

    The intermolecular interaction potentials of the dimers H2sbnd H2 and H2sbnd O2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller-Plesset perturbation theory (at levels 2-4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen-oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations.

  11. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  12. Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H2O2 for use as a novel radiosensitizer.

    PubMed

    Morita, Kenta; Miyazaki, Serika; Numako, Chiya; Ikeno, Shinya; Sasaki, Ryohei; Nishimura, Yuya; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO2/H2O2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO2/H2O2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO2/H2O2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO2/H2O2 NPs have almost the same characteristics as PAA-TiO2. Surprisingly, there were no significant differences in hROS generation. However, the existence of H2O2 was confirmed in PAA-TiO2/H2O2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO2/H2O2 NPs had a curious characteristic whereby they absorbed H2O2 molecules and released them gradually into a liquid phase. Based on these results, the H2O2 was continuously released from PAA-TiO2/H2O2 NPs, and then released H2O2 assumed to be functioned indirectly as a radiosensitizing factor.

  13. Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol.

  14. H2, CO, and Dust Absorption through Cold Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Sneden, Christopher; Kim, Hwihyun; Jaffe, Daniel T.

    2017-03-01

    The abundance of H2 in molecular clouds, relative to the commonly used tracer CO, has only been measured toward a few embedded stars, which may be surrounded by atypical gas. We present observations of near-infrared absorption by H2, CO, and dust toward stars behind molecular clouds, providing a representative sample of these molecules in cold molecular gas, primarily in the Taurus Molecular Cloud. We find {{{N}}}{{{H}}2}/{A}{{V}} ≈ 1.0 × 1021 cm‑2, {{{N}}}{CO}/{A}{{V}} ≈ 1.5 × 1017 cm‑2 (1.8 × 1017 including solid CO), and {{{N}}}{{{H}}2}/{{{N}}}{CO} ≈ 6000. The measured {{{N}}}{{{H}}2}/{{{N}}}{CO} ratio is consistent with that toward embedded stars in various molecular clouds, but both are less than that derived from millimeter-wave observations of CO and star counts. The difference apparently results from the higher directly measured {{{N}}}{CO}/{A}{{V}} ratio.

  15. Staphylococcal enterotoxins bind H-2Db molecules on macrophages

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.

  16. Rotational Spectroscopy of the NH3-H2 Molecular Complex

    NASA Astrophysics Data System (ADS)

    Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.

    2017-03-01

    We report the first high resolution spectroscopic study of the NH3–H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3–H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3–(o)-H2 and (p)-NH3–(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3–H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  17. Dwarf Galaxy Formation with H2-regulated Star Formation

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Krumholz, Mark R.; Madau, Piero; Smith, Britton D.; Wise, John

    2012-04-01

    We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low-mass halos (Mh <~ 1010 M ⊙) at z > 4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with "supernova feedback." We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z = 4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized one-dimensional radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic-molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Σgas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z = 4-8 and find reasonable agreement between the two.

  18. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C ii] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C ii] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C ii λ2325 absorption data. We detect [C ii] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position–velocity maps of [C ii] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C ii] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C ii] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C ii] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C ii] intensities derive a mean thermal pressure in the range of ∼6100–7700 K cm‑3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C i and CO. Our results demonstrate the richness of the far-IR [C ii] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C ii] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity

  19. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    USGS Publications Warehouse

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 ??C and a 0.1-??C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content. ?? 2008 Elsevier Ltd. All rights reserved.

  20. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium.

    PubMed Central

    Kersten, P J; Kirk, T K

    1987-01-01

    The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium. Images PMID:3553159

  1. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles.

    PubMed

    Reisner, Erwin; Powell, Daniel J; Cavazza, Christine; Fontecilla-Camps, Juan C; Armstrong, Fraser A

    2009-12-30

    A study of hybrid, enzyme-modified nanoparticles able to produce H(2) using visible light as the energy source has been carried out to establish per-site performance standards for H(2) production catalysts able to operate under ambient conditions. The [NiFeSe]-hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) is identified as a particularly proficient catalyst. The optimized system consisting of Db [NiFeSe]-H attached to Ru dye-sensitized TiO(2), with triethanolamine as a sacrificial electron donor, produces H(2) at a turnover frequency of approximately 50 (mol H(2)) s(-1) (mol total hydrogenase)(-1) at pH 7 and 25 degrees C, even under the typical solar irradiation of a northern European sky. The system shows high electrocatalytic stability not only under anaerobic conditions but also after prolonged exposure to air, thus making it sufficiently robust for benchtop applications.

  2. Uranus' (3-0) H2 quadrupole line profiles

    NASA Astrophysics Data System (ADS)

    Trafton, L.

    1987-04-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  3. HIST1H2BC — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2B family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. [provided by RefSeq, Jul 2008

  4. Vibrational predissociation of ArH2O

    NASA Astrophysics Data System (ADS)

    Bissonnette, C.; Clary, D. C.

    1992-12-01

    Accurate close-coupling calculations are used to investigate the vibrational predissociation of ArH2O as a function of the overall rotation J of the van der Waals complex. A full vibrational and rotational basis of H2O states is used in the calculation. The potential energy surface is of a form due to Cohen and Saykally and derived from far-infrared spectra, with an additional term to introduce the dependence on the vibrations of H2O. The linewidths calculated in this work show a maximum at J=6 and it is found that Fermi resonances affect dramatically the magnitude of the calculated linewidths. Good agreement with experimentally measured linewidths of Nesbitt and Lascola is achieved and the calculations provide a simple picture for the J dependence of the linewidths.

  5. Oxidation of H2S in mammalian cells and mitochondria.

    PubMed

    Abou-Hamdan, Abbas; Guedouari-Bounihi, Hala; Lenoir, Véronique; Andriamihaja, Mireille; Blachier, François; Bouillaud, Frédéric

    2015-01-01

    Hydrogen sulfide (H2S) is the third gasotransmitter described in mammals. These gasotransmitters (H2S, CO, and NO) are small molecules able to diffuse freely across membranes and thus susceptible to reach easily intracellular targets, one of which is the respiratory enzyme cytochrome oxidase subject to complete inhibition by low micromolar concentrations of these gases. However in contrast to NO or CO, H2S can be metabolized by a sulfide quinone reductase feeding the mitochondrial respiratory chain with the hydrogen atoms of sulfide. Sulfide is thus a two-sided molecule: substrate or poison according to the concentration. The aim of this chapter is to present a mean to monitor sulfide oxidation by isolated mitochondria or cells and to summarize how the properties of this amazing couple (mitochondria and sulfide) translate into practical and conceptual consequences.

  6. H2 -norm of fractional transfer functions of implicit type

    NASA Astrophysics Data System (ADS)

    Malti, Rachid; Chevrié, Mathieu; Farges, Christophe; Sabatier, Jocelyn

    2015-09-01

    This paper studies the H2 -norm (or impulse response energy) of fractional transfer functions of implicit type. Stability conditions are first shown to be identical as in rational systems with all poles located in the open left half complex plane. Then, analytical expressions of the H2 -norm are derived for elementary fractional transfer functions of the first and the second kind cascaded with a pure fractional integrator. Next, general boundedness conditions are established in terms of transfer function relative degree. Three illustrative examples are finally proposed. The first one evaluates the quality of a rational approximation of a fractional model of implicit type on the basis of the H2 -norm of the error signal. The second one evaluates the Integral Squared Error of a CRONE control loop and compares it to a classical proportional-derivative controller in a vehicle suspension. Finally, the third one allows to set up an implicit fractional preshaping filter for closed-loop control.

  7. Tanshinone IIA Protects Endothelial Cells from H2O2-Induced Injuries via PXR Activation.

    PubMed

    Zhu, Haiyan; Chen, Zhiwu; Ma, Zengchun; Tan, Hongling; Xiao, Chengrong; Tang, Xianglin; Zhang, Boli; Wang, Yuguang; Gao, Yue

    2017-02-06

    Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to 400 μM H2O2 for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of H2O2 in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against H2O2-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by H2O2 via PXR activation. In conclusion, Tan IIA protected HUVECs against H2O2-induced cell injury through PXR-dependent mechanisms.

  8. H2, N2, and O2 metabolism by isolated heterocysts from Anabaena sp. strain CA.

    PubMed Central

    Smith, R L; Kumar, D; Zhang, X K; Tabita, F R; Van Baalen, C

    1985-01-01

    Metabolically active heterocysts isolated from wild-type Anabaena sp. strain CA showed high rates of light-dependent acetylene reduction and hydrogen evolution. These rates were similar to those previously reported in heterocysts isolated from the mutant Anabaena sp. strain CA-V possessing fragile vegetative cell walls. Hydrogen production was observed with isolated heterocysts. The ratio of C2H4 to H2 produced ranged from 0.9 to 1.2, and H2 production exhibited unique biphasic kinetics consisting of a 1 to 2-min burst of hydrogen evolution followed by a lower, steady-state rate of hydrogen production. This burst was found to be dependent upon the length of the dark period immediately preceding illumination and may be related to dark-to-light ATP transients. The presence of 100 nM NiCl2 in the growth medium exerted an effect on both acetylene reduction and hydrogen evolution in the isolated heterocysts from strain CA. H2-stimulated acetylene reduction was increased from 2.0 to 3.2 mumol of C2H4 per mg (dry weight) per h, and net hydrogen production was abolished. A phenotypic Hup- mutant (N9AR) of Anabaena sp. strain CA was isolated which did not respond to nickel. In isolated heterocysts from N9AR, ethylene production rates were the same under both 10% C2H2-90% Ar and 10% C2H2-90% H2 with or without added nickel, and net hydrogen evolution was not affected by the presence of 100 nM Ni2+. Isolated heterocysts from strain CA were shown to have a persistent oxygen uptake of 0.7 mumol of O2 per mg (dry weight) per h, 35% of the rate of whole filaments, at air saturating O2 levels, indicating that O2 impermeability is not a requirement for active heterocysts. PMID:3921524

  9. Hydrogen sulfide (H 2S) in urban ambient air

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Kelesis, A.; Petrakakis, M.

    Despite indications of high hydrogen sulfide levels in some urban environments, only sparse measurements have been reported in the literature. Here we present one full year of hydrogen sulfide measurements in an urban traffic site in the city of Thessaloniki, Greece. In this 1-million-population city the H 2S concentrations were surprisingly high, with a mean annual concentration of 8 μg m -3 and wintertime mean monthly concentrations up to 20 μg m -3 (12.9 ppb). Daily mean concentrations in the winter were up to 30 μg m -3 (19.3 ppb), while hourly concentrations were up to 54 μg m -3 (34.8 ppb). During calm (wind velocity < 0.5 m s -1) conditions, mainly encountered during night-time hours, hourly values of H 2S were highly correlated with those of CO ( r2 = 0.75) and SO 2 ( r2 = 0.70), pointing to a common traffic source from catalytic converters. Annual mean concentrations are above the WHO recommendation for odor annoyance; hence, H 2S might play a role to the malodorous episodes that the city occasionally experiences. The high ambient H 2S levels might also be relevant to the implementation of preservation efforts for outdoor marble and limestone historical monuments that have been targeting SO 2 emissions as an atmospheric acidity source, since the measurements presented here suggest that about 19% of the annual sulfur (SO 2 + H 2S) emissions in Thessaloniki are in the form of H 2S.

  10. Fluxionality and Isomerism of the Bis(dihydrogen) Complex RuH(2)(H(2))(2)(PCy(3))(2): INS, NMR, and Theoretical Studies.

    PubMed

    Rodriguez, Venancio; Sabo-Etienne, Sylviane; Chaudret, Bruno; Thoburn, John; Ulrich, Stefan; Limbach, Hans-Heinrich; Eckert, Juergen; Barthelat, Jean-Claude; Hussein, Khansaa; Marsden, Colin J.

    1998-07-13

    To study the fluxionality of the bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1), NMR spectra were recorded in Freons (mixture of CDCl(3), CDFCl(2), and CDF(2)Cl). 1 was found to remain fluxional at all temperatures, but the presence of CDCl(3) necessary for its solubilization induces its transformation into, first, RuHCl(H(2))(2)(PCy(3))(2) (3) and the new ruthenium(IV) dihydride RuH(2)Cl(2)(PCy(3))(2) (4). 4 is produced selectively in pure CDCl(3) but reacts further to give a mixture of chloro complexes. 4 was isolated from the reaction of 1 with aqueous HCl in Et(2)O and shows a fluxional process attributed to the interconversion between two symmetrical isomers. The activation parameters of this process were obtained by (1)H NMR line shape analysis, as well as those corresponding to the exchange between 3 and free dihydrogen. The fluxionality of the dihydrogen-hydride system is also evident at a much faster time scale than that of NMR studies in the inelastic neutron scattering observations of the rotation of the dihydrogen ligands. The geometries and relative energies of several isomers of complexes 1, 3, and 4 were studied using density functional theory (DFT) and MP2 methods, together with a few coupled-cluster (CCSD(T)) calculations. In contrast to what might have been expected, the two hydrides and the two H(2) units of 1 lie in the same plane, due to the attractive "cis effect" created by the hydrides. The two H(2) ligands adopt cis positions in the lowest-energy isomer. Rotation of the two dihydrogen ligands has been analyzed using DFT calculations. A slight preference for a C(2) conrotatory pathway has been found with a calculated barrier in good agreement with the experimental INS value. Two low-energy isomers of 4 have been characterized computationally, both of which have C(2)(v)() symmetry, consistent with the solution NMR spectra.

  11. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  12. Hubble Space Telescope NiH2 six battery test

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Lanier, J. Roy

    1991-01-01

    The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.

  13. [Effects of H2-blockers on alcohol dehydrogenase (ADH) activity].

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Szmitkowski, Maciej

    2008-12-01

    First-pass metabolism (FPM) of alcohol is demonstrated by lower blood alcohol concentrations after oral than intravenous administration of the same dose. FPM occurs predominantly in the stomach and has been attributed to class IV of alcohol dehydrogenase (ADH) isoenzyme localizated in the gastric mucosa. A number of factors that influence on gastric ADH activity and thereby modulate FPM have been identified. These include age, sex, ethnicity, concentrations and amounts of alcohol consumed and drugs. Several H2-receptor antagonists, including cimetidine and ranitidine, inhibit gastric ADH activity and reduce FPM, resulting in higher blood alcohol concentrations after H2-blockers administration.

  14. H2O2_COD_EPA; MEC_acclimation

    EPA Pesticide Factsheets

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  15. Rototranslational collision-induced absorption by H2-H2 pairs at temperatures from 600 to 7000 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    The computation of the far-infrared, rototranslational (RT) collision-induced absorption (CIA) spectra of H2-H2 pairs is presented at temperatures from 600 to 7000 K for the first time. Theoretical results are based on the quantum mechanical and semiclassical, three lowest translational spectral moments obtained for H2 pairs. The effective, isotropic H2-H2 interaction potential, suitable for the high-temperature computations, and the ab initio induced dipoles, have been used as input. Special effort has been made to account for the rotational and vibrational states dependence of the dipoles, since it was found to be relevant at the high temperatures employed. The computations of the entire RT band account for all populated vibrational states of hydrogen molecule and include vibrational transitions v tends towards v-prime = v, with v = 0, 1, 2 and 3. The described method makes use of the adequately selected model line shapes with the temperature-dependent parameters. The presented model is useful for the 'model atmospheres' of zero- and low-metallicity, cool and dense stellar atmospheres, where CIA is known to be imporatnt.

  16. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity

    PubMed Central

    Duan, Defang; Liu, Yunxian; Tian, Fubo; Li, Da; Huang, Xiaoli; Zhao, Zhonglong; Yu, Hongyu; Liu, Bingbing; Tian, Wenjing; Cui, Tian

    2014-01-01

    The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3m structure yields high Tc values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far. PMID:25382349

  17. Physical chemistry of the H2SO4/HNO3/H2O system - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Zhang, R.; Wooldridge, P. J.; Mcmahon, J. R.; Kim, J. E.; Chang, H. Y.; Beyer, K. D.

    1993-01-01

    Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO3 hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H2SO4/H2O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO3 vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO3 and H2O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H2SO4 solutions and on solid H2SO4 hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.

  18. Superdressed H+2 and H2+3 molecular ions in intense, high-frequency laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, T.; Bandrauk, A. D.

    1995-01-01

    We study the radiative distortion of the lowest two potential surfaces of H+2 and H2+3 molecular ions in a superintense (I>~1016 W/cm2), high-frequency, linearly polarized laser field, using the space-translation or acceleration representation of laser-matter interaction. The electron clouds undergo field-induced redistribution in the molecular ions due to the presence of field-induced ``dichotomous'' dressed Coulomb potentials. Such super-field-dressed systems have a greater tendency to transfer electronic charge into the region between the nuclei and hence become more ``stable'' than the field-free ones. For example, at the equilibrium nuclear separation the dissociation energy of the superdressed H+2 is found to increase by about 20% compared with the field-free H+2. More dramatically, the lowest two surfaces of H2+3 that are repulsive in zero field become attractive (bonding) in the presence of an intense, high-frequency field. The possibility of molecules becoming stabilized against both ionization and dissociation in superintense fields is discussed.

  19. Reinvestigation of the annite = sanidine + magnetite + H2 reaction using the fH2-sensor technique

    USGS Publications Warehouse

    Cygan, G.L.; Chou, I.-Ming; Sherman, David M.

    1996-01-01

    The decomposition of the iron mica, annite, to sanidine plus magnetite and vapor, KFe3AlSi3O10(OH)2 = KAlSi3O8 + Fe3O4 + H2, has been reexamined experimentally with the use of a variety of buffers coupled with fH2 sensors at 2 kbar and between 400 and 840 ??C. Various capsule configurations were used in this study to delineate the equilibrium constant for this reaction in conjunction with 57Fe Mo??ssbauer spectroscopy measurements to monitor the oxy-annite component in mica in selected experiments. Results at the most reducing and highest temperature conditions of this study extend the annite stability field to higher temperature and fo2 values than those defined in previous work. Lower temperature results indicate that the annite-sanidine-magnetite stability boundary does not intersect the hematite + magnetite + H2O buffer at 400??C as previously reported but rather is subparallel to the buffer curve at lower fo2 values. The equilibrium fH2 (in bars) for the assemblage annite + sanidine + magnetite + vapor at 2 kbar and between 400 and 840 ??C can be described by the relation log fH2 (??0.08) = 13.644 - (17368/T) + (5.168 ?? 106)/T2, where T is temperature in kelvins.

  20. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Duan, Defang; Liu, Yunxian; Tian, Fubo; Li, Da; Huang, Xiaoli; Zhao, Zhonglong; Yu, Hongyu; Liu, Bingbing; Tian, Wenjing; Cui, Tian

    2014-11-01

    The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3m structure yields high Tc values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far.

  1. The H2 + CO ↔ H2CO Reaction: Rate Constants and Relevance to Hot and Dense Astrophysical Media

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2016-07-01

    A theoretical thermochemical and kinetic investigation of the thermal H2 + CO ↔ H2CO reaction was performed for a temperature range from 200 to 4000 K. Geometries and vibrational frequencies of reactants, product, and transition state (TS) were obtained at CCSD/cc-pVxZ (x = T and Q) levels and scaling factors were employed to consider anharmonicity effects on vibrational frequencies, zero-point energies, and thermal corrections provided by these methodologies. Enthalpies Gibbs energies, and rate constants for this reaction were determined by including a complete basis set extrapolation correction for the electronic properties calculated at CCSD(T)/cc-pVyZ (y = Q and 5) levels. Our study indicates that enthalpy changes for this reaction are highly dependent on temperature. Moreover, forward and reverse (high-pressure limit) rate constants were obtained from variational TS theory with quantum tunneling corrections. Thus, modified Arrhenius’ equations were fitted by means of the best forward and reverse rate constant values, which provide very reliable estimates for these quantities within the temperature range between 700 and 4000 K. To our knowledge, this is the first kinetic study done for the forward H2 + CO \\to H2CO process in a wide temperature range. Finally, these results can be used to explain the formaldehyde abundance in hot and dense interstellar media, possibly providing data about the physical conditions associated with H2CO masers close to massive star-forming regions.

  2. The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor.

    PubMed

    Koskinen, Perttu E P; Kaksonen, Anna H; Puhakka, Jaakko A

    2007-07-01

    Microbial community composition dynamics was studied during H(2) fermentation from glucose in a fluidized-bed bioreactor (FBR) aiming at obtaining insight into the H(2) fermentation microbiology and factors resulting in the instability of biofilm processes. FBR H(2) production performance was characterised by an instable pattern of prompt onset of H(2) production followed by rapid decrease. Gradual enrichment of organisms increased the diversity of FBR attached and suspended-growth phase bacterial communities during the operation. FBR bacteria included potential H(2) producers, H(2) consumers and neither H(2) producers nor consumers, and those distantly related to any known organisms. The prompt onset of H(2) production was due to rapid growth of Clostridium butyricum (99-100%) affiliated strains after starting continuous feed. The proportion trend of C. butyricum in FBR attached and suspended-growth phase communities coincided with H(2) and butyrate production. High glucose loading rate favoured the H(2) production by Escherichia coli (100%) affiliated strain. Decrease in H(2) production, associated with a shift from acetate-butyrate to acetate-propionate production, was due to changes in FBR attached and suspended-growth phase bacterial community compositions. During the shift, organisms, including potential propionate producers, were enriched in the communities while the proportion trend of C. butyricum decreased. We suggest that the instability of H(2) fermentation in biofilm reactors is due to enrichment and efficient adhesion of H(2) consumers on the carrier and, therefore, biofilm reactors may not favour mesophilic H(2) fermentation.

  3. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  4. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  5. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  6. Effect of H2 and CO contents in syngas during combustion using Micro Gas Turbine

    NASA Astrophysics Data System (ADS)

    Othman, N. F.; Boosroh, M. H.

    2016-03-01

    Synthetic gas or syngas is produced from the gasification process. Its main compositions are hydrogen, H2; carbon monoxide, CO; methane, CH4; carbon dioxide, CO2 and nitrogen, N2. Syngas is a substitute for the depleting natural gas (80-90%.vol. CH4). Natural gas is combusted in gas turbine in gas-fired power plant to produce electricity. However, combustion of syngas using gas turbine is expected to show different behavior compared to natural gas combustion. This is because of H2 and CO contents in syngas have higher adiabatic flame temperature than CH4. In this study, different quality of syngas with different contents of H2 (0.6-0.8 %.vol.) and CO (1-3 %.vol.) were combusted using 30kW Micro Gas Turbine (MGT). Performances of different syngas quality were studied using NOx, CO, CO2 emissions and combustion efficiency parameters. NOx and CO are the main pollutants from the combustion process. NOx emissions were the highest for syngas with H2 contents of 0.8 %.vol. and CO contents of 3 %.vol. CO emissions were in the range of 220-310 ppm for all the tested syngas. While, CO2 emissions were in the range of 0.96-1.06 % for all the tested syngas. Combustion efficiencies were reduced for syngas with CO contents of 1 %.vol. and H2 contents of 0.6-0.8 %.vol. This is most probably due to the dilution effect of N2 in syngas.

  7. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  8. Non-thermal escape of H2 and OH from the upper atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Kharchenko, Vasili

    2016-10-01

    Two major sources of energetic O atoms in the upper atmosphere of Mars are photochemical production, via dissociative recombination (DR) of O2+ and CO2+ molecular ions, and energizing collisions with fast energetic neutral atoms (ENA) produced by the precipitating solar wind ions. The non-thermal O atoms can either directly escape to space, forming a hot oxygen corona, or participate in collisions with background thermal atmospheric gases, such as H2. In this study we present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars, produced in reactions of thermal molecular hydrogen and suprathermal oxygen atoms energized by both DR and ENAs. The non-thermal chemical reaction O + H2(v',j') → H + OH(v',j') is described using recent quantum-mechanical state-to-state cross sections[1], which allow us to predict non-equilibrium distributions of excited rotational and vibrational states (v',j') of OH and expected emission spectra for different geometry and solar activity conditions. A potential consequence is appearance or enhancement of faint Meinel bands in the upper atmosphere of Mars. Moreover, a fraction of produced translationally hot H2 and OH are sufficiently energetic to overcome Mars' gravitational potential and escape into space, contributing to the hot corona. The described non-thermal mechanisms produce estimated total escape fluxes of OH and H2 from dayside of Mars, for low solar activity conditions, equal to about 5×1022 s-1 for OH, or about 0.1% of the total escape rate of atomic O and H, and 1023 s-1 for H2 [2]. If HD molecules are considered instead of H2, the non-thermal mechanisms are about 30 times more efficient than Jeans escape, contribute about 5-10% of the total D escape rate, potentially of interest in atmospheric models of water evolution on Mars.[1] M. Gacesa and V. Kharchenko, J. Chem. Phys. 141, 4324 (2014)[2] M. Gacesa, P. Zhang, V. Kharchenko, Geophys. Res. Lett. 39, L10203 (2012).

  9. Global Flux Balance in the Terrestrial H2O Cycle: Reconsidering the Post-Arc Subducted H2O Flux

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2010-12-01

    Quantitative estimates of H2O fluxes between the mantle and the exosphere (i.e., the atmosphere, oceans and crust) are critical to our understanding of the chemistry and dynamics of the solid Earth: the abundance and distribution of water in the mantle has dramatic impacts upon mantle melting, degassing history, structure and style of convection. Water is outgassed from the mantle is association with volcanism at mid-ocean ridges, ocean islands and convergent margins. H2O is removed from the exosphere at subduction zones, and some fraction of the subducted flux may be recycled past the arc into the Earth’s deep interior. Estimates of the post-arc subducted H2O flux are primarily based on the stability of hydrous phases at subduction zone pressures and temperatures (e.g. Schmidt and Poli, 1998; Rüpke et al., 2004; Hacker, 2008). However, the post-arc H2O flux remains poorly quantified, in part due to large uncertainties in the water content of the subducting slab. Here we evaluate estimated post-arc subducted fluxes in the context of mantle-exosphere water cycling, using a Monte Carlo simulation of the global H2O cycle. Literature estimates of primary magmatic H2O abundances and magmatic production rates at different tectonic settings are used with estimates of the total subducted H2O flux to establish the parameter space under consideration. Random sampling of the allowed parameter space affords insight into which input and output fluxes satisfy basic constraints on global flux balance, such as a limit on sea-level change over time. The net flux of H2O between mantle and exosphere is determined by the total mantle output flux (via ridges and ocean islands, with a small contribution from mantle-derived arc output) and the input flux subducted beyond the arc. Arc and back-arc output is derived mainly from the slab, and therefore cancels out a fraction of the trench intake in an H2O subcycle. Limits on sea-level change since the end of the Archaean place

  10. Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1988-01-01

    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range.

  11. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    SciTech Connect

    Xantheas, Sotiris S.

    2012-08-01

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.

  12. H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores

    PubMed Central

    SONOBE, TAKASHI; HAOUZI, PHILIPPE

    2015-01-01

    Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting

  13. New Optical Constants for Amorphous and Crystalline H2O-ice and H2O-mixtures.

    NASA Technical Reports Server (NTRS)

    Mastrapa, Rachel; Bernstein, Max; Sandford, Scott

    2006-01-01

    We will present the products of new laboratory measurements of ices relevant to Trans-Neptunian Objects. We have calculated the real and imaginary indices of refraction for amorphous and crystalline H2O-ice and also H2O-rich ices containing other molecular species. We create ice samples by condensing gases onto a cold substrate. We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows. We then collect transmission spectra of the samples in the wavelength range from 0.7-22 micrometers. Using the thickness and the transmission spectra of the ice we calculate the imaginary part of the index of refraction. We then use a Kramers-Kronig calculation to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can then be used to create model spectra for comparison to spectra from Solar System objects, including TNOs. We will summarize the difference between the amorphous and crystalline H2O-ice spectra. These changes include weakening of features and shifting of features to shorter wavelength. One important result is that the 2 pm feature is stronger in amorphous H2O ice than it is in crystalline H2O-ice. We will also discuss the changes seen when H2O is mixed with other components, including CO2, CH4, HCN, and NH3 (Bernstein et al. 2005; Bernstein et al. 2006).

  14. Herschel/HIFI discovery of interstellar chloronium (H2Cl+)

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Pearson, J. C.; Neufeld, D. A.; Schilke, P.; Müller, H. S. P.; Gupta, H.; Bell, T. A.; Comito, C.; Phillips, T. G.; Bergin, E. A.; Ceccarelli, C.; Goldsmith, P. F.; Blake, G. A.; Bacmann, A.; Baudry, A.; Benedettini, M.; Benz, A.; Black, J.; Boogert, A.; Bottinelli, S.; Cabrit, S.; Caselli, P.; Castets, A.; Caux, E.; Cernicharo, J.; Codella, C.; Coutens, A.; Crimier, N.; Crockett, N. R.; Daniel, F.; Demyk, K.; Dominic, C.; Dubernet, M.-L.; Emprechtinger, M.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Gerin, M.; Giesen, T. F.; Goicoechea, J. R.; Helmich, F.; Hennebelle, P.; Henning, Th.; Herbst, E.; Hily-Blant, P.; Hjalmarson, Å.; Hollenbach, D.; Jack, T.; Joblin, C.; Johnstone, D.; Kahane, C.; Kama, M.; Kaufman, M.; Klotz, A.; Langer, W. D.; Larsson, B.; Le Bourlot, J.; Lefloch, B.; Le Petit, F.; Li, D.; Liseau, R.; Lord, S. D.; Lorenzani, A.; Maret, S.; Martin, P. G.; Melnick, G. J.; Menten, K. M.; Morris, P.; Murphy, J. A.; Nagy, Z.; Nisini, B.; Ossenkopf, V.; Pacheco, S.; Pagani, L.; Parise, B.; Pérault, M.; Plume, R.; Qin, S.-L.; Roueff, E.; Salez, M.; Sandqvist, A.; Saraceno, P.; Schlemmer, S.; Schuster, K.; Snell, R.; Stutzki, J.; Tielens, A.; Trappe, N.; van der Tak, F. F. S.; van der Wiel, M. H. D.; van Dishoeck, E.; Vastel, C.; Viti, S.; Wakelam, V.; Walters, A.; Wang, S.; Wyrowski, F.; Yorke, H. W.; Yu, S.; Zmuidzinas, J.; Delorme, Y.; Desbat, J.-P.; Güsten, R.; Krieg, J.-M.; Delforge, B.

    2010-10-01

    We report the first detection of chloronium, H2Cl+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 212-101 lines of ortho-H_235Cl+ and ortho-H_237Cl+ are detected in absorption towards NGC 6334I, and the 111-000 transition of para-H_235Cl+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H2Cl+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H2Cl+ column density ratios, ~1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H2Cl+ column densities, in excess of 1013 cm-2, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 1 and acknowledgments (page 5) are only available in electronic form at http://www.aanda.org

  15. Ni-H2 cell characterization for INTELSAT programs

    NASA Technical Reports Server (NTRS)

    Dunnet, Andrew F.; Earl, Martin W.

    1994-01-01

    Various Ni/H2 cell designs manufactured for INTELSAT Programs during the past decade have been characterized electrically as a function of temperature. The resulting data for these INTELSAT V, VI, VII and VIIA cells are assembled in a manner which allows ready comparison of performance. Also included is a detailed description of each design.

  16. The decomposition of H 2S on Ni(110)

    NASA Astrophysics Data System (ADS)

    Huntley, D. R.

    1990-12-01

    Adsorbed H 2S decomposes on Ni(110) to form primarily surface S and H for coverages of less than 0.5 ML. The hydrogen evolves in two separate TPD peaks, characteristic of hydrogen recombination and desorption from the clean surface and from regions perturbed by chemisorbed sulfur. XPS and HREELS indicate the presence of SH and possibly H 2S groups on the surface at 110 K. The XPS data indicates that for coverages less than about 0.5 ML, the concentration of molecular H 2S is small, but it is difficult to asess the coverage of SH groups. However, all of the molecular species decompose prior to hydrogen desorption (for high coverage, 180 K). Physisorbed H 2S is observed on the surface for coverages greater than about 0.5 ML. The sulfur Auger lineshape was observed to be a function of both coverage and temperature. The changes in the lineshape were attributed to perturbations in local bonding interactions between the S and the Ni surface, perhaps involving some change in either bonding sites or distances but not involving SH bond scission. The decomposition reaction was modeled using a bond order conservation method which successfully reproduced the experimental results.

  17. X-ray photoelectron spectra of MgH2

    NASA Astrophysics Data System (ADS)

    He, Z. X.; Pong, W.

    1990-06-01

    Measurements of X-ray photoemission from magnesium hydride MgH2 were made in an effort to further the fundamental understanding of the electronic structure of this metal hydride. The polycrystalline MgH2 was compressed onto a metal holder to provide a smooth solid surface in a dry nitrogen box and then transferred into a ESCA system without exposure to air. Measurements were made immediately after the surface was scrapped in the vacuum. The binding energies of the photoelectrons from Mg 2s and 2p states were found to be 88.9 ± 0.2eV, and 50.1 ± 0.2eV, respectively. The valence band spectrum shows an effective base width of approximately 8.8eV, which is in reasonable agreement with the recent band structure calculation for MgH2. The photoelectron spectra also display features that can be identified as volume plasmon energy loss of 14.6 ± 0.2eV. The data can be shown to be useful in calculating the average band gap energy (5.80eV) for MgH2.

  18. H 2O + ions in comets: models and observations

    NASA Astrophysics Data System (ADS)

    Wegmann, R.; Jockers, K.; Bonev, T.

    1999-06-01

    An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H 2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H 2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H 2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H 2O + ions. Finally, the two dimensional images of model column densities are compared with observations.

  19. Preformance Analysis of NH3-H2O Absorption Cycle

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi

    Different from H2O-LiBr absorption cycle, it is necessary to have rectifier between generator and condenser in NH3-H2O absorption cycle, because there mixes some steam in refrigerant vapor in the process of regenerating refrigerant from the ammonia strong aqueous solution. And in some case ex. partial load or heating, the efficiency of rectifier might decrease, if the flow rate of refrigerant vapor and ammonia aqueous solution decrease. As a result, steam flow into condenser with ammonia refrigerant vapor, which reduces cycle COPs of cooling and heating. Accordingly in order to evaluate the effect of ammonia concentration in refrigerant for the performance of NH3-H2O absorption heat pump, the simple design approach of modeling condenser and evaporator is introduced in this paper. In the model, the calculation of heat rate in condenser and evaporator was simplified considering the characteristic of NH3-H2O liquid-vapor equilibrium. Then the simulation for cycle perforance based on GAX absorption cycle was made using the efficiency of rectifier that established the ammonia concentration in refrigerant and it was derived that 3 [%] decrease of ammonia concentration in refrigerant induced 15 [%] decrcase of cooling COP and 7 [%] decrease of heating COP and that there existed the most suitable circulation ratio for each ammonia concentration in refrigerant.

  20. H2A Production Model, Version 2 User Guide

    SciTech Connect

    Steward, D.; Ramsden, T.; Zuboy, J.

    2008-09-01

    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  1. The safety of H(2)-blockers use during pregnancy.

    PubMed

    Matok, Ilan; Gorodischer, Rafael; Koren, Gideon; Sheiner, Eyal; Wiznitzer, Arnon; Uziel, Elia; Levy, Amalia

    2010-01-01

    Little data exist on the safety of H(2)-blockers during pregnancy. A computerized database of medications dispensed from 1998 to 2007 to all women registered in the "Clalit" health maintenance organization, in the Southern District of Israel, was linked with computerized databases containing maternal and infant hospitalization records from the district hospital. The following confounders were controlled for: parity, maternal age, ethnic group, maternal diabetes, smoking, and peripartum fever. Also, therapeutic pregnancy termination data were analyzed. A total of 117 960 infants were born during the study period, 84 823 of them (72%) to women registered at Clalit; 1148 of the latter were exposed to H(2)-blockers during the first trimester of pregnancy. Exposure to H(2)-blockers was not associated with an increased risk for congenital malformations (adjusted odds ratio [OR] = 1.03, 95% confidence interval [CI]: 0.80-1.32); also, no such association was found when therapeutic pregnancy terminations were included in the analysis (adjusted OR = 1.17, 95% CI: 0.93-1.46). Exposure to H(2)-blockers was not associated with perinatal mortality, premature delivery, low birth weight, or low Apgar scores.

  2. Bioreactors for H2 production by purple nonsulfur bacteria.

    PubMed

    Markov, Sergei A; Weaver, Paul F

    2008-03-01

    Two types of laboratory-scale bioreactors were designed for H(2) production by purple nonsulfur bacteria. The bioreactors employed a unique type of hydrogenase activity found in some photosynthetic bacteria that functions in darkness to shift CO (and H2O) into H(2) (and CO2). The mass transport of gaseous CO into an aqueous bacterial suspension was the rate-limiting step and the main challenge for bioreactor design. Hollow-fiber and bubble-train bioreactors employing immobilized and free-living bacteria have proven effective for enhancing the mass transfer of CO. The hollow-fiber bioreactor was designed so that both a growth medium and CO (10% in N(2)) passed from the inside of the fibers to the outside within the bioreactor. Bacteria were immobilized on the outer surface of the hollow fibers. Hydrogen production from CO at an average rate of 125 ml g cdw(-1) h(-1) (maximum rate of 700 ml g cdw(-1) h(-1)) was observed for more than 8 months. The bubble-train bioreactor was built using polyvinyl chloride (PVC) tubing, wound helically on a vertical cylindrical supporting structure. Small bubbles containing CO were injected continuously through a needle/septum connection from the gas reservoir (20% CO). Up to 140 ml g cdw(-1) h(-1) of H(2) production activity was observed using this bioreactor for more than 10 days.

  3. Structure A, architectural sections & details. Drawing no. H2, revised ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, architectural sections & details. Drawing no. H2, revised as-built dated October 11, 1951. Original drawing by Black & Veatch, consulting engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  4. Multidimentional Normal Mode Calculations for the OH Vibrational Spectra of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar

    NASA Astrophysics Data System (ADS)

    Li, Ying-Cheng; Chuang, Hsiao-Han; Tan, Jake Acedera; Takahashi, Kaito; Kuo, Jer-Lai

    2014-06-01

    Recent experimental observations of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar clusters in the region 1400-3800 wn show that the OH stretching vibration has distinct characteristics. Multidimensional normal mode calculations were carried out for OH stretching vibrations in the 1200-4000 wn photon energy range. The potential energy and dipole surfaces were evaluated by using first-principles methods. By comparing the calculated frequencies and intensities of OH stretching vibration with experimental spectra, we found that the assignment of OH strecthing of H_3O^+ moiety and free OH strectching vibration have resonable agreement with experimental data. Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan, Science, 2005, 17, 1765. Kenta Mizuse, Jer-Lai Kuo and Asuka Fujii, Chem. Sci., 2011, 2, 868 Kenta Mizuse and Asuka Fujii, J. Phys. Chem. A, 2013, 117, 929.

  5. Coaxial rings and H2 knots in Hubble 12

    NASA Astrophysics Data System (ADS)

    Hsia, Chih-Hao; Kwok, Sun; Chau, Wayne; Zhang, Yong

    2016-07-01

    Hubble 12 (Hb 12) is a young planetary nebula (PN) exhibiting nested shells. We present new near-infrared narrow-band imaging observations of Hb 12 using the Canada-France- Hawaii Telescope (CFHT). A number of co-axial rings aligned with the bipolar lobes and two pairs of separate H2 knots with different orientations are detected.

  6. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  7. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  8. H2 excitation in HD 34078 from FUSE observations

    NASA Astrophysics Data System (ADS)

    Petit, F. Le; Boissé, P.; Roueff, E.; Gry, C.; Le Brun, V.

    We present preliminary results from FUSE on the HD 34078 line of sight from 980 to 1080 Angströms. Many atomic and molecular lines are detected, especially from H2 observed up to the first vibrational excited levels. HD and CO are also clearly present. The column densities found for CO and atomic hydrogen are close to those given by Mc Lachlan and Nandy (1984). We deduce an excitation temperature of 70K from the column densities of the two first rotational levels of H2. The molecular fraction (2 \\cdot N(H2))/ (2 \\cdot N(H2)+N(H)) is about 0.5 toward HD34078 corresponding to a color excess, E(B-V) of 0.52. The results will be discussed with the help of a model of photodominated regions. References: A. Mc Lachlan and K. Nandy, MNRAS, 207, 355 S.R. Federman, C.J. Strom, D.L. Lambert, Jason A. Cardelli, V.V. Smith and C.L. Joseph, ApJ, 424, 772

  9. Histone H2A significantly enhances in vitro DNA transfection.

    PubMed Central

    Balicki, D.; Beutler, E.

    1997-01-01

    BACKGROUND: Gene transfer is a potential treatment modality of genetic disease. Efficient, practical methods of DNA transfection are currently under investigation. MATERIALS AND METHODS: A beta-galactosidase reporter plasmid interacted electrostatically with histones, poly-L-Lys, poly-L-Arg, and a combination of poly-L-Lys and poly-L-Arg. This complex was then used to transfect COS-7 cells. beta-galactosidase activity was quantified and used to compare the efficiency of gene transfection in vitro. A comparison was also made of DNA transfection with the most active histone subclass, i.e., histone H2A, in the absence and presence of an anionic liposome. RESULTS: There was a marked increase in DNA transfection in the presence of histone H2A when compared with the control, whereas each of the other histones and polycations showed little, if any, effect. The extent of activation depends strongly on the DNA/histone ratio and is also a function of the molarity of the final Tris-acetate, pH 8, solution. The anionic liposomes used demonstrated an inhibitory effect. CONCLUSIONS: Histone H2A significantly enhances in vitro DNA transfection whereas other histones and anionic liposomes do not. A study of the difference between histone H2A and other histone subclasses may serve to clarify some of the mechanisms and the essential components of efficient gene delivery. PMID:9407553

  10. Corrosion of low carbon steel weldments at 600-800 °C in N2/H2S/H2O gases

    NASA Astrophysics Data System (ADS)

    Lee, Dong Bok

    2014-03-01

    A low carbon steel was arc-welded, and corroded at 600, 700 and 800 °C for up to 20 h in 1 atm of either N2/H2S-mixed gases or N2/H2S/H2O-mixed gases to characterize the effects of H2S and H2O gases on the high-temperature corrosion of welded joints. Corrosion proceeded fast and almost linearly. It increased with the increases in the corrosion temperature and with the addition of H2S and H2O. H2S formed FeS, while H2O formed iron oxides such as Fe3O4. Hydrogen and sulfur that were released from H2S and H2O made the scales fragile and nonadherent. Weld metals corroded faster than base metals because the former had coarser grains than the latter.

  11. NiH2 Battery Reconditioning for LEO Applications

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.; Hafen, D. P.

    1997-01-01

    This paper summarizes reasons for and benefits of reconditioning nickel-hydrogen (NiH2) batteries used for Low Earth Orbit (LEO) applications. NiH2 battery cells do not have the classic discharge voltage problems more commonly associated with nickel-cadmium (NiCd) cells. This is due, in part, to use of hydrogen electrodes in place of cadmium electrodes. The nickel electrode, however, does have a similar discharge voltage signature for both cell designs. This can have an impact on LEO applications where peak loads at higher relative depths of discharge can impact operations. Periodic reconditioning provides information which can be used for analyzing long term performance trends to predict usable capacity to a specified voltage level. The reconditioning process described herein involves discharging NiH2 batteries at C/20 rates or less, to an average cell voltage of 1.0 volts or less. Recharge is performed at nominal C/5 rates to specified voltage/temperature (V/T) charge levels selected to restore required capacity with minimal overcharge. Reconditioning is a process of restoring reserve capacity lost on cycling, which is commonly called the memory effect in NiCd cells. This effect is characterized by decreases in the discharge voltage curve with operational life and cycling. The end effect of reconditioning NiH2 cells may be hidden in the versatility, of that design over the NiCd cell design and its associated negative electrode fading problem. The process of deep discharge at lower rates by way of reconditioning tends to redistribute electrolyte and water in the NiH2 cell electrode stack, while improving utilization and charge efficiency. NiH2 battery reconditioning effects on life are considered beneficial and may, in fact. extend life based on NiCd experience. In any case, usable capacity data obtained from reconditioning is required for performance evaluation and trend analysis. Characterization and life tests have provided the historical data base used to

  12. The H2O Content of Granite Embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Cesare, B.; Remusat, L.; Acosta-Vigil, A.; Poli, S.

    2014-12-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can be applied to

  13. The H2O content of granite embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, Omar; Cesare, Bernardo; Remusat, Laurent; Acosta-Vigil, Antonio; Poli, Stefano

    2015-04-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites [1, 2, 3]. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region [3]. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can

  14. Vapour pressures of H2SO4/HNO3/HCI/HBr/H2O solutions to low stratospheric temperatures

    SciTech Connect

    Luo, B.; Carslaw, K.S.; Peter, T.; Clegg, S.L. |

    1995-02-01

    Vapor pressures of H2O, HNO3, HCl and HBr over supercooled aqueous mixtures with sulfuric acid have been calculated using an activity coefficient model, for 185 K less than T less than 235 K, 0 less than wt% (H2SO4) + wt% (HNO3) less than 70, and assuming HCl and HBr to be minor constituents. Predicted vapor pressures agree well with most laboratory data, and give confidence in the validity of the model. The results are parameterized as simple formulae, which reproduce the model results to within 40% and cover the entire stratospherically relevant range of composition and temperature.

  15. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    PubMed

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  16. Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Song, Naihui

    1994-01-01

    The freezing temperatures of H2SO4/HNO3/H2O mixtures were systematically documented. Nitric acid was found to affect freezing significantly. Measurements show that nitric acid can cause substantial supercooling over a broad composition range. However, some ternary compositions, like to those in polar stratospheric clouds (PSCs), have high freezing temperatures. The freezing of PSC particles could be controlled by the temperature and vapor pressure of both nitric acid and water in a non-linear way. Formation of polar stratospheric clouds may be forecasted on the basic of conditions of temperature and vapor contents of water and nitric acid.

  17. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    PubMed

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.

  18. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  19. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  20. The Electronic Spectrum of H_2PO, the Prototypical Phosphoryl Free Radical

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mohammed A.; Clouthier, Dennis J.

    2011-06-01

    The electronic spectrum of the H_2PO radical has been identified by laser-induced fluorescence (LIF) and single vibronic level (SVL) emission techniques. The radical was produced in a pulsed electric discharge jet using a precursor mixture of phosphine (PH_3) and carbon dioxide in high-pressure argon and the tilde{B}^2A' - tilde{X}^2A' electronic transition was detected in the 410-338 nm region. Low resolution LIF and SVL emission spectra of H_2PO and D_2PO have been recorded and the A' vibrational frequencies have been determined in both states. High-resolution spectra of the 0_0^0 bands of H_2PO and D_2PO, which consist of strong a-type and weaker c-type components, were recorded. The spectra have been rotationally analyzed and the excited state molecular structure determined. The spectrum of H_2PO will be discussed in comparison with the spectra of other phosphoryl and arsenyl radicals that have been recently studied in our laboratory.

  1. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    PubMed Central

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-01-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2–rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds. PMID:24104596

  2. H2SOLV: Fortran solver for diatomic molecules in explicitly correlated exponential basis

    NASA Astrophysics Data System (ADS)

    Pachucki, K.; Zientkiewicz, M.; Yerokhin, V. A.

    2016-11-01

    We present the Fortran package H2SOLV for an efficient computation of the nonrelativistic energy levels and the wave functions of diatomic two-electron molecules within the Born-Oppenheimer approximation. The wave function is obtained as a linear combination of the explicitly correlated exponential (Kołos-Wolniewicz) functions. The computations of H2SOLV are performed within the arbitrary-precision arithmetics, where the number of working digits can be adjusted by the user. The key part of H2SOLV is the implementation of the algorithm of an efficient computation of the two-center two-electron integrals for arbitrary values of internuclear distances developed by one of us (Pachucki, 2013). This have been one of the long-standing problems of quantum chemistry. The code is parallelized, suitable for large-scale computations limited only by the computer resources available and can produce highly accurate results. As an example, we report several benchmark results obtained with H2SOLV, including the energy value accurate to 18 decimal digits.

  3. Indonesian low rank coal oxidation: The effect of H2O2 concentration and oxidation temperature

    NASA Astrophysics Data System (ADS)

    Rahayu, S. S.; Findiati, F.; Aprilia, F.

    2016-11-01

    Extraction of Indonesian low rank coals by alkaline solution has been performed to isolate the humic substances. Pretreatments of the coals by oxidation using H2O2 prior to extraction are required to have higher yield of humic substances. In the previous research, only the extraction process was considered. Therefore, the effects of reaction temperature and residence time on coal oxidation and composition of extract residues are also investigated in this research. The oxidation temperatures studied were 40°C, 50°C, and 70°C and the H2O2 concentrations studied were 5%, 15%, 20 %, and 30 %. All the oxidation variables were studied for 90 minutes. The results show that the higher the concentration of H2O2 used, the less oxidized coal produced. The same trend was obtained by using higher oxidation temperature. The effect of H2O2 concentration, oxidation temperature and reaction time to the yield of humic substances extraction have positive trends.

  4. Observations of H2SO4 and MSA during PEM-Tropics-A

    NASA Astrophysics Data System (ADS)

    Mauldin, R. L.; Tanner, D. J.; Heath, J. A.; Huebert, B. J.; Eisele, F. L.

    1999-03-01

    Results are presented of measurements of the concentration of gas phase H2SO4 and methane sulfonic acid (MSA) performed aboard the NASA P3-b aircraft during the Pacific Exploratory Mission (PEM) Tropics study using the selected ion chemical ionization mass spectrometry (SICIMS) technique. During a nighttime portion of one flight the [H2SO4] was found to increase with decreasing relative humidity (RH). When compared to laboratory measurements of H2SO4 vapor pressure as a function of RH and particle neutralization (NH4+ and SO42- ionic composition) and model predictions using a liquid drop hydrate model, these measurements indicate that the particles from which the H2SO4 is evaporating are relatively unneutralized, a result which is in good agreement with filter measurements. Overall, the same increase in the gas phase [MSA] with decreasing RH or decreasing [NH4+] (obtained from filter measurements) was also observed, indicating a high volatility of MSA at low RH values or particle neutralization. When gas phase MSA values are compared to methane sulfonate (MS) values obtained from filter measurements, it was found that MSA was totally volatilized at low RH values, while MSA resides mainly in the particulate form at high RH values. Combining the gas phase and filter measurements, the boundary layer MS/(MS + SO42-) ratio showed a distinct increase with decreasing temperature and suggests that little or no MS or MSA is produced in the boundary layer at temperatures above 300 K.

  5. Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun

    2013-10-01

    Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ~50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.

  6. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration

    PubMed Central

    Molavian, Hamid R.; Kohandel, Mohammad; Sivaloganathan, Sivabal

    2016-01-01

    Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis. PMID:27601999

  7. Effect of acute vs chronic H2O2-induced oxidative stress on antioxidant enzyme activities.

    PubMed

    Miguel, Fernanda; Augusto, Amanda C; Gurgueira, Sonia A

    2009-04-01

    H2O2 can freely crosses membranes and in the presence of Fe2+ (or Cu+) it is prone to participate in Fenton reaction. This study evaluated the concentration and time-dependent effects of H2O2-induced oxidative stress on MnSOD, Se:GPx and catalase and on aconitase. Acute and chronic H2O2 treatments were able to induce oxidative stress in HeLa cells as they significantly decreased aconitase activity and also caused a very significant decrease on antioxidant enzyme activities. The inhibition of enzyme activities was time- and concentration-dependent. Chronic treatment with 5 microM H2O2/h after 24 h was able to decrease all enzyme activities almost at the same level as the acute treatment. Acute and chronic treatments on antioxidant enzyme activities were prevented by cell treatment with ascorbic acid or N-acetylcysteine. These results indicate that antioxidant enzymes can also be affected by the same ROS they produce or neutralize if the time of exposure is long enough.

  8. Dielectric and conduction behaviour of H2SO4 doped conducting Polyaniline

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Behera, P.; Mishra, S. R.; Badapanda, T.; Anwar, S.

    2017-02-01

    We report the effect of H2SO4 doping on the dielectric and conduction behaviour of Polyaniline (PANI) samples. The PANI salt prepared by oxidising aniline hydrochloride in distilled water with the oxidant ammonium persulphate with continuous stirring at room temperature and PANI base is produced by subjecting PANI salt to a reaction with 0.5M NaOH. H2SO4 doped PANI is prepared by subjecting PANI base to reaction with 1M H2SO4 at room temperature under constant stirring for 1h. The synthesied PANI along with the doped samples were further washed with acetone to study the effect of acetone washing on the electrical behaviour. It is observed that the dielectric constant as well as the dielectric loss decreases with frequency in the entire studied sample. The frequency dependent AC conductivity at room temperature obeys the power law and the DC conductivity was obtained from the fitting parameter. It is found that the non acetone washed PANI doped in 1M H2SO4 shows highest dielectric constant and conductivity.

  9. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Ruaud, M.; Hersant, F.; Dutrey, A.; Semenov, D.; Majumdar, L.; Guilloteau, S.

    2016-10-01

    Context. Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. Aims: We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. Methods: We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H2), and the sticking of H2 is almost negligible. Finally, the remaining model is an intermediate solution known as the encounter desorption mechanism. Results: We show that the efficiency of molecular hydrogen binding (and thus its abundance at the surface of the grains) can have a quantitative effect on the predicted column densities in the gas phase of major species such as CO, CS, CN, and HCN.

  10. Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell.

    PubMed

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H2 ratio of 1:2 could be attained from photoelectrochemical CO2 and H2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone.

  11. Far-Ultraviolet Studies of H2 in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    France, Kevin; McCandliss, Stephan R.; Burgh, Eric B.

    2009-05-01

    We present a brief review of molecules studied with far-ultraviolet spectroscopy, discussing absorption line measurements of the dominant interstellar molecules (H2 and CO) and H2 emission from molecular clouds near hot stars. We give two examples where the CO/H2 ratio, which can only be derived uniquely in the far-ultraviolet, can be used to study the structure of the interstellar medium. Prospects are discussed for future work with deeper observations that would allow one to probe farther into molecular clouds in the galaxy. We describe a mini-survey of five local photodissociation regions (PDRs) carried out with FUSE. We use these data to characterize the far-UV spectra of PDRs for the first time and to refine models of the H2 fluorescent emission process. We find that our models can adequately reproduce the observed emission spectra of three of these regions (IC 63, M42, and IC 405). The remaining two (NGC 2023 and NGC 7023) do not show clear emission from H2 in the FUSE band, despite the well defined and characteristic double-peaked emission features at 1575 and 1608 Å observed in archival observations, as well as the clear fluorescent signatures in the well studied near-IR rovibrational emission lines, thus suggesting a more complex radiative transfer scenario in these environments. We conclude with simple simulations showing the potential gains that could be made in the studies of PDRs with future far-ultraviolet spectrographs with increased effective area and resolving power over current instruments.

  12. Silicate-H2O Systems at High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Tailby, N.; Mavrogenes, J. A.; Hermann, J.; O'Neill, H. S.

    2008-12-01

    Since the discovery of the second critical endpoint (CP2) in the albite-water system, numerous attempts have been made to determine the pressure and temperature of this CP2 and the mutual solubilities within more complex systems. The P-T position of the CP2 has been estimated for many systems: SiO2 (<10 kb/900 °C, Newton and Manning, 2008); NaAlSi3O8 (15 kb/800 °C, Burnham and Davis, 1974; Shen and Keppler, 1997); Pelite (50 kb/1,000 °C, Schmidt et al., 2004), basalt (50 kb/ 1000 °C, Kessel et al., 2004), Peridotite (38 kb/1000 °C, Mibe et al., 2007). A number of experimental techniques have been used to determine phase relations and H2O solubility in experiments. These include in-situ experimental techniques (e.g., HYDAC; Shen and Keppler, 1997), fluid trap techniques (e.g., diamond traps; Stalder et al., 2000), and single crystal weight-loss techniques (e.g., SiO2-H2O techniques employed by Newton and Manning, 2008). None of these techniques is without difficulties, as H2O rich experiments need to overcome huge retrograde fluid solubilities upon quench in order to determine mutual solubilities at experimental conditions. We have developed a new technique to determine "rock"-H2O relationships at high-P conditions, with particular focus on the shape and locus of solvi in pressure temperature space. In this series of experiments, an oxygen fugacity buffer (Re-ReO2) and a sliding H-fugacity sensor (NiO-Ni-Pd mixture) are combined to monitor H2O activity over the entire range of pressure and temperature. Unlike other techniques, the use of sensor capsules does not require textural interpretation of experiments. H2O activity is related to oxygen and hydrogen fugacity by the reaction: H2O = H2 + ½O2 NiO-Ni-Pd mixtures were placed within a ZrO2 jacket and sealed within a welded 2.3 mm Pt capsule. This 2.3 mm Pt sensor capsule was then encased within a larger, thick walled 6 mm diameter Ag capsule. Pelite-H2O mixtures and oxygen buffers were held within this larger

  13. Experimental constraints on differentiation and H 2O abundance of calc-alkaline magmas

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko

    1996-11-01

    Partial melting experiments were conducted on a natural high-alumina basalt from the Higashi-Izu volcanoes (47.4 wt.% SiO2; 8.3 wt.% MgO) with 1 and 2 wt.% total H2O at 0.5 and 1 GPa, 1125-875°C. The partial melts produced segregate by capillary action into crimped parts of the capsule, preventing chemical modification of the melt during quenching. Liquid compositions in 1 wt.% total H2O runs at 0.5 GPa mimic the chemical variations of calc-alkaline andesites and dacites associated with the basalt. The residual phase assemblages from 1 wt.% total H2O experiments are consistent with the observed phenocrysts in two pyroxene andesite and hornblende (hb)-orthopyroxene (opx) dacite. In contrast, a clinopyroxene (cpx)-hb rhyolite assemblage is produced in the 2 wt.% total H2O experiments. Although no such cpx-hb rhyolite is found in either Northeast Japan or the Izu-Mariana arc, this type of rhyolite is found in Central America, which is also characterized by high H2O contents in the associated basaltic melts ([1]). The abundance of SiO2 in residual liquids increased from 49 to 54 wt.% in the 25°C interval between 1125° and 1100°C in the 1 wt.% total H2O system, and from 63 to 71 wt.% in the 50°C interval between 975° and 925°C. The first gap between basalt and andesite is generated by a sudden change in the amount of partial melt, and the second gap between andesite and dacite is produced by the formation of hornblende by the consumption of pyroxene, because the SiO2 abundance of hornblende is less than that of pyroxene. These two reaction relations result in the existence of two compositional gaps, between basalt and andesite, and between andesite and dacite, which are recognized in the Higashi-Izu volcano group and many other calc-alkaline volcanoes.

  14. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems.

  15. Multi-Fluorinated Azido Coumarins for Rapid and Selective Detection of Biological H2 S in Living Cells.

    PubMed

    Zhu, Zhentao; Li, Yanyan; Wei, Chao; Wen, Xin; Xi, Zhen; Yi, Long

    2016-01-01

    Hydrogen sulfide (H2 S) is an endogenously produced gaseous signaling molecule with multiple biological functions. In order to visualize the endogenous in situ production of H2 S in living cells in real time, here we developed multi-fluorinated azido coumarins as fluorescent probes for the rapid and selective detection of biological H2 S. Kinetic studies indicated that an increase in fluorine substitution leads to an increased rate of H2 S-mediated reduction reaction, which is also supported by our theoretical calculations. To our delight, tetra-fluorinated coumarin 1 could react with H2 S fast (t1/2 ≈1 min) and selectively, which could be further used for continuous enzymatic assays and for visualization of intracellular H2 S. Bioimaging results obtained with 1 revealed that d-Cys could induce a higher level of endogenous H2 S production than l-Cys in a time-dependent manner in living cell.

  16. Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters.

    PubMed

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2011-01-01

    The treatment of H2S in the biogas produced during anaerobic digestion has to be carried out to ensure the efficient long-lasting use of its energetic potential. The microaerobic removal of H2S was studied to determine the treatment capacity at low and high H2S concentrations in the biogas (0.33 and 3.38% v/v) and to determine the optimal O2 rate that achieved a concentration of H2S of 150 mg/Nm3 or lower. Research was performed in pilot-plant scale digesters of sewage sludge, with 200 L of working volume, in mesophilic conditions with a hydraulic retention time of 20 d. O2 was supplied at different rates to the headspace of the digester to create the microaerobic conditions. The treatment successfully removed H2S from the biogas with efficacies of 97% for the low concentration and 99% for the highest, in both cases achieving a concentration below 150 mg/Nm3. An optimal O2 rate of 6.4 NLO2/Nm3 of biogas when treating the biogas was found with 0.33% (v/v) of H2S and 118 NLO2/ Nm3 of biogas for the 3.38% (v/v) concentration. This relation may be employed to control the H2S content in the biogas while optimising the O2 supply.

  17. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding

    PubMed Central

    Konno, Tasuku; Pinho Melo, Eduardo; Lopes, Carlos; Mehmeti, Ilir; Lenzen, Sigurd

    2015-01-01

    The endoplasmic reticulum (ER)–localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation. PMID:26504166

  18. Mapping of [HDO]/[H2O] in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Novak, R. E.; Mumma, M. J.; Villanueva, G.; Bonev, B.; Disanti, M.

    Observations of the Martian atmosphere were taken for several seasonal dates at NASA's IRTF using CSHELL. Column densities of HDO and H2O were extracted from individual spectral lines near 3.67 ìm and 3.29 ìm. The slit was positioned N-S on Mars centered at the sub-earth point producing spectral/spatial images. Spectra were extracted at 0.6 arc-sec. intervals and analyzed with models created from GENLN2 atmospheric software; the models include solar Fraunhofer lines, a two-way transmission through Mars' atmosphere, thermal emission from Mars' surface and atmosphere, and a one way transmission through the Earth's