Science.gov

Sample records for 760-890 nm wavelength

  1. 1550-nm wavelength-tunable HCG VCSELs

    NASA Astrophysics Data System (ADS)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  2. Optical extension at the 193-nm wavelength

    NASA Astrophysics Data System (ADS)

    Zandbergen, Peter; McCallum, Martin; Amblard, Gilles R.; Domke, Wolf-Dieter; Smith, Bruce W.; Zavyalova, Lena; Petersen, John S.

    1999-07-01

    Lithography at 193nm is the first optical lithography technique that will be introduced for manufacturing of technology levels. where the required dimensions are smaller than the actual wavelength. This paper explores several techniques to extend 193nm to low k1 lithography. Most attention is given to binary mask solution in at 130nm dimensions, where k1 is 0.4. Various strong and Gaussian quadrupole illuminators were designed, manufactured and tested for this application. Strong quadrupoles show that largest DOF improvements. The drawback however, is that these strong quadrupoles are very duty cycle and dimensions specific, resulting in large proximity biases between different duty cycles. Due to their design, Gaussian quadrupoles sample much wider frequency ranges, resulting in less duty cycles specific DOF improvements and less proximity basis. At sub-130nm dimensions, strong phase shift masks provide significant latitude improvements, when compared to binary masks with quadrupole illumination. However, differences in dose to size for different duty cycles were up to 25 percent. For definition of contact holes, linewidth biasing through silylation, a key feature of the CARL bi-layer resist approach, demonstrated significant DOF latitude improvements compared to SLR at 140nm and 160nm contact holes.

  3. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  4. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  5. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  6. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  7. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785  nm.

    PubMed

    Sumpf, Bernd; Kabitzke, Julia; Fricke, Jörg; Ressel, Peter; Müller, André; Maiwald, Martin; Tränkle, Günther

    2016-08-15

    A spectrally adjustable monolithic dual-wavelength diode laser at 785 nm as an excitation light source for shifted excitation Raman difference spectroscopy (SERDS) is presented. The spectral distance between the two excitation wavelengths can be electrically adjusted between 0 and 2.0 nm using implemented heater elements above the distributed Bragg reflector (DBR) gratings. Output powers up to 180 mW at a temperature of 25°C were measured. The spectral width is smaller than 13 pm, limited by the spectrum analyzer. The device is well-suited for Raman spectroscopy, and the flexible spectral distance allows a target-specific adjustment of the excitation light source for shifted excitation Raman difference spectroscopy (SERDS). PMID:27519065

  8. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  9. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band.

    PubMed

    Daniel, J M O; Simakov, N; Tokurakawa, M; Ibsen, M; Clarkson, W A

    2015-07-13

    Ultra-short wavelength operation of a thulium fibre laser is investigated. Through use of core pumping and high feedback efficiency wavelength selection, a continuously-tunable fibre laser source operating from 1660 nm to 1720 nm is demonstrated in a silica host. We discuss the range of applications within this important wavelength band such as polymer materials processing and medical applications targeting characteristic C-H bond resonance peaks. As a demonstration of the power scalability of thulium fibre lasers in this band, fixed wavelength operation at 1726 nm with output power up 12.6 W and with slope efficiency > 60% is also shown. PMID:26191883

  10. Flash-lamp pumped Pr:YAP laser operated at wavelengths of 747 nm and 662 nm

    NASA Astrophysics Data System (ADS)

    Fibrich, Martin; Jelínková, Helena; Šulc, Jan; Nejezchleb, Karel; Škoda, Václav

    2009-02-01

    Successful room-temperature generation of Pr:YAP laser radiation at wavelengths of 747 nm and 662 nm was demonstrated. A flash-lamp pumped Pr:YAP laser was operated in free-running pulsed regime at room temperature. Permanent laser action was reached by means of a special UV color glass plate filter placed directly into the laser cavity. The maximum output energy and pulse length reached at wavelengths of 747 nm and 662 nm were 102 mJ, 92 μs and 6.1 mJ, 47.5 μs, respectively. The laser beam parameter M2 ~ 1.5 was measured when the 662 nm wavelength was generated. In the case of 747 nm wavelength generation, M2 ~ 1.2 was reached with a diaphragm inside the resonator. For different pumped energy values, the line shape and linewidth remained stable for both cases.

  11. 1319 nm and 1356 nm dual-wavelength operation of diode-side-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Zhi-chao; Zhang, Shen-jin; Yang, Feng; Zhang, Feng-feng; Yuan, Lei; He, Miao; Li, Jia-jia; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2016-05-01

    We report the first demonstration on a diode-side-pumped quasi continuous wave (QCW) dual-wavelength Nd:YAG laser operating at 1319 nm and 1356 nm. The resonator adopts symmetrical L-shaped flat-flat structure working in a thermally near unstable cavity. By precise coating on the cavity mirrors, the simultaneous oscillation at 1319 nm and 1356 nm is delivered. A maximum dual-wavelength output power of 9.4 W is obtained. The beam quality factor M2 is measured to be 1.9.

  12. Research and primary results of SLR experiment with 1064nm wavelength using Si detector

    NASA Astrophysics Data System (ADS)

    Meng, Wendong; Zhang, Haifeng; Tang, Kai; Deng, Huarong; Li, Pu; Zhang, Zhongping; Prochazka, Ivan; Zhu, Nenghong

    2015-05-01

    SLR (Satellite Laser Ranging) is the common satellite observation technology with the highest single shot precision. The 532nm wavelength laser signal derived from 1064nm wavelength laser system is generally adopted to laser measurement to satellites. The 1064nm wavelength laser signal has better performances than 532nm ones in atmospheric attenuation, photon number, laser power, development and price, and so on, which is beneficial to enhance the detection ability of measuring system, and carry out the goal of weak signal detection. In this paper, the relevant techniques are presented in building up SLR system with 1064nm wavelength, and the corresponding solutions are put forward. With these techniques, the 1064nm wavelength high precise SLR measurement was successfully carried out by using si-detector for the first time in Shanghai Astronomical Observatory (SHAO) and the experimental foundations have been laid for the further development and applications in the field of far distance and weak signal space targets observation.

  13. Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength.

    PubMed

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Huber, Robert

    2009-07-01

    We report on recent progress in Fourier domain mode-locking (FDML) technology. The paper focuses on developments beyond pushing the speed of these laser sources. After an overview of improvements to FDML over the last three years, a brief analysis of OCT imaging using FDML lasers with different wavelengths is presented. For the first time, high speed, high quality FDML imaging at 1550 nm is presented and compared to a system at 1310 nm. The imaging results of human skin for both wavelengths are compared and analyzed. Sample arm optics, power on the sample, heterodyne gain, detection bandwidth, colour cut levels and sample location have been identical to identify the influence of difference in scattering and water absorption. The imaging performance at 1310 nm in human skin is only slightly better and the results suggest that water absorption only marginally affects the penetration depth in human skin at 1550 nm. For several applications this wavelength may be preferred. PMID:19565537

  14. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm

    NASA Astrophysics Data System (ADS)

    Chung, Soojeong; Fried, Daniel; Staninec, Michal; Darling, Cynthia L.

    2011-03-01

    Near-IR (NIR) imaging is a new technology that is currently being investigated for the detection and assessment of dental caries without the use of ionizing radiation. Several papers have been published on the use of transillumination and reflectance NIR imaging to detect early caries in enamel. The purpose of this study was to investigate alternative near infrared wavelengths besides 1300-nm in the range from 1200- 1600-nm to determine the wavelengths that yield the highest contrast in both transmission and reflectance imaging modes. Artificial lesions were created on thirty tooth sections of varying thickness for transillumination imaging. NIR images at wavelengths from the visible to 1600-nm were also acquired for fifty-four whole teeth with occlusal lesions using a tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS image sensor. Cavity preparations were also cut into whole teeth and Z250 composite was used as a restorative material to determine the contrast between composite and enamel at NIR wavelengths. Slightly longer NIR wavelengths are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Significantly higher performance was attained at wavelengths that have higher water absorption, namely 1460-nm and wavelengths greater than 1500-nm and these wavelength regions are likely to be more effective for reflectance imaging. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

  15. Wavelength stabilizer based on dual fiber Bragg gratings for 980nm Mini-uncooled pump laser

    NASA Astrophysics Data System (ADS)

    Hu, Shuangshuang; Li, Yi; Jiang, Qunjie; Wu, Bin; Yu, Xiaojing; Wang, Haifang

    2008-12-01

    High power 980nm pump lasers are the key components in optical fiber amplifier. Wavelength stability for 980nm Miniuncooled pump laser is required to maintain the amplifier's efficiency throughout its lifetime. In this paper, a new type of wavelength stabilizer for uncooled pump laser which utilizes two fiber Bragg gratings (FBGs) matched in wavelength, bandwidth, and reflectivity is presented. The characteristics of transmissivity and reflectivity for the dual FBGs stabilized 980nm pump laser are theoretically modeled and experimentally studied. The results show that the output spectral characteristics of the uncooled pump laser with the dual FBGs have been greatly improved. The laser module can work steadily over a wide temperature range from 0°C to 70°C, with 0.2nm wavelength shift, along with more than 45dB side mode suppression ratio, and less than 1.57nm spectral bandwidth.

  16. Applications of combination wavelength (1060-nm and 530-nm) and pulsed Nd:YAG laser for contact laser surgery.

    PubMed

    Liu, K R; Peyman, G A; Myers, J D; Hamlin, S A; Katoh, N

    1989-01-01

    Two pulsed neodimium yittrium aluminum garnet (Nd:YAG) laser systems were evaluated for contact surgery through a fiberoptic system with a sapphire tip. Pulsed Nd:YAG laser at 1060 nm was as effective as continuous-wave Nd:YAG laser in producing tissue incisions. A combination of 1060-nm and 530-nm wavelengths achieved smooth cutting at lower energy levels. Corneal endothelial cell damage occurred at the high power level (7 watts) required for smooth underwater incisions with both continuous wave and pulsed lasers. PMID:2733255

  17. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1463 nm

    NASA Astrophysics Data System (ADS)

    von Brunn, P.; Heuer, A. M.; Fornasiero, L.; Huber, G.; Kränkel, C.

    2016-08-01

    Even though the first Nd3+-doped sesquioxide lasers have been realized more than 50 years ago, up to now no reports on efficient laser operation of Nd3+:doped sesquioxides can be found. In this work, we review the favorable spectroscopic properties of the sesquioxide Nd3+:Lu2O3 in terms of ground state absorption, stimulated emission, and excited state absorption cross sections as well as the upper level lifetime. Making use of these properties, we achieved efficient laser performance on eight different laser transitions in the wavelength range between 917 nm and 1463 nm under Ti:sapphire laser pumping using state-of-the-art HEM-grown Nd3+:Lu2O3 crystals with good optical quality. At the strongest transition around 1076 nm we determined a slope efficiency of 69%, which represents the highest efficiency ever obtained for a Nd3+-doped sesquioxide. Furthermore, we could generate watt level output powers and high slope efficiencies for seven other transitions. Lasers at 917 nm, 1053 nm, 1108 nm and 1463 nm were realized for the first time and the latter represents one of the longest laser wavelengths obtained on the 4F3/2  →  4I13/2 transition in Nd3+-doped materials.

  18. Dual-wavelength laser operation at 1061 and 942 nm in Nd:GSAG

    NASA Astrophysics Data System (ADS)

    Fu, X. H.; Che, Y.; Li, Y. L.

    2011-06-01

    A dual-wavelength continuous-wave (CW) diode end-pumped gadolinium scandium aluminum garnet (Nd:GSAG) laser that generates simultaneous laser action at the wavelengths 1061 and 942 nm is demonstrated. A total output power of 589 mW (476 mW at 1061 nm and 113 mW at 942 nm) for the dual-wave-length was achieved at the incident pump power of 18.2 W. The M 2 values for 942 and 1061 nm lights were found to be around 1.18 and 1.37, respectively.

  19. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  20. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  1. Shifted excitation Raman difference spectroscopy using a dual-wavelength DBR diode laser at 785 nm

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Eppich, B.; Fricke, J.; Ginolas, A.; Bugge, F.; Klehr, A.; Sumpf, B.; Erbert, G.; Tränkle, G.

    2015-03-01

    The application of shifted excitation Raman difference spectroscopy (SERDS) using a dual wavelength distributed Bragg reflector (DBR) diode laser at 785 nm will be presented. Both excitation wavelengths necessary for SERDS provide an optical power of more than 160 mW in continuous wave operation. Raman experiments are carried out and demonstrate the suitability of the excitation light source for SERDS. Moreover, a dual-wavelength master-oscillator power amplifier diode laser system is presented. The diode laser system reaches optical powers larger 750 mW while the spectral properties of the dual-wavelength laser remain unchanged.

  2. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1986-01-01

    The absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed. The temperature dependence is significant for wavelengths longer than about 280 nm. The absorption cross-section values around 210 nm were found to be about 10 percent larger than the previously accepted values.

  3. Wavelength tunable red AlGaInP-VECSEL emitting at around 660 nm

    NASA Astrophysics Data System (ADS)

    Schwarzbäck, Thomas; Kahle, Hermann; Eichfelder, Marcus; Schulz, Wolfgang-Michael; Roßbach, Robert; Jetter, Michael; Michler, Peter

    2011-03-01

    We present a non-resonantly pumped red-emitting vertical external cavity surface-emitting laser system based on a multi-quantum-well structure with 20 compressively-strained GaInP quantum wells for an operation wavelength between 645-675 nm. Five quantum well packages with four quantum wells are placed in a separate confinement heterostructure in a resonant periodic gain design in quaternary AlGaInP barriers and cladding layers, respectively. The 3 λ cavity is fabricated on a 55 λ/4 pairs Al0.50Ga0.50As/AlAs distributed Bragg reflector. By bonding an intra-cavity diamond heatspreader to the chip, continuous-wave operation exceeding 700mW output power at a wavelength of 662 nm with a low threshold power of 0.8W was achieved. A thermal resistance value of R1 = 5K/W and R2 = 7K/W could be determined for our setup at operation heatsink temperatures of Ths = -28°C and Ths = 16°C, respectively. Measurements of the slope efficiency within a v-type cavity with different outcoupling mirror reflectivities lead to a cavity round-trip transmission factor of Tloss = 98.6% and an absorption efficiency of ηabs = 17.6%. Using a birefringent filter in a folded cavity, a maximum tuning range of 22 nm at a center wavelength of 667 nm could be shown. With this method wavelengths below 650 nm were observed. Utilizing a non-linear crystal for intra-cavity frequency doubling in this cavity geometry, coherent emission down to 322 nm could be detected. In the UV spectral range, a maximum tuning range of 10 nm could be measured at a center wavelength of 330 nm, so we could match the HeCd laser line at 325 nm.

  4. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  5. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  6. Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths

    PubMed Central

    Farsund, Øystein; Rustad, Gunnar; Skogan, Gunnar

    2012-01-01

    Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents’ fluorescence response were seen at the two wavelengths. The anthrax simulants’ fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both. PMID:23162732

  7. The temperature dependence of refractive index of hemoglobin at the wavelengths 930 and 1100 nm

    NASA Astrophysics Data System (ADS)

    Lazareva, Ekaterina N.; Tuchin, Valery V.

    2016-04-01

    In this study, the refractive index of hemoglobin was measured at different temperatures within a physiological range and above that is characteristic to light-blood interaction at laser therapy. Measurements were carried out using the multi-wavelength Abbe refractometer (Atago, Japan). The refractive index was measured at two NIR wavelengths of 930 nm and 1100 nm. Samples of hemoglobin solutions with concentration of 80, 120 and 160 g/l were investigated. The temperature was varied between 25 and 55 °C. It was shown that the dependence of the refractive index of hemoglobin is nonlinear with temperature, which may be associated with changes in molecular structure of hemoglobin.

  8. Four-wavelength time-resolved optical mammography in the 680-980-nm range

    NASA Astrophysics Data System (ADS)

    Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Messina, Fabrizio; Cubeddu, Rinaldo; Danesini, Gianmaria

    2003-07-01

    What is to our knowledge the first instrument for time-resolved optical mammography operating at wavelengths longer than 900 nm has been developed. It is a scanning system that relies on the acquisition of time-resolved transmittance curves at 683, 785, 912, and 975 nm, with a total measurement time of ~5 min for an entire image. Breast structures and lesions can be discriminated based on the different absorption and scattering properties at the four wavelengths, which reflect different contributions of oxyhemoglobin, deoxyhemoglobin, water, and lipids, as well as distinct structures. The system is currently used in a European clinical trial.

  9. Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Bo, Y.; Xu, J. L.; Tian, C. Y.; Peng, Q. J.; Cui, D. F.; Xu, Z. Y.

    2011-09-01

    We report on to our knowledge the first time a diode-side-pumped simultaneous dual-wavelength Nd:YAG laser at 1116 and 1123 nm. By inserting an etalon to balance the gain and loss, a stable dual-wavelength oscillation is acquired. The numerical simulations for wavelength tuning are discussed by principles of laser threshold and Fabry-Perot etalon. Under the pump power of 250 W, a total output power of 23 W is obtained. Meanwhile, the two components have approximately equal intensities. The beam quality of M 2 factor was measured to be 7.52.

  10. Beam propagation near the dispersionless wavelength at 790 nm in rubidium

    NASA Astrophysics Data System (ADS)

    Xia, Hui; O'Brien, Christopher; Suckewer, Szymon; Scully, Marlan O.

    2016-05-01

    Between any two resonance lines for an atomic medium there exists a dispersionless wavelength where the ac Stark shift from the two resonances cancel and the real part of the resonant susceptibility is 0. We experimentally demonstrate the effects of this wavelength in a pump-probe experiment in high-density atomic vapor. A strong pump field excites the medium, in which we counterpropagate a broadband probe field. In a long cell, only at the dispersionless wavelength will scattering and self-focusing or defocusing not cause attenuation, allowing a spectrometer to read off the dispersionless wavelength. We perform a propagation experiment that shows the passband centered around the 790-nm dispersionless wavelength between the D1 and the D2 lines of rubidium.

  11. Fluorescence-based calculus detection using a 405-nm excitation wavelength

    NASA Astrophysics Data System (ADS)

    Brede, O.; Schelle, F.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the difference of fluorescence signals of cement and calculus using a 405 nm excitation wavelength. A total number of 20 freshly extracted teeth was used. The light source used for this study was a blue LED with a wavelength of 405nm. For each tooth the spectra of calculus and cementum were measured separately. Fluorescence light was collimated into an optical fibre and spectrally analyzed using an echelle spectrometer (aryelle 200, Lasertechnik Berlin, Germany) with an additionally bandpass (fgb 67, Edmund Industrial Optics, Karlsruhe, Germany). From these 40 measurements the median values were calculated over the whole spectrum, leading to two different median spectra, one for calculus and one for cementum. For further statistical analysis we defined 8 areas of interest (AOI) in wavelength regions, showing remarkable differences in signal strength. In 7 AOIs the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p < 0.05). A spectral difference could be shown between calculus and cement between 600nm and 700nm. Thus, we can conclude that fluorescence of calculus shows a significant difference to the fluorescence of cement. A differentiation over the intensity is possible as well as over the spectrum. Using a wavelength of 405nm, it is possible to distinguish between calculus and cement. These results could be used for further devices to develop a method for feedback controlled calculus removal.

  12. Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range

    NASA Astrophysics Data System (ADS)

    Kita, Tomohiro; Yamamoto, Naokatsu; Matsumoto, Atsushi; Kawanishi, Tetsuya; Yamada, Hirohito

    2016-04-01

    A heterogeneous wavelength-tunable laser diode combining quantum dot and silicon photonics technologies is proposed. A compact wavelength-tunable filter with two ring resonators was carefully designed and fabricated using silicon photonics technology. The tunable laser combining the wavelength-tunable filter and an optical amplifier, which includes InAs quantum dots, achieved a 44.0 nm wavelength-tuning range at around 1250 nm. The broadband optical gain of the quantum dot optical amplifier was effectively used by the optimized wavelength-tunable filter. This heterogeneous wavelength-tunable laser diode could become a breakthrough technology for high-capacity data transmission systems.

  13. Modeling the distributed gain of single--(1050 or 1410 nm) and dual-wavelength--(800 + 1050 nm or 800 + 1410 nm) pumped thulium-doped fiber amplifiers.

    PubMed

    Floridia, Claudio; Carvalho, M T; Lüthi, S R; Gomes, A S L

    2004-09-01

    The distributed gain of single- and dual-wavelength-pumped thulium-doped fiber amplifiers is modeled. The excellent agreement between the model and coherent optical frequency domain reflectometry measurements enables us to estimate intrinsic loss, branching ratios of fluorescence originating from the 3H4 level, and cross sections of upconversion pumping at 1050 and 1410 nm for the Tm3+ ions in the fiber. With the branching ratios obtained it is possible to describe induced signal absorption when pumping at 800 nm. PMID:15455754

  14. Long wavelength GaN blue laser (400-490nm) development

    SciTech Connect

    DenBaars, S P; Abare, A; Sink, K; Kozodoy, P; Hansen, M; Bowers, J; Mishra, U; Coldren, L; Meyer, G

    2000-10-26

    Room temperature (RT) pulsed operation of blue nitride based multi-quantum well (MQW) laser diodes grown on c-plane sapphire substrates was achieved. Atmospheric pressure MOCVD was used to grow the active region of the device which consisted of a 10 pair In{sub 0.21}Ga{sub 0.79}N (2.5nm)/In{sub 0.07}Ga{sub 0.93}N (5nm) InGaN MQW. The threshold current density was reduced by a factor of 2 from 10 kA/cm{sup 2} for laser diodes grown on sapphire substrates to 4.8 kA/cm{sub 2} for laser diodes grown on lateral epitaxial overgrowth (LEO) GaN on sapphire. Lasing wavelengths as long as 425nm were obtained. LEDs with emission wavelengths as long as 500nm were obtained by increasing the Indium content. These results show that a reduction in nonradiative recombination from a reduced dislocation density leads to a higher internal quantum efficiency. Further research on GaN based laser diodes is needed to extend the wavelength to 490nm which is required for numerous bio-detection applications. The GaN blue lasers will be used to stimulate fluorescence in special dye molecules when the dyes are attached to specific molecules or microorganisms. Fluorescein is one commonly used dye molecule for chemical and biological warfare agent detection, and its optimal excitation wavelength is 490 nm. InGaN alloys can be used to reach this wavelength.

  15. Temperature dependence of the ozone obsorption spectrum over the wavelength range 410 to 760 nm

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.

    1994-01-01

    The ozone, O3, absorption cross sections between 410 and 760 nm, the Chappuis band, were measured at 220, 240, 260, and 280 K relative to that at room temperature using a diode array spectrometer. The measured cross sections varied very slightly, less than 1%, with decreasing temperature between 550 and 660 nm, near the peak of the Chappuis band. At wavelengths away from the peak, the absorption cross sections decreased with decreasing temperature; e.g., about 40% at 420 nm between 298 and 220 K. These results are compared with previous measurements and the impact on atmospheric measurements are discussed.

  16. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  17. Continuous-wave dual-wavelength Nd:YAG laser operation at 1319 and 1338 nm

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Lee, Y. D.; Zao, Y. D.; Xu, L. J.; Wang, J. B.; Chen, G. B.; Lu, J.

    2013-04-01

    We report an efficient continuous-wave (CW) dual-wavelength operation of an Nd:YAG (YAG: yttrium aluminum garnet) laser at 1319 and 1338 nm. An output power of 2.47 W for the dual-wavelength operation was achieved at the incident pump power of 16.7 W. Intracavity sum-frequency mixing at 1319 and 1338 nm was then realized in an LBO (lithium triborate) crystal to reach the red range. A maximum output power of 879 mW in the red spectral range at 664 nm has been achieved. The red output stability is better than 3.4%. The red beam quality M2 values are about 1.21 and 1.35 in the horizontal and vertical directions respectively.

  18. First Operation of a Free-Electron Laser Generating GW Power Radiation at 32-Nm Wavelength

    SciTech Connect

    Ayvazian, V.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bohnet, I.; Bolzmann, A.; Brinkmann, R.; Brovko, O.I.; Carneiro, J.P.; Casalbuoni, S.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Delsim-Hashemi, H.; Di Pirro, G.; Dohlus, M.; /Saclay /Wurzburg U. /BESSY, Berlin /CANDLE, Yerevan /Darmstadt, Tech. Hochsch. /DESY /DESY, Zeuthen /Fermilab /Hamburg U. /INFM, Padua /Frascati /INFN, Milan /INFN, Rome2 /Sofiya, Inst. Nucl. Res. /Dubna, JINR /Orsay, LAL /Max Born Inst., Berlin /SLAC

    2006-09-15

    Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL). Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source at Stanford, USA, and the European X-ray Free Electron Laser Facility in Hamburg, Germany.

  19. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength

    NASA Astrophysics Data System (ADS)

    Ayvazyan, V.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bohnet, I.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Carneiro, J. P.; Casalbuoni, S.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Delsim-Hashemi, H.; di Pirro, G.; Dohlus, M.; Düsterer, S.; Edwards, H. T.; Faatz, B.; Fateev, A. A.; Feldhaus, J.; Flöttmann, K.; Frisch, J.; Fröhlich, L.; Garvey, T.; Gensch, U.; Golubeva, N.; Grabosch, H.-J.; Grigoryan, B.; Grimm, O.; Hahn, U.; Han, J. H.; Hartrott, M. V.; Honkavaara, K.; Hüning, M.; Ischebeck, R.; Jaeschke, E.; Jablonka, M.; Kammering, R.; Katalev, V.; Keitel, B.; Khodyachykh, S.; Kim, Y.; Kocharyan, V.; Körfer, M.; Kollewe, M.; Kostin, D.; Krämer, D.; Krassilnikov, M.; Kube, G.; Lilje, L.; Limberg, T.; Lipka, D.; Löhl, F.; Luong, M.; Magne, C.; Menzel, J.; Michelato, P.; Miltchev, V.; Minty, M.; Möller, W. D.; Monaco, L.; Müller, W.; Nagl, M.; Napoly, O.; Nicolosi, P.; Nölle, D.; Nuñez, T.; Oppelt, A.; Pagani, C.; Paparella, R.; Petersen, B.; Petrosyan, B.; Pflüger, J.; Piot, P.; Plönjes, E.; Poletto, L.; Proch, D.; Pugachov, D.; Rehlich, K.; Richter, D.; Riemann, S.; Ross, M.; Rossbach, J.; Sachwitz, M.; Saldin, E. L.; Sandner, W.; Schlarb, H.; Schmidt, B.; Schmitz, M.; Schmüser, P.; Schneider, J. R.; Schneidmiller, E. A.; Schreiber, H.-J.; Schreiber, S.; Shabunov, A. V.; Sertore, D.; Setzer, S.; Simrock, S.; Sombrowski, E.; Staykov, L.; Steffen, B.; Stephan, F.; Stulle, F.; Sytchev, K. P.; Thom, H.; Tiedtke, K.; Tischer, M.; Treusch, R.; Trines, D.; Tsakov, I.; Vardanyan, A.; Wanzenberg, R.; Weiland, T.; Weise, H.; Wendt, M.; Will, I.; Winter, A.; Wittenburg, K.; Yurkov, M. V.; Zagorodnov, I.; Zambolin, P.; Zapfe, K.

    2006-02-01

    Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range [1-4]. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL) [5-10]. Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources [4] by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source [3] at Stanford, USA, and the European X-ray Free Electron Laser Facility [4] in Hamburg, Germany.

  20. Wavelength tunable high-power single-mode 1060-nm DBR lasers

    NASA Astrophysics Data System (ADS)

    Li, Jin; Kuksenkov, Dmitri V.; Liu, Wayne; Li, Yabo; Visovsky, Nick J.; Pikula, Dragan; Heberle, Albert P.; Brown, Gordon C.; Piech, Garrett A.; Butler, Douglas L.; Zah, Chung-en

    2012-03-01

    The wavelength tunable 1060-nm distributed Bragg reflector (DBR) laser chip consists of three sections: a gain section for lasing, and phase and DBR sections for wavelength control. A micro-heater is lithographically integrated on the top of the DBR section to tune the emission wavelength. The phase section is designed with either a top heater or by current injection to provide fine tuning of the wavelength. The wavelength tuning efficiency of our DBR laser is approximately 9 nm/W at the laser heat sink temperature of 25°C. Single-mode output powers of 686 mW and 605 mW were obtained at a CW gain drive current of 1.25 A and heat sink temperatures of 25°C and 60°C, respectively. Gain-switching by applying 1.1 GHz sinusoidal signal mixed with 600 mA DC injection current produced approximately 58 ps long optical pulses with 3.1 W peak power and 228 mW average power. The average power increased to 267 mW and pulse width broadened to 70 ps with DC bias of 700 mA. In CW operation, one of the applications for high-power single-mode DBR lasers is for non-linear frequency conversion. The light emitted from the 1060-nm DBR laser chip was coupled into a single-mode periodically poled lithium niobate (PPLN) crystal waveguide. Up to 350 mW optical power at 530 nm with the wall-plug efficiency of up to 15% was demonstrated.

  1. Remittance at a single wavelength of 390 nm to quantify epidermal melanin concentration.

    PubMed

    Verkruysse, Wim; Svaasand, Lars O; Franco, Walfre; Nelson, J Stuart

    2009-01-01

    Objective quantification of epidermal melanin concentration (EMC) should be useful in laser dermatology to determine the individual maximum safe radiant exposure (IMSRE). We propose a single-wavelength remittance measurement at 390 nm as an alternative optical method to determine EMC and IMSRE. Remittance spectra (360 to 740 nm), melanin index (MI) measurements and the transient radiometric temperature increase, DeltaT(t), upon skin irradiation with an Alexandrite laser (755 nm, 3-ms pulse duration, 6 Jcm(2)) were measured on 749 skin spots (arm and calf) on 23 volunteers (skin phototypes I to IV). Due to the shallow penetration depth and independence of blood oxygen saturation (isosbestic point), remittance at 390 nm appears to provide better estimates for EMC and IMSRE than MI. PMID:19256693

  2. Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths

    NASA Astrophysics Data System (ADS)

    Samir, E.; Shehata, N.; Aldacher, M.; Kandas, I.

    2016-06-01

    Up-conversion is a process of converting low energy light photons to higher energy ones, which can be extensively used in many applications. This paper presents a detailed parametric study of the up-conversion process under different wavelength excitations—780 nm and 980 nm—showing the optical conversion mechanisms that affect the emitted light quantum yield efficiencies. The studied material is erbium-doped β-NaYF4 material, which is one of the most recently studied materials due to its low phonon energy. The studied simulation considers most processes and possible transitions that can take place between Er3+ ions. Einstein coefficients, which are the main parameters that are responsible for the transitions probabilities, are discussed in detail using Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, showing their optimum values that could improve the quantum yield efficiency. This model is very promising, and generic, and can be applied for any host material under any excitation wavelengths by varying the material-dependent parameters.

  3. Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm

    NASA Astrophysics Data System (ADS)

    Shen, Hongbin; Wang, Qingpu; Zhang, Xingyu; Zhang, Lei; Zhang, Chu; Chen, Xiaohan; Cong, Zhenhua; Bai, Fen; Liu, Zhaojun

    2013-04-01

    A diode-pumped actively Q-switched Nd-doped yttrium orthovanadate self-Raman emission at 1175 nm and undoped gadolinium orthovanadate Raman emission at 1174 nm dual-wavelength laser is demonstrated. With the pump power of 20.5 W and pulse repetition frequency of 20 kHz, the maximum dual-wavelength output power of 1.52 W was obtained, which contained a 0.71 W 1174 nm Raman laser component and a 0.81 W 1175 nm self-Raman laser component. The corresponding dual-wavelength Raman pulse width was 14.8 ns. Experimental results indicated that the dual-wavelength Raman laser with a small wavelength separation was effectively realized through simultaneous self-Raman and Raman shift.

  4. Highly reliable high-efficiency wavelength-stabilized 885 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Bao, Ling; Huang, Hua; Wang, Jun; DeVito, Mark; Dong, Weimin; Grimshaw, Mike; Balsley, David; Martinsen, Rob; DeFranza, Mark; Patterson, Steve

    2009-05-01

    We report on the progress of highly-reliable, high-efficiency 885-nm diode laser bar arrays. Conduction-cooled hardsoldered bars rated to 60W and 57% conversion efficiency demonstrate >30,000 device hours under 1-sec on, 1-sec off hard pulse conditions failure-free. Microchannel-cooled bars rated to 100W and 62% efficiency demonstrate >100,000 accelerated device hours failure-free. Integrated volume Bragg grating fast axis lenses provide wavelength stabilization at low cost. Vertically stacked arrays (seven bars each) of such configuration are demonstrated with a 0.8 nm FWHM spectral width and rated to 700W, 53% conversion efficiency.

  5. Stark width measurements of Fe II lines with wavelengths in the range 230-260 nm

    NASA Astrophysics Data System (ADS)

    Aguilera, J. A.; Manrique, J.; Aragón, C.

    2011-12-01

    The experimental Stark widths of 26 Fe II lines with wavelengths in the range 230-260 nm have been determined by laser-induced breakdown spectroscopy. These measurements complete the data reported previously for the wavelength range 260-300 nm. The laser-induced plasmas have been generated from Fe-Cu and Fe-Ni samples. The curve-of-growth methodology is used to determine the iron concentration required to avoid self-absorption. The electron density at the different instants of the plasma lifetime, determined from the Stark broadening of the Hα line, is in the range (1.6-7.4) × 1017 cm-3. The plasma temperature is in the range 12 900-15 200 K. The Stark widths obtained are compared with previous experimental and theoretical data.

  6. Wavelength and Intensity Dependence of Short Pulse Laser Xenon Double Ionization between 500 and 2300 nm

    SciTech Connect

    Gingras, G.; Tripathi, A.; Witzel, B.

    2009-10-23

    The wavelength and intensity dependence of xenon ionization with 50 fs laser pulses has been studied using time-of-flight mass spectrometry. We compare the ion yield distribution of singly and doubly charged xenon with the Perelomov-Popov-Terent'ev (PPT) theory, Perelomov, Popov, and Terent'ev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)], in the regime between 500 and 2300 nm. The intensity dependence for each wavelength is measured in a range between 1x10{sup 13} and 1x10{sup 15} W/cm{sup 2}. The Xe{sup +}-ion signal is in good agreement with the PPT theory at all used wavelengths. In addition we demonstrate that ionic 5s5p{sup 6} {sup 2}S state is excited by an electron impact excitation process and contributes to the nonsequential double ionization process.

  7. VECSELs emitting at 976nm designed for second harmonic generation in the blue wavelength region

    NASA Astrophysics Data System (ADS)

    Muszalski, Jan; Broda, Artur; Jasik, Agata; Wójcik-Jedlińska, Anna; Trajnerowicz, Artur; Kubacka-Traczyk, Justyna; Sankowskaa, Iwona

    2013-01-01

    Using a Vertical Cavity Surface Emitting Laser (VECSEL) "as-grown" heterostructure we set-up a laser emitting at 488 nm with the output power approaching 20mW. The short wavelength emission was due to the conversion of the 976nm emission by a second harmonic generation process in a type-I lithum triborate (LBO). The V-type external cavity permitted efficient focusing of the laser beam on both the VECSEL heterostructure and the non linear crystal. A small diameter focused spot on the gain mirror is required when "as-grown" heterostructures are used. No birefringent filter was used in the resonator. In the case of our heterostructure we observed that the light was spontaneously polarized along the one of the crystallographic direction. The polarization ratio was 1000:1. The VECSEL heterostructure was of the resonant type strongly enhancing a single wavelength emission. The wavelength fine tuning was performed by heatsink temperature adjustment. The heterostructure was grown by molecular beam epitaxy. It consisted of 12 InGaAs quantum wells enclosed by GaAs barriers and a AlAs/GaAs DBR.

  8. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    PubMed

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively. PMID:25322220

  9. Quantum counter for correcting fluorescence excitation spectra at 320- to 800-nm wavelengths.

    PubMed

    Nothnagel, E A

    1987-05-15

    A procedure for recording corrected fluorescence excitation spectra to wavelengths as long as 800 nm is described. The procedure involves the use of a commercial spectrofluorometer, which is modified by substituting 1,1',3,3,3',3'-hexamethylindotricarbocyanine perchlorate in place of rhodamine B as the quantum counter dye. This modification is applicable to spectrofluorometers supplied by several different manufacturers and can be accomplished by a user having only modest technical skills. A study of the fluorescence excitation spectrum of bacteriochlorophyll a is presented as an illustration of the use of the procedure. The procedure will be valuable in biological and biochemical studies that involve the use of long-wavelength fluorescent probes of either natural or synthetic origin. PMID:3619023

  10. Large-scale characterization of silicon nitride-based evanescent couplers at 532nm wavelength

    NASA Astrophysics Data System (ADS)

    Claes, Tom; Jansen, Roelof; Neutens, Pieter; Du Bois, Bert; Helin, Philippe; Severi, Simone; Van Dorpe, Pol; Deshpande, Paru; Rottenberg, Xavier

    2014-05-01

    Recently, the photonics community has a renewed attention for silicon nitride.1-3 When deposited at temperatures below 650K with plasma-enhanced chemical vapor deposition (PECVD),4 it enables photonic circuits fabricated on-top of standard complementary metaloxidesemiconductor (CMOS) electronics. Silicon nitride is moreover transparent to wavelengths that are visible to the human eye and detectable with available silicon detectors, thus offering a photonics platform for a range of applications that is not accessible with the popular silicon-on-insulator platform. However, first-time-right design of large-scale circuits for demanding specifications requires reliable models of the basic photonic building blocks, like evanescent couplers (Figure 1), components that couple power between multiple waveguides. While these models typically exist for the silicon-on-insulator platform, they still lack maturity for the emerging silicon nitride platform. Therefore, we meticulously studied silicon nitride-based evanescent couplers fabricated in our 200mm-wafer facility. We produced the structures in a silicon nitride film deposited with low-temperature PECVD, and patterned it using optical lithography at a wavelength of 193nm and reactive ion etching. We measured the performance of as much as 250 different designs at 532nm wavelength, a central wavelength in the visible range for which laser sources are widespread. For each design, we measured the progressive transmission of up-to 10 cascaded identical couplers (Figure 2(a)), yielding very accurate figures for the coupling factor (Figure 2(b)). This paper presents the trends extracted from this vast data set (Figure 3), and elaborates on the impact of the couplers bend radius and gap on its coupling factors (Figure 4 and Figure 5). We think that the large- scale characterization of evanescent couplers presented in this paper, in excellent agreement with the simulated performance of the devices, forms the basis for a component

  11. Generation of second harmonic light with a wavelength of 560 nm in a compact module

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Sahm, Alexander; John, Wilfred; Bugge, Frank; Paschke, Katrin

    2016-09-01

    We demonstrate a continuous wave 133 mW laser module at 560.5 nm on a 50 mm·10 mm optical bench. The setup consists of a 1121 nm distributed Bragg reflector ridge waveguide laser and a MgO:LiNbO3 quasi-phase matched ridge waveguide crystal, which are coupled by a grin lens, as well as two cylindrical lenses for beam collimation behind the crystal. A novel approach to ensure phase matching is used. The laser and the crystal are stabilized by the same heat sink and only the wavelength of the laser is tuned by heating the distributed Bragg reflector section of the laser. This reduces the influence of temperature variations on the module's performance enabling operation with output power variations < 10 % over a temperature range of 20 K. The size and robustness against temperature variations of this setup make it an interesting candidate for future biomedical applications.

  12. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  13. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.

    PubMed

    Diao, Shuo; Blackburn, Jeffrey L; Hong, Guosong; Antaris, Alexander L; Chang, Junlei; Wu, Justin Z; Zhang, Bo; Cheng, Kai; Kuo, Calvin J; Dai, Hongjie

    2015-12-01

    Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging. PMID:26460151

  14. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  15. Attenuation of near-IR light through dentin at wavelengths from 1300-1650-nm

    NASA Astrophysics Data System (ADS)

    Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel

    2014-02-01

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300-1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm-1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption.

  16. Nonlinear optical effects on retinal damage thresholds in the 1200-1400 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Echeverria, Francesco Jozac

    Recent changes in the maximum permissible exposure (MPE) limits for near-infrared (NIR) laser exposures are analyzed in light of nonlinear optical phenomena. We have evaluated the thresholds for supercontinuum (SC) generation for ultra-short (femtosecond) laser exposures in the NIR region and compared these values with the MPEs listed in the American National Standard for Safe Use of Lasers 2014 Edition (ANSI Z136.1-2014). Due to the strong increase in ocular absorption in the 1.2 to 1.4 micrometer (i.e. 1200-1400 nm) range, evaluation of the SC generation phenomenon is necessary because any shift in laser energy within the eye to shorter wavelengths (i.e. greater frequency) could lead to unforeseen increases in hazards to the retina. The findings of this research do in fact indicate a shift in laser energy to shorter wavelengths for femtosecond pulsed lasers. In addition, an analysis involving spectral measurements through a water cuvette leads to estimations involving the eye configuration that show radiant exposures exceeding the ANSI thresholds for visible wavelengths. The implications of these findings are such that enough NIR energy is converted to visible energy near the retina when dealing with femtosecond pulsed lasers, warranting further studies in examining what the effects caused by nonlinear optical phenomena due to ultrashort pulsed lasers have on MPE thresholds established for eye safety.

  17. Attenuation of near-IR light through dentin at wavelengths from 1300-1650-nm.

    PubMed

    Chan, Andrew C; Darling, Cynthia L; Chan, Kenneth H; Fried, Daniel

    2014-02-18

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300-1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm(-1). Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373

  18. SOPROCARE - 450 nm wavelength detection tool for microbial plaque and gingival inflammation: a clinical study

    NASA Astrophysics Data System (ADS)

    Rechmann, P.; Liou, Shasan W.; Rechmann, Beate M.; Featherstone, John D.

    2014-02-01

    Gingivitis due to microbial plaque and calculus can lead over time if left untreated to advanced periodontal disease with non-physiological pocket formation. Removal of microbial plaque in the gingivitis stage typically achieves gingival health. The SOPROCARE camera system emits blue light at 450 nm wavelength using three blue diodes. The 450 nm wavelength is located in the non-ionizing, visible spectral wavelength region and thus is not dangerous. It is assumed that using the SOPROCARE camera in perio-mode inflamed gingiva can easily be observed and inflammation can be scored due to fluorescence from porphyrins in blood. The assumption is also that illumination of microbial plaque with blue light induces fluorescence due to the bacteria and porphyrin content of the plaque and thus can help to make microbial plaque and calculus visible. Aim of the study with 55 subjects was to evaluate the ability of the SOPROCARE fluorescence camera system to detect, visualize and allow scoring of microbial plaque in comparison to the Turesky modification of the Quigley and Hein plaque index. A second goal was to detect and score gingival inflammation and correlated the findings to the Silness and Löe gingival inflammation index. The study showed that scoring of microbial plaque as well as gingival inflammation levels similar to the established Turesky modified Quigley Hein index and the Silness and Löe gingival inflammation index can easily be done using the SOPROCARE fluorescence system in periomode. Linear regression fits between the different clinical indices and SOPROCARE scores in fluorescence perio-mode revealed the system's capacity for effective discrimination between scores.

  19. Wavelength-assignable 1310/1550 nm wavelength conversion using completely phase-matched two-pump four-wave mixing in a silicon waveguide

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gao, Shiming

    2015-12-01

    A wavelength converter between 1310 and 1550 nm bands is presented based on two-pump four-wave mixing (FWM) in a silicon waveguide. The principle of the inter-band wavelength conversion is analyzed. For an arbitrary incident signal, the converted idler wavelength can be freely assigned by suitably setting the two pump wavelengths to completely satisfy the phase-matching condition. Simulation results show that the signal can be flexibly converted between 1310 and 1550 bands. The conversion efficiencies for the signals with different wavelengths are very stable because the FWM phase-matching condition is completely met. Using this two-pump FWM configuration, channel-selective function can also be realized for wavelength division multiplexing (WDM) signals by engineering the dispersion profile of the silicon waveguide according to the WDM channel spacing.

  20. Magnetospheric Imaging of EUV Emissions at 83.4 and 30.4 NM Wavelengths

    NASA Astrophysics Data System (ADS)

    Garrido, Dante Espino

    Magnetospheric images are constructed from resonant scattering of emissions by He^+ 30.4-nm and O^+ 83.4-nm ions from different spatial locations to study the structure of the intensities and its relation to the distribution of He ^+ and O^+ ions around the Earth. The image intensities at these EUV wavelengths were obtained from a knowledge of ion scattering rates and available data on ion densities. This particular approach is called forward modelling and consists of the calculation of simulated EUV images of the magnetosphere. Different regions in the magnetosphere have been considered in this study to determine the dependence of the image intensities on ion energies and ion drift speeds with respect to the Sun-Earth line. Hot O^+ ions in the energy range from 1 keV to 50 keV are present in the plasma sheet with typical densities of the order of 0.1 ions cm^{-3} arising during disturbed times. Image intensities of the order of a few millirayleighs were obtained in our simulations for these densities. During quiet times the densities are of the order of 0.05 ions cm^{-3}. The reduction of the image intensities as a result of Doppler shifts caused by ion motion relative to the Sun-Earth line is discussed in detail and the effects of ion dynamics (particle acceleration) in the polar cap on the image intensities have also been analyzed for both He^+ and O^+ ions. The possibility of detecting polar outflows may also depend on the location of the imager. Simulated images of the plasmasphere and trough regions in both 30.4-nm and 83.4-nm wavelengths have been obtained to reflect the relative abundance of the ions in these regions. Photometric intensities of He^+ at 30.4 nm were obtained from a spinning rocket at an altitude of 435 km. The different viewing angles covered a wide range of regions in the magnetosphere, and this particular rocket geometry offered the possibility of obtaining the He^+ ion distribution from the measured intensities. This method (forward

  1. Semiconductor optical amplifiers and Raman amplification for 1310-nm dense wavelength division multiplexed transmission

    NASA Astrophysics Data System (ADS)

    Mazurek, Paweł; Czyżak, Paweł; de Waardt, Huug; Turkiewicz, Jarosław Piotr

    2015-11-01

    We investigate the utilization of semiconductor optical amplifiers (SOAs) and quantum-dot laser-based Raman amplifiers in high-capacity dense wavelength division multiplexed (DWDM) 1310-nm transmission systems. Performed simulations showed that in a 10×40 Gbit/s system, the utilization of a single Raman amplifier in a back-propagation scheme can extend the maximum error-free (bit error rate <10-9) transmission distance by approximately 25 km in comparison with the same system utilizing only an SOA used as a preamplifier. We successfully applied a Raman amplifier in an 8×2×40 Gbit/s 1310-nm polarization multiplexed (PolMux) DWDM transmission over 25 km. Conducted experiments showed that the utilization of a Raman amplifier in this system leads to 4-dB improvement of the average channel sensitivity in comparison to the same system utilizing SOAs. This sensitivity improvement can be translated into a higher power budget. Moreover, lower input optical power in a system utilizing a Raman amplifier reduces the four-wave mixing interactions. The obtained results prove that Raman amplification can be successfully applied in 1310-nm high-capacity transmission systems, e.g., to extend the reach of 400G and 1T Ethernet systems.

  2. Generation of vector beams at 1550 nm telecommunications wavelength using a segmented q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine; Delaney, Sam; Hashimotono, Nobuyuki; Sánchez-López, María M.; Kurihara, Makoto; Tanabe, Ayano; Moreno, Ignacio; Davis, Jeffrey A.

    2016-03-01

    We present the use of a q-plate device operating at the 1550 nm telecommunications wavelength. A prototype liquid-crystal device from Citizen Holdings Co. is demonstrated to be useful for the generation of vector beams and orbital angular momentum transfer at this important wavelength.

  3. Influence of consecutive picosecond pulses at 532 nm wavelength on laser ablation of human teeth

    NASA Astrophysics Data System (ADS)

    Mirdan, Balsam M.; Antonelli, Luca; Batani, Dimitri; Jafer, Rashida; Jakubowska, Katarzyna; Tarazi, Saad al; Villa, Anna Maria; Vodopivec, Bruno; Volpe, Luca

    2014-07-01

    The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin-enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.

  4. Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength.

    PubMed

    Pandey, Apoorva; Chakrabarty, Rajan K; Liu, Li; Mishchenko, Michael I

    2015-11-30

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numerically-exact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships. PMID:26698786

  5. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  6. High power laser diodes at 14xx nm wavelength range for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Telkkälä, Jarkko; Boucart, Julien; Krejci, Martin; Crum, Trevor; Lichtenstein, Norbert

    2014-03-01

    We report on the development of the latest generation of high power laser diodes at 14xx nm wavelength range suitable for industrial applications such as plastics welding and medical applications including acne treatment, skin rejuvenation and surgery. The paper presents the newest chip generation developed at II-VI Laser Enterprise, increasing the output power and the power conversion efficiency while retaining the reliability of the initial design. At an emission wavelength around 1440 nm we applied the improved design to a variety of assemblies exhibiting maximum power values as high as 7 W for broad-area single emitters. For 1 cm wide bars on conductive coolers and for bars on active micro channel coolers we have obtained 50 W and 72 W in continuous wave (cw) operation respectively. The maximum power measured for a 1 cm bar operated with 50 μs pulse width and 0.01% duty cycle was 184 W, demonstrating the potential of the chip design for optimized cooling. Power conversion efficiency values as high as 50% for a single emitter device and over 40% for mounted bars have been demonstrated, reducing the required power budget to operate the devices. Both active and conductive bar assembly configurations show polarization purity greater than 98%. Life testing has been conducted at 95 A, 50% duty cycle and 0.5 Hz hard pulsed operation for bars which were soldered to conductive copper CS mounts using our hard solder technology. The results after 5500 h, or 10 million "on-off" cycles show stable operation.

  7. Simultaneous dual-wavelength laser operation at 937 and 1062 nm in Nd3+:Gd3Ga5O12

    NASA Astrophysics Data System (ADS)

    Gao, F.; Sun, G. C.; Li, Y. D.; Dong, Y.; Li, S. T.

    2013-08-01

    Diode-end-pumped continuous-wave (cw) simultaneous dual-wavelength laser operation at 937 and 1062 nm in a single Nd3+:Gd3Ga5O12 (Nd:GGG) crystal was demonstrated. A total output power of 1.12 W at the two fundamental wavelengths was achieved at incident pump power of 17.6 W. The optical-to-optical conversion was up to 6.4% with respect to the incident pump power. To the best of our knowledge, this is first work on cw simultaneous dual-wavelength operation at 937 and 1062 nm in Nd:GGG crystal.

  8. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  9. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  10. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  11. A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Tuan, P. H.; Yu, Y. T.; Huang, K. F.; Chen, Y. F.

    2013-04-01

    We experimentally explore the fluorescence spectra of the Nd:YAG (YAG: yttrium aluminum garnet) crystal at cryogenic temperatures to confirm the feasibility of dual-wavelength operation at 1061 and 1064 nm. Furthermore, a cryogenically cooled Nd:YAG crystal with coating to form a monolithic cavity is employed to investigate the performance of the dual-wavelength operation. At an incident pump power of 20 W, the output powers for each wavelength can simultaneously reach 6.0 W at the optimally balanced temperature of 152 K. The optimal temperature for balancing the output powers of the two wavelengths is experimentally determined as a function of the incident pump power intensity.

  12. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  13. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  14. Zirconium and niobium transmission data at wavelengths from 11-16 nm and 200-1200 nm.

    SciTech Connect

    Johnson, Terry Alan; Clift, W. Miles; Gullikson, Eric M.; Soufli, Regina

    2004-08-01

    Transmission measurements of niobium and zirconium at both extreme-ultraviolet (EUV) and ultraviolet, visible, and near infrared (UV/Vis/NIR) wavelengths are presented. Thin foils of various thicknesses mounted on nickel mesh substrates were measured, and these data were used to calculate the optical constants delta and beta of the complex refractive index n = 1-{delta} + i{beta}. {beta} values were calculated directly from the measured transmittance of the foils after normalizing for the nickel mesh. The average beta values for each set of foils are presented as a function of wavelength. The real (dispersive) part of the refractive index, delta was then calculated from Kramers-Kronig analysis by combining these beta values with those from previous experimental data and the atomic tables.

  15. Zirconium and Niobium Transmission Data at Wavelengths from 11-16 nm and 200-1200 nm

    SciTech Connect

    Johnson, T; Soufli, R; Gulikson, E; Clift, M

    2004-08-30

    Transmission measurements of niobium and zirconium at both extreme-ultraviolet (EUV) and ultraviolet, visible, and near infrared (UV/Vis/NIR) wavelengths are presented. Thin foils of various thicknesses mounted on nickel mesh substrates were measured, and these data were used to calculate the optical constants {delta} and {beta} of the complex refractive index n = 1- {delta} +i{beta}. {beta} values were calculated directly from the measured transmittance of the foils after normalizing for the nickel mesh. The average {beta} values for each set of foils are presented as a function of wavelength. The real (dispersive) part of the refractive index, {delta} was then calculated from Kramers-Kronig analysis by combining these {beta} values with those from previous experimental data and the atomic tables.

  16. Simultaneous dual-wavelength lasing at 1047 and 1053 nm and wavelength tuning to 1072 nm in a diode-pumped a-cut Nd : LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping

    2015-12-01

    We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.

  17. Our perspective of the treatment of naevus of Ota with 1,064-, 755- and 532-nm wavelength lasers.

    PubMed

    Felton, S J; Al-Niaimi, F; Ferguson, J E; Madan, V

    2014-09-01

    Naevus of Ota (NO) is a disfiguring pigmentary disorder affecting the face. Q-switched neodymium-doped yttrium aluminium garnet (QS Nd:YAG)-1,064 nm is a standard laser treatment because it causes highly selective destruction of melanin within the aberrant dermal melanocytes. However, not all lesions respond. This study aims to evaluate the efficacy/safety of QS Nd:YAG-1,064 nm and the shorter wavelength QS Alexandrite-755 nm and QS Nd:YAG-532 nm lasers in treating NO. Data were evaluated from 21 patients treated in our laser centre from 2004 to 2012. Lesional skin was irradiated with QS-532 nm/QS-755 nm/QS-1,064 nm, with settings titrated according to responses. All received initial test patches to direct initial wavelength choice, with subsequent treatments at 3-monthly intervals until clearance/lack of further response. Laser modality was switched following repeated test patches if there was no or no sustained improvement. Two thirds of patients had ≥ 90% improvement compared to baseline photographs. In 20% of patients, QS-1,064 nm was most efficacious with 97% mean improvement. The mean improvement was 80% for those in whom QS-755 nm was superior, and 90% for QS-532 nm. Median number of overall laser treatments was 8 (range 4-13). Number of treatments required varied significantly according to lesional colour and site: grey lesions and those on the forehead/temple were most resistant. We confirm successful treatment of NO with QS Nd:YAG-1,064 nm and the shorter wavelength QS-755 nm/QS-532 nm lasers without serious or irreversible side effects. We recommend judicious test patch analysis before treatment and a modality switch if complete clearance is not obtained. PMID:23640036

  18. The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1978-01-01

    The spectral absorption properties of C3 have been measured in a shock tube containing a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3240 to 4300 K and 37 to 229 kPa, respectively. The results showed appreciable absorption by C3 for the wavelength range 300 to 540 nm. The various reported measurements of the heat of formation of C3 which are available in the open literature were reviewed, and a value of 198 kcal/mol is recommended. This value, along with best available values for other species, was used to calculate the number density of C3 for the conditions of the present experiments in order to compute absorption cross section or electronic oscillator strength. The computed electronic oscillator strength varied from a high of 0.062 at 3300 K to a low of 0.036 at 3900 K.

  19. Laser microirradiation of Chinese hamster cells at wavelength 365 nm: effects of psoralen and caffeine

    SciTech Connect

    Cremer, T.; Peterson, S.P.; Cremer, C.; Berns, M.W.

    1981-03-01

    Cells of a V79 subline of the Chinese hamster were microirradiated at wavelength 365 nm in the presence of the psoralen derivative, trioxsalen. Microirradiation was accomplished by a pulsed argon laser microbeam either in anaphase or in interphase 3 h after mitosis. Inhibition of clonal growth and formation of micronuclei at the first postirradiation mitosis were observed after microirradiation of anaphase chromosomes and of small parts of the interphase nucleus. Microirradiation of the cytoplasm beside the interphase nucleus or between the sets of chromosomes moving apart from each other in anaphase did not produce these effects. Anaphase experiments showed that only the daughter cell which received microirradiated chromatin exhibited an abnormal growth pattern. Most interestingly, shattering of the whole chromosome complement could be induced by microirradiation of small parts of the interphase nucleus and post-treatment with caffeine. Since microirradiation of chromatin in the absence of psoralen was not effective, we consider formation of psoralen photoadducts to nucleic acids in microirradiated chromatin to be the specific cause of the effects. We suggest that DNA photolesions in chromosome segments present in the microirradiated part of the nucleus can induce shattering of all the chromosomes in the microirradiated nucleus. Several possibilities are discussed to explain this unexpected finding.

  20. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range.

    PubMed

    Ojanen, Maija; Kärhä, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off. PMID:20154756

  1. Stark width measurements of Fe II lines with wavelengths in the range 260-300 nm

    NASA Astrophysics Data System (ADS)

    Aragón, C.; Vega, P.; Aguilera, J. A.

    2011-03-01

    The Stark widths of 21 Fe II lines with wavelengths in the range 260-300 nm have been measured using laser-induced plasmas as spectroscopic sources. A set of Fe-Cu samples has been employed to generate the plasmas. To reduce self-absorption, each line has been measured using a different sample, with an iron concentration determined by means of the curve-of-growth methodology. The remaining error due to self-absorption has been estimated to be lower than 10%. Different instants of the plasma evolution, from 0.84 to 2.5 µs, are included in the measurements. The electron density, in the range (1.6-7.3) × 1017 cm-3, is determined by the Stark broadening of the Hα line. Within this range, the Stark widths are found to be proportional to the electron density. The Boltzmann plot method is used to obtain the plasma temperature, which is in the range 12 900-15 200 K. The Stark widths obtained have been compared with available experimental and theoretical data.

  2. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range

    SciTech Connect

    Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  3. Supercontinuum generation with the use of nanosecond pulses at the wavelength of 1550nm

    NASA Astrophysics Data System (ADS)

    Swiderski, Jacek; Maciejewska, Maria

    2013-01-01

    Broadband and spectrally flat supercontinuum (SC) generation in standard single-mode passive and Tm-doped fibers pumped by 1.55 μm pulses in the anomalous dispersion region is presented. Initial results on SC generation in a singlemode fluoride fiber are also presented. Using only a piece of commercially available SMF-28 as a nonlinear medium, the SC covering the spectral range from ~1.3 μm to 2.5 μm with the mean power of 1.71 W and a 5 dB spectral flatness of 640 nm is reported. When pumping a piece of Tm-doped fiber, the spectrum spreading from ~1.4 μm to 2.65 μm with its significant part located over 1.8 μm wavelength was recorded. SC generated in a fluoride fiber spread from ~0.9 μm to 3.2 μm with the average power of 0.85 W (out of which, over 0.1 W was located beyond 2.4 μm) was achieved.

  4. Recording of self-induced waveguides in lithium niobate at 405 nm wavelength by photorefractive-pyroelectric effect

    NASA Astrophysics Data System (ADS)

    Popescu, S. T.; Petris, A.; Vlad, V. I.

    2013-06-01

    We characterize the process of soliton waveguides (SWGs) recording at 405 nm wavelength using pyroelectric effect in lithium niobate (LN) crystals. We experimentally study and discuss the influence of the input irradiance, the polarization of the signal beam, and the crystal temperature change on the waveguide writing time and mode-profile. These characteristics significantly change when changing the recording wavelength. The advantages of recording SWGs in LN by using blue-violet light and pyroelectric field are emphasised. The generation of radiation at 405 nm wavelength by inexpensive laser diodes, the fast recording at this wavelength, and the convenient way to produce a static electric field inside the crystal by heating it with few degrees leads to a next step in the soliton waveguides recording process with applications in 3D integrated optical circuits.

  5. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit. PMID:27519105

  6. Comparing the Effectiveness of 1064 vs. 810 nm Wavelength Endovascular Laser for Chronic Venous Insufficiency (Varicose Veins)

    PubMed Central

    Yu, De-Yi; Chen, Hung-Chang; Hsiao, Yen-Chang; Chang, Cheng-Jen

    2013-01-01

    Background and Objective: The objective of this study was to compare the efficacy and safety of Endovenous Laser Photocoagulation (EVLP) at wavelengths of 1064 nm versus 810 nm for chronic venous insufficiency (varicose veins) in a large series of patients. Study Design/Materials and Methods: A retrospective review was conducted of 108 patients with chronic venous insufficiency treated over a 8-year period. Subjects' ages ranged between 16 to 79 years; there were 83 females and 25 males, all of whom were Asian. Patients (n=54) received EVLP at wavelengths of 1064 nm (EVLP-1064 nm), Nd:YAG laser. Subsequent patients (n=54) received 810 nm (EVLP-810 nm), Diode laser. The primary efficacy measurement was the quantitative assessment of final outcome for 1064 nm versus 810 nm. Patients were monitored for adverse effects as well. Results: Complications were observed at 3 weeks (early), 6 weeks (late) and 6 months after EVLP. In both groups, the commonest complication in early convalescence was swelling. This was followed by Local paraesthesia, pigmentation, superficial burns, superficial phlebitis, and localized hematomas. At 6 weeks postoperatively, local paraesthesia, persistent hyperpigmentation, and minimal scarring were presented. These problems all disappeared completely after the 6 months study period. Based on chi-squared analysis, there were clinical, and statistically significant differences in the severity score of final results favoring the EVLP-810 nm group. Conclusion: All patients achieved good or excellent improvement after EVLP-1064nm and EVLP-810nm. However, the difference of final outcome was significant, and indicates that improvement was greater in the Diode group. Further studies of different wavelengths and optimization of cryogen spray cooling (CSC) may lead to improved results in the eradication of varicose veins. PMID:24511201

  7. Precision Measurement for Metastable Helium Atoms of the 413 nm Tune-Out Wavelength at Which the Atomic Polarizability Vanishes.

    PubMed

    Henson, B M; Khakimov, R I; Dall, R G; Baldwin, K G H; Tang, Li-Yan; Truscott, A G

    2015-07-24

    We present the first measurement for helium atoms of the tune-out wavelength at which the atomic polarizability vanishes. We utilize a novel, highly sensitive technique for precisely measuring the effect of variations in the trapping potential of confined metastable (2^{3}S_{1}) helium atoms illuminated by a perturbing laser light field. The measured tune-out wavelength of 413.0938(9_{stat})(20_{syst}) nm compares well with the value predicted by a theoretical calculation [413.02(9) nm] which is sensitive to finite nuclear mass, relativistic, and quantum electrodynamic effects. This provides motivation for more detailed theoretical investigations to test quantum electrodynamics. PMID:26252681

  8. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  9. Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region.

    PubMed

    Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C; Rodríguez-De Marcos, Luis; Méndez, Jose A; Larruquert, Juan I; Gullikson, Eric M

    2012-10-01

    We have developed new, Mg/SiC multilayer coatings with corrosion barriers which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation was attempted through the use of Al-Mg or Al thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Standard Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nm with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiple-wavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range. PMID:23188369

  10. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%. PMID:26393759

  11. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  12. Lithography of choice for the 45-nm node: new medium, new wavelength, or new beam?

    NASA Astrophysics Data System (ADS)

    Uesawa, Fumikatsu; Katsumata, Mikio; Ogawa, Kazuhisa; Takeuchi, Koichi; Omori, Shinji; Yoshizawa, Masaki; Kawahira, Hiroichi

    2004-05-01

    In order to clarify the direction of the lithography for the 45 nm node, the feasibilities of various lithographic techniques for gate, metal, and contact layers are studied by using experimental data and aerial image simulations. The focus and exposure budget have been determined from the actual data and the realistic estimation such as the focus distributions across a wafer measured by the phase shift focus monitor (PSFM), the focus and exposure reproducibility of the latest exposure tools, and the anticipated 45 nm device topography, etc. 193 nm lithography with a numerical aperture (NA) of 0.93 achieves the half pitch of 70 nm (hp70) by using an attenuated phase shift mask (att-PSM) and annular illumination. 193 nm immersion lithography has the possibility to achieve the hp60 without an alternative PSM (alt-PSM). For a gate layer, 50-nm/130-nm line-and-space (L/S) patterns as well as 50 nm isolated lines can be fabricated by an alt-PSM. Although specific aberrations degrade the critical dimension (CD) variation of an alt-PSM, +/-2.6 nm CD uniformity (CDU) is demonstrated by choosing the well-controlled projection lens and using a high flatness wafer. For a contact layers, printing 90 nm contacts is very critical by optical lithography even if the aggressive resolution enhancement technique (RET) is used. Especially for dense contact, the mask error factor (MEF) increases to around 10 and practical process margin is not available at all. On the other hand, low-energy electron-beam proximity-projection lithography (LEEPL) can fabricate 80 nm contact with large process margin. As a lithography tool for the contact layers of the 45 nm node devices, LEEPL is expected to replace 193 nm lithography.

  13. Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region

    SciTech Connect

    Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.; De Marcos, Luis Rodríguez; Méndez, Jose A.; Larruquert, Juan I.; Gullikson, Eric M.

    2012-01-01

    We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nm with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.

  14. Optimization of a gas discharge plasma source for extreme ultraviolet interference lithography at a wavelength of 11 nm

    NASA Astrophysics Data System (ADS)

    Bergmann, K.; Danylyuk, S. V.; Juschkin, L.

    2009-10-01

    In this work, we report about the optimization of the spectral emission characteristic of a gas discharge plasma source for high-resolution extreme ultraviolet (EUV) interference lithography based on achromatic Talbot self-imaging. The working parameters of the source are optimized to achieve a required narrowband emission spectrum and to fulfill the necessary coherence and intensity requirements. The intense 4f-4d transitions around 11 nm in a highly ionized (Xe8+-Xe12+) xenon plasma are chosen to provide the working wavelength. This allows us to increase the available radiation intensity in comparison with an in-band EUV xenon emission at 13.5 nm and opens up the possibility to strongly suppress the influence of the 5p-4d transitions at wavelengths between 12 and 16 nm utilizing a significant difference in conditions for optical thickness between 4f-4d and 5p-4d transitions. The effect is achieved by using the admixture of argon to the pinch plasma, which allows keeping the plasma parameters approximately constant while, at the same time, reducing the density of xenon emitters. It is demonstrated that with this approach it is possible to achieve a high intensity 11 nm EUV radiation with a bandwidth of 3%-4% without the use of multilayer mirrors or other additional spectral filters in the vicinity of the working wavelength. The achieved radiation parameters are sufficient for high-performance interference lithography based on the achromatic Talbot effect.

  15. Measurement of the Linear Depolarization Ratio of Aged Dust at Three Wavelengths (355, 532 and 1064 nm) Simultaneously over Barbados

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Althausen, Dietrich; Ansmann, Albert; Klepel, André; Baars, Holger; Engelmann, Ronny; Groß, Silke; Freudenthaler, Volker

    2016-06-01

    A ground-based polarization Raman lidar is presented, that is able to measure the depolarization ratio at three wavelengths (355, 532 and 1064 nm) simultaneously. This new feature is implemented for the first time in a Raman lidar. It provides a full dataset of 3 backscatter coefficients, two extinction coefficients and 3 depolarization ratios (3+2+3 lidar system). To ensure the data quality, it has been compared to the well characterized two-wavelength polarization lidar POLIS. Measurements of long-range transported dust have been performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the Caribbean.

  16. Study on the laser crystal thermal compensation of LD end-pumped Nd:YAG 1319 nm/1338 nm dual-wavelength laser

    NASA Astrophysics Data System (ADS)

    Sun, R.; Wu, C. T.; Yu, M.; Yu, K.; Wang, C.; Jin, G. Y.

    2015-12-01

    The thermal model of laser diode (LD) end-pumped Nd: YAG was established. We analyzed the thermal effect of the crystal during the generation of 1319 nm/1338 nm dual-wavelength laser. Together with the bonded and non-bonded Nd:YAG crystal characteristics, we proposed to consider the bonded crystal’s internal temperature distribution of the three axes abc for the first time. The results showed that, compared with the non-bonded crystals, the bonded crystals could effectively reduce the crystal temperature. It provided a theoretical basis to solve the problem related to the thermal effect of the laser crystal and improve the laser output performance. The Nd:YAG laser crystal thermal model in this article could be widely applicable to similar laser crystals. The results provide a method to analyze and evaluate bonding crystal thermal compensation effectiveness by establishing the Nd:YAG crystal’s temperature distribution.

  17. Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570  nm.

    PubMed

    Fang, Qiannan; Lu, Dazhi; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2016-03-01

    A watt-level self-frequency-doubled yellow laser at the 570 nm wavelength was realized by taking advantage of the vibronic emission of a Yb3+ doped calcium yttrium oxoborate (Yb:YCOB) crystal cut along the optimized direction out of the principal planes with the maximum effective nonlinear coefficient. Fluorescence spectroscopic properties of Yb:YCOB were studied, which showed that it had broad and anisotropic vibronic emission with a small peak at ∼1130  nm. By suppressing the electronic emission, the polarized vibronic Yb:YCOB radiation was realized with the fundamental wavelength shifting from 1130 nm to 1140 nm. By employing the self-frequency-doubling behavior of Yb:YCOB, the self-frequency-doubled yellow laser was achieved with a maximum output power of 1.08 W at 570 nm. This work provides an unprecedented and efficient way to generate yellow lasers with a compact microchip structure that may have promising applications in some regimes including medicine, entertainment, and scientific research. PMID:26974101

  18. High-efficient diode-pumped actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength

    NASA Astrophysics Data System (ADS)

    Su, Fufang; Zhang, Xingyu; Wang, Weitao; Cong, Zhenhua; Shi, Men; Yang, Xiuqin; Kong, Weijin; Ma, Lili; Wu, Wendi

    2013-09-01

    With Nd:YAG as the gain medium and KTP crystal as the Raman medium, the characteristics of an LD pumped intracavity actively Q-switched Nd:YAG/KTP Raman laser at 1096 nm wavelength were studied. The output characteristics of 1096 nm were investigated. At a pulse repetition rate of 30 kHz an average power up to 1.97 W was obtained with the incident pump power of 11.75 W, corresponding to a diode-to-Stokes conversion efficiency of 16.8%.

  19. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength

    SciTech Connect

    Zhu Jingtao; Zhou Sika; Li Haochuan; Huang Qiushi; Wang Zhanshan; Le Guen, Karine; Hu, Min-Hui; Andre, Jean-Michel; Jonnard, Philippe

    2010-07-10

    Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.

  20. Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Chulkov, R.; Markevich, V.; Orlovich, V.; El-Desouki, M.

    2015-12-01

    Stokes generation has been considered under the Fourier-limited nanosecond pulse excitation to find Raman gain coefficients in potassium-gadolinium tungstate. Data of numerical simulation under spontaneous Stokes initiation, light diffraction, and optical feedback have been compared with experimental results to reveal coefficient values of 14 ± 3 and 11 ± 3 cm/GW for the p[mm]p and p[gg]p sample orientations, respectively, at 532 nm wavelength.

  1. Construction of an inexpensive molecular iodine spectrometer using a self-developed Pohl wavemeter around 670 nm wavelength

    NASA Astrophysics Data System (ADS)

    Barthwal, Sachin; Vudayagiri, Ashok

    2015-09-01

    We describe the construction of an inexpensive iodine spectrometer with a homemade iodine vapour cell and a self-developed wavemeter based on the Pohl interferometer, around the 670 nm wavelength. This can be easily realized in an undergraduate teaching laboratory to demonstrate the use of a diode laser interferometer using a Pohl interferometer and measurement of the wavelength using image processing techniques. A visible alternative to the infrared diode lasers, the 670 nm diode laser used here gives undergraduate students a chance to perform comprehensive though illustrative atomic physics experiments including the Zeeman effect, the Hanle effect, and the magneto-optic rotation effect with a little tweaking in the present spectrometer. The advantage of the spectrometer is its ease of construction with readily available optics, electronics, evacuation and glass-blowing facilities, and easy analysis algorithm to evaluate the wavelength. The self-developed algorithm of raster scanning and circular averaging gives the researcher insight into the basics of image processing techniques. Resolution approaching 0.5 nm can be easily achieved using such a simple setup.

  2. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  3. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E.; Guberman, S. L.

    1986-01-01

    The continuous absorption cross section of oxygen in the region 205-241 nm is studied as a function of path length and oxygen pressure. The technique used to study the continuous absorption cross section is described. Cross section measurements of oxygen in the wavelength region 193-205 nm obtained by Cheung et al. (1984) are applied in this experiment. The measured cross section is analyzed in terms of a Herzberg continuum and a pressure-dependent continuum. The total measured continuum cross section, the cross section involving two molecules of O2, and the Herzberg continuum absorption cross section values are calculated. It is observed that the Herzberg continuum cross section of oxygen values measured at 1 nm intervals in the region 195-241 nm, increase from 6.3 x 10 to the -24th sq cm at 195 nm to a maximum of 6.6 x 10 to the -24th sq cm at 201 nm and then decrease to 0.85 x 10 to the -24th sq cm at 241 nm. The Herzberg values are compared with data from previous investigations and the values correlate well.

  4. Silica-on-silicon based 650/1550nm wavelength Mux/Demux for swept source OCT

    NASA Astrophysics Data System (ADS)

    Wu, Zhongwei; Zhou, Hui; Zhang, Xuan; Wan, Suiren; Sun, Xiaohan

    2015-02-01

    We propose a 650/1550nm wavelength Mux/DeMux for SS-OCT system based on silica-on-silicon (SoS), in which mixing red/infrared lightbeams can be fully separated at low insert loss through special cascaded multimode interference (MMI) structure. Each independent lightbeam is entered into its respective channel by selecting proper width and length of the MMI. By using of Finite Difference Beam Propagation Method (FD-BPM), the Mux/DeMux is optimally designed in size of 1×0.1cm2, working at 650nm and 1550nm simultaneously. The results show the degrees of separation between two lightwaves are super high, loss of infrared light is less than 0.5dB and 1dB, and its output power stability is less than 0.25dB and 0.8dB, in 1510nm -1570nm and in 1500nm -1600nm, respectively. The Mux/DeMux can be used in SS-OCT PIC based on SoS.

  5. Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region

    DOE PAGESBeta

    Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.; De Marcos, Luis Rodríguez; Méndez, Jose A.; Larruquert, Juan I.; Gullikson, Eric M.

    2012-01-01

    We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less

  6. Ex-vivo Imaging of Thyroid Gland Using Ultrahigh-Resolution Optical Coherence Tomography at Wavelength from 800 to 1700 nm

    NASA Astrophysics Data System (ADS)

    Ishida, Shutaro; Nishizawa, Norihiko

    2012-03-01

    Wavelength dependence of ex-vivo ultrahigh-resolution optical coherence tomography (UHR-OCT) imaging of thyroid gland using supercontinuum at wavelength from 800 to 1700 nm was demonstrated. The wavelength dependence of the thickness of follicular epithelium and fine structures such as round or oval follicles were observed from the UHR-OCT cross sectional images. The reconstructed en-face OCT images at all wavelength regions were obtained and the images of follicles with several different signal intensities were observed in 1060 and 1700 nm UHR-OCT images. To our knowledge, this is the first observation of wavelength dependence of OCT images of thyroid gland structure.

  7. Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800–1700 nm wavelength region

    PubMed Central

    Ishida, Shutaro; Nishizawa, Norihiko

    2012-01-01

    We investigated the wavelength dependence of imaging depth and clearness of structure in ultrahigh-resolution optical coherence tomography over a wide wavelength range. We quantitatively compared the optical properties of samples using supercontinuum sources at five wavelengths, 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm, with the same system architecture. For samples of industrially used homogeneous materials with low water absorption, the attenuation coefficients of the samples were fitted using Rayleigh scattering theory. We confirmed that the systems with the longer-wavelength sources had lower scattering coefficients and less dependence on the sample materials. For a biomedical sample, we observed wavelength dependence of the attenuation coefficient, which can be explained by absorption by water and hemoglobin. PMID:22312581

  8. 785-nm dual wavelength DBR diode lasers and MOPA systems with output powers up to 750 mW

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Maiwald, Martin; Klehr, Andreas; Müller, André; Bugge, Frank; Fricke, Jörg; Ressel, Peter; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Raman lines are often superimposed by daylight, artificial light sources or fluorescence signals from the samples under study. Shifted excitation Raman difference spectroscopy (SERDS), i.e. exciting the sample alternatingly with two slightly shifted wavelengths, allows to distinguish between the Raman lines and sources of interference. In this work, monolithic dual wavelength Y-branch DBR ridge waveguide diode lasers and their application in master oscillator power amplifier (MOPA) systems at 785 nm suitable for Raman spectroscopy and SERDS will be presented. The definition of the wavelengths is made by implementing deeply-etched 10th order 500 μm long surface gratings with different periods using i-line wafer stepper lithography. Y-branch DBR lasers with a total length of 3 mm and a stripe width of 2.2 μm were manufactured and characterized. The monolithic devices reach output powers up to 215 mW with emission widths of about 20 pm. At 200 mW the conversion efficiency is 20%, i.e. the electrical power consumption is only 1 W. The spectral distance between the two laser cavities is about 0.6 nm, i.e. 10 cm-1 as targeted. The side mode suppression ratio is better than 50 dB. Amplifying these devices using a ridge waveguide amplifier an output power of about 750 mW could be achieved maintaining the spectral properties of the master oscillator.

  9. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  10. Corrosion-resistant multilayer coatings for the 28-75 nm wavelength region

    SciTech Connect

    Soufli, R; Fernandez-Perea, M; Al, E T

    2011-11-08

    Corrosion has prevented use of SiC/Mg multilayers in applications requiring good lifetime stability. We have developed Al-based barrier layers that dramatically reduce corrosion, while preserving high reflectance and low stress. The aforementioned advances may enable the implementation of corrosion-resistant, high-performance SiC/Mg coatings in the 28-75 nm region in applications such as tabletop EUV/soft x-ray laser sources and solar physics telescopes. Further study and optimization of corrosion barrier structures and coating designs is underway.

  11. Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua; Thomas, Michael E.; Joseph, Richard I.

    2007-04-01

    The spectrally resolved absolute fluorescence cross sections of Bacillus globigii (BG) and Bacillus thuringiensis (BT) were measured with a 266nm Nd:YAG laser source. The aerosol samples were prepared in dilute aqueous suspensions for measurement and the absolute cross section was found by use of the Raman scattering line from water. Integrated cross sections for BT and BG were found to be 1.1864 × 10 -12 cm2(spore sr) and 3.251 × 10 -13 cm2/ (spore sr) respectively.

  12. Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength.

    PubMed

    Brahm, Anika; Wilms, Annika; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Notni, Gunther; Tünnermann, Andreas

    2014-06-01

    We present Terahertz (THz) imaging with a 1D multichannel time-domain spectroscopy (TDS) system which operates with a photoconductive array of 15 detection channels excited by a 1030 nm femtosecond fiber laser. The emitter and detector are photoconductive antennas based on InGaAs/InAlAs multi-layer heterostructures (MLHS). We characterized the THz optics and the resolution of the system. The performance is demonstrated by the multichannel imaging of two samples. A simultaneous measurement of 15 THz pulses with a pixel pitch of 1 mm increases the measurement speed of the TDS system by factor 15. PMID:24921495

  13. High-power cw laser bars of the 750 - 790-nm wavelength range

    SciTech Connect

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-06-30

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 - 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  14. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  15. Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.

    1988-01-01

    The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.

  16. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    NASA Technical Reports Server (NTRS)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  17. 130-nm reticle inspection using multibeam UV-wavelength database inspection

    NASA Astrophysics Data System (ADS)

    Aquino, Christopher M.; Schlaffer, Robert

    2002-07-01

    The TeraStar family of reticle inspection systems were introduced in 2000 with die-to-die and STARlightT capability. These tools set the standard for high-resolution reticle inspection for the 130 nm design rule and below. The latest addition to the TeraStar family is the TeraStar SLF77, which extends the tool platform to include die-to-database inspection capability. Sensitivity for Chrome on Glass is 100 nm with much greater tolerance for inspecting aggressive OPC features such as serifs and assist lines. Many advanced reticles that are not inspectable on previous generation inspection tools are all inspectable on the TeraStar SLF77. Data prep times and file structure have been significantly improved with the average prep time being less than 10 percent of the 365UV-HR and average output file size less than 25 percent of the GigaPrep. The TeraStar SLF77 incorporates all the features of the TeraStar family such as triple-beam optics and TeraPro HP High Productivity Modes with the ability to run STARlight inspections concurrently with either die-to-die or die-to-database pattern inspections. Advanced registration algorithms accommodate subtle plate and machine errors to provide high sensitivity with low false detections. Advanced image overlay inspects small lines and OPC features and is very independent of defect shape and location. The TeraStar SLF77 has removed the barriers that existed with previous generation database inspection tools and made advanced reticle die-to-database inspection cost effective. Last October, KLA-Tencor introduced the TeraStar SLF77 and the three beta sites have recently completed beta evaluation. Here we present the first results from the use of the TeraStar in a production environment triple beam die-to-database inspection system. We have also shipped more than ten systems to customers worldwide. This paper describes the implementation of productivity improvements at the beta sites, performance on 130nm node customer product reticles

  18. ABSORPTION CROSS SECTION OF GASEOUS ACETYLENE AT 85 K IN THE WAVELENGTH RANGE 110-155 nm

    SciTech Connect

    Cheng, Bing-Ming; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Alam, M. S.; Chou, Sheng-Lung; Lin, Meng-Yeh

    2011-09-01

    Absorption spectra and absorption cross sections of gaseous acetylene, C{sub 2}H{sub 2}, at 298 and 85 K were measured in the wavelength range 110-155 nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C{sub 2}H{sub 2}, we simulated the absorption profile for the Rydberg transition to state 4R{sub 0} in the range 124.6-125.1 nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85 {+-} 5 K. Our cross sections of C{sub 2}H{sub 2} are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.

  19. Solar Irradiance Models and Measurements: A Comparison in the 220-240 nm wavelength band

    NASA Astrophysics Data System (ADS)

    Unruh, Yvonne C.; Ball, Will T.; Krivova, Natalie A.

    2012-07-01

    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar cycle time scales. Here, we compare solar irradiance in the 220-240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.

  20. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    SciTech Connect

    Rosenberg, Danna; Peterson, Charles G; Dallmann, Nicholas; Hughes, Richard J; Mccabe, Kevin P; Nordholt, Jane E; Tyagi, Hush T; Peters, Nicholas A; Toliver, Paul; Chapman, Thomas E; Runser, Robert J; Mcnown, Scott R

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  1. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  2. Depth of penetration of a 785nm wavelength laser in food powders

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Schmidt, Walter F.

    2015-05-01

    Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume is detected by Raman system. The aim of this study was to investigate the penetration depth of a 785nm laser (maximum power output 400mw) into three different food powders, namely dry milk powder, corn starch, and wheat flour. The food powders were layered in 5 depths between 1 and 5 mm overtop a Petri dish packed with melamine. Melamine was used as the subsurface reference material for measurement because melamine exhibits known and identifiable Raman spectral peaks. Analysis of the sample spectra for characteristics of melamine and characteristics of milk, starch and flour allowed determination of the effective penetration depth of the laser light in the samples. Three laser intensities (100, 200 and 300mw) were used to study the effect of laser intensity to depth of penetration. It was observed that 785nm laser source was able to easily penetrate through every point in all three food samples types at 1mm depth. However, the number of points that the laser could penetrate decreased with increasing depth of the food powder. ANOVA test was carried out to study the significant effect of laser intensity to depth of penetration. It was observed that laser intensity significantly influences the depth of penetration. The outcome of this study will be used in our next phase of study to detect different chemical contaminants in food powders and develop quantitative analysis models for detection of chemical contaminants.

  3. Ablation efficiency and relative thermal confinement measurements using wavelengths 1,064, 1,320, and 1,444 nm for laser-assisted lipolysis.

    PubMed

    Youn, Jong-In; Holcomb, J David

    2013-02-01

    Laser-assisted lipolysis is routinely used for contouring the body and the neck while modifications of the technique have recently been advocated for facial contouring. In this study, wavelength-dependence measurements of laser lipolysis effect were performed using different lasers at 1,064, 1,320, and 1,444 nm wavelengths that are currently used clinically. Fresh porcine skin with fatty tissue was used for the experiments with radiant exposure of 5-8 W with the same parameters (beam diameter = 600 μm, peak power = 200 mJ, and pulse rate = 40 Hz) for 1,064, 1,320 and 1,444 nm laser wavelengths. After laser irradiation, ablation crater depth and width and tissue mass loss were measured using spectral optical coherence tomography and a micro-analytical balance, respectively. In addition, thermal temporal monitoring was performed with a thermal imaging camera placed over ex vivo porcine fat tissue; temperature changes were recorded for each wavelength. This study demonstrated greatest ablation crater depth and width and mass removal in fatty tissue at the 1,444 nm wavelength followed by, in order, 1,320 and 1,064 nm. In the evaluation of heat distribution at different wavelengths, reduced heat diffusion was observed at 1,444 nm. The ablation efficiency was found to be dependent upon wavelength, and the 1,444 nm wavelength was found to provide both the highest efficiency for fatty tissue ablation and the greatest thermal confinement. PMID:22534741

  4. Single- and multi-wavelength Nd:YAlO3 lasers at 1328, 1339 and 1364 nm

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wang, Yi; Lin, Zhi; Peng, Jian; Cheng, Yongjie; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Weng, Jian; Moncorgé, Richard

    2016-07-01

    We report on the diode-pumped continuous-wave (CW) and passively Q-switched laser operation of a c-cut Nd:YAlO3 (YAP) laser crystal. CW laser operation is demonstrated for the first time with 0.61 W output power on a low-gain emission line at 1364 nm by using a 0.08-mm glass etalon. Dual-wavelength laser operation is also achieved at 1328 and 1340 nm as well as at 1340 and 1364 nm with maximum output powers of 0.87 and 0.83 W, respectively. Using graphene oxide as saturable absorber, stable Q-switching is obtained at 1339 nm with a maximum average output power of 0.43 W, a pulse width of 380 ns and a repetition rate of 76.9 kHz, thus laser pulses with 14.7 W peak power and 5.6 μJ pulse energy. This work presents the first graphene oxide based Q-switched Nd:YAP laser and shows the effectiveness of graphene oxide as saturable absorber for the generation of 1.3 μm laser pulses.

  5. The optical properties of onion dry skin and flesh at the wavelength 632.8 nm

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Li, Changying

    2012-05-01

    Evaluating onions quality using optical techniques is challenging because the presence of outer dry skin and the layered structure of onion fleshy tissues. To better understand the light propagation in onions, the optical properties of dry skin and fleshy tissues from two cultivars were measured at 632.8 nm by using a single integrating sphere based system. Onion tissues were cut into 30 mm square pieces and sandwiched by Borofloat glass slides. The total diffuse reflectance, the total transmittance, and the collimated transmittance of the onion samples were measured by an integrating sphere system with a VIS-NIR spectrometer. The absorption coefficient (μa), the reduced scattering coefficient (μs'), and the anisotropy coefficient (g) of onion tissue samples were estimated using the inverse adding-doubling method based on the measured spectra. The light propagation in onion tissues were modeled based on the calculated optical parameters using Monte Carlo simulations. The results indicated that onion tissues are high albedo biological media. Onion dry skins have much higher absorption and reduced scattering coefficients than onion fleshy tissues. Comparisons between the two onion cultivars showed that the optical properties of onions could vary with cultivars. The results of this study can be used to develop appropriate optical approaches for the onion quality inspection.

  6. Behavior of optical properties of coagulated blood sample at 633 nm wavelength

    NASA Astrophysics Data System (ADS)

    Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto

    2011-03-01

    Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.

  7. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Li, Y. D.; Zhao, M.; Chen, X. Y.; Wang, J. B.; Chen, G. B.

    2013-04-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm.

  8. Investigation of the lithium 670.7 nm wavelength range in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar; Malherbe, Jean-Marie; Steffen, Matthias

    2016-07-01

    Lithium is a key chemical element, with a chemical evolution that is different from that of most other elements. It is also very fragile, as it is destroyed by nuclear reactions with protons at temperatures higher than about 2.5 million K. According to standard Big Bang nucleosynthesis, only the isotope 7Li is produced in significant amounts, while the primordial abundance of the lighter isotope 6Li is negligible. Lithium is not produced by nucleosynthesis in normal stars, except in peculiar phases of stellar evolution (e.g. in AGB stars and Novae). Lithium may also be formed as a result of flares in the atmospheres of young, active stars. To investigate the history of Li production and depletion in the Galaxy, it is necessary to analyse stars of all ages, including those at solar metallicity. In this case, the spectroscopic determination of the Li abundance is complicated by the presence of other spectral lines overlapping with the Li doublet at 670.7 nm. The correct identification and knowledge of the atomic parameters of these blend lines is critical, especially if the 6LI/7Li isotopic ratio is to be derived. In this investigation, we consider several line lists of the blending components available in the literature and use them to compute synthetic spectra, performing the line formation computations both for the classical 1D Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The synthetic spectra are then compared to the solar spectrum observed at different limb angles. This allows us to check the quality of existing line lists, to find potentially misidentified blend lines, and to construct an optimized line list for solar-type stars.

  9. Deposition and characterization of B4C/CeO2 multilayers at 6.x nm extreme ultraviolet wavelengths

    NASA Astrophysics Data System (ADS)

    Sertsu, M. G.; Giglia, A.; Brose, S.; Park, D.; Wang, Z. S.; Mayer, J.; Juschkin, L.; Nicolosi, P.

    2016-03-01

    New multilayers of boron carbide/cerium dioxide (B4C/CeO2) combination on silicon (Si) substrate are manufactured to represent reflective-optics candidates for future lithography at 6.x nm wavelength. This is one of only a few attempts to make multilayers of this kind. Combination of several innovative experiments enables detailed study of optical properties, structural properties, and interface profiles of the multilayers in order to open up a room for further optimization of the manufacturing process. The interface profile is visualized by high-angle annular dark-field imaging which provides highly sensitive contrast to atomic number. Synchrotron based at-wavelength extreme ultraviolet (EUV) reflectance measurements near the boron (B) absorption edge allow derivation of optical parameters with high sensitivity to local atom interactions. X-ray reflectivity measurements at Cu-Kalpha (8 keV ) determine the period of multilayers with high in-depth resolution. By combining these measurements and choosing robust nonlinear curve fitting algorithms, accuracy of the results has been significantly improved. It also enables a comprehensive characterization of multilayers. Interface diffusion is determined to be a major cause for the low reflectivity performance. Optical constants of B4C and CeO2 layers are derived in EUV wavelengths. Besides, optical properties and asymmetric thicknesses of inter-diffusion layers (interlayers) in EUV wavelengths near the boron edge are determined. Finally, ideal reflectivity of the B4C/CeO2 combination is calculated by using optical constants derived from the proposed measurements in order to evaluate the potentiality of the design.

  10. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Berrill, Mark; Wernsing, Keith A.; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge J.

    2014-05-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at λ = 13.9 nm and 20 μW at λ = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  11. Precise frequency measurements of {sup 127}I{sub 2} lines in the wavelength region 750-780 nm

    SciTech Connect

    Liao, Chun-Chieh; Wu, Kuo-Yu; Lien, Yu-Hung; Shy, Jow-Tsong; Knoeckel, Horst; Tiemann, Eberhard; Chui, Hsiang-Chen

    2010-06-15

    High precision frequency measurements of {sup 127}I{sub 2} hyperfine transitions in the wavelength range between 750 and 780 nm were performed employing an optical frequency comb. A Ti:sapphire laser is frequency stabilized to a hyperfine component of I{sub 2} using a Doppler-free frequency modulation technique, and an optical frequency comb is used to measure its frequency precisely. Improved absolute frequencies of 27 hyperfine transitions between 750 and 780 nm of the bands (0-12) and (0-13) of B {sup 3}{Pi}{sub 0{sub u{sup +}}}-X {sup 1}{Sigma}{sub g}{sup +} system of I{sub 2} are presented. The relative uncertainty of the measurement is a few times 10{sup -10}, limited by the frequency instability of the iodine-stabilized laser. The frequencies are compared to the predicted frequencies using the model description of [Eur. Phys. J. D 28, 199 (2004)], which yields differences larger than expected. An improved model is developed for the range from 755 to 815 nm for the prediction of lines with an error limit of the absolute frequency less than 0.2 MHz.

  12. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength

    NASA Astrophysics Data System (ADS)

    Haehnel, Falk; Bertram, Rene; Reisse, Guenter; Boettcher, Rene; Weissmantel, Steffen

    2010-11-01

    New results on three-dimensional microstructuring of fused silica, sapphire, calcium fluoride, magnesium fluoride, and PTFE using pulsed laser ablation at 157 nm wavelength are presented. A largely automated high-precision fluorine laser micromachining station was used for the investigations. In some fundamental investigations, threshold fluences of 0.9 J/cm2 for fused silica, 0.6 J/cm2 for sapphire, 1.7 J/cm2 for calcium fluoride, and of 0.05 J/cm2 for PTFE have been determined. The ablation rates at 3 J/cm2 fluence were 60 to 100 nm/pulse for the inorganic insulators and 450 nm/pulse for PTFE. In the second part of the paper, it is shown that on the basis of the knowledge of the ablation rates and the laser beam parameters, bores of a few µm size and complex 3D microstructures with a variety of geometries can be produced in the surface of these materials. Thereby, no cracking occurs if proper parameters are used.

  13. Radiance Temperatures (in the Wavelength Range 530 to 1500 nm) of Nickel at Its Melting Point by a Pulse-Heating Technique

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.; McClure, J. L.; Cezairliyan, A.

    1998-11-01

    The radiance temperatures (at seven wavelengths in the range 530 to 1500 nm) of nickel at its melting point were measured by a pulse-heating technique. The method is based on rapid resistive self-heating of the specimen from room temperature to its melting point in less than 1 s and on simultaneously measuring specimen radiance temperatures every 0.5 ms. Melting of the specimen was manifested by a plateau in the radiance temperature-versus-time function for each wavelength. The melting-point radiance temperatures for a given specimen were determined by averaging the measured temperatures along the plateau at each wavelength. The melting-point radiance temperatures for nickel, as determined by averaging the results at each wavelength for 25 specimens, are: 1641 K at 530 nm, 1615 K at 627 nm, 1606 K at 657 nm, 1589 K at 722 nm, 1564 K at 812 nm, 1538 K at 908 nm, and 1381 K at 1500 nm. Based on uncertainties arising from pyrometry and specimen conditions, the combined uncertainty (two standard-deviation level) is about ± 6 K for the reported values in the range 530 to 900 nm and is about ± 8 K for the reported value at 1500 nm.

  14. SASE free electron lasers as short wavelength coherent sources. From first results at 100 nm to a 1 Å X-ray laser

    NASA Astrophysics Data System (ADS)

    Treusch, R.; Feldhaus, J.

    2003-10-01

    During the last few years free electron lasers (FELs) based on self-amplified spontaneous emission (SASE) have been demonstrated at wavelengths of 12 μm [CITE], 830 nm [CITE], 530 nm [CITE] and 385 nm [CITE], and around 100 nm [CITE]. Recently, saturation has been observed in the vacuum ultraviolet (VUV) spectral region between 82 nm and 125 nm at the TESLA Test Facility (TTF) at DESY. The radiation pulses have been characterized with respect to pulse energy, statistical fluctuations, angular divergence and spectral distribution, both in the linear gain and in the saturation regime of the FEL [CITE]. The results are in good agreement with theoretical simulations, providing a solid basis for other projects aiming at still shorter wavelengths down to the 0.1 nm range [CITE].

  15. Two-channel method for measuring losses in a ring optical resonator at a wavelength of 632.8 nm

    NASA Astrophysics Data System (ADS)

    Azarova, V. V.; Bessonov, A. S.; Bondarev, A. L.; Makeev, A. P.; Petrukhin, E. A.

    2016-07-01

    A two-channel method is proposed for measuring losses in an optical ring resonator (RR), in which eigenmodes (counterpropagating waves) are excited by means of a Zeeman ring He – Ne laser with a wavelength of 632.8 nm. The measured frequency splitting of the laser counterpropgating waves is used to determine the absolute value of losses in an exemplary RR. The value of losses in the measured RR is determined by comparing the resonance width of the output radiation intensity with the resonance width of the radiation intensity for an exemplary resonator. The algorithm of intensity resonance processing takes into account the distortions caused by the dynamic effect, which allows a significant increase in the accuracy (up to 1% – 2%) and sensitivity of the proposed method. The measured losses in the RR with a perimeter of 28 cm constitute 80 – 5000 ppm.

  16. Higher than 60% internal quantum efficiency of photoluminescence from amorphous silicon oxynitride thin films at wavelength of 470 nm

    SciTech Connect

    Zhang, Pengzhan; Chen, Kunji Zhang, Pei; Fang, Zhonghui; Li, Wei; Xu, Jun; Huang, Xinfan; Dong, Hengping

    2014-07-07

    We reported the study on the photoluminescence internal quantum efficiency (PL IQE) and external quantum efficiency (PL EQE) from the amorphous silicon oxynitride (a-SiNO) films, which were fabricated by plasma-enhanced chemical vapor deposition followed by in situ plasma oxidation. We employed the direct measurement of absolute quantum efficiency within a calibrated integration sphere to obtain the PL EQE. Then, we calculated the PL IQE by combing the measured EQE and optical parameters of light extraction factor, reflectivity, and transmittance of the a-SiNO thin films. We also derived the PL QE through investigating the characteristic of the temperature dependent PL. These results show that the PL IQE as high as 60% has been achieved at peak wavelength of about 470 nm, which is much higher than that of Si nanocrystal embedded thin films.

  17. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  18. Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines

    SciTech Connect

    Swann, William C.; Gilbert, Sarah L.

    2005-08-01

    We have measured the line centers and pressure-induced shift and broadening of 25 lines in the 2{nu}{sub 3} rotational-vibrational band of hydrogen cyanide H{sup 13}C{sup 14}N. These lines can be used as wavelength references in the optical fiber communication wavelength division multiplexing C-band (approximately 1530-1565 nm). We find that the pressure shift varies with line number from +0.09 pm/kPa to -0.15 pm/kPa (approximately -1.5 to +2.5 MHz/Torr). The pressure broadening also varies with line number and is typically between 1 and 5.4 pm/kPa (17-90 MHz/Torr). We determined the line centers of 21 lines with an expanded uncertainty (2{sigma}) of 0.01 pm ({approx_equal}1 MHz), an improvement of more than 1 order of magnitude over previous line center measurements of this band. We also calculate the molecular constants for the band, yielding improved determination of the band origin frequency and the excited-state molecular constants.

  19. Effect of Laser Irradiation at Different Wavelengths (940, 808, and 658 nm) on Pressure Ulcer Healing: Results from a Clinical Study

    PubMed Central

    Taradaj, J.; Halski, T.; Kucharzewski, M.; Urbanek, T.; Halska, U.; Kucio, C.

    2013-01-01

    The aim of the study was to assess the efficacy of laser therapy (at different wavelengths: 940, 808, and 658 nm) for treating pressure ulcers. The primary endpoint in this trial included both the percentage reduction of the ulcer surface area and the percentage of completely healed wounds after one month of therapy (ulcer healing rate). The secondary endpoint was the ulcer healing rate at the follow-up evaluation (3 months after the end of the study). In total, 72 patients with stage II and III pressure ulcers received laser therapy once daily, 5 times per week for 1 month using a (GaAlAs) diode laser with a maximum output power of 50 mW and continuous radiation emission. Three separate wavelengths were used for the laser treatment: 940 nm (group I), 808 nm (group II), and 658 nm (group III). An average dose of 4 J/cm2 was applied. In group IV, a placebo was applied (laser device was turned off). The laser therapy at a wavelength of 658 nm appeared to be effective at healing pressure ulcers. The wavelengths of 808 and 940 nm did not have any effect in our study. PMID:24159357

  20. The generation of optical phase conjugation from cerium doped barium titanate at wavelength of 632.8 nm

    NASA Astrophysics Data System (ADS)

    Sidakum, K.; Buranasiri, P.; Plaipichit, S.; Ruttanapun, C.; Jindajitawat, P.

    2013-06-01

    In this paper, optical phase conjugate beam with the using of different resonator configurations has been investigate. Two types of SPPC resonators were selected to use, the first one is linear resonators formed by crystal surface and the other one is linear resonators formed by single mirror and a photorefractive crystal. In our experiment, cerium doped barium titanate crystal (BaTiO3 : Ce) and He-Ne laser with wavelength of 632.8 nm have been used. From the results of both cases, the angle of the incident beams is optimum at 37.95° respect to the normal line of the surface that parallel to the c-axis of the crystal. The generating time of OPC beam are 150 seconds and 330 seconds for the first and second type resonators, respectively. The reflection ratios are equal to 8.75% and 5% for the first and second type resonators, respectively (the first type resonators could provide better reflection ratio).

  1. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  2. Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Yuan; Wang, Ding; Leng, Yu-Xin; Dai, Ye

    2015-01-01

    We theoretically study the nonlinear compression of picosecond pulses with 10-mJ of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber (HCF) compressor and considering the third-order dispersion (TOD) effect. It is found that when the input pulse is about 1 ps/10 mJ, it can be compressed down to less than 20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, and 11134010), the National Basic Research Program of China (Grant No. 2011CB808101), the Commission of Science and Technology of Shanghai, China (Grant No. 12dz1100700), the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800), and the International Science and Technology Cooperation Program of China (Grant No. 2011DFA11300).

  3. Initial clinical results of laser prostatectomy procedure for symptomatic BPH using a new 50-watt diode laser (wavelength 1000 nm)

    NASA Astrophysics Data System (ADS)

    Bhatta, Krishna M.

    1995-05-01

    Lasers have been used for symptomatic Benign Prostatic Hyperplasia (BPH) in both contact and non-contact modes with reported success rates equivalent to that of Transurethral Resection of Prostate (TURP). A new high power diode laser (Phototome), capable of delivering up to 50 watts of 1000 nm wavelength laser power via a 1 mm quartz fiber, was used to treat 15 patients with symptomatic BPH. Five patients had acute retention, 3 had long term catheter (7 - 48 months), and 8 had severe prostatism. Spinal anesthesia was used in 11 patients, and 4 patients had local anesthesia and intravenous sedation. Four quadrant coagulation with an angle firing probe delivering 50 watts of laser power for 60 seconds in one quadrant was used as the core of the treatment in 11 patients, contact vaporization of BPH tissue was performed in one patient using a 4.5 mm ball tip was used in one patient and three patients with bladder neck stenosis had bladder neck incision performed using a 1 mm quartz fiber delivering 30 watts of laser power. A foley catheter was left indwelling and removed after 5 - 7 days. All patients except one were catheter free after a mean of 8 days. One patient continued to have severe prostatism and had a TURP performed with good results after 3 months of his laser prostatectomy procedure. AUA symptom scores available in 11 patients was found to be 4 after 1 - 3 months of the initial procedure.

  4. Optical properties of dental restorative materials in the wavelength range 400 to 700 nm for the simulation of color perception

    NASA Astrophysics Data System (ADS)

    Friebel, Moritz; Povel, Kirsten; Cappius, Hans-Joachim; Helfmann, Jürgen; Meinke, Martina

    2009-09-01

    Aesthetic restorations require dental restorative materials to have optical properties very similar to those of the teeth. A method is developed to this end to determine the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g, and effective scattering coefficient μs' of dental restorative materials. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer followed by inverse Monte Carlo simulations. Using this method the intrinsic optical parameters are determined for shade B2 of the light-activated composites TPH® Spectrum®, Esthet-X®, and the Ormocer® Definite® in the wavelength range 400 to 700 nm. By using the determined parameters μa, μs, and g together with an appropriate phase function, the reflectance of samples with 1-mm layer thickness and shade B2 could be predicted with a very high degree of accuracy using a forward Monte Carlo simulation. The color perception was calculated from the simulated reflectance according to the CIELAB system. We initiate the compilation of a data pool of optical parameters that in the future will enable calculation models to be used as a basis for optimization of the optical approximation of the natural tooth, and the composition of new materials and their production process.

  5. Simultaneous tri-wavelength laser operation at 916, 1086, and 1089 nm of diode-pumped Nd:LuVO4 crystal

    NASA Astrophysics Data System (ADS)

    Shen, Bingjun; Jin, Lihong; Zhang, Jiajia; Tian, Jian

    2016-09-01

    We report a diode-pumped continuous-wave tri-wavelength Nd:LuVO4 laser operating at 916, 1086, and 1089 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous tri-wavelength laser operation. Using a T-shaped cavity, we realized efficient tri-wavelength operation at 4F3/2  →  4I9/2 and 4F3/2  →  4I11/2 transitions for Nd:LuVO4 crystal, simultaneously. The maximum output power was 2.8 W, which included 916, 1086, and 1089 nm, and the optical conversion efficiency was 15.1%. To our knowledge, this is the first work that realizes simultaneous tri-wavelength Nd:LuVO4 laser operation.

  6. Design and performance analysis of InP/InGaAsP-MMI based 1310/1550-nm wavelength division demultiplexer with tapered waveguide geometry

    NASA Astrophysics Data System (ADS)

    Chack, D.; Kumar, V.; Raghuwanshi, S. K.

    2015-12-01

    The design and performance analysis of a 1310/1550-nm wavelength division demultiplexer with tapered geometry based on InP/InGaAsP multimode interference (MMI) coupler has been carried out. Wavelength response of demultiplexer of conventional MMI and tapered input and tapered output (tapered I/O) waveguides geometry of the MMI have been discussed. The demultiplexing function has been first performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI structure have been achieved. Access width of tapered I/O waveguides have been adjusted to give a low insertion loss (IL) and high extinction ratio (ER) for the considered wavelengths of 1310 nm and 1550 nm. The total size of the demultiplexer has been significantly reduced over the existing MMI devices. Numerical simulations with finite difference beam propagation method are applied to design and optimize the operation of the proposed demultiplexer.

  7. Pd/B4C/Y multilayer coatings for extreme ultraviolet applications near 10  nm wavelength.

    PubMed

    Windt, David L; Gullikson, Eric M

    2015-06-20

    A new extreme ultraviolet (EUV) multilayer coating has been developed comprising Pd and Y layers with thin B4C barrier layers at each interface, for normal incidence applications near 10 nm wavelength. Periodic, nonperiodic, and dual-stack coatings have been investigated and compared with similar structures comprising either Mo/Y or Pd/B4C bilayers. We find that Pd/B4C/Y multilayers provide higher reflectance than either Mo/Y or Pd/B4C, with much lower film stress than Pd/B4C. We have also investigated the performance of periodic multilayers comprising repetitions of Pd/Y, Ru/Y, or Ru/B4C/Y, as well as Pd/B4C multilayers deposited using reactive sputtering with an Ar:N2 gas mixture in order to reduce stress: these material combinations were all found to provide poor EUV performance. The temporal stability of a periodic Pd/B4C/Y multilayer stored in air was investigated over a period of 16 months, and a slight reduction in peak reflectance was observed. Periodic Pd/B4C/Y multilayers were also found to be thermally stable up to 100°C; at higher temperatures (200°C and 300°C) we observe a slight reduction in peak reflectance and a slight increase in multilayer period. High-resolution transmission electron microscopy and selected area diffraction of an as-deposited Pd/B4C/Y film indicates a fully amorphous structure, with interfaces that are both smoother and more abrupt than those observed in a comparable Pd/B4C multilayer in which the Pd layers are polycrystalline. The new Pd/B4C/Y multilayers are suitable for normal-incidence imaging and spectroscopy applications, including solar physics, plasma physics, high-brightness EUV light sources, and others. PMID:26193039

  8. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.

    PubMed

    Lee, Sang-Won; Song, Hyun-Woo; Jung, Moon-Youn; Kim, Seung-Hwan

    2011-10-24

    In this study, we demonstrated a wide tuning range wavelength-swept laser with a single semiconductor optical amplifier (SOA) at 1020 nm for ultrahigh resolution, Fourier-domain optical coherence tomography (UHR, FD-OCT). The wavelength-swept laser was constructed with an external line-cavity based on a Littman configuration. An optical wavelength selection filter consisted of a grating, a telescope, and a polygon scanner. Before constructing the optical wavelength selection filter, we observed that the optical power, the spectrum bandwidth, and the center wavelength of the SOA were affected by the temperature of the thermoelectric (TE) cooler in the SOA mount as well as the applied current. Therefore, to obtain a wide wavelength tuning range, we adjusted the temperature of the TE cooler in the SOA mount. When the temperature in the TE cooler was 9 °C, our swept source had a tuning range of 142 nm and a full-width at half-maximum (FWHM) of 121.5 nm at 18 kHz. The measured instantaneous spectral bandwidth (δλ) is 0.085 nm, which was measured by an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. This value corresponds to an imaging depth of 3.1 mm in air. Additionally, the averaged optical power of our swept source was 8.2 mW. In UHR, FD/SS-OCT using our swept laser, the measured axial resolution was 4.0 μm in air corresponding to 2.9 μm in tissue (n = 1.35). The sensitivity was measured to be 93.1 dB at a depth of 100 μm. Finally, we obtained retinal images (macular and optic disk) and a corneal image. PMID:22108975

  9. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Gorbashova, M. A.; Yurov, V. Yu; Konov, V. I.

    2016-06-01

    We report on an external-cavity diamond Raman laser (DRL) pumped with a Q-switched Nd:YAG and generating at 1st and 2nd Stokes (1240 nm and 1485 nm) with enhanced output energy. The slope efficiency of 54% and output energy as high as 1.2 mJ in single pulse at 1240 nm have been achieved with optimized cavity, while the pulse energy of 0.70 mJ was obtained in the eye-safe spectral region at 1485 nm. Calculations of thermal lensing effect indicate it as a possible reason for the observed decrease in conversion efficiency at the highest pump energies.

  10. Heading to 1 kW levels with laser bars of high-efficiency and emission wavelength around 880 nm and 940 nm

    NASA Astrophysics Data System (ADS)

    Pietrzak, A.; Woelz, M.; Huelsewede, R.; Zorn, M.; Hirsekorn, O.; Meusel, J.; Kindsvater, A.; Schröder, M.; Bluemel, V.; Sebastian, J.

    2015-03-01

    High-power quasi-CW laser bars are of great interest as pump sources of solid-state lasers generating high-energy ultrashort pulses for high energy projects. These applications require a continuous improvement of the laser diodes for reliable optical output powers and simultaneously high electrical-to-optical power efficiencies. An overview is presented of recent progress at JENOPTIK in the development of commercial quasi-CW laser bars emitting around 880 nm and 940 nm optimized for peak performance. At first, performances of 1.5 mm long laser bars with 75% fill-factor are presented. Both, 880 nm and 940 nm laser bars deliver reliable power of 500 W with wall-plug-efficiencies (WPE) <55% within narrow beam divergence angles of 11° and 45° in slow-axis and fast-axis directions, respectively. The reliability tests at 500 W powers under application quasi- CW conditions are ongoing. Moreover, laser bars emitting at 880 nm tested under 100 μs current pulse duration deliver 1 kW output power at 0.9 kA with only a small degradation of the slope efficiency. The applications of 940 nm laser bars require longer optical pulses and higher repetition rates (1-2 ms, ~10 Hz). In order to achieve output powers at the level of 1 kW under such long pulse duration, heating of the laser active region has to be minimized. Power-voltage-current characteristics of 4 mm long cavity bars with 50% fill-factor based on an optimized laser structure for strong carrier confinement and low resistivity were measured. We report an output power of 0.8 kW at 0.8 A with <60% conversion efficiency (52% WPE). By increasing the fill-factor of the bars a further improvement of the WPE at high currents is expected.

  11. Efficient dual-wavelength Nd:YVO4 laser at 1085 and 1342 nm and sum-frequency mixing for an orange emission

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Dong, Y.; Xu, L. J.

    2012-10-01

    We report on the efficient continuous-wave (CW) dual-wavelength operation of a Nd:YVO4 laser at 1085 and 1342 nm. An output power of 1.72 W for the dual-wavelength was achieved at the incident pump power of 17.4 W. Intracavity sum-frequency mixing at 1085 and 1342 nm was then realized in a KTP crystal to reach the orange range. A maximum output power of 146 mW in the orange spectral range at 600 nm has been achieved. The orange output stability is better than 3.8%. The orange beam quality M 2 value is about 1.41 and 1.25 in both horizontal and vertical dimensions, respectively.

  12. High-power dense wavelength division multiplexing (HP-DWDM) of frequency stabilized 9xx diode laser bars with a channel spacing of 1.5 nm

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Holly, Carlo; Krauch, Niels; Witte, Ulrich; Westphalen, Thomas; Traub, Martin; Hoffmann, Dieter

    2014-03-01

    We present a compact High-Power DenseWavelength Division Multiplexer (HP-DWDM) based on Volume Bragg Gratings (VBGs) for spectrally stabilized diode lasers with a low average beam quality M2 <=50. The center wavelengths of the five input channels with a spectral spacing of 1.5 nm are 973 nm, 974.5 nm, 976 nm, 977.5 nm and 979 nm. Multiplexing efficiencies of 97%+/-2% have been demonstrated with single mode, frequency stabilized laser radiation. Since the diffraction efficiency strongly depends on the beam quality, the multiplexing efficiency decreases to 94% (M2 = 25) and 85%+/-3% (M2 = 45) if multimode radiation is overlaid. Besides, the calculated multiplexing efficiency of the radiation with M2 = 45 amounts to 87:5 %. Thus, calculations and measurements are in good agreement. In addition, we developed a dynamic temperature control for the multiplexing VBGs which adapts the Bragg wavelengths to the diode laser center wavelengths. In short, the prototype with a radiance of 70GWm-2 sr-1 consists of five spectrally stabilized and passively cooled diode laser bars with 40Woutput after beam transformation. To achieve a good stabilization performance ELOD (Extreme LOw Divergence) diode laser bars have been chosen in combination with an external resonator based on VBGs. As a result, the spectral width defined by 95% power inclusion is < 120pm for each beam source across the entire operating range from 30 A to 120 A. Due to the spectral stabilization, the output power of each bar decreases in the range of < 5 %.

  13. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO(2) detection lidar.

    PubMed

    Gong, Wei; Ma, Xin; Han, Ge; Xiang, Chengzhi; Liang, Ailin; Fu, Weidong

    2015-03-01

    High-accuracy on-line wavelength stabilization is required for differential absorption lidar (DIAL), which is ideal for precisely measuring atmospheric CO(2) concentration. Using a difference-frequency laser, we developed a ground-based 1.57-μm pulsed DIAL for performing atmospheric CO(2) measurements. Owing to the system complexity, lacking phase, and intensity instability, the stabilization method was divided into two parts-wavelength calibration and locking-based on saturated absorption. After obtaining the on-line laser position, accuracy verification using statistical theory and locking stabilization using a one-dimensional template matching method, namely least-squares matching (LSM), were adopted to achieve wavelength locking. The resulting system is capable of generating a stable wavelength. PMID:25836838

  14. Diode-pumped continuous-wave dual-wavelength c-cut Pr³⁺:LiYF₄ laser at 696 and 719  nm.

    PubMed

    Luo, Saiyu; Xu, Bin; Cui, Shengwei; Chen, Han; Cai, Zhiping; Xu, Huiying

    2015-12-01

    A continuous-wave, InGaN-LD-pumped dual-wavelength laser is demonstrated with simultaneous emission at 696 (3P03F(→)3) and 719 nm (3P03F(→)4) using a c-cut Pr(3+):LiYF4, for the first time to our knowledge. Maximum output power of 102 mW at these two wavelengths is achieved with slope efficiency of about 15.6% with respect to the absorbed pump power. The beam propagation factors in x and y directions are measured to be 1.50 and 1.32, respectively. PMID:26836659

  15. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band.

    PubMed

    Noronen, Teppo; Okhotnikov, Oleg; Gumenyuk, Regina

    2016-06-27

    We demonstrate a widely tunable, mode-locked fiber laser capable of producing sub-picosecond pulses between 1705 and 1805 nm. The 100 nm tuning range is achieved by using intracavity acousto-optic tunable filter. The laser delivers highly stable pulses via self-starting hybrid mode-locking triggered by frequency-shifting and nonlinear polarization evolution. PMID:27410623

  16. Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2013-04-01

    We originally employ a compact combination of a Nd:YAG crystal and a Nd:YVO4 crystal to develop an efficient dual-wavelength laser operating at 946 and 1064 nm. We exploit a short Nd:YAG crystal to generate 946 nm laser by reducing the reabsorption loss and a follow-up Nd:YVO4 crystal to generate a 1064 nm laser by absorbing the residual pump light. The output power ratio between the 946 and 1064 nm emissions can be flexibly adjusted from 0.3 to 0.9 by varying the separation between the two output couplers. At an incident pump power of 17 W, the total output power is generally higher than 5.2 W, with an overall optical-to-optical efficiency greater than 30%.

  17. Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5{endash}16.0-nm wavelength region

    SciTech Connect

    Kowalski, M.P.; Cruddace, R.G.; Seely, J.F.; Rife, J.C.; Heidemann, K.F.; Heinzmann, U.; Kleineberg, U.; Osterried, K.; Menke, D.; Hunter, W.R.

    1997-06-01

    The efficiency of an ion-etched laminar holographic grating was measured at near-normal incidence in the 14.5{endash}16.0-nm wavelength range. The grating had an electron-beam-evaporated Mo/Si multilayer coating matched to the grating groove depth. The efficiency peaked at 16.3{percent} in the first inside order at 15.12nm and 15.0{percent} in the first outside order at 14.94nm. These are believed to be the highest efficiencies obtained to date from a multilayer-coated laminar grating at near-normal incidence in the EUV ({lambda}{lt}30.0 nm). Zero and even orders were almost completely suppressed. The grating groove efficiency in the first order approached the theoretical limit of 40.5{percent}. {copyright} {ital 1997} {ital Optical Society of America}

  18. High-power 808 nm ridge-waveguide diode lasers with very small divergence, wavelength-stabilized by an external volume Bragg grating.

    PubMed

    Wenzel, H; Häusler, K; Blume, G; Fricke, J; Spreemann, M; Zorn, M; Erbert, G

    2009-06-01

    We present data on ridge-waveguide diode lasers having a vertical far-field divergence of only 11.5 degrees (FWHM) owing to an appropriate waveguide design. The lasers emitted an optical power of more than 1 W into the spatial fundamental mode from a ridge width of 5 microm. The emission wavelength was stabilized to a narrow range around 808 nm by placing a volume Bragg grating in front of the outcoupling facet. PMID:19488129

  19. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    PubMed

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm. PMID:27410342

  20. Perspectives of using the 223-nm wavelength of the KrCl excimer laser for refractive surgery and for the treatment of some eye diseases

    NASA Astrophysics Data System (ADS)

    Bagayev, Sergei N.; Chernikh, Valery V.; Razhev, Alexander M.; Zhupikov, Andrey A.

    2000-06-01

    The new surgical UV ophthalmic laser system Medilex based on the KrCl (223 nm) excimer laser for refractive surgery was created. The comparative analysis of using the UV ophthalmic laser systems Medilex based on the ArF (193 nm) and the KrCl (223 nm) excimer lasers for the correction of refractive errors was performed. The system with the radiation wavelength of 223 nanometer of the KrCl excimer laser for refractive surgery was shown to have several medical and technical advantages over the system with the traditionally used radiation wavelength of 193 nanometer of the ArF excimer laser. In addition the use of the wavelength of 223 nanometer extends functional features of the system, allowing to make not only standard for this type systems surgical and therapeutic procedures but also to treat such ocular diseases as the glaucoma and herpetic keratities. For the UV ophthalmic laser systems Medilex three variations of the beam delivery system including special rotating masks and different beam homogenize systems were developed. All created beam delivery systems are able to make the correction of myopia, hyperopia, astigmatism and myopic or hyperopic astigmatism and may be used for therapeutic procedures. The results of the initial treatments of refractive error corrections using the UV ophthalmic laser systems Medilex for both photorefractive keratectomy (PRK) and LASIK procedures are presented.

  1. Ex vivo efficacy evaluation of laser vaporization for treatment of benign prostatic hyperplasia using a 300-W high-power laser diode with a wavelength of 980 nm

    PubMed Central

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao

    2014-01-01

    Background and Objective: Laser vaporization of the prostate is considered to be a promising treatment for benign prostatic hyperplasia (BPH), and efficiency of vaporization and hemostasis are both important parameters for such treatment. In this study, we used a high-power laser diode with a wavelength of 980 nm to obtain high vaporization efficiency with good hemostasis. The objective of this study is to evaluate the efficacy of laser vaporization for treatment of BPH in ex vivo experiments using a 300-W high-power laser diode with a wavelength of 980 nm quantitatively. Materials and Methods: An ex vivo experimental setup simulating clinical treatment situation was constructed. Bovine prostate tissue was used as a sample. The power setting was 100, 150, 200, 250, or 300 W, and the irradiation time was 0.5, 1, or 2 s. After laser irradiation, vaporized and coagulated depths were measured. Results: The vaporized depth increased with the laser power and irradiation time, and the results confirmed that the high-power laser diode could efficiently vaporize the prostate tissue. Coagulated depth increased as the laser power became higher. Conclusions: Laser vaporization of prostate tissue using a high-power laser diode with a wavelength of 980 nm represents a promising treatment for BPH; this method exhibits high vaporization efficiency and good hemostasis. However, operators must be aware of the risk of postoperative perforation of the prostatic capsule caused by coagulation of deep regions that cannot be visualized by endoscopic observation. PMID:25368442

  2. Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Maiwald, Martin; Müller, André; Fricke, Jörg; Ressel, Peter; Bugge, Frank; Erbert, Götz; Tränkle, Günther

    2015-08-01

    Two concepts of dual-wavelength 785-nm DBR ridge waveguide (RW) lasers, i.e. RW mini-arrays consisting of two DBR-RW lasers and Y-branch DBR-RW lasers, will be compared with respect to their usability as excitation light sources for shifted excitation Raman difference spectroscopy (SERDS). For both types of devices for each wavelength, output powers up to 215 mW were measured. A stable spectral distance between the laser emissions of the two resonator branches with the targeted value of 0.6 nm, i.e. 10 cm-1, is observed. In the case of the mini-array up to an output power of about 70 mW, the device shows single-mode operation. Although at higher power levels, mode hops and multi-mode operation occur, the emission width smaller than 0.15 nm still meets the requirements for Raman measurements of solids and liquids. Over the whole working range, the spectral distance between the two wavelengths is approximately constant with 0.62 nm. The near field shows two emission spots according to the dimension of the RW and their processed distance of 20 µm. The Y-branch laser shows single-mode operation up to 150 mW with a narrow spectral emission width. At higher powers also, multi-mode operation with an emission width of 0.15 nm occurs. The nearly diffraction-limited emission comes from one output aperture; the far-field emission shows a pronounced asymmetry between the two branches. Both types of devices fulfil the spectral requirements from Raman spectroscopy and SERDS up to 215 mW output power.

  3. Pulsed hybrid dual wavelength Y-branch-DFB laser-tapered amplifier system suitable for water vapor detection at 965 nm with 16 W peak power

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther

    2016-03-01

    A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.

  4. The spectral opacity of triatomic carbon measured in a graphite tube furnace over the 280 to 600 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Snow, W. L.; Wells, W. L.

    1980-01-01

    The opacity of linear triatomic carbon (C3) was measured in a graphite tube furnace from 280 to 600 nm to supplement the earlier measurements of Brewer and Engelke. The spectral cross section was estimated from the opacities using temperature profiles determined pyrometrically and a revised heat of formation delta H = 198 kcal/mole). The cross section was found to be nonnegligible over the range 300 to 500 nm and the electronic oscillator strength based on the total cross section estimate was 0.02.

  5. Diode-pumped dual-wavelength Nd:LSO laser at 1059 and 1067  nm with nearly diffraction-limited beam quality.

    PubMed

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-04-10

    We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively. PMID:27139868

  6. Lipid volume fraction in atherosclerotic plaque phantoms classified under saline conditions by multispectral angioscopy at near-infrared wavelengths around 1200 nm.

    PubMed

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-05-01

    To identify high-risk atherosclerotic lesions, we require detailed information on the stability of atherosclerotic plaques. In this study, we quantitatively classified the lipid volume fractions in atherosclerotic plaque phantoms by a novel angioscope combined with near-infrared multispectral imaging. The multispectral angioscope was operated at peak absorption wavelengths of lipid in vulnerable plaques (1150, 1200, and 1300 nm) and at lower absorption wavelengths of water. The potential of the multispectral angioscope was demonstrated in atherosclerotic plaque phantoms containing 10-60 vol.% lipid and immersed in saline solution. The acquired multispectral data were processed by a spectral angle mapper algorithm, which enhanced the simulated plaque areas. Consequently, we classified the lipid volume fractions into five categories (0-5, 5-15, 15-30, 30-50, and 50-60 vol.%). Multispectral angioscopy at wavelengths around 1200 nm is a powerful tool for quantitatively evaluating the stability of atherosclerotic plaques based on the lipid volume fractions. PMID:26861978

  7. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    PubMed

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. PMID:26397467

  8. Experimental investigation of a diode-pumped powerful continuous-wave dual-wavelength Nd:YAG laser at 946 and 938.6 nm

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.

    2013-05-01

    In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.

  9. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements.

    PubMed

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-10

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone. PMID:16807609

  10. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements

    NASA Astrophysics Data System (ADS)

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-01

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone.

  11. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    SciTech Connect

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  12. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    DOE PAGESBeta

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  13. Intrapulpal temperature changes during root surface irradiation with dual-wavelength laser (2780 and 940 nm): in vitro study

    NASA Astrophysics Data System (ADS)

    Franzen, Rene; Rashidisangsary, Borna; Ozturan, Seda; Vanweersch, Leon; Gutknecht, Norbert

    2015-01-01

    The present study evaluated the intrapulpal thermal changes that occurred during the treatment of the root surfaces with a laser system emitting Er,Cr:YSGG 2780- and 940-nm diode laser irradiation in an alternating sequence. Thirty single-rooted human teeth were collected. The teeth were divided into three groups (n=10 each) and irradiated with Er,Cr:YSGG alone or combined with a 940-nm diode laser. To investigate the intrapulpal temperature changes, specimens were embedded in a resin block with a set of thermocouples introduced at different positions within the root canals. The first group was irradiated with only Er,Cr:YSGG (25 mJ, 50 Hz, 50 μs pulse duration, water and air spray); the second group was irradiated with Er,Cr:YSGG (same setting) and a 940-nm diode (2 W, chopped mode with 20% duty cycle); the third group was irradiated with Er,Cr:YSGG (same setting) and a diode (2 W, chopped mode with 50% duty cycle). During all irradiations, thermal changes were recorded in real time with thermocouples. While group 3 showed thermal rises on average of 1.68±0.98°C in the pulp chamber, groups 1 and 2 showed average temperature rises of <0.5°C. The combined laser emission of 2780 and 940 nm is a promising way for root surface debridement without inducing intrapulpal thermal damage when using an appropriate water/air spray. All measured temperatures were considerably below the critical value of 5.6°C.

  14. Frequency doubled AlGaInP-VECSEL with high output power at 331 nm and a large wavelength tuning range in the UV

    NASA Astrophysics Data System (ADS)

    Schwarzbäck, Thomas; Kahle, Hermann; Jetter, Michael; Michler, Peter

    2012-06-01

    We present a non-resonantly pumped vertical external cavity surface-emitting laser in a compact v-shaped cavity configuration. By using intra-cavity frequency doubling in combination with a birefringent filter, a tunable high power UV laser source with an emission wavelength around 335 nm is realized. The fundamental red laser emission is based on a metal-organic vapor-phase epitaxy grown (GaxIn1-x)0.5P0.5/[(AlxGa1-x)yIn1-y]0.5P0.5 (abbr. GaInP/AlGaInP) multi-quantum-well structure. Five quantum well packages with four compressively strained quantum wells are placed in a separate confinement heterostructure in a resonant periodic gain design in strain-compensating quaternary AlGaInP barriers and cladding layers, respectively. The 3 λ cavity is fabricated on a 55 λ/4 pairs Al0.45Ga0.55As/AlAs distributed Bragg reflector. By using a beta barium borate non-linear crystal for second harmonic generation, output powers up to 150mWat a wavelength of 335 nm could be realized. Tuning of the laser resonance was accomplished with a birefringent filter. A tuning of 9 nm in the UV will be shown.

  15. Survey of Ti-, B-, and Y-based soft x-ray -extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region

    NASA Astrophysics Data System (ADS)

    Montcalm, Claude; Kearney, Patrick A.; Slaughter, J. M.; Sullivan, Brian T.; Chaker, M.; Pépin, Henri; Falco, Charles M.

    1996-09-01

    We have performed an experimental investigation of Ti-, B4C-, B-, and Y-based multilayer mirrors for the soft x-ray-extreme ultraviolet (XUV) wavelength region between 2.0 and 12.0 nm. Eleven different material pairs were >C/Pd, B/Mo, Y/Pd, Y/Ag, Y/Mo, Y/Nb, and Y/C. The multilayers were sputter deposited and were characterized with a number of techniques, including low-angle x-ray diffraction and normal incidence XUV reflectometry. Among the Ti-based multilayers the best results were obtained with Ti/W, with peak reflectances up to 5.2% at 2.79 nm at 61 degrees from normal incidence. The B4C/Pd and B/Mo multilayer mirrors had near-normal incidence (5 degrees) peak reflectances of 11.5% at 8.46 nm and 9.4% at 6.67 nm, respectively, whereas a Y/Mo multilayer mirror had a maximum peak reflectance of 25.6% at 11.30 nm at the same angle. The factors limiting the peak reflectance of these different multilayer mirrors are discussed.

  16. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength

    NASA Astrophysics Data System (ADS)

    Rengelink, R. J.; Notermans, R. P. M. J. W.; Vassen, W.

    2016-05-01

    High-precision spectroscopy on the 2 ^3 S → 2 ^1 S transition is possible in ultracold optically trapped helium, but the accuracy is limited by the ac-Stark shift induced by the optical dipole trap. To overcome this problem, we have built a trapping laser system at the predicted magic wavelength of 319.8 nm. Our system is based on frequency conversion using commercially available components and produces over 2 W of power at this wavelength. With this system, we show trapping of ultracold atoms, both thermal (~0.2 μk) and in a Bose-Einstein condensate, with a trap lifetime of several seconds, mainly limited by off-resonant scattering.

  17. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  18. Effects of laser irradiation at different wavelengths (660, 810, 980, and 1064 nm) on transient receptor potential melastatin channels in an animal model of wound healing.

    PubMed

    Isman, Eren; Aras, Mutan Hamdi; Cengiz, Beyhan; Bayraktar, Recep; Yolcu, Umit; Topcuoglu, Tolga; Usumez, Aslihan; Demir, Tuncer

    2015-07-01

    The aim of the present study was to compare the effectiveness of four different laser wavelengths used for low-level laser therapy(LLLT) on healing of mucositis in an animal model of wound healing, by investigating expression of transient receptor potential melastatin(TRPM) ion channels. Forty-five rats were intraperitoneally injected with 100 mg/kg 5-fluorouracil on day 1 and 65 mg/kg on day 3. Superficial scratching on left cheek pouch mucosa was performed on days 3 and 5. After ulcerative mucositis was clinically detected, LLLT was started (660 nm, HELBO; 810 nm, Fotona-XD; 980 nm, ARC-Fox; and 1064 nm, Fidelis-Plus3) at 8 J/cm(2)/day from days 1 to 4. Oval excisional biopsy was performed at the wound site, and expression of TRPM2 to TRPM8 was evaluated. Student's t test was used for evaluation of significance of TRPM gene expression according to "0" value (α = 0.05). In 980-nm group, TRPM4, TRPM6, and TRPM7 were significantly higher than in the control group (p < 0.005). In 660, 810, and 1064 nm groups, only TRPM6 was significantly higher than in control group (p < 0.005). There were no significant differences between control and sham groups (p > 0.05). These findings suggest that expression of TRPM6 gene was significantly affected by irradiation with lasers at different wavelengths, whereas the TRPM4 and TRPM7 genes were only expressed in the 980-nm diode laser group. TRPM6 gene was highly expressed during LLLT, which may lead to accelerated wound healing and tissue repair. In contrast, there was some evidence that the 980-nm diode laser caused increased expression of TRPM4, TRPM6, and TRPM7 which are responsible for stimulation of Ca(2+) and Mg(2+) metabolism, as well as apoptotic pathways of controlled cell death. PMID:25863514

  19. Design and fabrication of transmission quarter phase retarder at wavelength 1064 nm, using optical nanometric thin films

    NASA Astrophysics Data System (ADS)

    Moradi, Zahra; Jahanshah, Fariborz; Fallah, Hamid Reza; Haji Mahmoodzade, Morteza; Sahraee, Masoume; Zabolian, Hosein

    2016-08-01

    We designed and fabricated the transmission quarter-wave plate phase retarder at 1064 nm using optical nanometric thin films of silicon oxide and titanium oxide. Final design consists of 32 layers. Transmissions of polarizations are equal and ≥99 % and their phase difference is 90°. System consists of two 16 layers systems that coated with the same condition on BK7 glass substrates then attached together with optical glue. Electron beam evaporation method was used for depositing materials. Photo spectrometer was used for measuring transmission spectrum of system. Transmission of polarizations was ≥95 % and equal. A polarimeter was used for testing systems. Polarization of beam was circular.

  20. Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range.

    PubMed

    Beil, Kolja; Deppe, Bastian; Kränkel, Christian

    2013-06-01

    Thin-disk laser experiments with Yb:CaGdAlO(4) (Yb:CALGO) have been performed. A slope efficiency of 70% and an optical-to-optical efficiency of 57% could be achieved with a maximum output power of 30.7 W. These are so far the highest efficiencies obtained with this material. Furthermore, tuning experiments were carried out leading to a tuning range of 90 nm in total and 50 nm with more than 20 W of output power. This is to the best of our knowledge the widest wavelength tuning range of any material demonstrated at this power level. For all experiments the thermal evolution of the crystal surface temperature during laser operation was investigated. PMID:23722805

  1. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  2. Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength.

    PubMed

    Bartolini, Luciano; De Dominicis, Luigi; de Collibus, Mario Ferri; Fornetti, Giorgio; Guarneri, Massimiliano; Paglia, Emiliano; Poggi, Claudio; Ricci, Roberto

    2005-11-20

    We report the results of underwater imaging with an amplitude-modulated single-mode laser beam and miniaturized piezoactuator-based scanning system. The basic elements of the device are a diode laser source at 405 nm with digital amplitude modulation and a microscanning system realized with a small-aperture aspheric lens mounted on a pair of piezoelectric translators driven by sawtooth waveforms. The system has been designed to be a low-weight and rugged imaging device suitable to operate at medium range (approximately 10 m) in clear seawater as also demonstrated by computer simulation of layout performance. In the controlled laboratory conditions a submillimeter range accuracy has been obtained at a laser amplitude modulation frequency of 36.7 MHz. PMID:16318184

  3. Anti-Fungal Laser Treatment of Paper: A Model Study with a Laser Wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Pilch, E.; Pentzien, S.; Mädebach, H.; Kautek, W.

    Biodeterioration of organic cultural heritage materials is a common problem. Particularly the removal of discoloration caused by fungal pigments is yet an unsolved problem in paper conservation. In the present study, cellulose (cotton and linters) and 16th century paper (rag), were incubated with several fungi types, such as Cladosporium, Epicoccum, Alternaria, Chaetomium, Aspergillus, Trichophyton, and Penicillium on agar for three weeks. Then they were immersed in 70% Ethanol for removal of hyphae and mycelia and deactivation of the remaining conidia. These specimens were laser-treated in a computer-controlled laser cleaning system with a high pulse energy diode pumped Q-switched Nd:YAG laser operating at 532 nm and a pulse duration of 8 ns. Colour differences were determined spectrophotometrically. Best cleaning results were observed with fungi such as Penicillium and Alternaria. Dry laser cleaning generally turned out to be superb over wet bleaching approaches.

  4. Tune-out wavelength around 413 nm for the helium 2 3S1 state including relativistic and finite-nuclear-mass corrections

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun

    2016-05-01

    The tune-out wavelength at 413 nm for the 2 3S1 state of helium is expected to be sensitive to finite nuclear mass, relativistic, and quantum electrodynamic (QED) corrections, which provides a scheme for testing atomic structure theory [J. Mitroy and L.-Y. Tang, Phys. Rev. A 88, 052515 (2013), 10.1103/PhysRevA.88.052515]. In the present work, a large-scale full-configuration-interaction calculation based on both the Dirac-Coulomb-Breit Hamiltonian and the nonrelativistic Hamiltonian is performed for the dynamic dipole polarizabilities of helium in the 2 3S1 state. The tune-out wavelengths for the magnetic sublevels MJ=0 and MJ=±1 are determined to be 413.0801(4) nm and 413.0859(4) nm, respectively, at sub-ppm accuracy, including finite nuclear mass and relativistic corrections. Our value for the MJ=1 sublevel agrees with the measured value of 413.0938(20)(9) nm [B. M. Henson et al., Phys. Rev. Lett. 115, 043004 (2015), 10.1103/PhysRevLett.115.043004] at the level of 19 ppm. The discrepancy between these two values is mainly due to the uncalculated QED contribution. Our current value confirms quantitatively the prediction of Mitroy and Tang. Also, for the state of 2 3S1 we find that the corrections due to finite nuclear mass and relativistic effects to the static dipole polarizability of 315.7227(4)a03 are about 600 ppm and 310 ppm, respectively, which are about 1.4 and 5.4 times larger than those for the ground state. A measurement at the level of 10 ppm for the static dipole polarizability of helium in 2 3S1 can be used to determine the transition matrix element between 2 3S and 2 3P at the level of 10-5.

  5. Vertical-cavity surface-emitting laser in the long-wavelength (700 nm) region in the visible by energy transfer between organic dyes

    NASA Astrophysics Data System (ADS)

    Liao, Zhifu; Zhou, Yuan; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2014-06-01

    In this work, organic vertical-cavity surface-emitting lasers (VCSELs) with single-mode laser output in the long-wavelength region (~700 nm) of the visible were reported based on the energy transfer between dye pairs consisting of pyrromethene 597 (PM597) and rhodamine 700 (LD700). By co-doping PM597 into the polymeric hosts, the fluorescence intensity of LD700 was enhanced by 30-fold and the photophysical parameters of the donor-acceptor pairs were investigated, indicating the involvement of non-radiative resonance energy transfer processes between PM597 and LD700. Active distributed Bragg reflectors (DBR) were made by alternately spin-coating dye-doped polyvinylcarbazole and cellulose acetate thin films as the high and low refractive index layers, respectively. By sandwiching the active layer with 2 DBR mirrors, VCSEL emission at 698.9 nm in the biological first window (650-950 nm) was observed under the 532-nm laser pulses. The laser slope efficiency and threshold were also measured.

  6. Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing.

    PubMed

    Usumez, Aslihan; Cengiz, Beyhan; Oztuzcu, Serdar; Demir, Tuncer; Aras, Mutan Hamdi; Gutknecht, Norbert

    2014-11-01

    The aim of the present study was to compare the effectiveness of four different laser wavelengths (660, 810, 980, and 1,064 nm) used for low-level laser therapy (LLLT) on the healing of mucositis in an animal model of wound healing by investigating the expression of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-β), and blood-derived fibroblast growth factor (bFGF). Thirty-five male Wistar albino rats with a weight of 250-300 g body mass and 5 months old were used in the study. All animals were intraperitoneally injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tip of an 18-gauge needle was used in order to develop a superficial scratching on the left cheek pouch mucosa by dragging twice in a linear movement on third and fifth days. After ulcerative mucositis were clinically detected on the animals' left cheek pouch mucosa, the laser therapy was started. Four different laser wavelengths (660 nm, HELBO, Bredent; 810 nm, Fotona XD, Fotona; 980 nm, ARC Fox; and 1,064 nm, Fidelis Plus 3, Fotona) used for LLLT at ED 8 J/cm(2) daily from the first to the fourth days. Oval excisional biopsy was taken from the site of the wound, and the expression of PDGF, TGF-β, and bFGF was evaluated. The obtained data were analyzed by one2-way ANOVA, and then Tukey HSD tests were used for pairwise comparisons among groups (α = 0.05). The one-way ANOVA test indicated that expression values of the growth factors, PDGF and bFGF, were significantly affected by irradiation of different wavelengths of lasers (p < 0.001). However, expression value of the TGF-β was not affected by irradiation of different wavelengths of lasers (p > 0.05). The highest PDGF expression was detected in neodymium-doped yttrium aluminum garnet (Nd:YAG) laser group (p < 0.05), and there were no statistically significant differences among the other groups (p > 0.05). The highest bFGF expression was detected

  7. Design and fabrication of thin-film polarizer at wavelength of 1540 nm and investigation of its laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Sahraee, Masoume; Fallah, Hamid Reza; Moradi, Badri; Zabolian, Hosein; Mahmoodzade, Morteza Haji

    2014-12-01

    In this paper a thin-film polarizer at a wavelength of 1540 nm was designed and fabricated. These types of polarizer are usually used in laser systems to obtain linearly polarized light beams. Our design consists of a system of eighteen dielectric thin-film layers from repeated pairs of titanium dioxide and silicon dioxide layers that are deposited on a BK7 glass substrate. Design was carried out based on theoretical principles and computer calculations. Thin-film design software was used for designing the polarizer. The angle of incidence was supposed to be 56° that is the Browster angle for BK7 glass. Performance and laser-induced damage threshold of the polarizer were enhanced by a suitable selection of various parameters including thickness of each layer, their number and the electric field distribution of layers. After several designs, fabrications and refinement of parameters, the final polarizer was designed. Then the final sample of the polarizer was prepared using the electron beam evaporation (EBE) technique with Balzers BAK 760 coating machine. Spectral transmittance of the sample was measured by Shimadzu 3100 UV-VIS-NIR spectrophotometer. Investigation of spectral transmittance showed that at a wavelength of 1540nm, the transmission of P polarization is 87.82 and the transmission of S polarization is 0.43 which show a ratio ( T P / T S of 204. So, this ratio is an acceptable value for our desired polarizer.

  8. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  9. Ex vivo evaluation of safety and efficacy of vaporization of the prostate using a 300 W high-power laser diode with the wavelength of 980 nm

    NASA Astrophysics Data System (ADS)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2014-03-01

    Laser vaporization of the prostate is one of the promising technique for less-invasive treatment of benign prostatic hyperplasia. However, shorter operative duration and higher hemostatic ability are expected. The wavelength of 980 nm offers a high simultaneous absorption by water and hemoglobin, so that it combines the efficient vaporization with good hemostasis. Therefore, we have evaluated the safety and efficacy of vaporization of the prostate using a recently developed 300 W high-power laser diode with the wavelength of 980 nm. First, validity of bovine prostate tissue as the sample was confirmed by measuring the optical properties of bovine and human prostate tissue using a double integrating sphere optical system. Next, contact and non-contact ex vivo irradiations were performed for various irradiation powers and times, and vaporized and coagulated depths were measured. In the contact irradiation, the vaporized depth at the power of 300 W was significantly deeper than that at the power of 100 W, while the difference was relatively smaller for the coagulated depths at 300 and 100 W. In the non-contact irradiation, coagulation as thick as that in the contact irradiation was observed almost without vaporization. Therefore, it is suggested that the treatment in the contact irradiation using the high-power laser diode can vaporize the prostate more efficiently without increasing the risk of perforation. Hemostasis with the coagulation would be possible in both irradiation methods. To prevent the postoperative perforation, operators need to understand the relationship between the coagulated depth and the irradiation conditions.

  10. Determination of complex optical indices in the 80-140nm VUV wavelength region from reflectivity measurements under normal incidence: application to ZnSe

    NASA Astrophysics Data System (ADS)

    Bridou, F.; Cuniot-Ponsard, M.; Desvignes, J. M.

    2005-09-01

    The observation of hot plasmas in the interstellar medium requires efficient mirrors in the 80-120 nm wavelength range. Contrary to that of most metals, the high reflectivity of pure aluminum is maintained close to 80% in this range. Unfortunately, it is drastically reduced to values lower than 10% by the strongly absorbing thin alumina layer which spontaneously forms upon air contact. We report here the results obtained with a capper layer of ZnSe. The optical indices given for this material by Palik's tables lead to predict a resulting high reflectivity, provided the layer prevents oxidization of underlying Al. The measured reflectivity does not agree with theory. The reasons for this inconsistency are examined. It is shown that complex indices of ZnSe in the wavelength region between 80 and 140 nm can be extracted. from the reflectivity measurements obtained with different ZnSe thicknesses on Al. The imaginary part of the index is then found to differ strongly from Palik's tables value.

  11. 5,000 h reliable operation of 785nm dual-wavelength DBR-RW diode lasers suitable for Raman spectroscopy and SERDS

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Müller, André; Maiwald, Martin

    2016-03-01

    Monolithic wavelength stabilized diode lasers, e.g. distributed Bragg reflector (DBR) ridge waveguide (RW) lasers, are well-suited light sources for compact and portable Raman spectroscopic systems. In the case of in situ and outdoor investigations, the weak Raman lines are often superimposed by daylight, artificial light sources or fluorescence signals from the samples under study. Among others, shifted excitation Raman difference spectroscopy (SERDS) has been demonstrated as a powerful and easy-to-use technique to separate the Raman lines from disturbing background signals. SERDS is based on subsequential excitation of the sample with two slightly shifted wavelengths. The Raman lines follow the change in the excitation wavelength whereas the non-Raman signals remain unchanged. For SERDS dual-wavelength light sources, e.g., mini-arrays containing two DBR-RW lasers, are requested. Moreover, for portable Raman instruments such as handheld devices robust and reliable excitation light sources with lifetimes > 1,000 h are preferred. In this work, reliability investigations of dual-wavelength DBR-RW mini-arrays over a total test time of 5,000 h are presented. Wavelength stabilization and narrowing of the spectral emission is realized by 10th-order DBR surface gratings defined by i-line wafer stepper technology. The DBR-section has a length of 500 μm, the devices a total length of 3 mm. The ridge waveguide has a stripe width of 2.2 μm. Maximum output powers up to 215 mW per emitter were measured. Over the whole power range, 95 % of the emitted power is within a spectral width of 0.15 nm (2.5 cm-1), which is smaller than the spectral width needed to resolve most Raman lines of solid and liquid samples. In a step-stress test, the devices were tested at 50 mW, followed by 75 mW and finally at 100 mW per emitter. Electro-optical and spectral measurements were performed before, during and after the test. All emitters under study did not show any deterioration of their

  12. Low Group Delay Dispersion Optical Coating for Broad Bandwidth High Reflection at 45° Incidence, P Polarization of Femtosecond Pulses with 900 nm Center Wavelength

    DOE PAGESBeta

    Bellum, John C.; Field, Ella S.; Winstone, Trevor B.; Kletecka, Damon E.

    2016-03-01

    We describe an optical coating design suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of femtosecond (fs) laser pulses whose wavelengths range from 800 to 1000 nm. The design process is guided by quarter-wave HR coating properties. Our design must afford low group delay dispersion (GDD) for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT). We base the coatingmore » on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45° AOI, Ppol). The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. Lastly, for the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.« less

  13. Planetary Boundary Layer (PBL) Structures and Evolution analysis by Combination of Fractal Dimension of 3 Wavelength Lidar Signal and Range Correct Signal of 1064nm

    NASA Astrophysics Data System (ADS)

    Lei, L.; McCormick, M. P.; Su, J.

    2015-12-01

    Detection of the PBL heights and the PBL structure is very important for understanding the dynamic of the PBL since heat, water vapor and pollutions which come from the surface must transport through the PBL before they can affect the upper atmosphere. Fractal dimension (FD) retrieved from the three wavelengths lidar signals and the range- corrected signal (RCS) of 1064nm were used to analyses the PBL height and structure in Hampton University (HU, 37.02° N, 76.33° W). And the result shows that the new method has the potential to determine the top of different layer at same time. Combination of the FD and RCS signal also can be used to derive the structure of the PBL. Also the PBL evolution and the long time variety of the PBL in Hampton were analyzed. Wavelet covariance transform (WCT) was used to objectively determine the top and structure of the PBL from the FD signal and RCS signal.

  14. Effect of In3+ concentration on the photorefraction and scattering properties in In:Fe:CU:LiNbO3 crystals at 532 nm wavelength

    NASA Astrophysics Data System (ADS)

    Luo, Suhua; Meng, Qingxin; Wang, Jian; Sun, Xiudong

    2016-01-01

    The LiNbO3 crystals doped with Fe2O3, CuO and various In2O3, respectively, have been grown by the Czochralski method in air atmosphere. The photorefractive properties at 532 nm wavelength were measured by using the typical two-wave coupling experiments. Meanwhile, the incident exposure energy flux threshold for the light-induced scattering was characterized to investigate the scattering properties of the crystals. The results show that the response time shortens, the recording sensitivity improves, and the light-induced scattering decreases with the increasing In3+ ions concentration. However, the doping of In3+ ions leads to the decrease of the diffraction efficiency and the gain coefficient. So, the appropriate In3+ ions concentration should be doping in In:Fe:Cu:LiNbO3 crystals to adapt our practical application in the green light region photorefractive holographic recording.

  15. Holographic recording and characterization of photorefractive Bi{sub 2}TeO{sub 5} crystals at 633 nm wavelength light

    SciTech Connect

    Oliveira, Ivan de

    2014-04-28

    We report on the holographic recording on photorefractive Bi{sub 2}TeO{sub 5} crystals using λ=633 nm wavelength light. We studied the behavior of this material under the action of this low photonic energy light and found out the presence of a fast and a slow hologram, both of photorefractive nature and exhibiting rather high diffraction efficiencies. The faster and the slower holograms are based on the excitation and diffusion of oppositely charged carriers (likely electrons and holes). Relevant parameters for the photoactive centers responsible for both kind of holograms were characterized using purely holographic techniques. No evidences of non-photosensitive ionic charge carriers being involved in the recording process at room temperature nor self-fixing effects were found.

  16. Comparative study on diode-pumped continuous wave laser at 607  nm using differently doped Pr(3+):LiYF(4) crystals and wavelength tuning to 604  nm.

    PubMed

    Cheng, Yongjie; Xu, Bin; Qu, Biao; Luo, Saiyu; Yang, Han; Xu, Huiying; Cai, Zhiping

    2014-11-20

    We comparatively study an InGaN laser-diode-pumped continuous-wave laser at ∼607  nm (σ polarization) using differently doped Pr:LiYF4 single crystals. Maximum output power and slope efficiency at this wavelength were up to 209 mW and 47.1%, respectively, using a 0.2 at. % doped and 8 mm sample. Findlay-Clay analysis shows roundtrip losses, including reabsorption loss at this particular emission of about 1.2% using the 0.2 at. % doped sample, which is lower than that of samples with higher doping concentrations at 0.5 and 1 at. %. Using a 0.15 mm glass plate as a Fabry-Perot etalon, a maximum output power of 73 mW was achieved at ∼604  nm (π polarization) with slope efficiency of 17.2% for what is believed to be the highest result currently. PMID:25607866

  17. Optical absorption of carbon and hydrocarbon species from shock heated acetylene and methane in the 135-220 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.

    1981-01-01

    Absorption spectroscopy of carbon and hydrocarbon species has been performed in a shock tube at an incident shock condition for a wavelength range of 135-220 nm, in order to obtain information needed for calculating radiation blockage ahead of a planetary probe. Instrumentation consisted of high frequency response pressure transducers, thin-film heat transfer gages, or photomultipliers coupled by light pipes. Two test-gas mixtures, one with acetylene and the other with methane, both diluted with argon, were used to provide a reliable variation of C3 and C2H concentration ratio. Comparison of tests results of the two mixtures, in the temperature range of 3750 + or - 100 K, showed the main absorbing species to be C3. The wavelength for maximum absorption agrees well with the theoretical values of 7.68 eV and 8.03 eV for the vertical excitation energy, and a value of 0.90 for the electronic oscillator strength, obtained from the measured absorption band, is also in good agreement with the predicted value of 0.92.

  18. 973 nm wavelength stabilized hybrid ns-MOPA diode laser system with 15.5 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-05-01

    A master oscillator power amplifier (MOPA) system for the generation of ns-pulses with high peak power, narrow spectral line width, and stabilized emission wavelength will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of one RW section and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 973.5 nm with a spectral line width below 10 pm. The RW section of the amplifier acts as an optical gate. The tapered section amplifies the generated optical pulse. An optical peak power of 15.5 W for a pulse width of 8 ns is obtained. The emission wavelength remains constant at all output power levels of the MOPA system for a fixed current into the DFB laser. The spectral power density of the ASE is 37 dB smaller than the lasing spectral power density. The spectral line width is smaller than 10 pm, limited by the resolution of the optical spectrum analyzer.

  19. Reliable pulsed-operation of 1064-nm wavelength-stabilized diode lasers at high-average-power: boosting fiber lasers from the seed

    NASA Astrophysics Data System (ADS)

    Bettiati, M.; Beuchet, G.; Pagnod-Rossiaux, P.; Garabedian, P.; Perinet, J.; Fromy, S.; Bertreux, J.; Hirtz, J.; Laruelle, F.

    2010-02-01

    Most Pulsed Fiber Lasers (FLs) are built on a Master Oscillator - Power Amplifier (MOPA) architecture, as this configuration has the advantage, among others, of exploiting direct modulation of the diode laser seed (the MO) to reach high repetition rates and high peak-power pulsed operation. To enhance the FL global performance and reliability, high power single-lateral-mode 1064 nm diodes with outstanding long-term behavior are needed. The reliability of these devices at high power has been a challenge for years, due to the high built-in strain in the Quantum Well (QW). In this paper, we present excellent reliability results obtained, in both cw and pulsed conditions, on the latest generation of 1064 nm single-lateral-mode diodes developed at 3S PHOTONICS. Aging tests in cw conditions prove the intrinsic robustness of the diode even at very high junction temperatures, while specific tests in pulsed operation at 45 °C heat-sink temperature, and high repetition rates of several hundred kHz, confirm the stability of the devices in accelerated conditions directly derived from real applications. Both free-running and wavelength stabilized (by means of a Fiber Bragg Grating (FBG)) packaged devices show very stable performances under pulsed conditions. Reliable operation at higher average power than currently commercially available diode lasers seeds is demonstrated.

  20. Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands.

    PubMed

    Heilmann, Ralf K; Ahn, Minseung; Bruccoleri, Alex; Chang, Chih-Hao; Gullikson, Eric M; Mukherjee, Pran; Schattenburg, Mark L

    2011-04-01

    We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 μm were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of ∼50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher. PMID:21460902

  1. Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands

    SciTech Connect

    Heilmann, Ralf K.; Ahn, Minseung; Bruccoleri, Alex; Chang, Chih-Hao; Gullikson, Eric M.; Mukherjee, Pran; Schattenburg, Mark L.

    2011-04-01

    We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 {mu}m were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of {approx}50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

  2. Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis.

    PubMed

    Bostanciklioglu, Mehmet; Demiryürek, Şeniz; Cengiz, Beyhan; Demir, Tuncer; Öztuzcu, Serdar; Aras, Mutan Hamdi; Özsevik, Semih; Usumez, Aslihan; Ergün, Sercan; Özbal, Halime Kübra; Bagci, Cahit

    2015-05-01

    It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these

  3. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    PubMed

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis. PMID:25688836

  4. Growth and optical photorefraction of Zr:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios at 532 nm wavelength

    NASA Astrophysics Data System (ADS)

    Luo, Suhua; Wang, Jian; Meng, Qingxin; Sun, Xiudong

    2013-11-01

    Zr:Fe:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.85, 1.05, and 1.38 in melt. Based on the ICP-AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formulas of Zr:Fe:LiNbO3 crystals were obtained. The sign of the dominate charge carriers as well as the two-wave coupling gain coefficient as a function of the [Li]/[Nb] ratios in crystal were investigated by using the typical two-wave coupling experimental setup. The results show that electrons are the dominate charge carriers and the gain coefficient is the largest when the recording angle 2θ=21° in the sample with [Li]/[Nb]=0.7111 in crystal. In addition, the dependence of the light-induced birefringence on the [Li]/[Nb] ratios was measured in Zr:Fe:LiNbO3 crystals, which shows that the optical damage resistance of Zr:Fe:LiNbO3 crystals increases with the increasing of [Li]/[Nb] ratios at 532 nm wavelength. The dependences of the green photorefraction on the defect structure of Zr:Fe:LiNbO3 crystals are discussed in detail based on the obtained chemical formulas.

  5. Nonnegative constraint analysis of key fluorophores within human breast cancer using native fluorescence spectroscopy excited by selective wavelength of 300 nm

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.

    2015-03-01

    Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.

  6. Hyperfine structure analysis in the intense spectral lines of the neutral Cu atom falling in the 353-809 nm wavelength region using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Ankush, B. K.; Deo, M. N.

    2014-02-01

    Hyperfine structure analyses have been performed in the high-resolution spectrum of the neutral copper atom covering the wavelength region of 353-809 nm using Fourier transform spectroscopy. A DC discharge of natural copper produced in a liquid nitrogen cooled hollow cathode lamp used as a light source and a photomultiplier tube as well as Si photodiodes were employed as the light detectors. The hfs studies in 17 transitions of the neutral copper atom originating from 17 energy levels for 63Cu have been reported here. The present investigation has provided the magnetic dipole coupling constant A and electric quadrupole coupling constant B for the first time for the following 6 even-parity levels lying at 49,935, 49,942 cm-1, of 3d104d configuration, 52,848 cm-1 of 3d106 s configuration, 55,387, 55,391 cm-1 3d105d configuration and 71,978 cm-1 of 3d104s4d configuration. The sign convention of the previously-reported hfs A value amounting to 1920 MHz for the level at 44,963 cm-1 of 3d94s4p configuration has been revised to -1920 MHz. Measurements reported earlier of A and B hfs constants for the 11 odd-parity energy levels also have been confirmed.

  7. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    PubMed Central

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  8. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    NASA Astrophysics Data System (ADS)

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-03-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices.

  9. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm.

    PubMed

    Onbasli, Mehmet C; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F; Veis, Martin; Ross, Caroline A

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  10. Isotope shift measurements in the 660 spectral lines of Er I covering the 340-605 nm wavelength region with a Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Ankush, B. K.; Deo, M. N.

    2015-04-01

    Isotope shift measurements in 660 spectral lines covering the 340-605 nm wavelength region of Er I were carried out using a Fourier Transform Spectrometer. The spectra were recorded using a liquid nitrogen cooled hollow cathode discharge source containing highly enriched 166Er and 170Er isotopes in the oxide form and two different detectors namely PMT and silicon photo diodes. Out of 660 spectral lines involving 216 even and 182 odd Er I levels, the isotope shift data were new in the 406 lines. On the basis of their level isotope shifts out of 114 unassigned even parity levels 27 levels assigned to 4f116s26p, 72 to 4f115d6s6p and 15 to 4f126s6d configuration whereas 12 each of unassigned odd parity levels assigned to 4f115d6s2, and 4f126s6p configurations and 16 unassigned odd parity levels assigned to 4f115d26s configuration. Configuration mixing for 30 odd parity energy levels has been theoretically calculated applying 'Sharing Rule' to the experimentally derived level isotope shifts, which were finally compared with mixings available in the literature.

  11. CT-guided percutaneous laser disc decompression with Ceralas D, a diode laser with 980-nm wavelength and 200-microm fiber optics.

    PubMed

    Gevargez, A; Groenemeyer, D W; Czerwinski, F

    2000-01-01

    The aim of this study was to evaluate the compact, portable Ceralas-D diode laser (CeramOptec; 980 + 30 nm wavelength, 200-microm optical fiber) concerning clinical usefulness, handling, and clinical results in the CT-guided treatment of herniated lumbar discs. The positioning of the canula in intradiscal space, the placement of the laser fiber into the disc through the lying canula, and the vaporization itself were carried out under CT-guidance. Due to the thin fiber optic, it was possible to use a thin 23-gauge canula. The laser procedure was performed in 0.1- to 1-s shots with 1-s pulse pause and 4-W power output. A total of 1650-2300 J was applied on each percutaneous laser disc decompression (PLDD). Results in 26 patients were established with a visual-analogue scale (VAS). On the follow-up examinations, 46% of the patients were absolutely pain free ( > 85 % VAS) and fully active in everyday life after 4 postoperative weeks. Thirty-one percent of patients were relieved of the leg pain but had occasional back pain without sensorimotor impairment. Fifteen percent sensed a slight alleviation ( > 50% VAS) of the radiate pain. Eight percent did not experience radicular or pseudo-radicular pain alleviation (< 25% VAS). Cerales-D proves to be an efficient tool for CT-guided PLDD on non-sequestered herniated lumbar discs. PMID:10939481

  12. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Generating collimated intense monochromatic beams of soft x radiation from an X-pinch in the wavelength region 0.4-1.0 nm by means of spherical crystal mirrors

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya; Mingaleev, A. R.; Pikuz, S. A.; Pikuz, T. A.; Romanova, V. M.; Skobelev, I. Yu; Shelkovenko, T. A.

    1993-05-01

    The generation of collimated intense monochromatic beams of soft x radiation in the wavelength interval 0.4-1.0 nm from an X-pinch is reported. This is the first such report. High-quality mica crystals with dimensions of 10 × (30-35) mm were used to form beams with an energy of 2-3.2 μJ, a wavelength spread Δλ/λ=4 · 10-3, and a divergence of 5 · 10-4 rad. The mica crystals were bent into spherical surfaces with a radius of curvature of 10 or 25 cm. The characteristics of the resulting beams are compared with those of the beams from Ta lasers, with a wavelength ~4.5 nm, which are the shortest-wavelength x-ray lasers which have been reported to date. This comparison shows that the beams obtained in the present study are better than those from the Ta laser in terms of several characteristics (divergence, wavelength, and efficiency), while they are worse (but not greatly so) in terms of certain other characteristics (wavelength spread and energy in the pulse. It is thus possible today to solve many practical problems involving the use of collimated intense monochromatic beams of soft x radiation in the wavelength interval 0.25-2.0 nm. These problems can be solved with the help of the x radiation from an X-pinch or from plasmas produced by picosecond or femtosecond table-top lasers and short-focal-length, large-aperture crystal mirrors.

  13. Linear and nonlinear transmission of Fe{sup 2+}-doped ZnSe crystals at a wavelength of 2940 nm in the temperature range 20–220 °C

    SciTech Connect

    Il'ichev, N N; Pashinin, P P; Gulyamova, E S; Bufetova, G A; Shapkin, P V; Nasibov, A S

    2014-03-28

    The linear and nonlinear transmission of Fe{sup 2+}:ZnSe crystals is measured at a wavelength of 2940 nm in the temperature range 20 – 220 °C. It is found that, with increasing temperature from 20 °C to 150 – 220 °C, the transmission of Fe{sup 2+}:ZnSe crystals decreases in the case of incident radiation with an intensity of ∼5.5 MW cm{sup -2} and increases in the case of radiation with an intensity of 28 kW cm{sup -2}. At a temperature of 220 °C, the linear transmission almost coincides with the nonlinear transmission. The transmission spectra of Fe{sup 2+}:ZnSe crystals at temperatures of 22 and 220 °C in the wavelength range 500 – 7000 nm are presented. (active media)

  14. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: L spectra of zinc ions in the wavelength region 0.65-1.18 nm observed in a plasma heated by a Nd laser

    NASA Astrophysics Data System (ADS)

    Nilsen, J.; Pikuz, S. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Khabibulaev, B. K.; Érmatov, Sh A.

    1993-12-01

    A study has been made of the x-ray emission spectra of zinc ions (λ ~0.65-1.18 nm) excited in a plasma produced by the beam from a Nd laser. The wavelengths were measured within ±0.3 pm. The observed spectra have been identified. Detailed calculations have made it possible to identify, for the first time, some spectra lines due to the radiative decal of autoionizing states of Na-like zinc ions.

  15. A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm. [to calculate line-blanketed model atmospheres for solar and stellar spectra

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.; Peytremann, E.

    1975-01-01

    The gf values for 265,587 atomic lines selected from the line data used to calculate line-blanketed model atmospheres are tabulated. These data are especially useful for line identification and spectral synthesis in solar and stellar spectra. The gf values are calculated semiempirically by using scaled Thomas-Fermi-Dirac radial wavefunctions and eigenvectors found through least-squares fits to observed energy levels. Included in the calculation are the first five or six stages of ionization for sequences up through nickel. Published gf values are included for elements heavier than nickel. The tabulation is restricted to lines with wavelengths less than 10 micrometers.

  16. Fine frequency tuning in sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual-wavelength enhancement.

    PubMed

    Kumagai, Hiroshi

    2007-01-01

    Fine frequency tuning of the deep-ultraviolet single-mode coherent light at 252 nm was conducted through the PID feedback system automatically by changing the temperature of a beta-BaB(2)O(4) (BBO) crystal in a doubly resonant external cavity for the sum-frequency mixing of 373 and 780 nm light. The temperature-dependent frequency tuning rate is 19.3 MHzK(-1), which is sufficiently fine to realize the laser cooling of neutral silicon atoms because the natural width of the laser cooling transition is 28.8 MHz. PMID:17167584

  17. Modeling of the initiation and evolution of a laser-ionized column in the lower atmosphere - 314.5 nm wavelength resonant multiphoton ionization of naturally occurring argon

    NASA Technical Reports Server (NTRS)

    Fetzer, G. J.; Stockley, J. E.

    1992-01-01

    A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.

  18. Comparison of Quantum-efficient Silicon Photodetectors with a Cryogenic Absolute Radiometer at a Laser Wavelength of 543,5 nm

    NASA Astrophysics Data System (ADS)

    Varpula, T.; Liedquist, L.; Ludvigsen, H.; Reyn, H.; de Vreede, J.

    1991-01-01

    Quantum-efficient silicon photodetectors of VSL (The Netherlands) and SP (Sweden), were compared with the cryogenic absolute radiometer of VTT (Finland). Agreement between the detectors was found at a level of 10-4 when the data of four silicon detectors are combined. The comparison was performed at a laser frequency of 5,515 81 × 1014 Hz (λ = 543,515 nm in vacuum).

  19. Rapid spectrum measurement at 3  μm over 100  nm wavelength range using mid-infrared difference frequency generation source.

    PubMed

    Abe, Masashi; Nishida, Yoshiki; Tadanaga, Osamu; Tokura, Akio; Takenouchi, Hirokazu

    2016-04-01

    We demonstrate a broadband rapid scanning light source in the 3-μm region by using difference frequency generation (DFG). The DFG source consists of a module with quasi-phase-matched LiNbO3 ridge waveguides, a 1-μm-band wide swept range laser for the pump source, and a 1.5-μm continuous wave laser for the signal source. The sweep rate and the tuning bandwidth of this source are 20 kHz and 100 nm, respectively. This source enables us to evaluate the temperature dependence of absorbance of methane gas. PMID:27192241

  20. Two-photon absorption in SiO{sub 2}- and (SiO{sub 2} + GeO{sub 2})-based fibres at a wavelength of 349 nm

    SciTech Connect

    Chunaev, D S; Karasik, A Ya

    2014-06-30

    The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)

  1. Study on discrimination of oral cancer from normal using blood plasma based on fluorescence steady and excited state at excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.

  2. Preclinical assessment of the new 1440-nm-wavelength Nd:YAG laser for fragmenting ureteral calculi in an ex-vivo pig model

    NASA Astrophysics Data System (ADS)

    Wollin, Timothy A.; Moore, Ronald B.; Tulip, John; Mourad, Walid A.; McPhee, Malcolm S.

    1996-05-01

    The dual wavelength Nd:YAG (multi-YAG) laser has excellent stone ablating properties. To investigate the safety of this laser for fragmenting ureteral calculi, an ex vivo animal study was undertaken to study acute tissue interactions associated with multi-YAG laser lithotripsy. Human ureteral calculi were implanted in ureters harvested from swine (n equals 42). Direct vision ureteroscopic laser lithotripsy was performed while varying pulse energy (0.3 to 1.5 Joules) and pulse frequency (5 to 15 Hz). All ureters were then examined histologically, graded for tissue injury, and compared to controls. Photofragmentation was associated with mucosal denudation and/or focal mucosal necrosis (grade 0 and 1) in 37/42 cases. Four treatments caused necrosis involving up to two thirds of the ureteral wall (grade 2) and 1/42 had grade 3 changes (transmural necrosis). Ureteroscopic examination alone produced grade 0 to 1 injuries. Logistic regression analysis revealed that pulse energy (p equals 0.47), total energy used for fragmentation (p equals 0.82), and stone weight (p equals 0.64) were not significant predictors of higher grade tissue injury. Pulse frequency (p equals 0.14) began to approach significance. Of the five ureters with grade 2 or greater injury, four were associated with a pulse frequency of 15 Hz. Our findings show that multi-YAG laser lithotripsy is associated with acute tissue changes ranging from mucosal denudation to different levels of coagulative necrosis. Low grade injury is most common and would have minimal potential for strictures. Although higher grade tissue injury is possible, all grade 2 and 3 injuries were microscopically focal in nature. Therefore, multi-YAG laser lithotripsy can be performed with acceptable levels of acute tissue injury at pulse energies up to 1.5 Joules and at pulse frequencies less than 15 Hz.

  3. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Yang, Guixin; Gai, Shili; He, Fei; An, Guanghui; Dai, Yunlu; Lv, Ruichan; Yang, Piaoping

    2015-11-01

    Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high biocompatibility and an enhanced synergistic therapeutic effect superior to any single therapy, as verified by in vitro and in vivo assay. This image-guided therapy based on a metal-organic framework may stimulate interest in developing other kinds of metal-organic materials with multifunctionality for tumor diagnosis and therapy.Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high

  4. Real-time display with large field of view on fourier domain optical coherence tomography at 1310 nm wavelength for dermatology

    NASA Astrophysics Data System (ADS)

    Xiao, Qing; Hou, Jue; Fu, Ling

    2012-06-01

    A Fourier domain optical coherence tomography (OCT) system with 1310 nm light was demonstrated to study inflammatory human skin and the skin coated with a moisturizer in vivo. By using a graphics processing unit (GPU), the display rate could reach 20 frames/s with 1000 A-scans contained in one image. The field of view (FOV) of the cross-sectional image is 7 mm in the lateral direction and the penetration depth is ˜1 mm in skin. The result shows that, in inflammatory skin, the epidermis became thicker and had a decreased scattering; furthermore, the region of the severe lesion present an uneven thickness of the epidermis compared with the peripheral area. For the result of a finger tip coated with the moisturizer, the antireflection effect was significant and the stratum corneum became more transparent. In this letter, we demonstrated that real-time display with a large FOV could enable screening of a large tissue area; thereby increasing the dermatologic diagnostic potential of the method by permitting a comparison of the lesion and the normal peripheral region.

  5. Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Imai, Daichi; Kusakabe, Kazuhide; Yoshikawa, Akihiko

    2016-02-01

    A leak path passivation (LPP) technology for InGaN solar cells with photo-response up to 570 nm was developed by inserting in situ monolayers of Al-N into active layers. The InGaN layer in the passivated sample is partially relaxed and incorporates more than 23.5% In. By adopting in situ Al-N LPP, the open circuit voltage increases from 0.96 V to 1.35 V under one sun illumination (1.45-1.68 V under 72 suns), and the dark shunt resistance increases from 3.6 kΩ cm2 to 12.6 kΩ cm2, leading to an increase in power conversion efficiency by a factor of 2.0-2.26 (1-72 suns). This in situ Al-N LPP approach paves a way to exploit the full potential of InGaN for high efficiency solar cell application, accepting the reality of defective high-In-content thick and relaxed InGaN.

  6. Underwater annealing and texturing for enhancing electrical characteristics of n-aSi/p-cSi using Nd3+:YAG laser beam-overlap technique with a wavelength of 532 nm

    NASA Astrophysics Data System (ADS)

    Vidhya, Y. Esther Blesso; Vasa, Nilesh J.

    2016-01-01

    The influence of the laser beam profile on simultaneous wide-area crystallization and texturing of amorphous silicon (a-Si) thin films in water ambience is investigated by using a pulsed laser-beam-overlap technique. A Q-switched Nd3+:YAG laser with the second harmonic wavelength of 532 nm and different beam profiles, namely Gaussian and flat-top, was used for the annealing of 1-μm thick a-Si films deposited on crystalline silicon (c-Si) substrates. High density and smaller-sized conical spikes with an increase in grain size of around 25% and improved photoconductivity characteristics (9% to 17%) were observed after laser treatment was carried out in water when compared with that in air. Further, crystalline characteristics were also improved with the flat-top beam profile as compared with that of the Gaussian beam profile. The necessary laser fluence range based on the thermal modeling in the underwater ambience is in good agreement with the experimentally measured values between 150 and 600 mJ/cm2. The improvement in morphological, crystalline, and electrical characteristics of a-Si films clearly show that underwater annealing and texturing with the Nd3+:YAG laser beam-overlap of 30% to 50% is suitable for photovoltaic applications.

  7. Photodissociation of van der Waals clusters of isoprene with oxygen, C{sub 5}H{sub 8}-O{sub 2}, in the wavelength range 213-277 nm

    SciTech Connect

    Vidma, Konstantin V.; Frederix, Pim W. J. M.; Parker, David H.; Baklanov, Alexey V.

    2012-08-07

    The speed and angular distribution of O atoms arising from the photofragmentation of C{sub 5}H{sub 8}-O{sub 2}, the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O{sub 2} molecules has been observed. Velocity map images of these 'enhanced' O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C{sub 5}H{sub 8}-O{sub 2} complex into the perturbed Herzberg III state ({sup 3}{Delta}{sub u}) of O{sub 2}. This excitation results in the prompt dissociation of the complex giving rise to products C{sub 5}H{sub 8}+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 {+-} 200 cm{sup -1} (239.6{+-}1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 {+-} 280 cm{sup -1}, corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C{sub 5}H{sub 8}-O{sub 2}+hv{yields} C{sub 5}H{sub 8}-O{sub 2}({sup 3}{Delta}{sub u}) {yields} C{sub 5}H{sub 8}O + O and/or to dissociation of O{sub 2} with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C{sub 5}H{sub 8}{sup *}-O{sub 2}+hv{yields} C{sub 5}H{sub 8}{sup *}-O{sub 2}({sup 3}{Delta}{sub u}) {yields} C{sub 5}H{sub 8}+ O + O. The kinetic energy of the O atoms arising in two other observed channels

  8. Photodynamic Therapy Using Systemic Administration of 5-Aminolevulinic Acid and a 410-nm Wavelength Light-Emitting Diode for Methicillin-Resistant Staphylococcus aureus-Infected Ulcers in Mice

    PubMed Central

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds. PMID:25140800

  9. High Raman-to-fluorescence ratio of Rhodamine 6G excited with 532  nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles.

    PubMed

    Sadegh, N; Khadem, H; Tavassoli, S H

    2016-08-01

    A highly efficient Raman-to-fluorescence ratio of Rhodamine 6G is obtained by means of 532 nm laser wavelength, which is in close proximity of the dye's absorption maximum. Closely packed, gap-filled self-assembled monolayers of silver nanoparticles were produced to observe the Raman signals of Rhodamine 6G. Two mechanisms contribute to detect the Raman signals of the fluorescent sample: surface-enhanced Raman scattering (SERS) and nanomaterial surface energy transfer (NSET). Self-assembled monolayers of silver nanoparticles with different coverage densities and also those filled with probe molecules were prepared through variations of the substrate's immersion time in a nanoparticle solution and drying the substrate, respectively. Examination of the effects of these two factors on the plasmonic response and SERS efficiency of the substrate revealed that in a gap-filled dense coverage, near-field interactions dominate, which remarkably increase the Raman-to-fluorescence ratio (RFR). To have a perfect dense coverage, the efficient immersion time was obtained at about 48 h. Drying the substrates also caused further enhancement in RFR through filling interparticle spaces with dye molecules and, accordingly, an increase in NSET efficiency. PMID:27505398

  10. Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning

    SciTech Connect

    Blokhin, S. A. Bobrov, M. A.; Maleev, N. A.; Sakharov, A. V.; Ustinov, V. M.; Kuzmenkov, A. G.; Blokhin, A. A.; Moser, P.; Lott, J. A.; Bimberg, D.

    2014-08-11

    The impact of a large negative quantum well gain-to-cavity etalon wavelength detuning on the static and dynamic characteristics of 850 nm InGaAlAs high-speed oxide-confined vertical-cavity surface-emitting lasers (VCSELs) was investigated. Three distinct lasing regimes were revealed in large square aperture (≥7 μm per side) devices with large detuning including: (1) an anomalous lasing via higher order Hermite–Gaussian modes at low forward bias current; (2) lasing via the lowest order Hermite–Gaussian modes at high bias current; and (3) simultaneous lasing via both types of transverse modes at intermediate bias currents. In contrast to conventional multimode VCSELs a two-resonance modulation response was observed for the case of co-lasing via multiple transverse modes with high spectral separation. The reduction in the oxide aperture area resulted in classical lasing via the lowest order modes with a conventional single-resonance frequency response.

  11. Optical identification of the long-wavelength (700-1700 nm) electronic excitations of the native reaction centre, Mn4CaO5 cluster and cytochromes of photosystem II in plants and cyanobacteria.

    PubMed

    Morton, Jennifer; Akita, Fusamichi; Nakajima, Yoshiki; Shen, Jian-Ren; Krausz, Elmars

    2015-02-01

    Visible/UV absorption in PS II core complexes is dominated by the chl-a absorptions, which extend to ~700 nm. A broad 700-730 nm PS II core complex absorption in spinach has been assigned to a charge transfer excitation between ChlD1 and ChlD2. Emission from this state, which peaks at 780 nm, has been seen for both plant and cyanobacterial samples. We show that Thermosynechococcus vulcanus PS II core complexes have parallel absorbance in the 700-730 nm region and similar photochemical behaviour to that seen in spinach. This establishes the low energy charge transfer state as intrinsic to the native PS II reaction centre. High-sensitivity MCD measurements made in the 700-1700 nm region reveal additional electronic excitations at ~770 nm and ~1550 nm. The temperature and field dependence of MCD spectra establish that the system peaking near 1550 nm is a heme-to-Fe(III) charge transfer excitation. These transitions have not previously been observed for cyt b559 or cyt c550. The distinctive characteristics of the MCD signals seen at 770 nm allow us to assign absorption in this region to a dz(2)→d(x2-y2) transition of Mn(III) in the Ca-Mn4O5 cluster of the oxygen evolving centre. Current measurements were performed in the S1 state. Detailed analyses of this spectral region, especially in higher S states, promise to provide a new window on models of water oxidation. PMID:25445315

  12. Wavelength-tunable laser based on electro-optic effect

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Tang, Suning

    2015-03-01

    Currently available wavelength-tunable lasers have technical difficulty in combining high-speed, continuous and wide wavelength tunability with high output power. We demonstrated a high-speed wavelength-tunable laser based on a fast electro-optic effect. We observed that the wavelength-swept speed exceeds 107 nm/s at center wavelength of 1550 nm with continuous wavelength tunability. Moreover, the maximum output power is over 100 mW and the wavelength tuning range is near 100 nm with a full width at half maximum of less than 0.5 nm.

  13. Wavelength dependent mask defects

    NASA Astrophysics Data System (ADS)

    Badger, Karen; Butt, Shahid; Burnham, Jay; Faure, Tom; Hibbs, Michael; Rankin, Jed; Thibault, David; Watts, Andrew

    2005-05-01

    For years there has been a mismatch between the photomask inspection wavelength and the usage conditions. While the non-actinic inspection has been a source for concern, there has been essentially no evidence that a defect "escaped" the mask production process due to the inspection mismatch. This paper will describe the discovery of one such defect, as well as the diagnostic and inspection techniques used to identify the location, analyze the composition, and determine the source of the printed wafer defect. Conventional mask inspection techniques revealed no defects, however an actinic Aerial Image Metrology System (AIMS) revealed a 1.5 mm region on the mask with up to 59% transmission reduction at 193 nm. Further diagnostics demonstrated a strong wavelength dependence which accounted for the near invisibility of the defect at I line (365 nm) or even DUV (248 nm) wavelengths, which had 0% and 5% respective transmission reductions. Using some creative imaging techniques via AIMS tool and modeling, the defect was deduced to have a three dimensional Gaussian absorption character, with total width approximately 1.5 mm. Several non-destructive diagnostic techniques were developed to determine the composition and location of the defect within the substrate. These results will be described in addition to identifying methods for ensuring product quality in the absence of actinic inspection.

  14. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    SciTech Connect

    Kita, Tomohiro Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  15. Controllable Dual-Wavelength Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhou, Jun; He, Bing; Liu, Hou-Kang; Liu, Chi; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-07-01

    We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.

  16. Wavelength Shifting Efficiency of Tetraphenyl Butadiene (TPB) at Extreme Ultraviolet Wavelengths

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Orebi Gann, Gabriel; Gehman, Victor

    2015-10-01

    Tetraphenyl Butadiene (TPB) is a commonly used wavelength shifter (WLS) in neutrino and dark matter liquid noble gas scintillator detectors. Thin films of wavelength shifters are used to shift ultraviolet scintillation light into the visible spectrum for event reconstruction. The wavelength shifting efficiency of TPB is a function of the incident ultraviolet photon wavelength and is an important parameter for detector design, simulation and reconstruction. The wavelength shifting efficiency and emission spectrum has been previously measured down to 120 nm [Gehman et al., 2011]. To build liquid noble gas scintillator detectors with lighter elements (Ne, He) that use TPB as a WLS medium, the wavelength shifting efficiency must be known closer to 80 nm. This talk will present the current status and preliminary results from a set of measurements that will improve the precision of the efficiency of 120 nm, and extend the data to wavelengths as low as 45 nm.

  17. Interference comparator for laser diode wavelength and wavelength instability measurement

    NASA Astrophysics Data System (ADS)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  18. Interference comparator for laser diode wavelength and wavelength instability measurement.

    PubMed

    Dobosz, Marek; Kożuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ⋅ 10(-8). Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement. PMID:27131662

  19. Dual-wavelength erbium-doped fiber laser with tunable wavelength spacing using a twin core fiber-based filter

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Wang, Xin; Han, Bolin

    2014-05-01

    A dual-wavelength erbium-doped fiber laser with tunable wavelength spacing was proposed and experimentally demonstrated by using a twin core fiber (TCF)-based filter. Benefiting from the polarization dependence of the TCF-based filter, the laser operated in dual-wavelength oscillation with two orthogonal polarization states. By adjusting the polarization controller, the wavelength spacing was tuned from 0.1 nm to 1.2 nm without shifting the centre position of the two wavelengths. By stretching the TCF, the two wavelengths were simultaneously tuned with fixed wavelength spacing. Such a dual-wavelength fiber laser could find applications in optical fiber sensors and microwave photonics generation.

  20. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  1. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  2. Wavelength Scaling of High Harmonic Generation Efficiency

    SciTech Connect

    Shiner, A. D.; Trallero-Herrero, C.; Kajumba, N.; Corkum, P. B.; Villeneuve, D. M.; Bandulet, H.-C.; Comtois, D.; Legare, F.; Giguere, M.; Kieffer, J-C.

    2009-08-14

    Using longer wavelength laser drivers for high harmonic generation is desirable because the highest extreme ultraviolet frequency scales as the square of the wavelength. Recent numerical studies predict that high harmonic efficiency falls dramatically with increasing wavelength, with a very unfavorable lambda{sup -(5-6)} scaling. We performed an experimental study of the high harmonic yield over a wavelength range of 800-1850 nm. A thin gas jet was employed to minimize phase matching effects, and the laser intensity and focal spot size were kept constant as the wavelength was changed. Ion yield was simultaneously measured so that the total number of emitting atoms was known. We found that the scaling at constant laser intensity is lambda{sup -6.3+}-{sup 1.1} in Xe and lambda{sup -6.5+}-{sup 1.1} in Kr over the wavelength range of 800-1850 nm, somewhat worse than the theoretical predictions.

  3. The Double-ended 750 nm and 532 nm Laser Output from PPLN-FWM

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Yu-Xiang; Yao, Jian-Quan; Guo, Ling; Wang, Zhuo; Han, Sha-Sha; Zhang, Cui-Ying; Zhong, Kai

    2013-06-01

    We investigate 750 nm and 532 nm dual-wavelength laser for applications in the internet of things. A kind of optical maser is developed, in which the semiconductor module outputs the 808 nm pump light and then it goes into a double-clad Nd3+ :YAG monocrystal optical fiber through the intermediate coupler and forms a 1064 nm laser. The laser outputs come from both left and right terminals. In the right branch, the laser goes into the right cycle polarization LinNbO3 (PPLN) crystal through the right coupler, produces the optical parametric oscillation and forms the signal light λ1 (1500 nm), the idle frequency light λ2 (3660.55 nm), and the second-harmonic of the signal light λ3 (750 nm). These three kinds of light and the pump light λ4 together form the frequency matching and the quasi-phase matching, then the four-wave mixing occurs to create the high-gain light at wavelength 750 nm. Meanwhile, in the left branch, the laser goes into the left PPLN crystal through the left coupler, engenders frequency doubling and forms the light at wavelength 532 nm. That is to say, the optical maser provides 750 nm and 532 nm dual-wavelength laser outputting from two terminals, which is workable.

  4. Grating cavity dual wavelength dye laser.

    PubMed

    Zapata-Nava, Oscar Javier; Rodríguez-Montero, Ponciano; Iturbe-Castillo, M David; Treviño-Palacios, Carlos Gerardo

    2011-02-14

    We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser. PMID:21369171

  5. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  6. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  7. Towards short wavelengths FELs workshop

    SciTech Connect

    Ben-Zvi, I.; Winick, H.

    1993-12-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  8. Optimum wavelengths for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The range uncertainties associated with the refractive atmosphere can be mitigated by the technique of two color, or dual wavelength, ranging. The precision of the differential time of flight (DTOF) measurement depends on the atmospheric dispersion between the two wavelengths, the received pulsewidths and photoelectron counts, and on the amount of temporal averaging. In general, the transmitted wavelengths are not independently chosen but instead are generated via nonlinear optics techniques (harmonic crystals, Raman scattering, etc.) which also determine their relative pulsewidths. The mean received photoelectrons at each wavelength are calculated via the familiar radar link equation which contains several wavelength dependent parameters. By collecting the various wavelength dependent terms, one can define a wavelength figure of merit for a two color laser ranging system. In this paper, we apply the wavelength figure of merit to the case of an extremely clear atmosphere and draw several conclusions regarding the relative merits of fundamental-second harmonic, fundamental-third harmonic, second-third harmonic, and Raman two color systems. We find that, in spite of the larger dispersion between wavelengths, fundamental-third harmonic systems have the lowest figure of merit due to a combination of poor detector performance at the fundamental and poor atmospheric transmission at the third harmonic. The fundamental-second harmonic systems (approximately 700 nm and 350 nm) have the highest figure of merit, but second-third harmonic systems, using fundamental transmitters near 1000 nm, are a close second. Raman-shifted transmitters appear to offer no advantage over harmonic systems because of the relatively small wavelength separation that can be achieved in light gases such as hydrogen and the lack of good ultrashort pulse transmitters with an optimum fundamental wavelength near 400 nm.

  9. Wavelength-band-tuning photodiodes by using various metallic nanoparticles.

    PubMed

    Hwang, J D; Chan, Y D; Chou, T C

    2015-11-20

    Wavelength-band tuning was easily achieved in this work by depositing various metallic nanoparticles (NPs) on silicon p-n junction photodiodes (PDs). The normalization spectrum of the PDs deposited with gold (Au) NPs reveals a high-wavelength pass characteristic; the PDs with silver (Ag) NPs coating behave as a low-wavelength pass, and the PDs with Au/Ag bimetallic NPs appear as a band-wavelength pass PD with a full width at half maximum of 450 ∼ 630 nm. The issue of wavelength-band tuning is due to the different plasmonic resonance wavelengths associated with various metallic NPs. The extinction plot shows the Au NPs have a longer resonant wavelength of about 545 nm, leading to the incident light with a wavelength near or longer than 545 nm scattered by the Au NPs, hence a high-wavelength pass PD. The PDs with Ag NPs, due to the Ag NPs, exhibit a short resonant wavelength of 430 nm, and the short-wavelength incident light is absorbed near the silicon (Si) surface, where the Ag NPs is atop it. The shorter-wavelength incident light is enhanced by the plasmonic resonance of Ag NPs, making a low-wavelength PD. The Au/Ag NPs presents a resonant wavelength of 500 nm between the Au and Ag NPs. For the incident light with a wavelength close to 500 nm, a constructive interference causes a substantial increase in the local electromagnetic field, hence leading to a band-wavelength pass PD. PMID:26508114

  10. Method of Controlling Lasing Wavelength(s)

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Murray, Keith E. (Inventor); Hutcheson, Ralph L. (Inventor)

    2000-01-01

    A method is provided to control the lasing wavelength of a laser material without changing or adjusting the mechanical components of a laser device, The rate at which the laser material is pumped with the pumping energy is controlled so that lasing occurs at one or more lasing wavelengths based on the rate. The lasing wavelengths are determined by transition lifetimes and/or energy transfer rates.

  11. Diffuse optical tomography using wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Lim, Gukbin; Jeong, Myung Yung; Nalcioglu, Orhan; Kim, Chang-Seok; Gulsen, Gultekin

    2013-03-01

    The design and implementation of a diffuse optical tomography system using wavelength-swept laser is described. Rapid and continuous wavelength change is utilized for high speed spectral scanning from 775 nm to 875 nm optical wavelength. Maximum speed of wavelength repetition is 1 kHz and averaged output power of the wavelength-swept laser is 20 mW. A fiber-optic Sagnac interferometer is incorporated to conduct passive amplitude modulation of the wavelength-swept laser. It is shown that the wavelength-swept laser can be successfully incorporated to the DOT system, and then reduces wavelength-shifting time and hardware complexity in multi-wavelength DOT implementation.

  12. Polarization-dependent aluminum metasurface operating at 450 nm.

    PubMed

    Højlund-Nielsen, Emil; Zhu, Xiaolong; Carstensen, Marcus S; Sørensen, Michael K; Vannahme, Christoph; Asger Mortensen, N; Kristensen, Anders

    2015-11-01

    We report on a polarization-dependent plasmonic aluminum-based high-density metasurface operating at blue wavelengths. The fabricated sub-wavelength structures, tailored in size and geometry, possess strong, localized, plasmonic resonances able to control linear polarization. Best performance is achieved by rotating an elongated rectangular structure of length 180 nm and width 110 nm inside a square lattice of period 250 nm. In the case of 45 degrees rotation of the structure with respect to the lattice, the normal-incidence reflectance drops around the resonance wavelength of 457 nm from about 60 percent to below 2 percent. PMID:26561151

  13. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  14. Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band.

    PubMed

    Tokurakawa, M; Daniel, J M O; Chenug, C S; Liang, H; Clarkson, W A

    2014-08-25

    A wavelength-swept thulium-doped silica fiber laser using an intracavity rotating slotted-disk wavelength scanning filter in combination with an intracavity solid etalon for passive control of temporal and spectral profiles is reported. The laser yielded a wavelength swept output in a step-wise fashion with each laser pulse separated from the previous pulse by a frequency interval equal to the free-spectral-range of the etalon and with an instantaneous linewidth of <0.05 nm. Scanning ranges from 1905 nm to 2049 nm for a cladding-pumping laser configuration, and from 1768 nm to 1956 nm for a core-pumping laser configuration were achieved at average output powers up to ~1 W. PMID:25321211

  15. Wavelengths Effective in Induction of Malignant Melanoma

    NASA Astrophysics Data System (ADS)

    Setlow, Richard B.; Grist, Eleanor; Thompson, Keith; Woodhead, Avril D.

    1993-07-01

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented backcross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. We irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and scored the irradiated animals for melanomas 4 months later. We used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. We interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths > 320 nm-the UV-A and visible spectral regions.

  16. Wavelengths effective in induction of malignant melanoma

    SciTech Connect

    Setlow, R.B.; Grist, E.; Thompson, K.; Woodhead, A.D. )

    1993-07-15

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented back-cross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. The authors irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and score the irradiated animals for melanomas 4 months later. They used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. They interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths >320 nm-the UV-A and visible spectral regions. 25 refs., 4 figs., 1 tab.

  17. High-resolution optical signatures of fresh and aged explosives in the 420nm to 620nm illumination range

    NASA Astrophysics Data System (ADS)

    Lunsford, Robert; Grun, Jacob; Gump, Jared

    2012-06-01

    Optical signatures of fresh and aged explosives are measured and compared to determine whether there exist differences in the signatures that can be exploited for detection. The explosives examined are RDX, TNT, and HMX, which have been heated for two weeks at 75 degrees centigrade or irradiated for two weeks with a 15-Watt ultraviolet lamp (254nm). The optical signatures are obtained by illuminating the samples with a sequence of laser wavelengths between 420nm and 620nm in 10 nm steps and measuring the spectra of light scattered from the sample at each laser wavelength. The measurements are performed on the Naval Research Laboratory's SWOrRD instrument. SWOrRD is capable of illuminating a sample with laser wavelength between 210nm and 2000nm, in steps of 0.1nm, and measuring the spectrum of light scattered from the sample at each wavelength. SWOrRD's broad tuning range, high average power (1- 300mW), narrow line width (< 4cm-1), and rapid wavelength tunability enable these measurements. Results, based on more than 80 measurements - each at 21 sequential laser wavelengths, indicate that the variation in spectral line amplitude observed when altering laser illumination wavelength differs between fresh and aged explosives. Thus, an instrument for rapid and reagent-less differentiation between aged and fresh explosives, based on illumination with a few appropriately chosen laser wavelengths appears feasible.

  18. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  19. Integrated optical, acoustically tunable wavelength filter

    NASA Astrophysics Data System (ADS)

    Frangen, J.; Herrmann, H.; Ricken, R.; Seibert, H.; Sohler, W.

    1989-11-01

    A TM/TE convertor is combined with a TE-pass polarizer on a common LiNbO3 chip to obtain an integrated optical, acoustically tunable wavelength filter. Its tuning range is 1.45-1.57 micron wavelength with a filter half-width of 2.8 nm. Due to the combined acoustical/optical strip guide structure used in the mode convertor, a very low acoustic drive power of only 9 mW is required.

  20. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser

    PubMed Central

    Oh, W. Y.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    We demonstrate an ultrahigh-speed wavelength-swept semiconductor laser using a polygon-based wavelength scanning filter. With a polygon rotational speed of 900 revolutions per second, a continuous wavelength tuning rate of 9200 nm/ms and a tuning repetition rate of 115 kHz were achieved. The wavelength tuning range of the laser was 80 nm centered at 1325 nm, and the average polarized output power was 23 mW. PMID:16350273

  1. Optical amplification at the 1. 31 wavelength

    DOEpatents

    Cockroft, N.J.

    1994-02-15

    An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

  2. Plasmonic lens for ultraviolet wavelength

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Tanimoto, Takuya; Inoue, Tsutomu; Aizawa, Kento

    2016-09-01

    A plasmonic lens (PL) is one of the promising photonic devices utilizing the surface plasmon wave. In this study, we have newly developed a PL with a 3.5 µm diameter for a wavelength of 375 nm (ultraviolet region). It is composed of multiple circular slit apertures milled in aluminum (Al) thin film. We have simulated the electric field distribution of the PL, and confirmed that a tightly focused beam spot of subwavelength size in the far-field region was attained. We have also measured the focusing characteristics of the PL using a near-field scanning optical microscope (NSOM) and compared them with the calculated results.

  3. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    PubMed Central

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  4. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models. PMID:20203781

  5. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  6. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography

    PubMed Central

    Tozburun, Serhat; Siddiqui, Meena; Vakoc, Benjamin J.

    2014-01-01

    Abstract: Optical-domain subsampling enables Fourier-domain OCT imaging at high-speeds and extended depth ranges while limiting the required acquisition bandwidth. To perform optical-domain subsampling, a wavelength-stepped rather than a wavelength-swept source is required. This preliminary study introduces a novel design for a rapid wavelength-stepped laser source that uses dispersive fibers in combination with a fast lithium-niobate modulator to achieve wavelength selection. A laser with 200 GHz wavelength-stepping and a sweep rate of 9 MHz over a 94 nm range at a center wavelength of 1550 nm is demonstrated. A reconfiguration of this source design to a continuous wavelength-swept light for conventional Fourier-domain OCT is also demonstrated. PMID:24663631

  7. Scaling of laser-induced contamination growth at 266nm and 355nm

    NASA Astrophysics Data System (ADS)

    Ließmann, M.; Jensen, L.; Balasa, I.; Hunnekuhl, M.; Büttner, A.; Weßels, P.; Neumann, J.; Ristau, D.

    2015-11-01

    The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.

  8. Wavelength Swept Lasers

    NASA Astrophysics Data System (ADS)

    Yun, Seok Hyun; Bouma, Brett E.

    In optical interferometric metrology, the wavelength of light serves as a reference for length. At a given optical wavelength, an interference signal varies as a sinusoidal function of distance with a period equal to the wavelength. Although this approach offers unrivaled precision, the periodic signal results in a 2π ambiguity for measurement of lengths greater than one wavelength. In optical coherence tomography (OCT), one wishes to determine light scattering distances and distribution within a sample, but without the ambiguity. To accomplish this, OCT is based on interferometry using many optical wavelengths, each serving as a "ruler" with different periodicities. OCT traditionally has used broadband light sources providing a wide range of wavelengths, all simultaneously. Alternatively, a tunable light source emitting one wavelength at a time, rapidly swept over a broad spectral range, can also be used to achieve the absolute ranging capability in OCT. In this chapter, we describe a technical overview of these new emerging sources. We begin with a discussion general specifications of these light sources, the review basic fundamentals of laser and wavelength tuning. Finally, we discuss the principles of various techniques developed to date for high-speed and wide tuning range.

  9. Infrared Luminescence at 1010 nm and 1500 nm in LiNbO3:Er3+ Excitted by Short Pulse Radiation at 980 nm

    NASA Astrophysics Data System (ADS)

    Kokanyan, E. P.; Demirkhanyan, G. G.; Steveler, E.; Rinnert, H.; Aillerie, M.

    Luminescence of LiNbO3:Er3+ crystal at a wavelength of 1010 nm and 1500 nm under pulsed excitation of different power at a wavelength of 980 nm are experimentally and theoretically studied. It is revealed, that the main part of the absorbed energy gives rise to the luminescence at 1500 nm. Considered concentrations of Er3+ impurity ions allow to exclude cooperative processes in the impurity subsystem. The experimental results are interpreted in the framework of a three electronic levels system, assuming that the population of the higher lasing level 4I13/2 in the crystal under study is caused by relaxation processes from the excited level. It is shown that for obtaining of a laser radiation at about 1500 nm one can effectively use a pulse-pumping at 980 nm with a power density in a range of 50 ÷ 60 MW/cm2.

  10. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  11. OISL transmitter at 985 nm

    NASA Astrophysics Data System (ADS)

    Larose, Robert; Lauzon, Jocelyn; Mohrdiek, Stefan; Harder, Christoph S.; Changkakoti, Rupak; Park, Peter

    1999-04-01

    For high data rate (greater than 1 Gbps) Optical Inter- Satellite Link (OISL), a compact laser transmitter with high power and good efficiency is required. A trade-off analysis between the technologies such as the mature 840 nm laser diodes, 1064 nm diode-pumped solid state laser and the more recent 1550 nm Erbium Doped Fiber Amplifier (EDFA) is used to find the optical solution. The Si-APDs are preferred for their large detector areas and good noise figures which reduce the tracking requirements and simplify optical design of the receiver. Because of significant amount of power needed to close the link distance up to 7000 km (LEO-LEO), use of 840 nm diodes is limited. In this paper, we present an alternative system based on a system concept denoted as the SLYB (Semiconductor Laser Ytterbium Booster). The SLYB uses a polarization maintaining double-clad ytterbium fiber as a power amplifier. The device houses two semiconductor diodes that are designed to meet telecom reliability: a broad-area 917 nm pump diode and a directly modulated FP laser for signal generation. The output signal is in a linearly polarized state with an extinction ratio of 20 dB. The complete module (15 X 12 X 4.3 cm3) weighs less than 0.9 kg and delivers up to 27 dBm average output power at 985 nm. Designed primarily for direct detection using Si APDs, the transmitter offers a modulation data rate of at least 1.5 Gb/s with a modulation extinction ratio better than 13 dB. Total power consumption is expected to be lower than 8 W by using an uncooled pump laser. Preliminary radiation testing of the fiber indicates output power penalty of 1.5 dB at the end of 10 years in operation. We are presently investigating the fabrication of an improved radiation-hardened Yb-fiber for the final prototype to reduce this penalty. For higher data rate the design can be extended to a Wavelength Division Multiplexing (WDM) scheme adding multiple channels.

  12. Multi-wavelength photoplethysmography for simultaneous recording of skin blood pulsations at different vascular depths

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Gailite, Lasma; Lihachev, Alexey

    2007-02-01

    Parallel recording of reflection photoplethysmography (PPG) signals in broad spectral band has been performed, and potential of this approach for assessment of blood microcirculation at various vascular depths is discussed. PPG signals have been simultaneously detected at cw laser wavelengths sets comprising 405 nm, 532 nm, 645 nm, 807 nm and 1064 nm. Different signal baseline responses to breath holding at different wavelengths have been observed, as well as different shapes of the PPG pulses originated from the same heartbeat.

  13. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  14. Effect of wavelength on cutaneous pigment using pulsed irradiation

    SciTech Connect

    Sherwood, K.A.; Murray, S.; Kurban, A.K.; Tan, O.T.

    1989-05-01

    Several reports have been published over the last two decades describing the successful removal of benign cutaneous pigmented lesions such as lentigines, cafe au lait macules' nevi, nevus of Ota, and lentigo maligna by a variety of lasers such as the excimer (351 nm), argon (488,514 nm), ruby (694 nm), Nd:YAG (1060 nm), and CO/sub 2/ (10,600 nm). Laser treatment has been applied to lesions with a range of pigment depths from superficial lentigines in the epidermis to the nevus of Ota in the reticular dermis. Widely divergent laser parameters of wavelength, pulse duration, energy density, and spotsizes have been used, but the laser parameters used to treat this range of lesions have been arbitrary, with little effort focused on defining optimal laser parameters for removal of each type. In this study, miniature black pig skin was exposed to five wavelengths (504, 590, 694, 720, and 750 nm) covering the absorption spectrum of melanin. At each wavelength, a range of energy densities was examined. Skin biopsies taken from laser-exposed sites were examined histologically in an attempt to establish whether optimal laser parameters exist for destroying pigment cells in skin. Of the five wavelengths examined, 504 nm produced the most pigment specific injury; this specificity being maintained even at the highest energy density of 7.0 J/cm2. Thus, for the destruction of melanin-containing cells in the epidermal compartment, 504 nm wavelength appears optimal.

  15. Choice of the laser wavelength for a herpetic keratitis treatment

    NASA Astrophysics Data System (ADS)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  16. Choice of the proper wavelength for photochemotherapy

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Iani, Vladimir; Ma, LiWei

    1996-01-01

    All photosensitizers applied in experimental- and clinical-photochemotherapy (PCT) have broad absorption spectra stretching from the ultraviolet up to 6 - 700 nm. Light of wavelengths in the red part of the spectrum is chosen for PCT even though the extinction coefficients of the sensitizers are usually smaller in this wavelength region than at shorter wavelengths. Thus, if one wants to treat superficial tumors or skin disorders, this may be a wrong choice. Two pieces of information are needed in order to make a proper choice of wavelength to treat a lesion of a given depth: the wavelength dependence of the optical penetration depth into tissue, and the action spectrum for tumor destruction. Additionally, the skin photosensitivity induced by the drug should be considered. We have non-invasively measured the optical penetration spectra of human tissues in vivo and the fluorescence excitation spectra for several sensitizers, including protoporphyrin (PpIX), in cells. Assuming that the action spectrum for cell inactivation can be approximated by the fluorescence excitation spectrum of the sensitizer -- which is indeed the case for a number of sensitizers in cells in vitro -- we have considered the situation for 5-aminolevulinic acid-induced PpIX in human tissue. All the way down to about 2 mm below the surface light in the Soret band (-410 nm) would give the largest cell inactivation, while at depth exceeding 2 mm, the conventional 635 nm light would be optimal. Light at the argon laser wavelength 514.5 nm is more efficient than light at 635 nm down to 1 mm. From the surface and down to 6 mm, the 635 nm peak of the excitation spectrum of PpIX, as evaluated per photon incident on the skin surface, is redshifted by less than 2 nm. In some cases photosensitizing photoproducts are formed during PCT, such as photoprotoporphyrin during PCT with PpIX. In such cases it may be advantageous to apply a broad-band light source with a spectrum that covers also part of the action

  17. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  18. Integration of both dense wavelength-division multiplexing and coarse wavelength-division multiplexing demultiplexer on one photonic crystal chip

    NASA Astrophysics Data System (ADS)

    Tian, Huiping; Shen, Guansheng; Liu, Weijia; Ji, Yuefeng

    2013-07-01

    An integrated model of photonic crystal (PC) demultiplexer that can be used to combine dense wavelength-division multiplexing (DWDM) and coarse wavelength-division multiplexing (CWDM) systems is first proposed. By applying the PC demultiplexer, dense channel spacing 0.8 nm and coarse channel spacing 20 nm are obtained at the same time. The transmission can be improved to nearly 90%, and the crosstalk can be decreased to less than -18 dB by enlarging the width of the bus waveguide. The total size of the device is 21×42 μm2. Four channels on one side of the demultiplexer can achieve DWDM in the wavelength range between 1575 and 1578 nm, and the other four channels on the other side can achieve CWDM in the wavelength range between 1490 and 1565 nm, respectively. The demonstrated demultiplexer can be applied in the future CWDM and DWDM system, and the architecture costs can be significantly reduced.

  19. The Dual Wavelength UV Transmitter Development for Space Based Ozone DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2008-01-01

    The objective of this research is to develop efficient 1-micron to UV wavelength conversion technology to generate tunable, single mode, pulsed UV wavelengths of 320 nm and 308 nm. The 532 nm wavelength radiation is generated by a 1064 nm Nd:YAG laser through second harmonic generation. The 532 nm pumps an optical parametric oscillator (OPO) to generate 803 nm. The 320 nm is generated by sum frequency generation (SFG) of 532 nm and 803 nm wavelengths The hardware consists of a conductively cooled, 1 J/pulse, single mode Nd:YAG pump laser coupled to an efficient RISTRA OPO and SFG assembly-Both intra and extra-cavity approaches are examined for efficiency.

  20. Fast fiber-optic multi-wavelength pyrometer

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Tan, Peng; Pang, Chuanhe; Zhao, Huan; Shen, Yi

    2011-06-01

    A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, ΔλCCD = 30 nm and ΔλInGaAs = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.

  1. Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers

    PubMed Central

    Oh, W. Y.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2010-01-01

    We demonstrate a wide tuning range high-speed wavelength-swept semiconductor laser based on a polygon scanning filter that is common to two laser cavities. Linear wavelength tuning was achieved over 145 nm around 1310 nm at a tuning repetition rate of 20 kHz. The wavelength tuning filter is expandable to accommodate multiple semiconductor optical amplifiers for further widening of the laser wavelength tuning range. PMID:20651947

  2. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  3. Integrated Optical, Acoustically Tunable Wavelength Filter

    NASA Astrophysics Data System (ADS)

    Frangen, J.; Herrmann, Harald; Ricken, Raimund; Seibert, Holger; Sohler, Wolfgang; Strake, E.

    1989-12-01

    An integrated optical, acoustically tunable wavelength filter, consisting of a combination of TM-TE converter and integrated polarizer in LiNbO3, is demonstrated. The filter bandwidth is 2.8 nm; the center wavelength can be tuned from λ = 1.45 pm to λ = 1.57 pm by adjusting the driving acoustic frequency. Due to the combined acoustical/optical strip guide structure, used in the mode converter, a very low acoustic drive power of only 9 mW is required.

  4. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  5. Surface micromachined MEMS tunable VCSEL at 1550 nm with > 70 nm single mode tuning

    NASA Astrophysics Data System (ADS)

    Gierl, Christian; Gründl, Tobias; Debernardi, Pierluigi; Zogal, Karolina; Davani, Hooman A.; Grasse, Christian; Böhm, Gerhard; Meissner, Peter; Küppers, Franko; Amann, Markus-Christian

    2012-03-01

    We present surface micro-machined tunable vertical-cavity surface-emitting lasers (VCSELs) operating around 1550nm with tuning ranges up to 100nm and side mode suppression ratios beyond 40 dB. The output power reaches 3.5mW at 1555 nm. The electro-thermal and the electro-statical actuation of a micro electro-mechanical system (MEMS) movable distributed Bragg reflector (DBR) membrane increases/decreases the cavity length which shifts the resonant wavelength of the cavity to higher/lower values. The wavelength is modulated with 200 Hz/120 kHz. Both tuning mechanisms can be used simultaneously within the same device. The newly developed surface micro-machining technology uses competitive dielectric materials for the MEMS, deposited with low temperature plasma enhanced chemical vapor deposition (PECVD), which is cost effective and capable for on wafer mass production.

  6. Temperature characteristic of 808nm VCSELs with large aperture

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Feng, Dawei; Hao, Yongqin; Wang, Yong; Yan, Changling; Lu, Peng; Li, Yang

    2015-03-01

    In order to study the output characteristics of 808nm vertical cavity surface emitting laser(VCSEL) with large aperture at different temperature, 808nm VCSEL with 500μm emitting diameter are fabricated with Reticular Electrode Structure(RES). Lasing wavelength, optical power and the threshold current are measured by changing the temperature of heat sink. And an output power of 0.42W is achieved at 1.3A at room temperature under continuous wave operation. The central wavelength is 803.32nm, and the full width at half maximum is 0.16nm, the temperature shift is 0.06nm/°, the thermal resistance is 0.098°/mW. The testing results show that 808nm VCSEL with large aperture is good temperature characteristic.

  7. Short-wavelength ablation of solids: pulse duration and wavelength effects

    NASA Astrophysics Data System (ADS)

    Juha, Libor; Bittner, Michal; Chvostova, Dagmar; Letal, Vit; Krasa, Josef; Otcenasek, Zdenek; Kozlova, Michaela; Polan, Jiri; Prag, Ansgar R.; Rus, Bedrich; Stupka, Michal; Krzywinski, Jacek; Andrejczuk, Andrzej; Pelka, Jerzy B.; Sobierajski, Ryszard H.; Ryc, Leszek; Feldhaus, Josef; Boody, Frederick P.; Fiedorowicz, Henryk; Bartnik, Andrzej; Mikolajczyk, Janusz; Rakowski, Rafal; Kubat, P.; Pina, Ladislav; Grisham, Michael E.; Vaschenko, Georgiy O.; Menoni, Carmen S.; Rocca, Jorge J. G.

    2004-11-01

    For conventional wavelength (UV-Vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, ablation (etch) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various short-wavelength (l < 100 nm) lasers emitting pulses with durations ranging from ~ 10 fs to ~ 1 ns have recently been put into a routine operation. This makes it possible to investigate how the ablation characteristics depend on the pulse duration in the XUV spectral region. 1.2-ns pulses of 46.9-nm radiation delivered from a capillary-discharge Ne-like Ar laser (Colorado State University, Fort Collins), focused by a spherical Sc/Si multilayer-coated mirror were used for an ablation of organic polymers and silicon. Various materials were irradiated with ellipsoidal-mirror-focused XUV radiation (λ = 86 nm, τ = 30-100 fs) generated by the free-electron laser (FEL) operated at the TESLA Test Facility (TTF1 FEL) in Hamburg. The beam of the Ne-like Zn XUV laser (λ = 21.2 nm, τ < 100 ps) driven by the Prague Asterix Laser System (PALS) was also successfully focused by a spherical Si/Mo multilayer-coated mirror to ablate various materials. Based on the results of the experiments, the etch rates for three different pulse durations are compared using the XUV-ABLATOR code to compensate for the wavelength difference. Comparing the values of etch rates calculated for short pulses with those measured for ultrashort pulses, we can study the influence of pulse duration on XUV ablation efficiency. Ablation efficiencies measured with short pulses at various wavelengths (i.e. 86/46.9/21.2 nm from the above-mentioned lasers and ~ 1 nm from the double stream gas-puff Xe plasma source driven by PALS) show that the wavelength influences the etch rate mainly through the different attenuation lengths.

  8. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  9. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes. PMID:27580041

  10. Short wavelength FELs using the SLAC linac

    NASA Astrophysics Data System (ADS)

    Winick, H.; Bane, K.; Boyce, R.; Cobb, J.; Loew, G.; Morton, P.; Nuhn, H.-D.; Paterson, J.; Pianetta, P.; Raubenheimer, T.; Seeman, J.; Tatchyn, R.; Vylet, V.; Pellegrini, C.; Rosenzweig, J.; Travish, G.; Prosnitz, D.; Scharlemann, E. T.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Bonifacio, R.; De Salvo, L.; Pierini, P.

    1994-08-01

    Recent technological developments have opened the possibility to construct a device which we call a linac coherent light source (LCLS) (C. Pellegrini et al., Nucl. Instr. and Meth. A 331 (1993) 223; H. Winick et al., Proc. IEEE 1993 Particle Accelerator Conf., Washington, DC, May 1993; C. Pellegrini, Nucl. Instr. and Meth. A 341 (1994) 326; J. Seeman, SPIE Meet. on Electron Beam Sources of High Brightness Radiation, San Diego, CA, July 1993 [1-4]); it would be a fourth-generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much shorter wavelength than the 240 nm that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3 to 100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high-energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low-gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by self-amplified-spontaneous-emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops (M. Cornacchia and H. Winick (eds.), SLAC Report 92/02; I. Ben-Zvi and H. Winick (eds.), BNL report 49651 [5,6]). The required low-emittance electron beam can be achieved with recently-developed rf photocathode electron guns (B.E. Carlsten, Nucl. Instr. and Meth. A 285 (1989) 313; J. Rosenzweig and L. Serafini, Proc. IEEE 1993 Particle Accelerator Conf., Washington, DC, 1993 [7,8]). The peak current is increased by about an

  11. Wavelength Dependence of Effective Pathlength Factor in Noninvasive Optical Measurements of Human Brain Functions

    NASA Astrophysics Data System (ADS)

    Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi

    2006-04-01

    In the noninvasive optical measurements of human brain functions, the dependence of pathlength factor in an activation area (effective pathlength factor: EPF) on wavelength was examined by simultaneously recording five wavelengths of 678, 692, 750, 782, and 830 nm, with three different source/detector distances of 20, 30, and 40 mm. We obtained an activation signal in the visual cortex using four wavelength pairs, where 830 nm was fixed as one wavelength. The dependence of EPF on the source/detector distance showed similar tendencies when the wavelengths of 692, 750, and 782 nm were considered. This suggests that it is feasible to use these wavelengths paired with an 830 nm wavelength to investigate the same region.

  12. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  13. Long-wavelength VCSELs for sensing applications

    NASA Astrophysics Data System (ADS)

    Ortsiefer, M.; Rosskopf, J.; Neumeyr, C.; Gründl, T.; Grasse, C.; Chen, J.; Hangauer, A.; Strzoda, R.; Gierl, C.; Meissner, P.; Küppers, F.; Amann, M.-C.

    2012-03-01

    Long-wavelength VCSELs with emission wavelengths beyond 1.3 μm have seen a remarkable progress over the last decade. This success has been accomplished by using highly advanced device concepts which effectively overcome the fundamental technological drawbacks related with long-wavelength VCSELs such as inferior thermal properties and allow for the realization of lasers with striking device performance. In this presentation, we will give an overview on the state of the technology for long-wavelength VCSELs in conjunction with their opportunities in applications for optical sensing. While VCSELs based on InP are limited to maximum emission wavelengths around 2.3 μm, even longer wavelengths up to the mid-infrared range beyond 3 μm can be achieved with VCSELs based on GaSb. For near-infrared InP-based VCSELs, the output characteristics include sub-mA threshold currents, up to several milliwatts of singlemode output power and ultralow power consumption. New concepts for widely tunable VCSELs with tuning ranges up to 100 nm independent from the material system for the active region are also presented. Today, optical sensing by Tunable Diode Laser Spectroscopy is a fast emerging market. Gas sensing systems are used for a wide range of applications such as industrial process control, environmental monitoring and safety applications. With their inherent and compared to other laser types superior properties including enhanced current tuning rates, wavelength tuning ranges, modulation frequencies and power consumption, long-wavelength VCSELs are regarded as key components for TDLS applications.

  14. An instrument to measure the solar spectrum from 170 to 3200 nm on board Spacelab

    NASA Technical Reports Server (NTRS)

    Thuiller, G.; Simon, P. C.; Pastiels, R.; Labs, D.; Meckel, H.

    1981-01-01

    This instrument, at the present time in development, will fly on board Spacelab I in May 1983. Other flights are foreseen during the following missions. The instrument is composed of three double monochromators covering the range 170 to 3200 nm. The spectrometers have bandpasses of 1 nm up to 900 nm and 20 nm from 850 to 3200 nm with an accuracy 1/100 nm. Calibration lamps are included in the instrument to monitor any change of its sensitivity and wavelength scale.

  15. UV - ALBUQUERQUE NM

    EPA Science Inventory

    Brewer 109 is located in Albuquerque NM, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc....

  16. Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes.

    PubMed

    Mildren, R P; Piper, J A

    2008-03-01

    We report increased wavelength options from Raman lasers for Raman media having two Raman modes of similar gain coefficient. For an external-cavity potassium gadolinium tungstate Raman laser pumped at 532 nm, we show that two sets of Stokes orders are generated simultaneously by appropriate orientation of the Raman crystal, and also wavelengths that correspond to sums of the two Raman modes. Up to 14 visible Stokes lines were observed in the wavelength range 555-675 nm. The increase in Stokes wavelengths also enables a much greater selection of wavelengths to be accessed via intracavity nonlinear sum frequency and difference frequency mixing. For example, we demonstrate 30 output wavelength options for a wavelength-selectable 271-321 nm Raman laser with intracavity sum frequency mixing in BBO. We also present a theoretical analysis that enables prediction of wavelength options for dual Raman mode systems. PMID:18542414

  17. The degradation of alzak by short wavelength ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Donohoe, M. J.; Mcintosh, R., Jr.; Henninger, J. H.

    1972-01-01

    The changes in reflectance of thermal aluminum coating samples exposed to different irradiating utraviolet wavelengths are discussed. It is shown that the coating is damaged faster and further by 180 to 210 in radiation than by Lyman alpha radiation. On an equivalent incident energy basis, Lyman alpha does less damage than 180 to 210 nm radiation. Above 300 nm no degradation is observed for long exposures and below 300 nm increasing degradation with decreasing wavelength is found. It is concluded that Lyman alpha radiation need not be included in laboratory testing of this thermal coating for spacecraft structures.

  18. The wavelength dependence of Triton's light curve

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Mcewen, A.

    1991-01-01

    Using Voyager observations, it is demonstrated that Triton's orbital light curve is strongly wavelength-dependent, a characteristic which readily explains some of the apparent discrepancies among pre-Voyager telescopic measurements. Specifically, a light curve amplitude (peak to peak) is found that decreases systematically with increasing wavelength from about 0.08 magnitude (peak to peak) near 200 nm to less than 0.02 magnitude near 1000 nm. Peak brightness occurs near 90 deg orbital longitude (leading hemisphere). The brightness variation across this hemisphere is close to sinusoidal; the variation across the darker hemisphere is more complex. The decrease in light curve amplitude with increasing wavelength appears to be due to a decrease in contrast among surface markings, rather than to atmospheric obscuration. The model also explains the observed decrease in the amplitude of Triton's light curve at visible wavelengths over the past decade, a decrease related to the current migration of the subsolar latitude toward the south pole; it is predicted that this trend will continue into the 1990s.

  19. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  20. All-fiber widely wavelength-tunable thulium-doped fiber ring laser incorporating a Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Hu, K.; Sun, B.; Wang, T.

    2012-04-01

    We demonstrate 1940 to 2010 nm continuous CW wavelength-tuning in a thulium-doped fiber laser (TDFL), using only fiber-format components. A fiber Fabry-Perot (FP) tunable filter is employed to achieve the wavelength tunability of 70 nm. By imposing a 200 Hz triangle wave signal on the filter, rapid wavelength-sweeping is demonstrated from 1952 to 1992 nm every 5 ms, corresponding to 8 nm/ms. This all-fiber wavelength-tunable and swept laser may find applications such as gas monitoring in the wavelength region of 2 μm.

  1. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  2. Trends in nanosecond melanosome microcavitation up to 1540 nm

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Vincelette, Rebecca L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-09-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ˜0.159 J/cm2 at 800 nm to 4.5 J/cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  3. An integrated high-performance ratio-metric wavelength measurement device on glass

    NASA Astrophysics Data System (ADS)

    Wang, Gencheng; Yang, Bing; Shen, Ao; Pei, Chongyang; Yang, Longzhi; Yu, Hui; Jiang, Xiaoqing; Li, Yubo; Hao, Yinlei; Yang, Jianyi

    2015-10-01

    The measurable wavelength range and the resolution of the ratio-metric wavelength monitor are limited by each other in a conventional structure. To solve this problem we designed and fabricated a high-performance integrated double ratio-metric wavelength measurement device on glass by the method of ion-exchange. It consists of four unbalanced Mach-Zehnder interferometers (MZIs) to form a rough wavelength measurement with a wide range and a fine wavelength measurement with high resolution. The highest measured resolution can reach 10 pm in a 1.6 nm-wide wavelength range for the fine wavelength measurement together with a 45 nm-wide wavelength range for the rough measurement. By heating the unbalanced MZI, the performance of the fine wavelength monitor can be improved.

  4. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  5. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.

    PubMed

    Liu, Pei-Liang; Huang, Yao; Bian, Wu; Shao, Hu; Guan, Hua; Tang, Yong-Bo; Li, Cheng-Bin; Mitroy, J; Gao, Ke-Lin

    2015-06-01

    We demonstrate experimentally the existence of magic wavelengths and determine the ratio of oscillator strengths for a single trapped ion. For the first time, two magic wavelengths near 396 nm for the ^{40}Ca^{+} clock transition are measured simultaneously with high precision. By tuning the applied laser to an intermediate wavelength between transitions 4s_{1/2}→4p_{1/2} and 4s_{1/2}→4p_{3/2}, the sensitivity of the clock transition Stark shift to the oscillator strengths is greatly enhanced. Furthermore, with the measured magic wavelengths, we determine the ratio of the oscillator strengths with a deviation of less than 0.5%. Our experimental method may be applied to measure magic wavelengths for other ion clock transitions. Promisingly, the measurement of these magic wavelengths paves the way to building all-optical trapped ion clocks. PMID:26196619

  6. High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm.

    PubMed

    Härkönen, Antti; Rautiainen, Jussi; Guina, Mircea; Konttinen, Janne; Tuomisto, Pietari; Orsila, Lasse; Pessa, Markus; Okhotnikov, Oleg G

    2007-03-19

    We report on an optically-pumped intracavity frequency doubled GaInNAs/GaAs -based semiconductor disk laser emitting around 615 nm. The laser operates at fundamental wavelength of 1230 nm and incorporates a BBO crystal for light conversion to the red wavelength. Maximum output power of 172 mW at 615 nm was achieved from a single output. Combined power from two outputs was 320 mW. The wavelength of visible emission could be tuned by 4.5 nm using a thin glass etalon inside the cavity. PMID:19532562

  7. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  8. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wu, Man; Chen, Shuqing; Chen, Yu; Li, Ying

    2016-06-01

    We have demonstrated a wavelength switchable graphene Q-switched fiber laser with two cascaded fiber Bragg gratings. Stable Q-switching operation with central wavelength 1542.9 nm (1543.7 nm), repetition rate 28.4 kHz (22.58 kHz), and pulse duration 2.16 μs (2.65 μs) can be obtained by adjusting the intra-cavity birefringence. Moreover, stable dual-wavelength operation with wavelength spacing 0.8 nm can also be observed. The cascaded fiber gratings combined with the graphene saturable absorber provide a simple and feasible way to get versatile pulsed fiber laser.

  9. Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources

    NASA Astrophysics Data System (ADS)

    Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy

    2015-02-01

    Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.

  10. L-band wavelength-tunable dissipative soliton fiber laser.

    PubMed

    Yan, Dan; Li, Xingliang; Zhang, Shumin; Han, Mengmeng; Han, Huiyun; Yang, Zhenjun

    2016-01-25

    A tunable L-band dissipative soliton (DS) fiber laser with nonlinear polarization rotation (NPR) playing the roles of both a saturable absorber (SA) and a tunable filter has been demonstrated experimentally and numerically. By appropriate adjustment of the states of the polarization controllers (PCs) and the pump power, DSs with continuously tunable wavelengths have been observed over the wavelength range from 1583.0 to 1602.4 nm with a 3-dB spectral bandwidth of around 20 nm and from 1581.9 nm to 1602.6 nm with a 3-dB spectral bandwidth of around 4 nm. In addition, we have observed that by increasing the pump power, the 3-dB spectral bandwidth of the DS could be increased without pulse breaking. Numerical results for the characteristics of the DSs are in accord with the experimental data. PMID:26832459

  11. Interferometric Sensor of Wavelength Detuning Using a Liquid Crystalline Polymer Waveplate

    PubMed Central

    Wierzba, Paweł

    2016-01-01

    Operation of a polarization interferometer for measurement of the wavelength changes of a tunable semiconductor laser was investigated. A λ/8 waveplate made from liquid crystalline polymer is placed in one of interferometers’ arms in order to generate two output signals in quadrature. Wavelength was measured with resolution of 2 pm in the wavelength range 628–635 nm. Drift of the interferometer, measured in the period of 500 s, was 8 nm, which corresponded to the change in the wavelength of 1.3 pm. If needed, wavelength-dependent Heydemann correction can be used to expand the range of operation of such interferometer. PMID:27171082

  12. Interferometric Sensor of Wavelength Detuning Using a Liquid Crystalline Polymer Waveplate.

    PubMed

    Wierzba, Paweł

    2016-01-01

    Operation of a polarization interferometer for measurement of the wavelength changes of a tunable semiconductor laser was investigated. A λ/8 waveplate made from liquid crystalline polymer is placed in one of interferometers' arms in order to generate two output signals in quadrature. Wavelength was measured with resolution of 2 pm in the wavelength range 628-635 nm. Drift of the interferometer, measured in the period of 500 s, was 8 nm, which corresponded to the change in the wavelength of 1.3 pm. If needed, wavelength-dependent Heydemann correction can be used to expand the range of operation of such interferometer. PMID:27171082

  13. Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter.

    PubMed

    Paul, Sujoy; Lyubopytov, Vladimir S; Schumann, Martin F; Cesar, Julijan; Chipouline, Arkadi; Wegener, Martin; Küppers, Franko

    2016-07-15

    We demonstrate an on-chip device capable of wavelength-selective generation of vortex beams, which is realized by a spiral phase plate integrated onto a microelectromechanical system (MEMS) tunable filter. This vortex MEMS filter, being capable of functioning simultaneously in both wavelength and orbital-angular-momentum (OAM) domains at the 1550 nm wavelength regime, is considered as a compact, robust, and cost-effective solution for simultaneous OAM- and wavelength-division multiplexed optical communications. The experimental OAM spectra for azimuthal orders 1, 2, and 3 show an OAM state purity >92% across a wavelength range of more than 30 nm. PMID:27420507

  14. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment.

    PubMed

    Kim, Tae-Hyeong; Lee, Yunhee; Han, Su-Hyun; Hwang, Sun-Jin

    2013-02-01

    In wastewater treatment using microalgae, the effects of wavelength and wavelength mixing ratio on microalgae growth and removal of nitrogen and phosphorus were evaluated using LEDs (white light, 670nm, 450nm, and 525nm). Microalgae production rates were enhanced by a maximum of 45% with 400-700nm white light compared to that of a single wavelength. The phosphorus removal rate was as high as 90% with blue light. When red light and blue light were mixed and supplied, the microalgae production rate was about 50% higher than the rate of the culture with white light. Nitrogen and phosphorus removal rates were as high as approximately 15mg/L/day at a wavelength mixing ratio of 7 (red light):3 (blue light) and 2.1mg/L/day at a wavelength mixing ratio of 5 (red light):5 (blue light). PMID:23306113

  15. Cost-effective tunable 1310nm DWDM transmitter

    NASA Astrophysics Data System (ADS)

    Chorchos, Łukasz; Turkiewicz, Jarosław P.

    2015-09-01

    The growing demand for higher data rate transmissions in local and metropolitan area networks is main reason of developing effective and inexpensive transmission systems. In this paper, study about the possibility to realize 1310 nm tunable DWDM transmitter using commercially available low-cost DFB lasers is presented. Extensive DFB lasers characterization has been performed which led to establish relationships between laser current, operational temperature, emitted wavelength and power. An algorithm to find the laser settings for a desired wavelength grid has been proposed and tested. Generation of the 1310nm DWDM channels with frequency spacing between 120 and 240GHz has been demonstrated.

  16. Aerosol Extinction and Single Scattering Albedo Downwind of the Summer 2008 California Wildfires Measured With Photoacoustic Spectrometers and Sunphotometers From 355 nm to 1047 nm.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M. S.; Arnold, I. J.

    2008-12-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for much of June and July associated with the flaming and smoldering stages of the fires. These fires are consistent with a growing trend towards increasing biomass burning worldwide. Climate impacts from the smoke depend critically on the smoke amount and aerosol optical properties. We report comparison of aerosol optics measurements in Reno Nevada made during the very smoky summer month of July with the relatively clean, average month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 355 nm, 405 nm, 532 nm, 870 nm, and 1047 nm. Total aerosol optical depth was measured with a sun photometer operating at 430nm, 470nm, 530nm, 660nm, 870nm and 950nm. A spectrometer based sun photometer with an operating range from 390nm to 880 nm was also used for a few days as well. These measurements document the intensity of the smoke optical impacts downwind. They are processed further to reveal a strong variation of the aerosol light absorption on wavelength, indicating the presence of light absorbing organic material and perhaps wavelength dependent absorption caused by black carbon particles coated with organic and inorganic particulate matter. On the day with most smoke in Reno (July 10, 2008) Angstrom coefficients for absorption as high as 3.6 were found for wavelengths of 405 nm and 870 nm, with the corresponding single scattering albedo near 0.92 at 405 nm. Aerosol optical depths of 3.5 were found for 430 nm on July 10th from the sun photometer measurements. A roughly fourfold increase in aerosol optical quantities was observed between the months of July and August 2008, attesting to the large average effects of biomass aerosols from the California wildfires.

  17. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2012-12-31

    The technique of measuring the mean wavelength of narrow-band radiation in the 455 - 625-nm range using the image of the emitting surface is presented. The data from the camera array unprocessed by the built-in processor (RAW format) are used. The method is applied for determining the parameters of response of holographic sensors. Depending on the wavelength and brightness of the image fragment, the mean square deviation of the wavelength amounts to 0.3 - 3 nm. (experimental techniques)

  18. Fiber optic wavelength division multiplexing: Principles and applications in telecommunications and spectroscopy

    NASA Technical Reports Server (NTRS)

    Erdmann, R. K.; Walton, B. D.

    1988-01-01

    Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output.

  19. Development of in situ, at-wavelength metrology for soft x-ray nano-focusing

    SciTech Connect

    Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

    2010-09-19

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

  20. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  1. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  2. Influence of energy and wavelength on femtosecond laser-induced nucleation of protein

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Hasenaka, Hitoshi; Takahashi, Yoshinori; Maruyama, Mihoko; Sugiyama, Shigeru; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke

    2011-06-01

    The influence of energy and wavelength on femtosecond laser-induced nucleation of protein was systematically investigated with Hen Egg White Lysozyme and Glucose Isomerase at two different wavelengths, λ = 780 nm and 260 nm. We found that the enhancement of nucleation probability at a laser wavelength of λ = 780 nm was comparable with that at λ = 260 nm, which produces more protein dimers. The nucleation was dependent on laser pulse energy and could be induced beyond the threshold energy of cavitation bubbles. These results indicate that the photophysical processes like cavitation bubbles formation are main triggers for the femtosecond laser-induced nucleation.

  3. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  4. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    PubMed

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range. PMID:26421536

  5. Widely Wavelength-Tunable Blue-Shifted Dispersive Waves for Broadband Visible Wavelength Generation in a Photonic Crystal Fiber Cladding

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Shen, Xiang-Wei; Wang, Kui-Ru; Yan, Bin-Bin; Han, Ying; Zhou, Gui-Yao; Hou, Lan-Tian

    2012-10-01

    Blue-shifted dispersive waves (DWs) are efficiently generated from the red-shifted solitons by coupling the 120 fs pulses into the fundamental mode of the multi-knots of a photonic crystal fiber cladding. When the femtosecond pulses at the wavelength of 825 nm and the average power of 300 mW are coupled into knots 1-3, the conversion efficiency ηDW of 32% and bandwidth BDW of 50 nm are obtained. The ultrashort pulses generated by the DWs can be tunable over the whole visible wavelength by adjusting the wavelengths of the pump pulses coupled into different knots. It can be believed that this widely wavelength-tunable ultrashort visible pulse source has important applications in ultrafast photonics and resonant Raman scattering.

  6. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  7. Wavelength Prograimable Spectrophotometer For Individual Plant Studies

    NASA Astrophysics Data System (ADS)

    Brach, E. J.; Simmonds, J.; Poirier, P.

    1983-11-01

    Action spectra for a number of light-mediated physiological processes, (e.g. germination, flowering, elongation) indicated that the effective wavelength for induction was between 600-700 nm and for supression was between 700-760 nm, with maxima at 660 nm and 730 nm respectively (see Smith 1975 for review). These studies predicted the existence of the photoreversible pigment phytochrome (P) existing in two forms, interconvertible by red and far-red light. The photo-equilibrium of the red absorbing (Pr) and far-red absorbing (Pfr) forms is determined by the proportions of red and far-red light available. Most of the infornation cooes from studies on dark grown plants using narrow band or uonochromatic light and until recently very little work has been done on the role of phytochrome in the natural environment. Because changes in the distribution of this physiologically active light in nature will result in an altered photo-equilibrium of the two forms of phytochrome, a new quantity c (zeta) was defined, as the ratio of the quantum flux at 660 ni to the quantum flux at 730 nm (Holmes and McCartney 1976, Monteith 1976). This relationship of zeta to the photochrome photoequilibrium (% Pfr) was determined for a series of natural and artificial light sources (Smith and Holmes 1977). owever, radiation of shorter wavelengths also has an infuence on plant development through its action on phytochrome (Parker et al 1946, Bertsch 1963). The absorption spectra of the two forms of phytochrome show, in addition to the vajor absorption bands in the red and far-red regions, minor bands in the blue and near uv (Hendricks 1962, Siegelman and Fuer 1964). Also photochrome does undergo light-induced absorbance changes 'in vitro' in the blue region of the spectrum (Everett and Briggs 1970). A more accurate estimate of photochrome photoequilibria would

  8. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  9. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  10. Novel high refractive index fluids for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Santillan, Julius; Otoguro, Akihiko; Itani, Toshiro; Fujii, Kiyoshi; Kagayama, Akifumi; Nakano, Takashi; Nakayama, Norio; Tamatani, Hiroaki; Fukuda, Shin

    2006-03-01

    Despite the early skepticism towards the use of 193-nm immersion lithography as the next step in satisfying Moore's law, it continuous to meet expectations on its feasibility in achieving 65-nm nodes and possibly beyond. And with implementation underway, interest in extending its capability for smaller pattern sizes such as the 32-nm node continues to grow. In this paper, we will discuss the optical, physical and lithographic properties of newly developed high index fluids of low absorption coefficient, 'Babylon' and 'Delphi'. As evaluated in a spectroscopic ellipsometer in the 193.39nm wavelength, the 'Babylon' and 'Delphi' high index fluids were evaluated to have a refractive index of 1.64 and 1.63 with an absorption coefficient of 0.05/cm and 0.08/cm, respectively. Lithographic evaluation results using a 193-nm 2-beam interferometric exposure tool show the imaging capability of both high index fluids to be 32-nm half pitch lines and spaces.

  11. Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging

    PubMed Central

    Yun, S. H.; Boudoux, C.; Pierce, M. C.; de Boer, J. F.; Tearney, G. J.; Bouma, B. E.

    2010-01-01

    We demonstrate a compact high-power rapidly swept wavelength tunable laser source based on a semiconductor optical amplifier and an extended-cavity grating filter. The laser produces excellent output characteristics for biomedical imaging, exhibiting >4-mW average output power, <0.06-nm instantaneous linewidth, and >80-dB noise extinction with its center wavelength swept over 100 nm at 1310 nm at variable repetition rates up to 500 Hz. PMID:20640193

  12. An Au nanofin array for high efficiency plasmonic optical retarders at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Ishii, Miho; Iwami, Kentaro; Umeda, Norihiro

    2015-01-01

    An Au nanofin array was designed and fabricated for in a microscale optical retarder with high transmittance at visible wavelengths. The array was designed on the basis of the theory of waveguides. The adopted nanocoating process realized a high aspect ratio Au structure with a period of 400 nm and a height of 800 nm. The transmittance of transverse magnetic polarized light at visible to near-infrared wavelengths exceeded 40% and a retardation of 170° was achieved at 633 nm.

  13. Standard reference material 2036 near-infrared reflection wavelength standard.

    PubMed

    Choquette, Steven J; Duewer, David L; Hanssen, Leonard M; Early, Edward A

    2005-04-01

    Standard Reference Material 2036 (SRM 2036) is a certified transfer standard intended for the verification and calibration of the wavelength/wavenumber scale of near-infrared (NIR) spectrometers operating in diffuse or trans-reflectance mode. SRM 2036 Near-Infrared Wavelength/Wavenumber Reflection Standard is a combination of a rare earth oxide glass of a composition similar to that of SRM 2035 Near-Infrared Transmission Wavelength/Wavenumber Standard and SRM 2065 Ultraviolet-Visible-Near-Infrared Transmission Wavelength/Wavenumber Standard, but is in physical contact with a piece of sintered poly(tetrafluoroethylene) (PTFE). The combination of glass contacted with a nearly ideal diffusely reflecting backing provides reflection-absorption bands that range from 15% R to 40% R. SRM 2036 is certified for the 10% band fraction air wavelength centroid location, (10%)B, of seven bands spanning the spectral region from 975 nm to 1946 nm. It is also certified for the vacuum wavenumber (10%)B of the same seven bands in the spectral region from 10 300 cm(-1) to 5130 cm(-1) at 8 cm(-1) resolution. Informational values are provided for the locations of thirteen additional bands from 334 nm to 804 nm. PMID:15901335

  14. Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm.

    PubMed

    Bufetov, Igor A; Firstov, Sergey V; Khopin, Vladimir F; Medvedkov, Oleg I; Guryanov, Alexey N; Dianov, Evgeny M

    2008-10-01

    Bismuth-doped fiber lasers operating in the range 1300-1470 nm have been demonstrated for the first time, to our knowledge. It has been shown that Bi-doped alumina-free phosphogermanosilicate fibers reveal optical gain in a wavelength range of 1240-1485 nm with pumping at 1205, 1230, or 808 nm. PMID:18830360

  15. Microdrilling of metals using femtosecond laser pulses and high average powers at 515 nm and 1030 nm

    NASA Astrophysics Data System (ADS)

    Döring, S.; Ancona, A.; Hädrich, S.; Limpert, J.; Nolte, S.; Tünnermann, A.

    2010-07-01

    We investigate the microdrilling of metals (stainless steel, copper and tungsten) for two different wavelengths, 1030 nm and 515 nm, in the regime of femtosecond laser pulses. An ytterbium-doped fibre CPA system provides high pulse energies (up to 70 μJ) and high repetition rates (up to 800 kHz), corresponding to high average powers of about 50 W, for this experimental study.

  16. Dual-wavelength laser with topological charge

    NASA Astrophysics Data System (ADS)

    Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang

    2013-09-01

    We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.

  17. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Chao; Pan, Duo; Zhuang, Wei; Chen, Jing-Biao

    2015-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 10874009, 11074011 and 91436210, and the International Science & Technology Cooperation Program of China under Grant No 2010DFR10900.

  18. ECM at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Copper, H. W.; Littlepage, R. S.

    1982-09-01

    ECM techniques appropriate to the millimeter wave band are examined with particular reference to the physics of the atmosphere and component performance capability. Model calculations show that even for state-of-the-art threat radars, the required ECM receiver sensitivity is well within the state-of-the-art for broadband superheterodyne systems. For ECM jammers, the most fundamental limitation arises from deficiencies in broadband/high power amplifiers. The solution to this problem will require different ECM system architectures than used at the lower frequencies. At millimeter wavelengths, atmospheric effects permit new jamming techniques requiring lower jamming power. For example, scattering by hydrometeors significantly raises the apparent sidelobe level of even low sidelobe antennas of threat radars, which reduces the power required to infringe through the sidelobes.

  19. Quadrature wavelength scanning interferometry.

    PubMed

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel

    2016-07-10

    A novel method to double the measurement range of wavelength scanning interferometery (WSI) is described. In WSI the measured optical path difference (OPD) is affected by a sign ambiguity, that is, from an interference signal it is not possible to distinguish whether the OPD is positive or negative. The sign ambiguity can be resolved by measuring an interference signal in quadrature. A method to obtain a quadrature interference signal for WSI is described, and a theoretical analysis of the advantages is reported. Simulations of the advantages of the technique and of signal errors due to nonideal quadrature are discussed. The analysis and simulation are supported by experimental measurements to show the improved performances. PMID:27409307

  20. Optical amplification at the 1.31 wavelength

    DOEpatents

    Cockroft, Nigel J.

    1994-01-01

    An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.31

  1. Optically guided neuronal growth at near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.; Lake, T. K.; Agate, B.; Garcés-Chávez, V.; Dholakia, K.; Gunn-Moore, F.

    2006-08-01

    Recent work has indicated the potential of light to guide the growth cones of neuronal cells using a Ti:Sapphire laser at 800 nm (Ehrlicher et al, PNAS, 2002). We have developed an optical set-up that has allowed, for the first time, the direct comparison of this process at near infrared wavelengths. A high number of growth cones were studied in order to provide a detailed statistical analysis. Actively extending growth cones of the neuroblastoma cell-line, NG108, can be guided at not only 780 nm, but also at 1064 nm. These wavelengths are an appropriate choice for guidance experiments, as wavelengths in the visible spectrum and UV are highly absorbing by cells and lead to death by phototoxicity and thermal stress. At 780 nm, 47% of actively extending growth cones were found to turn towards the focused incident light by at least 30° (n=32 growth cones). At 1064 nm, 61% of cells were successfully guided (n=31 growth cones). This suggests that the light detection mechanism within the cell is not due a single protein with a defined activity wavelength as occurs for example with the photoreceptor family of opsin proteins in the mammalian eye. We present two novel mechanisms of light induced neuronal guidance which are not related to temperature increases, or optical tweezing of the growth cone. We are also now identifying the signaling pathways that mediate this phenomenon.

  2. Gain measurements at 5 nm in nickel-like ytterbium

    SciTech Connect

    MacGowan, B.J.; Bourgade, J.L.; Combis, P.; Keane, C.J.; Louis-Jacquet, M.; Matthews, D.L.; Naccache, D.; Stone, G.; Thiell, G.; Whelan, D.A.

    1988-03-01

    Soft x-ray gain has been demonstrated at 5.03 nm within a laser produced plasma of Ni-like ytterbium. Experiments will also be described with higher Z Ni-like ions which can produce even shorter wavelength x-ray laser transition. 3 refs.

  3. Holographic topography using acousto-optically generated large synthetic wavelengths

    NASA Astrophysics Data System (ADS)

    Abeywickrema, U.; Beamer, D.; Banerjee, P.; Poon, T.-C.

    2016-03-01

    Digital holography uses phase imaging in a variety of techniques to produce a three-dimensional phase resolved image that includes accurate depth information about the object of interest. Multi-wavelength digital holography is an accurate method for measuring the topography of surfaces. Typically, the object phases are reconstructed for two wavelengths separately and the phase corresponding to the synthetic wavelength (obtained from the two wavelengths) is obtained by calculating the phase difference. Then the surface map can be obtained using proper phase-unwrapping techniques. Usually these synthetic wavelengths are on the order of microns which can be used to resolve depths on the order of microns. In this work, two extremely close wavelengths generated by an acousto-optic modulator (AOM) are used to perform two-wavelength digital holography. Since the difference between the two wavelengths is on the order of picometers, a large synthetic wavelength (on the order of centimeters) can be obtained which can be used to determine the topography of macroscopic surface features. Also since the synthetic wavelength is large, an accurate surface map can be obtained without using a phase-unwrapping technique. A 514 nm Argon-ion laser is used as the optical source, and used with an AOM to generate the zeroth-order and frequency-shifted first-order diffracted orders which are used as the two wavelengths. Both beams are aligned through the same spatial filter assembly. Holograms are captured sequentially using a typical Mach-Zehnder interferometric setup by blocking one beam at a time. Limitations of the large synthetic wavelength are also discussed.

  4. Dual-wavelength tunable fibre laser with a 15-dBm peak power

    SciTech Connect

    Latif, A A; Awang, N A; Zulkifli, M Z; Harun, S W; Ghani, Z A; Ahmad, H

    2011-08-31

    A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths and has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)

  5. 80 nm tunable DBR-free semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  6. Tunable and switchable dual-wavelength erbium-doped fiber laser based on in-line tapered fiber filters

    NASA Astrophysics Data System (ADS)

    Tong, Zheng-rong; Yang, He; Cao, Ye

    2016-07-01

    A tunable and switchable dual-wavelength erbium-doped fiber laser (EDFL) based on all-fiber single-mode tapered fiber structure has been demonstrated. By adjusting the variable optical attenuator (VOA), the laser can be switched between the single-wavelength mode and the dual-wavelength mode. When the temperature applied on the tapered fiber structure varies, the pass-band varies and the wavelength of the output laser shifts correspondingly. When the temperature changes from 30 °C to 180 °C, the central wavelength of the EDFL generated by branch A shifts from 1 550.7 nm to 1 560.3 nm, while that of branch B shifts from 1 530.8 nm to 1 540.4 nm, indicating the wavelength interval is tunable. These advantages enable this laser to be a potential candidate for high-capacity wavelength division multiplexing systems and mechanical sensors.

  7. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  8. Progress in extended wavelength VCSEL technology

    NASA Astrophysics Data System (ADS)

    Johnson, Klein; Dummer, Matthew; Hibbs-Brenner, Mary; Hogan, William; Steidl, Charles

    2013-03-01

    Vixar has been developing VCSELs at both shorter (680nm) and longer (1850nm) wavelengths. This paper reports on advances in technology at both of these wavelengths. 680nm VCSELs based upon the AlGaAs/AlGaInP materials system were designed and fabricated for high speed operation for plastic optical fiber (POF) based links for industrial, automotive and consumer applications. High speed testing was performed in a "back-to-back" configuration over short lengths of glass fiber, over 42 meters of POF, with and without I.C. drivers and preamps, and over temperature. Performance to 90°C, 10 Gbps and over 40 meters of plastic optical fiber has been demonstrated. Reliability testing has been performed over a range of temperatures and currents. Preliminary results predict a TT1% failure of at least 240,000 hours at 40°C and an average current modulation of 4mA. In addition, the VCSELs survive 1000 hours at 85% humidity 85°C in a non-hermetic package. 1850nm InP based VCSELs are being developed for optical neurostimulation. The goals are to optimize the output power and power conversion efficiency. 7mW of DC output power has been demonstrated at room temperature, as well as a power conversion efficiency of 12%. Devices operate to 85°C. Over 70mW of pulsed power has been achieved from a 35 VCSEL array, with a pulse width of 10μsec.

  9. A demonstration of the simple optical fiber filter in visible and near-infrared wavelengths from green laser and red laser pointers

    NASA Astrophysics Data System (ADS)

    Talataisong, W.; Chitaree, R.; Arayathanitkul, K.

    2015-07-01

    The optical fiber filter can be used to reject the noise or unwanted spectrum in the optical communication system. In this study, the performance of the optical fiber filter in visible and near-infrared wavelengths is studied. The working principle of the filter is based on the cladding mode coupling to the high order mode introduced by perturbation on a short section of single-mode (SM) fiber with a specific cut-off wavelength. In the previous study, the filtered wavelengths from the SM-fibers with the cut-off wavelength of 600 nm are 547 nm and near IR range (980-1,100 nm). The filtered wavelength from the SM-fiber with the cut-off wavelength of 800 nm is 666 nm. Also, the magnitude of the filtered wavelengths can be controlled by the magnitude of the applied perturbation force. In this study, the green solid state laser with the wavelength of 532 nm (2nd harmonic component), 808 nm (pump wavelength), and 1,064 nm (fundamental component) and the red diode laser with the wavelength of 668 nm are launched into the SM-fiber with the cut-off wavelength of 600 and 800 nm, respectively. The experimental results clearly show that the harmonic wavelength of 1,064 nm of green laser can be filtered out by the fiber with cut-off wavelength of 600 nm up to 66% with the perturbation force 60 N. The fiber with cut-off wavelength of 800 nm can reject the red laser spectrum up to 50% with the perturbation force 80 N.

  10. GLAST Science Across Wavelengths

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2006-12-01

    The GLAST satellites is almost guaranteed to revolutionize GeV gamma ray astronomy because of the great discoveries that are being made at hard X-ray energy by the Suzaku and Swift satellites and in the TeV range using the H.E.S.S. and Magic telescopes. Unidentified EGRET sources are likely to be identified and new and fainter sources will be found. Known classes of sources blazars, pulsars, gamma ray bursts, supernova remnants, binary X-ray sources and so on will be monitored in much greater detail. Finally, there is the need to limit or even detect dark matter through its annihilation signature. The science that will emerge from GLAST will be determined in large measure by the effort that is put into multiwavelength observing. This will require significant commitments of observing time for monitoring pulsar arrival times, measuring faint galaxy spectra, detecting GeV gamma rays gamma ray bursts and so on. In this talk I will attempt to summarize current thinking on the GLAST multi-wavelength observing program and propose some new approaches.

  11. High channel count and high precision channel spacing multi-wavelength laser array for future PICs.

    PubMed

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang

    2014-01-01

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%. PMID:25488111

  12. High channel count and high precision channel spacing multi-wavelength laser array for future PICs

    PubMed Central

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H.; Qiu, Bocang

    2014-01-01

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%. PMID:25488111

  13. High power diode lasers emitting from 639 nm to 690 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  14. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  15. New Vector Spectropolarimetry of Sunspots near 4000nm

    NASA Astrophysics Data System (ADS)

    Penn, Matthew J.; Coulter, Roy; Goode, Philip R.

    2014-06-01

    Magnetic sensitivity of spectral lines increases as the product of the wavelength and the Lande g-factor. While the most magnetically sensitive spectral line known is the Mg I 12318nm line, and observations are often made near 1600nm, little work has been done using solar spectral lines near 4000nmWe report on new solar spectropolarimetric observations at these wavelengths, made at the NSO McMath-Pierce facility with the NAC and at the NJIT New Solar Telescope using CYRA. Several photospheric absorption lines have been used to map a sunspot magnetic field, and molecular line Zeeman splitting has also been observed. Several "negative-g" molecular lines are seen, and an atomic line shows unusual profiles.

  16. COS Internal FUV Wavelength Verification

    NASA Astrophysics Data System (ADS)

    Keyes, Charles

    2009-07-01

    This program will be executed after the uplink of the OSM1 position updates derived from the determination of the wavelength-scale zero points and desired spectral ranges for each grating in activity COS29 {program 11487 - COS FUV Internal/External Wavelength Scales}. This program will verify that the operational spectral ranges for each grating, central wavelength, and FP-POS are those desired. Subsequent to a successful verification, COS FUV ERO observations that require accurate wavelength scales {if any} and FUV science can be enabled. An internal wavelength calibration spectrum using the default PtNe lamp {lamp 1} with each FUV grating at each central wavelength setting and each FP-POS position will be obtained for the verification. Additional exposures and waits between certain exposures will be required to avoid - and to evaluate - mechanism drifts.

  17. A compact and efficient four-wavelength Q-switched Nd:YAP laser

    NASA Astrophysics Data System (ADS)

    Huang, C. H.; Zhang, G.; Wei, Y.; Zhu, H. Y.; Huang, L. X.

    2010-04-01

    In this paper, a four-wavelength electro-optic (E-O) Q-switched solid-state laser system was presented. This laser system only use one Nd:YAP laser crystal, which irradiates 1079.5 nm and 1341.4 nm fundamental wavelengths. Both of these wavelength lasers and their second harmonic generation (SHG) compose a four-wavelength Nd:YAP Q-switched laser. The Q-switched output energies of 277 mJ for 1079.5 nm and 61 mJ for 539.8 nm and that of 190 mJ for 1341.4 nm and 51 mJ for 670.7 nm wavelengths were achieved. The pulse durations of 1079.5 and 539.8 nm lasers and that of 1341.4 and 670.7 nm lasers are 20 and 40 ns, respectively. Due to this laser system has the larger chance and convenience for selecting the wavelengths and operation modes by moving a stepping motor and controlling the Q-switched devices, it will broaden applications in the fields of laser cosmetology, dermatotis therapy, material processing and laser display etc.

  18. Sub-50nm extreme ultraviolet holographic imaging

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Marconi, M. C.; Bartels, R. A.; Menoni, C. S.; Rocca, J. J.

    2009-05-01

    Imaging tools for nanoscicence involving sub-100-nm scale objects have been dominated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), and electron microscopy (SEM, TEM). These imaging techniques have contributed substantially to the development of nanoscience, providing a very powerful diagnostic tool capable of obtaining images with atomic resolution or as a subsidiary mechanism to arrange or modify surfaces also at the atomic scale [1,2]. However, some important problems have persisted traditional nanoscale imaging techniques. For example when scanning a nanometer size object that is not attached rigidly to a surface the interaction with the tip significantly perturbs the specimen degrading or eventually precluding the image acquisition. Electron microscopy often requires surface preparation, consisting of metallization of the sample to avoid surface charging. Additionally the metallization of the sample may alter its characteristics and also limits the resolution. In both cases, if the sample is large (millimeters in size) due to the limited field of view, the image obtained with these conventional methods is only representative of a very small portion of the object. Wavelength-limited holographic imaging using carbon nanotubes as the test object with a table-top extreme ultraviolet (EUV) laser operating at 46.9 nm will be discussed. The resolution achieved in this imaging is evaluated with a rigorous correlation image analysis and confirmed with the conventional knife-edge test. The nano-holography presented requires no optics or critical beam alignment; thus the hologram recording scheme is very simple and does not need special sample preparation. In holography, image contrast requires absorption to provide scattering by the illuminating beam. The EUV laser wavelength employed in this experiment (46.9nm) is advantageous because carbon based materials typically exhibit very small attenuation lengths, around 25 nm. The high absorption of

  19. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  20. Wavelength Dependent Cis-Trans Isomerization in Vision†

    PubMed Central

    Kim, Judy E.; Tauber, Michael J.; Mathies, Richard A.

    2005-01-01

    The primary event in vision is the light-driven cis-trans isomerization of the 11-cis-retinal chromophore in the G-protein coupled receptor rhodopsin. Early measurements showed that this photoisomerization has a reaction quantum yield Φ of ∼0.67 [Dartnall (1936) Proc. R. Soc. A 156, 158-170; Dartnall (1968) Vision Res. 8, 339-358] and suggested that the quantum yield was wavelength independent [Schneider (1939) Proc. Natl. Acad. Sci. U.S.A. 170, 102-112]. Here we more accurately determine Φ 500) = 0.65 ± 0.01 and reveal that Φ surprisingly depends on the wavelength of the incident light. Although there is no difference in the quantum yield between 450 and 480 nm, the quantum yield falls significantly as the photon energy is reduced below 20 000 cm-1 (500 nm). At the reddest wavelength measured (570 nm), the quantum yield is reduced by 5 ± 1% relative to the 500 nm value. These experiments correct the long-held presumption that the quantum yield in vision is wavelength independent, and support the hypothesis that the 200 fs photoisomerization reaction that initiates vision is dictated by nonstationary excited-state vibrational wave packet dynamics. PMID:11705366

  1. Wavelength dependent cis-trans isomerization in vision.

    PubMed

    Kim, J E; Tauber, M J; Mathies, R A

    2001-11-20

    The primary event in vision is the light-driven cis-trans isomerization of the 11-cis-retinal chromophore in the G-protein coupled receptor rhodopsin. Early measurements showed that this photoisomerization has a reaction quantum yield phi of approximately 0.67 [Dartnall (1936) Proc. R. Soc. A 156, 158-170; Dartnall (1968) Vision Res. 8, 339-358] and suggested that the quantum yield was wavelength independent [Schneider (1939) Proc. Natl. Acad. Sci. U.S.A. 170, 102-112]. Here we more accurately determine phi(500) = 0.65 +/- 0.01 and reveal that phi surprisingly depends on the wavelength of the incident light. Although there is no difference in the quantum yield between 450 and 480 nm, the quantum yield falls significantly as the photon energy is reduced below 20 000 cm(-1) (500 nm). At the reddest wavelength measured (570 nm), the quantum yield is reduced by 5 +/- 1% relative to the 500 nm value. These experiments correct the long-held presumption that the quantum yield in vision is wavelength independent, and support the hypothesis that the 200 fs photoisomerization reaction that initiates vision is dictated by nonstationary excited-state vibrational wave packet dynamics. PMID:11705366

  2. Measurements of Photoabsorpton Cross Sections and their Temperature Dependence for CO2 in the 170nm to 200nm Region

    NASA Astrophysics Data System (ADS)

    Parkinson, W. H.; Yoshino, K.

    2001-11-01

    All the photochemical models for the predominately CO2 Martian atmosphere ar e very sensitive to the amount of CO2 and to the values and spectral details of the absorpton cross sections of CO2 in the region 170nm-200nm. Earlier we had measured and published absolute cross sections of CO2 in the region 118.0 nm-175.5 nm at 295K and 195K. We have recently extended these measurements from 170 nm to 200 nm at 300K and 1 95K. The new measurements have been carried out at high resolution with our 6.65 -m normal incidence , photoelectric spectrometer. To measure the weak photoabsorption of the CO2 bands in the wavelength region 170 --200 nm, we required a high column density of the gas. We obtained this by using a multi pass technique, a White cell. The White cell was designed to have a distance of 1.50 m between two main mirrors, and was set for four, double pas ses making a path length of 12.0 m. CO2 gas was frozen in a stainless cylinder immersed in liquid nitrogen, and t he frozen product (dryice) was pumped by the diffusion pump for purification. The CO2 was warmed up slowly and kept in the cylinder at high pressure. The CO2 pressure used in the White cell was varied from 1 to 1000 Torr depend ing on the wavelength region, and was measured with a a capacitance manometer (M KS Baratron, 10 Torr and 1000 Torr). We divided the spectral region into twenty sections of about 1.5 nm extent. At each scan range, another scan was obtained from the emission spectrum of the fourth positive bands of CO for wavelength calibration. We acknowledge funding from NASA, grant NAGS-7859 to Harvard College Observatory.

  3. Bismuth-doped fibre amplifier operating between 1600 and 1800 nm

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Alyshev, S. V.; Riumkin, K. E.; Khopin, V. F.; Mel'kumov, M. A.; Gurjanov, A. N.; Dianov, E. M.

    2015-12-01

    We report the first bismuth-doped fibre amplifier operating between 1600 and 1800 nm, which utilises bidirectional pumping (co-propagating and counter-propagating pump beams) by laser diodes at a wavelength of 1550 nm. The largest gain coefficient of the amplifier is 23 dB, at a wavelength of 1710 nm. It has a noise figure of 7 dB, 3-dB gain bandwidth of 40 nm and gain efficiency of 0.1 dB mW-1.

  4. Far-field measurements of short-wavelength surface plasmons

    SciTech Connect

    Blau, Yochai; Gjonaj, Bergin; David, Asaf; Dolev, Shimon; Shterman, Doron; Bartal, Guy

    2015-03-23

    We present direct far-field measurements of short-wavelength surface plasmon polaritons (SPP) by conventional optics means. Plasmonic wavelength as short as 231 nm was observed for 532 nm illumination on a Ag−Si{sub 3}N{sub 4} platform, demonstrating the capability to characterize SPPs well below the optical diffraction limit. This is done by scaling a sub-wavelength interferometric pattern to a far-field resolvable periodicity. These subwavelength patterns are obtained by coupling light into counter-propagating SPP waves to create a standing-wave pattern of half the SPP wavelength periodicity. Such patterns are mapped by a scattering slit, tilted at an angle so as to increase the periodicity of the intensity pattern along it to more than the free-space wavelength, making it resolvable by diffraction limited optics. The simplicity of the method as well as its large dynamic range of measurable wavelengths make it an optimal technique to characterize the properties of plasmonic devices and high-index dielectric waveguides, to improve their design accuracy and enhance their functionality.

  5. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously

  6. The Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  7. The effect of multiple wavelengths on Laser-induced damage in DKDP crystals

    SciTech Connect

    Carr, C W; Auerbach, J M

    2005-07-11

    Laser-induced damage is a key factor that constrains how optical materials are used in high-power laser systems. In this work the size and density of bulk laser-induced damage sites formed during frequency tripling in a DKDP crystal are studied. The characteristics of the damage sites formed during tripling, where 1053-nm, 526-nm, and 351-nm light is simultaneously present, are compared to damage sites formed by 351-nm light alone. The fluence of each wavelength is calculated as a function of depth with a full 4D(x,y,z,t) frequency conversion code and compared to measured damage density and size distributions. The density of damage is found be predominantly governed by 351-nm light with some lesser, though non-negligible contribution from 526-nm light. The morphology of the damage sites, however, is seen to be relatively insensitive to wavelength and depend only on total fluence of all wavelengths present.

  8. Fast dispersion encoded full range OCT for retinal imaging at 800 nm and 1060 nm

    NASA Astrophysics Data System (ADS)

    Hofer, Bernd; Považay, Boris; Unterhuber, Angelika; Wang, Ling; Hermann, Boris; Rey, Sara; Matz, Gerald; Drexler, Wolfgang

    2011-03-01

    The dispersion mismatch between sample and reference arm in frequency-domain OCT can be used to iteratively suppress complex conjugate artifacts and thereby increase the imaging range. We propose a fast dispersion encoded full range (DEFR) algorithm that detects multiple signal components per iteration. The influence of different dispersion levels on the reconstruction quality is analyzed for in vivo retinal tomograms at 800 nm. Best results have been achieved with about 30 mm SF11, with neglectable resolution decrease due to finite resolution of the spectrometer. Our fast DEFR algorithm achieves an average suppression ratio of 55 dB and converges within 5 to 10 iterations. The processing time on non-dedicated hardware was 5 to 10 seconds for tomograms with 512 depth scans and 4096 sampling points per depth scan. Application of DEFR to the more challenging 1060 nm wavelength region is demonstrated by introducing an additional optical fibre in the sample arm.

  9. Tissue measurement using 1064 nm dispersive Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lieber, Chad A.; Wu, Huawen; Yang, William

    2013-03-01

    The use of Raman spectroscopy to provide characterization and diagnosis of biological tissues has shown increasing success in recent years. Most of this work has been performed using near-infrared laser sources such as 785 or 830 nm, in a balance of reduced intrinsic fluorescence in the tissues and quantum efficiency in the silicon detectors often used. However, even at these wavelengths, many tissues still exhibit strong or prohibitive fluorescence, and these wavelengths still cause autofluorescence in many common sampling materials, such as glass. In this study, we demonstrate the use of 1064 nm dispersive Raman spectroscopy for the study of biological tissues. A number of tissues are evaluated using the 1064 nm system and compared with the spectra obtained from a 785 nm system. Sampling materials are similarly compared. These results show that 1064 nm dispersive Raman spectroscopy provides a viable solution for measurement of highly fluorescent biological tissues such as liver and kidney, which are difficult or impossible to extract Raman at 785 nm.

  10. Growth of Laser Damage in SiO2 under Multiple Wavelength Irradiation

    SciTech Connect

    Norton, M A; Donohue, E E; Feit, M D; Hackel, R P; Hollingsworth, W G; Rubenchik, A M; Spaeth, M L

    2005-10-28

    In laser systems using frequency conversion, multiple wavelengths will be present on optical components. We have investigated the growth of laser initiated damage in fused silica in the presence of multiple wavelengths. In particular, we measured growth at 351 nm in the presence of 1053 nm near the threshold of growth for 351 nm alone. The data shows that the sum fluence determines the onset of growth as well as the growth rate. The measured growth coefficient is consistent with all the energy being delivered at 351 nm. Additionally, we measured growth at 527 nm in the presence of 1053 nm near the threshold of growth at 527 nm alone. In this case, the sum fluence also determines the growth coefficient but the rate is consistent with all the energy being delivered at 1053 nm. We present the measurements and discuss possible reasons for the behavior.

  11. Absorption of 308-nm excimer laser radiation by balanced salt solution, sodium hyaluronate, and human cadaver eyes

    SciTech Connect

    Keates, R.H.; Bloom, R.T.; Schneider, R.T.; Ren, Q.; Sohl, J.; Viscardi, J.J. )

    1990-11-01

    Absorption of the excimer laser radiations of 193-nm argon fluorine and 308-nm xenon chloride in balanced salt solution, sodium hyaluronate, and human cadaver eyes was measured. The absorption of these materials as considerably different for the two wavelengths; we found that 308-nm light experienced much less absorption than the 193-nm light. The extinction coefficient (k) for 308 nm was k = 0.19/cm for balanced salt solution and k = 0.22/cm for sodium hyaluronate. In contrast to this, the extinction coefficient for 193 nm was k = 140/cm for balanced salt solution and k = 540/cm for sodium hyaluronate. Two 1-day-old human phakic cadaver eyes showed complete absorption with both wavelengths. Using aphakic eyes, incomplete absorption was noted at the posterior pole with 308 nm and complete absorption was noted with 193 nm. The extinction in the anterior part of aphakic eyes (the first 6 mm) was 4.2/cm for 308 nm, meaning that the intensity of the light is reduced by a factor of 10 after traveling the first 5.5 mm. However, we observed that the material in the eye fluoresces, meaning the 308 nm is transformed into other (longer) wavelengths that travel through the total eye with minimal absorption. Conclusions drawn from this experiment are that the use of the 308-nm wavelength may have undesirable side effects, while the use of the 193-nm wavelength should be consistent with ophthalmic use on both the cornea and the lens.

  12. Coherent quasi-CW 153-nm light source at high repetition rate

    NASA Astrophysics Data System (ADS)

    Nomura, Yutaka; Ito, Yoshiaki; Ozawa, Akira; Wang, Xiaoyang; Chen, Chuangtian; Shin, Shik; Watanabe, Shuntaro; Kobayashi, Yohei

    2012-02-01

    We present a quasi-cw laser in vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm is frequency-converted by successive stages of LBO crystals and KBBF crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

  13. COS Internal NUV Wavelength Verification

    NASA Astrophysics Data System (ADS)

    Keyes, Charles

    2009-07-01

    This program will be executed after the uplink of the OSM2 position updates derived from the determination of the wavelength-scale zero points and desired spectral ranges for each grating in activity COS14 {program 11474 - COS NUV Internal/External Wavelength Scales}. This program will verify that the operational spectral ranges for each grating, central wavelength, and FP-POS are those desired. Subsequent to a successful verification, COS NUV ERO observations and NUV science can be enabled. An internal wavelength calibration spectrum using the default PtNe lamp {lamp 1} with each NUV grating at each central wavelength setting and each FP-POS position will be obtained for the verification. Additional exposures and waits between certain exposures will be required to avoid - and to evaluate - mechanism drifts.

  14. Wavelength division multiplexing WDM, CWDM and DWDM applications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina Bristena; Vasile, Alexandru; Luciana, Stan; Tache, Mihaela

    2007-05-01

    The fiber optics has become the most preferred media for this very large data traffic. TDM (Time Division Multiplexing) has been the most practical method to divide the significant capacity of a single fiber optics into several communication channels. This technology is still limited by the large complexity of high-flow modulation and multiplexing equipment. Presently, a complementary approach proves its potential: Wavelength-Division Multiplexing (WDM). The evolution of WDM allows now a very small spacing between channels wavelength, in nm, generating DWDM (Dense Wavelength Division Multiplexing). The networks with individual fibers including more than 100 independent optic channels, as well as those with bidirectional flow are already available on the market. CWDM (Coarse Wavelength Division Multiplexing) represents an economical application of a mature technology which may provide options where the capacity of fibers is limited.

  15. Dynamic wavelength conversion in copropagating slow-light pulses.

    PubMed

    Kondo, K; Baba, T

    2014-06-01

    Dynamic wavelength conversion (DWC) is obtained by controlling copropagating slow-light signal and control pulse trajectories. Our method is based on the understanding that conventional resonator-based DWC can be generalized, and is linked to cross-phase modulation. Dispersion-engineered Si photonic crystal waveguides produce such slow-light pulses. Free carriers generated by two-photon absorption of the control pulse dynamically shift the signal wavelength. Matching the group velocities of the two pulses enhances the shift, elongating the interaction length. We demonstrate an extremely large wavelength shift in DWC (4.9 nm blueshift) for the signal wavelength. Although DWC is similar to the Doppler effect, we highlight their essential differences. PMID:24949770

  16. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  17. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength

    NASA Astrophysics Data System (ADS)

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-08-01

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam.

  18. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength

    PubMed Central

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-01-01

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam. PMID:27501749

  19. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength.

    PubMed

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-01-01

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam. PMID:27501749

  20. Wavelength conversion with excimer lasers

    SciTech Connect

    Booker, J.; Eichner, L.; Storz, R.H.; Bucksbaum, P.H.; Freeman, R.R.

    1983-01-01

    Harmonic generation was studied using a high powered, ultrashort pulse KrF excimer laser. Third, fifth, and seventh harmonic outputs were observed at 82.8 nm, 49.7 nm, and 35.5 nm. The nonlinear interaction took place at the intersection of the laser focus with a pulsed, supersonic gas jet expansion.

  1. Removal of copper oxide from copper surfaces using Q-switched Nd:YAG radiation at 1064 nm, 532 nm, and 266 nm

    NASA Astrophysics Data System (ADS)

    Kearns, Aileen; Fischer, C.; Watkins, Kenneth G.; Glasmacher, Mathias; Steen, William M.; Kheyrandish, H.; Brown, A.

    1997-08-01

    During electronic device fabrication it is necessary to remove the oxides from copper surfaces prior to soldering in order to improve the surface wetability and achieve a good quality solder joint. The usual method of achieving this is by using acids in a flux. The work reported here explores the possibility of removing these oxides by laser cleaning using the harmonics of a Q-switched Nd:YAG laser, a technique which could be incorporated into a industrial laser soldering process. The effect of Q-switched Nd:YAG radiation (5 - 10 ns pulses), at 1064 nm, 532 nm and 266 nm, on the oxidized surface of a copper alloy foil is studied with increasing fluence. In order to successfully compare the effect of increasing fluence at the three wavelengths each area treated was only subjected to one laser pulse. The laser treated surfaces were characterized using optical microscopy, SEM, and surface analysis performed by static secondary ion mass spectrometry (SSIMS). SSIMS and SNMS (secondary neutral mass spectrometry) with mechanical depth profilometry were used to characterize the oxide layer. The reflectivity of the oxidized plates for the three wavelengths was ascertained using a reflectivity spectrometer. Successful cleaning was achieved at all wavelengths, above certain threshold values which defined the lower end of the process operating window for single pulse operation. The threshold for the cleaning process decreased with laser wavelength. Surface melting was evident at the lowest fluences examined for all the wavelengths (< .5 J/cm2). This value is well below the lower end of the process windows of all wavelengths. Microscopic `explosive' features were found at the onset of copper oxide removal possibly resulting from ionization or a plasma induced shock waves. There was some possible evidence of mechanical effects at 1064 nm and 532 nm. Large amounts of sputtered debris was found around the 266 nm craters. A SSIMS analysis was performed on the 532 nm spots. The

  2. A 1.5-W frequency doubled semiconductor disk laser tunable over 40 nm at around 745 nm

    NASA Astrophysics Data System (ADS)

    Saarinen, Esa J.; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G.

    2016-03-01

    We report on a semiconductor disk laser emitting 1.5 W of output power at the wavelength of 745 nm via intracavity frequency doubling. The high power level and the < 40 nm tuning range make the laser a promising tool for medical treatments that rely on photosensitizing agents and biomarkers in the transmission window of tissue between 700 and 800 nm. The InP-based gain structure of the laser was wafer-fused with a GaAs-based bottom mirror and thermally managed with an intracavity diamond heat spreader. The structure was pumped with commercial low-cost 980 nm laser diode modules. Laser emission at 1490 nm was frequency-doubled with a bismuth borate crystal that was cut for type I critical phase matching. At the maximum output power, we achieved an optical-to-optical efficiency of 8.3% with beam quality parameter M2 below 1.5. The laser wavelength could be tuned with an intracavity birefringent plate from 720 to 764 nm.

  3. Multi-wavelength generation based on cascaded Raman scattering and self-frequency-doubling in KTA

    NASA Astrophysics Data System (ADS)

    Zhong, K.; Li, J. S.; Xu, D. G.; Ding, X.; Zhou, R.; Wen, W. Q.; Li, Z. Y.; Xu, X. Y.; Wang, P.; Yao, J. Q.

    2010-04-01

    A multi-wavelength laser is developed based on cascaded stimulated Raman scattering (SRS) and self-frequency-doubling in an x-cut KTA crystal pumped by an A-O Q-switched Nd:YAG laser. The generation of 1178 nm from cascaded SRS of 234 and 671 cm-1 Raman modes is observed. The six wavelengths, including the fundamental 1064 nm, four Stokes waves at 1091, 1120, 1146, 1178 nm, and the second harmonic generation (SHG) of 1146 nm, are tens to hundreds of millwatts for each at 10 kHz, corresponding to a total conversion efficiency of 8.72%.

  4. Wavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum.

    PubMed

    Telles, Francismeire J; Kelber, Almut; Rodríguez-Gironés, Miguel A

    2016-02-01

    Despite the strong relationship between insect vision and the spectral properties of flowers, the visual system has been studied in detail in only a few insect pollinator species. For instance, wavelength discrimination thresholds have been determined in two species only: the honeybee (Apis mellifera) and the butterfly Papilio xuthus. Here, we present the wavelength discrimination thresholds (Δλ) for the hawkmoth Macroglossum stellatarum. We compared the data with those found for the honeybee, the butterfly P. xuthus and the predictions of a colour discrimination model. After training moths to feed from a rewarded disc illuminated with a monochromatic light, we tested them in a dual-choice situation, in which they had to choose between light of the training wavelength and a novel unrewarded wavelength. To characterise the Δλ function, we decreased the difference between wavelengths in subsequent tests. We also varied the light intensity to test its effect on the discrimination capacity. In agreement with the predictions of the model, we found two expected minima of discrimination where photoreceptor sensitivities overlap, as well as a third, minor, unpredicted minimum around the peak of the blue photoreceptor. Macroglossum stellatarum is capable of discriminating between lights with a wavelength difference of 1-2 nm. These discrimination minima are similar to those found for the tetrachromatic P. xuthus, and are better than those of the honeybee. The moth is also capable of using achromatic information to discriminate between lights of long wavelengths. PMID:26747900

  5. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    SciTech Connect

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D.

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  6. ACRIM III Radiometer Cavity Reflectance at a Variety of Wavelengths across the Solar Spectrum

    NASA Astrophysics Data System (ADS)

    Lorentz, S. R.; Morrill, J. S.; Hanssen, L. M.; Zeng, J.

    2010-12-01

    We will present measurements of the reflected power from a spare ACRIM III radiometer cavity at a variety of wavelengths across the solar spectrum in order to generate a correction factor for the ACRIM III Total Solar Irradiance (TSI) measurements. These measurements are being performed as part of the NRL support of the ACRIMSAT Mission Extension. The cavity reflectance will be measured using a laser and integrating sphere technique at several wavelengths from the visible to the infra-red (IR). The visible wavelengths will be 457 nm, 488 nm, 532 nm, and 633 nm. The measurements at the IR wavelengths will include measurements at between 1 µm and 5 µm and between 9 µm and 11 µm. The results will include measurements where the laser has been rastered across the cavity entrance to produce a reflectance map. Uncertainty goals for the measurements are < 25 ppm in the visible and < 50 ppm in the IR.

  7. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    SciTech Connect

    Zhang, Xiaorong; Li, Bincheng

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  8. Fabrication of a monolithically integrated multiple wavelength Fabry-Perot filter array using transparent etch stop layers for accurate wavelength determination

    NASA Astrophysics Data System (ADS)

    Convey, Diana; Le, Ngoc; Smith, Steven M.; Holm, Paige; Baker, Jeffrey

    2006-10-01

    In this paper we describe a method of fabricating a Fabry-Perot filter array consisting of four distinct wavelengths using a stopping layer, which in turn is discriminately measured. Precise control of the oxide thickness is demonstrated by using reflectance to measure center wavelengths (CWL) between 645nm-822nm with full width half maximum (FWHM) values of 15 nm. These parameters are used to confirm good narrow band filter characteristics. The physical and chemical properties of an oxide layer converted from a silicon-carbon-nitride (SiCN) etch stop layer (ESL) is reported for both as-deposited and the resultant oxidized film. The filter array can be fabricated directly on top of silicon photo diodes, to form a complete multi-wavelength sensor system. Fabricating a multi-wavelength filter array using etch-stop layers can provide better thickness control and across wafer uniformity compared to a timed-etch approach.

  9. 980-nm 14-pin butterfly module dual-channel CW QW semiconductor laser for pumping

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Yan, Changling; Qu, Yi; Li, Hui; Wang, Yuxia; Gao, Xin; Qiao, Zhongliang; Li, Mei; Qu, Bowen; Lu, Peng; Bo, Baoxue

    2010-10-01

    Nowadays, with its mature progress, the 790 nm - 1000 nm wavelength semiconductor laser is widely used in the fields of laser machining, laser ranging, laser radar, laser imaging, laser anti-counterfeit, biomedical and etc. Best of all, the 980 nm wavelength laser has its widespread application in the pumping source of Er3+ -doped fiber amplifier, optic fiber gyroscopes and other devices. The output wavelength of the fiber amplifier which takes the 980 nm wavelength laser as its pumping source is between 1060 nm and 1550 nm. This type of laser has its extremely wide range of applications in optical communication and other fields. Moreover, some new application domains keep constantly being developed. The semiconductor laser with the dual-channel ridge wave guide and the 980 nm emission wavelength is presented in this paper. In our work, we fabricated Lasers with the using of multi-quantum well (MQW) wafer grew by MBE, and the PL-wavelength of the MQW was 970 nm. The standard photofabrication method and the inductively coupled plasma (ICP) etching technology are adopted in the process of making dual-channel ridge wave guide with the width of 4 μm and height of 830 nm. In the state of continuous work at room temperature, the laser could output the single mode beam of 70 mW stably under the current of 100 mA. The threshold current of the laser diode is 17 mA and the slope efficiency is 0.89 W/A. The 3 dB spectrum bandwidth of the laser beam is 0.2 nm. This laser outputs its beam by a pigtail fiber on which Bragg grating for frequency stabilization is carved. The laser diode, the tail fiber, and the built-in refrigeration and monitoring modules are sealed in a 14-pin butterfly packaging. It can be used directly as the pumping source of Er3+ - doped fiber amplifier or optic fiber gyroscopes.

  10. Flux-calibration of medium-resolution spectra from 300 nm to 2500 nm

    NASA Astrophysics Data System (ADS)

    Moehler, Sabine; Modigliani, Andrea; Freudling, Wolfram; Giammichele, Noemi; Gianninas, Alexandros; Gonneau, Anais; Kausch, Wolfgang; Lançon, Ariane; Noll, Stefan; Rauch, Thomas; Vinther, Jakob

    2014-08-01

    While the near-infrared wavelength regime is becoming more and more important for astrophysics there are few spectrophotometric standard star data available to flux calibrate such data. On the other hand flux calibrating high-resolution spectra is a challenge even in the optical wavelength range, because the available flux standard data are often too coarsely sampled. We describe a method to obtain reference spectra derived from stellar model atmospheres, which allow users to derive response curves from 300 nm to 2500 nm also for high-resolution spectra. We verified that they provide an appropriate description of the observed standard star spectra by checking for residuals in line cores and line overlap regions in the ratios of observed spectra to model spectra. The finally selected model spectra are then empirically corrected for remaining mismatches and photometrically calibrated using independent observations. In addition we have defined an automatic method to correct for moderate telluric absorption using telluric model spectra with very high spectral resolution, that can easily be adapted to the observed data. This procedure eliminates the need to observe telluric standard stars, as long as some knowledge on the target spectrum exists.

  11. Stable dual-wavelength laser combined with gain flattening ML-FMF Bragg grating filter

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Li, Yang; Bai, Yunlong; Yin, Bin; Liu, Zhibo; Jian, Shuisheng

    2016-01-01

    A stable dual-wavelength laser combined with gain flattening multi-layer few-mode fiber Bragg grating filter was proposed and experimentally demonstrated. The index profile of the multi-layer few-mode fiber was particularly designed to support LP01 and LP11 modes with approximately equal excitation coefficients. And conventional phase-mask fabrication technique was used to inscribe Bragg gratings in the multi-layer few-mode fiber core, which leads to the gain flattening filter. A switchable dual-wavelength laser combined with the gain flattening filter was successfully achieved with simple linear configuration. The lasing wavelengths spacing was 0.39 nm. The variation of the central wavelength and intensity fluctuation were as small as 0.01 nm and <0.7 dBm in both dual-wavelength and single-wavelength operation regions, respectively.

  12. Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Dongfeng; Wang, Chinhua

    2010-01-01

    We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.

  13. Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles.

    PubMed

    Söderlund, Hugo; Mousavi, Monirehalsadat; Liu, Haichun; Andersson-Engels, Stefan

    2015-08-01

    Ytterbium (Yb 3+ )-sensitized upconverting nanoparticles (UCNPs) are excited at 975 nm causing relatively high absorption in tissue. A new type of UCNPs with neodymium (Nd 3+ ) and Yb 3+ codoping is excitable at a 808-nm wavelength. At this wavelength, the tissue absorption is lower. Here we quantify, both experimentally and theoretically, to what extent Nd 3+ -doped UCNPs will provide an increased signal at larger depths in tissue compared to conventional 975-nm excited UCNPs. PMID:26271054

  14. Multiple-wavelength tunable laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2010-01-01

    A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

  15. AWG Filter for Wavelength Interrogator

    NASA Technical Reports Server (NTRS)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  16. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  17. Absolute measurement of F2-laser power at 157 nm

    SciTech Connect

    Kueck, Stefan; Brandt, Friedhelm; Kremling, Hans-Albert; Gottwald, Alexander; Hoehl, Arne; Richter, Mathias

    2006-05-10

    We report a comparison of laser power measurements at the F2-laser wavelength oaf nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of?10 {mu}J, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.

  18. [Characteristic wavelengths analysis for remote sensing reflectance on water surface in Taihu Lake].

    PubMed

    Shen, Qian; Zhang, Bing; Li, Jun-sheng; Wu, Yuan-feng; Wu, Di; Song, Yang; Zhang, Fang-fang; Wang, Gan-lin

    2011-07-01

    The research on characteristic wavelengths analysis of reflectance spectrum is a very important and basic task for remote sensing of inland-water color. The present paper analyzed remote sensing reflectances of 312 samples measured in Taihu Lake between 2006 and 2009, and these reflectances were separated into three classes by chlorophyll-a concentrations. The reflectance spectra smoothed by Savitzky-Golay algorithm were calculated by first- and second-order derivatives. Then, zero values were located in the derivatives and counted at all wavelengths. Thus the frequency distribution of zeros at each wavelength was got. At which wavelength a local maximum of the frequencies appears a characteristic wavelength will most likely be there. These characteristic wavelengths are corresponding to maximum, minimum, from-concave-to-convex inflection point and from-convex-to-concave inflection point of a spectrum curve. At last the paper provided the characteristic wavelengths for Taihu Lake water at the spectral coverage from 350 to 900 nm, which are 359, 440, 464, 472, 552, 566, 583, 628, 636, 645, 660, 676, 689, 706, 728, 791, 806, and 825 nm. In addition, these wavelengths we found were explained by absorption of phytoplankton pigments and components of water in Taihu Lake. Being able to distinguish overlaps between peaks and vales at the same wavelength in different measurements, the method to analyze characteristic wavelengths is universally applicable to various spectrum curves. The characteristic wavelengths chosen by the paper are helpful to improving some algorithms of retrieval of water quality parameters. PMID:21942046

  19. Biophotopol's energetic sensitivity improved in 300 μm layers by tuning the recording wavelength

    NASA Astrophysics Data System (ADS)

    Navarro-Fuster, Víctor; Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; Beléndez, Augusto; Pascual, Inmaculada

    2016-02-01

    In order to obtain a highly environmentally compatible photopolymer to replace the well-known acrylamide photopolymer we optimized the previously developed Biophotopol composition to obtain volume transmission gratings in 300 μm layers, at a recording wavelength of 488 nm. The results obtained show an improved energetic sensitivity with similar diffraction efficiency to that obtained at the standard recording wavelength of 514 nm.

  20. Pupillary behavior in relation to wavelength and age.

    PubMed

    Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria Del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia

    2014-01-01

    Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46-78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18-45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595

  1. Pupillary behavior in relation to wavelength and age

    PubMed Central

    Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia

    2014-01-01

    Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595

  2. CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY

    SciTech Connect

    Fayolle, Edith C.; Linnartz, Harold; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues; Oeberg, Karin I.

    2011-10-01

    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Ly{alpha}), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A{sup 1}{Pi} at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

  3. Light-induced changes in the absorption spectrum of bacteriorhodopsin under two-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Koklyushkin, A. V.; Korolev, A. E.

    2004-09-01

    The results of spectrophotometric measurements of nonlinear light-induced changes in the absorption spectrum of bacteriorhodopsin D96N occurring upon simultaneous excitation at the wavelengths 633 and 441 nm in the excitation intensity range typical for recording of dynamic holograms are presented. The quantitative conditions under which the action of the radiation at one wavelength reduces the change in the optical density caused by the radiation at the other wavelength are determined.

  4. Fiber Bragg grating sensor system using single-mode wavelength swept light source

    NASA Astrophysics Data System (ADS)

    Saitoh, Takanori; Nakamura, Kenichi; Furukawa, Hiroshi; Koshihara, Masaru

    2011-05-01

    This paper reports a high-performance FBG sensor system using a novel single-mode wavelength swept light source that can sweep wavelengths with a spectrum line width of 1 pm, a sweep range of 135 nm, and a sweep frequency of 160 Hz. This system can measure an FBG spectrum with 1-pm resolution and an FBG wavelength with 0.2-pm repeatability with a measurement frequency of 160 Hz.

  5. Magnetically controllable wavelength-division-multiplexing fiber coupler.

    PubMed

    Lin, Wei; Zhang, Hao; Song, Binbin; Miao, Yinping; Liu, Bo; Yan, Donglin; Liu, Yange

    2015-05-01

    In this paper, a magnetically controllable wavelength-division-multiplexing (WDM) fiber coupler has been proposed and experimentally demonstrated. A theoretical model has been established to analyze the influences of the weak as well as strong couplings to the wavelength tunability of this coupler. Experimental results show that the operation wavelength tunability of the proposed WDM coupler could be fulfilled for an applied magnetic field intensity range of 0 Oe to 500 Oe, and particularly it possesses high operation performances within the magnetic field intensity ranging from 25 Oe to 125 Oe when additional transmission loss and isolation are both considered. Within this range, the two selected channels show the wavelength tunability of 0.05 nm/Oe and 0.0744 nm/Oe, respectively, and the isolation between the two branches is higher than 24.089 dB. Owing to its high isolation, good splitting ratio stability, and high wavelength tunability, the proposed controllable WDM coupler is anticipated to find potential applications in such fields as fiber laser, fiber sensing and fiber-optic communications. Moreover, the fiber coupler integrated with the magnetic fluid would be valuable for the design of magnetically controllable mode-division-multiplexing devices. PMID:25969208

  6. Silicon on-chip wavelength-selective switch composed of Mach–Zehnder-interferometer-based switches and microring resonators

    NASA Astrophysics Data System (ADS)

    Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya

    2016-06-01

    We fabricated a wavelength-selective switch composed of microring resonators as wavelength filters and Mach–Zehnder-interferometer-based thermo-optic switches as routing switches. Nonblocking wavelength-selective switching operations for several channels were successfully demonstrated. A wavelength-selective transmittance change of 9.7 dB was obtained at a wavelength channel of 1548 nm, which is one of four wavelength channels in a wavelength range between 1535 and 1570 nm. An electric power of 17.9 mW was applied for switching the thermo-optic switch from a cross state to a bar state. The change in transmittance in other wavelength channels is <1.7 dB.

  7. Microsystem 671 nm light source for shifted excitation Raman difference spectroscopy.

    PubMed

    Maiwald, Martin; Schmidt, Heinar; Sumpf, Bernd; Erbert, Götz; Kronfeldt, Heinz-Detlef; Tränkle, Günther

    2009-05-20

    We present a compact wavelength stabilized diode laser system at 671 nm on a micro-optical bench as a light source for shifted excitation Raman difference spectroscopy (SERDS). The laser system consists of two broad-area gain media in separate laser cavities using two reflection Bragg gratings with slightly different center wavelengths. A spectral width below 100 pm and a constant wavelength shift of 0.57 +/- 0.06 nm is obtained up to output powers of 250 mW. The suitability of this light source for SERDS is demonstrated using Raman spectra of ethanol with increasing concentrations of Cresyl Violet as the fluorescent contaminant. PMID:19458726

  8. A color sensor wavelength meter

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin; Jackson, Jarom; Otterstrom, Nils; Jones, Tyler; Archibald, James

    2016-05-01

    We will discuss a laser wavelength meter based on a commercial color sensor chip consisting of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined with picometer-level precision and with picometer-scale calibration drift over a period longer than a month. This work was supported by NSF Grant Number PHY-1205736.

  9. SWOC: Spectral Wavelength Optimization Code

    NASA Astrophysics Data System (ADS)

    Ruchti, G. R.

    2016-06-01

    SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.

  10. Solid colloidal optical wavelength filter

    NASA Astrophysics Data System (ADS)

    Alvarez, J. L.

    1990-05-01

    A method for constructing a solid colloidal optical wavelength filter is discussed. The device was developed to filter optical wavelengths for spectroscopy, protection from intense radiation, monochromatizing, and analyzing optical radiation. The filter is formed by suspending spherical particles in a coagulable medium (such as setting plastic); agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  11. Pseudomorphic Single-Quantum-Well Lasers Emit At 980 Nm

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Forouhar, Siamak; Cody, Jeffrey G.; Lang, Robert J.; Andrekson, Peter A.

    1992-01-01

    Narrow-stripe semiconductor lasers emitting at 980 nm include pseudomorphic In0.2Ga0.8As/GaAs/AlxGa1-xAs graded-index-of-refraction, separate-confinement-heterostructure single quantum well(GRINSCH SQW) with overlaid ridge waveguide. 980 nm chosen as one that yields most efficient pumping because there is no absorption in excited states at this wavelength. Suitable for pumping Er(Sup3+)-doped optical-fiber amplifiers in optical-fiber communication systems and optical phased-array ranging systems.

  12. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  13. Optical responses of a metal with sub-nm gaps.

    PubMed

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  14. Optical responses of a metal with sub-nm gaps

    PubMed Central

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  15. Picosecond programmable laser sweeping over 50 mega-wavelengths per second

    NASA Astrophysics Data System (ADS)

    Kim, Youngjae; Burgoyne, Bryan; Godbout, Nicolas; Villeneuve, Alain; Lamouche, Guy; Vergnole, Sébastien

    2011-02-01

    We report here the successful realization of 25 millions wavelengths per second using an SOA based PL around 1565 nm at a 75 MHz repetition rate. The laser is simply composed of an SOA, a CFBG (10 ps/nm) with a 100 nm bandwidth, an optical circulator, an EOM (intensity modulator), and an output coupler (20%). Pulse duration is around 45 ps and OSNR of the pulse is around 35 dB at 1565 nm without sweeping. Tunable dispersion compensating module (TDCM) was used to compress the chirped pulse output and 10 ps pulse duration was obtained at 1548 nm. Finally 25 megawavelengths per second was realized with under 3 pulses per wavelength and 1024 discrete wavelengths. Linear k-space sweeping function was enabled in the swept-source OCT (SS-OCT) system through graphical user interface (GUI).

  16. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser. PMID:1904334

  17. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  18. Characterization of Focused Ultrashort Pulses as a Function of Wavelength

    NASA Astrophysics Data System (ADS)

    Beck, Joshua; McAcy, Collin; Marsh, Skyler; Karnemaat, Ryan; Scarborough, Tim; Uiterwaal, Cornelis

    2013-05-01

    In previous experiments, we have studied the photoionization and photofragmentation of substituted benzenes using intense fields from an 800 nm, femtosecond laser source and an experimental method that eliminates the focal volume effect without the need for data deconvolution [Phys. Rev. Lett. 100, 023002 (2008)]. Using this approach, we have found that in many substituted benzenes REMPI dominates the ionization process at around 800 nm [Phys. Chem. Chem. Phys., 2011, 13, 13783-13790]. We have now started to expand our studies using an optical parametric amplifier (Spectra-Physics TOPAS-C) which is tunable between 475 nm and 2800 nm. For reliable wavelength-dependent experiments, proper characterization of the position of the focus, including focal pulse duration and pulse intensity for the various wavelengths, is of crucial importance. We present preliminary characterization of post-OPA foci imaged at the interaction volume using reflective optics. Initial results will employ a spherical mirror, though the final experiment will require an off-axis parabolic mirror. Diagnosis of the focus will allow us to align this mirror and record its focal intensity distribution in real time, making accurate wavelength-dependent photoionization experiments feasible. This material is based upon work supported by the GAANN research fellowship and the National Science Foundation under Grant Nos. PHY-0855675 and PHY-1005071.

  19. Mask inspection microscopy with 13.2 nm table-top laser illumination

    SciTech Connect

    Brizuela, Fernando; Wang, Yong; Brewer, Courtney A.; Pedaci, Francesco; Chao, Weilun; Anderson, Erik H.; Liu, Yanwei; Goldberg, Kenneth A.; Naulleau, Patrick; Wachulak, Przemyslaw; Marconi, Mario C.; Attwood, David T.; Rocca, Jorge J.; Menoni, Carmen S.

    2008-10-14

    We report the demonstration of a reflection microscope that operates at 13.2-nm wavelength with a spatial resolution of 55 {+-} 3 nm. The microscope uses illumination from a table-top EUV laser to acquire aerial images of photolithography masks with a 20 second exposure time. The modulation transfer function of the optical system was characterized.

  20. Nearest-IR superluminescent diodes with a 100-nm spectral width

    SciTech Connect

    Il'chenko, S N; Ladugin, M A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2012-11-30

    This paper presents an experimental study of quantum well superluminescent diodes with an extremely thin (InGa)As active layer. Under cw injection, the output power of such diodes is several milliwatts, with a centre wavelength of 830 nm and emission bandwidth of about 100 nm. (letters)

  1. Study of the emission spectra of a 1320-nm semiconductor disk laser and its second harmonic

    NASA Astrophysics Data System (ADS)

    Gochelashvili, K. S.; Derzhavin, S. I.; Evdokimova, O. N.; Zolotovskii, I. O.; Podmazov, S. V.

    2016-03-01

    The spectral characteristics of an optically pumped external-cavity semiconductor disk laser near λ = 1320 nm are studied experimentally. Intracavity second harmonic generation is obtained using an LBO nonlinear crystal. The output power at a wavelength of 660 nm in the cw regime was 620 mW, and the peak power in the pulsed regime was 795 mW.

  2. 938 nm Nd-Doped High Power Cladding Pumped Fiber Amplifier

    SciTech Connect

    Dawson, J; Beach, R; Drobshoff, A; Liao, Z; Pennington, D; Payne, S; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-09-19

    2.1W of 938nm light has been produced in an Nd{sup 3+} doped fiber amplifier. Wavelength dependent bend losses can be employed to minimize 1088nm amplified spontaneous emission giving the optical fiber a distinct advantage over bulk media.

  3. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.

    PubMed

    Mandai, Shingo; Fishburn, Matthew W; Maruyama, Yuki; Charbon, Edoardo

    2012-03-12

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4 V, with 30 % PDP at wavelengths from 520 nm to 720 nm. Dark count rates (DCR) are at most 5 kHz, which is 30 Hz/μm2, at an excess bias of 4V when we measure 10 μm diameter active area structure. Afterpulsing probability, timing jitter, and temperature effects on DCR are also presented. PMID:22418462

  4. Equivalent wavelength self-mixing interferometry for displacement measurement.

    PubMed

    Huang, Zhen; Li, Chengwei; Li, Songquan; Li, Dongyu

    2016-09-01

    In order to improve fringe precision of a self-mixing signal, a simple and effective method based on an equivalent wavelength self-mixing interferometer is presented. And a linearization fringe counting method is proposed for equivalent wavelength self-mixing interferometry to quickly reconstruct target displacement. The validity of the proposed method was demonstrated by means of simulated signals and confirmed by several experimental measurements for both harmonic and aleatory target displacement with a fringe resolution of ∼125  nm. PMID:27607290

  5. High-power operation of silica-based Raman fiber amplifier at 2147 nm.

    PubMed

    Liu, Jiang; Tan, Fangzhou; Shi, Hongxing; Wang, Pu

    2014-11-17

    We demonstrated a 2147 nm silica-based Raman fiber amplifier with output power of 14.3 W directly pumped with a 1963 nm CW thulium-doped all-fiber MOPA. The 1963 nm thulium-doped all-fiber MOPA is seeded with a 2147 nm thulium-doped all-fiber laser at the same time. The Raman Stokes power shift from 1963 nm to 2147 nm is accomplished in a piece of 50 m silica-based highly nonlinear fiber (HNLF). The conversion efficiency was 38.5% from 1963 nm to 2147 nm in the HNLF. The output power achieved was only currently limited by available 1963 nm input power and the architecture has significant scaling potential. To the best of our knowledge, this is the highest power operation of a Raman fiber amplifier at >2 µm wavelength region. PMID:25402080

  6. Achromatic Metasurface Lens at Telecommunication Wavelengths.

    PubMed

    Khorasaninejad, Mohammadreza; Aieta, Francesco; Kanhaiya, Pritpal; Kats, Mikhail A; Genevet, Patrice; Rousso, David; Capasso, Federico

    2015-08-12

    Nanoscale optical resonators enable a new class of flat optical components called metasurfaces. This approach has been used to demonstrate functionalities such as focusing free of monochromatic aberrations (i.e., spherical and coma), anomalous reflection, and large circular dichroism. Recently, dielectric metasurfaces that compensate the phase dispersion responsible for chromatic aberrations have been demonstrated. Here, we utilize an aperiodic array of coupled dielectric nanoresonators to demonstrate a multiwavelength achromatic lens. The focal length remains unchanged for three wavelengths in the near-infrared region (1300, 1550, and 1800 nm). Experimental results are in agreement with full-wave simulations. Our findings are an essential step toward a realization of broadband flat optical elements. PMID:26168329

  7. Investigation of a polarization controller in Ti:LiNbO3 near 1530 nm wavelength

    NASA Astrophysics Data System (ADS)

    Sung, W. J.; Kim, J.; Madsen, C. K.; Eknoyan, O.

    2015-01-01

    The results of analytical and experimental investigations for an electro-optic polarization controller are reported. A device configuration composed of two polarization converters with a phase shifter centered between them and all integrated over a single Ti diffused channel waveguide on LiNbO3 is used. Polarization control is achieved by applying voltages on the three integrated elements independently to adjust the phase difference between orthogonal TE and TM components of a guided optical wave as well as their relative strength. Experimental results agree with analytical predictions. For arbitrary incident polarization, endless polarization transformation can be realized at the output.

  8. Novel Optical Parametric Amplifier at 1572 nm Wavelength Using KTP Crystal

    NASA Astrophysics Data System (ADS)

    Li, Huan-Huan; Li, Shi-Guang; Ma, Xiu-Hua; Wang, Jun-Tao; Zhu, Xiao-Lei

    2012-11-01

    A novel master oscillator/power amplifier architecture for optical parametric conversion of high pulse energy from 1.064 μm to 1.572 μm in KTiOPO4 crystal is presented. A high gain of more than 80 at 1.572 μm pumped by a high energy Q-switched pulse laser is realized. With a seeding signal energy of 1 mJ, and 400 mJ pump pulse at 100 Hz, an amplified signal pulse energy of over 80 mJ is obtained. The total optical-optical conversion efficiency reaches 21%.

  9. Single mode 1018nm fiber laser with power of 230W

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Sintov, Yoav; Zuitlin, Roey; Pearl, Shaul; Feldman, Revital; Horvitz, Zvi; Shafir, Noam

    2016-03-01

    We have developed a high power single-mode (SM) monolithic fiber laser at 1018 nm, producing 230 W CW, with an M2 of 1.17 and light to light efficiency of 75%. To the best of our knowledge this is the highest power described in the open literature from a SM fiber laser at this wavelength. Careful simulations were employed which take into account the various wavelength dependent parameters such as the fiber absorption and emission as obtained from the fiber manufacturers, and the cavity mirrors' reflection, in addition to the fiber geometrical parameters. It was found that the major obstacle for increasing the power at 1018nm is the self-generation of amplified spontaneous emission at wavelengths of 1030-1040nm. If the laser is not designed properly these undesired wavelengths dominate the output spectrum.

  10. Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm

    SciTech Connect

    Stolz, Christopher J.; Hafeman, Scott; Pistor, Thomas V

    2008-05-01

    Electric-field modeling provides insight into the laser damage resistance potential of nodular defects. The laser-induced damage threshold for high-reflector coatings is 13x lower at the third harmonic (351 nm) than at the first harmonic (1053 nm) wavelength. Linear and multiphoton absorption increases with decreasing wavelength, leading to a lower-third harmonic laser resistance. Electric-field effects can also be a contributing mechanism to the lower laser resistance with decreasing wavelength. For suitably large inclusions, the nodule behaves as a microlens. The diffraction-limited spot size decreases with wavelength, resulting in an increase in intensity. Comparison of electric-field finite-element simulations illustrates a 3x to 16x greater light intensification at the shorter wavelength.

  11. Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1992-01-01

    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.

  12. The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Vilas, Faith

    2006-01-01

    We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.

  13. High-Efficiency 800 nm Multi-Layer Dielectric Gratings for High Average Power Laser Systems

    SciTech Connect

    Nguyen, H T; Britten, J A; Patel, D; Brizuela, F; Rocca, J J; Menoni, C S

    2006-06-15

    We report on the design, fabrication, and performance of a 1740 l/mm multilayer dielectric diffraction grating for use with 800 nm light. At an input angle of 8{sup o} from Littrow and a wavelength from 770 to 830 nm, >90% diffraction efficiency is achieved, with peak diffraction efficiency of >97% at 800nm. We will also comment on laser damage threshold and power-handling properties.

  14. Bismuth-doped fibre amplifier for the range 1300 - 1340 nm

    SciTech Connect

    Dianov, Evgenii M; Mel'kumov, Mikhail A; Shubin, Aleksei V; Firstov, Sergei V; Bufetov, Igor' A; Khopin, V F; Gur'yanov, Aleksei N

    2009-12-31

    We demonstrate the first bismuth-doped fibre amplifier operating in the second transmission window of silica-based fibres. At a pump power of 460 mW and pump wavelength of 1230 nm, its gain reaches 24.5 dB at 1320 nm, with a gain bandwidth of 37 nm, saturation power near 10 mW, and noise figure of 5 dB. (letters)

  15. Structural design for birefringent holey fiber with a beat length insensitive to wavelength.

    PubMed

    Lin, Jian-Qiang; Shi, Zhi-Dong; Li, Ming-Jia; Chen, Hua

    2009-09-01

    By combination of two defect structures with positive and negative birefringence, we design a holey fiber with a beat length that is less sensitive to wavelength. The influence of different structural parameters on birefringence of holey fiber is calculated by the finite-difference beam propagation method. A stable beat length can be achieved at some given wavelength window by adjusting the parameters. An almost uniform beat length with a greater than 180 nm bandwidth at 1310 and 1550 nm wavelength windows is obtained, which is useful for the design and fabrication of fiber-optic wave plates with a wide band. PMID:19724314

  16. Influence of Modulation Wavelength on the Structure of TiC/W Multilayers

    NASA Astrophysics Data System (ADS)

    He, Jian-Li; Li, Wen-Zhi; Li, Heng-De

    1998-06-01

    TiC/W multilayers with modulation wavelength ranging from 9 nm to 45 nm were prepared by ion beam sputtering deposition at nearly ambient temperature. It was found that epitaxial growth can be obtained. The orientation relationship was always (100)W//(100)TiC and [011]W//[001]TiC. Modulation wavelength was found to have a determinant influence on whether epitaxial superlattices would be produced or randomly-orientated polycrystalline multilayers would be produced. With decreasing modulation wavelength, TiC/W multilayers experienced a transition from typical polycrystalline multilayers to highly-orientated epitaxial superlattices. The possible explanation is discussed.

  17. Laser wavelength effects in ultrafast near-field laser nanostructuring of Si

    SciTech Connect

    Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

    2010-03-18

    We study the effect of laser wavelength (400 nm and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond (fs) pulse duration regime through sub-wavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure which can be tuned between craters and protrusions. A single or a few fs pulses can deliver enough energy on the substrate to induce sub-diffraction limited surface modification, which is among the smallest ever reported in sub-wavelength apertured Near-field Scanning Optical Microscope (NSOM) schemes.

  18. Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks

    NASA Astrophysics Data System (ADS)

    Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.

    1995-12-01

    We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.

  19. Spectral fluorescent properties of tissues in vivo with excitation in the red wavelength range

    NASA Astrophysics Data System (ADS)

    Stratonnikov, Alexander A.; Loschenov, Victor B.; Klimov, D. V.; Edinac, N. E.; Wolnukhin, V. A.; Strashkevich, I. A.

    1997-12-01

    The spectral fluorescence analysis is a promising method for differential tissue diagnostic. Usually the UV and visible light is used for fluorescence excitation with emission registration in the visible wavelength range. The light penetration length in this wavelength range is very small allowing one to analyze only the surface region of the tissue. Here we present the tissue fluorescent spectra in vivo excited in the red wavelength region. As excitation light source we used compact He-Ne laser (632.8 nm) and observed the fluorescence in 650 - 800 nm spectral range. The various tissues including normal skin, psoriasis, tumors, necrosis as well as photosensitized tissues have been measured.

  20. Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model

    NASA Astrophysics Data System (ADS)

    Coghlan, Lezlee; Utzinger, Urs; Drezek, Rebekah A.; Heintzelmann, Doug; Zuluaga, Andres F.; Brookner, Carrie; Richards-Kortum, Rebecca R.; Gimenez-Conti, Irma; Follen, Michele

    2000-12-01

    Using the hamster cheek pouch carcinogenesis model, we explore which fluorescence excitation wavelengths are useful for the detection of neoplasia. 42 hamsters were treated with DMBA to induce carcinogenesis, and 20 control animals were treated only with mineral oil. Fluorescence excitation emission matrices were measured from the cheek pouches of the hamsters weekly. Results showed increased fluorescence near 350-370 nm and 410 nm excitation and decreased fluorescence near 450-470 nm excitation with neoplasia. The optimal diagnostic excitation wavelengths identified using this model - 350-370 nm excitation and 400-450 nm excitation - are similar to those identified for detection of human oral cavity neoplasia.

  1. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    SciTech Connect

    Mukhopadhyay, Pranab K. Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  2. Calibration method for radiometric and wavelength calibration of a spectrometer

    NASA Astrophysics Data System (ADS)

    Granger, Edward M.

    1998-12-01

    A new calibration target or Certified Reference Material (CRM) has been designed that uses violet, orange, green and cyan dyes ont cotton paper. This paper type was chosen because it has a relatively flat spectral response from 400 nm to 700 nm and good keeping properties. These specific dyes were chosen because the difference signal between the orange, cyan, green and purple dyes have certain characteristics that then a low the calibration of an instrument. The ratio between the difference readings is a direct function of the center wavelength of a given spectral band. Therefore, the radiometric and spectral calibration can be determined simultaneously from the physical properties of the reference materials.

  3. OPS laser EPI design for different wavelengths

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.

    2009-02-01

    Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.

  4. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  5. At-wavelength interferometry of extreme ultraviolet lithographic optics

    SciTech Connect

    Lee, Sang Hun; Naulleau, Patrick; Goldberg, Kenneth; Medecki, Hector; Bresloff, Cynthia; Chang, Chang; Attwood, David; Bokor, Jeffrey; Chang, Chang; Attwood, David; Bokor, Jeffrey Tejnil, Edita

    1998-11-01

    A phase-shifting point diffraction interferometer (PS/PDI) has recently been developed to evaluate optics for extreme ultraviolet (EUV) projection lithography systems. The interferometer has been implemented at the Advanced Light Source at Lawrence Berkeley National Laboratory and is currently being used to test experimental EUV Schwarzschild objectives. Recent PS/PDI measurements indicate these experimental objectives to have wavefront errors on the order of 0.1 waves ({approximately}1 nm at a wavelength of 13.4 nm) rms. These at-wavelength measurements have also revealed the multilayer phase effects, demonstrating the sensitivity and importance of EUV characterization. The measurement precision of the PS/PDI has been experimentally determined to be better than 0.01 waves. Furthermore, a systematic-error-limited absolute measurement accuracy of 0.004 waves has been demonstrated. {copyright} {ital 1998 American Institute of Physics.}

  6. A paradigm shift in the excitation wavelength of upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayakumar, Muthu Kumara Gnanasammandhan; Idris, Niagara Muhammad; Huang, Kai; Zhang, Yong

    2014-07-01

    The past two decades witnessed the emergence of upconversion nanoparticles as promising luminophores finding multifarious uses from biological studies to solar cells. Progress in their practical use, however, has been hampered by requirements to be excited within a narrow absorption band at around 980 nm. Since the main constituent of biological tissue - water - absorbs strongly in this region, significant reduction in the penetration depth is anticipated as the 980 nm light gets attenuated travelling through tissues, besides also risking tissue damage from the overheating effect. Just recently, remarkable efforts to engineer the excitation of upconversion nanoparticles to a more suitable wavelength for biological applications were reported. This article gives an insightful view on the different ingenious designs that have been reported and their progression towards the development of upconversion nanoparticles with biologically friendlier excitation wavelength.

  7. Multi-wavelength Nd:GAGG picosecond laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Pirzio, Federico; Reali, Giancarlo; Arcangeli, Andrea; Tonelli, Mauro; Jia, Zhitai; Tao, Xutang

    2010-07-01

    Laser operation near 1.06 μm by a diode-pumped Nd:Gd 3Al x Ga (5-x) O 12 ( x = 0.94) (Nd:GAGG) disordered crystal has been investigated. Free-running oscillation, with a slope efficiency as high as 55% and 256 mW output power, was achieved with 500 mW absorbed power using a 1-W laser diode for pumping. Stable passive mode-locking with dual-wavelength operation was obtained with a semiconductor saturable absorber mirror (SAM) and a single-prism, dispersion-compensated cavity. The two-color mode-locking regime is well described by Fourier-limited synchronized pulses with duration ≈3.7 and 5.9 ps and output power ≈65 mW, with wavelength separation of 1.3 nm around 1062 nm.

  8. Measurement of absolute optical thickness distribution of a mask-glass by wavelength tuning interferometry

    NASA Astrophysics Data System (ADS)

    Hibino, Kenichi; Yangjin, Kim; Bitou, Youichi; Ohsawa, Sonko; Sugita, Naohiko; Mitsuishi, Mamoru

    2008-08-01

    The surface flatness and the uniformity in thickness and refractive index of a mask-blank glass have been requested in semiconductor industry. The absolute optical thickness of a mask-blank glass of seven-inch square and 3mm thickness was measured by three-surface interferometry in a wavelength tuning Fizeau interferometer. Wavelength-tuning interferometry can separate in frequency space the three interference signals of the surface shape and the optical thickness. The wavelength of a tunable laser diode source was scanned linearly from 632 nm to 642 nm and a CCD detector recorded two thousand interference images. The number of phase variation of the interference fringes during the wavelength scanning was counted by a temporal discrete Fourier transform. The initial and final phases of the interferograms before and after the scanning were measured by a phase shifting technique with fine tunings of the wavelengths at 632 nm and 642 nm. The optical thickness defined by the group refractive index at the central wavelength of 337 nm can be measured by this technique. Experimental results show that the cross talk in multiple-surface interferometry caused a systematic error of 2.0 microns in the measured optical thickness.

  9. Debunking the recurring myth of a magic wavelength for free-space optics

    NASA Astrophysics Data System (ADS)

    Korevaar, Eric J.; Kim, Isaac I.; McArthur, Bruce

    2002-12-01

    Free-Space Optics (FSO) is a proven, reliable technology for last mile telecommunications applications, used worldwide for both enterprise network building-to-building connections and for wireless access to more traditional land line communications networks. In most mid-latitude coastal cities, link availability at distances above a few hundred meters is primarily affected by fog and low clouds. At longer distances, heavy rain and snow can also affect the link. The most mature technology used in FSO equipment relies on low cost semiconductor lasers or LED"s operating in the near infrared at wavelengths of 785 nm or 850 nm. In the past few years, systems operating at 1550 nm have also been developed. At first the vendors of these systems claimed that the 1550 nm wavelength had better propagation characteristics in severe weather than the 785 nm wavelength. With further analysis and research, those claims were withdrawn. Now there are claims that even longer wavelengths near 10 microns will solve the FSO link availability issues associated with severe weather. Hype about such magic wavelengths for FSO is both a disservice to the investors who will lose the money they are investing based on exaggerated claims, and to the rest of the FSO industry which should be creating realistic expectations for the capability of its equipment. In the weather conditions which normally cause the highest attenuation for FSO systems, namely coastal fog and low clouds, 10 microns offers no propagation advantage over shorter wavelengths.

  10. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  11. Dual-wavelength laser induced breakdown spectroscopic technique for emission enhancement in vacuum

    NASA Astrophysics Data System (ADS)

    Antony, Jobin K.; Vasa, Nilesh J.; SridharRaja, V. L. N.; Laxmiprasad, A. S.

    2013-07-01

    A novel approach of dual-wavelength LIBS with a single Nd3+:YAG laser is proposed and demonstrated for lunar-simulant analysis in high vacuum conditions. Laser ablation was performed at 355 nm/532 nm wavelength, and subsequently, the plasma was reexcited with the fundamental (1064 nm) wavelength. The interpulse delay was adjusted by varying the optical path length. A significant line intensity enhancement up to a factor of 3 was observed for many of the dominant emission lines of the lunar simulant sample. A theoretical model for understanding the mechanism behind the intensity improvements of dual-wavelength configurations is also discussed. Experimentally observed plasma temperature was comparable with theoretically estimated plasma temperature of silicon, which is the major constituent of lunar simulant.

  12. Slot waveguide ring resonators for visible wavelengths in ALD titanium dioxide

    NASA Astrophysics Data System (ADS)

    Häyrinen, Markus; Roussey, Matthieu; Säynätjoki, Antti; Kuittinen, Markku; Honkanen, Seppo

    2015-02-01

    Titanium dioxide (TiO2) ring resonators based on slot-waveguides were designed, fabricated and characterized for operating wavelengths in the visible and near infrared regions. The fabrication methods include atomic layer deposition (ALD), electron beam lithography (EBL) and reactive ion etching (RIE). The required narrow slot width (30 nm) was achieved by using a conformal ALD re-coating method, i.e., a feature size reduction technique, after the final etching step. The quality factors of the device were estimated to be 626 at 664 nm wavelength and 3446 at 1516 nm wavelength. The results show that the ALD-TiO2 is a promising platform for sensing applications for visible wavelengths.

  13. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor.

    PubMed

    Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2015-02-01

    Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature. PMID:25967765

  14. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  15. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  16. Long-wavelength scattered-light halos in ASC CCDs

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco; Clampin, Mark; Hartig, George F.; Rafal, Marc D.; Ford, Holland C.; Golimowski, David A.; Tremonti, C.; Illingworth, Garth; Blouke, Morley M.; Lesser, Michael P.; Burmester, William; Kimble, Randy A.; Sullivan, Pamela; Krebs, Carolyn A.; Yagelowicz, John

    1998-07-01

    During the ground calibration of the Space Telescope Imaging Spectrograph (STIS) large scattered light haloes were identified in images of point sources and long slit spectral images at long wavelengths (greater than 750 nm). The long wavelength scattering was traced to the SITe 1024 X 1024 CCD and its header package, raising concerns for the performance of the Advanced Camera for Surveys (ACS) CCD detectors. ACS is a third generation axial instrument for the Hubble Space Telescope (HST) and will be installed during the 1999 Servicing Mission. Two of the ACS imaging channels employ SITe CCDs, so the ACS team have conducted a study of the long- wavelength scattering, in collaboration with SITe, to assess the impact to the ACS science program and develop a solution. In this paper we discuss our solution, its implementation on ACS CCDs, and describe the results of initial tests.

  17. Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs

    NASA Astrophysics Data System (ADS)

    Safronova, M. S.; Safronova, U. I.; Clark, Charles W.

    2016-07-01

    Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are determined for levels with principal quantum numbers n ≤12 and orbital angular momentum quantum numbers l ≤3 . Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the n s , n p , and n d states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the 6 s and 7 p states for optical wavelengths between 1160 and 1800 nm and identify corresponding magic wavelengths for the 6 s -7 p1 /2 and 6 s -7 p3 /2 transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.

  18. Measurement of thin films using very long acoustic wavelengths

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-12-01

    A procedure for measuring material thickness by means of necessarily long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 μm using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  19. Development of fast FBG interrogator with wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuya; Shinoda, Yukitaka

    2015-05-01

    The objective of this research is the construction of a structural health monitoring system that uses fiber Bragg grating (FBG) to determine the health of structures. We develop fast FBG interrogator for real-time measurement of the reflected wavelength of a multipoint FBG to monitor the broadband vibration of a structure. This FBG interrogator, which combines a wavelength-swept laser and a real-time measurement system is capable of measuring wavelength within a standard deviation of 2×10-3 nm or less. We have demonstrated that the FBG interrogator is able to measure vibration that has a resonance frequency of 440 Hz at intervals of 0.1 ms with a multipoint FBG.

  20. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers.

    PubMed

    Jirauschek, Christian; Huber, Robert

    2015-07-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  1. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  2. Four-wavelength retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan Jensen

    1999-11-01

    This dissertation documents the design and construction of a four-wavelength retinal vessel oximeter, the Eye Oximeter (EOX). The EOX scans low-powered laser beams (at 629, 678, 821 and 899 nm) into the eye and across a targeted retinal vessel to measure the transmittance of the blood within the vessel. From the transmittance measurements, the oxygen saturation of the blood within the vessel is computed. Retinal vessel oxygen saturation has been suggested as a useful parameter for monitoring a wide range of conditions including occult blood loss and a variety of ophthalmic diseases. An artificial eye that simulates the geometry of a human retinal vessel was constructed and used to calibrate the EOX saturation measurement. A number of different oximetry equations were developed and tested. From measurements made on whole human blood in the artificial eye, an oximetry equation that places a linear wavelength dependance on the scattering losses (3% decrease from 629 to 899 nm) is found to best calibrate the EOX oxygen saturation measurement. This calibration also requires that an adjustment be made to the absorption coefficient of hemoglobin at 629 nm that has been reported in the literature. More than 4,000 measurements were made in the eyes of three human subjects during the development of the EOX. Applying the oximetry equation developed through the in vitro experiments to human data, the average human retinal venous oxygen saturation is estimated to be 0.63 +/- 0.07 and the average human retinal arterial oxygen saturation is 0.99 +/- 0.03. Furthermore, measurements made away from the optic disk resulted in a larger variance in the calculated saturation when compared to measurements made on the optic disk. A series of EOX experiments using anesthetized swine helped to verify the sensitivity of the EOX measurement of oxygen saturation. It is found that the calibration in swine differed from the calibration in the artificial eye. An empirical calibration from the

  3. Fiber-optic current sensor with self-compensation of source wavelength changes.

    PubMed

    Müller, G M; Quan, W; Lenner, M; Yang, L; Frank, A; Bohnert, K

    2016-06-15

    We demonstrate a method for self-compensation of scale factor changes of an interferometric fiber-optic current sensor caused by source wavelength shifts, e.g., due to changes in source temperature or drive current. An adequately tailored fiber-optic retarder in the optical circuit introduces wavelength-dependent mixing of the orthogonal polarization modes of the sensor. The resulting change in scale factor balances the variation of the Faraday effect with wavelength. The wavelength dependence of the sensor is suppressed by more than an order of magnitude to <0.2% over wavelength spans of at least 10 nm around 1305 nm. The retarder is designed as an athermal device for operation between -40°C and 80°C. PMID:27304309

  4. Wavelength dependence of mycosporine-like amino acid synthesis in Gyrodinium dorsum.

    PubMed

    Klisch, M; Häder, D-P

    2002-02-01

    The synthesis or accumulation of mycosporine-like amino acids (MAAs) is an important UV tolerance mechanism in aquatic organisms. To investigate the wavelength dependence of MAA synthesis in the marine dinoflagellate Gyrodinium dorsum, the organism was exposed to polychromatic radiation (PAR and UV) from a solar simulator for up to 72 h. Different irradiance spectra were produced by inserting various cut-off filters between lamp and samples. A polychromatic action spectrum for the synthesis of MAA synthesis was constructed. PAR and long wavelength UV-A radiation showed almost no effect while the most effective wavelength range was around 310 nm. Shorter wavelengths where less effective in the induction of MAA synthesis. Wavelengths below 300 nm damaged the organisms severely as indicated by a decrease in chlorophyll a absorption. PMID:11849984

  5. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao

    2013-11-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.

  6. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  7. Stable multi-wavelength fiber laser with single-mode fiber in a Sagnac loop.

    PubMed

    Wang, Pinghe; Wang, Lei; Shi, Guohua; He, Tiejun; Li, Heping; Liu, Yong

    2016-04-20

    In this paper, we propose and experimentally demonstrate a stable multi-wavelength fiber laser at 1.5 μm with single-mode fiber (SMF). The Sagnac loop structure with a 48.6:51.4 coupler and 2 km SMF has an intensity-dependent loss, which contributes to suppress the mode competition in the cavity and leads to a steady multi-wavelength output. In the experiment, five stable lasing wavelengths are obtained with a pump power of 300 mW at 980 nm. The demonstrated multi-wavelength fiber laser has great potential for applications in optical communications and optical sensing systems. PMID:27140108

  8. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-06-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  9. Tunable optical filters with wide wavelength range based on porous multilayers

    PubMed Central

    2014-01-01

    A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis. PMID:25232293

  10. Tunable optical filters with wide wavelength range based on porous multilayers.

    PubMed

    Mescheder, Ulrich; Khazi, Isman; Kovacs, Andras; Ivanov, Alexey

    2014-01-01

    A novel concept for micromechanical tunable optical filter (TOF) with porous-silicon-based photonic crystals which provide wavelength tuning of ca. ±20% around a working wavelength at frequencies up to kilohertz is presented. The combination of fast mechanical tilting and pore-filling of the porous silicon multilayer structure increases the tunable range to more than 200 nm or provides fine adjustment of working wavelength of the TOF. Experimental and optical simulation data for the visible and near-infrared wavelength range supporting the approach are shown. TOF are used in spectroscopic applications, e.g., for process analysis. PMID:25232293

  11. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  12. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  13. Single shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution

    SciTech Connect

    Jones, Juanita; Brewer, Courtney A.; Brizuela, Fernando; Wachulak, Przemyslaw; Martz, Dale H.; Chao, Weilun; Anderson, Erik H.; Attwood, David T.; Vinogradov, Alexander V.; Artyukov, Igor A.; Ponomareko, Alexander G.; Kondratenko, Valeriy V.; Marconi, Mario C.; Rocca, Jorge J.; Menoni, Carmen S.

    2008-01-07

    We have demonstrated near-wavelength resolution microscopy in the extreme ultraviolet. Images of 50 nm diameter nanotubes were obtained with a single {approx}1 ns duration pulse from a desk-top size 46.9 nm laser. We measured the modulation transfer function of the microscope for three different numerical aperture zone plate objectives, demonstrating that 54 nm half-period structures can be resolved. The combination of near-wavelength spatial resolution and high temporal resolution opens myriad opportunities in imaging, such as the ability to directly investigate dynamics of nanoscale structures.

  14. Wideband Raman-Pumped Wavelength-Swept Laser for Optical Coherence Tomography Application

    NASA Astrophysics Data System (ADS)

    Xu, Jianbing; Ou, Haiyan; Xu, Xing; Yang, Victor Xiao Dong; Chui, Po Ching; Kin-Yip Wong, Kenneth

    2013-06-01

    We demonstrate a new wavelength-swept laser based on fiber Raman amplification (FRA), achieved by multiplexing three different pump lasers at wavelengths of 1455, 1475, and 1509 nm. The obtained sweeping bandwidth was from 1526.1 to 1637.9 nm, which was as wide as 111.8 nm. It is the widest hitherto demonstrated based on FRA. We also present the use of this swept laser in the application scenario of optical coherence tomography (OCT). This scheme paves the way for fiber Raman amplification to be employed as a promising source for generating a wideband swept source for OCT application.

  15. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Zhang, Guoquan; Mei, Ting; Zhao, Jianlin

    2016-08-22

    We presented a method to actualize the optical vortex generation with wavelength tunability via an acoustically-induced fiber grating (AIFG) driven by a radio frequency source. The circular polarization fundamental mode could be converted to the first-order optical vortex through the AIFG, and its topological charges were verified by the spiral pattern of coaxial interference between the first-order optical vortex and a Gaussian-reference beam. A spectral tuning range from 1540 nm to 1560 nm was demonstrated with a wavelength tunability slope of 4.65 nm/kHz. The mode conversion efficiency was 95% within the whole tuning spectral range. PMID:27557207

  16. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    SciTech Connect

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders

    2014-08-18

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  17. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  18. Magic and tune-out wavelengths for atomic francium

    NASA Astrophysics Data System (ADS)

    Dammalapati, U.; Harada, K.; Sakemi, Y.

    2016-04-01

    The frequency dependent polarizabilities of the francium atom are calculated from the available data of energy levels and transition rates. Magic wavelengths for the state insensitive optical dipole trapping are identified from the calculated light shifts of the 7 s 2S1/2, 7 p 2P1/2,3/2, and 8 s 2S1/2 levels of the 7 s -7 p 2S1/2 2P1/2,3/2 and 7 s -8 s 2S1/2 2S1/2 transitions, respectively. Wavelengths in the ultraviolet, visible, and near infrared region are identified that are suitable for cooling and trapping. Magic wavelengths between the 600-700 nm and 700-1000 nm regions, which are blue and red detuned with the 7 s -7 p and 7 s -8 s transitions, are feasible to implement as lasers with sufficient power are available. In addition, we calculated the tune-out wavelengths where the ac polarizability of the ground 7 s 2S1/2 state in francium is zero. These results are beneficial as laser cooled and trapped francium has been in use for fundamental symmetry investigations like searches for an electron permanent electric dipole moment in an atom and for atomic parity nonconservation.

  19. Soft X-Ray Microscopy and EUV Lithography: An Update on Imaging at 20-40 nm Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Attwood, D.; Anderson, E.; Denbeaux, G.; Goldberg, K.; Naulleau, P.; Schneider, G.

    2002-11-01

    Major advances in both soft x-ray microscopy, at wavelengths from 0.6 to 4 nm, and EUV lithography, at wavelengths between 13 and 14 nm, are reviewed. In the XRL-2000 proceedings we reported soft x-ray microscopy resolved to 25 nm, in static two-dimensional imaging, with applications to biology, magnetic materials, and various "wet" environmental samples. In this 2002 update we report significant extensions to three-dimensional tomographic imaging, dynamical studies of magnetic and electronic devices, and static two-dimensional microscopy poised for extension to below 20 nm spatial resolution. In the XRL-2000 proceedings we reported EUV lithographic imaging of 50 nm lines/100 nm spaces in static microfield (approx100 mum) exposures. In this 2002 update we report scanned full-field (25 mm by 32 mm) images at better than 100 nm lines/100 nm spaces, static microfield exposures down to 50 nm lines/50 nm spaces, and isolated lines to 39 nm wide at 0.1 NA. With soon to be available 0.3 NA optics, we expect to print isolated lines, in static micro exposures, at 16-20 nm width in 2003. These results will demonstrate EUV lithography's ability to meet not only the ITRS Roadmap 45 nm node (26 nm isolated lines in resist) in 2007, but also the 32 nm node (18 nm isolated lines in resist) in 2009, both of which the semiconductor industry is now preparing for.

  20. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  1. Laser wavelength tunability of a diode-pumped Nd:LiYF4 laser on the 4F3/2-4I13/2 transition

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxu; Lin, Zhi; Lan, Jinglong; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-08-01

    We report a free-running orthogonally polarized dual-wavelength laser at 1313 and 1321 nm with maximum total output power of about 1.73 W using a two-mirror linear cavity. By inserting an etalon into the linear cavity, single-wavelength lasers at 1317 or 1323 nm, two-wavelength lasers at 1317 and 1323 nm, as well as four-wavelength lasers at 1313, 1317, 1323 and 1370 nm can be achieved with maximum output powers of about 0.73, 0.63, 0.78 and 0.25 W, respectively. About 10-nm wavelength tunability from about 1313 to 1323 nm is also realized by inserting the etalon into a three-mirror V-type Nd:YLF laser cavity.

  2. 1300 nm and 890 nm OCT images of oral cancer tissue engineered models and biopsy samples offer complimentary performance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boadi, Joseph; Byers, Robert A.; Fernandes, Jon; Mittar, Shweta; Hearnden, Vanessa; Lu, Zenghai; MacNeil, Sheila; Thornhill, Martin; Murdoch, Craig; Hunter, Keith D.; McKechnie, Alasdair; Matcher, Stephen J.

    2016-02-01

    OCT has demonstrated great potential to non-invasively detect oral epithelial cancers, potentially guiding biopsy and surgical resection. On non-ophthalmic tissues the preferred illumination wavelength is 1300 nm. Previous studies on skin have shown that useful image data can also be obtained at shorter wavelengths, with systems at 1060 nm and 820 nm offering reduced depth penetration but higher contrast. Here we apply a similar comparison to tissue engineered models of oral cancer and also to human biopsy samples, generally finding a similar trend. 1300 nm multi-beam OCT (Michelson Diagnostics EX1301) visualises stromal structures and surface keratin more clearly, providing useful image contrast down to around 1 mm. This system was compared with an ultra-high resolution home-built system operating at 890 nm (2.5 micron resolution vs 7.5 micron axial resolution for the EX1301). The UHR system reveals epithelial features more clearly, especially in the DOK pre-invasive cell line model and the biopsy samples. The relative effects of center wavelength vs axial resolution in generating the differential, wavelength-dependent contrast are assessed and the OCT biopsy images are compared with contemporary histology.

  3. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  4. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  5. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively. PMID:12224780

  6. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time. PMID:21403756

  7. Long-wavelength-emitting nanocrystals for bioassay applications

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie J.; Harvey, Ashley S.; McCool, Geoff D.; Quinlan, Forest T.; Feng, Jun; Shan, Guomin; Stroeve, Pieter; Risbud, Subhash H.; Hammock, Bruce D.; Kennedy, Ian M.

    2002-11-01

    New fluorophores that can be excited using visible or near-infrared radiation are of considerable interest for application in environmental and complex bioassays, where background fluorescence is exacerbated by ultra-violet or blue excitation. Useful labels for biomolecules include infrared emitting semiconductor nanoparticles that can be blue-shifted into the near-infrared and visible through quantum confinement effects, oxides of iron, and rare earth oxides. In this work, the synthesis of 6 nm average diameter lead selenide nanocrystals (well below the Bohr exciton diameter of 92 nm) through a reverse micelle technique; and the synthesis of iron and europium oxides with particles less than 5 nm in diameter by pulsed laser ablation is reported. The europium oxide nanoparticles' emission showed a large Stokes shift (144 nm or 216 nm, depending on excitation wavelength); a narrow, symmetric emission line at 610 nm (FWHM of 8 nm); and long lifetime (300 μs). The Eu2O3 nanoparticles, which were coated with silica for functionalization, displayed a greatly enhanced sensitivity over a conventional ELISA (0.025 ng ml-1 vs. 0.1 ng ml-1) when run in an atrazine immunoassay.

  8. Versatile 1 W narrow band 976 nm and 1064 nm light sources

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Pfeiffer, H.-U.; Zibik, E. A.; Sverdlov, B.; Pliska, T.; Lichtenstein, N.

    2011-02-01

    We report on development of novel curved waveguide (CWG) laser devices, where the emission wavelength centered at ~976 nm is stabilized to a 20 dB bandwidth of less than 100 picometer by using fiber Bragg gratings (FBG). Radiation from the curved waveguide laser is coupled using an anamorphic fiber lens into a single mode polarization maintaining fiber containing the FBG, the latter acting as a front reflector. The high power gain chip is based on Oclaro's InGaAs/AlGaAs quantum well laser. Use of the curved waveguide geometry allows to eliminate residual reflections in the optical path of the cavity, which is formed by the rear chip facet and the FBG. It is well known that additional reflections lead to significant deterioration of the spectral and power stability. The devices, assembled in telecom type housings, provide up to 1 W of low-noise and kink-free CW power. In addition pulse operation in nanosecond range is also investigated. The spectral stabilization time to the wavelength of the FBG is limited by the external cavity roundtrip of ~2 ns. A side mode suppression ratio of about 40 dB and higher is achieved for pulsed and CW operation. Results are also presented for a device at 1064 nm. Numerous applications can be envisioned for these devices. For instance devices with high power and ultranarrow spectral bandwidth allow greater flexibility in the choice of parameters for frequency conversion applications. In pulsed mode the device can be used in the special sensing applications where spectral stability is crucial.

  9. The effect of temperature and wavelength on the measurement of creatinine with the Jaffe procedure.

    PubMed

    Spierto, F W; MacNeil, M L; Burtis, C A

    1979-02-01

    Studies were conducted to determine the effect of temperature and wavelength on the absorbance of alkaline solutions of picric acid in the presence and absence of creatinine. Absorbance values of an alkaline solution of picric acid were found to be influenced by temperature. At wavelength settings between 475 and 520 nm, absorbance values increased as the temperature increased. The magnitude of the thermochromic response (temperature-induced increase in absorbance) was found to be a function of wavelength: At 490 nm, the response was about three times greater than it was at 500 nm and about fifteen times greater than it was at 520 nm. Other experiments demonstrated that the response was: quantitatively related to picric acid concentration, reversible, rapid, and independent of creatinine concentration. PMID:36238

  10. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers.

    PubMed

    Li, Z; Jung, Y; Daniel, J M O; Simakov, N; Tokurakawa, M; Shardlow, P C; Jain, D; Sahu, J K; Heidt, A M; Clarkson, W A; Alam, S U; Richardson, D J

    2016-05-15

    Short wavelength operation (1650-1800 nm) of silica-based thulium-doped fiber amplifiers (TDFAs) is investigated. We report the first demonstration of in-band diode-pumped silica-based TDFAs working in the 1700-1800 nm waveband. Up to 29 dB of small-signal gain is achieved in this spectral region, with an operation wavelength accessible by diode pumping as short as 1710 nm. Further gain extension toward shorter wavelengths is realized in a fiber laser pumped configuration. A silica-based TDFA working in the 1650-1700 nm range with up to 29 dB small-signal gain and noise figure as low as 6.5 dB is presented. PMID:27176961

  11. An ultra-narrow spectral linewidth photodetector operating at a long wavelength

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Ren, Xiaomin; Wang, Xingyan; Cui, Hailin; Wang, Wenjuan; Wang, Qi; Huang, Yongqing

    2006-12-01

    We demonstrate a tunable wavelength-selective photodetector which operates at a long wavelength. The device was fabricated by bonding a GaAs-based Fabry-Perot filter, which can be tuned via thermal-optic effects, with an InP-based p-i-n absorption structure. Device performance was theoretically investigated by considering the finite-size diffracting-beam input which is the normal case in practical conditions. We show that the size of the input diffracting-beam has a significant impact on device external quantum efficiency as well as the response linewidth. An integrated device with spectral linewidth as narrow as 0.7 nm (FWHM), wavelength tuning range of 9.0 nm (1540.9 nm ~ 1549.9 nm), 3 dB bandwidth of 10 GHz and external quantum efficiency of about 18% was demonstrated.

  12. The photobleaching sequence of a short-wavelength visual pigment.

    PubMed

    Kusnetzow, A; Dukkipati, A; Babu, K R; Singh, D; Vought, B W; Knox, B E; Birge, R R

    2001-07-01

    The photobleaching pathway of a short-wavelength cone opsin purified in delipidated form (lambda(max) = 425 nm) is reported. The batho intermediate of the violet cone opsin generated at 45 K has an absorption maximum at 450 nm. The batho intermediate thermally decays to the lumi intermediate (lambda(max) = 435 nm) at 200 K. The lumi intermediate decays to the meta I (lambda(max) = 420 nm) and meta II (lambda(max) = 388 nm) intermediates at 258 and 263 K, respectively. The meta II intermediate decays to free retinal and opsin at >270 K. At 45, 75, and 140 K, the photochemical excitation of the violet cone opsin at 425 nm generates the batho intermediate at high concentrations under moderate illumination. The batho intermediate spectra, generated via decomposing the photostationary state spectra at 45 and 140 K, are identical and have properties typical of batho intermediates of other visual pigments. Extended illumination of the violet cone opsin at 75 K, however, generates a red-shifted photostationary state (relative to both the dark and the batho intermediates) that has as absorption maximum at approximately 470 nm, and thermally reverts to form the normal batho intermediate when warmed to 140 K. We conclude that this red-shifted photostationary state is a metastable state, characterized by a higher-energy protein conformation that allows relaxation of the all-trans chromophore into a more planar conformation. FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated. A similar transformation of the rhodopsin binding site generates a model for the VCOP binding site that predicts roughly 75% of the observed blue shift of the violet cone pigment relative to rhodopsin. MNDO-PSDCI calculations indicate that secondary interactions involving the binding site residues are as important as the first-order chromophore protein interactions in mediating the wavelength maximum. PMID:11425310

  13. Increased signals from short-wavelength-excited fluorescent molecules using sub-Ti:Sapphire wavelengths

    PubMed Central

    NORRIS, G; AMOR, R; DEMPSTER, J; AMOS, W B; MCCONNELL, G

    2012-01-01

    We report the use of an all-solid-state ultrashort pulsed source specifically for two-photon microscopy at wavelengths shorter than those of the conventional Ti:Sapphire laser. Our approach involves sum–frequency mixing of the output from an optical parametric oscillator (λ= 1400–1640 nm) synchronously pumped by a Yb-doped fibre laser (λ= 1064 nm), with the residual pump radiation. This generated an fs-pulsed output tunable in the red spectral region (λ= 620–636 nm, ∼150 mW, 405 fs, 80 MHz, M2∼ 1.3). We demonstrate the performance of our ultrashort pulsed system using fluorescently labelled and autofluorescent tissue, and compare with conventional Ti:Sapphire excitation. We observe a more than 3-fold increase in fluorescence signal intensity using our visible laser source in comparison with the Ti:Sapphire laser for two-photon excitation at equal illumination peak powers of 1.16 kW or less. PMID:23078118

  14. Attaining 186-nm light generation in cooled beta-BaB(2)O(4) crystal.

    PubMed

    Kouta, H; Kuwano, Y

    1999-09-01

    The transparency range of beta-BaB(2)O(4) (BBO) was expanded by means of cooling, and the resulting absorption coefficient at 193.4 nm was reduced to 0.29cm(-1) at 91 K from 1.39cm(-1) at 295 K. Further, generation of light at 186.0 nm (the measurement limit in air) by type I sum-frequency generation (SFG) based on fundamental (744-nm) and third-harmonic (248-nm) light from a Ti:sapphire laser was confirmed for cooled BBO. Calculations based on observed data for SFG wavelengths and phase-matching angles indicate a potential for cooled BBO to generate wavelengths as low as 181.7 nm. PMID:18073993

  15. Theoretical and experimental research on the ˜980-nm Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Yanshan; Ke, Weiwei; Ma, Yi; Sun, Yinhong; Feng, Yujun

    2016-07-01

    The output properties of the ˜980-nm Yb-doped fiber laser versus pump power and core-cladding ratio of gain fiber, also the amplified spontaneous emission (ASE) at different wavelengths of seed laser, are investigated theoretically. An all-fiber amplifier based on different wavelengths of seed laser at 974.4, 977, and 981.7 nm brings the studies on parasitic oscillation and ASE in the ˜980-nm Yb-doped fiber amplifier. Through the theoretical and experimental research, we found that the controlling of three-level ASE around ˜980-nm is pivotal for obtaining a high-power 980-nm Yb-doped fiber amplifier.

  16. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; Young, R. P.; Zagwodzki, T.

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  17. First in vivo spectral characterization of breast up to 1300 nm

    NASA Astrophysics Data System (ADS)

    Taroni, P.; Bargigia, I.; Farina, A.; Cubeddu, R.; Pifferi, A.

    2011-02-01

    Spectral measurements were performed from 900 to 1300 nm, using a fully automated set-up for time domain optical spectroscopy. Spectrally selected picosecond pulses emitted from a supercontinuum fiber source were used for illumination. The detection of re-emitted pulses was achieved using a photomultiplier tube with InP/InGaAsP photocathode, followed by a PC board for time-correlated single photon counting. To allow the estimate of tissue composition at long wavelengths, the optical characterization of collagen type I powder was extended up to 1300 nm. A marked absorption peak was detected around 1200 nm, which could prove useful for collagen quantification from in vivo optical data. In vivo spectral measurements of breast tissue were performed for the first time from 900 to 1300 nm in reflectance geometry. The sensitivity of the detector was very low above 1200 nm, still it allowed us to reveal a long-wavelength range (1000-1300 nm) potentially interesting for applications. A dominant absorption peak is present around 1200 nm. All major tissue constituents (i.e., water, lipid, and collagen) contribute to it. Thus, it is potentially interesting for the assessment of tissue composition, but it might cause exceeding attenuation in some practical cases. However, slightly shorter wavelengths (i.e. 1100-1150 nm) corresponding to the raising edge of the peak, might allow an accurate estimate of tissue composition, with the advantage of much lower attenuation.

  18. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  19. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  20. Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.

    2016-01-01

    Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.