Science.gov

Sample records for 77se nmr spectroscopic

  1. Structure of Amorphous Selenium by 2D (77) Se NMR Spectroscopy: An End to the Dilemma of Chain versus Ring.

    PubMed

    Marple, Maxwell; Badger, Jackson; Hung, Ivan; Gan, Zhehong; Kovnir, Kirill; Sen, Sabyasachi

    2017-08-07

    Amorphous selenium, owing to its tremendous technological importance and perhaps to its chemical simplicity, has been studied for nearly a century and yet an unequivocal structural description of this material remains lacking to date. The primary controversy regarding the structure of amorphous Se relates to the relative fraction of Se atoms residing in ∞1Se chains versus in Se8 rings. Herein we present the results of a two-dimensional solid-state (77) Se nuclear magnetic resonance (NMR) spectroscopic study of the chain and ring crystalline allotropes of Se as well as of amorphous Se to unequivocally demonstrate that 1) the Se8 rings and the ∞1Se chains are characterized by their unique (77) Se NMR signatures and 2) the structure of amorphous Se consists exclusively of ∞1Se chains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selenium-tellurium sequences in binary glasses as depicted by 77Se and 125Te NMR.

    PubMed

    Bureau, Bruno; Boussard-Plédel, Catherine; LeFloch, Marie; Troles, Johann; Smektala, Frédéric; Lucas, Jacques

    2005-04-07

    Some resolved solid state (77)Se NMR spectra are presented in the Te(x)Se(1-x) vitreous system at ambient temperature. They exhibit three different kinds of Se lines assigned to the following Se atom neighborhoods: Se-Se-Se, Se-Se-Te, and Te-Se-Te. Different models were considered to describe the way the Se and Te atoms are linked into the chains: clustering process, homogeneous distribution, random distribution. Finally, thanks to the measurements of the relative intensities of the lines, it appears that Se and Te atoms are mainly randomly distributed with a small preference for heteropolar bonds. The (125)Te spectra are also shown but their resolution is too weak to be informative concerning the vitreous network.

  3. Magnetic properties of the magnetoelectric compound Cu2OSeO3: Magnetization and 77Se NMR study

    NASA Astrophysics Data System (ADS)

    Belesi, M.; Philippe, T.; Rousochatzakis, I.; Wu, H. C.; Berger, H.; Granville, S.; Shvets, I. V.; Ansermet, J.-Ph

    2011-07-01

    We present magnetization and 77Se Nuclear Magnetic Resonance (NMR) measurements in single crystals of the magneteoelectric compound Cu2OSeO3. The temperature and field dependence of the magnetization suggest a ferrimagnetic ordering at Tc ≃ 60 K in a 3up-1down configuration. The easy axis of the magnetization is along the [100] crystallographic direction. The 77Se NMR line shape data collected at 14.09 T are consistent with the symmetries imposed by the cubic P213 space group in the temperature range 20-290 K and confirm that the magnetic transition is not accompanied by any lowering of the crystal symmetry as has recently been proposed by Bos et al. [Phys. Rev. B 78 094416 (2008)].

  4. Size- and site-dependent reconstruction in CdSe QDs evidenced by 77Se{1H} CP-MAS NMR spectroscopy.

    PubMed

    Lovingood, Derek D; Achey, Randall; Paravastu, Anant K; Strouse, Geoffrey F

    2010-03-17

    Evidence of size-dependent reconstruction in quantum dots leading to changes in bonding is observed through analysis of the (77)Se{(1)H} cross-polarization magic angle spinning and (77)Se spin-echo solid-state NMR for Cd(77)Se quantum dots. The CP-MAS and spin-echo data indicate discrete surface and core (77)Se sites exist with the QD, in which the surface is comprised of numerous reconstructed lattice planes. Due to the nearly 100% enrichment level for (77)Se, efficient spin coupling is observed between the surface (77)Se and sublayer (77)Se sites due to spin diffusion in the Cd(77)Se quantum dots. The observed chemical shift for the discrete (77)Se sites can be correlated to the effective mass approximation via the Ramsey expression, indicating a 1/r(2) size dependence for the change in chemical shift with size, while a plot of chemical shift versus the inverse band gap is linear. The correlation of NMR shift for the discrete sites allows a valence bond theory interpretation of the size-dependent changes in bonding character within the reconstructed QD. The NMR results provide a structural model for the QDs in which global reconstruction occurs below 4 nm in diameter, while an apparent self-limiting reconstruction process occurs above 4 nm.

  5. The Styrene Probe Applied to 15N and 77Se NMR

    DTIC Science & Technology

    1988-08-01

    ascertain if this was a general phenomenon in X-substituted cinnamate esters for atoms having unshared pairs of electrons, 15N chemical shift correlations...opposite to that predicted by the ’- polarization mechanism. To ascertain if this was a general phenomenon in a-substituted cinnamate esters for atoms...spatially proximate unshared electron pair in Series B. 77Se NXR of the E and Z isomers of ethyl a-(phenylseleno)- cinnamates (Series D) also revealed a

  6. ^77Se NMR in the Spin Density Wave state of (TMTSF)_2PF_6

    NASA Astrophysics Data System (ADS)

    Valfells, S.; Kuhns, P.; Kleinhammes, A.; Moulton, W.; Brooks, J. S.; Anzai, H.; Takasaki, S.; Yamada, J.

    1996-03-01

    We have measured the linewidth, T1 and T2 of the ^77Se nuclei in the quasi-1D conductor (TMTSF)_2PF6 above and below the Spin Density Wave transition temperature, T_SDW ≈ 12 K, at ambient pressure. We observe four distinct lines at T>T_SDW attributable to four non-equivalent Selenium sites and shifted by Δ ω / ω ≈ 0.7, 1.9, 3.8 and 4.5 × 10^4, respectively; they broaden to form a single, broad (≈ 900 kHz) line below T_SDW. The data, however, show no evidence of additional phase transitions at T

  7. Selenium Chain Length Distribution in GexSe100-x Glasses: Insights from (77)Se NMR Spectroscopy and Quantum Chemical Calculations.

    PubMed

    Kaseman, Derrick C; Oliveira, Karina Moreira; Palazzo, Teresa; Sen, Sabyasachi

    2016-05-19

    The statistics of selenium chain length distribution in GexSe100-x glasses with 5 ≤ x ≤ 20 are investigated using a combination of high-resolution, two-dimensional (77)Se nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations. This combined approach allows for the distinction of various selenium chain environments on the basis of subtle but systematic effects of next-nearest neighbors of Se atoms in -Se-Se-Se- linkages on the (77)Se chemical shift tensor parameters. Simulation of the experimental (77)Se NMR spectral line shapes indicates that Se chain speciation in these chalcogenide glasses follows the Flory-Schulz distribution, originally developed for organic chain polymers.

  8. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners.

    PubMed

    Smiles, Danil E; Wu, Guang; Hrobárik, Peter; Hayton, Trevor W

    2016-01-27

    Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(η(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (δ((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ∼3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier.

  9. 77Se solid-state NMR of As2Se3, As4Se4 and As4Se3 crystals: a combined experimental and computational study.

    PubMed

    Sykina, Kateryna; Yang, Guang; Roiland, Claire; Le Pollès, Laurent; Le Fur, Eric; Pickard, Chris J; Bureau, Bruno; Furet, Eric

    2013-05-07

    (77)Se NMR parameters for three prototypical crystalline compounds (As2Se3, As4Se4 and As4Se3) have been determined from solid-state NMR spectra in the framework of an investigation concerning AsxSe(1-x) glass structure understanding. Density functional NMR calculations using the gauge including projector augmented wave methodology have been performed on X-ray and optimized crystal structures for a set of selenium-based crystals. These theoretical results have been combined with the experimental data in order to achieve a precise assignment of the spectral lines. This work and the high sensitivity of solid-state NMR to local order show that the structure of As4Se3 should be reinvestigated using state-of-the-art diffraction techniques. Calculations performed on several molecules derived from the crystal structures have demonstrated the limited effect of interlayer or intermolecular interactions on the isotropic chemical shifts. These interactions are therefore not responsible for the unexpected large chemical shift difference observed between these three systems that could mostly be attributed to the presence of short rings.

  10. 77Se NMR Investigation of the KxFe2−ySe2 high-Tc Superconductor (Tc = 33 K)

    SciTech Connect

    Petrovic, C.; Torchetti, D.A. Fu, M.; Christensen, D.C.; Nelson, K.J.; Imai, T.; Lei, H.C.

    2011-03-18

    We report comprehensive {sup 77}Se NMR measurements on a single crystalline sample of the recently discovered FeSe-based high-temperature superconductor K{sub x}Fe{sub 2-y}Se{sub 2} (T{sub c} = 33 K) in a broad temperature range up to 290 K. Despite deviations from the stoichiometric KFe{sub 2}Se{sub 2} composition, we observed {sup 77}Se NMR line shapes as narrow as 4.5 kHz under a magnetic field applied along the crystal c axis, and found no evidence for co-existence of magnetic order with superconductivity. On the other hand, the {sup 77}Se NMR line shape splits into two peaks with equal intensities at all temperatures when we apply the magnetic field along the ab plane. This suggests that K vacancies may have a superstructure and that the local symmetry of the Se sites is lower than the tetragonal fourfold symmetry of the average structure. This effect might be a prerequisite for stabilizing the s{sub {+-}} symmetry of superconductivity in the absence of the hole bands at the Brillouin zone center. From the increase of NMR linewidth below T{sub c} induced by the Abrikosov lattice of superconducting vortices, we estimate the in-plane penetration depth {lambda}{sub ab} {approx} 290 nm and the carrier concentration n{sub e} {approx} 1 x 10{sup +21} cm{sup -3}. Our Knight shift {sup 77}K data indicate that the uniform spin susceptibility decreases progressively with temperature, in analogy with the case of FeSe (T{sub c} {approx} 9 K) as well as other FeAs high-T{sub c} systems. The strong suppression of {sup 77}K observed immediately below T{sub c} for all crystal orientations is consistent with a singlet pairing of Cooper pairs. We do not however observe the Hebel-Slichter coherence peak of the nuclear spin-lattice relaxation rate 1/T1 immediately below T{sub c}, expected for conventional BCS s-wave superconductors. In contrast with the case of FeSe, we do not observe evidence for an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c

  11. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Tl{sub 2}Ch{sub 2}{sup 2{minus}} (Ch = Se and/or Te) anions: X-ray crystal structures and Raman spectra of (2,2,2-crypt-K{sup +}){sub 2}Tl{sub 2}Se{sub 2}{sup 2{minus}} and (2,2,2-crypt-K{sup +}){sub 2}Tl{sub 2}Te{sub 2}{sup 2{minus}} and solution {sup 77}Se, {sup 203}Tl, and {sup 205}Tl NMR spectroscopic and theoretical studies of Tl{sub 2}Ch{sub 2}{sup 2{minus}}, In{sub 2}Se{sub 2}{sup 2{minus}}, and In{sub 2}Te{sub 2}{sup 2{minus}}

    SciTech Connect

    Borrmann, H.; Campbell, J.; Mercier, H.P.A.; Pirani, A.M.; Schrobilgen, G.J.; Dixon, D.A.

    1998-04-20

    The seleno- and tellurothallate(I) anions Tl{sub 2}CH{sub 2}{sup 2{minus}} (Ch = Se and/or Te) and the {sup 77}Se-enriched Tl{sub 2}Se{sub 2}{sup 2{minus}} anion have been obtained by extraction of the alloys MTlCh (M = Na, K; Ch = Se, Te), KTlSe{sub 0.5}Te{sub 0.5}, and {sup 77}Se-enriched KTlSe in ethylenediamine and liquid NH{sub 3} and in the presence of a stoichiometric excess of 2,2,2-crypt with respect to M{sup +}. The butterfly-shaped Tl{sub 2}Ch{sub 2}{sup 2{minus}} anions were characterized in solution by {sup 77}Se, {sup 203}Tl, and {sup 205}Tl NMR spectroscopy, Raman spectroscopy, and X-ray crystallography in (2,2,2-crypt-K{sup +}){sub 2}Tl{sub 2}Ch{sub 2}{sup 2{minus}}. The energy-minimized structures of the Tl{sub 2}Ch{sub 2}{sup 2{minus}} (Ch = Se and/or Te) anions were calculated by using density functional theory calculations confirming the nonplanar geometries of all three anions, which are compared with those of the presently unknown In{sub 2}Ch{sub 2}{sup 2{minus}} (Ch = Se, Te) anions. The magnitudes of the relativistically corrected reduced coupling constants, (K{sub Tl-Ch}){sub RC}, are consistent with essentially pure p-bonded rings whereas the magnitudes of (K{sub Tl-Tl}){sub RC} suggest significant s electron density along the Tl{hor_ellipsis}Tl axes and is confirmed by theory. Density functional theory calculations were also used to assign the solid-state vibrational spectra of Tl{sub 2}Se{sub 2}{sup 2{minus}} and Tl{sub 2}Te{sub 2}{sup 2{minus}}. The variation of the {sup 205}Tl-{sup 203}Tl spin-spin coupling constants with solvent and temperature, the differences between the calculated and experimentally determined fold angles, and the low experimental and calculated vibrational frequencies of the anion deformation modes indicate that the anion geometries are significantly influenced by environmental factors.

  13. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.

  14. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  15. Synthesis, {sup 77}Se and {sup 119}Sn NMR study, and X-ray crystal structure of the Sn{sub 4}Se{sub 10}{sup 4-} anion and Raman spectra of SnSe{sub 4}{sup 4-} and Sn{sub 4}Se{sub 10}{sup 4-}

    SciTech Connect

    Campbell, J.; DiCiommo, D.P.; Pirani, A.M.

    1995-12-06

    The novel selenostannate(IV) anion, Sn{sub 4}Se{sub 10}{sup 4-}, has been obtained by extracting the ternary alloy KSn{sub 0.67}Se{sub 1.93} in ethylenediamine (en) and liquid NH{sub 3} in the presence of 2, 2, 2-crypt (4, 7, 13, 16, 21, 24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) and characterized in solution by {sup 77}Se and {sup 119}Sn NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy. The scalar couplings, {sup 1}J({sup 119}Sn-{sup 77}Se) and {sup 2}J({sup 119}Sn-{sup 77}Sn), have been determined and compared with those of related systems. The salt, (2, 2, 2-crypt-K{sup +}){sub 4}Sn{sub 4}Se{sub 10}{sup 4-}, crystallizes in the triclinic system, space group P{bar 1}, with Z = 2 and a = 14.769(2) {Angstrom}, b = 15.580(1) {Angstrom}, c = 26.275(4) {Angstrom}, {alpha} = 79.19(1){degrees}, {beta} = 85.65(1){degrees}, and {gamma} = 85.870(8){degrees} at 24 {degrees}C. The solid state and solution anion geometry is of the adamantanoid type where the Sn{sup IV} atoms occupy the bridgehead positions and the Se atoms occupy the bridging and terminal sites. The terminal [average, 2.425(2) {Angstrom}] and bridging [average, 2.425(2){Angstrom}] and bridging [average, 2.548(2) {Angstrom}] Sn-Se bond distances were found to correlate with their respective {sup 1}J({sup 119}Sn-{sup 77}Se) coupling constants. The Raman spectrum of the Sn{sub 4}Se{sub 10}{sup 4-} anion has been assigned and compared to those of related adamantanoid systems and SnSe{sub 4}{sup -4}.

  16. Time resolved spectroscopic NMR imaging using hyperpolarized 129Xe

    NASA Astrophysics Data System (ADS)

    Han, S.; Kühn, H.; Häsing, F. W.; Münnemann, K.; Blümich, B.; Appelt, S.

    2004-04-01

    We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.

  17. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  18. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    NASA Astrophysics Data System (ADS)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  19. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    DOEpatents

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  20. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  1. NMR spectroscopic examination of shocked sandstone from Meteor Crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B.; Kirkpatrick, R.J.

    1993-08-01

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions.

  2. NMR spectroscopic examination of shocked sandstone from meteor crater, Arizona

    SciTech Connect

    Cygan, R.T.; Boslough, M.B. ); Kirkpatrick, R.J. )

    1994-07-10

    Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions. [copyright] 1994 American Institute of Physics

  3. Baseline correction for NMR spectroscopic metabolomics data analysis.

    PubMed

    Xi, Yuanxin; Rocke, David M

    2008-07-29

    We propose a statistically principled baseline correction method, derived from a parametric smoothing model. It uses a score function to describe the key features of baseline distortion and constructs an optimal baseline curve to maximize it. The parameters are determined automatically by using LOWESS (locally weighted scatterplot smoothing) regression to estimate the noise variance. We tested this method on 1D NMR spectra with different forms of baseline distortions, and demonstrated that it is effective for both regular 1D NMR spectra and metabolomics spectra with over-crowded peaks. Compared with the automatic baseline correction function in XWINNMR 3.5, the penalized smoothing method provides more accurate baseline correction for high-signal density metabolomics spectra.

  4. Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis

    PubMed Central

    Xi, Yuanxin; Rocke, David M

    2008-01-01

    Background We propose a statistically principled baseline correction method, derived from a parametric smoothing model. It uses a score function to describe the key features of baseline distortion and constructs an optimal baseline curve to maximize it. The parameters are determined automatically by using LOWESS (locally weighted scatterplot smoothing) regression to estimate the noise variance. Results We tested this method on 1D NMR spectra with different forms of baseline distortions, and demonstrated that it is effective for both regular 1D NMR spectra and metabolomics spectra with over-crowded peaks. Conclusion Compared with the automatic baseline correction function in XWINNMR 3.5, the penalized smoothing method provides more accurate baseline correction for high-signal density metabolomics spectra. PMID:18664284

  5. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review

    PubMed Central

    Mahrous, Engy A.; Farag, Mohamed A.

    2014-01-01

    Today, most investigations of the plant metabolome tend to be based on either nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS), with or without hyphenation with chromatography. Although less sensitive than MS, NMR provides a powerful complementary technique for the identification and quantification of metabolites in plant extracts. NMR spectroscopy, well appreciated by phytochemists as a particularly information-rich method, showed recent paradigm shift for the improving of metabolome(s) structural and functional characterization and for advancing the understanding of many biological processes. Furthermore, two dimensional NMR (2D NMR) experiments and the use of chemometric data analysis of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the development of NMR in the field of metabolomics with special focus on 2D NMR spectroscopic techniques and their applications in phytomedicines quality control analysis and drug discovery from natural sources, raising more attention at its potential to reduce the gap between the pace of natural products research and modern drug discovery demand. PMID:25685540

  6. Syntheses; 77Se, 203Tl, and 205Tl NMR; and theoretical studies of the Tl2Se6(6-), Tl3Se6(5-), and Tl3Se7(5-) anions and the X-ray crystal structures of [2,2,2-crypt-Na]4[Tl4Se8].en and [2,2,2-crypt-Na]2[Tl2Se4](infinity)1.en.

    PubMed

    Pirani, Ayaaz M; Mercier, Hélène P A; Suontamo, Reijo J; Schrobilgen, Gary J; Santry, David P; Borrmann, Horst

    2005-11-28

    The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and

  7. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-06

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  9. Determination of lipid content of oleaginous microalgal biomass by NMR spectroscopic and GC-MS techniques.

    PubMed

    Sarpal, Amarijt S; Teixeira, Claudia M L L; Silva, Paulo R M; Lima, Gustavo M; Silva, Samantha R; Monteiro, Thays V; Cunha, Valnei S; Daroda, Romeu J

    2015-05-01

    Direct methods based on (1)H NMR spectroscopic techniques have been developed for the determination of neutral lipids (triglycerides and free fatty acids) and polar lipids (glyceroglycolipids/phospholipids) in the solvent extracts of oleaginous microalgal biomasses cultivated on a laboratory scale with two species in different media. The chemical shift assignments observed in the (1)H and (13)C NMR spectra corresponding to unsaturated (C18:N, N = 1-3, C20:3, C20:5, C22:6, epoxy) and saturated (C14-C18) fatty acid ester components in a complex matrix involving overlapped resonances have been unambiguously confirmed by the application of 2D NMR spectroscopy (total correlation spectroscopy and heteronuclear single quantum coherence-total correlation spectroscopy). The study of the effect of a polar lipid matrix on the determination of neutral lipids by an internal reference blending process by a systematic designed experimental protocol has provided absolute quantification. The fatty acid composition of algal extracts was found to be similar to that of vegetable oils containing saturated (C16-C18:0) and unsaturated (C18:N, N = 1-3, C20:N, N = 3-4, C22:6) fatty acids as confirmed by NMR spectroscopy and gas chromatography-mass spectrometry analyses. The NMR methods developed offer great potential for rapid screening of algal strains for generation of algal biomass with the desired lipid content, quality, and potential for biodiesel and value-added polyunsaturated fatty acids in view of the cost economics of the overall cost of generation of the biomass.

  10. NMR spectroscopic investigations of surface and interlayer species on minerals, clays and other oxides

    SciTech Connect

    Kirkpatrick, R.J.; Yeongkyoo Kim; Weiss, C.A.; Cygan, R.T.

    1996-07-01

    The behavior of chemical species adsorbed on solid surfaces and exchanged into clay interlayers plays a significant role in controlling many natural and technologically important processes, including rheological behavior, catalysis, plant growth, transport in natural pore fluids and those near anthropogenic hazardous waste sites, and water-mineral interaction. Adsorption and exchange reactions have been the focus of intense study for many decades. Only more recently, however, have there been extensive spectroscopic studies of surface species. Among the spectroscopic methods useful for studying surface and exchanged species (e.g., infrared, X-ray photoelectron spectroscopy [XPS] and X-ray absorption spectroscopy [XAS]), nuclear magnetic resonance spectroscopy (NMR) has the considerable advantage of providing not only structural information via the chemical shift and quadrupole coupling constant but dynamical information in the Hz-mHz range via lineshape analysis and relaxation rate measurements. It is also possible to obtain data in the presence of a separate fluid phase, which is essential for many applications. This paper illustrates the range of applications of NMR methods to surface and exchanged species through review of recent work from our laboratory on Cs in clay interlayers and Cs, Na and phosphate adsorbed on oxide surfaces. The substrate materials used for these experiments and our long-term objectives are related to problems of geochemical interest, but the principals and techniques are of fundamental interest and applicable to a wide range of technological problems.

  11. Structural Modifications of Deoxycholic Acid to Obtain Three Known Brassinosteroid Analogues and Full NMR Spectroscopic Characterization.

    PubMed

    Herrera, Heidy; Carvajal, Rodrigo; Olea, Andrés F; Espinoza, Luis

    2016-08-27

    An improved synthesis route for obtaining known brassinosteroid analogues, i.e., methyl 2α,3α-dihydroxy-6-oxo-5α-cholan-24-oate (11), methyl 3α-hydroxy-6-oxo-7-oxa-5α-cholan-24-oate (15) and methyl 3α-hydroxy-6-oxa-7-oxo-5α-cholan-24-oate (16), from hyodeoxycholic acid (4) maintaining the native side chain is described. In the alternative procedure, the di-oxidized product 6, obtained in the oxidation of methyl hyodeoxycholate 5, was converted almost quantitatively into the target monoketone 7 by stereoselective reduction with NaBH₄, increasing the overall yield of this synthetic route to 96.8%. The complete ¹H- and (13)C-NMR assignments for all compounds synthesized in this work have been made by 1D and 2D heteronuclear correlation gs-HSQC and gs-HMBC techniques. Thus, it was possible to update the spectroscopic information of ¹H-NMR and to accomplish a complete assignment of all (13)C-NMR signals for analogues 5-16, which were previously reported only in partial form.

  12. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Anbalagan, G.; Sankari, G.; Ponnusamy, S.; kumar, R. Thilak; Gunasekaran, S.

    2009-10-01

    Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm -1. The Raman spectrum shows the strongest band at 512 cm -1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm -1 due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm -1and the strong, well-defined band at (30303 cm -1 attest the presence of Fe 2+ and Fe 3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe 3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).

  13. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  14. Polarization propagators: A powerful theoretical tool for a deeper understanding of NMR spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Aucar, Gustavo A.; Romero, Rodolfo H.; Maldonado, Alejandro F.

    Magnetic molecular spectroscopic properties, like NMR J-coupling and magnetic shielding σ, have been studied by non-relativistic quantum methods since their discovery. When they were found to depend strongly on relativistic effects in molecules containing heavy atoms, this started a new area of intensive research into the development of methods that include such effects. In most cases non-relativistic concepts were extended to the new field though keeping the previous non-relativistic point of view. Quantum mechanics can be formulated by two different formal approaches. Molecular physics and quantum chemistry were developed mostly within the Schrödinger or Heisenberg approaches. The path integral formalism of Feynman is less well known. This may be the reason why propagators are not broadly known in this field of research. Polarization propagators were developed in the early 1970s. Since that time they have been successfully applied to calculate NMR spectroscopic parameters. They are special theoretical devices from which one can do a deep analysis of the electronic mechanisms that underly any molecular response property from basic theoretical elements, like molecular orbitals, electronic excitation energies, coupling pathways, entanglement, contributions within different levels of theory, etc. All this is obtained in a natural way in both regimes: relativistic and non-relativistic. Its relativistic generalization in the early 1990s and the finding of a quantum electrodynamic (QED)-based theory for them, has given us the opportunity to improve our understanding of the physics behind such parameters. In this paper we give a presentation of polarization propagators that start in non-relativistic quantum physics and end up with the introduction of QED effects. The same and powerful basic quantum ideas are applied throughout this review, so that coherence and beauty arise in a natural way. We will give a new understanding that comes from the three levels of theory

  15. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  16. NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis

    PubMed Central

    2016-01-01

    Hydrogen bonding plays a crucial role in Brønsted acid catalysis. However, the hydrogen bond properties responsible for the activation of the substrate are still under debate. Here, we report an in depth study of the properties and geometries of the hydrogen bonds in (R)-TRIP imine complexes (TRIP: 3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diylhydrogen phosphate). From NMR spectroscopic investigations 1H and 15N chemical shifts, a Steiner–Limbach correlation, a deuterium isotope effect as well as quantitative values of 1JNH,2hJPH and 3hJPN were used to determine atomic distances (rOH, rNH, rNO) and geometry information. Calculations at SCS-MP2/CBS//TPSS-D3/def2-SVP-level of theory provided potential surfaces, atomic distances and angles. In addition, scalar coupling constants were computed at TPSS-D3/IGLO-III. The combined experimental and theoretical data reveal mainly ion pair complexes providing strong hydrogen bonds with an asymmetric single well potential. The geometries of the hydrogen bonds are not affected by varying the steric or electronic properties of the aromatic imines. Hence, the strong hydrogen bond reduces the degree of freedom of the substrate and acts as a structural anchor in the (R)-TRIP imine complex. PMID:27936674

  17. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsuyuki; Kobayashi, Teruya; Yoshikiyo, Keisuke; Matsui, Yoshihisa; Takahashi, Tetsuya; Aso, Yuji

    2009-02-01

    A 1H NMR spectroscopic study showed that the side chains of Trp residues of chicken egg white lysozyme in an aqueous solution are included by Glucosyl-β-cyclodextrin (G1-β-CD). The 1H NMR signals due to Trp residues shifted with the addition of G1-β-CD. The addition of methyl α- D-glucopyranoside, which has no inclusion ability, gave different effect on the shift of 1H NMR signals. The 1H NMR signals due to Cys64 and Ile98 were also influenced to a considerable extent with the addition of G1-β-CD, suggesting that these hydrophobic amino acid residues are also included by the CD. The chemical shift values of 1H NMR signals, due to indole rings of tryptophan residues, changed more with the addition of G1-β-CD. The magnitudes of the chemical shift change were different depending on their locations in the protein. The chemical shift values of 1H NMR signals, due to those Trp residues in the active site of the lysozyme were smaller than those locating at relatively near the surface of the protein.

  18. NMR spectroscopic search module for Spektraris, an online resource for plant natural product identification--Taxane diterpenoids from Taxus × media cell suspension cultures as a case study.

    PubMed

    Fischedick, Justin T; Johnson, Sean R; Ketchum, Raymond E B; Croteau, Rodney B; Lange, B Markus

    2015-05-01

    Development and testing of Spektraris-NMR, an online spectral resource, is reported for the NMR-based structural identification of plant natural products (PNPs). Spektraris-NMR allows users to search with multiple spectra at once and returns a table with a list of hits arranged according to the goodness of fit between query data and database entries. For each hit, a link to a tabulated alignment of (1)H NMR and (13)C NMR spectroscopic peaks (query versus database entry) is provided. Furthermore, full spectroscopic records and experimental meta information about each database entry can be accessed online. To test the utility of Spektraris-NMR for PNP identification, the database was populated with NMR data (total of 466 spectra) for ∼ 250 taxanes, which are structurally complex diterpenoids (including the anticancer drug taxol) commonly found in the genus Taxus. NMR data generated with metabolites purified from Taxus cell suspension cultures were then used to search Spektraris-NMR, and enabled the identification of eight taxanes with high confidence. A ninth isolated metabolite could be assigned, based on spectral searches, to a taxane skeletal class, but no high confidence hit was produced. Using various spectroscopic methods, this metabolite was characterized as 2-deacetylbaccatin IV, a novel taxane. These results indicate that Spektraris-NMR is a valuable resource for rapid and reliable identification of known metabolites and has the potential to contribute to de-replication efforts in novel PNP discovery.

  19. Application of phosphorus-31 and aluminum-27 NMR spectroscopic techniques to study aqueous and methanolic solutions of tetraphenylammonium aluminophosphate

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser; Amin, Amir H.

    2017-01-01

    In this work, aluminum-27 and phosphorus-31 NMR spectroscopic techniques were used to investigate and characterize the distribution of aluminophosphate (AlPO) species soluble in the aqueous and methanolic solutions of tetraphenylammonium (TPhA) chloride. The reaction between hexaaquaaluminum cations, [A1(H2O)6]3+, and different phosphate ligands such as H3PO4, H2PO4-, and the acidic dimers H6P2O8 and H5P2O8- resulted in the formation of the soluble AlPO cations. The effective aluminum-27 and phosphorous-31 NMR spectroscopies can be employed to characterize the species present in a solution. Assignment of the peaks present in the aluminum-27 NMR spectra to the aluminate species or aluminate connectivities was done to acquire information about different AlPO complexes. Some resonance lines were observed in the phosphorus-31 {1H} NMR spectra, indicating the existence of different complexes in the AlPO solutions. Some peaks were observed in the methanolic solutions of AlPO at the chemical shifts of -0.41, -6.4, -7.5, -7.9, -13.1, -13.9, -16.6, -18.1, and -20.6 ppm. Four additional peaks were also observed in the phosphorus-31 {1H} NMR spectra of the methanolic solutions of AlPO, whose intensities changed with changes in the methanol:water volume ratio; they were observed in methanol but not in aqueous AlPO.

  20. Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates.

    PubMed

    Linser, Rasmus

    2017-08-24

    Solid-state NMR is able to generate structural data on sample preparations that are explicitly non-crystalline. In particular, for amyloid fibril samples, which can comprise significant degrees of sample disorder, solid-state NMR has been used very successfully. But also solid-state NMR studies of other supramolecular assemblies that have resisted assessment by more standard methods are being performed with increasing ease and biological impact, many of which are briefly reviewed here. New technical trends with respect to structure calculation, protein dynamics and smaller sample amounts have reshaped the field of solid-state NMR recently. In particular, proton-detected approaches based on fast Magic-Angle Spinning (MAS) were demonstrated for crystalline systems initially. Currently, such approaches are being expanded to the above-mentioned non-crystalline targets, the characterization of which can now be pursued with sample amounts on the order of a milligram. In this Trends article, I am giving a brief overview about achievements of the last years as well as the directions that the field has been heading into and delineate some satisfactory perspectives for solid-state NMR's future striving. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.

    PubMed

    Kitamura, Keisuke; Omran, Ahmed A; Takegami, Shigehiko; Tanaka, Rumi; Kitade, Tatsuya

    2007-04-01

    The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by (19)F nuclear magnetic resonance (NMR) spectroscopy. A (19)F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L(-1)) contained a single sharp signal of its CF(3) group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L(-1) HSA to the NFA buffer solution caused splitting of the CF(3) signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L(-1) guanidine hydrochloride (GU) restored a single sharp signal of CF(3) at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive (19)F NMR experiments using warfarin, dansyl-L: -asparagine, and benzocaine (site I ligands), and L: -tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of (19)F NMR with NFA as an (19)F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of (19)F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.

  2. Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades.

    PubMed

    Jensen, Pernille Rose; Meier, Sebastian

    2016-02-07

    The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response to external perturbations.

  3. Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine.

    PubMed

    Gronwald, Wolfram; Klein, Matthias S; Zeltner, Raoul; Schulze, Bernd-Detlef; Reinhold, Stephan W; Deutschmann, Markus; Immervoll, Ann-Kathrin; Böger, Carsten A; Banas, Bernhard; Eckardt, Kai-Uwe; Oefner, Peter J

    2011-06-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a frequent cause of kidney failure; however, urinary biomarkers for the disease are lacking. In a step towards identifying such markers, we used multidimensional-multinuclear nuclear magnetic resonance (NMR) spectroscopy with support vector machine-based classification and analyzed urine specimens of 54 patients with ADPKD and slightly reduced estimated glomerular filtration rates. Within this cohort, 35 received medication for arterial hypertension and 19 did not. The results were compared with NMR profiles of 46 healthy volunteers, 10 ADPKD patients on hemodialysis with residual renal function, 16 kidney transplant patients, and 52 type 2 diabetic patients with chronic kidney disease. Based on the average of 51 out of 701 NMR features, we could reliably discriminate ADPKD patients with moderately advanced disease from ADPKD patients with end-stage renal disease, patients with chronic kidney disease of other etiologies, and healthy probands with an accuracy of >80%. Of the 35 patients with ADPKD receiving medication for hypertension, most showed increased excretion of proteins and also methanol. In contrast, elevated urinary methanol was not found in any of the control and other patient groups. Thus, we found that NMR fingerprinting of urine differentiates ADPKD from several other kidney diseases and individuals with normal kidney function. The diagnostic and prognostic potential of these profiles requires further evaluation.

  4. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values.

    PubMed

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  5. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers

    PubMed Central

    Labuta, Jan; Ishihara, Shinsuke; Šikorský, Tomáš; Futera, Zdeněk; Shundo, Atsuomi; Hanyková, Lenka; Burda, Jaroslav V.; Ariga, Katsuhiko; Hill, Jonathan P.

    2013-01-01

    Enantiomeric excess of chiral compounds is a key parameter that determines their activity or therapeutic action. The current paradigm for rapid measurement of enantiomeric excess using NMR is based on the formation of diastereomeric complexes between the chiral analyte and a chiral resolving agent, leading to (at least) two species with no symmetry relationship. Here we report an effective method of enantiomeric excess determination using a symmetrical achiral molecule as the resolving agent, which is based on the complexation with analyte (in the fast exchange regime) without the formation of diastereomers. The use of N,N′-disubstituted oxoporphyrinogen as the resolving agent makes this novel method extremely versatile, and appropriate for various chiral analytes including carboxylic acids, esters, alcohols and protected amino acids using the same achiral molecule. The model of sensing mechanism exhibits a fundamental linear response between enantiomeric excess and the observed magnitude of induced chemical shift non-equivalence in the 1H NMR spectra. PMID:23864041

  6. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions

    PubMed Central

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-01-01

    Proton transfer (PT) processes in solid–liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid–liquid phases. PMID:27311326

  7. NMR Spectroscopic Studies Oflight-Harvesting Bacteriochlorophylls Purified from Green Sulfur Photosynthetic Bacteria

    NASA Astrophysics Data System (ADS)

    Hirai, Yuki; Saga, Yoshitaka

    2013-09-01

    NMR measurements of homologously and epimerically pure bacteriochlorophyll(BChl)s c and e purified from green sulfur photosynthetic bacteria were performed. Four nitrogen atoms in BChls c and e were isotopically labeled by cultivation of green photosynthetic sulfur bacteria in a 15N-containing medium. 15N NMR measurements indicated that the chemical shift of the N22 atom in 31R-8-ethyl-12-ethyl-BChl e was much lower-field shifted than that in 31R-8-ethyl-12-ethyl-BChl c. The low-field shifts observed in BChl e indicate the 7-formyl group in BChl e affects electronic states of the nitrogen atoms in the chlorin macrocycle of light-harvesting BChls in green photosynthetic sulfur bacteria.

  8. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions.

    PubMed

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-06-17

    Proton transfer (PT) processes in solid-liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid-liquid phases.

  9. Methanol and acetonitrile associates in aqueous and chloroform solutions according to 1H NMR spectroscopic data

    NASA Astrophysics Data System (ADS)

    Monakhova, Y. B.; Mushtakova, S. P.

    2014-05-01

    Association of methanol and acetonitrile in a nonpolar (CDCl3) and polar (H2O and D2O) solvents was studied by 1H NMR spectroscopy and quantum chemistry. The results were compared with the data obtained by decomposition of the spectral curves in the range 800-1100 nm by the independent component analysis (ICA) technique. The content of homoassociates consisting of four and two or three molecules in the case of methanol and acetonitrile, respectively, gradually increased with the amount of the organic solvent in solution. The aqueous solutions under study consisted of few associates of compositions 1: 1, 1: 2, and 1: 4.5 for acetonitrile and 1: 1 and 1: 3 for methanol (water: organic solvent). The quantum-chemical calculation of the NMR spectra of the particles existing in solution confirmed our conclusions about the structure of the solutions.

  10. NMR spectroscopic approach reveals metabolic diversity of human blood plasma associated with protein-drug interaction.

    PubMed

    Du, Yuanyuan; Lan, Wenxian; Ji, Zhusheng; Zhang, Xu; Jiang, Bin; Zhou, Xin; Li, Conggang; Liu, Maili

    2013-09-17

    Although blood plasma has been used to diagnose diseases and to evaluate physiological conditions, it is not easy to establish a global normal concentration range for the targeting components in the plasma due to the inherent metabolic diversity. We show here that NMR spectroscopy coupled with principal component analysis (PCA) may provide a useful method for quantitatively characterizing the metabolic diversity of human blood plasma. We analyzed 70 human blood plasma samples with and without addition of ibuprofen. By defining the PC score values as diversity index (I(div)) and the drug-induced PC score value change as interaction index (I(dist)), we find that the two indexes are highly correlated (P < 0.0001). Triglycerides, choline-containing phospholipids, lactate, and pyruvate are associated with both indexes (P < 0.0001), respectively. In addition, a significant amount of lactate and pyruvate are in the NMR "invisible" bound forms and can be replaced by ibuprofen. The diffusion and transverse relaxation time weighted NMR approaches gave rise to a better characterization of the diversity and the interaction than that of the one acquired using NOESYPR1D with 100 ms mixing time. These results might be useful for understanding the blood plasma-drug interaction and personalized therapy.

  11. Spectroscopic characterization of the 1-substituted 3,3-diphenyl-4-(2'-hydroxyphenyl)azetidin-2-ones: Application of 13C NMR, 1H- 13C COSY NMR and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Girija S.; Pheko, Tshepo

    2008-08-01

    The article deals with spectroscopic characterization of azetidin-2-ones. The presence of substituents like hydroxyl, fluoro, methoxy and benzhydryl, etc., on the azetidin-2-one ring significantly affects the IR absorption and 13C NMR frequencies of the carbonyl group present in these compounds. The presence of an ester carbonyl group or too many methine protons in the molecule has been observed to limit the scope of IR and 1H NMR spectroscopy in unambiguous assignment of the structure. The application of 13C NMR, 2D NMR ( 1H- 13C COSY) and mass spectroscopy in characterization of complex azetidin-2-ones is discussed. An application of the latter two techniques is described in deciding unequivocally between an azetidin-2-one ring and chroman-2-one ring structure for the product obtained by treatment of the 1-substituted 3,3-diphenyl-4-[2'-( O-diphenylacyl)hydroxyphenyl]-2-azetidinones with ethanolic sodium hydroxide at room temperature.

  12. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    PubMed

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation.

  13. NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme.

    PubMed

    Fürtig, Boris; Richter, Christian; Schell, Peter; Wenter, Philipp; Pitsch, Stefan; Schwalbe, Harald

    2008-01-01

    In order to relate the conformational dynamics of the hammerhead ribozyme to its biological function the cleavage reaction catalyzed by the hammerhead ribozyme was monitored by time-resolved nuclear magnetic resonance (NMR) spectroscopy. For this purpose, the two nucleosides around the scissile phosphodiester bond were selectively (13)C labelled in multi-step organic syntheses starting from uniformly (13)C-labelled glucose. The phosphoamidites were incorporated using phosphoamidite chemistry in the hammerhead substrate strand. In addition, the 2'-OH group on the 5'-side of the hammerhead substrate strand was labelled with a photolabile protecting group. This labelling strategy enabled a detailed characterisation of the nucleotides around the scissile phosphodiester bond in the ground state conformation of the hammerhead ribozyme in the absence and presence of Mg(2+) ions as well as of the product state. Photochemical induction of the reaction in situ was further characterized by time-resolved NMR spectroscopy. The detailed structural and dynamic investigations revealed that the conformation of the hammerhead ribozyme is significantly affected by addition of Mg(2+) leading to an ensemble of conformations where dynamic transitions between energetically similar conformations occur on the ms-timescale in the presence of Mg(2+). The dynamic transitions are localized around the catalytic core. Cleavage from this ensemble cannot be described by mono-exponential kinetics but follows bi-exponential kinetics. A model is described to take into account these experimental data.

  14. 31P to 77Se cross polarization in beta-P4Se3.

    PubMed

    Pietrass, T; Seydoux, R; Roth, R E; Eckert, H; Pines, A

    1997-08-01

    Cross polarization from 31P to 77Se is demonstrated in beta-P4Se3. This material, an inorganic glass, is readily synthesized from the elements and serves as a convenient sample for setting the Hartmann-Hahn condition.

  15. NMR and Raman spectroscopic characterization of single walled carbon nanotube composites of polybutadiene

    PubMed Central

    Bennett, George D.; Greenbaum, Steve G.; Owens, Frank J.

    2010-01-01

    Significant shifts of the frequency of the Raman spectra of the tangential mode of single walled carbon nanotubes (SWNTs) and fluorinated tubes (FSWNTs) in composites of polybutadiene (PB) were observed relative to the pristine SWNTs indicative of the interaction between the polymer and the SWNTs. Proton NMR line width measurements demonstrate partial suppression of polymer segmental motion for both types of nanotube composites and spin-lattice relaxation results indicate that short time-scale localized motions are also affected by SWNT inclusion, more so for FSWNTs. Hardness measurements as a function of wt% SWNTs and FSWNTs in the polymer show larger enhancements of hardness in the composite with the fluorinated tubes. PMID:20686647

  16. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  17. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    NASA Astrophysics Data System (ADS)

    Pîrnau, Adrian; Bogdan, Mircea; Floare, Calin G.

    2009-08-01

    The inclusion of vanillin by β-cyclodextrin was investigated by 1H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδobs = δfree - δobs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  18. Sterically Hindered Chiral Organometallic Complexes: AN X-Ray Crystallographic, NMR Spectroscopic and Ehmo Study.

    NASA Astrophysics Data System (ADS)

    Malisza, Krisztina Laura

    Sterically crowded organometallic complexes present fascinating problems of structure and molecular dynamics. Tetrahedral clusters such as (RCequivCR ^')rm(C_5H_5)_2M _2(CO)_4, where M = Mo or W, crystallize in conformations possessing three terminal carbonyls while the fourth is semi-bridging. However, these ligands undergo a rapid exchange process which can be followed by variable -temperature NMR spectroscopy. When the R substituent is derived from a chiral natural product, the low temperature NMR spectra reveal the presence of diastereomers which are interconvertible via rotations of the organometallic vertices. The fluxional behaviour of tetrahedral clusters containing such vertices as Co(CO)_3, Fe(CO)_3 or rm(C_5H _5)Mo(CO)_2 can be rationalized by means of molecular orbital calculations at the extended Huckel level of approximation. These studies show that the barriers to vertex rotation can usually be traced to one principal orbital interaction in each case. However, in rm(C_5H_5)_2Mo_2(CO) _4(R-CequivC-R) clusters, the barriers are primarily steric in character. The ability of transition metal clusters to delocalize electronic charge is well known and, in principle, could be used to stabilize intermediates of biochemical significance. Treatment of 2-methylcyclopentanone with an alkyne anion was carried out in order to generate 1-alkynyl-2-methylcyclopentanols in which the methyl and alkynyl groups are trans diaxial; the aim was to mimic the "D"-ring of the steroidal contraceptive mestranol. In fact, the major epimer was the one in which the methyl and alkynyl substituents were disposed in a cis manner. The conformation of 2-methyl-1-phenylethynylcyclopentanol 47 was elucidated by two-dimensional NMR techniques. Moreover, the structure of 47 and also of its rm Co _2(CO)_6 derivative have been determined crystallographically. Protonation of the dicobalt or dimolybdenum complexes of 47 lead to stable cations; treatment of these cations with nucleophiles

  19. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  20. Solution NMR Spectroscopic Characterization of Human VDAC-2 in Detergent Micelles and Lipid Bilayer Nanodiscs

    PubMed Central

    Yu, Tsyr-Yan; Raschle, Thomas; Hiller, Sebastian

    2012-01-01

    Three isoforms of the human voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, are crucial regulators of mitochondrial function. Numerous studies have been carried out to elucidate biochemical properties, as well as the three-dimensional structure of VDAC-1. However, functional and structural studies of VDAC-2 and VDAC-3 at atomic resolution are still scarce. VDAC-2 is highly similar to VDAC-1 in amino acid sequence, but has substantially different biochemical functions and expression profiles. Here, we report the reconstitution of functional VDAC-2 in lauryldimethylamine-oxide (LDAO) detergent micelles and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer nanodiscs. We find that VDAC-2 is probably folded in both membrane-mimicking systems and that structural and functional characterization by solution NMR spectroscopy is feasible. PMID:22119777

  1. Untargeted NMR Spectroscopic Analysis of the Metabolic Variety of New Apple Cultivars

    PubMed Central

    Eisenmann, Philipp; Ehlers, Mona; Weinert, Christoph H.; Tzvetkova, Pavleta; Silber, Mara; Rist, Manuela J.; Luy, Burkhard; Muhle-Goll, Claudia

    2016-01-01

    Metabolome analyses by NMR spectroscopy can be used in quality control by generating unique fingerprints of different species. Hundreds of components and their variation between different samples can be analyzed in a few minutes/hours with high accuracy and low cost of sample preparation. Here, apple peel and pulp extracts of a variety of apple cultivars were studied to assess their suitability to discriminate between the different varieties. The cultivars comprised mainly newly bred varieties or ones that were brought onto the market in recent years. Multivariate analyses of peel and pulp extracts were able to unambiguously identify all cultivars, with peel extracts showing a higher discriminative power. The latter was increased if the highly concentrated sugar metabolites were omitted from the analysis. Whereas sugar concentrations lay within a narrow range, polyphenols, discussed as potential health promoting substances, and acids varied remarkably between the cultivars. PMID:27657148

  2. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study.

    PubMed Central

    Richard, Julie-Andrée; Kelly, Isabelle; Marion, Didier; Pézolet, Michel; Auger, Michèle

    2002-01-01

    The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal. PMID:12324425

  3. Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline

    NASA Astrophysics Data System (ADS)

    Sivaranjini, T.; Periandy, S.; Govindarajan, M.; Karabacak, M.; Asiri, A. M.

    2014-01-01

    In this work, the molecular structure, vibrational, UV and NMR spectra of 3-methoxyaniline (abbreviated as 3MOA, C7H9NO) were studied. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies were calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d, p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3MOA with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, Frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed and compared with methoxybenzene and aniline. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 3MOA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  4. Preparation and NMR spectroscopic study of palladium(II) complexes with N-arylalkyliminodiacetamide derivatives

    NASA Astrophysics Data System (ADS)

    Smrečki, Neven; Jaźwiński, Jarosław; Popović, Zora

    2016-10-01

    The reactions of N-arylalkyl derivatives of iminodiacetamide, RN(CH2CONH2)2; Rimda (Bnimda, Peimda, Ppimda, o-ClBnimda, p-ClBnimda; Bn = benzyl, Pe = 2-phenylethyl; Pp = 3-phenylprop-1-yl; o-ClBn = o-chlorobenzyl; p-ClBn = p-chlorobenzyl) with palladium(II) chloride in acidic aqueous solutions were investigated. Six new palladium(II) complexes, belonging to three different types, namely [PdCl2(Bnimda)]2 · 2H2O (1; type I), [PdCl2(Peimda)] · H2O (2; type II), [PdCl2(Ppimda)] · ½H2O (3a; type II), [PdCl2(Ppimda)]2 (3b; type I), [PdCl2(p-ClBnimda)] · H2O (4; type II) and [PdCl2(o-ClBnimda)2] (5; type III) were obtained and characterized by infrared spectroscopy, 1H and 13C NMR spectroscopy, and thermal analysis (TG/DTA).

  5. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  6. Computational Chemistry Meets Experiments for Explaining the Behavior of Bibenzyl: A Thermochemical and Spectroscopic (Infrared, Raman, and NMR) Investigation.

    PubMed

    Latouche, Camille; Barone, Vincenzo

    2014-12-09

    The structure, conformational behavior, and spectroscopic parameters of bibenzyl have been investigated by a computational protocol including proper treatment of anharmonic and hindered rotor contributions. Conventional hybrid functionals overstabilize the anti conformer while low-order post-Hartree-Fock (MP2) approaches strongly favor the gauche conformer. However, inclusion of semiempirical dispersion effects in density functionals or coupled cluster post-Hartree-Fock models agree in forecasting the simultaneous presence of both conformers in the gas phase with a slightly larger stability (0.7 kcal·mol(-1)) of the gauche conformer. Addition of thermal and entropic effects finally leads to very close Gibbs free energies for both conformers and, thus, to a slight preference for the gauche form due to statistical factors (2 vs 1). The situation remains essentially the same in solution. On these grounds, perturbative vibrational computations including both electrical and mechanical anharmonicities lead to IR and Raman spectra in remarkable agreement with experiment. Full assignment of the IR spectra explains the presence of peaks from gauche or anti conformers. Comparison between computed and experimental Raman spectra confirms that both conformers are present in liquid phase, whereas the anti conformer seems to be preponderant in the solid state. Also computed NMR parameters are in good agreement with experiment.

  7. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    NASA Astrophysics Data System (ADS)

    Varma, Vikram

    A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen

  8. A Deuterium NMR Spectroscopic Study of Solid BH(3)NH(3).

    PubMed

    Penner, Glenn H.; Chang, Y. C. Phillis; Hutzal, Jennifer

    1999-06-14

    Deuterium nuclear magnetic resonance (NMR) powder spectra and spin-lattice relaxation times (T(1)) are used to measure the deuterium quadrupolar coupling constants (QCCs) chi(BD) and chi(ND) and to investigate the molecular reorientation of the BD(3) and ND(3) groups in solid deuterated borane monoammoniate, BD(3)NH(3) and BH(3)ND(3), respectively. In the high-temperature, tetragonal, phase (above 225 K) the following Arrhenius parameters are obtained from the temperature-dependent T(1): E(a) = 5.9 +/- 0.5 kJ/mol and tau(infinity) = 1.1 x 10(-)(13) s for BD(3)NH(3); E(a) = 7.3 +/- 0.8 kJ/mol and tau(infinity) = 4.4 x 10(-)(14) s for BH(3)ND(3). In the low-temperature, orthorhombic, phase the following parameters are obtained: E(a) = 26.4 +/- 1.4 kJ/mol and tau(infinity) = 1.2 x 10(-)(17) s for BD(3)NH(3); E(a) = 13.7 +/- 0.9 kJ/mol and tau(infinity) = 5.7 x 10(-)(15) s for BH(3)ND(3). Here tau(infinity) is proportional to the inverse of the usual Arrhenius preexponential factor, A. Deuterium line shape measurements for the low-temperature phase of BD(3)NH(3) yield E(a) = 25 +/- 2 kJ/mol and tau(infinity) = 4.7 x 10(-)(19) s. These dynamic factors indicate that the molecule is probably undergoing whole molecule rotation above the phase transition but the BH(3) and NH(3) groups are undergoing uncorrelated motion in the low-temperature phase. Deuterium quadrupolar coupling constants of 105 +/- 10 and 200 +/- 10 kHz were determined for BD(3)NH(3) and BH(3)ND(3), respectively. Molecular orbital (MO) calculations (CI(SD)/6-31G(d,p)//MP2/6-31G(d,p)) for the isolated molecule yield values of 143 and 255 kHz. MO calculations also show that the deuterium quadrupolar coupling constants chi(BD) and chi(ND) are relatively insensitive to all molecular structural parameters except the B-H and N-H bond lengths, respectively. It is suggested that the large decrease in the QCC on going from the gas phase to the solid state may be due to a slight lengthening of the B-H and N-H bonds

  9. Theory for ^77Se and ^125Te Nuclear Quadrupole Interactions in Selenium and Tellurium.

    NASA Astrophysics Data System (ADS)

    Suck-Cho, Hwa; Oh, Young-Kee; Park, Jin-Ho; Das, T. P.

    1998-03-01

    The electric field gradient(efg) tensors at ^77Se and ^125Te nuclei have been studied for the four systems involving each of these nuclei in both Selenium and Tellurium crystals utilizing the first principles Hartee-Fock Cluster procedure. Using the calculated efg for the pure systems and the experimental quadrupole coupling constants (e^2qQ), the quadrupole moments are determined to be Q(^77Se)=0.74±0,07(b) and Q(^125Te)=0.35±0.04(b). Comparison will be made with earlier values for the Q of the two nuclei. Using our values of Q and the calculated efg for ^77Se in tellurium and ^125Te in selenium, our values of e^2qQ agree within 15 per cent with that of experiment. The asymmetry parametrs η also agree reasonably well with experiment, but not as closely as the e^2qQ. Experimental results for η for ^125Te in selenium are needed to compare with theory.

  10. Spectroscopic (NMR, UV, FT-IR and FT-Raman) analysis and theoretical investigation of nicotinamide N-oxide with density functional theory.

    PubMed

    Atac, Ahmet; Karabacak, Mehmet; Kose, Etem; Karaca, Caglar

    2011-12-01

    The spectroscopic properties of the nicotinamide N-oxide (abbreviated as NANO, C(6)H(6)N(2)O(2)) were examined by FT-IR, FT-Raman, NMR and UV techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The (1)H and (13)C NMR spectra were recorded in DMSO. The UV absorption spectrum of the compound that dissolved in water was recorded in the range of 200-800 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using Density Functional Theory (DFT) employing B3LYP methods with the 6-311++G(d,p) basis set. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The optimized structure of compound was interpreted and compared with the reported experimental values. The observed vibrational wavenumbers, absorption wavelengths and chemical shifts were compared with calculated values. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results.

  11. Quantum Chemical Study of the Solvent Effect on the Anticancer Active Molecule of Iproplatin: Structural, Electronic, and Spectroscopic Properties (IR, 1H NMR, UV)

    NASA Astrophysics Data System (ADS)

    Sadeghi, N.; Ghiasi, R.; Fazaeli, R.; Jamehbozorgi, S.

    2017-01-01

    The structural, electronic, and spectroscopic properties of the anticancer active molecule of iproplatin were investigated in the gas and liquid phases. Based on the polarizable continuum model (PCM), the solvent effect on the structural parameters, frontier orbitals, and spectroscopic parameters of the complex was investigated. The results indicate that the polarity of solvents plays a significant role in the structure and pro perties of the complex. 1H and 13C NMR chemical shifts were calculated using the Gauge-invariant atomic orbital (GIAO) method. Pt-Cl and Pt-OH bonds were investigated through a vibrational analysis. Moreover, time dependent density functional theory (TD-DFT) was used to calculate the energy, oscillatory strength, and wavelength absorption maximum (λmax) of electronic transitions and its nature within the complex.

  12. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  13. NMR and IR spectroscopic study of proton exchange between o-nitrophenol and methanol in CCl/sub 4/

    SciTech Connect

    Bureiko, S.F.; Golubev, N.S.; Lange, I.Y.

    1982-08-01

    The kinetics of proton exchange in solution between o-nitrophenol and methanol have been studied by dynamic NMR and IR spectroscopy, and a method has been developed for the simultaneous determination of the rate constants for H-H, H-D, and D-H exchange from /sup 1/H NMR spectra.

  14. A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents.

    PubMed

    Mazumder, Avik; Kumar, Ajeet; Purohit, Ajay K; Dubey, Devendra K

    2012-02-01

    A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method has been developed for detection, identification and quantification of non-phosphorus markers of toxic nerve agents (soman and V-class), vesicants (HD, HN-2, HN-3), and incapacitating agent (Bz). These analytes were converted to phosphorus-containing derivatives via phosphitylation reaction of their hydroxyl and sulfhydryl functions (using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). This was followed by (31)P{(1)H} and (31)P NMR analysis of these derivatives. The chemical shifts (δ) and coupling constants ((3)J(P-H)) of derivatives were used for their specific detection and identification. The method allowed clear distinction between the alcohols and thiols. The lower limits of detection of these analytes were found to be between 12 and 28 μg obtained from 128 transients of (31)P{(1)H} quantitative NMR experiments. Utility of the method was ensured by the detection and identification of triethanolamine present (at an original concentration of 5 μg/mL) in an aqueous sample from 28th OPCW Official Proficiency Tests.

  15. Fermi resonance of C 1 chlorine compounds in the adsorbed phase of zeolites. An FTIR and MAS NMR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hannus, I.; Kónya, Z.; Nagy, J. B.; Kiricsi, I.

    1997-06-01

    Fermi resonance was investigated for CH 3Cl, COCl 2, CO + Cl 2, CCl 4 and CCl 2F 2 adsorbed in NaYFAU zeolite. The extent of the resonance was measured by IR spectroscopy, while the mechanism of surface reaction was evidenced by MAS NMR spectroscopy.

  16. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.

  17. Proposal for Sets of 77Se NMR Chemical Shifts in Planar and Perpendicular Orientations of Aryl Group and the Applications

    PubMed Central

    Hayashi, Satoko; Nakanishi, Waro

    2006-01-01

    The orientational effect of p-YC6H4 (Ar) on δ(Se) is elucidated for ArSeR, based on experimental and theoretical investigations. Sets of δ(Se) are proposed for pl and pd employing 9-(arylselanyl)anthracenes (1) and 1-(arylselanyl)anthraquinones (2), respectively, where Se–CR in ArSeR is on the Ar plane in pl and perpendicular to the plane in pd. Absolute magnetic shielding tensors of Se (σ(Se)) are calculated for ArSeR (R = H, Me, and Ph), assuming pl and pd, with the DFT-GIAO method. Observed characters are well reproduced by the total shielding tensors (σt(Se)). The paramagnetic terms (σP(Se)) are governed by σP(Se)xx + σP(Se)yy, where the direction of nP(Se) is set to the z-axis. The mechanisms of the orientational effect are established both for pl and pd. Sets of δ(Se: 1) and δ(Se: 2) act as the standards for pl and pd, respectively, when δ(Se) of ArSeR are analyzed based on the orientational effect. PMID:17497018

  18. Development of a low resolution (1)H NMR spectroscopic technique for the study of matrix mobility in fresh and freeze-thawed hen egg yolk.

    PubMed

    Au, Carmen; Wang, Tong; Acevedo, Nuria C

    2016-08-01

    Three experiments were conducted in developing a low resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopic technique to study matrix mobility in fresh and freeze-thawed gelled yolk. The Carr-Purcell-Meiboom-Gill (CPMG) sequence was used to measure spin-spin relaxation times of proton pools representing major yolk constituents. A component identification test distinguished 3-4 pools. The least mobile pool was assigned to proteins, protein-lipid and protein-water interactions, and the most mobile to unbound water. The remaining pools were assigned to lipids, lipid-protein and lipid-water interactions. A stability test indicated that yolk had varied matrix mobility within the same sample across five days of refrigeration storage. A reproducibility test demonstrated high repeatability of fresh yolk measurements, but significant differences (p<0.05) were found within gelled yolk samples. This research determined that (1)H NMR spectroscopy, a non-destructive technique, can identify yolk components and detect changes in the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NMR, FT-IR, FT-Raman, UV spectroscopic, HOMO-LUMO and NBO analysis of cumene by quantum computational methods

    NASA Astrophysics Data System (ADS)

    Sivaranjani, T.; Xavier, S.; Periandy, S.

    2015-03-01

    This work presents the investigation of cumene using the FT-IR, FT-Raman, NMR and UV spectra obtained through various spectroscopic techniques. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been scaled and compared with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, and potential energy surface (PES) is performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. NLO properties related to polarizability and hyperpolarizability are also discussed.

  20. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene

    NASA Astrophysics Data System (ADS)

    Kose, E.; Atac, A.; Karabacak, M.; Nagabalasubramanian, P. B.; Asiri, A. M.; Periandy, S.

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, 1H and 13C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. 13C and 1H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule.

  1. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene.

    PubMed

    Kose, E; Atac, A; Karabacak, M; Nagabalasubramanian, P B; Asiri, A M; Periandy, S

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, (1)H and (13)C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. (13)C and (1)H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule.

  2. Vibrational, 1H-NMR spectroscopic, and thermal characterization of gladiolus root exudates in relation to Fusarium oxysporum f. sp. gladioli resistance.

    PubMed

    Taddei, P; Tugnoli, V; Bottura, G; Dallavalle, E; Zechini D'Aulerio, A

    2002-01-01

    Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.

  3. Iodine-water-alkanol and potassium iodide-water-alkanol systems: Phase diagrams and regularities of association according to IR and NMR spectroscopic data

    NASA Astrophysics Data System (ADS)

    Monakhova, Yu. B.; Varlamova, T. M.; Rubtsova, E. M.; Mushtakova, S. P.

    2015-04-01

    The variation of the iodine and potassium iodide solubilities in water-monoatomic alcohol (ethanol, propanol, isopropanol) solvents is considered from the standpoint of IR spectroscopic and chemometric data on association in water-alkanol binary mixtures. The iodine and potassium iodide solubilities in the mixed solvents vary nonlinearly with solvent composition because of the formation of 1 : 1 and 1 : 3 water-alcohol heteroassociates and alcohol homoassociates. Different kinds of phase diagram are observed for the iodine-water-alcohol systems: the I2-H2O-1-C3H7OH and the I2-H2O-2-C3H7OH diagrams have a phase separation region, while the I2-H2O-C2H5OH diagram does not. This fact is explained in terms of the interaction between the components of the systems. The variation of the potassium iodide solubility in the mixed solvent is discussed: a decrease in the KI solubility is symbatic to an increase in the relative concentration of 1 : 1 associates in the water-alcohol solution. The run of the iodine and potassium iodide solubility curves at low alcohol concentrations is explained on the basis of NMR spectroscopic data on association in aqueous solutions of the monoatomic alcohols.

  4. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  5. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt--NMR, FT-IR and DFT studies.

    PubMed

    Samsonowicz, M; Kowczyk-Sadowy, M; Regulska, E; Lewandowski, W

    2014-01-24

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. Theinfluence ofsodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G(**) method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. (1)H and (13)C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  6. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright

  7. Spectroscopic and NMR identification of novel hydride ions in fractional quantum energy states formed by an exothermic reaction of atomic hydrogen with certain catalysts

    NASA Astrophysics Data System (ADS)

    Mills, R.; Ray, P.; Dhandapani, B.; Good, W.; Jansson, P.; Nansteel, M.; He, J.; Voigt, A.

    2004-10-01

    2K+ to K + K2+ and K to K3+ provide a reaction with a net enthalpy equal to one and three times the potential energy of atomic hydrogen, respectively. The presence of these gaseous ions or atoms with thermally dissociated hydrogen formed a so-called resonance transfer (rt)-plasma having strong VUV emission with a stationary inverted Lyman population. Significant line broadening of the Balmer α , β , and γ lines of 18 eV was observed, compared to 3 4 eV from a hydrogen microwave plasma. Emission from rt-plasmas occurred even when the electric field applied to the plasma was zero. The reaction was exothermic since excess power of 20 mW cm-3 was measured by Calvet calorimetry. An energetic catalytic reaction was proposed involving a resonant energy transfer between hydrogen atoms and 2K+ or K to form very stable novel hydride ions H-(1/p) called hydrino hydrides having a fractional principal quantum numbers p = 2 and p = 4, respectively. Characteristic emission was observed from K2+ and K3+ that confirmed the resonant nonradiative energy transfer of 27.2 eV and 3 × 27.2 eV from atomic hydrogen to 2K+ and K, respectively. The product hydride ion H-(1/4) was observed spectroscopically at 110 nm corresponding to its predicted binding energy of 11.2 eV. The 1H MAS NMR spectrum of novel compound KH*Cl relative to external tetramethylsilane (TMS) showed a large distinct upfield resonance at 4.4 corresponding to an absolute resonance shift of 35.9 ppm that matched the theoretical prediction of p = 4. A novel peak of KH*I at 1.5 ppm relative to TMS corresponding to an absolute resonance shift of 33.0 ppm matched the theoretical prediction of p = 2. The predicted catalyst reactions, position of the upfield-shifted NMR peaks for H-(1/4) and H-(1/2), and spectroscopic data for H-(1/4) were found to be in agreement with the experimental observations as well as previously reported spectroscopic data for H-(1/2) and analysis of KH*Cl and KH*I containing these hydride ions.

  8. Insilico molecular modeling, docking and spectroscopic [FT-IR/FT-Raman/UV/NMR] analysis of Chlorfenson using computational calculations

    NASA Astrophysics Data System (ADS)

    Ramalingam, S.; Periandy, S.; Sugunakala, S.; Prabhu, T.; Bououdina, M.

    2013-11-01

    In the present work, the recorded FT-IR/FT-Raman spectra of the Chlorfenson (4-Chorophenyl-4-chlorobenzenesulfonate) are analysed. The observed vibrational frequencies are assigned and the computational calculations are carried out by DFT (LSDA, B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are investigated with the UV/NMR data. The fluctuation of structure of Chlorobenzenesulfonate due to the substitution of C6H4Cl is investigated. The vibrational sequence pattern of the molecule related to the substitutions is intensely analysed. Moreover, 13C NMR and 1H NMR chemical shifts are calculated by using the gage independent atomic orbital (GIAO) technique with HF/B3LYP/B3PW91 methods on same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated energy of Kubo gap (HOMO and LUMO) ensures that the charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) is executed. NLO properties and Mulliken charges of the Chlorfenson is also calculated and interpreted. Biological properties like the target receptor identification, and Identification of interacting residues, of this compound is identified and analysed by using SWISSMODEL, Castp, Hex and Pdb Sum. By using these properties, the mechanism of action of this compound on ATP Synthase of Tetranychus urticae is found and it is very much useful to develop efficient pesticides having less toxic to the environment.

  9. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid.

    PubMed

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-05

    In the presented study, N-{[(5S)-3-(2-fluoro-4'-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, (1)H {(13)C} HSQC and (1)H {(13)C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. UV-Raman and NMR spectroscopic studies on the crystallization of zeolite A and a new synthetic route.

    PubMed

    Ren, Limin; Li, Caijin; Fan, Fengtao; Guo, Qiang; Liang, Desheng; Feng, Zhaochi; Li, Can; Li, Shougui; Xiao, Feng-Shou

    2011-05-23

    UV-Raman and NMR spectroscopy, combined with other techniques, have been used to characterize crystallization of zeolite A. In situ UV-Raman spectroscopy shows that the starting gel for crystallization of zeolite A contains a lot of four-ring (4R) building units and the appearance of six-ring (6R) building blocks is the signal for crystal formation. (29)Si NMR spectroscopy results suggest that the starting gel is double four-ring (D4R) rich and during crystallization of zeolite A both α and β cages appear. (27)Al NMR spectroscopy results indicate the absence of Al (2Si) species in the starting gel, suggesting the absence of single 4R building units in the starting gel. Furthermore, composition analysis of both solid and liquid samples shows that the solid rather than liquid phase predominates for the crystallization of zeolite A. Therefore, it is proposed that the crystallization of zeolite A mainly occurs in the solid phase by self-assembly or rearrangement starting from the zeolite building units mainly consisting of D4R. The essential role of D4R is directly confirmed by successful conversion from a solution of D4R to zeolite A in the presence of NaCl, and the importance of solid phase is reasonably demonstrated by the successful synthesis of zeolite A from a dry aluminosilicate gel. By considering that the solid phase has a major contribution to crystallization, a novel route was designed to synthesizing zeolite A from the raw materials water glass (Na(2)SiO(3) in aqueous solution) and NaAlO(2), without additional water and NaOH; this route not only simplifies synthetic procedures, but reduces water consumption. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid

    NASA Astrophysics Data System (ADS)

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-01

    In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.

  12. NMR spectroscopic conformational analysis of 4-methylene-cyclohexyl pivalate-The effect of sp(2) hybridization.

    PubMed

    Kleinpeter, Erich; Heydenreich, Matthias; Koch, Andreas; Krtitschka, Angela; Krüger, Tobias; Linker, Torsten

    2017-06-30

    The conformational equilibrium of the axial/equatorial conformers of 4-methylene-cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153 K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (-ΔG°) can be examined, and the barrier to ring interconversion (ΔG(#) ) can be determined. The structural influence of sp(2) hybridization on both ΔG° and ΔG(#) of the cyclohexyl moiety can be quantified. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Monitoring Glycan-Protein Interactions by NMR Spectroscopic Analysis: A Simple Chemical Tag That Mimics Natural CH-π Interactions.

    PubMed

    Calle, Luis P; Echeverria, Begoña; Franconetti, Antonio; Serna, Sonia; Fernández-Alonso, M Carmen; Diercks, Tammo; Cañada, F Javier; Ardá, Ana; Reichardt, Niels-Christian; Jiménez-Barbero, Jesús

    2015-08-03

    Detection of molecular recognition processes requires robust, specific, and easily implementable sensing methods, especially for screening applications. Here, we propose the difluoroacetamide moiety (an acetamide bioisoster) as a novel tag for detecting by NMR analysis those glycan-protein interactions that involve N-acetylated sugars. Although difluoroacetamide has been used previously as a substituent in medicinal chemistry, here we employ it as a specific sensor to monitor interactions between GlcNAc-containing glycans and a model lectin (wheat germ agglutinin). In contrast to the widely employed trifluoroacetamide group, the difluoroacetamide tag contains geminal (1) H and (19) F atoms that allow both (1) H and (19) F NMR methods for easy and robust detection of molecular recognition processes involving GlcNAc- (or GalNAc-) moieties over a range of binding affinities. The CHF2 CONH- moiety behaves in a manner that is very similar to that of the natural acetamide fragment in the involved aromatic-sugar interactions, providing analogous binding energy and conformations, whereas the perfluorinated CF3 CONH- analogue differs more significantly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation.

    PubMed

    Adebajo, Moses O; Frost, Ray L

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl C=O stretching band at 1740-1745 cm(-1) and the intensity of C-O stretching vibration of the cellulose backbone at about 1020-1040 cm(-1). The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.

  15. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl CO stretching band at 1740-1745 cm -1 and the intensity of CO stretching vibration of the cellulose backbone at about 1020-1040 cm -1. The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.

  16. Structural, vibrational and NMR spectroscopic investigations of newly synthesized 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Dar, Ajaz A.; Ahmad, Shabbir; Khan, Abu T.

    2017-10-01

    The compound 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole was synthesized at room temperature through one-pot three-component reaction from 1H-indole, 4-nitrobenzaldehyde, and ethanethiol using hydrated ferric sulfate as a Lewis acid catalyst. The structure was characterised by single crystal XRD, FTIR (4000-400 cm-1), FT-Raman (4000-50 cm-1) and 1H and 13C NMR analysis. The compound crystallizes in the monoclinic with volume 3238.3(9) Å3. The experimental vibrational data find the theoretical support through anharmonic frequency calculations using DFT/B3LYP level of theory in combination with 6-31G(d,p) basis set. It is observed that the predicted geometry well reproduces the XRD structural parameters. The experimental 1H and 13C NMR spectra in CDCl3 solvent and the simulated spectra predicted using gauge independent atomic orbital (GIAO) approach are also found in agreement with each other. HOMO-LUMO, MEP, atomic charges and various other thermodynamic and NLO properties of the title molecule are also reported in this paper.

  17. NMR spectroscopic and bioinformatic analyses of the LTBP1 C-terminus reveal a highly dynamic domain organisation.

    PubMed

    Robertson, Ian B; Handford, Penny A; Redfield, Christina

    2014-01-01

    Proteins from the LTBP/fibrillin family perform key structural and functional roles in connective tissues. LTBP1 forms the large latent complex with TGFβ and its propeptide LAP, and sequesters the latent growth factor to the extracellular matrix. Bioinformatics studies suggest the main structural features of the LTBP1 C-terminus are conserved through evolution. NMR studies were carried out on three overlapping C-terminal fragments of LTBP1, comprising four domains with characterised homologues, cbEGF14, TB3, EGF3 and cbEGF15, and three regions with no homology to known structures. The NMR data reveal that the four domains adopt canonical folds, but largely lack the interdomain interactions observed with homologous fibrillin domains; the exception is the EGF3-cbEGF15 domain pair which has a well-defined interdomain interface. (15)N relaxation studies further demonstrate that the three interdomain regions act as flexible linkers, allowing a wide range of motion between the well-structured domains. This work is consistent with the LTBP1 C-terminus adopting a flexible "knotted rope" structure, which may facilitate cell matrix interactions, and the accessibility to proteases or other factors that could contribute to TGFβ activation.

  18. Further NMR-spectroscopic studies of interaction of phospholipid liposomes with methacryloyloxydecyl dihydrogen phosphate (MDP) in dental adhesives.

    PubMed

    Fujisawa, S; Komoda, Y

    1993-06-01

    To determine how MDP interacts with liposomes, the chemical shifts of dipalmitoylphosphatidylcholine (DPPC)/MDP and dilauroylphosphatidylethanolamine (DLEA)/cholesterol (CS)/MDP liposomes were studied by NMR spectroscopy using a D2O buffer solution at pH 7.0 as a model for biological membranes. Proton chemical shifts of MDP enhanced shielding in DPPC liposomes together with an increase in the mobility of DPPC. However, MDP signals were not observed in DLEA/CS liposomes due to saturation. It is known that an ionized chemical does not lead to increased permeability of cell membranes composed of a lipid bilayer. However, MDP, which is ionized at pH 7.0, had a large interaction with the liposome systems. This appeared to arise from hydrophobic interaction between deca methylene groups of MDP and acyl chains of phospholipid.

  19. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species

    PubMed Central

    Schroeder, Frank C.; Taggi, Andrew E.; Gronquist, Matthew; Malik, Rabia U.; Grant, Jacqualine B.; Eisner, Thomas; Meinwald, Jerrold

    2008-01-01

    Extensive chemical analyses of spider venoms from many species have revealed complex mixtures of biologically active compounds, of which several have provided important leads for drug development. We have recently shown that NMR spectroscopy can be used advantageously for a direct structural characterization of the small-molecule content of such complex mixtures. Here, we report the application of this strategy to a larger-scale analysis of a collection of spider venoms representing >70 species, which, in combination with mass spectrometric analyses, allowed the identification of a wide range of known, and several previously undescribed, small molecules. These include polyamines, common neurotransmitters, and amino acid derivatives as well as two additional members of a recently discovered family of natural products, the sulfated nucleosides. In the case of the well studied brown recluse spider, Loxosceles reclusa, sulfated guanosine derivatives were found to comprise the major small-molecule components of the venom. PMID:18794518

  20. Syntheses, structures, and comprehensive NMR spectroscopic investigations of hetero-chalcogenidometallates: the right mix toward multinary complexes.

    PubMed

    Ruzin, Eugen; Zent, Eldar; Matern, Eberhard; Massa, Werner; Dehnen, Stefanie

    2009-01-01

    Aqueous solutions of ternary ortho-chalcogenidostannate anions [SnE(1)(4-x)E(2)(x)](4-) (E(1), E(2) = S, Se, Te) have been generated following different routes that all lead to equilibria of all possible permutations of binary and ternary anions. This has been rationalized by means of NMR studies that can be explained by calculations using density functional theory (DFT) methods. Thus, if one reacts such solutions with transition-metal ions, quaternary M/Sn/E(1)/E(2) anions are obtained, which exhibit coordination by different ternary chalcogenidostannate ligands. The electronic excitation energies of the corresponding alkali metal salts lie between the E(g) values of compounds containing either M/Sn/E(1) or M/Sn/E(2) anions. In this way, we provide a simple approach toward a library of semiconductor compounds with finely-tuned optoelectronic properties.

  1. An NMR Spectroscopic Investigation of Aluminosilicate Gel in Alkali-Activated Fly Ash in a CO2-Rich Environment

    PubMed Central

    Park, Sol-Moi; Jang, Jeong-Gook; Chae, Seen-Ae; Lee, Haeng-Ki

    2016-01-01

    The present study investigated aluminosilicate gel in alkali-activated fly ash exposed to a CO2-rich environment by means of NMR spectroscopy. The alkali-activated fly ash was exposed to an atmospheric CO2 concentration of 10% after curing at 80 °C initially for 24 h. Under high concentrations of CO2, highly reactive components Na and Al, which completely reacted within the first few hours, were unaffected by carbonation, while Si, with relatively slower reactivity, behaved differently. Despite a lower degree of the reaction in the carbonated sample, the monomeric silicates rapidly became of higher polymerization, meaning that exposure to high concentrations of CO2 caused Si to form a binding gel phase. Consequently, the carbonated sample possessed a higher amount of binding gel. The obtained results may be useful to understand the fundamental chemistry and behavior of aluminosilicate gel under high concentrations of CO2. PMID:28773434

  2. Structural, NMR Spectroscopic, and Computational Investigation of Hemin Loading in the Hemophore HasAp from Pseudomonas aeruginosa

    SciTech Connect

    Jepkorir, Grace; Rodrguez, Juan Carlos; Rui, Huan; Im, Wonpil; Lovell, Scott; Battaile, Kevin P.; Alontaga, Aileen Y.; Yukl, Erik T.; Monne-Loccoz, Pierre; Rivera, Mario

    2010-08-16

    When challenged by low-iron conditions several Gram-negative pathogens secrete a hemophore (HasA) to scavenge hemin from its host and deliver it to a receptor (HasR) on their outer membrane for internalization. Here we report results from studies aimed at probing the structural and dynamic processes at play in the loading of the apo-hemophore secreted by P. aeruginosa (apo-HasAp) with hemin. The structure of apo-HasAp shows a large conformational change in the loop harboring axial ligand His32 relative to the structure of holo-HasAp, whereas the loop bearing the other axial ligand, Tyr75, remains intact. To investigate the role played by the axial ligand-bearing loops in the process of hemin capture we investigated the H32A mutant, which was found to exist as a monomer in its apo-form and as a mixture of monomers and dimers in its holo-form. We obtained an X-ray structure of dimeric H32A holo-HasAp, which revealed that the two subunits are linked by cofacial interactions of two hemin molecules and that the conformation of the Ala32 loop in the dimer is identical to that exhibited by the His32 loop in wild type apo-HasAp. Additional data suggest that the conformation of the Ala32 loop in the dimer is mainly a consequence of dimerization. Hence, to investigate the effect of hemin loading on the topology of the His32 loop we also obtained the crystal structure of monomeric H32A holo-HasAp coordinated by imidazole (H32A-imidazole) and investigated the monomeric H32A HasAp and H32A-imidazole species in solution by NMR spectroscopy. The structure of H32A-imidazole revealed that the Ala32 loop attains a 'closed' conformation nearly identical to that observed in wild type holo-HasAp, and the NMR investigations indicated that this conformation is maintained in solution. The NMR studies also highlighted conformational heterogeneity at the H32 loop hinges and in other key sections of the structure. Targeted molecular dynamics simulations allowed us to propose a possible path

  3. NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.

    PubMed

    Stanek, Jan; Andreas, Loren B; Jaudzems, Kristaps; Cala, Diane; Lalli, Daniela; Bertarello, Andrea; Schubeis, Tobias; Akopjana, Inara; Kotelovica, Svetlana; Tars, Kaspars; Pica, Andrea; Leone, Serena; Picone, Delia; Xu, Zhi-Qiang; Dixon, Nicholas E; Martinez, Denis; Berbon, Mélanie; El Mammeri, Nadia; Noubhani, Abdelmajid; Saupe, Sven; Habenstein, Birgit; Loquet, Antoine; Pintacuda, Guido

    2016-12-12

    We demonstrate sensitive detection of alpha protons of fully protonated proteins by solid-state NMR spectroscopy with 100-111 kHz magic-angle spinning (MAS). The excellent resolution in the Cα-Hα plane is demonstrated for 5 proteins, including microcrystals, a sedimented complex, a capsid and amyloid fibrils. A set of 3D spectra based on a Cα-Hα detection block was developed and applied for the sequence-specific backbone and aliphatic side-chain resonance assignment using only 500 μg of sample. These developments accelerate structural studies of biomolecular assemblies available in submilligram quantities without the need of protein deuteration.

  4. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime

    NASA Astrophysics Data System (ADS)

    Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D.

    2012-10-01

    In the present analysis, FT-IR/FT-Raman spectra of the cyclohexanone oxime (CHO, C6H11NO) are recorded. The observed vibrational frequencies are assigned and the computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set and the corresponding results are tabulated. In order to yield good coherence with observed values, the calculated frequencies are scaled by appropriate scale factors. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The alternation of structure of cyclohexanone due to the substitution of NOH is investigated. The vibrational sequence pattern of the molecule related to the substitutions is analyzed. Comparison of the observed fundamental vibrational frequencies of CHO and calculated results by density functional (B3LYP and B3PW91) and HF methods indicates that B3LYP is superior to the scaled HF and B3PW91 approach for molecular vibrational problems. Moreover, 13C NMR and 1H NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with HF/B3LYP/B3PW91 methods and the same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. NLO properties and Mulliken charges of the CHO was also calculated and interpreted. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures are calculated in gas phase.

  5. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime.

    PubMed

    Ramalingam, S; Karabacak, M; Periandy, S; Puviarasan, N; Tanuja, D

    2012-10-01

    In the present analysis, FT-IR/FT-Raman spectra of the cyclohexanone oxime (CHO, C(6)H(11)NO) are recorded. The observed vibrational frequencies are assigned and the computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set and the corresponding results are tabulated. In order to yield good coherence with observed values, the calculated frequencies are scaled by appropriate scale factors. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The alternation of structure of cyclohexanone due to the substitution of NOH is investigated. The vibrational sequence pattern of the molecule related to the substitutions is analyzed. Comparison of the observed fundamental vibrational frequencies of CHO and calculated results by density functional (B3LYP and B3PW91) and HF methods indicates that B3LYP is superior to the scaled HF and B3PW91 approach for molecular vibrational problems. Moreover, (13)C NMR and (1)H NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with HF/B3LYP/B3PW91 methods and the same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. NLO properties and Mulliken charges of the CHO was also calculated and interpreted. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures are calculated in gas phase.

  6. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory.

    PubMed

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-15

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis.

    PubMed

    Park, Jung-Yeon; Yoon, Sang Jun; Lee, Huen

    2003-04-15

    Acid gas absorption technology is of great importance in these days for the prevention of global warming and the resulting worldwide climate change. More efficient process design and development for the removal of acid gases has become important, together with the development of new absorbents as one of urgent areas of research in addressing global-warming problems. In the present work, aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), a sterically hindered amine, has been examined as a potential CO2 absorbent and compared with the most commonly used absorbent, monoethanolamine (MEA) solution, through equilibrium solubility measurements and 13C NMR spectroscopic analyses. The solubilities of CO2 in aqueous 10 mass % AHPD solutions were higher than those in aqueous 10 mass % MEA solutions above 4 kPa at 298.15 K, but below 4 kPa, the solubility behavior appeared to be the opposite. The solubility difference between these two solutions increased with the CO2 partial pressures above the crossover pressure. Equilibrated CO2-MEA-H2O and CO2-AHPD-H2O solutions at various CO2 partal pressures ranging from 0.01 to 3000 kPa were analyzed by 13C NMR spectroscopy to provide a more microscopic understanding of the reaction mechanisms in the two solutions. In the CO2-amine-H2O solutions, amine reacted with CO2 to form mainly the protonated amine (AMH+), bicarbonate ion (HCO3-), and carbamate anion (AMCO2-), where the quantitative ratio of bicarbonate ion to carbamate anion strongly influenced the CO2 loading in the amine solutions. A profusion of bicarbonate ions, but a very small amount of carbamate anions, was identified in the CO2-AHPD-H2O solution, whereas a considerable amount of carbamate anions was formed in the CO2-MEA-H2O solution. AHPD contains more hydroxyl groups than nonhindered MEA, and hence, the chemical shifts in its 13C NMR spectra were strongly influenced by the solution pH values. In contrast, MEA appeared to be insensitive to pH. The

  8. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)-2-Amino-1-PhenylEthanol

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Periandy, S.

    2016-08-01

    A systematic spectroscopic study of (R)-2-Amino-1-Phenylethanol was carried out using FT-IR, FT-Raman, NMR and UV analysis. FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectrum of the title molecule were recorded in solid phase, the 1H and 13C NMR spectra were recorded in CDCl3 (deuterated chloroform) solution phase and the UV-Vis (200-800 nm) spectrum was recorded in gas phase and ethanol solution phase. Potential energy surface (PES) scan was performed using B3LYP functional with 6-311++G (d, p) basis set. The geometrical parameters (such as bond length, bond angle, dihedral angles) and theoretical frequencies of the title compound were studied from density functional theory (DFT) using B3LYP and B3PW91 functionals with 6-311++G (d, p) basis sets. The computed frequencies were scaled and compared with the experimental values and potential energy distribution (PED) has been tabulated. A comparative study of atomic charges was made by calculating Mulliken, Natural Population Analysis (NPA) and Electrostatic Potential (ESP) simultaneously, with B3LYP/6-311++G (d, p) basis set. 1H and 13C NMR spectra were recorded and chemical shifts were compared to TMS by Gauge-Independent Atomic Orbital (GIAO) method. Electronic properties such as excitation energy, energy gap between HOMO and LUMO was calculated using time dependent DFT technique. NBO analysis, which predicts the different possibilities of electronic transition in the molecule, was computed using B3PW91 functional with 6-311++G (d, p) basis set. The thermodynamic properties such as heat capacity, entropy and enthalpy at different temperatures were computed and analyzed. Molecular docking study shows that the secondary hydroxyl group and the primary amino group in the aliphatic chain attached to the benzene ring are crucial for binding and the title compound might exhibit inhibitory activity against Bacteroides fragilis (3P24) and may act as anti-bacterial agent.

  9. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  10. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.

    2015-10-01

    In this paper, the spectral analysis of 1-phenyl-2-nitropropene is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum mechanical computations using ab-initio and density functional theories. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra were recorded in solid phase, the 1H and 13C NMR spectra were recorded in CDCl3 solution phase and the UV-Vis (200-800 nm) spectrum was recorded in ethanol solution phase. The different conformers of the compound and their minimum energies are studied using B3LYP functional with 6-311+G(d,p) basis set and two stable conformers with lowest energy were identified and the same was used for further computations. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the modes of vibrations are assigned and the structure the molecule is analyzed in terms of parameters like bond length, bond angle and dihedral angle predicted by both B3LYP and B3PW91 methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non-linear property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated.

  11. NMR spectroscopic study of noble gas binding into the engineered cavity of HPr(I14A) from Staphylococcus carnosus.

    PubMed

    Nisius, Lydia; Stadler, Max; Kalbitzer, Hans Robert; Brunner, Eike

    2005-09-29

    Xenon binding into preexisting cavities in proteins is a well-known phenomenon. Here we investigate the interaction of helium, neon, and argon with hydrophobic cavities in proteins by NMR spectroscopy. 1H and 15N chemical shifts of the I14A mutant of the histidine-containing phosphocarrier protein (HPr(I14A)) from Staphylococcus carnosus are analyzed by chemical shift mapping. Total noble gas induced chemical shifts, Delta, are calculated and compared with the corresponding values obtained using xenon as a probe atom. This comparison reveals that the same cavity is detected with both argon and xenon. Measurements using the smaller noble gases helium and neon as probe atoms do not result in comparable effects. The dependence of amide proton and nitrogen chemical shifts on the argon concentration is investigated in the range from 10 mM up to 158 mM. The average dissociation constant for argon binding into the engineered cavity is determined to be about 90 mM.

  12. Synthesis, spectroscopic (electronic, IR, NMR and ESR) and theoretical studies of transition metal complexes with some unsymmetrical Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Shweta; Singh, Divya P.; Tiwari, K.; Mishra, Monika

    2014-01-01

    Two unsymmetrical Schiff bases, glyoxal salicylaldehyde oxalic acid dihydrazone (gsodh) and glyoxal salicylaldehyde malonic acid dihydrazone (gsmdh) and their Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The structures of metal complexes are elucidated on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, ESR, IR and NMR (1H and 13C) spectral studies. Both ligands show monobasic tetra-dentate behaviour, bonding through CO, two CN and a phenolate group. The electronic spectral studies in solid state indicate a square planar geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complexes. However, Co(II) and Cu(II) complexes adopt octahedral geometry in DMSO solution. The ESR spectra of Cu(II) complexes in DMSO solution at 77 K predict an elongated tetragonal distorted octahedral geometry around metal ion and presence of unpaired electron in d orbital. Further, the structures of ligands and their Ni(II) complexes have been satisfactorily modelled by calculations based on density functional theory (DFT). The electronic spectra of Ni(II) complexes are also analyzed in depth with the help of time dependent-DFT (TD-DFT). The theoretical analyses of electronic structure and molecular orbitals have demonstrated that the high-energy absorption bands are M → L charge transfer and low energy transitions are d-d transitions.

  13. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  14. Structure of 6-hydroxy-1-methylquinolinium chloride hydrate studied by X-ray, DFT calculations, FTIR and NMR spectroscopes

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Komasa, A.; Ratajczak-Sitarz, M.; Katrusiak, A.; Koput, J.; Dega-Szafran, Z.; Szafran, M.

    2010-12-01

    The crystal structure of 6-hydroxy-1-methylquinolinium chloride hydrate ( 1), 6QBWHCl, is monoclinic, space group P2 1/ n and Z = 4. 1-Methyl-6-oxyquinolinium betaine, 6QB, is protonated and its OH group participates in a moderate hydrogen bond with water molecule (O(1)-H⋯O(W1) = 2.636(2) Å). The water molecule is further connected by a hydrogen bond to chloride ion (O(W1)-H(W2)⋯Cl(1) = 3.090(3) Å). Structures of five complexes ( 2- 6) have been optimized by the B3LYP/6-311G(d, p) level of theory and the results have been compared with the X-ray data of 1. Linear correlations between the experimental 1H and 13C NMR chemical shifts ( δexp) of complexes 2- 5 and the magnetic isotropic shielding constants ( σcal) calculated by the GIAO/B3LYP/6-311G(d, p) approach, using the screening solvation model (COSMO), δexp = a + bσcal, are reported. The probable assignments of the anharmonic experimental solid state vibrational frequencies of anhydrous complex, 6QBHCl, based on the calculated B3LYP/6-311G(d, p) harmonic frequencies have been proposed.

  15. NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans.

    PubMed

    Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa

    2017-10-15

    An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  17. Design of ET(B) receptor agonists: NMR spectroscopic and conformational studies of ET7-21[Leu7, Aib11, Cys(Acm)15].

    PubMed

    Hewage, Chandralal M; Jiang, Lu; Parkinson, John A; Ramage, Robert; Sadler, Ian H

    2002-03-01

    In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.

  18. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  19. Divergent Urinary Metabolic Phenotypes between Major Depressive Disorder and Bipolar Disorder Identified by a Combined GC-MS and NMR Spectroscopic Metabonomic Approach.

    PubMed

    Chen, Jian-Jun; Zhou, Chan-Juan; Liu, Zhao; Fu, Yu-Ying; Zheng, Peng; Yang, De-Yu; Li, Qi; Mu, Jun; Wei, You-Dong; Zhou, Jing-Jing; Huang, Hua; Xie, Peng

    2015-08-07

    Bipolar disorder (BD) is a complex debilitating mental disorder that is often misdiagnosed as major depressive disorder (MDD). Therefore, a large percentage of BD subjects are incorrectly treated with antidepressants in clinical practice. To address this challenge, objective laboratory-based tests are needed to discriminate BD from MDD patients. Here, a combined gas chromatography-mass spectrometry (GC-MS)-based and nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was performed to profile urine samples from 76 MDD and 43 BD subjects (training set) to identify the differential metabolites. Samples from 126 healthy controls were included as metabolic controls. A candidate biomarker panel was identified by further analyzing these differential metabolites. A testing set of, 50 MDD and 28 BD subjects was then used to independently validate the diagnostic efficacy of the identified panel using an area under the receiver operating characteristic curve (AUC). A total of 20 differential metabolites responsible for the discrimination between MDD and BD subjects were identified. A panel consisting of six candidate urinary metabolite biomarkers (propionate, formate, (R*,S*)2,3-dihydroxybutanoic acid, 2,4-dihydroxypyrimidine, phenylalanine, and β-alanine) was identified. This panel could distinguish BD from MDD subjects with an AUC of 0.913 and 0.896 in the training and testing sets, respectively. These results reveal divergent urinary metabolic phenotypes between MDD and BD. The identified urinary biomarkers can aid in the future development of an objective laboratory-based diagnostic test for distinguishing BD from MDD patients.

  20. Spectroscopic (FT-IR and FT-Raman) studies, NBO, HOMO-LUMO, NMR analyses and thermodynamics functions of 5-bromo-2-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Santhi, G.; Karpagam, V.

    2013-04-01

    The (FT-IR and FT-Raman) spectral properties of 5-bromo-2-methoxybenzaldehyde (BMB) are studied using density functional theory (DFT) employing B3LYP/6-311++G (d) and B3LYP/6-311++G (d, p) levels of theory. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of BMB as the C1 form. The optimized geometrical parameters obtained by B3LYP/6-311++G (d, p) method show good agreement with experimental X-ray data. A study on the electronic properties, such as HOMO and LUMO energies, is performed. The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the BMB calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations. The MEP surface reflects the chemical reactivity of a molecule. The thermodynamic functions (heat capacity, internal heat energy, Gibbs energy and entropy) from spectroscopic data by statistical methods were obtained for the range of temperature 100-1000 K. The energetic behavior of the compound in different solvent medium (water, ethanol, and methanol) was examined by applying polarizable continuum model (PCM). The complete molecular orbital simulations and theoretical UV-visible spectra carried out in this study yield better understanding of charge delocalization pattern and stability of the title molecules to a greater extent.

  1. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  2. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A.

    PubMed

    Song, Chen; Essen, Lars-Oliver; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2012-05-01

    Despite extensive study, the molecular structure of the chromophore-binding pocket of phytochrome A (phyA), the principal photoreceptor controlling photomorphogenesis in plants, has not yet been successfully resolved. Here, we report a series of two-dimensional (2-D) magic-angle spinning solid-state NMR experiments on the recombinant N-terminal, 65-kDa PAS-GAF-PHY light-sensing module of phytochrome A3 from oat (Avena sativa), assembled with uniformly 13C- and 15N-labeled phycocyanobilin (u-[13C,15N]-PCB-As.phyA3). The Pr state of this protein was studied regarding the electronic structure of the chromophore and its interactions with the proximal amino acids. Using 2-D 13C-13C and 1H-15N experiments, a complete set of 13C and 15N assignments for the chromophore were obtained. Also, a large number of 1H-13C distance restraints between the chromophore and its binding pocket were revealed by interfacial heteronuclear correlation spectroscopy. 13C doublings of the chromophore A-ring region and the C-ring carboxylate moiety, together with the observation of two Pr isoforms, Pr-I and Pr-II, demonstrate the local mobility of the chromophore and the plasticity of its protein environment. It appears that the interactions and dynamics in the binding pocket of phyA in the Pr state are remarkably similar to those of cyanobacterial phytochrome (Cph1). The N-terminus of the region modeled (residues 56-66 of phyA) is highly mobile. Differences in the regulatory processes involved in plant and Cph1 phytochromes are discussed.

  3. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.

    PubMed

    Treweek, Teresa M; Rekas, Agata; Walker, Mark J; Carver, John A

    2010-11-01

    The principal lens proteins αA- and αB-crystallin are members of the small heat-shock protein (sHsp) family of molecular chaperone proteins. Via their chaperone action, αA- and αB-crystallin play an important role in maintaining lens transparency by preventing crystallin protein aggregation and precipitation. αB-crystallin is found extensively extralenticularly where it is stress inducible and acts as a chaperone to facilitate general protein stabilization. The structure of either αA- or αB-crystallin is not known nor is the mechanism of their chaperone action. Our earlier (1)H NMR spectroscopic studies determined that mammalian sHsps have a highly dynamic, polar and unstructured region at their extreme C-terminus (summarized in Carver (1999) Prog. Ret. Eye Res. 18, 431). This C-terminal extension acts as a solubilizing agent for the relatively hydrophobic protein and the complex it makes with its target proteins during chaperone action. In this study, αA- and αB-crystallin were (15)N-labelled and their (1)H-(15)N through-bond correlation, heteronuclear single-quantum coherence (HSQC) NMR spectra were assigned via standard methods. (1)H-(15)N spin-lattice (T(1)) and spin-spin (T(2)) relaxation times were measured for αA- and αB-crystallin in the absence and presence of a bound target protein, reduced α-lactalbumin. (1)H-(15)N Nuclear Overhauser Effect (NOE) values provide an accurate measure, on a residue-by-residue basis, of the backbone flexibility of polypeptides. From measurement of these NOE values, it was determined that the flexibility of the extension in αA- and αB-crystallin increased markedly at the extreme C-terminus. By contrast, upon chaperone interaction of αA-crystallin with reduced α-lactalbumin, flexibility was maintained in the extension but was distributed evenly across all residues in the extension. Two mutants of αB-crystallin in its C-terminal region: (i) I159A and I161A and (ii) K175L, have altered chaperone ability (Treweek

  4. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-Bromo-3-Pyridinyl Boronic Acid

    NASA Astrophysics Data System (ADS)

    Dikmen, Gökhan; Alver, Özgür

    2015-11-01

    Possible stable conformers and geometrical molecular structures of 6-Bromo-3-Pyridinyl Boronic acid (6B3PBA; C5H5BBrNO2) were studied experimentally and theoretically using FT-IR and Raman spectroscopic methods. FT-IR and Raman spectra were recorded in the region of 4000-400 cm-1 and 3700-400 cm-1, respectively. The structural properties were investigated further, using 1H, 13C, 1H coupled 13C, HETCOR, COSY and APT NMR techniques. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. Vibrational wavenumbers of 6B3PBA were calculated whereby B3LYP density functional methods including 6-311++G(d, p), 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. The comparison of the experimentally and theoretically obtained results using mean absolute error and experimental versus calculated correlation coefficients for the vibrational wavenumbers indicates that B3LYP method with 6-311++G(d, p) gives more satisfactory results for predicting vibrational wavenumbers when compared to the 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. However, this method and none of the mentioned methods here seem suitable for the calculations of OH stretching modes, most likely because increasing unharmonicity in the high wave number region and possible intra and inter molecular interactions at OH edges lead some deviations between experimental and theoretical results. Moreover, reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated using scaled quantum mechanical (SQM) method.

  5. Isoelectric focusing purity criteria and /sup 1/H NMR detectable spectroscopic heterogeneity in the major isolated monomer hemoglobins from Glycera dibranchiata

    SciTech Connect

    Constantinidis, I.; Satterlee, J.D.

    1987-12-01

    Three major monomeric hemoglobins have been isolated from the erythrocytes of Glycera dibranchiata. Their importance to structure-function studies of heme proteins lies in the fact that they have been shown to possess an exceptional amino acid substitution. In these proteins, the E-7 position is occupied by leucine rather than the more common distal histidine. This substitution alters the polarity of the heme ligand binding environment compared to myoglobin. Due to this, the G. dibranchiata monomer hemoglobins are attracting much attention. However, until now no purity criterion has been developed. Here the authors demonstrate that, for all of the Glycera momomer hemoglobins, multiple line patterns are shown on high-voltage isoelectric focusing (IEF) gels. Most of these lines are shown to be a consequence of heme-related phenomena and can be understood on the basis of changes in oxidation and ligation state of the heme iron. The multiple line pattern does not indicate significant impurities in the monomer hemoglobin preparation. The multiple line patterns on IEF gels disappear when gels of the apoproteins alone are focused. Single bands occur in this case for all of the monomer hemoglobins except component II, which displays two bands, one major and one minor. The minor band is found to be a modified apoprotein form. It is sensitive to apoprotein handling prior to focusing and depends upon whether the IEF gel is prefocused or not. From this analysis, IEF is shown to be a valuable purity criterion, and the purity of our monomer hemoglobin component II preparation is 97% one globin. The NMR results show that two types of spectroscopic heterogeneity are also present in component II, and these are unrelated to the protein purity.

  6. Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.

    2015-09-01

    The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  7. Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone.

    PubMed

    Arockia doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Saleem, H

    2015-09-05

    The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  8. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  9. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  10. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  11. Synergistic effect of the simultaneous chemometric analysis of ¹H NMR spectroscopic and stable isotope (SNIF-NMR, ¹⁸O, ¹³C) data: application to wine analysis.

    PubMed

    Monakhova, Yulia B; Godelmann, Rolf; Hermann, Armin; Kuballa, Thomas; Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred; Rutledge, Douglas N

    2014-06-23

    It is known that (1)H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when (1)H NMR profiles are fused with stable isotope (SNIF-NMR, (18)O, (13)C) data. Variable selection based on clustering of latent variables was performed on (1)H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with (1)H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60-70% correct prediction and (1)H NMR data alone in 82-89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for (1)H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of (1)H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  12. Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Amit; Deval, Vipin; Gupta, Archana; Tandon, Poonam; Patil, P. S.; Deshmukh, Prathmesh; Chaturvedi, Deepika; Watve, J. G.

    2017-02-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of the chalcone derivative 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one (2C6F2SC) is reported. Initial geometry generated from single crystal X-ray diffraction parameters was minimized at DFT level employing B3LYP/6-311++G (d,p) without any constraint to the potential energy surface. The molecule has been characterized using various experimental techniques FT-IR, FT-Raman, UV-Vis, 1H NMR, TD-THz and the spectroscopic data have been analyzed theoretically by Density Functional Theory (DFT) method. Harmonic vibrational frequencies were calculated theoretically using the optimized ground state geometry and the spectra were interpreted by means of potential energy distribution. Time Dependent Density Functional Theory (TD-DFT) has been used to calculate energies, absorption wavelengths, oscillator strengths of electronic singlet-singlet transitions. The calculated energy and oscillator strength complement with the experimental findings. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlations between the experimental 1H NMR chemical shifts and calculated GIAO shielding tensors were found. Stability of the molecule, hyperconjugative interactions and charge delocalization has been analyzed by natural bond orbital (NBO) analysis. The first order hyperpolarizability (β) of this molecular system and related properties (μ, <α> and Δα) have been calculated using the finite-field approach.

  13. Isoxazole derivatives of alpha-pinene isomers: Synthesis, crystal structure, spectroscopic characterization (FT-IR/NMR/GC-MS) and DFT studies

    NASA Astrophysics Data System (ADS)

    Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; Taş, Murat

    2016-03-01

    In this paper, the alpha-pinene isoxazole derivatives (3a-b-c, 4a-b) were synthesized via 1,3-dipolar cycloaddition and characterized with FT-IR, 1H NMR, 13C NMR and GC-MS. Isoxazole (C21H23NO) compound (4a) 6,6,7a,-trimethyl-3-(naphthalen-2-yl)-3a,4,5,6,7,7a-hexahydro-5,7-methanobenzo[d] was characterized by X-ray single crystal diffraction technique. The compound crystallizes in the monoclinic space group P 212121, with Z = 4. The molecular geometry of the compound was optimized by applying Density Functional Theory (DFT/B3LYP) method with 6-31G(d,p) and 6-311 + G(d,p) basis sets in the ground state and geometric parameters were compared with the X-ray analysis results of the structure. Results of the experimental FT-IR and NMR spectral analysis were examined in order to determine the compliance with vibrational frequencies, 1H NMR and 13C NMR chemical shifts values by using the Gauge-Independent Atomic Orbital (GIAO) method calculated over the optimized structure. Besides molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behaviour and Mulliken charge analysis of the (4a) compound were computed with the same method in gas phase, theoretically.

  14. Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa

    2014-01-01

    The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.

  15. Ligand π-radical interaction with f-shell unpaired electrons in phthalocyaninato-lanthanoid single-molecule magnets: a solution NMR spectroscopic and DFT study.

    PubMed

    Damjanović, Marko; Morita, Takaumi; Katoh, Keiichi; Yamashita, Masahiro; Enders, Markus

    2015-10-05

    The phthalocyaninato double-decker complexes [M(obPc)2 ](0) (M= Y(III) , Tb(III) , Dy(III) ; obPc=2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato), along with their reduced ([M(obPc)2 ](-) [P(Ph)4 ](+) ; M=Tb(III) , Dy(III) ) and oxidized ([M(obPc)2 ](+) [SbCl6 ](-) (M=Y(III) , Tb(III) ) counterparts were studied with (1) H, (13) C and 2D NMR. From the NMR data of the neutral (i.e., with one unpaired electron in the ligands) and anionic Tb(III) complexes, along with the use of dispersion corrected DFT methods, it was possible to separate the metal-centered and ligand-centered contributions to the hyperfine NMR shift. These contributions to the (1) H and (13) C hyperfine NMR shifts were further analyzed in terms of pseudocontact and Fermi contact shifts. Furthermore, from a combination of NMR data and DFT calculations, we have determined the spin multiplicity of the neutral complexes [M(obPc)2 ](0) (M=Tb(III) and Dy(III) ) at room temperature. From the NMR data of the cationic Tb(III) complex, for which actually no experimental structure determination is available, we have analyzed the structural changes induced by oxidation from its neutral/anionic species and shown that the interligand distance decreases upon oxidation. The fast electron exchange process between the neutral and anionic Tb(III) double-decker complexes was also studied. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  17. Synthesis, structural, and spectroscopic (FT-IR, NMR, and UV) Characterization of 1-(Cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole by experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Özdemir, Namık; Dayan, Osman; Demirmen, Selin

    2016-05-01

    The title compound ( II), 1-(cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole (C19H21N3), was synthesized via N-alkylation of 2-(pyridin-2-yl)-1 H-benzo[ d]imidazole ( I). Both compounds I and II were characterized by IR, NMR and UV-vis spectroscopy. Solid-state structure of compound II was determined by single-crystal X-ray diffraction technique. Furthermore, quantum chemical calculations employing density functional theory (DFT/B3LYP) method with the 6-311++ G( d, p) basis set were performed for the theoretical characterization of the molecular and spectroscopic features of the compounds. Using the TD-DFT method, electronic absorption spectra of the compounds have been predicted at same level. When the obtained results were compared with the experimental findings, it is seen that theoretical results support the experimental data and a good agreement exists between them.

  18. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid.

    PubMed

    Kalinowska, M; Piekut, J; Bruss, A; Follet, C; Sienkiewicz-Gromiuk, J; Świsłocka, R; Rzączyńska, Z; Lewandowski, W

    2014-03-25

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ((13)C, (1)H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  20. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  1. NMR spectroscopic characterization and DFT calculations of zirconium(IV)-3,3'-Br2-BINOLate and related complexes used in an enantioselective Friedel-Crafts alkylation of indoles with α,β-unsaturated ketones.

    PubMed

    Blay, Gonzalo; Cano, Joan; Cardona, Luz; Fernández, Isabel; Muñoz, M Carmen; Pedro, José R; Vila, Carlos

    2012-12-07

    Experimental and theoretical studies on the structure of several complexes based on (R)-3,3'-Br(2)-BINOL ligand and group (IV) metals used as catalysts in an enantioselective Friedel-Crafts alkylation of indoles with α,β-unsaturated ketones have been carried out. NMR spectroscopic studies of these catalysts have been performed, which suggested that at room temperature the catalysts would form a monomeric structure in the case of Ti(IV) and a dimeric structure in the cases of Zr(IV) and Hf(IV). Density functional theory (DFT) calculations clearly corroborate the conclusions of these experimental spectroscopic studies. The dimeric structure with a doubly bridged motif [Zr(IV)(2)(μ-(R)-3,3'-Br(2)-BINOL)(2)] where each binaphthol ligand acts as bridge between the metal centers (Novak's model) is more stable than the dimeric structure with a doubly bridged motif [Zr(IV)(2)(μ-O(t)Bu)(2)] where the tert-butoxide groups act as bridging ligands (Kobayashi's model). The scope of the Friedel-Crafts alkylation with regard to the indole structure has been studied. Finally a plausible mechanism for the Friedel-Crafts reaction and a stereomodel for the mode of action of the catalyst that explain the observed stereochemistry of the reaction products have been proposed.

  2. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    PubMed

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual (1)H and (13)C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  3. Investigation of Uña De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa.

    PubMed

    Muhammad, I; Dunbar, D C; Khan, R A; Ganzera, M; Khan, I A

    2001-07-01

    The C-8-(S) isomer of deoxyloganic acid (7-deoxyloganic acid), together with beta-sitosteryl glucoside, five known stereoisomeric pentacyclic oxindole alkaloids and the tetracyclic oxindole isorhyncophylline, were isolated from the inner bark of Uncaria tomentosa. Structures of the isolated compounds were based on 1H and 13C NMR data, mainly 2D NMR experiments, including 1H-13C HMBC and 1H-1H NOESY correlation. Furthermore, the hitherto unreported 15N chemical shifts of the isomeric oxindole alkaloids, using 1H-15N HMBC experiments, were utilized to facilitate their characterization. Uncarine D showed weak cytotoxic activity against SK-MEL, KB, BT-549 and SK-OV-3 cell lines with IC(50) values between 30 and 40 microg/ml, while uncarine C exhibited weak cytotoxicity only against ovarian carcinoma (IC(50) at 37 microg/ml).

  4. Study of H/D exchange rates to derive the strength of intramolecular hydrogen bonds in halo substituted organic building blocks: An NMR spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Mishra, Sandeep Kumar; Suryaprakash, N.

    2015-10-01

    Rates of hydrogen/deuterium (H/D) exchange determined by 1H NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of 1H NMR resonances to the first order decay function permitted the determination of H/D exchange rate constants (k) and their precise half-lives (t1/2) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the H/D exchange rate.

  5. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  6. Open-chain unsaturated selanyl sulfides: stereochemical structure and stereochemical behavior of their 77Se-1H spin-spin coupling constants.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Penzik, Maxim V; Potapov, Vladimir A; Amosova, Svetlana V

    2012-10-01

    Stereochemical structure of nine Z-2-(vinylsulfanyl)ethenylselanyl organyl sulfides has been investigated by means of experimental measurements and second-order polarization propagator approach calculations of their (1)H-(1)H, (13)C-(1)H, and (77)Se-(1)H spin-spin coupling constants together with a theoretical conformational analysis performed at the MP2/6-311G** level. All nine compounds were shown to adopt the preferable skewed s-cis conformation of their terminal vinylsulfanyl group, whereas the favorable rotational conformations with respect to the internal rotations around the C-S and C-Se bonds of the internal ethenyl group are both skewed s-trans. Stereochemical trends of (77)Se-(1)H spin-spin coupling constants originating in the geometry of their coupling pathways and the selenium lone pair effect were rationalized in terms of the natural J-coupling analysis within the framework of the natural bond orbital approach.

  7. Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds.

    PubMed

    Suzuki, Kazuo T; Ohta, Yuki; Suzuki, Noriyuki

    2006-11-15

    Nutritional selenocompounds are considered to be transformed into the common intermediate selenide for utilization as selenoenzymes and/or for excretion as selenosugar and trimethylselenonium (TMSe). Therefore, selenocompounds can only be traced with a labeled selenium atom. Methylseleninic (MSA(IV)) has been proposed to be a third nutritional selenium source, the other two being inorganic selenocompounds and organic selenoamino acids, and to be a proximate selenochemical for producing the assumed biologically active form methylselenol. Here we applied a new tracer method to compare the availability and metabolism of MSA(IV) with those of three related selenocompounds under exactly identical host and tracing conditions. (82)Se-Selenite, (78)Se-selenate, (77)Se-MSA(IV) and (76)Se-methylselenonic acids (MSA(VI)) were simultaneously administered orally, each at the dose of 25 microg Se/kg body weight, to rats that had been depleted of endogenous natural abundance selenium with a single stable isotope ((80)Se). Time-related changes in the concentrations and/or distributions of the four labeled isotopes in the serum, liver, kidney, pancreas, lung and urine were determined simultaneously by inductively coupled argon plasma mass spectrometry (ICP MS) and/or HPLC-ICP MS. The availability with different isotope ratios was in the decreasing order of selenate>selenite=MSA(IV)>MSA(VI). Although selenate and MSA(VI) were distributed in organs and urine partly in their intact forms, MSA(IV) and selenite were not detected in the intact forms at all. MSA(IV) and MSA(VI) but not selenite or selenate produced TMSe in organs other than the liver, suggesting the transformation of MSA(IV) into methylselenol, and then either into selenide for the synthesis of selenoproteins and selenosugar or directly into TMSe. Thus, selenosugar and TMSe were produced widely in the organs. However, TMSe was not detected in the liver. The organ- and selenium source-specific production of TMSe was

  8. Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite.

    PubMed

    Suzuki, Kazuo T; Doi, Chiaki; Suzuki, Noriyuki

    2006-12-01

    Se-Methylated selenoamino acids, Se-methylselenocysteine (MeSeCys) and selenomethionine (SeMet), are chemically inert storage forms of selenium in selenium-accumulators, and a nutritional and supplemental source. The metabolic pathway for MeSeCys was precisely traced by referring to those for SeMet and selenite by applying a new tracer method involving multiple homo-elemental stable isotopes. Male Wistar rats were depleted of endogenous natural abundance selenium with a single (80)Se-enriched isotope, and then (76)Se-MeSeCys, (77)Se-SeMet and (82)Se-selenite were orally administered simultaneously at 25 microg Se/kg body weight each. Organs and body fluids were obtained at 3, 6, 9 and 12 h, and 1 and 2 days later, and subjected to speciation analysis. The main characteristics of the metabolism were as follows; MeSeCys was incorporated into selenoprotein P slightly more than or at a comparable level to that of SeMet but less than that of selenite. MeSeCys and SeMet but not selenite was taken up by organs in their intact forms. MeSeCys and SeMet were delivered specifically to the pancreas and present in a form bound to an identical or similar protein. Trimethylselenonium (TMSe) was only produced from MeSeCys, i.e., not from SeMet or selenite, in the kidneys. Both selenosugars A and B of MeSeCys, SeMet and selenite origin were detected in the liver but only selenosugar B in the kidneys. These results suggest that MeSeCys can be a similar or better selenium source than SeMet, and supplies methylselenol much more efficiently in organs than SeMet and selenite. TMSe was produced much efficiently from MeSeCys than from SeMet and selenite, suggesting a role of methylselenol through the beta-lyase reaction in the metabolism of Se-methylated selenoamino acids.

  9. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  10. Conformational stability and thermal pathways of relaxation in triclosan (antibacterial/excipient/contaminant) in solid-state: combined spectroscopic ((1)H NMR) and computational (periodic DFT) study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Tomczak, Marzena Agnieszka; Medycki, Wojciech

    2015-05-21

    The mechanism of molecular dynamics in the antibacterial/antifungal agent, triclosan (5-chloro-2-(2',4'-dichlorophenoxy)-phenol), in solid state was studied by (1)H NMR spectroscopy and periodic density functional theory (DFT) calculations. Temperature dependencies of the proton spin-lattice relaxation time (T1) in the ranges 86-293 and 90-250 K (at 15 and 24.667 MHz, respectively) and the second moment (M2) of the (1)H NMR resonant line in the range 103-300 K were measured. Two minima in the temperature dependence of T1 revealed a classical Arrhenius governed activation processes. The low temperature shallow minimum T1(T) of 71 s at 115 K, 15 MHz, which shifts with frequency, was assigned to classical hindered jumps of hydroxyl group around OC axis and with respect to a 5-chloro-2-phenol ring. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 9.68 kJ/mol. The pointed high temperature minimum T1(T) of 59 s at 190 K, 15 MHz, which also shifts with frequency, was assigned to the small angle librations by Θlib= ± 9° between two positions of equilibrium differing in energy by 7.42 kJ/mol. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 31.1 kJ/mol. Both motions result in a negligible reduction in the (1)H NMR line second moment, thus the second moment delivers an irrelevant description of the molecular motions in triclosan.

  11. Crystallographic, spectroscopic (FTIR and NMR) and quantum computational calculation studies on bis(2-methoxy-4-((E)-prop-1-enyl)phenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Ersanli, Cem Cüneyt; Kaya Kantar, Günay; Şaşmaz, Selami

    2017-09-01

    In this paper, we report first, a new synthesis of bis(2-methoxy-4-((E)-prop-1-enyl)phenyl)oxalate, namely, C22H22O6, (I). Then, we present detailed FTIR, 1H NMR, 13C NMR spectroscopies and single-crystal X-ray diffraction techniques, Hartree-Fock (HF) and Density Functional Theory (DFT) molecular orbital calculation study of the title compound. Compound (I) crystallizes in the monoclinic space group P21/c, with Z = 2 in cells with a = 6.3440(5)Å, b = 10.1098(9)Å, c = 16.1899(15)Å, V = 1035.65(16)Å3 and displays weak C-H⋯O intermolecular interaction which contributes to crystal packing. The molecular geometry was also calculated using the Gaussian03W software, and structure was optimized using the HF and DFT/B3LYP methods with the 6-31G(d,p) basis set at the ground state. The harmonic vibrational frequencies, 1H and 13C NMR chemical shifts of I were calculated using the same method with the 6-31G(d,p) basis set. The calculated results show that the predicted geometry can well reproduce structural parameters. The energetic behaviors of the title compound in solvent media were examined using the DFT/B3LYP method with the 6-31G(d,p) basis set applying the Polarizable Continuum Model (PCM). Besides, the frontier molecular orbitals (FMOs), Mulliken population method, natural population analysis (NPA), molecular electrostatic potential (MEP) map of the title compound were investigated by theoretical calculations. Based on vibrational analyses, the thermodynamic properties of I at different temperatures have been calculated, and corresponding relations between the properties and temperature have also been obtained.

  12. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    PubMed

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  13. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    PubMed

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-05

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  15. Experimental (FT-IR, FT-Raman, NMR) and theoretical spectroscopic properties of intermolecular hydrogen bonded 1-acetyl-2-thiohydantoin polymorphs.

    PubMed

    Sharma, Anamika; Gupta, Vineet; Tandon, Poonam; Rawat, Poonam; Maeda, Shiro; Kunimoto, Ko-Ki

    2012-05-01

    In this work, use of FT-Raman, FT-IR and (13)C NMR spectroscopies have been made for the full characterization of 1-acetyl-2-thiohydantoin (ACTH). A detailed interpretation of the vibrational spectra was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed in the reported crystalline structure. Good reproduction of experimental values is obtained and % error is small in majority of the cases. Isotropic chemical shifts were calculated using gauge-invariant atomic orbital (GIAO) along with several thermodynamic parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    SciTech Connect

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.; Sears, Jesse A.; Wang, Chong M.; Rosso, Kevin M.; Felmy, Andrew R.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.

  17. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    PubMed Central

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-01-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA. PMID:28358124

  18. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  19. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques

    NASA Astrophysics Data System (ADS)

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-01

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  20. X-ray and 1H-NMR spectroscopic studies of the structures and conformations of the new nootropic agents RU-35929, RU-47010 and RU-35965

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio

    1990-10-01

    The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.

  1. Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques.

    PubMed

    Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui

    2017-03-30

    Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 10(5) M(-1)) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.

  2. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF

    NASA Astrophysics Data System (ADS)

    Kose, E.; Bardak, F.; Atac, A.; Karabacak, M.; Cipiloglu, M. A.

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. 1H and 13C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm-1 and 4000-400 cm-1, respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10° and molecular energy profile was calculated from 0° to 360°. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion-1 and anion-2 forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program.

  3. Determination of structural and vibrational spectroscopic features of neutral and anion forms of dinicotinic acid by using NMR, infrared and Raman experimental methods combined with DFT and HF.

    PubMed

    Kose, E; Bardak, F; Atac, A; Karabacak, M; Cipiloglu, M A

    2013-10-01

    In this study; the experimental (NMR, infrared and Raman) and theoretical (HF and DFT) analysis of dinicotinic acid were presented. (1)H and (13)C NMR spectra were recorded in DMSO solution and chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of dinicotinic acid were recorded by FT-Raman and FT-IR spectra in the range of 4000-10 cm(-1) and 4000-400 cm(-1), respectively. To determine the most stable neutral conformer of molecule, the selected torsion angle was changed every 10° and molecular energy profile was calculated from 0° to 360°. The geometrical parameters and energies were obtained for all conformers form from density functional theory (DFT/B3LYP) and HF with 6-311++G(d,p) basis set calculations. However, the results of the most stable neutral and two anion forms (anion(-1) and anion(-2) forms) of dinicotinic acid are reported here. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational wavenumbers, calculated with scaled quantum mechanics (SQM) method and PQS program.

  4. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  5. Design of a helix-bundle cross-link: NMR and UV-visible spectroscopic analyses and molecular modeling of ring-oxidized retinals.

    PubMed

    Williams, T C; Mani, V

    1991-03-19

    In order to generate potential chemical cross-links for studying the chromophore binding site of bacteriorhodopsin and related helix-bundle proteins, MnO2 was used to oxidize all-trans-retinal's ring moiety. The structures and solution conformations of three ring-oxidized retinal analogues have been determined by using UV-visible absorption and 1H and 13C NMR spectroscopies, primarily with regard to (i) the introduction of a functional group at the ring end of the chromophore, (ii) the retention of the all-trans geometry of the polyenal side chain, and (iii) the torsional angle of the ring-polyenal bond. Analyses of their UV-visible absorption spectral parameters (lambda max, epsilon max, and vibrational fine structure) and NMR spectral parameters (1H-1H coupling constants, 1H and 13C NMR chemical shifts, and 1H homonuclear Overhauser effects) indicated the 4-oxo and the 2,3-dehydro-4-oxo derivatives both possess the twisted 6-s-cis conformation adopted by most six-membered ring analogues of retinal in solution or crystal. However, the alpha-dioxocyclopentenyl analogue exists in solution predominantly (70-80%) as the planar 6-s-trans conformer, similar to violerythrine chromophore analogues. In order to identify the minor solution forms, molecular modeling and geometry optimizations using the semiempirical molecular orbital method AM1 defined two additional symmetry-related minima at +/- 30-40 degrees in its C6-C7 torsional energy profile. Because the chromophores of bacterio- and halorhodopsins and sensory rhodopsins are bound as the 6-s-trans conformer [Harbison, G.S., Smith, S.O., Pardoen, J.A., Courtin, J.M.L., Lugtenburg, J., Herzfeld, J., Mathies, R.A., & Griffin, R.G. (1985) Biochemistry 24, 6955-6962; Baselt, D.R., Fodor, S.P.A., van der Steen, R., Lugtenburg, J., Bogomolni, R.A., & Mathies, R.A. (1989) Biophys. J. 55, 193-196], we suggest that the cyclopentenyl analogue's alpha-diketo function may be favorably positioned within the binding pocket and

  6. Quantum mechanical and spectroscopic (FT-IR, FT-Raman, ¹H NMR and UV) investigations of 2-(phenoxymethyl)benzimidazole.

    PubMed

    Mary, Y Shyma; Jojo, P J; Panicker, C Yohannan; Van Alsenoy, Christian; Ataei, Sanaz; Yildiz, Ilkay

    2014-05-05

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-(phenoxymethyl)benzimidazole have been investigated experimentally and theoretically using Gaussian09 software package. The energy and oscillator strength calculated by time dependent density functional theory results almost compliments with experimental findings. Gauge-including atomic orbital (1)H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular Electrostatic Potential was performed by the DFT method and the infrared intensities and Raman activities have also been reported. Mulliken's net charges have been calculated and compared with the atomic natural charges. First hyperpolarizability is calculated in order to find its role in non-linear optics.

  7. Primidone--an antiepileptic drug--characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations.

    PubMed

    Arjunan, V; Santhanam, R; Subramanian, S; Mohan, S

    2013-05-15

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR spectra were recorded and the chemical shifts of the molecule were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. (1)H and (13)C NMR spectroscopic studies of hexane-extractable lipids from soils under shelterbelts of different age and composition of plants.

    PubMed

    Szajdak, Lech Wojciech; Maryganova, Victoria; Skakovskii, Eugene; Tychinskaya, Ludmila

    2015-01-01

    Comparative study of the composition of lipids extracted with n-hexane from soils under shelterbelts of different age and composition of plants and adjoining cultivated fields in agrolandscape has been carried out with the application of (1)Н and (13)С NMR spectroscopy. The lipid content correlates with the organic carbon content in soils and is the highest in the soil under the 200-years old shelterbelt. The data received indicate that hexane-extractable lipids from the soil under the 200-years old shelterbelt have undergone the most significant biochemical and chemical transformations (oxidation, hydrolysis, polymerization) with the accumulation of resistant compounds and destruction of esters of o-phthalic acid as anthropogenic contaminants compared to the lipids from the soil under the 14-years old shelterbelt and soils of adjoining arable fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 1H NMR spectroscopic investigations on the conformation of amphiphilic aromatic amino acid derivatives in solution: effect of chemical architecture of amphiphiles and polarity of solvent medium.

    PubMed

    Vijay, R; Mandal, A B; Baskar, Geetha

    2010-11-04

    In this study, the conformation of the amphiphilic lauryl esters of L-tyrosine (LET) and L-phenylalanine (LEP) in water and dimethyl sulfoxide is established. The alkyl chain protons of LEP in D(2)O appear at δ 1.010-1.398 and show an upfield shift and large line width, suggesting the proximity of the phenyl ring to the alkyl chain in contrast to that of LET. Quite interestingly, in DMSO-d(6), the (1)H NMR spectra of LET and LEP show a strong similarity that is suggestive of an orientation that positions the aromatic ring and aliphatic chain away from each other. These results are substantiated with two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOSEY). Theoretical molecular models of the conformation at the interface corroborate the experimental findings. Investigations of the solvent polarity and chemical structure-dependent conformation are discussed.

  10. High-resolution MAS 1H NMR spectroscopic analysis of rabbit cornea after treatment with dexamethasone and exposure to UV-B radiation.

    PubMed

    Saether, Oddbjørn; Krane, Jostein; Risa, Øystein; Cejková, Jitka; Midelfart, Anna

    2005-12-01

    Metabolic changes in rabbit cornea after combined long-term steroid treatment and UV-B exposure were investigated. Corneas were exposed to UV-B radiation (2.05 J/cm2) after 36 days topical pretreatment with either 0.1% dexamethasone or saline. Twenty-four hours after UV-B exposure, corneas were excised and aqueous humour aspirated. Intact corneal tissues were analyzed by magic angle spinning proton NMR spectroscopy and pattern recognition methods. UV-B decreased corneal ascorbate (63% reduction), taurine (62%), and choline (63%), whereas glucose was elevated. Dexamethasone pretreatment further depleted corneal taurine and ascorbate, decreased aqueous ascorbate (85%), and accumulated glucose in cornea and aqueous humour. The results reflect antioxidative mechanisms and osmoregulation.

  11. Structural and spectroscopic (UV-Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: A density functional study in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Altun, Ahmet; Swesi, O. A. A.; Alhatab, B. S. S.

    2017-01-01

    The molecular structures, vibrational spectra (IR and Raman), electronic spectra (UV-Vis and DOS), and NMR spectra (13C and 1H) of p-anisaldehyde, m-anisaldehyde, and o-anisaldehyde have been studied by using the B3LYP density functional and the 6-311++G** basis set. While p-anisaldehyde has been found to contain two stable conformers at room temperature, m-anisaldehyde and o-anisaldehyde contain four stable conformers. In agreement with the calculated ground-state energetics and small transition barriers, the comparison of the experimental and calculated spectra of the anisaldehydes indicates equilibrium between all conformers at room temperature. However, the two conformers of o-anisaldehyde, in which the methoxy group lies out of the ring plane, are too rare at the equilibrium. The equilibrium conditions of the conformers of the anisaldehyde isomers have been shown readily accessible through UV-Vis and 13C NMR spectral studies but requiring very detailed vibrational analyses. The effect of the solvent has been found to red-shift the electronic absorption bands and to make the anisaldehydes more reactive and soft. Molecular electrostatic potential maps of the anisaldehydes show that their oxygen atoms are the sites for nucleophilic reactivity. Compared with the most sophisticated NBO method, ESP charges have been found mostly reliable while Mulliken charges fail badly with the present large 6-311++G** basis set. The present calculations reproduce not only the experimental spectral characteristics of the anisaldehydes but also reveal their several structural features.

  12. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation and molecular docking study of 1-(4-Methylbenzyl) piperazine

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Periandy, S.

    2017-04-01

    The title compound, 1-(4-Methylbenzyl) piperazine, was analyzed by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. Density functional theory (DFT) calculation with 6-311++G (d, p) basis set along with B3LYP and B3PW91 functionals have been used to compute ground state molecular geometries and vibrational frequencies. The assignments of the vibrational spectra have carried out with the help of Potential Energy distribution (PED) analysis. Factor group analysis has also been tabulated. Charge distribution, Frontier Molecular Orbitals, UV-Vis spectra, Molecular Electrostatic Potential (MEP) maps, Non-linear optical (NLO) property and thermodynamic properties of the title compound at different temperatures, were determined using B3LYP functional along with 6-311++G (d, p) basis set. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functional with 6-311++G (2d, p) basis sets. Natural Bond orbital analysis were computed and possible transitions were correlated with the electronic transitions. The title compound not only exhibits appreciable dipole moment and hyper polarizability (indicating good NLO properties) but also forms a stable complex with Bacillus cereus, (2HUC), with binding affinity -6.7 kcal/mol through molecular docking, suggesting that, it might exhibit inhibitory activity against Bacillus cereus.

  13. 29Si{1H} CP-MAS NMR comparison and ATR-FTIR spectroscopic analysis of the diatoms Chaetoceros muelleri and Thalassiosira pseudonana grown at different salinities.

    PubMed

    La Vars, Sian M; Johnston, Martin R; Hayles, John; Gascooke, Jason R; Brown, Melissa H; Leterme, Sophie C; Ellis, Amanda V

    2013-04-01

    Diatoms are key indicators of marine environmental health. To further understand how diatoms respond to varying degrees of salinity, either due to climate change or brine waste discharge into marine environments, two different diatom species were studied. Thalassiosira pseudonana and Chaetoceros muelleri were cultured at three different salinities namely, 26 practical salinity units (PSU or parts per thousand), 36 PSU (standard salinity for culturing of seawater species) and 46 PSU. Changes in silica and organic content within the cultured diatoms were analysed using solid-state (29)Si{(1)H} cross-polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopies coupled with analysis of variance. (29)Si CP-MAS NMR showed that qualitatively the Q4:Q3 area ratios of C. muelleri, grown away from standard salinities, increased in response to the formation of more condensed (2 ≡SiOH → ≡Si-O-Si≡ + H2O) and/or an increase in closely associated organic matter to the Q4 component of the diatoms. This was not observed for T. pseudonana. However, both species showed the appearance of a new peak centered at 1575-1580 cm(-1) in the ATR-FTIR spectra, designated as the C═N band of nitrogenous purine-type compounds. Further, the C. muelleri species was shown to produce more extracellular polymeric substances at non-standard salinities. On this basis, results suggest that there is a strong relationship between diatom composition and salinity and that C. muelleri is more sensitive to its environment than T. pseudonana.

  14. Design of a helix-bundle cross-link: NMR and UV-visible spectroscopic analyses and molecular modeling of ring-oxidized retinals

    SciTech Connect

    Williams, T.C.; Mani, V. M and S Data Analysis and Molecular Speculations, Charleston, SC )

    1991-03-19

    In order to generate potential chemical cross-links for studying the chromophore binding site of bacteriorhodopsin and related helix-bundle proteins, MnO{sub 2} was used to oxidize all-trans-retinal's ring moiety. The structures and solution conformations of three ring-oxidized retinal analogues have been determined by using UV-visible absorption and {sup 1}H and {sup 13}C NMR spectroscopies, primarily with regard to (i) the introduction of a functional group at the ring end of the chromophore, (ii) the retention of the all-trans geometry of the polyenal side chain, and (iii) the torsional angle of the ring-polyenal bond. Analyses of their UV-visible absorption spectral parameters and NMR spectral parameters indicated the 4-oxo and the 2,3-dehydro-4-oxo derivatives both possess the twisted 6-2-cis conformation adopted by most six-membered ring analogues of retinal in solution or crystal. Because the chromophores of bacterio-and halorhodopsins and sensory rhodopsins are bound as the 6-s-trans conformer the authors suggest that the cyclopentenyl analogue's {alpha}-diketo function may be favorably positioned within the binding pocket and sufficiently reactive toward nucleophilic attack to cross-link an arginine located in or near the ring end of the chromophore cavity: Arg{sup 134} according to the current model of bacteriorhodopsin's tertiary structure of Arg{sup 82} as postulated from an alternate model constructed primarily to accommodate the external point charge contribution to bacteriorhodopsins's opsin shift.

  15. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation, molecular docking and molecular simulation dynamics on 1-Methyl-3-Phenylpiperazine

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Periandy, S.

    2017-09-01

    The title compound was analyzed, by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. Conformational analysis was done using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in terms of parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The observed HOMO-LUMO mappings reveal the different charge transfer possibilities within the molecule. The percentage contribution of a group to each molecular orbital was calculated using Gauss Sum program. Natural bond orbital analysis was computed and possible transition were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functional with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Clostridium botulinum (2J3X). The interaction of the ligand (title molecule) with 2J3X for 2 ns duration and radial distribution function have been observed through molecular dynamics simulations.

  16. FTIR, FTRaman, UV-Visible and NMR spectroscopic studies on 3,3‧,4,4‧-tetrachloroazoxybenzene, an azoxybenzene derivative with toxic effects

    NASA Astrophysics Data System (ADS)

    Castillo, María V.; Pergomet, Jorgelina L.; Carnavale, Gustavo A.; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia Antonia

    2017-08-01

    We have synthesized 3,3‧,4,4‧ Tetrachloroazoxybenzene (TCAOB) and, later, characterized it by using infrared, Raman, 1H, 13C NMR and UV-visible spectroscopies. The structural, topological and vibrational properties of four Cis and three Trans isomers were theoretically predicted by using the hybrid B3LYP together with the 6-31G* and 6-311++G** basis sets. The 69 normal modes of vibration for all TCAOB isomers were assigned by using the scaled quantum mechanical force field (SQMFF) procedure and their experimental vibrational spectra and normal internal coordinates. The high stabilities of all Cis and Trans isomers are supported by the π→π*, n→σ*, n→π* and π*→π* electronic transitions calculated by NBO studies while the AIM analyses reveal for the Trans forms the existence of intra-molecular Csbnd H⋯O hydrogen bonds, as suggested by the broad IR band observed in the higher wavenumbers region. The low gap energy for the Trans I isomer supports their higher reactivity probably due to the repulsion of the more electronegative Cl and O atoms as a consequence of their proximities. In addition, the force constants for all Cis and Trans isomers were calculated by using both levels of theory. Here, the comparisons of the predicted IR, Raman, NMR and ultraviolet-visible spectra with the corresponding experimental ones demonstrate good concordances. The existence of the Ndbnd O groups in all TCAOB isomers support the differences in their properties, as compared with those reported for TCAB.

  17. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    PubMed

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. A spectroscopic study of nicotine analogue 2-phenylpyrrolidine (PPD) using resonant two-photon ionization (R2PI), microwave, and 2D NMR techniques.

    PubMed

    Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S

    2009-02-25

    Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.

  19. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  20. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO, NLO) investigation and molecular docking study of (R)-2-Methylamino-1-Phenylethanol (Halostachine)

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Govindarajan, R.; Surendran, R.; Mukund, K.; Periandy, S.

    2016-12-01

    FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of (R)-2-Methylamino-1-Phenylethanol have been recorded in solid phase, 1H and 13C NMR in deuterated chloroform (CDCl3) phase and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The values of dipole moment (μ), polarizability (α) and hyper polarizability (β) of the molecule were calculated using which, the non-linear optical property of the molecule has been discussed. The observed HOMO-LUMO mappings reveals the different charge transfer possibilities within the molecule. Natural Bond Orbital analysis was computed and possible transitions were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functionals with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Bacillus anthracis (3V5O).

  1. Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Mavis, Tugba; Eskici, Mustafa; Atac, Ahmet

    2013-11-01

    In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400 cm-1 and 3500-50 cm-1, respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The 1H, 13C and HMQC (1H-13C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400 nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement.

  2. Molecular structure, spectroscopic characterization (FT-IR, FT-Raman, UV and NMR), HOMO and LUMO analysis of 3-ethynylthiophene with DFT quantum chemical calculations.

    PubMed

    Karabacak, Mehmet; Bilgili, Sibel; Mavis, Tugba; Eskici, Mustafa; Atac, Ahmet

    2013-11-01

    In this work, FT-IR, FT-Raman, UV and NMR spectra of 3-ethynylthiophene (3-ETP, C6H4S) were carried out by using density functional theory DFT/B3LYP method with the 6-311++G(d,p), 6-311+G(d,p), 6-311G(d,p), 6-31++G(d,p), 6-31+G(d,p), 6-31G(d,p) basis sets. FT-IR and FT-Raman spectra were recorded in the regions of 3500-400cm(-1) and 3500-50cm(-1), respectively. The geometrical parameters, energies and wavenumbers were obtained and the complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The (1)H, (13)C and HMQC ((1)H-(13)C correlation) NMR spectra in chloroform (CDCl3) were recorded and calculated. The UV spectrum of investigated compound were recorded in the region of 200-400nm in ethanol solution. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies were performed by DFT/B3LYP approach and the results were compared with experimental observations. The thermodynamic properties such zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment of the studied compound were calculated. As a result, the calculated results were compared with the observed data and found to be in good agreement.

  3. NMR analysis of compositional heterogeneity in polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  4. Structural, spectroscopic (FT-IR, NMR, UV-visible), nonlinear optical (NLO), cytotoxic and molecular docking studies of 4-nitro-isonitrosoacetophenone (ninapH) by DFT method

    NASA Astrophysics Data System (ADS)

    Kucuk, Ilhan; Kaya, Yunus; Kaya, A. Asli

    2017-07-01

    (4-Nitro-phenyl)-oxo-acetaldehyde oxime (ninapH) is a type of oxime, which has a oxime and α-carbonyl groups. This molecule has been synthesized from literature procedure. The structural properties and conformational behaviors were examined using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, the most stable conformer was determined, and then this molecule was optimized with the same basis set. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The first order hyperpolarizability and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the ninapH have been calculated at different temperatures, 100-1000 K. In addition, the molecular docking studies have been performed with DNA and protein structures (downloaded from Protein Data Bank).

  5. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    PubMed

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C.

  6. (19) F NMR Spectroscopic Analysis of the Binding Modes in Triple-Helical Peptide Nucleic Acid (PNA)/MicroRNA Complexes.

    PubMed

    Tähtinen, Ville; Granqvist, Lotta; Murtola, Merita; Strömberg, Roger; Virta, Pasi

    2017-05-23

    Triplex-forming peptide nucleic acids (TFPNAs) were targeted to double-helical regions of (19) F-labeled RNA hairpin models (a UA-rich duplex with a hexaethylene glycol (heg) loop and a microRNA model, miR-215). In addition to conventional UV- and circular dichroism (CD)-based detection, binding was monitored by (19) F NMR spectroscopy. Detailed information on the stoichiometry and transition between the triple-helical peptide nucleic acid (PNA)/RNA and (PNA)2 /RNA binding modes could be obtained. γ-(R)-Hydroxymethyl-modified thymine-1-yl- and 2-aminopyridin-3-yl-acetyl derivatives of TFPNAs were additionally synthesized, which were targeted to the same RNA models, and the effect of the γ-(R)-hydroxymethyl group on binding was studied. An appropriate pattern of γ-(R)-hydroxymethyl modifications reduced the stability of the ternary complex and preferred stoichiometric binding to the miR-215 model. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vibrational 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly(alanine-glycine) as model for silk I Bombyx mori fibroin.

    PubMed

    Monti, Patrizia; Taddei, Paola; Freddi, Giuliano; Ohgo, Kosuke; Asakura, Tetsuo

    2003-01-01

    This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model. Copyright 2003 Wiley Periodicals, Inc.

  8. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), first order hyperpolarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide

    NASA Astrophysics Data System (ADS)

    Raja, M.; Muhamed, R. Raj; Muthu, S.; Suresh, M.

    2017-01-01

    The compound (E)-1-(4-bromobenzylidene)semicarbazide(4BSC) was synthesized and characterized by FT-IR, FT-Raman, UV-Visible, 1HNMR and 13CNMR spectra. The optimized molecular geometry(bond length, bond angle), the complete vibrational frequency, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, wavelength, band gap and oscillator strength are evaluated by TD-DFT in DMSO solution and gas phase methods using 6-311++G(d,p) basis set. The calculated HOMO - LUMO band gap energies confirm that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. Besides NLO and MEP were also calculated and interpreted. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antimicrobial protein. Thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations the heat capacity (C), entropy (S) and enthalpy changes (H) and temperatures.

  9. Vibrational [FT-IR, FT-Raman] analysis, NMR and mass - Spectroscopic investigation on 3,6-Dimethylphenanthrene using computational calculation

    NASA Astrophysics Data System (ADS)

    Manzoor Ali, M.; George, Gene; Ramalingam, S.; Periandy, S.; Gokulakrishnan, V.

    2015-11-01

    In this research work, in order to the vibrational, physical and chemical properties, a thorough investigation has been made by recording FT-IR, FT-Raman, Mass and 13C and 1H NMR spectra of pharmaceutically important compound; 3,6-Dimethylphenanthrene. The altered geometrical parameters of Phenanthrene due to the addition of methyl groups have been calculated using HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the discussion are made on their corresponding results. The alternation of the vibrational pattern of the molecule due to the injection of the substitutions; CH3 is investigated. The keen observation is made over the excitations between the electronic energy levels of the molecule which lead to the study of electronic properties. The alternation of distribution of Mulliken charges after the formation of present molecule has been correlated with the vibrational pattern of the molecular bonds. The charge transformation over the frontier molecular orbitals between the ligand and rings has been studied. The cause of the linear and non linear optical activity of the molecule is interpreted in detail from the average Polarizability first order diagonal hyperpolarizability calculations. The variation of thermodynamic properties; heat capacity, entropy, and enthalpy of the present compound at different temperatures are calculated using NIST thermodynamical function program and interpreted.

  10. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  11. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations.

    PubMed

    Mathammal, R; Sudha, N; Guru Prasad, L; Ganga, N; Krishnakumar, V

    2015-02-25

    In this work, the vibrational characteristics of 2-Benzylpyridine have been investigated. The structure of the molecule has been optimized and the structural characteristics of the molecule have been determined by density functional theory B3LYP method with 6-31G(d,p) basis set. The infrared and Raman spectra have been simulated from calculated intensities. Both the experimental and theoretical vibrational data confirms the presence of functional groups in the title compound. The (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital method. UV-Visible spectrum of the title compound was recorded in the region 190-1100 nm and the electronic properties HOMO and LUMO energies were calculated by CIS approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  13. The spectroscopic (FTIR, FT-Raman, NMR and UV), first-order hyperpolarizability and HOMO-LUMO analysis of methylboronic acid.

    PubMed

    Rani, Usha; Karabacak, M; Tanrıverdi, O; Kurt, M; Sundaraganesan, N

    2012-06-15

    The solid phase FTIR and FT-Raman spectra of methylboronic acid (MBA) have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted interms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400 nm and the electronic properties HOMO and LUMO energies were calculated by time-dependent TD-DFT approach. Mulliken charges of the MBA molecule was also calculated and interpreted. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities and absorption wavelengths were compared with the available experimental data of the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  15. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR), theoretical and microbiological study of trans o-coumaric acid and alkali metal o-coumarates.

    PubMed

    Kowczyk-Sadowy, Małgorzata; Świsłocka, Renata; Lewandowska, Hanna; Piekut, Jolanta; Lewandowski, Włodzimierz

    2015-02-13

    This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic) acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR), Raman (FT-Raman), ultraviolet-visible (UV-VIS) and nuclear magnetic resonance (1H- and 13C-NMR) were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT) using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  16. Powder X-ray diffraction, infrared and (13)C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates.

    PubMed

    Nelson, Peter N; Taylor, Richard A

    2015-03-05

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state (13)C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc>8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  17. In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of the Effects of Oxygen Level

    NASA Astrophysics Data System (ADS)

    Long, Robert C.; Papas, Klearchos K.; Sambanis, Athanassios; Constantinidis, Ioannis

    2000-09-01

    This investigation implements specifically designed solvent-suppressed adiabatic pulses whose properties make possible the long-term monitoring of 1H NMR detectable metabolites from alginate/poly-l-lysine/alginate (APA)-encapsulated βTC3 cells. Our encapsulated preparations were maintained in a perfusion bioreactor for periods exceeding 30 days. During this prolonged cultivation period, the cells were exposed to repetitive hypoxic episodes of 4 and 24 h. The ratio of the total choline signal (3.20 ppm) to the reference signal (observed at 0.94 ppm assigned to isoleucine, leucine, and valine) decreased by 8-10% for the 4-h and by 20-32% for the 24-h episodes and returned to its prehypoxic level upon reoxygenation. The decrease in the mean value of total choline to reference signal ratio for three 4-h and two 24-h episodes in two different cultures was highly significant (P < 0.01). The rate of recovery by this ratio was slower than the rates of recovery by oxygen consumption, lactate production, or glucose consumption. A step-up in oxygen level led to a new, higher value for the total choline to reference ratio. From spectra of extracts at 400 MHz, it was determined that 63.6% of the total choline signal is due to intracellular phosphorylcholine. Therefore, it is inferred that the observed changes in total choline signal are linked to an oxygen level dependence of the intracellular phosphorylcholine. Several possible mechanisms in which oxygen may influence phosphorylcholine metabolism are suggested. In addition, the implications of these findings to the development of a noninvasive monitoring method for tissue-engineered constructs composed of encapsulated cells are discussed.

  18. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Tanuja, D

    2012-11-01

    In this work, the experimental and theoretical study on the molecular structure and vibrational spectra of 2,4,5-trichloroaniline (C(6)H(4)NCl(3), abbreviated as 2,4,5-TClA) were studied. The FT-IR and FT-Raman spectra were recorded. The molecular geometry and vibrational frequencies in the ground state were calculated by using the Hartree-Fock (HF) and density functional theory (DFT) methods (B3LYP) with 6-311++G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of 2,4,5-TClA with calculated results by HF and DFT indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4,5-TClA molecule may have microscopic nonlinear optical (NLO) behavior with non-zero values. Mulliken atomic charges of 2,4,5-TClA was calculated and compared with aniline and chlorobenzene molecules. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Low-lying levels of 77Se studied by thermal neutron capture and evidence for a new term in the E2 operator of RQM (IBM)

    NASA Astrophysics Data System (ADS)

    Tokunaga, Y.; Seyfarth, H.; Meyer, R. A.; Schult, O. W. B.; Börner, H. G.; Barreau, G.; Faust, H. R.; Schreckenbach, K.; Brant, S.; Paar, V.; Vouk, M.; Vretenar, D.

    1985-06-01

    A high-resolution study of the 76Se(n, γ) reaction was carried out with curved-crystal and pair spectrometers and conversion electrons were measured following slow-neutron capture. The resulting data yield very precise level energies and spin and parity assignments for most of the levels. The neutron separation energy of 77Se was measured as 7418.85 ± 0.07 keV. The experimental data were compared with theoretical results for the level energies in 77Se and the E2, M1 and E1 branching ratios obtained from the SU(6) particle-vibration model (PTQM). We used 76Se as a slightly perturbed SU(5) vibrational core and the particle-vibration interaction strengths from the PTQM calculation for 75Se. In this frame there is evidence for a Δn = 2 term in the E2 operator. This term has not been included so far in TQM and IBM calculations.

  20. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  1. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  2. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  3. THz Dynamic Nuclear Polarization NMR.

    PubMed

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology.

  4. Measurement of the {sup 77}Se, {sup 99}Ru, {sup 101}Ru and {sup 123}Te(n,{alpha}) Cross Sections with Thermal Neutrons

    SciTech Connect

    Wagemans, Cyriel; Wagemans, Jan; Geltenbort, Peter

    2009-01-28

    Results of (n,{alpha}) cross section measurements performed at the high flux reactor of the Institute Laue-Langevin in Grenoble (France) are reported. Cross section values are given for the {alpha}{sub 0}, {alpha}{sub 1} and {alpha}{sub 2} transitions in {sup 77}Se(n,{alpha}){sup 74}Ge, the {alpha}{sub 0} and {alpha}{sub 1} transitions in {sup 99}Ru(n,{alpha}){sup 96}Mo, the {alpha}{sub 0} and {alpha}{sub 1} transitions in {sup 101}Ru(n,{alpha}){sup 98}Mo and the {alpha}{sub 0}, {alpha}{sub 1} and {gamma}{alpha} transitions in {sup 123}Te(n,{alpha}){sup 120}Sn. Corresponding resonance data reported in the literature are confronted with these results.

  5. NMR in Chevrel-phase solid solution Mo 6Se 8- xTe x

    NASA Astrophysics Data System (ADS)

    Hamard, C.; Le Floch, M.; Peña, O.; Wojakowski, A.

    1999-01-01

    The Mo 6Se 8-Mo 6Te 8 solid solution was studied by X-ray diffraction, magnetic susceptibility and 77Se and 125Te NMR. Dynamic studies show that substitution occurs differently when Se replaces Te in Mo 6Te 8 than when Te replaces Se in Mo 6Se 8. Selenium first fills the high-symmetry sites and then it becomes statistically distributed on the 6f positions of the R3¯ symmetry. In the second case, Te occupies randomly the 8 X sites of the Mo 6X 8 structure, creating large perturbations of the 125Te NMR spectra over the whole range of x.

  6. Tight-binding theory of NMR shifts in topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Ramírez-Ruiz, Jorge; Garate, Ion

    2016-09-01

    Motivated by recent nuclear magnetic resonance (NMR) experiments, we present a microscopic s p3 tight-binding model calculation of the NMR shifts in bulk Bi2Se3 and Bi2Te3 . We compute the contact, dipolar, orbital and core polarization contributions to the carrier-density-dependent part of the NMR shifts in 209Bi,125Te, and 77Se. The spin-orbit coupling and the layered crystal structure result in a contact Knight shift with strong uniaxial anisotropy. Likewise, because of spin-orbit coupling, dipolar interactions make a significant contribution to the isotropic part of the NMR shift. The contact interaction dominates the isotropic Knight shift in 209Bi NMR, even though the electronic states at the Fermi level have a rather weak s -orbital character. In contrast, the contribution from the contact hyperfine interaction to the NMR shift of 77Se and 125Te is weak compared to the dipolar and orbital shifts therein. In all cases, the orbital shift is at least comparable to the contact and dipolar shifts, while the shift due to core polarization is subdominant (except for Te nuclei located at the inversion centers). By artificially varying the strength of spin-orbit coupling, we evaluate the evolution of the NMR shift across a band inversion but find no clear signature of the topological transition.

  7. First principles design of derivatizing agent for direct determination of enantiomeric purity of chiral alcohols and amines by NMR spectroscopy.

    PubMed

    Orlov, Nikolay V; Ananikov, Valentine P

    2010-05-14

    (77)Se NMR offers superior sensing of chirality within the structure of the diastereomers (Deltadelta up to 6.1 ppm), compared to (13)C (Deltadelta < 1 ppm) and (1)H (Deltadelta < 0.2 ppm). The developed procedure is equally well suitable for determination of the enantiomeric purity of chiral alcohols and amines as pure samples as well as reaction mixtures and crude products.

  8. Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies

    NASA Astrophysics Data System (ADS)

    Pandey, Manju; Muthu, S.; Nanje Gowda, N. M.

    2017-02-01

    Theoretical analysis of the molecular structure, spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) studies, and thermodynamic characteristics of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione (5MBIT) molecule were done by DFT/B3LYP using 6-311++G(d, p) basis set. Theoretical parameters were compared with experimental data. The dipole moment (μ), polarizability (Δα) and first order hyperpolarizability (β) of the molecule were calculated. Thermodynamic properties, HOMO and LUMO energies were determined. Global reactivity parameters and Fukui function of the 5MBIT molecule were predicted.

  9. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  10. Impact of ⁷⁷Te on the structure and Se NMR spectra of Se-rich Ge-Te-Se glasses: a combined experimental and computational investigation.

    PubMed

    Bouëssel du Bourg, Lila; Roiland, Claire; le Pollès, Laurent; Deschamps, Michaël; Boussard-Plédel, Catherine; Bureau, Bruno; Pickard, Chris J; Furet, Eric

    2015-11-21

    Selenium-rich Ge-Te-Se glasses have been synthesized along the GeSe4-GeTe4 pseudo-composition line and acquired by (77)Se Hahn echo magic-angle spinning NMR. The comparison with the GeSe4 spectrum shows a drastic modification of the typical double-resonance lineshape even at low Te concentrations (<10%). In order to rationalize this feature and to understand the effect of Te on the structure of our glasses, first-principles molecular dynamics simulations and gauge including projector augmented wave NMR parameter calculations have been performed. The distribution of the tellurium atoms in the selenium phase was shown to be mainly responsible for the (77)Se lineshape changes. Another possible factor related to the perturbation of the δiso value due to Te proximity appears to be much more limited in the bulk, while the results obtained using molecular models suggest shifts of several hundreds of ppm.

  11. 19F solid-state NMR spectroscopic investigation of crystalline and amorphous forms of a selective muscarinic M3 receptor antagonist, in both bulk and pharmaceutical dosage form samples.

    PubMed

    Wenslow, Robert M

    2002-05-01

    The purpose of the following investigation was to display the utility of 19F solid-state nuclear magnetic resonance (NMR) in both distinguishing between solid forms of a selective muscarinic M3 receptor antagonist and characterizing the active pharmaceutical ingredient in low-dose tablets. Ambient- and elevated-temperature solid-state 19F fast (15 kHz) magic-angle spinning (MAS) NMR experiments were employed to obtain desired spectral resolution in this system. Ambient sample temperature combined with rotor frequencies of 15 kHz provided adequate 19F peak resolution to successfully distinguish crystalline and amorphous forms in this system. Additionally, elevated-temperature 19F MAS NMR further characterized solid forms through 19F resonance narrowing brought about by the phenomenon of solvent escape. Similar solvent dynamics at elevated temperatures were utilized in combination with ambient-temperature 19F MAS NMR analysis to provide excipient-free spectra to unambiguously identify the active pharmaceutical ingredient (API) conversion from crystalline Form I to the amorphous form in low-dose tablets. It is shown that 19F solid-state NMR is exceptionally powerful in distinguishing amorphous and crystalline forms in both bulk and formulation samples.

  12. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-01

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311 ++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  13. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    PubMed

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metabolism of {sup 76}Se-methylselenocysteine compared with that of {sup 77}Se-selenomethionine and {sup 82}Se-selenite

    SciTech Connect

    Suzuki, Kazuo T. . E-mail: ktsuzuki@p.chiba-u.ac.jp; Doi, Chiaki; Suzuki, Noriyuki

    2006-12-01

    Se-Methylated selenoamino acids, Se-methylselenocysteine (MeSeCys) and selenomethionine (SeMet), are chemically inert storage forms of selenium in selenium-accumulators, and a nutritional and supplemental source. The metabolic pathway for MeSeCys was precisely traced by referring to those for SeMet and selenite by applying a new tracer method involving multiple homo-elemental stable isotopes. Male Wistar rats were depleted of endogenous natural abundance selenium with a single {sup 8}Se-enriched isotope, and then {sup 76}Se-MeSeCys, {sup 77}Se-SeMet and {sup 82}Se-selenite were orally administered simultaneously at 25 {mu}g Se/kg body weight each. Organs and body fluids were obtained at 3, 6, 9 and 12 h, and 1 and 2 days later, and subjected to speciation analysis. The main characteristics of the metabolism were as follows; MeSeCys was incorporated into selenoprotein P slightly more than or at a comparable level to that of SeMet but less than that of selenite. MeSeCys and SeMet but not selenite was taken up by organs in their intact forms. MeSeCys and SeMet were delivered specifically to the pancreas and present in a form bound to an identical or similar protein. Trimethylselenonium (TMSe) was only produced from MeSeCys, i.e., not from SeMet or selenite, in the kidneys. Both selenosugars A and B of MeSeCys, SeMet and selenite origin were detected in the liver but only selenosugar B in the kidneys. These results suggest that MeSeCys can be a similar or better selenium source than SeMet, and supplies methylselenol much more efficiently in organs than SeMet and selenite. TMSe was produced much efficiently from MeSeCys than from SeMet and selenite, suggesting a role of methylselenol through the {beta}-lyase reaction in the metabolism of Se-methylated selenoamino acids.

  15. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: a combined experimental and quantum chemical approach.

    PubMed

    Li, Linwei; Cai, Tiancheng; Wang, Zhiqiang; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2014-01-01

    In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively. 13C and 1H NMR spectra were recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule were calculated based on the gauge-independent atomic orbital (GIAO) method. Finally all of the calculation results were applied to simulate IR, Raman, 1H NMR and 13C NMR spectrum of the title compound which showed excellent agreement with observed spectrum. Furthermore, reliable vibrational assignments which have been made on the basis of potential energy distribution (PED) and characteristic vibratinonal absorption bands of the title compound in IR and Raman have been figured out. HOMO-LUMO energy and Mulliken atomic charges have been evaluated, either.

  16. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method

    NASA Astrophysics Data System (ADS)

    Diwaker

    2014-07-01

    The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the 1H and 13C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.

  17. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method.

    PubMed

    Diwaker

    2014-07-15

    The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the (1)H and (13)C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.

  18. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    PubMed

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  19. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  20. Theoretical and spectroscopic (FT-IR, NMR and UV-Vis.) characterizations of 3-p-chlorobenzyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule

    NASA Astrophysics Data System (ADS)

    Akyıldırım, Onur; Gökce, Halil; Bahçeli, Semiha; Yüksek, Haydar

    2017-01-01

    Fourier transform infrared (FT-IR) spectroscopy in the region 400-4000 cm-1, proton and carbon-13 NMR chemical shifts and UV-Vis. absorption wavelengths of 3-p-chlorobenzyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule have been experimentally investigated. For monomeric and dimeric forms of the title molecule, the optimized molecular structure analyses, vibrational wavenumbers, 13C and 1H NMR chemical shifts and electronic absorption wavelengths of the title molecule have been performed at DFT/B3LYP method with 6-311G(d,p) basis set. The HOMO and LUMO analyses have been theoretically done by using the mentioned calculation level. The obtained experimental values have been compared with calculated data. The computed vibrational frequencies, NMR chemical shifts and UV-Vis. wavelengths have been found to be in a good agreement with experimental values and spectral results of similar structures in the literature.

  1. The spectroscopic (FT-IR, FT-Raman, (l3)C, (1)H NMR and UV) and NBO analyses of 4-bromo-1-(ethoxycarbonyl)piperidine-4-carboxylic acid.

    PubMed

    Vitnik, Vesna D; Vitnik, Željko J

    2015-03-05

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-bromo-1-(ethoxycarbonyl)piperidine-4-carboxylic acid (BEPA). BEPA has been characterized by FT-IR, FT-Raman, (1)H NMR, (13)C NMR and UV spectroscopy. The FT-IR and FT-Raman spectra of BEPA were recorded in the solid phase. The optimized geometry was calculated by B3LYP and M06-2X methods using 6-311G(d,p) basis set. The FT-IR and FT-Raman spectra of BEPA were calculated at the same level and were interpreted in terms of Potential Energy Distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. The (1)H and (l3)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge-Independent Atomic Orbital (GIAO) method. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. Density plots over the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) energy surface directly identifies the donor and acceptor atoms in the molecule. It also provides information about the charge transfer within the molecule. To obtain chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. NMR Methods to Study Dynamic Allostery.

    PubMed

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-03-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach.

  3. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  4. 1H NMR spectroscopic and quantum chemical studies on a poly(ester amide) model compound: Nalpha-benzoyl-L-argininate ethyl ester chloride. Structural preferences for the isolated molecule and in solution.

    PubMed

    Fonseca, A C; Jarmelo, S; Carvalho, R A; Fausto, R; Gil, M H; Simões, P N

    2010-05-13

    The molecular structure of the L-arginine derivative, N(alpha)-benzoyl-L-argininate ethyl ester chloride (BAEEH(+).Cl(-)), was characterized by combining quantum chemical methods and (1)H NMR spectroscopy. A conformational search on the potential energy surfaces of the three lowest-energy tautomers of BAEEH(+) [A: R-N(+)H=(NH(2))(2); B: R-NH-C(=NH)N(+)H(3); C: R-N(+)H(2)-C(=NH)NH(2); R = C(6)H(5)C(=O)NH-CH(COOCH(2)CH(3))CH(2)CH(2)CH(2)-] was carried out using the semiempirical PM3 method. The lowest-energy conformations obtained using this method were then optimized at the DFT(B3LYP)/6-31++G(d,p) level of theory. For all tautomers, it was found that all low-energy conformers present folded structures, in which a H-bond interaction between the guanidinium group and the amide carbonyl oxygen atom appears to be the most relevant stabilizing factor. (1)H NMR spectra of BAEEH(+).Cl(-) in DMF-D(7) were acquired in the temperature range [-55 to 75 degrees C], providing information about the rotational motions in the guanidinium group and showing that the tautomeric form of BAEEH(+) that exists in solution is tautomer A. The interpretation of the experimental findings was supported by (1)H NMR chemical shifts obtained theoretically at the DFT(B3LYP)/6-31++G(d,p) level of approximation, using both the polarized continuum model and a BAEEH(+)-water complex model.

  5. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and /sup 31/P NMR spectroscopic studies

    SciTech Connect

    Lewis, R.N.A.H.; Sykes, B.D.; McElhaney, R.N.

    1988-02-09

    The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by /sup 31/P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (L/sub c/ phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of undercooling observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, /sup 31/P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an L/sub c/-like phase and the liquid-crystalline state. These results demonstrate that although the presence of a cis double bond can perturb the solid-state packing of the acyl chains, its presence does not preclude the formation of highly ordered subgel-like phases in lipid bilayers. In the particular case of these unsaturated phosphatidylcholines, the formation of the subgel phases is more kinetically favorable than is the case with their saturated n-acyl counterparts.

  6. Preparation, single-crystal X-ray diffraction and high-resolution NMR spectroscopic analyses of N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]trimethylammonium iodide.

    PubMed

    Dmochowska, Barbara; Skorupa, Eugenia; Pellowska-Januszek, Lucyna; Czarkowska, Monika; Sikorski, Artur; Wiśniewski, Andrzej

    2006-08-14

    The synthesis and isolation of 1,4-anhydro-5-deoxy-5-iodo-2,3-O-isopropylidene-D,L-ribitol and N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]trimethylammonium iodide are described. The products were examined by (1)H, (13)C NMR spectroscopy, and N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]trimethylammonium iodide was additionally analyzed by X-ray crystallography.

  7. Synthesis, spectroscopic investigations (FT-IR, NMR, UV-Vis, and TD-DFT), and molecular docking of (E)-1-(benzo[d][1, 3]dioxol-6-yl)-3-(6-methoxynaphthalen-2-yl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2017-02-01

    The compound (E)-1-(benzo [d] [1, 3] dioxol-6-yl)-3-(6-methoxy naphthalen-2-yl) prop-2-en-1-one (AKN) was synthesized and characterized by FT-IR, NMR, and UV-Vis spectrometer. The optimized molecular geometry, bond lengths, bond angles, atomic charges, harmonic vibrational wave numbers and intensities of vibrational bonds of the title compound have been investigated by Time dependent- Density Functional Theory (TD-DFT) using a standard B3LYP method with 6-31 G (d, p) basis set available in the Gaussian 09W package. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). Experimental excitation energies of the molecules were matched with the theoretically calculated energies. The atomic charge distributions of the various atoms present in the AKN were obtained by Mulliken charge population analysis. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule. The difference between the observed and scaled frequencies was small. The HOMO to LUMO transition implies an electron density transfer. The intramolecular contacts have been interpreted using Natural Bond Orbital (NBO) analysis. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  8. Solution-state (15)N NMR spectroscopic study of alpha-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1.

    PubMed

    Hahn, Janina; Kühne, Ronald; Schmieder, Peter

    2007-12-17

    The detailed structure of the chromophore-binding pocket in phytochrome proteins and the structural changes associated with its photocycle are still matters of debate. Insight into the structure and dynamics of the binding pocket has been gained through the comparison of a (15)N NMR spectrum of alpha-C-phycocyanin, which is often used as a model system for the study of phytochromes, with the previously described (15)N NMR spectrum of the cyanobacterial phytochrome Cph1. The former spectrum supports the hypothesis that all four nitrogen atoms of the alpha-C-phycocyanin chromophore are protonated, in analogy with the proposed protonation state for the P(r) and P(fr) forms of Cph1. The spectra show that the chromophores in both proteins exhibit a distinct dynamic behavior, as also indicated by a NOESY spectrum of Cph1. Finally, stereochemical arguments and a Cph1 homology model support the hypothesis that the chromophore in Cph1 is most likely in the ZZZssa conformation in the P(r) form of the protein.

  9. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata

    The effect of some metals on the electronic system of benzoic and nicotinic acids has recently been investigated by IR, Raman and UV spectroscopy [1-3]. Benzoic and nicotinic acids are regarded model systems representing a wide group of aromatic ligands which are incorporated into enzymes. In this work the FT-IR (in solid state and in solution), FT-Raman, UV absorption and 1H and 13C NMR spectra of caffeic acid (3,4-dihydroxycinnamic acid) and its salts with lithium, sodium, potassium, rubidium and caesium were registered, assigned and analyzed. The effect of alkali metals on the electronic system of ligands was discussed. Studies of differences in the number and position of bands from the IR, Raman, UV absorption spectra and chemical shifts from NMR spectra allowed to conclude on the distribution of electronic charge in the molecules, the delocalization energy of π electrons and the reactivity of ligands in metal complexes. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** basis set. Bond lengths, angles and dipole moments for the optimized structures of caffeic acid and lithium, sodium, potassium caffeinates were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained. The calculated parameters were compared to the experimental characteristics of investigated compounds. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    SciTech Connect

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  11. NMR spectroscopic evidence for the intermediacy of XeF(3)(-) in XeF(2)/F(-) exchange, attempted syntheses and thermochemistry of XeF(3)(-) salts, and theoretical studies of the XeF(3)(-) anion.

    PubMed

    Vasdev, Neil; Moran, Matthew D; Tuononen, Heikki M; Chirakal, Raman; Suontamo, Reijo J; Bain, Alex D; Schrobilgen, Gary J

    2010-10-04

    The existence of the trifluoroxenate(II) anion, XeF(3)(-), had been postulated in a prior NMR study of the exchange between fluoride ion and XeF(2) in CH(3)CN solution. The enthalpy of activation for this exchange, ΔH(⧧), has now been determined by use of single selective inversion (19)F NMR spectroscopy to be 74.1 ± 5.0 kJ mol(-1) (0.18 M) and 56.9 ± 6.7 kJ mol(-1) (0.36 M) for equimolar amounts of [N(CH(3))(4)][F] and XeF(2) in CH(3)CN solvent. Although the XeF(3)(-) anion has been observed in the gas phase, attempts to prepare the Cs(+) and N(CH(3))(4)(+) salts of XeF(3)(-) have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF(2) and fluoride ion solvation in CH(3)CN solution. The XeF(3)(-) anion would represent the first example of an AX(3)E(3) valence shell electron pair repulsion (VSEPR) arrangement of electron lone pair and bond pair domains. Fluorine-19 exchange between XeF(2) and the F(-) anion has also been probed computationally using coupled-cluster singles and doubles (CCSD) and density functional theory (DFT; PBE1PBE) methods. The energy-minimized geometry of the ground state shows that the F(-) anion is only weakly coordinated to XeF(2) (F(2)Xe---F(-); a distorted Y-shape possessing C(s) symmetry), while the XeF(3)(-) anion exists as a first-order transition state in the fluoride ion exchange mechanism, and is planar and Y-shaped (C(2v) symmetry). The molecular geometry and bonding of the XeF(3)(-) anion has been described and rationalized in terms of electron localization function (ELF) calculations, as well as the VSEPR model of molecular geometry. Quantum-chemical calculations, using the CCSD method and a continuum solvent model for CH(3)CN, accurately reproduced the transition-state enthalpy observed by (19)F NMR spectroscopy, and showed a negative but negligible enthalpy for the formation of the F(2)Xe---F(-) adduct in this medium.

  12. Spectroscopic analysis (FT-IR, FT-Raman and NMR) and molecular docking study of ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Jalaja, K.; Abdel-Aziz, Alaa A.-M.; Al-Obaid, Abdulrahman M.; Sheena Mary, Y.; Yohannan Panicker, C.; Van Alsenoy, C.

    2016-09-01

    The vibrational wavenumbers, molecular structure, MEP, NLO, NBO and HOMO, LUMO analysis of Ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate (EPDA) were reported. The change in electron density in the antibonding orbitals and stabilization energies have been calculated by NBO analysis to give clear evidence of stabilization in the hyperconjugation of hydrogen bonded interaction. The difference in HOMO and LUMO energy support the charge transfer interaction within the molecule. NMR studies and Fukui functions are also reported. From molecular electrostatic potential plot it is evident that the negative charge covers the carbonyl groups, phenyl rings and the positive region is over the CH2 groups with the acetate group. Molecular docking studies shows that the title compound forms a stable complex with pyrrole inhibitor and gives a binding affinity value of -8.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against pyrrole inhibitor.

  13. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds.

    PubMed

    Silva, Márcio S

    2017-02-07

    Nuclear magnetic resonance (NMR) is a powerful tool for the elucidation of chemical structure and chiral recognition. In the last decade, the number of probes, media, and experiments to analyze chiral environments has rapidly increased. The evaluation of chiral molecules and systems has become a routine task in almost all NMR laboratories, allowing for the determination of molecular connectivities and the construction of spatial relationships. Among the features that improve the chiral recognition abilities by NMR is the application of different nuclei. The simplicity of the multinuclear NMR spectra relative to ¹H, the minimal influence of the experimental conditions, and the larger shift dispersion make these nuclei especially suitable for NMR analysis. Herein, the recent advances in multinuclear ((19)F, (31)P, (13)C, and (77)Se) NMR spectroscopy for chiral recognition of organic compounds are presented. The review describes new chiral derivatizing agents and chiral solvating agents used for stereodiscrimination and the assignment of the absolute configuration of small organic compounds.

  14. (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn.

    PubMed

    Benndorf, Christopher; Eckert, Hellmut; Pöttgen, Rainer

    2016-05-10

    Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours.

  15. Molecular structures, spectroscopic (FT-IR, NMR, UV) studies, NBO analysis and NLO properties for tautomeric forms of 1,3-dimethyl-5-(phenylazo)-6-aminouracil by density functional method.

    PubMed

    Eşme, Aslı; Sağdınç, Seda Güneşdoğdu

    2018-01-05

    The equilibrium geometry, nuclear magnetic resonance (NMR) and UV-Vis analysis, and vibrational frequencies for the azo and hydrazone isomers of 1,3-dimethyl-5-(phenylazo)-6-aminouracil have been performed using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. A detailed interpretation of the vibrational spectra has been made on the basis of the calculated potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA4) program. The (1)H NMR chemical shifts with respect to TMS were calculated by the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Using the TD-DFT method, electronic absorption spectra in CHCl3 solvent of the title compound have been predicted, and good agreement is determined with the experimental one. The NLO properties such as mean polarizability (⟨α⟩), the anisotropy of the polarizability (⟨Δα⟩) and the mean first-order hyperpolarizability (⟨β⟩) were computed by using finite field method. The computed values of μ, α and β for the azo and hydrazone forms of the title molecule are 5.4717 and 3.8905 D, 2.7773×10(-23) and 2.7598×10(-23)esu, and 3.4499×10-(30) and 6.8504×10-(30)esu, respectively. The high β values and non-zero values of μ indicate that the title compound might be a good candidate for NLO material. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. On the influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A

    2014-06-12

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.

  17. On the Influence of Crosslinker on Template Complexation in Molecularly Imprinted Polymers: A Computational Study of Prepolymerization Mixture Events with Correlations to Template-Polymer Recognition Behavior and NMR Spectroscopic Studies

    PubMed Central

    Shoravi, Siamak; Olsson, Gustaf D.; Karlsson, Björn C. G.; Nicholls, Ian A.

    2014-01-01

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer–crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity. PMID:24927149

  18. Vibrational spectroscopic studies, NMR, HOMO-LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations

    NASA Astrophysics Data System (ADS)

    Demir, Sibel; Tinmaz, Feyza; Dege, Necmi; Ilhan, Ilhan Ozer

    2016-03-01

    The crystal and molecular structure of the title compound, 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole, was reported and confirmed by single crystal X-ray diffraction and spectroscopic data. The structure, geometry optimization, vibrational frequencies and nuclear magnetic resonance were also investigated. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. Satisfactory theoretical aspects were made for the stable conformer of the molecule using density functional theory DFT-B3LYP methods with the 6-311G++(d,p) basis set.

  19. Spectroscopic detection

    DOEpatents

    Woskov, Paul P.; Hadidi, Kamal

    2003-01-01

    In embodiments, spectroscopic monitor monitors modulated light signals to detect low levels of contaminants and other compounds in the presence of background interference. The monitor uses a spectrometer that includes a transmissive modulator capable of causing different frequency ranges to move onto and off of the detector. The different ranges can include those with the desired signal and those selected to subtract background contributions from those with the desired signal. Embodiments of the system are particularly useful for monitoring metal concentrations in combustion effluent.

  20. Structure elucidation and NMR assignments of an unusual triterpene saponin derivative from Ilex kudincha.

    PubMed

    Zuo, Wenjian; Wang, Qinghu; Li, Wen; Sha, Yi; Li, Xian; Wang, Jinhui

    2012-04-01

    One unusual triterpenoid derivative, ilekudinchoside E (1), was isolated from the leaves of Ilex kudincha. The structure was established by various spectroscopic techniques, including one- and two-dimensional NMR, HRTOFMS and CD spectra.

  1. Low-temperature UV-visible and NMR spectroscopic investigations of O(2) binding to ((6)L)Fe(II), a ferrous heme bearing covalently tethered axial pyridine ligands.

    PubMed

    Ghiladi, Reza A; Karlin, Kenneth D

    2002-05-06

    In this report, we describe the reversible dioxygen reactivity of ((6)L)Fe(II) (1) [(6)L = partially fluorinated tetraphenylporphyrin with covalently appended TMPA moiety; TMPA = tris(2-pyridylmethyl)amine] using a combination of low-temperature UV-vis and multinuclear ((1)H and (2)H) NMR spectroscopies. Complex 1, or its pyrrole-deuterated analogue ((6)L-d(8))Fe(II) (1-d(8)), exhibits downfield shifted pyrrole resonances (delta 28-60 ppm) in all solvents utilized [CH(2)Cl(2), (CH(3))(2)C(O), CH(3)CN, THF], indicative of a five-coordinate high-spin ferrous heme, even when there is no exogenous axial solvent ligand present (i.e., in methylene chloride). Furthermore, ((6)L)Fe(II) (1) exhibits non-pyrrolic upfield and downfield shifted peaks in CH(2)Cl(2), (CH(3))(2)C(O), and CH(3)CN solvents, which we ascribed to resonances arising from the intra- or intermolecular binding of a TMPA-pyridyl arm to the ferrous heme. Upon exposure to dioxygen at 193 K in methylene chloride, ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 433 (Soret), 529 (sh), 559 nm] reversibly forms a dioxygen adduct [UV-vis: lambda(max) = 422 (Soret), 542 nm], formulated as the six-coordinate low-spin [delta(pyrrole) 9.3 ppm, 193 K] heme-superoxo complex ((6)L)Fe(III)-(O(2)(-)) (2). The coordination of the tethered pyridyl arm to the heme-superoxo complex as axial base ligand is suggested. In coordinating solvents such as THF, reversible oxygenation (193 K) of ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 424 (Soret), 542 nm] also occurs to give a similar adduct ((6)L)Fe(III)-(O(2)(-)) (2) [UV-vis: lambda(max) = 418 (Soret), 537 nm. (2)H NMR: delta(pyrrole) 8.9 ppm, 193 K]. Here, we are unable to distinguish between a bound solvent ligand or tethered pyridyl arm as axial base ligand. In all solvents, the dioxygen adducts decompose (thermally) to the ferric-hydroxy complex ((6)L)Fe(III)-OH (3) [UV-vis: lambda(max) = 412-414 (Soret), 566-575 nm; approximately delta(pyrrole) 120 ppm at 193 K]. This study on the O(2

  2. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, (1)H, (13)C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane.

    PubMed

    Arjunan, V; Anitha, R; Devi, L; Mohan, S; Yang, Haifeng

    2015-01-25

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G(**) and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecules have been analysed.

  3. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules

    NASA Astrophysics Data System (ADS)

    Almutairi, Maha S.; Xavier, S.; Sathish, M.; Ghabbour, Hazem A.; Sebastian, S.; Periandy, S.; Al-Wabli, Reem I.; Attia, Mohamed I.

    2017-04-01

    Methyl 5-methoxy-1H-indole-2-carboxylate (MMIC) was prepared via esterification of commercially available 5-methoxyindole-2-carboxylic acid. The title molecule MMIC was characterised using FT-IR and FT-Raman in the ranges of 4000-500 and 4000-50 cm-1, respectively. The fundamental modes of the vibrations were assigned and the UV-visible spectrum of the MMIC molecule was recorded in the range of 200-400 nm to explore its electronic nature. The HOMO-LUMO energy distribution was calculated and the bonding and anti-bonding structures of the title molecule were studied and analysed using the natural bond orbital (NBO) approach. The reactivity of the MMIC molecule was also investigated and both the positive and negative centres of the molecule were identified using chemical descriptors and molecular electrostatic potential (MEP) analysis. The chemical shifts of the 1H and 13C NMR spectra were noted and the magnetic field environment of the MMIC molecule are discussed. The non-linear optical (NLO) properties of the title molecule were studied based on its calculated values of polarisability and hyperpolarisability. All computations were obtained by DFT methods using the 6-311++G (d,p) basis set.

  4. Spectroscopic (FT-IR, FT-Raman and UV-Visible) investigations, NMR chemical shielding anisotropy (CSA) parameters of 2,6-Diamino-4-chloropyrimidine for dye sensitized solar cells using density functional theory.

    PubMed

    Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K

    2015-02-05

    The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  5. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Jayabharathi, J.

    2010-07-01

    Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine [vanillin azine (VA)] were carried out by using density functional (DFT/B3LYP) method with 6-31G(d) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the VA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of VA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The theoretical NMR chemical shifts complement with experimentally measured ones.

  6. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng

    2015-01-01

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.

  7. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and theoretical calculations of (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]hydrazinecarboxamide: An anticonvulsant agent

    NASA Astrophysics Data System (ADS)

    Haress, Nadia G.; Govindarajan, Munusamy; AL-Wabli, Reem I.; Almutairi, Maha S.; Al-Alshaikh, Monirah A.; Al-Saadi, Abdulaziz A.; Attia, Mohamed I.

    2016-08-01

    Vibrational characteristics of the anticonvulsant agent, (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]hydrazinecarboxamide ((2E)-IPHC) have been investigated. The computational data are obtained by adopting ab initio Hartree-Fock (HF) and DFT/B3LYP/6-31 + G(d,p) methods. The most stable conformer is identified by a potential energy scan. The optimized geometrical parameters indicated that the overall symmetry of the most stable conformer is CS. Atoms in molecules (AIM) analysis is contained out and the chemical bondings between the atoms are as characterized. Mulliken atomic charges and simulated thermo-molecular (heat capacity and enthalpy) characteristics of the (2E)-IPHC molecule also have been analyzed. The magnitude of the molecular electrostatic potential (MEP) of oxygen, hydrogen, and nitrogen atoms as well as phenyl and imidazole rings in the title molecule were investigated along with their contribution to the biological activity. The energy gap between HOMO and LUMO orbitals has been found to be 5.1334 eV in the gaseous phase. Excitation energies, oscillator strength and wavelengths were computed by the time-dependent density function theory (TD-DFT) approach. Predicted wavenumbers have been assigned and they are consistent with the experimental values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the (2E)-IPHC molecule were computed by the gauge independent atomic orbital (GIAO) method and were compared with the experimental results.

  8. Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO-LUMO analysis of 2,4-difluoroacetophenone

    NASA Astrophysics Data System (ADS)

    Jeyavijayan, S.

    2015-02-01

    The FTIR and FT-Raman spectra of 2,4-difluoroacetophenone (DFAP) have been recorded in the regions 4000-400 cm-1 and 3500-50 cm-1, respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of DFAP is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The MEP map shows the negative potential sites are on oxygen atom as well as the positive potential sites are around the hydrogen atoms. The UV-Vis spectral analysis of DFAP has also been done which confirms the charge transfer of DFAP. The chemical shifts of H atoms and C atoms were calculated using NMR analysis. Furthermore, the polarizability, the first hyperpolarizability and total dipole moment of the molecule have been calculated.

  9. Studies of DNA-binding properties of lafutidine as adjuvant anticancer agent to calf thymus DNA using multi-spectroscopic approaches, NMR relaxation data, molecular docking and dynamical simulation.

    PubMed

    Yang, Hongqin; Tang, Peixiao; Tang, Bin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Li, Hui

    2017-06-01

    The interactions between lafutidine (LAF) and calf thymus DNA (ctDNA) have been investigated both experimentally and theoretically. UV-vis absorption studies confirmed that LAF binds to ctDNA through non-covalent interactions. Fluorescence quenching and time-resolved fluorescence spectroscopy studies showed that the binding of LAF with ctDNA occurred through static quenching mechanism, resulting in the formation of a LAF-ctDNA complex. The binding constants (K) of the complex were found to be around 10(3)M(-1) via NMR relaxation rates and fluorescence data, and the calculated thermodynamic parameters indicated that hydrogen bonds and van der Waals forces played major roles in the binding of LAF to ctDNA. The changes in CD spectra indicated that LAF induced a slight perturbation on the base stacking and helicity of B-DNA. A comparative study of the LAF-ctDNA complex with respect to potassium iodide quenching experiments and competition displacement assays with ethidium bromide, acridine orange, and Hoechst 33258 probes suggested that LAF interacted with ctDNA by minor groove mode. Molecular docking analysis further supported the minor groove binding. Molecular dynamics simulation indicated that LAF depart from the C-G region of DNA, but it can steadily bind with the middle part of DNA composed by A-T base pairs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline.

    PubMed

    Pathak, S K; Srivastava, R; Sachan, A K; Prasad, O; Sinha, L; Asiri, A M; Karabacak, M

    2015-01-25

    Comprehensive investigation of geometrical and electronic structure in ground as well as the first excited state of 3,5-Difluoroaniline (C6H5NF2) was carried out. The experimentally observed spectral data (FT-TR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were measured by TD-DFT approach. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. (1)H and (13)C NMR spectra by using gauge including atomic orbital (GIAO) method of studied compound were compared with experimental data obtained. Moreover, the thermodynamic properties were evaluated.

  11. Synthesis, spectroscopic (UV-Vis, FT-IR and NMR), single crystal XRD of 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate: A comprehensive experimental and computational study

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2017-01-01

    A piperidin-4-one containing picrate 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate [3,5-DPPP] was synthesized. The molecular structure of 3,5-DPPP was confirmed by FT-IR, NMR, Uv-Vis, single crystal XRD analysis and DFT and HF methods with 6-31G(d,p) basis set. The XRD data confirm the transfer of protons from picric acid (O2) to piperidin-4-one ring (N1). The 3,5-DPPP compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds (N-H⋯O, C-H⋯S and C-H⋯O). Density functional theory and HF calculations have been used widely for calculating a wide variety of molecular properties such as optimized structure, FT-IR and Uv-Vis spectra, and provided reliable results which are in agreement with experimental data. The charge density data have been used to understand the properties of molecular systems. Furthermore, several quantum chemical insights have been obtained in the form of the total and partial density of states, the HOMO-LUMO energy gap and electrostatic potential map etc. In addition, the polarizability and first hyperpolarizability were calculated to show the potential applications of 3,5-DPPP in nonlinear optics.

  12. Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO-LUMO analysis of 2,4-difluoroacetophenone.

    PubMed

    Jeyavijayan, S

    2015-02-05

    The FTIR and FT-Raman spectra of 2,4-difluoroacetophenone (DFAP) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of DFAP is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The MEP map shows the negative potential sites are on oxygen atom as well as the positive potential sites are around the hydrogen atoms. The UV-Vis spectral analysis of DFAP has also been done which confirms the charge transfer of DFAP. The chemical shifts of H atoms and C atoms were calculated using NMR analysis. Furthermore, the polarizability, the first hyperpolarizability and total dipole moment of the molecule have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis, X-ray crystallography, spectroscopic (FT-IR, 1H &13C NMR and UV), computational (DFT/B3LYP) and enzymes inhibitory studies of 7-hydroximinocholest-5-en-3-ol acetate

    NASA Astrophysics Data System (ADS)

    Ahmad, Faheem; Parveen, Mehtab; Alam, Mahboob; Azaz, Shaista; Malla, Ali Mohammed; Alam, Mohammad Jane; Lee, Dong-Ung; Ahmad, Shabbir

    2016-07-01

    The present study reports the synthesis of 7-Hydroximinocholest-5-en-3-ol acetate (syn. 3β-acetoxycholest-5-en-7-one oxime; in general, steroidal oxime). The identity of steroidal molecule was confirmed by NMR, FT-IR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra interpreted by Gaussian hybrid computational analysis theory (B3LYP) are found to be in good correlation with the experimental data obtained from the various spectrophotometric techniques. The vibrational bands appearing in the FTIR are assigned with great accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The percentages of various interactions are pictorialized by fingerprint plots of Hirshfeld surface. Steroidal oxime exhibited promising inhibitory activity against acetylcholinesterase (AChE) as compared to the reference drug, tacrine. Molecular docking was performed to introduce steroidal molecules into the X-ray crystal structures of acetylcholinesterase at the active site to find out the probable binding mode. The results of molecular docking admitted that steroidal oxime may exhibit enzyme inhibitor activity.

  14. NMR Evidences of the Coupling between Conduction Electrons and Molecular Degrees of Freedom in the Exotic Member of the Bechgaard Salt (TMTSF)2FSO3

    NASA Astrophysics Data System (ADS)

    Satsukawa, Hidetaka; Yajima, Akio; Hiraki, Ko-ichi; Takahashi, Toshihiro; Kang, Haeyong; Jo, Younjung; Kang, Woun; Chung, Ok-Hee

    2016-12-01

    We performed 77Se- and 19F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the temperature-pressure phase diagram, determined by precise transport measurements [Jo et al., Phys. Rev. B 67, 014516 (2003)]. We claim that such varieties of electronic states in the refined phase diagram are caused by strong couplings of the conduction electrons with FSO3 anions, especially with the permanent electric dipoles on the anions. We suggest that as temperature decreases, the FSO3 anions form orientational ordering through two steps; first, only the tetrahedrons form an orientational order leaving the orientations of the electronic dipoles in random (transition I); then the dipoles form a perfect orientational order at a lower temperature (transition II). In the intermediate temperature range between transitions I and II, we found an appreciable enhancement of homogeneous and inhomogeneous widths of the 77Se-NMR spectrum. From the analysis of the angular dependence of the linewidth, we attributed these anomalies to the intramolecular charge disproportionation or imbalance and its slow dynamics caused by the coupling with the permanent electric dipole of the anion. Results of 19F-NMR relaxation and lineshape measurements support this picture very well. Electronic structures at higher pressures up to 1.25 GPa are discussed on the basis of the results of the 77Se- and 19F-NMR measurements.

  15. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  16. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  17. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  18. NMR analysis on microfluidic devices by remote detection.

    PubMed

    McDonnell, Erin E; Han, SongI; Hilty, Christian; Pierce, Kimberly L; Pines, Alexander

    2005-12-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information-rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity, using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  19. Optical absorption and NMR spectroscopic studies on paramagnetic neodymium(III) complexes with beta-diketone and heterocyclic amines. The environment effect on 4f-4f hypersensitive transitions.

    PubMed

    Ansari, A A; Irfanullah, M; Iftikhar, K

    2007-08-01

    The optical absorption spectra of [Nd(acac)3(H2O)2].H2O, [Nd(acac)3bpy] and [Nd(acac)3phen(H2O)2] (where acac=acetylacetone, bpy=2,2'-bipyridyl and phen=1,10-phenanthroline) complexes in the visible region, in a series of non-aqueous solvents (methanol, ethanol, isopropanol, chloroform, acetonitrile, pyridine, nitrobenzene and dimethylsulphoxide) have been analyzed. The transition 4G(5/2)<--4I(9/2) (Nd-VI) located near the middle of the visible region (17,500 cm(-1)) is hypersensitive. Its behavior is in sharp contrast to many other typically weak and consistently unvaried, normal 4f-4f transitions. The oscillator strength of this transition for the chelate as well as its adducts with phen and bpy in any of the solvent employed is larger than the oscillator strength of Nd3+ aqua-ion. It is most intense in pyridine for all the complexes studied and, therefore, pyridine is the most effective in promoting f-f spectral intensity. The band shape and oscillator strength of the hypersensitive transitions display pronounced changes as compared to Nd3+ aqua-ion. The band shapes of the hypersensitive transitions show remarkable changes on passing from aqueous solution to various non-aqueous solutions, which is the result of change in the environment about the Nd(III) ion in the various solutions and suggests change in the environment about the Nd(III) ion in the various solutions and suggests coordination of solvent molecule(s), in some cases. A comparative account of hypersensitivity in the present complexes with those of other adducts of Nd(beta-diketoenolate)3 with heterocyclic amines is discussed. The NMR signals of heterocyclic amines have been shifted to high fields while the resonances due to acetylacetone moiety have moved to low fields. The paramagnetic shift in the complexes is dipolar in nature.

  20. Understanding the directed ortho lithiation of (R)-Ph₂P(=NCO₂Me)NHCH(Me)Ph. NMR spectroscopic and computational study of the structure of the N-lithiated species.

    PubMed

    Casimiro, M; García-López, J; Iglesias, M J; López-Ortiz, F

    2014-10-14

    A multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (15)N, (31)P) and DFT computational study at the M06-2X(SMD,THF)/6-311+G(d,p)//B3LYP/6-31G(d) level of the structure of a N-lithiated phosphinimidic amide (R)-Ph2P(=NCO2Me)NHCH(Me)Ph 13 has been performed. In THF solution it exists as an equilibrium mixture of monomers and dimers. The monomers consist of a six-membered ring formed by coordination of the lithium atom with the deprotonated nitrogen and the oxygen atom of the carbonyl group. This coordination mode is in contrast to the standard N,N-chelation observed in N-lithiated N,N'-bis(trimethylsilyl)phosphinimidic amides. The calculations showed that the metallacycle adopts a twist-boat conformation and that the lithium atom is in a tetrahedral environment involving O,N-chelation by the ligand and coordination to two/one THF molecules in the monomer/dimer. Dimerization takes place through O-Li bridges. For all species two series of isomers have been identified, which originated by restricted rotation of the methoxy group and ring inversion. The twist-boat conformational interconversion seems to be operating for explaining the pattern of signals observed in the (7)Li and (31)P NMR spectra. The structure found for the most stable dimer is analogous to the molecular structure reported for a related C(α)-lithiated phosphazene 20. The structural study revealed that the chiral side-arm of the N-lithiated species is oriented to the outer face of the pro-S P-phenyl ring, which shows one ortho-proton very close to the nitrogen atom of the carbamate moiety. In this conformation, proton abstraction by a base is highly favoured, in agreement with the experimental results.

  1. Experimental spectroscopic (FTIR, FT-Raman, FT-NMR, UV-Visible) and DFT studies of 1-ethyl-1,4-dihydro-7-methyl-4oxo-1,8 napthyridine-3-carboxylic acids.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-12-01

    The solid phase FTIR and FT-Raman spectra of 1-ethyl-1,4-dihydro-7-methyl-4oxo-1,8 napthyridine-3-carboxylic acid (EDMONCA) have been recorded in the regions 4000-500 and 4000-400 cm(-1) respectively. The equilibrium geometry, harmonic vibrational frequencies have been investigated by DFT/B3LYP and B3PW91 methods with 6-311G (d,p) basis set. The different between the observed and scaled wave number values of most of the fundamental is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFFM). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the compound was recorded and the electronic properties HOMO and LOMO energies were measured. The electric dipole moment (μD) and first hyperpolarizability (βtot) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the EDMONCA molecule may have microscopic nonlinear optics (NLO) behavior with non-zero values. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. Thermal stability of EDMONCA was studied by thermogravimetric analysis (TGA). Next Fukui function was calculated to explain the chemical selectivity or reactivity site in EDMONCA. Finally molecular electrostatic potential (MEP) and other molecular properties were performed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  3. NMR of lignins

    Treesearch

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  4. NMR analysis of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  5. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.

    PubMed

    Chang, Haitao; Okada, Yoshihito; Okuyama, Toru; Tu, Pengfei

    2007-07-01

    Two novel angular-type furanocoumarin glycosides, peucedanoside A (1) and peucedanoside B (2), along with a known compound apterin (3), were isolated from the roots of Peucedanum praeruptorum Dunn. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments including DEPT, HSQC, HMBC and ROESY.

  6. (F(8)TPP)Fe(II)/O(2) reactivity studies [F(8)TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2-)]: spectroscopic (UV-Visible and NMR) and kinetic study of solvent-dependent (Fe/O(2) = 1:1 or 2:1) reversible O(2)-reduction and ferryl formation.

    PubMed

    Ghiladi, R A; Kretzer, R M; Guzei, I; Rheingold, A L; Neuhold, Y M; Hatwell, K R; Zuberbühler, A D; Karlin, K D

    2001-11-05

    )Fe(II) (1)/O(2) reaction was also examined at reduced temperatures in noncoordinating solvents (toluene, CH(2)Cl(2)), where UV-visible and (2)H and (19)F NMR spectroscopies also revealed the presence of a reversibly formed adduct, formulated as the peroxo-bridged dinuclear complex [(F(8)TPP)Fe(III)](2)-(O(2)(2)(-)) (3) [CH(2)Cl(2): UV-visible, 414 (Soret), 535 nm; (2)H NMR, delta(pyrrole) 17.5 ppm]. Dioxygen-uptake spectrophotometric titrations revealed a stoichiometry of 2 (F(8)TPP)Fe(II) (1) per O(2) upon full formation of 3. Addition of a nitrogenous base, 4-(dimethylamino)pyridine, to a cold solution of 3 in dichloromethane gave rapid formation of the iron(IV)-oxo ferryl species (DMAP)(F(8)TPP)Fe(IV)==O (4), based upon UV-visible [417 (Soret), 541 nm] and (2)H NMR (delta(pyrrole) = 3.5 ppm) spectroscopic characterization. These detailed investigations into the O(2)-adducts and "ferryl" species formed from (F(8)TPP)Fe(II) (1) may be potentially important for a full understanding of our ongoing heme-copper oxidase model studies, which employ 1 or similar "tethered" (i.e., covalently attached Cu-chelate) porphyrin analogues in heme/Cu heterobinuclear systems.

  7. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids

    ERIC Educational Resources Information Center

    Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.

    2011-01-01

    This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…

  9. Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids

    ERIC Educational Resources Information Center

    Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.

    2011-01-01

    This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…

  10. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  11. Functional binding surface of a β-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells.

    PubMed

    Diana, Donatella; Russomanno, Anna; De Rosa, Lucia; Di Stasi, Rossella; Capasso, Domenica; Di Gaetano, Sonia; Romanelli, Alessandra; Russo, Luigi; D'Andrea, Luca D; Fattorusso, Roberto

    2015-01-02

    In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast (15)N-edited NMR spectroscopic experiments. To this aim, (15)N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope-edited NMR spectroscopic experiments, including (15)N relaxation measurements, allowed a precise characterization of the in-cell HPLW epitope recognized by VEGFR2.

  12. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  13. Recent NMR developments applied to organic-inorganic materials.

    PubMed

    Bonhomme, Christian; Gervais, Christel; Laurencin, Danielle

    2014-02-01

    In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The role of electrostatic interactions and solvent polarity on the 15N NMR shielding of azines

    NASA Astrophysics Data System (ADS)

    Modesto-Costa, Lucas; Gester, Rodrigo M.; Manzoni, Vinícius

    2017-10-01

    The nitrogen-15 nuclear magnetic resonance (15N NMR) shielding of azines is very sensitive to the chemical environment. Theoretically, specific interactions are important on the calculation of their spectroscopic properties. However, the choice of the solvent model for the description of NMR shielding constants is still a subject of discussion. In this context, we analyse the role of electrostatic interactions on 15N NMR shielding as function of solvent polarity using the sequential-Quantum Mechanics/Molecular Mechanics approach methodology. Excellent agreement with experimental data of the NMR shielding was obtained without the inclusion of explicit solvent molecules either for polar or non polar solvents.

  15. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  16. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  17. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  18. NMR logging apparatus

    SciTech Connect

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  19. UC Merced NMR Instrumentation Acquisition

    DTIC Science & Technology

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR ...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500...MHz NMR have been delivered, installed, and incorporated into research and two lab courses. While no results from these instruments have been

  20. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    spectroscopic methods to weight or filter the spin signals represents the core of the book. This is a subject where Blümich is deeply involved with substantial contributions. The chapter includes a lot of ideas to provide MR contrast between different regions based on their mobility, diffusion, spin couplings or NMR spectra. After describing NMR imaging methods for solids with broad lines, Blümich spends time on applications in the last two chapters of the book. This part is really fun to read. It underlines the effort to bring NMR into many kinds of manufacturing. Car tyres and high-voltage cables are just two such areas. Elastomeric materials, green-state ceramics and food science represent other interesting fields of applications. This part of the book represents a personal but nevertheless extensive compilation of modern applications. As a matter of course the MOUSE is presented, a portable permanent-magnet based NMR developed by Blümich and his co-workers. Thus the book is not only of interest to NMR spectroscopists but also to people in material science and chemical engineering. The bibliography and indexing are excellent and may serve as an attractive reference source for NMR spectroscopists. The book is the first on the subject and likely to become the standard text for NMR imaging of materials as the books by Abragam, Slicher and Ernst et al are for NMR spectroscopy. The purchase of this beautiful book for people dealing with NMR spectroscopy or medical MRI is highly recommended. Ralf Ludwig

  1. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  2. Flavonoids from Curcuma longa leaves and their NMR assignments.

    PubMed

    Jiang, Chia-Ling; Tsai, Sheng-Fa; Lee, Shoei-Sheng

    2015-01-01

    Chemical investigation of the n-BuOH-soluble fraction of the EtOH extract of the aerial part of Curcuma longa led to the isolation of 11 flavonol glycosides and one dihydroflavonol glucoside (1) via chromatography over Sephadex LH-20 and Lobar RP-18 columns. Although they are known, the 1H and 13C NMR data recorded in CD3OD rather than the common DMSO-d6 are doubly checked via extensive 2D NMR spectroscopic analyses, leading to some revisions of the reported data, especially for the glycon part.

  3. Renal transplant NMR

    SciTech Connect

    Velchik, M.G.; Kressel, H.; Thickman, D.; Alavi, A.

    1985-05-01

    The preliminary results of NMR evaluation of renal transplants (Txs) are reported including correlation with nuclear medicine (NM) and ultrasound (US). Thirteen Txs (8 cadaver (Cd), 5 living related doner (LRD) in 13 patients (6M, 7F) ranging in age from 25-47 (x 35) were evaluated by NM (32), NMR (15) and US (5). Clinical diagnoses included: rejection (8), ATN (2), infarction (1), and normal (2). Of the 8 patients with rejection (5) Cd; 3 LRD) pathologic proof was obtained in 3. An experimental 0.12 T resistive magnet (GE) was used with a partial saturation technique with repetition time (TR) of 143 and 286 msec to provide T1 weighting. T2 weighted information was obtained with a spin echo technique with echo times (TE) of 20, 40, 60 and 80 msec. The NMR appearance of normal Txs consisted of a uniform signal intensity (Tx> pelvic musculature), well-defined internal architecture with good cortical medullary differentiation and normal appearing vessels. The NMR appearance of abnormal transplants consisted of a heterogeneous or overall decrease in signal intensity (kidney muscle) with poor cortical medullary differentiation with or without a halo of decreased signal intensity. Although NMR was able to differentiate normal from abnormal, it was unable to clearly discriminate between ATN and rejection. Advantages of NMR included the ability to demonstrate regional anatomy, vasculature, post operative fluid collections and hematomas, and associated avascular necrosis of the hips.

  4. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  5. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  6. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  7. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  8. NMR investigation of gaseous SF6 confinement into EPDM rubber.

    PubMed

    Neutzler, Sven; Terekhov, Maxim; Hoepfel, Dieter; Oellrich, Lothar Rainer

    2005-02-01

    The confinement process of gaseous sulphurhexafluoride (SF6) in ethylene-propylene-diene (EPDM) rubber was investigated by spectroscopic and spatially resolved NMR techniques. A strong elongation of T1 relaxation time of SF6 and a decrease of the diffusion coefficient were found. A possible explanation may be the strong restriction of molecular mobility due to interactions between SF6 and active centers of the EPDM.

  9. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  10. The application of high resolution diffusion NMR to the analysis of manuka honey.

    PubMed

    Gresley, Adam Le; Kenny, Jackie; Cassar, Claire; Kelly, Alison; Sinclair, Alex; Fielder, Mark D

    2012-12-15

    The application of DOSY (Diffusion Ordered SpectroscopY) NMR as a technique for the virtual separation of key components of manuka honey and the implications for future discriminatory analysis of honey types is reported for the first time. The scope and the limitations of DOSY NMR are considered using the recently conceived DOSY Tool Box processing software and preliminary anti-bacterial data for the different honey types is reported.

  11. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  12. NMR investigation of novel superconductivity and angular dependent magnetic effects in Bechgaard salts

    NASA Astrophysics Data System (ADS)

    Shinagawa, Jun

    The Bechgaard salts, (TMTSF)2X where X = PF6, ClO 4, etc., are correlated, quasi-1D organic conductors. They exhibit remarkably diverse ground states, including metallic, superconducting and spin-density wave (SDW) phases; which is stabilized depends on the lattice constants, which are controlled by mechanical or chemical pressure (by exchanging one anion for another). Applied magnetic fields induce intriguing phenomena as well, including the stabilization of field-induced spin-density wave (FISDW) states and associated quantum Hall effect, and the non-Fermi liquid phenomena known as the magic angle effect (MAE) in the normal state. The MAE has been studied intensively, but its mechanisms are elusive. Similarly, the nature of the superconducting state has been controversial since its discovery a quarter-century ago. This thesis investigates these two significant problems in Bechgaard salt using NMR as a probe. 77Se spin-lattice relaxation rate ( T-11 ) in (TMTSF)2PF6 exhibited no observable change associated with MAE when the magnetic field was rotated through magic angles from non-magic angles. The temperature dependence of T-11 confirmed that there was no spin gap in the spin excitation spectrum, nor any sign to indicate enhancement of the threshold field of the FISDW state at the magic angles. 77Se T-11 for both H||a and H|| b' in the superconducting state at low fields (H ≤ 13kOe) showed weak temperature dependence below the transition temperature, consistent with an anisotropic superconducting gap. Knight shift measurements on 77Se for both H||a and H||b' at low fields showed frequency shifts consistent with the reduction of static spin susceptibilities in the superconducting state, indicating the pairing is singlet. The field dependence of T-11 at T = 100mK exhibits crossover within the superconducting state at H ≈ 13kOe, to a regime where T-11 approaches the normal-state value, suggesting a possible phase transition within the superconducting state from

  13. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  14. Shiftless NMR Spectroscopy

    PubMed Central

    Wu, Chin H.; Opella, Stanley J.

    2013-01-01

    The acquisition and analysis of high resolution one- and two- dimensional solid-state NMR spectra without chemical shift frequencies are described. Many variations of Shiftless NMR spectroscopy are feasible. A two-dimensional experiment that correlates 13Cα-15N dipole-dipole and 1H-13Cα dipole-dipole couplings in single crystal and powder samples of the model peptide, 13Cα, 15N-acetylleucine, is demonstrated. In addition to the resolution of resonances from individual sites in a single crystal sample, the bond lengths and angles are characterized by the two-dimensional powder pattern obtained from a polycrystalline sample. PMID:18266429

  15. Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-09-01

    In this study; spectroscopic investigation of adenosine having clinical importance was studied computationally and obtained results were compared with experimental ones. In this scope, geometric optimization and conformational analysis were studied and vibrational spectroscopic properties were studied on the most stable form. NMR and TD-DFT studies on the title compound were conducted with its experimental data. In addition atomic charge distribution, NBO, frontier molecular analysis, thermodynamic analysis and hyperpolarization features were studied.

  16. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  17. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  18. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  19. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  20. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  2. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  3. Crystallographic and spectroscopic study on a known orally active progestin.

    PubMed

    Ferraboschi, Patrizia; Ciuffreda, Pierangela; Ciceri, Samuele; Grisenti, Paride; Castellano, Carlo; Meneghetti, Fiorella

    2015-12-01

    6,17α-Dimethyl-4,6-pregnadiene-3,20-dione (medrogestone, 2) is for a long time known steroid endowed with progestational activity. In order to study its crystallographic and NMR spectroscopic properties with the aim to fill the literature gap, we prepared medrogestone following a traditional procedure. A careful NMR study allowed the complete assignment of the (1)H and (13)C NMR signals not only of medrogestone but also of its synthetic intermediates. The structural and stereochemical characterizations of medrogestone together with its precursor 17α-methyl-3-ethoxy-pregna-3,5-dien-20-one were described by means of X-ray analysis, allowing a deepened conformational investigation.

  4. Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies

    ERIC Educational Resources Information Center

    Schenck, Heather L.; Hui, KaWai

    2011-01-01

    These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The…

  5. Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies

    ERIC Educational Resources Information Center

    Schenck, Heather L.; Hui, KaWai

    2011-01-01

    These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The…

  6. A simple protocol for NMR analysis of the enantiomeric purity of chiral hydroxylamines.

    PubMed

    Tickell, David A; Mahon, Mary F; Bull, Steven D; James, Tony D

    2013-02-15

    A practically simple three-component chiral derivatization protocol for determining the enantiopurity of chiral hydroxylamines by (1)H NMR spectroscopic analysis is described, involving their treatment with 2-formylphenylboronic acid and enantiopure BINOL to afford a mixture of diastereomeric nitrono-boronate esters whose ratio is an accurate reflection of the enantiopurity of the parent hydroxylamine.

  7. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  8. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  9. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa.

    PubMed

    Liu, Hong-Xin; Chen, Kai; Yuan, Yao; Xu, Zhi-Fang; Tan, Hai-Bo; Qiu, Sheng-Xiang

    2016-07-26

    Two novel meroterpenoids, rhodomentones A and B bearing an unprecedented caryophyllene-conjugated oxa-spiro[5.8] tetradecadiene skeleton, were isolated from the leaves of Rhodomyrtus tomentosa. Their structures with unique NMR characteristics were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, quantum molecular calculation, chemical transformation as well as total synthesis.

  10. Synthesis, structural, spectroscopic and DFT study on a palladium(II)-N-heterocyclic carbene complex

    NASA Astrophysics Data System (ADS)

    Fırıncı, Rukiye; Günay, M. Emin; Özdemir, Namık; Dinçer, Muharrem

    2017-10-01

    A new palladium complex with N-heterocyclic carbene (NHC) and phosphine ligands was prepared and fully characterized by 1H NMR, 13C NMR and 31P NMR spectroscopies, IR spectroscopy, and X-ray crystallography. The solid-state structure of the complex shows that the metal centre was surrounded by an N-heterocyclic carbene ligand, a phosphorus atom and two bromide ions in a cis-arrangement. Density-functional theory (DFT) calculations at the B3LYP/SDD level were also executed for the further explorations of the spectroscopic and structural properties. The obtained theoretical parameters adequately support the experimental findings in general.

  11. Quantitative carbon-13 nuclear magnetic resonance spectroscopic study of mobile residues in bacteriorhodopsin

    SciTech Connect

    Bowers, J.L.; Oldfield, E.

    1988-07-12

    The authors have used quantitative carbon-13 nuclear magnetic resonance (NMR) spectroscopy to study the dynamic structure of the backbone of bacteriorhodopsin in the purple membrane of Halobacterium halobium R/sub 1/ and JW-3. NMR experiments were performed using an internal sucrose quantitation standard on purple membranes in which one of the following /sup 13/C'-labeled amino acids had been biosynthetically incorporated: glycine, isoleucine, lysine, phenylalanine, and valine. The results suggest that the C-terminus of the polypeptide chain backbone, and possibly one of the connecting loops, undergoes rapid, large angle fluctuations. The results are compared with previous NMR and fluorescence spectroscopic data obtained on bacteriorhodopsin.

  12. From single to multiple microcoil flow probe NMR and related capillary techniques: a review.

    PubMed

    Gökay, Ozan; Albert, Klaus

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important and powerful instrumental analytical techniques for structural elucidation of unknown small and large (complex) isolated and synthesized compounds in organic and inorganic chemistry. X-ray crystallography, neutron scattering (neutron diffraction), and NMR spectroscopy are the only suitable methods for three-dimensional structure determination at atomic resolution. Moreover, these methods are complementary. However, by means of NMR spectroscopy, reaction dynamics and interaction processes can also be investigated. Unfortunately, this technique is very insensitive in comparison with other spectrometric (e.g., mass spectrometry) and spectroscopic (e.g., infrared spectroscopy) methods. Mainly through the development of stronger magnets and more sensitive solenoidal microcoil flow probes, this drawback has been successfully counteracted. Capillary NMR spectroscopy increases the mass-based sensitivity of the NMR spectroscopic analysis up to 100-fold compared with conventional 5-mm NMR probes, and thus can be coupled online and off-line with other microseparation and detection techniques. It offers not only higher sensitivity, but in many cases provides better quality spectra than traditional methods. Owing to the immense number of compounds (e.g., of natural product extracts and compound libraries) to be examined, single microcoil flow probe NMR spectroscopy will soon be far from being sufficiently effective as a screening method. For this reason, an inevitable trend towards coupled microseparation-multiple microcoil flow probe NMR techniques, which allow simultaneous online and off-line detection of several compounds, will occur. In this review we describe the current status and possible future developments of single and multiple microcoil capillary flow probe NMR spectroscopy and its application as a high-throughput tool for the analysis of a large number of mass-limited samples. The advantages

  13. NMR spectroscopicsearch module for Spektraris, an online resource for plant natural product identification – taxane diterpenoids from Taxus × media cell suspension cultures as a case study

    PubMed Central

    Fischedick, Justin T.; Johnson, Sean R.; Ketchum, Raymond E.B.; Croteau, Rodney B.; Lange, B. Markus

    2014-01-01

    Development and testing of Spektraris-NMR an online spectral resource, is reported for the NMR-based structural identification of plant natural products (PNPs). Spektraris-NMRallows users to search with multiple spectra at once and returns a table with alist of hits arranged according to the goodness of fit between query data and database entries. For each hit, a link to a tabulated alignment of 1H-NMR and 13C-NMR spectroscopic peaks (query versus database entry) is provided. Furthermore, full spectroscopic records and experimental meta information about each database entry can be accessed online. To test the utility of Spektraris-NMR for PNP identification, the database was populated with NMR data (total of 466 spectra) for ∼250 taxanes, which are structurally complex diterpenoids (including the anticancer drug taxol) commonly found in the genus Taxus. NMR data generated used was then generated with metabolites purified from Taxus cell suspension cultures to search Spektraris-NMR, and were able to identify eight taxanes with high confidence. A ninth isolated metabolite could be assigned, based on spectral searches, to a taxane skeletal class, but no high confidence hit was produced. Using various spectroscopic methods, this metabolite was characterized as the taxane 2-deacetylbaccatin IV, a novel taxane. These results indicate that Spektraris-NMR is a valuable resource for rapid and reliable identification of known metabolites and has the potential to contribute to de-replication efforts in the search for novel PNPs. PMID:25534952

  14. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  15. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  16. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  17. Molecular structure, NMR, UV-Visible, vibrational spectroscopic and HOMO, LUMO analysis of (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine by DFT method

    NASA Astrophysics Data System (ADS)

    Alphonsa, A. Therasa; Loganathan, C.; Anand, S. Athavan Alias; Kabilan, S.

    2016-02-01

    We have synthesized (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine (PM6). It was characterized using FT-IR, FT-Raman, 1H NMR, 13C NMR techniques. To interpret the experimental data, ab initio computations of the vibrational frequencies were carried out using the Gaussian 09 program followed by the full optimizations done using Density Functional Theory (DFT) at B3LYP/6-311 G(d,p) level. The combined use of experiments and computations allowed a firm assignment of the majority of observed bands for the compound. The calculated stretching frequencies have been found to be in good agreement with the experimental frequencies. The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs) and density of states (DOS). The absorption spectra have been computed by using time dependent density functional theory (TD-DFT). 1H and 13C NMR spectra were recorded and 1H and 13C NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. From the optimized geometry of the molecule, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMOs) of the title compound have been calculated in the ground state theoretically. The theoretical results showed good agreement with the experimental values.

  18. A novel one-pot synthesis of heterocyclic compound (4-benzoyl-5-phenyl-2-(pyridin-2-yl)-3,3a-dihydropyrazolo[1,5-c]pyrimidin-7(6H)-one): Structural (X-ray and DFT) and spectroscopic (FT-IR, NMR, UV-Vis and Mass) characterization Studies

    NASA Astrophysics Data System (ADS)

    Özdemir, Mecit; Sönmez, Mehmet; Şen, Fatih; Dinçer, Muharrem; Özdemir, Namık

    2015-02-01

    In this study, the title compound named as 4-benzoyl-5-phenyl-2-(pyridin-2-yl)-3,3a-dihydropyrazolo[1,5-c]pyrimidin-7(6H)-one (C24H18N4O2) was both experimentally and theoretically investigated. The compound was synthesized and characterized by FT-IR, NMR (1H NMR, 13C NMR and HETCOR-NMR), Mass spectroscopies and single-crystal X-ray diffraction methods. The compound crystallizes in the monoclinic space group P21/n with a = 6.1402 (3) Å, b = 21.4470 (15) Å, c = 15.0049 (8) Å and β = 97.407 (4)°. The molecular geometry was obtained from the X-ray structure determination optimized using density functional theory (DFT/B3LYP) method with the 6-31+G(d, p) basis set in ground state. From the optimized structure, geometric parameters, vibrational wavenumbers and chemical shifts of molecule were obtained. Experimental measurements were compared with its corresponding the calculated data. An excellent harmony between the two data was ascertained. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) and non-linear optical (NLO) properties of the title molecule were investigated by theoretical calculations at the B3LYP/6-31+G(d, p) level.

  19. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  20. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  1. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  2. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  3. Alternative determination of blood alcohol concentration by (1)H NMR spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K

    2016-02-05

    A rapid, accurate and specific proton nuclear magnetic resonance ((1)H NMR) spectroscopic method is developed to determine ethanol in blood, known as the blood alcohol concentration (BAC). The limits of detection and quantification are 0.02g/L and 0.07g/L, respectively. The (1)H NMR spectra show linearity for whole blood and serum samples of a concentration range of 0.00-3.00g/L (R(2)>0.9995). The (1)H NMR method is applied and validated for whole blood as the sample media. Real driving under influence case samples are analyzed with the reference enzyme-based alcohol dehydrogenase and headspace gas chromatography techniques by the Forensic Medicine in Bonn. The reference results are compared with the (1)H NMR spectroscopic results. The validation and comparison indicate that (1)H NMR is suitable for the quantification of BAC in whole blood. This technique has the advantages of automated analysis with good measurement precision and fast sample throughput. A drop of blood (V=20μL) is adequate for an analysis leading to a possible simplification of the sample collection. Due to the non-destructive method, follow-up examinations by (1)H NMR spectroscopy or DNA determinations by different techniques (PCR, in situ hybridization) are possible in resolving legal disputes.

  4. NMR in biology and medicine

    SciTech Connect

    Chien, S.; Chien, H.

    1986-01-01

    This volume explores the applications of NMR in basic biological research and in clinical diagnosis. The contributors highlight the capabilities of NMR as a tool for studying living organisms at the molecular and cellular levels and detecting abnormalities in various organ systems. Included are solid-state and high-resolution NMR studies of the molecular structure and dynamic interactions of lipids, proteins, and nucleic acids. The latest developments in NMR zeugmatographic imaging and in musculoskeletal and cardiovascular magnetic resonance imaging are detailed. Concluding chapters review the uses of in vivo NMR spectroscopy to study energy metabolism and cellular biochemistry. Emphasis is placed on in vivo NMR spectroscopy studies that elucidate normal metabolic functions and their pathological disturbances.

  5. NMR imaging of the spine

    SciTech Connect

    Han, J.S.; Kaufman, B.; El Yousef, S.J.; Benson, J.E.; Bonstelle, C.T.; Alfidi, R.J.; Haaga, J.R.; Yeung, H.; Huss, R.G.

    1983-12-01

    The usefulness of nuclear magnetic resonance (NMR) images in the evaluation of spinal disorders below the craniocervical junction was studied. Six normal subjects and 41 patients with various spinal abnormalities were examined. NMR proved capable of demonstrating important normal and pathologic anatomic structures; it was useful in the evaluation of syringohydromyelia and cystic spinal cord tumors, and the bright signal intensity of lipoma was quite impressive. In the evaluation of herniated disk, NMR images offered a new perspective by visualizing abnormal degradation of the signal intensity of the nucleus pulposus itself. NMR images were least valuable in the evaluation of spondylosis and spinal stenosis. Although NMR imaging of the spine is still in a very early developmental stage, the absence of both ionizing radiation and risks associated with contrast material makes it especially attractive as a new diagnostic method. This limited experience with currently available equipment suggests that, with technical refinement, the efficacy of NMR of the spine will increase.

  6. Spectroscopic and dynamic NMR study, X-ray crystallography and DFT calculations of two phosphoramidates: (C4H3O2)P(O)(Cl)C6H14N and (C4H3O2)P(O)(C6H11NH)2

    NASA Astrophysics Data System (ADS)

    Oliveira, F. M.; Barbosa, L. C. A.; Demuner, A. J.; Maltha, C. R. A.; Fernandes, S. A.; Carneiro, J. W. de M.; Corrêa, R. S.; Doriguetto, A. C.

    2013-08-01

    In recent years, research in organophosphorus compounds, particularly phosphoramidates, has attracted attention because of their many applications. In this work, we report a combined experimental and theoretical study on the molecular structure and NMR spectra of two phosphoramidates (furan-2-yl N,N-diisopropylamidochlorophosphate (1) and furan-2-yl N,N,N',N'-dicyclohexylamidophosphate (2)). In the NMR time scale a free rotation of the Csbnd N/Psbnd N single bonds was observed at room temperature (298 K) while the rotation freezes below 195 K for compound 1. From dynamic NMR analysis, the activation free energy (ΔG#) for rotation of the Csbnd N/Psbnd N bonds was calculated as 9.9 ± 0.3 kcal mol-1. The experimental data were reinforced by theoretical calculation using the density functional theory method B3LYP and the 6-31G(d) basis set which provided activation energy (ΔE‡) of 9.2 kcal mol-1. The structures of compounds 1 and 2 were determined by single crystal X-ray diffraction method. Compound 1 is formed by a racemic mixture, whose presence was evidenced only in the structure determination by X-ray.

  7. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  8. TDPAC and β-NMR applications in chemistry and biochemistry

    NASA Astrophysics Data System (ADS)

    Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars

    2017-06-01

    Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.

  9. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, Blaise deBonneval

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23Na in vivo, a large fraction of Na+ is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T2. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1H and 23Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  10. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  11. Using NMR to Determine Protein Structure in Solution

    NASA Astrophysics Data System (ADS)

    Cavagnero, Silvia

    2003-02-01

    Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.

  12. NMR method for accurate quantification of polysorbate 80 copolymer composition.

    PubMed

    Zhang, Qi; Wang, Aifa; Meng, Yang; Ning, Tingting; Yang, Huaxin; Ding, Lixia; Xiao, Xinyue; Li, Xiaodong

    2015-10-06

    (13)C NMR spectroscopic integration employing short relaxation delays and a 30° pulse width was evaluated as a quantitative tool for analyzing the components of polysorbate 80. (13)C NMR analysis revealed that commercial polysorbate 80 formulations are a complex oligomeric mixture of sorbitan polyethoxylate esters and other intermediates, such as isosorbide polyethoxylate esters and poly(ethylene glycol) (PEG) esters. This novel approach facilitates the quantification of the component ratios. In this study, the ratios of the three major oligomers in polysorbate 80 were measured and the PEG series was found to be the major component of commercial polysorbate 80. The degree of polymerization of -CH2CH2O- groups and the ratio of free to bonded -CH2CH2O- end groups, which correlate with the hydrophilic/hydrophobic nature of the polymer, were analyzed, and were suggested to be key factors for assessing the likelihood of adverse biological reactions to polysorbate 80. The (13)C NMR data suggest that the feed ratio of raw materials and reaction conditions in the production of polysorbate 80 are not well controlled. Our results demonstrate that (13)C NMR is a universal, powerful tool for polysorbate analysis. Such analysis is crucial for the synthesis of a high-quality product, and is difficult to obtain by other methods.

  13. Keto-polymethines: a versatile class of dyes with outstanding spectroscopic properties for in cellulo and in vivo two-photon microscopy imaging† †Electronic supplementary information (ESI) available: Spectroscopic measurements details, synthetic procedures and complete characterizations including NMR spectra and SEC chromatography are provided. Radial distributions functions for Ok–H in methanol and in dichloromethane evaluated from molecular dynamics simulations. See DOI: 10.1039/c6sc02488b Click here for additional data file.

    PubMed Central

    Pascal, Simon; Denis-Quanquin, Sandrine; Appaix, Florence; Duperray, Alain; Grichine, Alexei; Le Guennic, Boris; Jacquemin, Denis; Cuny, Jérôme; Chi, San-Hui; Perry, Joseph W.; van der Sanden, Boudewijn; Monnereau, Cyrille

    2017-01-01

    The synthesis of keto-heptamethine derivatives has been expanded to various new symmetrical and asymmetrical structures, including an unprecedented di-anionic keto-polymethine. The spectroscopic behavior of these new dyes has been systematically and thoroughly investigated, revealing that the formation of hydrogen bond interactions with protic solvents is responsible for a dramatic enhancement of the fluorescence quantum yield in the far-red spectral region. The existence of these strong hydrogen-bond interactions was further confirmed by molecular dynamics simulations. These bis-dipolar polymethines exhibit large two-photon absorption (TPA) cross-sections (σ 2 in GM) in the near-infrared, making them ideal candidates for NIR-to-NIR two-photon microscopy imaging applications. We demonstrate that the molecular engineering of the hydrophilic/hydrophobic balance enables targeting of different cellular components, such as cytoplasm or cell membranes. Addition of appropriate substituents provides the molecule with high-water-solubility, affording efficient two-photon probes for angiography. PMID:28451183

  14. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  15. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy.

    PubMed

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine

    2003-11-01

    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  16. Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine

    PubMed Central

    Jung, Yoon Young; Park, Youngja; Jones, Dean P.; Ziegler, Thomas R.; Vidakovic, Brani

    2011-01-01

    High resolution of NMR spectroscopic data of biosamples are a rich source of information on the metabolic response to physiological variation or pathological events. There are many advantages of NMR techniques such as the sample preparation is fast, simple and non-invasive. Statistical analysis of NMR spectra usually focuses on differential expression of large resonance intensity corresponding to abundant metabolites and involves several data preprocessing steps. In this paper we estimate functional components of spectra and test their significance using multiscale techniques. We also explore scaling in NMR spectra and use the systematic variability of scaling descriptors to predict the level of cysteine, an important precursor of glutathione, a control antioxidant in human body. This is motivated by high cost (in time and resources) of traditional methods for assessing cysteine level by high performance liquid chromatograph (HPLC). PMID:21572901

  17. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  18. Solution state NMR of lignins

    Treesearch

    John. Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang. Lu; Richard M. Ede; Junpeng. Peng; Larry L. Landucci

    1999-01-01

    Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...

  19. The financing of NMR equipment.

    PubMed

    Frankel, A N

    1984-01-01

    Cost-containment regulations and possible legislative changes in the tax area are creating new environments for the acquisition of nuclear magnetic resonance (NMR) systems. Shared services, management groups, and free-standing clinics are being established. Creativity in financing will be required to assure the cost-effectiveness of NMR services.

  20. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  1. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  2. Glass Structure by Scattering Methods and Spectroscopy — D. SOLID STATE NMR AS A STRUCTURAL TOOL IN GLASS SCIENCE

    NASA Astrophysics Data System (ADS)

    Eckert, Hellmut

    The following sections are included: * Introduction * Fundamentals of Solid State NMR * Nuclear magnetism and resonance * Spectroscopic technique * Internal interactions * Chemical shielding interaction * Direct magnetic dipole-dipole coupling * Nuclear electric quadrupolar interaction * Experimental separation strategies * Magic-angle spinning * Multi-dimensional NMR * Structural Issues in Non-crystalline Solids and Glasses * Short-Range Order in Oxide Glasses * Local coordination number and symmetry * Bond angle distribution functions * Spatial distribution of modifier cations and structural implications of the mixed-alkali effect * Short-Range Order in Non-Oxide Glasses * Chemical bond distribution and intermediate range order * Chemical equilibria and kinetics in glassforming liquids * Future Perspectives * Towards higher resolution for quadrupolar nuclei * Recovery of dipolar interactions in MAS-NMR: site connectivities * Double resonance NMR in heteronuclear systems * Zero- and double quantum NMR in homonuclear systems * Acknowledgments * References

  3. Recent advances in application of (27)Al NMR spectroscopy to materials science.

    PubMed

    Haouas, Mohamed; Taulelle, Francis; Martineau, Charlotte

    2016-05-01

    Valuable information about the local environment of the aluminum nucleus can be obtained through (27)Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with (27)Al NMR spectroscopy, this analytical tool has become popular because of the recent progress that has made the acquisition and interpretation of the NMR data much easier. The application of (27)Al NMR techniques to various classes of compounds, either in solution or solid-state, has been shown to be extremely informative concerning local structure and chemistry of aluminum in its various environments. The development of experimental methodologies combined with theoretical approaches and modeling has contributed to major advances in spectroscopic characterization especially in materials sciences where long-range periodicity and classical local NMR probes are lacking. In this review we will present an overview of results obtained by (27)Al NMR as well as the most relevant methodological developments over the last 25years, concerning particularly on progress in the application of liquid- and solid-state (27)Al NMR to the study of aluminum-based materials such as aluminum polyoxoanions, zeolites, aluminophosphates, and metal-organic-frameworks.

  4. Preparation and spectroscopic characterization of metal complexes of gliquidone

    NASA Astrophysics Data System (ADS)

    Saeed Arayne, M.; Sultana, Najma; Zeeshan Mirza, Agha

    2009-06-01

    Complexes of gliquidone with Mg(II), Ca(II), Cr(II), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) were obtained in methanolic solution to study the interaction of the drug with essential and trace elements present in human body or co administered during multivitamin therapy. These complexes were then characterized by spectroscopic techniques involving IR, 1H NMR, CHN elemental analysis, atomic absorption analysis and conductometric titrations. In most of the complexes, it is observed that the N-H stretch of sulfonamide and amide has disappeared.

  5. The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses

    Treesearch

    R.H. Atalla; D.L. VanderHart

    1999-01-01

    Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...

  6. Microscale Synthesis and (super 1)H NMR Analysis of Zn(super II) and Ni(super II) Tetraphenylporphyrins

    ERIC Educational Resources Information Center

    Saucedo, Laura; Mink, Larry M.

    2005-01-01

    A multisection undergraduate laboratory involving the microscale synthesis and spectroscopic analysis of unmetalled porphyrins and their corresponding metalloporphyins is described. The microscale synthesis involving the isolation of the metalloporphyrins as solids and their corresponding (super 1)H NMR spectra are presented.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  8. Spectroscopic methods in gas hydrate research.

    PubMed

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  9. T Tauri Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Dudorov, A. E.; Eretnova, O. V.

    2017-06-01

    The Hertzsprung-Russell diagram, the excess radius-age, and the eccentricity-period relations are constructed for double-lined spectroscopic T Tauri binaries. The masses and the ages of the classical T Tauri and the weak-line T Tauri stars are compared. All components of T Tauri stars have the excess radius in comparison with initial Main Sequence stars of corresponding mass. The younger the star the more excess radius it has. The overwhelming majority of close binaries (P<10d) have eccentricity near to zero. The fraction of quadruple systems in our sample are higher than for Main Sequence stars.

  10. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  11. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  12. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  13. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  14. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  15. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  18. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  19. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  20. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  2. Chevrel-phase solid solution Mo 6Se 8- xTe x. Study of its superconducting, magnetic and NMR properties

    NASA Astrophysics Data System (ADS)

    Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.

    2000-09-01

    The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.

  3. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    NASA Astrophysics Data System (ADS)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  4. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  5. Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using ¹H NMR spectroscopy and multivariate statistical analysis.

    PubMed

    Chen, Yan-Gan; Song, Yue-Lin; Wang, Ying; Yuan, Yun-Fei; Huang, Xiao-Jun; Ye, Wen-Cai; Wang, Yi-Tao; Zhang, Qing-Wen

    2014-05-01

    Puerariae Radix was a widely used herbal medicine. Pueraria lobata (PL) and Pueraria thomsonii (PT) were the two authorized sources of Puerariae Radix (gegen) in China. In this study, metabolic differentiations between these two species were investigated using NMR spectroscopy followed by principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The content of puerarin in PL and PT was also determined using quantitative (1)H NMR spectroscopy. Thirteen isoflavones were tentatively identified based on 1D and 2D NMR spectroscopic data in two species. The (1)H NMR spectra of PL and PT were obviously different. PL and PT could also be markedly discriminated from (1)H NMR spectroscopic data by PCA and PLS-DA. For the crude drug resources, isoflavones, in which puerarin is the most important one, were regarded as the reasonable markers for the discrimination of the two species. The contents of puerarin and total isoflavones in PL were quantitated much higher than those in PT. Above all, (1)H NMR spectroscopy, which can provide comprehensive profiles of the metabolites and achieve convenient determinations of puerarin and total isoflavones in a single run, is an efficient means for evaluating the medicinal samples and achieving a better quality control of Puerariae Radix. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A Critical Evaluation of the Quality of Published (13)C NMR Data in Natural Product Chemistry.

    PubMed

    Robien, Wolfgang

    2017-01-01

    Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to (13)C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

  7. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    PubMed

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  8. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection.

    PubMed

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. (1)H) and low-γ (e.g. (13)C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

  9. UTOPIA NMR: Activating unexploited magnetization using interleaved low-gamma detection

    PubMed Central

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. 1H) and low-γ (e.g. 13C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins. PMID:26728075

  10. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  11. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  12. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  13. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  14. Determination of the Dynamics, Structure, and Orientation of the Transmembrane Segment of ErbB2 in Model Membranes Using Solid-State NMR Spectroscopy

    DTIC Science & Technology

    2008-03-01

    spectroscopic techniques. The unlabeled peptide will be incorporated into aligned dimyristoylphosphatidylcholine/dihexanoylphosphatidylcholine (DMPC/ DHPC ...analyzed by circular dichroism spectsciopy. 2H Solid-State NMR spectroscopic studies of the HER2 peptides was also conducted in (DMPC/ DHPC ) bicelles...HER2/neu indicate stable secondary structural characteristics in DMPC/ DHPC bicelles. (B) 2H order parameters indicate that both HER2/neu peptides

  15. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  16. NMR characterization of shocked quartz

    SciTech Connect

    Boslough, M.B.; Cygan, R.T.; Assink, R.A.; Kirkpatrick, R.J.

    1994-03-01

    We have characterized experimentally and naturally-shocked quartz (both synthetic and natural samples) by solid state nuclear magnetic resonance (NMR) spectroscopy. Relaxation analysis of experimentally-shocked samples provides a means for quantitative characterization of the amorphous/disordered silica component NMR spectra demonstrate that magnetization in both the amorphous and crystalline components follows power-law behavior as a function of recycle time. This observation is consistent with the relaxation of nuclear spins by paramagnetic impurities. A fractal dimension can be extracted from the power-law exponent associated with each phase, and relative abundances can be extracted from integrated intensities of deconvolved peaks. NMR spectroscopy of naturally-shocked sandstone from Meteor Crater, Arizona (USA) led to the discovery of a new amorphous hydroxylated silica phase. Solid state NMR spectra of both experimentally and naturally shocked quartz were unexpectedly rich in microstructural information, especially when combined with relaxation analysis and cross-polarization studies. We suggest solid state NMR as a potentially useful tool for examining shock-induced microstructural changes in other inorganic compounds, with possible implications for shock processing of structural ceramics.

  17. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  18. N-H...F hydrogen bonds in fluorinated benzanilides: NMR and DFT study.

    PubMed

    Manjunatha Reddy, G N; Vasantha Kumar, M V; Guru Row, T N; Suryaprakash, N

    2010-10-28

    Using (19)F and (1)H-NMR (with (14)N decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-HF)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate (1)H assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.

  19. Probing the surface structure of divalent transition metals using surface specific solid-state NMR spectroscopy.

    PubMed

    Mason, Harris E; Harley, Stephen J; Maxwell, Robert S; Carroll, Susan A

    2012-03-06

    Environmental and geochemical systems containing paramagnetic species could benefit by using nuclear magnetic resonance (NMR) spectroscopy due to the sensitivity of the spectral response to small amounts paramagnetic interactions. In this study, we apply commonly used solid-state NMR spectroscopic methods combined with chemometrics analysis to probe sorption behavior of the paramagnetic cations Cu(2+) and Ni(2+)at the amorphous silica surface. We exploit the unique properties of paramagnets to derive meaningful structural information in these systems at low, environmentally relevant cation surface loadings by comparing the NMR response of sorption samples to paramagnetic free samples. These data suggest that a simple sorption model where the cation sorbs as inner sphere complexes at negatively charged, deprotonated silanol sites is appropriate. These results help constrain sorption models that are used to describe metal fate and transport.

  20. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  1. Stacking structure of confined 1-butanol in SBA-15 investigated by solid-state NMR spectroscopy.

    PubMed

    Lin, Yun-Chih; Chou, Hung-Lung; Sarma, Loka Subramanyam; Hwang, Bing-Joe

    2009-10-12

    Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid-state NMR spectroscopic investigations on 1-butanol molecules confined in the hydrophilic mesoporous SBA-15 host. A range of NMR spectroscopic measurements comprising of (1)H spin-lattice (T(1)), spin-spin (T(2)) relaxation, (13)C cross-polarization (CP), and (1)H,(1)H two-dimensional nuclear Overhauser enhancement spectroscopy ((1)H,(1)H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide-line (2)H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1-butanol in SBA-15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1-butanol are extremely restricted in the confined space of the SBA-15 pores. The dynamics of the confined molecules of 1-butanol imply that the (1)H,(1)H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1-butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA-15 pores in a time-average state by solid-state NMR spectroscopy with the (1)H,(1)H 2D NOESY technique.

  2. Melt Structure and Properties: a Spectroscopic Perspective

    NASA Astrophysics Data System (ADS)

    Stebbins, J.

    2006-12-01

    . Compositional effects on the network structure of other oxide melts and glasses such as borates and germanates continue to provide clues to high P/T structural changes in silicates. Recent spectroscopic studies (e.g. O-17 NMR), for example, provide clear new constraints on network cation coordination and linkages in such materials that suggest processes exactly analogous to those proposed for silicates, and may help in formulating more realistic models.

  3. Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Zainuri, D. Alwani; Arshad, Suhana; Khalib, N. Che; Razak, I. Abdul; Pillai, Renjith Raveendran; Sulaiman, S. Fariza; Hashim, N. Shafiqah; Ooi, K. Leong; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-01-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system with P21/c space group with the unit cell parameters of a = 16.147 (2) Å, b = 14.270 (2) Å, c = 5.9058 (9) Å, β = 92.577 (3)° and Z = 4. The molecular geometry obtained from X-Ray structure determination was optimized by Density Functional Theory (DFT) using B3LYP/6-31G+(d, p)/Lanl2dz(f) method in the ground state. The IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. In order to investigate local reactivity properties of the title molecule, we have conducted DFT calculations of average local ionization energy surface and Fukui functions which were mapped to the electron density surface. In order to predict the open air stability and possible degradation properties, within DFT approach, we have also calculated bond dissociation energies. 1H and 13C NMR spectra were recorded and chemical shifts were calculated theoretically and compared with the experimental values. In addition, in vitro antimicrobial results show that the title compound has great potential of antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus bacteria and antifungal activity against Candida albicans in comparison to some reported chalcone derivatives. Antioxidant studies revealed the highest metal chelating activity of this compound.

  4. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory.

    PubMed

    Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E

    2014-09-15

    A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior.

  5. The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3,4dihydro-2H-1,2,4-benzothiazine-7-sulphonamide1,1-dioxide by ab initio HF and Density Functional method.

    PubMed

    Elamurugu Porchelvi, E; Muthu, S

    2014-04-05

    The Fourier-Transform Infrared and Fourier-Transform Raman spectra of 6-Chloro-3,4dihydro-2H-1,2,4-benzothiazine-7sulphonamide1,1-dioxide(6CDBSD) was recorded in the region 4000-450cm(-1) and 4000-100cm(-1)respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 6CDBSD were carried out by HF and DFT (B3LYP) method with 6-31G (d,p) basis set. The difference between the observed and scaled wavenumber value of most of the fundamentals is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The linear polariazability (α) and the first order hyperpolarizability (βtot) values of the investigated molecule have been computed using HF and DFT with 6-31G (d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The (1)H and (13)C Nuclear Magnetic Resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic orbital (GIAO) method, confirms with the experimental values. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Thermal stability of 6CDBSD was studied by thermo gravimetric analysis (TGA). Next Fukui functions was calculated to identify changes in the reactivity of molecule. Finally molecular electrostatic potential (MEP) and other molecular properties were performed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E.

    2014-09-01

    A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior.

  7. Improving NMR Structures of RNA

    PubMed Central

    Bermejo, Guillermo A.; Clore, G. Marius; Schwieters, Charles D.

    2016-01-01

    SUMMARY Here, we show that modern solution NMR structures of RNA exhibit more steric clashes and conformational ambiguities than their crystallographic X-ray counterparts. To tackle these issues, we developed RNA-ff1, a new force field for structure calculation with Xplor-NIH. Using seven published NMR datasets, RNA-ff1 improves covalent geometry and MolProbity validation criteria for clashes and backbone conformation in most cases, relative to both the previous Xplor-NIH force field and the original structures associated with the experimental data. In addition, with smaller base pair step rises in helical stems, RNA-ff1 structures enjoy more favorable base stacking. Finally, structural accuracy improves in the majority cases, as supported by complete residual dipolar coupling cross-validation. Thus, the reported advances show great promise in bridging the quality gap that separates NMR and X-ray structures of RNA. PMID:27066747

  8. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  9. Spectroscopic and DFT study of 3-quinolyl-α-aminophosphonates

    NASA Astrophysics Data System (ADS)

    Juribašić, Marina; Tušek-Božić, Ljerka

    2009-04-01

    Spectroscopic and DFT study of two types of 3-quinolyl-α-aminophosphonate derivatives obtained by one-pot microwave-assisted synthesis of quinoline-3-carboxaldehyde and aniline as well as 3-aminoquinoline and benzaldehyde, respectively, with diethyl phosphite, have been described. Besides the diethyl [α-anilino- N-(3-quinolylmethyl)]phosphonate ( 1) and diethyl [α-(3-quinolylamino)- N-benzyl]phosphonate ( 4) as the main reaction products, in both cases some unexpected monoester phosphonate derivatives were obtained as the by-products. In the first case along with diester 1, its corresponding monoethyl ester ( 2) and one monoethyl dihydrophosphonate-phosphate derivative ( 3) were formed, while in the second case diester 4 and a hydrogen phosphonamidate ( 5) were isolated. All quinoline-based α-aminophosphonates ( 1- 5) have been characterized by IR spectroscopy, and the results obtained are compared and discussed with those obtained by the NMR studies. Combining experimental IR, 1H and 13C NMR spectra with DFT calculations, most intensive IR spectral bands of diesters 1 and 4, along with 1H and 13C NMR resonances of 1, 2 and 4 derivatives, were assigned.

  10. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  11. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  12. Fluorescence spectroscopic evidence for hydrogen bonding and deprotonation equilibrium between fluoride and a thiourea derivative.

    PubMed

    Ashokkumar, Pichandi; Ramakrishnan, Vayalakkavoor T; Ramamurthy, Perumal

    2010-11-22

    Interaction of anions with thiourea-linked acridinedione fluorophore was studied by absorption, (1)H NMR, steady-state and time-resolved fluorescence techniques. Addition of AcO(-) and H(2)PO(4)(-) shows a genuine H-bonded complex with thiourea receptor; whereas, F(-) shows stepwise H-bonding and deprotonation of thiourea NH as confirmed by (1)H NMR titration. Free receptor 1 shows emission maximum at 418 nm; whereas, H-bonded complex of 1·F(-) shows a new redshifted emission maximum at 473 nm and the deprotonated 1 exhibits an emission peak at 502 nm. Presence of these three different emitting species was probed by 3D emission spectroscopic studies. Equilibrium between the free receptor 1, 1·F(-) H-bonded complex and deprotonated 1 was confirmed by time-resolved fluorescence studies. Time-resolved area normalised emission spectra (TRANES) of 1 in the presence of F(-) shows two isoemissive points at 456 and 479 nm between time delays of 0-0.5 ns and 1-20 ns, respectively, due to the existence of three emitting species in equilibrium. Observation of such an equilibrium based on fluorescence spectroscopic studies further proves the earlier reported absorption and (1)H NMR spectroscopic studies of H-bonding and deprotonation processes and also illustrates the dynamics of anion-receptor interactions.

  13. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  14. Solid-State (17) O NMR Reveals Hydrogen-Bonding Energetics: Not All Low-Barrier Hydrogen Bonds Are Strong.

    PubMed

    Lu, Jiasheng; Hung, Ivan; Brinkmann, Andreas; Gan, Zhehong; Kong, Xianqi; Wu, Gang

    2017-02-22

    While NMR and IR spectroscopic signatures and structural characteristics of low-barrier hydrogen bond (LBHB) formation are well documented in the literature, direct measurement of the LBHB energy is difficult. Here, we show that solid-state (17) O NMR spectroscopy can provide unique information about the energy required to break a LBHB. Our solid-state (17) O NMR data show that the HB enthalpy of the O⋅⋅⋅H⋅⋅⋅N LBHB formed in crystalline nicotinic acid is only 7.7±0.5 kcal mol(-1) , suggesting that not all LBHBs are particularly strong.

  15. Spectroscopic Detection of Pathogens

    SciTech Connect

    ALAM,M. KATHLEEN; TIMLIN,JERILYN A.; MARTIN,LAURA E.; HJELLE,DRIAN; LYONS,RICK; GARRISON,KRISTIN

    2000-11-01

    The goal of this LDRD Research project was to provide a preliminary examination of the use of infrared spectroscopy as a tool to detect the changes in cell cultures upon activation by an infectious agent. Due to a late arrival of funding, only 5 months were available to transfer and setup equipment at UTTM,develop cell culture lines, test methods of in-situ activation and collect kinetic data from activated cells. Using attenuated total reflectance (ATR) as a sampling method, live cell cultures were examined prior to and after activation. Spectroscopic data were collected from cells immediately after activation in situ and, in many cases for five successive hours. Additional data were collected from cells activated within a test tube (pre-activated), in both transmission mode as well as in ATR mode. Changes in the infrared data were apparent in the transmission data collected from the pre-activated cells as well in some of the pre-activated ATR data. Changes in the in-situ activated spectral data were only occasionally present due to (1) the limited time cells were studied and (2) incomplete activation. Comparison of preliminary data to infrared bands reported in the literature suggests the primary changes seen are due an increase in ribonucleic acid (RNA) production. This work will be continued as part of a 3 year DARPA grant.

  16. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-06

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response.

  17. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  18. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  19. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  20. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  1. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  2. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  3. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  4. Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Sivakumar, Bhuvaneswari M.; Nachimuthu, Ponnusamy; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Liu, Jun; Graff, Gordon L.; Thevuthasan, Suntharampillai; Hu, Jian Z.

    2011-01-01

    The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface due to their low diffusivity. On the other hand, the 17O NMR spectrum explores the diffused vanadium cation from the bulk part of Nafion and shows the chemical bonding of cation and the host membrane. The 19F NMR shows the basic Nafion structure is not altered due to the presence of diffused vanadium cation. Based on these spectroscopic studies, the chemical environment of diffused vanadium cation in the Nafion membrane is discussed. This study also shed light into the possible cause for the high diffusivity of certain vanadium cations inside the Nafion membranes.

  5. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  6. NMR Characterization of Sulphur Substitution Effects in the KxFe2−ySe2−zSz High-Tc Superconductor

    SciTech Connect

    Petrovic C.; Torchetti, D.A.; Imai, T.; Lei, H.C.

    2012-04-17

    We present a {sup 77}Se NMR study of the effect of S substitution in the high-T{sub c} superconductor K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} in a temperature range up to 250 K. We examine two S concentrations, with z = 0.8 (T{sub c} {approx} 26 K) and z = 1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K{sub x}Fe{sub 2}Se{sub 2} sample due to local disorder in the Se environment. Our Knight shift {sup 77}K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c} in 1/T{sub 1}T, as seen in FeSe.

  7. Molecular characterization and quantification using state of the art solid-state adiabatic TOBSY NMR in burn trauma.

    PubMed

    Righi, Valeria; Andronesi, Ovidiu; Mintzopoulos, Dionyssios; Tzika, A Aria

    2009-12-01

    We describe a novel solid-state nuclear magnetic resonance (NMR) method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS), relative conventional liquid-state NMR approaches, when applied to intact biopsies of skeletal muscle specimens collected from burn trauma patients. This novel method, termed optimized adiabatic TOtal through Bond correlation SpectroscopY (TOBSY) solid-state NMR pulse sequence for two-dimensional (2D) 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing, was demonstrated to provide a 40-60% improvement in signal-to-noise ratio (SNR) relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). Using 1- and 2-dimensional HRMAS NMR experiments, we identified several metabolites in burned tissues. Quantification of metabolites in burned tissues showed increased levels of lipid compounds, intracellular metabolites (e.g., taurine and phosphocreatine) and substantially decreased water-soluble metabolites (e.g., glutathione, carnosine, glucose, glutamine/glutamate and alanine). These findings demonstrate that HRMAS NMR Spectroscopy using TOBSY is a feasible technique that reveals new insights into the pathophysiology of burn trauma. Moreover, this method has applications that facilitate the development of novel therapeutic strategies.

  8. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  9. Crystallinity and compositional changes in carbonated apatites: Evidence from (31)P solid-state NMR, Raman, and AFM analysis.

    PubMed

    McElderry, John-David P; Zhu, Peizhi; Mroue, Kamal H; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H; Franceschi, Renny T; Holl, Mark M Banaszak; Tecklenburg, Mary M J; Ramamoorthy, Ayyalusamy; Morris, Michael D

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and (31)P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse (31)P NMR linewidth and inverse Raman PO4(3-) ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO3(2-) range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the (31)P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  10. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    PubMed Central

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-01-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43− ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO32− range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. PMID:24273344

  11. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  12. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs

    NASA Astrophysics Data System (ADS)

    Ramalho, Teodorico C.; Taft, Carlton A.

    2005-08-01

    N15 NMR chemical shifts and n →π* electronic transition energy for metronidazole (1) has been calculated and compared with experimental data. A detailed computational study of 1 is presented, with special attention to the performance of various theoretical methods for reproducing spectroscopic parameters in solution. The most sophisticated approach involves density functional based on the Car-Parrinello molecular dynamics simulations of 1 in aqueous solution (BP86 level) and averaging chemical shifts and ΔE(n →π*) over snapshots from the trajectory. In the NMR and UV calculations for these snapshots (performed at the B3LYP level), a small number of discrete water molecules are retained, and the remaining bulk solution effects are included via a polarizable continuum model (PCM). A good agreement with experiment is also obtained using static geometry optimization and NMR computation of pristine 1 employing a PCM approach. Further theoretical predictions are also reported for O17 NMR and ΔE(n →π*) of three hydroxycinnamic acid derivatives, which suggest that it is essential to incorporate the dynamics and solvent effects for NMR and UV calculations in the condensed phase.

  13. In vivo and in vitro NMR spectroscopy reveal a putative novel inborn error involving polyol metabolism.

    PubMed

    Moolenaar, S H; van der Knaap, M S; Engelke, U F; Pouwels, P J; Janssen-Zijlstra, F S; Verhoeven, N M; Jakobs, C; Wevers, R A

    2001-05-01

    In vivo NMR spectroscopy was performed on the brain of a patient with a leukoencephalopathy, revealing unknown resonances between 3.5 and 4.0 ppm. In addition, urine and CSF of the patient were measured using high-resolution NMR spectroscopy. Also in these in vitro spectra, unknown resonances were observed in the 3.5-4.0 ppm region. Homonuclear (1)H two-dimensional J-resolved spectroscopy (JRES) and (1)H-(1)H correlation spectroscopy (COSY) were performed on the patient's urine for more accurate assignment of resonances. The NMR spectroscopic studies showed that the unknown resonances could be assigned to arabinitol and ribitol. This was confirmed using gas chromatography. The arabinitol was identified as D-arabinitol. The patient is likely to suffer from an as yet unknown inborn error of metabolism affecting D-arabinitol and ribitol metabolism. The primary molecular defect has not been found yet. Urine spectra of patients suffering from diabetes mellitus or galactosemia were recorded for comparison. Resonances outside the 3.2-4.0 ppm region, which are the most easy to recognize in body fluid spectra, allow easy recognition of various sugars and polyols. The paper shows that NMR spectroscopy in body fluids may help identifying unknown resonances observed in in vivo NMR spectra. Copyright 2001 John Wiley & Sons, Ltd.

  14. High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer.

    PubMed

    Kumar, Virendra; Dwivedi, Durgesh K; Jagannathan, Naranamangalam R

    2014-01-01

    High-resolution NMR spectroscopic studies of prostate tissue extracts, prostatic fluid, seminal fluid, serum and urine can be used for the detection of prostate cancer, based on the differences in their metabolic profiles. Useful diagnostic information is obtained by the detection or quantification of as many metabolites as possible and comparison with normal samples. Only a few studies have shown the potential of high-resolution in vitro NMR of prostate tissues. A survey of the literature has revealed that studies on body fluids, such as urine and serum, in relation to prostate cancer are rare. In addition, the potential of NMR of nuclei other than (1)H, such as (13)C and (31)P, has not been exploited fully. The metabolomic analysis of metabolites, detected by high-resolution NMR, may help to identify metabolites which could serve as useful biomarkers for prostate cancer detection. Such NMR-derived biomarkers would not only help in prostate cancer detection and in understanding the in vivo MRS metabolic profile, but also to investigate the biochemical and metabolic changes associated with cancer. Here, we review the published research work on body fluids in relation to prostate and prostate tissue extracts, and highlight the potential of such studies for future work. Copyright © 2013 John Wiley & Sons, Ltd.

  15. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  16. SEnD NMR: Sensitivity Enhanced n-Dimensional NMR

    NASA Astrophysics Data System (ADS)

    Gledhill, John M.; Wand, A. Joshua

    2010-02-01

    Sparse sampling offers tremendous potential for overcoming the time limitations imposed by traditional Cartesian sampling of indirectly detected dimensions of multidimensional NMR data. However, in many instances sensitivity rather than time remains of foremost importance when collecting data on protein samples. Here we explore how to optimize the collection of radial sampled multidimensional NMR data to achieve maximal signal-to-noise. A method is presented that exploits a rigorous definition of the minimal set of radial sampling angles required to resolve all peaks of interest in combination with a fundamental statistical property of radial sampled data. The approach appears general and can achieve a substantial sensitivity advantage over Cartesian sampling for the same total data acquisition time. Termed Sensitivity Enhanced n-Dimensional or SEnD NMR, the method involves three basic steps. First, data collection is optimized using routines to determine a minimal set of radial sampling angles required to resolve frequencies in the radially sampled chemical shift evolution dimensions. Second, appropriate combinations of experimental parameters (transients and increments) are defined by simple statistical considerations in order to optimize signal-to-noise in single angle frequency domain spectra. Finally, the data is processed with a direct multidimensional Fourier transform and a statistical artifact and noise removal step is employed.

  17. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  18. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  19. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  20. Recognition of lumbar disk herniation with NMR

    SciTech Connect

    Chafetz, N.I.; Genant, H.K.; Moon, K.L.; Helms, C.A.; Morris, J.M.

    1983-12-01

    Fifteen nuclear magnetic resonance (NMR) studies of 14 patients with herniated lumbar intervertebral disks were performed on the UCSF NMR imager. Computed tomographic (CT) scans done on a GE CT/T 8800 or comparable scanner were available at the time of NMR scan interpretation. Of the 16 posterior disk ruptures seen at CT, 12 were recognized on NMR. Diminished nucleus pulposus signal intensity was present in all ruptured disks. In one patient, NMR scans before and after chymopapain injection showed retraction of the protruding part of the disk and loss of signal intensity after chemonucleolysis. Postoperative fibrosis demonstrated by CT in one patient and at surgery in another showed intermediate to high signal intensity on NMR, easily distinguishing it from nearby thecal sac and disk. While CT remains the method of choice for evaluation of the patient with suspected lumbar disk rupture, the results of this study suggest that NMR may play a role in evaluating this common clinical problem.

  1. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  2. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  3. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  4. Vicinal deuterium perturbations on hydrogen NMR chemical shifts in cyclohexanes.

    PubMed

    O'Leary, Daniel J; Allis, Damian G; Hudson, Bruce S; James, Shelly; Morgera, Katherine B; Baldwin, John E

    2008-10-15

    The substitution of a deuterium for a hydrogen is known to perturb the NMR chemical shift of a neighboring hydrogen atom. The magnitude of such a perturbation may depend on the specifics of bonding and stereochemical relationships within a molecule. For deuterium-labeled cyclohexanes held in a chair conformation at -80 degrees C or lower, all four possible perturbations of H by D as H-C-C-H is changed to D-C-C-H have been determined experimentally, and the variations seen, ranging from 6.9 to 10.4 ppb, have been calculated from theory and computational methods. The predominant physical origins of the NMR chemical shift perturbations in deuterium-labeled cyclohexanes have been identified and quantified. The trends defined by the Delta delta perturbation values obtained through spectroscopic experiments and by theory agree satisfactorily. They do not match the variations typically observed in vicinal J(H-H) coupling constants as a function of dihedral angles.

  5. Hyperpolarized 131Xe NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented.

  6. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  7. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  8. Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots

    PubMed Central

    Cho, Jin-Gyeong; In, Seo-Ji; Jung, Ye-Jin; Cha, Byeong-Ju; Lee, Dae-Young; Kim, Yong-Bum; Yeom, Myeonghun; Baek, Nam-In

    2013-01-01

    Ginseng roots were extracted with aqueous methanol, and extracts were suspended in water and extracted successively with ethyl acetate and n-butanol. Column chromatography using the n-butanol fraction yielded four purified triol ginseng saponins: the ginsenosides Re, Rf, Rg2, and 20-gluco-Rf. The physicochemical, spectroscopic, and chromatographic characteristics of the ginsenosides were measured and compared with reports from the literature. For spectroscopic analysis, two-dimensional nuclear magnetic resonance (NMR) methods such as 1H-1H correlation spectroscopy, nuclear Overhauser effect spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity were employed to identify exact peak assignments. Some peak assignments for previously published 1H- and 13C-NMR spectra were found to be inaccurate. This study reports the complete NMR assignment of 20-gluco-Rf for the first time. PMID:24748835

  9. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy.

    PubMed

    Hopson, Russell E; Peti, Wolfgang

    2008-01-01

    Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.

  10. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  11. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  12. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  13. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  14. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  15. 19F NMR-, ESR-, and vis-NIR-spectroelectrochemical study of the unconventional reduction behaviour of a perfluoroalkylated fullerene: dimerization of the C70(CF3)10 – radical anion† †Electronic supplementary information (ESI) available: Additional electrochemical and spectroscopic results, mass spectrometry study, and DFT-optimized Cartesian coordinates. See DOI: 10.1039/c5an01129a Click here for additional data file.

    PubMed Central

    Machata, Peter; Clikeman, Tyler T.; Rosenkranz, Marco

    2015-01-01

    The most abundant isomer of C70(CF3)10 (70-10-1) is a rare example of a perfluoroalkylated fullerene exhibiting electrochemically irreversible reduction. We show that electrochemical reversibility at the first reduction step is achieved at scan rates higher than 500 V s–1. Applying ESR-, vis-NIR-, and 19F NMR-spectroelectrochemistry, as well as mass spectrometry and DFT calculations, we show that the (70-10-1)– radical monoanion is in equilibrium with a singly-bonded diamagnetic dimeric dianion. This study is the first example of 19F NMR spectroelectrochemistry, which promises to be an important method for the elucidation of redox mechanisms of fluoroorganic compounds. Additionally, we demonstrate the importance of combining different spectroelectrochemical methods and quantitative analysis of the transferred charge and spin numbers in the determination of the redox mechanism. PMID:26359514

  16. Starfish: Robust spectroscopic inference tools

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.

    2015-05-01

    Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

  17. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  18. Ultra-high resolution 17O solid-state NMR spectroscopy of biomolecules: a comprehensive spectral analysis of monosodium L-glutamate·monohydrate.

    PubMed

    Wong, Alan; Howes, Andy P; Yates, Jonathan R; Watts, Anthony; Anupõld, Tiit; Past, Jaan; Samoson, Ago; Dupree, Ray; Smith, Mark E

    2011-07-14

    Monosodium L-glutamate monohydrate, a multiple oxygen site (eight) compound, is used to demonstrate that a combination of high-resolution solid-state NMR spectroscopic techniques opens up new possibilities for (17)O as a nuclear probe of biomolecules. Eight oxygen sites have been resolved by double rotation (DOR) and multiple quantum (MQ) NMR experiments, despite the (17)O chemical shifts lying within a narrow shift range of <50 ppm. (17)O DOR NMR not only provides high sensitivity and spectral resolution, but also allows a complete set of the NMR parameters (chemical shift anisotropy and electric-field gradient) to be determined from the DOR spinning-sideband manifold. These (17)O NMR parameters provide an important multi-parameter comparison with the results from the quantum chemical NMR calculations, and enable unambiguous oxygen-site assignment and allow the hydrogen positions to be refined in the crystal lattice. The difference in sensitivity between DOR and MQ NMR experiments of oxygen in bio/organic molecules is also discussed. The data presented here clearly illustrates that a high resolution (17)O solid-state NMR methodology is now available for the study of biomolecules, offering new opportunities for resolving structural information and hence new molecular insights.

  19. Observation of NMR noise from solid samples

    PubMed Central

    Schlagnitweit, Judith; Dumez, Jean-Nicolas; Nausner, Martin; Jerschow, Alexej; Elena-Herrmann, Bénédicte; Müller, Norbert

    2010-01-01

    We demonstrate that proton NMR noise signals, i.e. NMR spectra without excitation by radio frequency, can be obtained from solid samples. Experimental results are shown for static and magic-angle spinning conditions. In addition, a tuning procedure based on the probes’ NMR noise characteristics and similar to the one described previously for liquids probes can also be used to optimize signal-to-noise ratios in 1H-MAS experiments. PMID:20850362

  20. Solid-state NMR spectroscopy of proteins.

    PubMed

    Müller, Henrik; Etzkorn, Manuel; Heise, Henrike

    2013-01-01

    Solid-state NMR spectroscopy proved to be a versatile tool for characterization of structure and dynamics of complex biochemical systems. In particular, magic angle spinning (MAS) solid-state NMR came to maturity for application towards structural elucidation of biological macromolecules. Current challenges in applying solid-state NMR as well as progress achieved recently will be discussed in the following chapter focusing on conceptual aspects important for structural elucidation of proteins.

  1. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  2. Solid-state NMR and membrane proteins

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2015-04-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.

  3. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  4. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  5. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from L-leucine and glyoxal.

    PubMed

    Shakir, Mohammad; Shahid, Nida; Sami, Naushaba; Azam, Mohammad; Khan, Asad U

    2011-11-01

    The mononuclear Schiff base complexes of the type, [ML(CH(3)OH)(2)] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of L-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, (1)H NMR and (13)C NMR spectra. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel

    SciTech Connect

    Sepehri, Saghar; Feaver, Aaron M.; Shaw, Wendy J.; Howard, Christopher J.; Zhang, Qifeng; Autrey, Thomas; Cao, Guozhong

    2007-12-27

    The reaction pathways leading to the thermal decomposition of solid state ammonia borane (AB) incorporated in carbon cryogels (CC) have been studied by spectroscopic methods. The time dependent thermal decomposition was followed by in situ 11B NMR and showed a significant increase in hydrogen release kinetics. Both 11B NMR and Fourier Transform Infrared Spectroscopy (FTIR) show new reaction products formed in the thermal decomposition of AB-CC that are assigned to reactions with surface oxygen groups. The results indicate that incorporation of AB in CC enhance kinetics due to reactions with residual surface-bound oxygen functional groups. The formation of new products with surface-O-B bonds is consistent with the greater reaction exothermicity observed when hydrogen is released from AB-CC materials. Scanning electron microscopy (SEM) shows different morphology of AB in ammonia borane – carbon cryogel (AB-CC) nanocomposite as compared to neat AB. Support for this work is provided by NSF (DMR-0605159), WTC, and EnerG2 LLC as well as the DoE Center of Excellence in Chemical Hydrogen Storage funded by the DOE H2 Program. FTIR experiments were performed in Professor Zhang’s lab in MSE department at UW. Part of this research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, located at the Pacific Northwest National Laboratory, which is operated by the Battelle for the U.S. Department of Energy.

  7. A selective inversion recovery method for the improvement of 23Na NMR spectral resolution in isolated perfused rat hearts.

    PubMed

    Simor, T; Kim, S K; Chu, W J; Pohost, G M; Elgavish, G A

    1993-01-01

    Shift-reagent-aided 23Na NMR spectroscopy allows differentiation of the intracellular (Na(i)) and extracellular sodium (Na(o)) signals. The goal of the present study has been to develop a 23Na NMR spectroscopic method to minimize the intensity of the shift-reagent-shifted Na(o) signal and thus increase Na(i) resolution. This is achieved by a selective inversion recovery (SIR) method which enhances the resolution between the Na(i) and Na(o) peaks in shift-reagent-aided 23Na NMR spectroscopy. The application of SIR with Dy(TTHA), Tm(DOTP), or with low concentrations of Dy(PPP)2 results in both good spectral resolution and physiologically acceptable contractile function in the isolated, perfused rat heart model.

  8. Analysis of Proton NMR in Hydrogen Bonds in Terms of Lone-Pair and Bond Orbital Contributions.

    PubMed

    Sutter, Kiplangat; Aucar, Gustavo A; Autschbach, Jochen

    2015-12-07

    NMR spectroscopic parameters of the proton involved in hydrogen bonding are studied theoretically. The set of molecules includes systems with internal resonance-assisted hydrogen bonds, internal hydrogen bonds but no resonance stabilization, the acetic acid dimer (AAD), a DNA base pair, and the hydrogen succinate anion (HSA). Ethanol and guanine represent reference molecules without hydrogen bonding. The calculations are based on zero-point vibrationally averaged molecular structures in order to include anharmonicity effects in the NMR parameters. An analysis of the calculated NMR shielding and J-coupling is performed in terms of "chemist's orbitals", that is, localized molecular orbitals (LMOs) representing lone-pairs, atomic cores, and bonds. The LMO analysis associates some of the strong de-shielding of the protons in resonance-assisted hydrogen bonds with delocalization involving the π-backbone. Resonance is also shown to be an important factor causing de-shielding of the OH protons for AAD and HSA, but not for the DNA base pair. Nitromalonamide (NMA) and HSA have particularly strong hydrogen bonds exhibiting signs of covalency in the associated J-couplings. The analysis results show how NMR spectroscopic parameters that are characteristic for hydrogen bonded protons are influenced by the geometry and degree of covalency of the hydrogen bond as well as intra- and intermolecular resonance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spectroscopic Characterization of Gliosarcomas-Do They Differ From Glioblastomas and Metastases?

    PubMed

    Raab, Peter; Pilatus, Ulrich; Hattingen, Elke; Franz, Kea; Hermann, Elvis; Zanella, Friedhelm E; Lanfermann, Heinrich

    2016-01-01

    To evaluate the spectroscopic pattern of gliosarcomas for differentiation from glioblastomas or metastases. H-nuclear magnetic resonance (NMR) spectroscopic intermediate echo time data of 5 patients with histologically proven gliosarcomas were compared with data of 17 metastases and 54 glioblastomas. Specialized H-NMR spectroscopy analysis software was used offline. Lipid and macromolecular resonances between 0.9 ppm and 1.4 ppm were compared besides the main metabolites using the Mann-Whitney U test. Gliosarcomas showed higher lipid and macromolecule resonances and a higher lipid-choline ratio compared with glioblastomas (P < 0.024 and P < 0.036). Glioblastomas showed higher creatine concentrations compared with metastases (P < 0.007) but not compared with gliosarcomas. We found no significant differences between metastases and gliosarcomas. Gliosarcomas may mimic metastases on H NMR spectroscopy showing high signal intensities from lipid and macromolecule resonances. This tumor type should be suspected if conventional imaging suggests an intra-axial brain neoplasm in combination with high lipids in solid tumor parts.

  10. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  11. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    SciTech Connect

    Altürk, Sümeyye Avci, Davut Tamer, Ömer Atalay, Yusuf

    2016-03-25

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) {sup 1}H and {sup 13}C NMR chemical shift values of 2-(1′-(4’’’-Methoxyphenyl)-5′-(thien-2″-yl)pyrrol-2′-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6–311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  12. Perspectives in enzymology of membrane proteins by solid-state NMR.

    PubMed

    Ullrich, Sandra J; Glaubitz, Clemens

    2013-09-17

    Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low

  13. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers.

    PubMed

    Urbanova, Martina; Kobera, Libor; Brus, Jiri

    2013-11-01

    Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of (27)Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X-ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded (27)Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well-defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X-ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with (29)Si MAS NMR spectra. Factor analysis of (27)Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of (27)Al MAS NMR spectra is significantly shorter than that of (29)Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired.

  14. Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis.

    PubMed

    Olson, D L; Lacey, M E; Webb, A G; Sweedler, J V

    1999-08-01

    Recent advances in the analysis of nanoliter volumes using 1H NMR microcoils have led to the application of microcoils as detectors for capillary electrophoresis (CE). Custom NMR probes consisting of 1-mm-long solenoidal microcoils are fabricated from 50-micron diameter wire wrapped around capillaries to create nanoliter-volume detection cells. For geometries in which the capillary and static magnetic field are not parallel, the electrophoretic current induces a magnetic field gradient which degrades the spectroscopic information obtainable from CE/NMR. To reduce this effect and allow longer analyte observation times, the electrophoretic voltage is periodically interrupted so that 1-min high-resolution NMR spectra are obtained for every 15 s of applied voltage. The limits of detection (LODs; based on S/N = 3) for CE/NMR for arginine are 57 ng (330 pmol; 31 mM) and for triethylamine (TEA) are 9 ng (88 pmol; 11 mM). Field-amplified stacking is used for sample preconcentration. As one example, a 290-nL injection of a mixture of arginine and TEA both at 50 mM (15 nmol of each injected) is stacked severalfold for improved concentration LODs while achieving a separation efficiency greater than 50,000. Dissolving a sample in a mixture of 10% H2O/90% D2O allows H2O to serve as the nearly ideal neutral tracer and allows direct observation of the parabolic and flat flow profiles associated with gravimetric and electrokinetic injection, respectively. The unique capabilities of CE and the rich spectral information provided by NMR spectroscopy combine to yield a valuable analytical tool, especially in the study of mass-limited samples.

  15. Green-synthesis, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods.

    PubMed

    Marwani, Hadi M; Asiri, Abdullah M; Khan, Salman A

    2012-01-01

    Preparation, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods were achieved. The Schiff base dyes were prepared by the reaction of salicylaldehyde/2-Hydroxy-1-naphthaldehyde with aminophenazone under microwave irradiation. The spectroscopic (FT-IR, 1H NMR, 13C-NMR, Mass) studies and elemental analyses were in good agreement with chemical structure of synthesized compounds. In addition, UV-Vis and fluorescence spectroscopic experiments showed that these dyes are good absorbent and fluorescent. Based on the photostability study of these dyes, minimal to no loss in fluorescence intensities of 4-[(2-Hydroxy-benzylidene)-amino] 1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D1) (6.14%) and 4-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D2) (2.95%) was observed with an increase in the exposure time using time-based fluorescence steady-state experiments. These studies also inferred that these Schiffbase dyes have a high photostability against photobleaching. In addition, Dye 2 is found to be more sensitive than Dye 1 to the polarity of the microenvironment provided by different solvents based on the results of fluorescence polarity studies.

  16. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  17. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  18. A revisited structure for nitrosoprodenafil from NMR, mass spectrometry, X-ray and hydrolysis data.

    PubMed

    Martino, Robert; Menendez, Christophe; Balayssac, Stéphane; Martins-Froment, Nathalie; Lherbet, Christian; Couderc, François; Gilard, Véronique; Malet-Martino, Myriam

    2017-02-20

    The sildenafil analogue adulterant previously identified as a nitroso derivative (nitrosoprodenafil) in a dietary supplement (DS) marketed to increase sexual performance and sold in Europe in the early 2010s is the same as that found in the same type of DS available in Japan whose structure was established as a nitro derivative (mutaprodenafil or nitroprodenafil). Indeed, the compound isolated from the Man Power DS has identical UV, IR, NMR and MS spectroscopic characteristics and hydrolysis behavior than nitrosoprode-nafil. By revisiting its NMR assignments and MS and MS/MS data interpretation, it is demonstrated that the compound is actually a nitrothioimidazole-methisosildenafil hybrid, i.e. nitroprodenafil, whose structure is unequivocally confirmed by X-ray crystallography and synthesis experiments. Because the product is converted to methisosildenafil by hydrolysis, it is named nitropromethisosildenafil. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. First example of hepatocyte transplantation to alleviate ornithine transcarbamylase deficiency, monitored by NMR-based metabonomics.

    PubMed

    Legido-Quigley, Cristina; Cloarec, Olivier; Parker, David A; Murphy, Gerard M; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K; Mitry, Ragai R; Vilca-Melendez, Hector; Rela, Mohamed; Dhawan, Anil; Heaton, Nigel

    2009-12-01

    We demonstrate the effective use of NMR spectroscopic profiles of urine and plasma from the first successful use of hepatocyte transplantation as a bridge to auxiliary partial orthotopic liver transplantation in a child antenatally diagnosed with severe ornithine transcarbamylase deficiency. In this single-patient study, NMR profiles indicated that the disrupted urea cycle could be normalized by hepatocyte cell infusion and this was confirmed using orthogonal partial least-squares-based chemometrics. However, despite dietary manipulations and adminstration of ammonia scavengers, the desired reduction in plasma ammonia was not consistently achieved between sessions of hepatocyte transplantation due to episodes of sepsis. A subsequent liver transplant corrected the metabolic abnormalities. The use of metabolic profiling has been shown to be a promising method for evaluating the efficacy of cell infusions and has demonstrated the capability for the early detection of response to therapy in real time, an approach that may be of use in wider clinical settings.

  20. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  1. NMR spectroscopy of hyperpolarized ^129Xe at high fields: Maintaining spin polarization after optical pumping.

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Kuzma, Nicholas N.; Lisitza, Natalia V.; Happer, William

    2003-05-01

    Spin-polarized ^129Xe has become an invaluable tool in nuclear magnetic resonance research, with applications ranging from medical imaging to high-resolution spectroscopy. High-field NMR studies using hyperpolarized xenon as a spectroscopic probe benefit from the high signal-to-noise ratios and large chemical shifts typical of optically-pumped noble gases. The experimental sensitivity is ultimately determined by the absolute polarization of the xenon in the sample, which can be substantially decreased during purification and transfer. NMR of xenon at high fields (9.4 Tesla) will be discussed, and potential mechanisms of spin relaxation during the distillation, storage(N. N. Kuzma, B. Patton, K. Raman, and W. Happer, Phys. Rev. Lett. 88), 147602 (2002)., and delivery of hyperpolarized xenon will be analyzed.

  2. NMR and X-ray investigations of model tris- and bis-pyridinium fluoroborates

    NASA Astrophysics Data System (ADS)

    Schilf, Wojciech; Kołodziej, Beata; Grech, Eugeniusz; Dobrzycki, Łukasz; Woźniak, Krzysztof

    2004-11-01

    Spectroscopic and structural properties of two distinctly different products of the reaction of 2,4,6-trimethylpyrylium ion (and 2,4,6-triphenylpyrylium), with triple primary amine-tris(2-aminoethyl)amine (tren)—have been isolated and identified. In the case of the first moiety, one of the products is a symmetric tris-pyridinium salt, whereas the second one has only two groups reacting towards the pyridinium salt and the third group giving 3,5-xylidine derivative. For the second ion (2,4,6-triphenylpyrylium salt), we obtained only one symmetric product—trispyridinium salt. All structures have been confirmed by NMR data in solution and the structure of the asymmetric pyrydinium salt in the solid state by single crystal X-ray analysis. The structure of symmetric salt has been confirmed by 13C and 15N CPMAS NMR spectra.

  3. Observation of a stuffed unmodified network in beryllium silicate glasses with multinuclear NMR spectroscopy

    SciTech Connect

    Sen, Sabyasachi; Yu Ping

    2005-10-01

    The structure of BeO-SiO{sub 2} glasses with up to 20 mol % BeO has been studied with {sup 9}Be and {sup 29}Si NMR spectroscopic techniques. The NMR results are consistent with a glass structure consisting of nanoclusters of corner-shared BeO{sub 4} tetrahedra that occupy the interstices of an unmodified and highly strained corner-shared SiO{sub 4} network. The complete absence of nonbridging oxygens in these glasses contradicts the conventional wisdom of oxide glass structures based on the modified random-network-type models. This structure type may have important implications in understanding and designing glasses with unusual properties.

  4. Analysis of pyruvylated beta-carrageenan by 2D NMR spectroscopy and reductive partial hydrolysis.

    PubMed

    Falshaw, Ruth; Furneaux, Richard H; Wong, Herbert

    2003-06-23

    A polysaccharide rich in 4',6'-O-(1-carboxyethylidene)-substituted (i.e., pyruvylated) beta-carrageenan has been prepared by solvolytic desulfation of a polysaccharide containing predominantly pyruvylated alpha-carrageenan, which was extracted from the red seaweed, Callophycus tridentifer. The 13C and 1H NMR chemical shifts of pyruvylated beta-carrageenan have been fully assigned using 2D NMR spectroscopic techniques. The 4',6'-O-(1-methoxycarbonylethylidene) group, generated during chemical methylation of the polysaccharide, has been shown to survive under the conditions of acidic hydrolysis that cleave the 3,6-anhydro-alpha-D-galactosidic bonds in permethylated samples of both pyruvylated beta- and pyruvylated alpha-carrageenans. As a result, two novel pyruvylated carrabiitol derivatives have been prepared.

  5. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.

    PubMed

    Hashmi, Muhammad Ali; Andreassend, Sarah K; Keyzers, Robert A; Lein, Matthias

    2016-09-21

    Despite advances in electronic structure theory the theoretical prediction of spectroscopic properties remains a computational challenge. This is especially true for natural products that exhibit very large conformational freedom and hence need to be sampled over many different accessible conformations. We report a strategy, which is able to predict NMR chemical shifts and more elusive properties like the optical rotation with great precision, through step-wise incremental increases of the conformational degrees of freedom. The application of this method is demonstrated for 3-epi-xestoaminol C, a chiral natural compound with a long, linear alkyl chain of 14 carbon atoms. Experimental NMR and [α]D values are reported to validate the results of the density functional theory calculations.

  6. 31P NMR Characterization of Tricin and Its Structurally Similar Flavonoids

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Tschaplinski, Timothy J.; ...

    2017-04-24

    Tricin, a flavonoid metabolite, has been recently identified as a component of lignin in select monocot plants. This finding has initiated consideration on updating the lignin biosynthesis pathway. Here, we report a rapid method of determination of tricin in corn stover lignin, based on 31P nuclear magnetic resonance (NMR) spectroscopy by phosphitylating with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). Nine other flavonoids, with similar structure to tricin, have also been examined using the current method. The application of 31P NMR enables rapid identification of tricin-like flavonoids in the heterogeneous lignin polymer. The well resolved spectroscopic peaks from these derivatized flavonoids and lignin functional groupsmore » provide important information for the determination of flavonoids individually or their association with lignin.« less

  7. Structure-activity study of thiazides by magnetic resonance methods (NQR, NMR, EPR) and DFT calculations.

    PubMed

    Latosińska, J N

    2005-01-01

    The paper presents a comprehensive analysis of the relationship between the electronic structure of thiazides and their biological activity. The compounds of interest were studied in solid state by the resonance methods nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) and quantum chemistry (ab inito and DFT) methods. Detailed parallel analysis of the spectroscopic parameters such as quadrupole coupling constant (QCC) NQR chemical shift (delta), chemical shift anisotropy (CSA), asymmetry parameter (eta), NMR and hyperfine coupling constant (A), EPR was performed and the electronic effects (polarisation and delocalisation) were revealed and compared. Biological activity of thiazides has been found to depend on many factors, but mainly on the physico-chemical properties whose assessment was possible on the basis of electron density determination in the molecules performed by experimental and theoretical methods.

  8. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  9. rNMR: open source software for identifying and quantifying metabolites in NMR spectra

    PubMed Central

    Lewis, Ian A; Schommer, Seth C; Markley, John L

    2009-01-01

    Despite the extensive use of nuclear magnetic resonance (NMR) for metabolomics, no publicly available tools have been designed for identifying and quantifying metabolites across multiple spectra. We introduce here a new open source software tool, rNMR, which provides a simple graphics-based method for visualizing, identifying, and quantifying metabolites across multiple one- or two-dimensional NMR spectra. rNMR differs from existing software tools for NMR spectroscopy in that analyses are based on regions of interest (ROIs) rather than peak lists. ROIs contain all of the underlying NMR data within user-defined chemical shift ranges. ROIs can be inspected visually, and they support robust quantification of NMR signals. ROI-based analyses support simultaneous views of metabolite signals from up to hundreds of spectra, and ROI boundaries can be adjusted dynamically to ensure that signals corresponding to assigned atoms are analyzed consistently throughout the dataset. We describe how rNMR greatly reduces the time required for robust bioanalytical analysis of complex NMR data. An rNMR analysis yields a compact and transparent way of archiving the results from a metabolomics study so that it can be examined and evaluated by others. The rNMR website at http://rnmr.nmrfam.wisc.edu offers downloadable versions of rNMR for Windows, Macintosh, and Linux platforms along with extensive help documentation, instructional videos, and sample data. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19821464

  10. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  12. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  13. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  14. Spectroscopic evidence of a bidentate-binding of meso-2,3-dimercaptosuccinic acid on silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Zaluzhna, Oksana; Brightful, Lyndsey; Allison, Thomas C.; Tong, YuYe J.

    2011-06-01

    New insight into the metal-ligand binding interaction in meso-2,3-dimercaptosuccinic acid (DMSA) protected silver nanoclusters (NCs) is presented in this work. IR, Raman and 13C NMR spectroscopic characterizations and DFT calculations suggest that DMSA forms a bidentate binding, rather than the originally-proposed monodentate binding, via two sulfur atoms with the underlying Ag7 NC, which is in agreement with recent ab initio calculations.

  15. Spectroscopic Evidence of a Bidentate-Binding of Meso-2,3-Dimercaptosuccinic Acid on Silver Nanoclusters

    SciTech Connect

    Zaluzhna, Oksana; Brightful, Lyndsey; Allison, Thomas C.; Tong, Yu ye J.

    2011-06-14

    New insight into the metal–ligand binding interaction in meso-2,3-dimercaptosuccinic acid (DMSA) protected silver nanoclusters (NCs) is presented in this work. IR, Raman and 13C NMR spectroscopic characterizations and DFT calculations suggest that DMSA forms a bidentate binding, rather than the originally- proposed monodentate binding, via two sulfur atoms with the underlying Ag7 NC, which is in agreement with recent ab initio calculations.

  16. Measuring chirality in NMR in the presence of a time-dependent electric field

    SciTech Connect

    Walls, Jamie D.; Harris, Robert A.

    2014-06-21

    Traditional nuclear magnetic resonance (NMR) experiments are “blind” to chirality since the spectra for left and right handed enantiomers are identical in an achiral medium. However, theoretical arguments have suggested that the effective Hamiltonian for spin-1/2 nuclei in the presence of electric and magnetic fields can be different for left and right handed enantiomers, thereby enabling NMR to be used to spectroscopically detect chirality even in an achiral medium. However, most proposals to detect the chiral NMR signature require measuring signals that are equivalent to picomolar concentrations for {sup 1}H nuclei, which are outside current NMR detection limits. In this work, we propose to use an AC electric field that is resonantly modulated at the Larmor frequency, thereby enhancing the effect of the chiral term by four to six orders of magnitude. We predict that a steady-state transverse magnetization, whose direction will be opposite for different enantiomers, will build up during application of an AC electric field. We also propose an experimental setup that uses a solenoid coil with an AC current to generate the necessary periodic electric fields that can be used to generate chiral signals which are equivalent to the signal from a {sup 1}H submicromolar concentration.

  17. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics.

    PubMed

    Chiliveri, Sai Chaitanya; Deshmukh, Mandar V

    2016-12-01

    The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroELGroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1(rho)) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the (mu)s-ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today's biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.

  18. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    SciTech Connect

    Bevilaqua, Rochele C. A.; Miranda, Caetano R.; Rigo, Vagner A.; Veríssimo-Alves, Marcos

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  19. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  20. Spectroscopic studies of the cytochrome P450 reaction mechanisms.

    PubMed

    Mak, Piotr J; Denisov, Ilia G

    2017-06-28

    The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High‐Resolution NMR Determination of the Dynamic Structure of Membrane Proteins

    PubMed Central

    Jaremko, Mariusz; Jaremko, Łukasz; Villinger, Saskia; Schmidt, Christian D.; Griesinger, Christian; Becker, Stefan

    2016-01-01

    Abstract 15N spin‐relaxation rates are demonstrated to provide critical information about the long‐range structure and internal motions of membrane proteins. Combined with an improved calculation method, the relaxation‐rate‐derived structure of the 283‐residue human voltage‐dependent anion channel revealed an anisotropically shaped barrel with a rigidly attached N‐terminal helix. Our study thus establishes an NMR spectroscopic approach to determine the structure and dynamics of mammalian membrane proteins at high accuracy and resolution. PMID:27461260

  2. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-07

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out.

  3. Structural and Nutritional Properties of Pasta from Triticum monococcum and Triticum durum Species. A Combined ¹H NMR, MRI, and Digestibility Study.

    PubMed

    Pasini, Gabriella; Greco, Fulvia; Cremonini, Mauro A; Brandolini, Andrea; Consonni, Roberto; Gussoni, Maristella

    2015-05-27

    The aim of the present study was to characterize the structure of two different types of pasta, namely Triticum turgidum ssp. durum (cv. Saragolla) and Triticum monococcum ssp. monococcum (cv. Monlis), under different processing conditions. MRI analysis and NMR spectroscopy (i.e., T1 and T2 NMR relaxation times and diffusion parameters) were conducted on pasta, and (1)H NMR spectroscopic analysis of the chemical compounds released by pasta samples during the cooking process was performed. In addition, starch digestibility (enzimatically determined) was also investigated. The NMR results indicated that Saragolla pasta has a more compact structure, ascribed to pasta network and in particular to different technological gluten properties, that mainly determine the lower ability of Monlis pasta in binding water. These results correlate well with the lower rate of starch hydrolysis measured for Monlis pasta compared to Saragolla when both are dried at high temperature.

  4. Regioselective Synthesis of Bis(2-halo-3-pyridyl) Dichalcogenides (E = S, Se and Te): Directed Ortho-Lithiation of 2-halopyridines

    PubMed Central

    Bhasin, K. K.; Singh, Neelam; Doomra, Shivani; Arora, Ekta; Ram, Ganga; Singh, Sukhjinder; Nagpal, Yogesh; Mehta, S. K.; Klapotke, T. M.

    2007-01-01

    A novel method for the preparation of hitherto unknown symmetrical bis(2-halo-3-pyridyl) dichalcogenides (E = S, Se and Te) by the oxidation of intermediate 2-halo-3-pyridyl chalcogenolate, prepared by lithiation of 2-halo pyridines using lithium diisopropylamine is being reported. All the newly synthesized compounds have been characterized through elemental analysis employing various spectroscopic techniques, namely, NMR (1H, 13C, 77Se), infrared, mass spectrometry, and X-ray crystal structures in representative cases. PMID:17611613

  5. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  6. Spectroscopic Investigation of the Species Involved in the Rhodium-Catalyzed Oxidative Carbonylation of Toluene to Toluic Acid

    SciTech Connect

    Zakzeski, Joseph; Burton, Sarah D.; Behn, Andrew; Head-Gordon, Martin P.; Bell, Alexis T.

    2009-11-14

    A spectroscopic investigation of complexes used to catalyze the oxidative carbonylation of toluene to para-toluic acid was conducted. Rhodium complexes were analyzed by 103Rh and 13C NMR, UV-visible spectroscopy, and infrared spectroscopy. In the presence of vanadium and oxygen, the resting state of the Rh catalyst was found to exist as a Rh(III) complex with carbonyl and trifluoroacetate ligands, consistent with the structure Rh(CO)2(TFA)3. The complex exhibited a carbonyl peak with an unusual degree of shielding, which resulted in the appearance of the carbonyl peak at an unprecedented upfield position in the 13C NMR spectrum. This shielding was caused by interaction of the carbonyl group with the trifluoroacetate ligand. In the absence of oxygen, the Rh(III) complex reduced to Rh(I), and the reduced form exhibited properties resembling the catalyst precursor. Structures and spectroscopic properties calculated using Density Functional Theory were in good agreement with experimental results. The vanadium co-catalyst was similarly characterized by 51V NMR and UV-visible spectroscopy. The oxidized species corresponded to [(VO2)(TFA)]2, whereas the reduced species corresponded (VO)(TFA)2. The spectroscopic results obtained in this study confirm the identity of the species that have been proposed to be involved in the Rh-catalyzed oxidative carbonylation of toluene to toluic acid.

  7. The 1997 spectroscopic GEISA databank.

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Arie, E.; Ballard, J.; Barbe, A.; Bjoraker, G.; Bonnet, B.; Brown, L. R.; Camy-Peyret, C.; Champion, J. P.; Chedin, A.; Chursin, A.; Clerbaux, C.; Duxbury, G.; Flaud, J.-M.; Fourrie, N.; Fayt, A.; Graner, G.; Gamache, R.; Goldman, A.; Golovko, V.; Guelachvili, G.; Hartmann, J. M.; Hilico, J. C.; Hillman, J.; Lefevre, G.; Lellouch, E.; Mikhailenko, S. N.; Naumenko, O. V.; Nemtchinov, V.; Newnham, D. A.; Nikitin, A.; Orphal, J.; Perrin, A.; Reuter, D. C.; Rinsland, C. P.; Rosenmann, L.; Rothman, L. S.; Scott, N. A.; Selby, J.; Sinitsa, L. N.; Sirota, J. M.; Smith, A. M.; Smith, K. M.; Tyuterev, V. G.; Tipping, R. H.; Urban, S.; Varanasi, P.; Weber, M.

    1999-05-01

    The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are the spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the giant planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described.

  8. Knockout, Transfer and Spectroscopic Factors

    NASA Astrophysics Data System (ADS)

    Kemper, Kirby; Keeley, Nicholas; Rusek, Krzysztof

    2011-10-01

    As derived quantities rather than observables, spectroscopic factors extracted from fits to data are model dependent. The main source of uncertainty is the choice of binding potential, but other factors such as adequate modeling of the reaction mechanism, the Perey effect, choice of distorting nuclear potentials etc. can also play a significant role. Recently, there has been some discussion of apparent discrepancies in spectroscopic factors derived from knockout reactions compared to those obtained from low-energy direct reactions. It should be possible to reconcile these discrepancies and we explore this prospect by attempting to describe the 10Be(d,t)9Be data of Nucl. Phys. A157, 305 (1970) using the 10Be/9Be form factors from a recent knockout study, Phys. Rev. Lett. 106, 162502 (2011). The influence of such factors as choice of distorting potentials and multi-step reactions paths will be explored.

  9. Spectroscopic characterization of polymers: report

    SciTech Connect

    Koenig, J.L.

    1987-10-01

    Polymer characterization has presented major difficulties to the analytical chemist, who has had to develop techniques to cope with the challenge. Even the elementary problem of measuring molecular weight is not easy. Yet such measurements are essential, because the physical, mechanical, and flow properties depend on the length of the polymer chain. Because of the limited solubility and high viscosity of polymers, many classical techniques have been of little use or have had to be extensively modified to measure the molecular weight of polymers. Size-exclusion chromatographic techniques such as gel permeation have been developed to measure these molecular weight distributions. Special chromatographic instruments with a range of spectroscopic detectors (including infrared and laser-light scattering) have emerged commercially to aid the analytical chemist in the fundamental endeavor to measure the length of the polymer chain and its distribution. The author describes the advantages and disadvantages and disadvantages of various spectroscopic techniques.

  10. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  11. Mid-infrared spectroscopic investigation

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Vergo, Norma; Walter, Louis

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed.

  12. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  13. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  14. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  15. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  16. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  17. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  18. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  19. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  20. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…