Supersymmetric Kerr-anti-de Sitter solutions
Cvetic, Mirjam; Gao Peng; Simon, Joan
2005-07-15
We prove the existence of one quarter supersymmetric type IIB configurations that arise as nontrivial scaling solutions of the standard five-dimensional Kerr-anti-de Sitter black holes by the explicit construction of its Killing spinors. This neutral, spinning solution is asymptotic to the static anti-de Sitter space-time with cosmological constant -(1/l{sup 2}), it has two finite equal angular momenta J{sub 1}={+-}J{sub 2}, mass M=(1/l)(|J{sub 1}|+|J{sub 2}|) and a naked singularity. We also address the scaling limit associated with one-half supersymmetric solution with only one angular momentum.
Blackfolds in (anti)-de Sitter backgrounds
Armas, Jay; Obers, Niels A.
2011-04-15
We construct different neutral blackfold solutions in Anti-de Sitter and de Sitter background spacetimes in the limit where the cosmological constant is taken to be much smaller than the horizon size. This includes a class of blackfolds with horizons that are products of odd-spheres times a transverse sphere, for which the thermodynamic stability is also studied. Moreover, we exhibit a specific case in which the same blackfold solution can describe different limiting black hole spacetimes therefore illustrating the geometric character of the blackfold approach. Furthermore, we show that the higher-dimensional Kerr-(Anti)-de Sitter black hole allows for ultraspinning regimes in the same limit under consideration and demonstrate that this is correctly described by a pancaked blackfold geometry. We also give evidence for the possibility of saturating the rigidity theorem in these backgrounds.
Liu, James T.; Sabra, W.A.
2005-09-15
The boundary stress tensor approach has proven extremely useful in defining mass and angular momentum in asymptotically anti-de Sitter spaces with CFT duals. An integral part of this method is the use of boundary counterterms to regulate the gravitational action and stress tensor. In the presence of matter, however, ambiguities may arise that are related to the addition of possible finite counterterms. We demonstrate this explicitly for R-charged black holes in AdS{sub 5}, where introduction of a finite counterterm proportional to {phi}{sup 2} is necessary to properly reproduce the expected mass/charge relation for the black holes.
Colorful Horizons with Charge in Anti-de Sitter Space
Gubser, Steven S.
2008-11-07
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstroem-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of gauge invariance and spatial rotational invariance.
Small Kerr-anti-de Sitter black holes are unstable
Cardoso, Vitor; Dias, Oscar J.C.
2004-10-15
Superradiance in black hole spacetimes can trigger instabilities. Here we show that, due to superradiance, small Kerr-anti-de Sitter black holes are unstable. Our demonstration uses a matching procedure, in a long wavelength approximation.
NASA Astrophysics Data System (ADS)
Arzano, Michele; Gubitosi, Giulia; Magueijo, João; Amelino-Camelia, Giovanni
2015-07-01
We investigate the anti-de Sitter (AdS) counterpart to the well-studied de Sitter (dS) model for energy-momentum space, viz "κ -momentum space" space (with a structure based on the properties of the κ -Poincaré Hopf algebra). On the basis of previous preliminary results one might expect the two models to be complementary: dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However, several unexpected features are uncovered in this paper, which limit the scope of the expected complementarity, and interestingly they take different forms in different coordinatizations of AdS momentum space. "Cosmological" AdS coordinates mimic the dS construction used for κ -momentum space, and produce a Carrol limit in the ultraviolet. However, unlike the κ -momentum space, the boundary of the covered patch breaks Lorentz invariance, thereby introducing a preferred frame. In "horospherical" coordinates we achieve full consistency with frame independence as far as boost transformations are concerned, but find that rotational symmetry is broken, leading to an anisotropic model for the speed of light. Finally, in "static" coordinates we find a way of deforming relativistic transformations that successfully enforces frame invariance and isotropy, and produces a Carrol limit in the ultraviolet. Our results are also relevant for a long-standing debate on whether or not coordinate redefinitions in momentum space lead to physically equivalent theories: our three proposals are evidently physically inequivalent, leading to alternative models of Planck-scale effects. As a corollary we study the UV running of the Hausdorff dimension of momentum space in the first and third model, obtaining different results.
The Schwinger mechanism in (Anti) de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Samantray, Prasant
2016-04-01
We present a short and novel derivation of the Schwinger mechanism for particle pair production in 1 + 1 dimensional de Sitter and Anti de Sitter spacetimes. We work directly in the flat embedding space and derive the pair production rates in these spacetimes via instanton methods. The derivation is manifestly coordinate independent, and also lends support to the possible deep connection between two conceptually disparate quantum phenomena — Schwinger effect and the Davies-Unruh effect.
On electric field in anti-de Sitter spacetime
Cheong, Lee Yen E-mail: chewxy01813@gmail.com Yan, Chew Xiao E-mail: chewxy01813@gmail.com Ching, Dennis Ling Chuan E-mail: chewxy01813@gmail.com
2014-10-24
In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.
Superradiant instabilities of asymptotically anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.
2016-06-01
We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.
The anti-de Sitter spacetime as a time machine
NASA Astrophysics Data System (ADS)
Ahmed, Faizuddin; Bikash Hazarika, Bidyut; Sarma, Debojit
2016-07-01
We construct an axially symmetric spacetime admitting, after a certain instant, closed timelike curves (CTCs) indicating that it is a time-machine spacetime. The spacetime, which is locally anti-de Sitter, is a four-dimensional extension of the Misner space with identical causality-violating properties. In this spacetime, CTCs evolve from a casually well-behaved initial hypersurface.
Photon rockets in the (anti-)de Sitter universe
Podolsky, J.
2008-08-15
A class of exact solutions to Einstein's equations is presented, which describes accelerating photon rockets in the de Sitter and anti-de Sitter universes. These are particular members of the Robinson-Trautman family of axially symmetric spacetimes with pure radiation. In particular, generalizations of (type D) Kinnersley's rockets and (type II) Bonnor's rockets to the case of a nonvanishing cosmological constant are given. Some of the main physical properties of these solutions are investigated, and their relation to the C-metric solution which describes uniformly accelerated black holes is also given.
Dirac fermions on an anti-de Sitter background
Ambruş, Victor E. Winstanley, Elizabeth
2014-11-24
Using an exact expression for the bi-spinor of parallel transport, we construct the Feynman propagator for Dirac fermions in the vacuum state on anti-de Sitter space-time. We compute the vacuum expectation value of the stress-energy tensor by removing coincidence-limit divergences using the Hadamard method. We then use the vacuum Feynman propagator to compute thermal expectation values at finite temperature. We end with a discussion of rigidly rotating thermal states.
Evanescent gravitons in warped anti-de Sitter space
NASA Astrophysics Data System (ADS)
Giribet, Gaston; Vásquez, Yerko
2016-01-01
Besides black holes, the phase space of three-dimensional massive gravity about warped anti-de Sitter space contains solutions that decay exponentially in time. They describe evanescent graviton configurations that, while governed by a wave equation with nonvanishing effective mass, do not carry net gravitational energy. Explicit examples of such solutions have been found in the case of topologically massive gravity; here, we generalize them to a much more general ghost-free massive deformation, with the difference being that the decay rate gets corrected due to the presence of higher-order terms.
Cosmic censorship of rotating Anti-de Sitter black hole
NASA Astrophysics Data System (ADS)
Gwak, Bogeun; Lee, Bum-Hoon
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space
Izumiya, Shyuichi
2015-11-15
Anti-de Sitter space is the Lorentzian space form with negative curvature. In this paper, we consider lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space with general codimension. In particular, we investigate the singularities of lightlike hypersurfaces as an application of the theory of Legendrian singularities.
Generalized Gravitational Entropy for Warped Anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS3 ) in a consistent truncation of string theory, the so-called S -dual dipole theory. It turns out that the generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3 . Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.
Generalized Gravitational Entropy for Warped Anti-de Sitter Space.
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS_{3}) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the generalized gravitational entropy in WAdS_{3} is captured by the least action of a charged particle in WAdS_{3} space, or equivalently, by the geodesic length in an auxiliary AdS_{3}. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS_{3}/CFT_{2} correspondence. PMID:27419559
(Anti-) de Sitter electrically charged black-hole solutions in higher-derivative gravity
NASA Astrophysics Data System (ADS)
Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.
2016-06-01
In this paper, static electrically charged black-hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.
Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds
Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.
2005-10-15
We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term {lambda}. It is investigated how {lambda} modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of {lambda} on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter.
NUT charge, anti-de Sitter space, and entropy
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hunter, C. J.; Page, Don N.
1999-02-01
It has been proposed that spacetimes with a U(1) isometry group have contributions to the entropy from Misner strings as well as from the area of d-2 dimensional fixed point sets. In this paper we test this proposal by constructing Taub-NUT-AdS and Taub-bolt-AdS solutions which are examples of a new class of asymptotically locally anti-de Sitter space. We find that with the additional contribution from the Misner strings, we exactly reproduce the entropy calculated from the action by the usual thermodynamic relations. This entropy has the right parameter dependence to agree with the entropy of a conformal field theory on the boundary, which is a squashed three-sphere, at least in the limit of large squashing. However, the conformal field theory and the normalization of the entropy remain to be determined.
Holographic entanglement entropy for noncommutative anti-de Sitter space
NASA Astrophysics Data System (ADS)
Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay
2016-04-01
A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu-Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet-infrared (UV-IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).
Normalized energy eigenspinors of the Dirac field on anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.
1999-12-01
I show how to derive the normalized energy eigenspinors of the free Dirac field on anti-de Sitter spacetime by using a Cartesian tetrad gauge where the separation of spherical variables can be done as in special relativity.
Chemical potential driven phase transition of black holes in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio
2015-11-01
Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.
Einstein-Maxwell-Anti-de-Sitter spinning solitons
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos; Radu, Eugen
2016-06-01
Electrostatics on global Anti-de-Sitter (AdS) spacetime is sharply different from that on global Minkowski spacetime. It admits a multipolar expansion with everywhere regular, finite energy solutions, for every multipole moment except the monopole [1]. A similar statement holds for global AdS magnetostatics. We show that everywhere regular, finite energy, electric plus magnetic fields exist on AdS in three distinct classes: (I) with non-vanishing total angular momentum J; (II) with vanishing J but non-zero angular momentum density, Tφt ; (III) with vanishing J and Tφt . Considering backreaction, these configurations remain everywhere smooth and finite energy, and we find, for example, Einstein-Maxwell-AdS solitons that are globally - Type I - or locally (but not globally) - Type II - spinning. This backreaction is considered first perturbatively, using analytical methods and then non-perturbatively, by constructing numerical solutions of the fully non-linear Einstein-Maxwell-AdS system. The variation of the energy and total angular momentum with the boundary data is explicitly exhibited for one example of a spinning soliton.
Semiclassical quantization of circular strings in de Sitter and anti--de Sitter spacetimes
de Vega, H.J. |; Larsen, A.L.; Sanchez, N.
1995-06-15
We compute the {ital exact} equation of state of circular strings in the (2+1)--dimensional de Sitter (dS) and anti--de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting, and expanding) strings. The string equation of state has the perfect fluid form {ital P}=({gamma}{minus}1){ital E}, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient {gamma} depending on the elliptic modulus. We semiclassically quantize the oscillating circular strings. The string mass is {ital m}= {radical}{ital C} /({pi}{ital H}{alpha}{prime}), {ital C} being the Casimir operator, {ital C}={minus}{ital L}{sub {mu}{nu}}{ital L}{sup {mu}{nu}}, of the O(3,1)-dS [O(2,2)-AdS] group, and {ital H} is the Hubble constant. We find {alpha}{prime}{ital m}{sub dS}{sup 2}{approx}4{ital n}{minus}5{ital H}{sup 2}{alpha}{prime}{ital n}{sup 2} ({ital n}{element_of}{ital N}{sub 0}), and a {ital finite} number of states {ital N}{sub dS}{approx}0.34/({ital H}{sup 2}{alpha}{prime}) in de Sitter spacetime; {ital m}{sub AdS}{sup 2}{approx}{ital H}{sup 2}{ital n}{sup 2} (large {ital n}{element_of}{ital N}{sub 0}) and {ital N}{sub AdS}={infinity} in anti--de Sitter spacetime. The level spacing grows with {ital n} in AdS spacetime, while it is approximately constant (although smaller than in Minkowski spacetime and slightly decreasing) in dS spacetime. The massive states in dS spacetime decay through the tunnel effect and the semiclassical decay probability is computed. The semiclassical quantization of {ital exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass qualitatively agree.
Deformations of anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Detournay, Stephane
2006-11-01
This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.
Semiclassical (qft) and Quantum (string) Anti-De Sitter Regimes:. New Results
NASA Astrophysics Data System (ADS)
Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.
We compute the quantum string entropy Ss(m, H) from the microscopic string density of states ρs(m, H) of mass m in Anti-de Sitter space-time. For high m, (high Hm → c/α‧), no phase transition occurs at the Anti-de Sitter string temperature Ts = (1/2πkB)Lclc2/α‧, which is higher than the flat space (Hagedorn) temperature ts. (Lcl = c/H, the Hubble constant H acts as producing a smaller string constant α‧ and thus, a higher tension). Ts is the precise quantum dual of the semiclassical (QFT) Anti-de Sitter temperature scale Tsem = ℏc/(2πkBLcl). We compute the quantum string emission σstring by a black hole in Anti-de Sitter (or asymptotically Anti-de Sitter) space-time (bhAdS). For Tsem bhAdS ≪ Ts (early evaporation stage), it shows the QFT Hawking emission with temperature Tsem bhAdS (semiclassical regime). For Tsem bhAdS → Ts, it exhibits a phase transition into a Anti-de Sitter string state of size Ls = ls2/L_ cl, (ls = √ hbar α '/c}), and Anti-de Sitter string temperature Ts. New string bounds on the black hole emerge in the bhAdS string regime. The bhAdS string regime determines a maximal value for H : Hmax = 0.841c/ls. The minimal black hole radius in Anti-de Sitter space-time turns out to be rg min = 0.841ls, and is larger than the minimal black hole radius in de Sitter space-time by a numerical factor equal to 2.304. We find a new formula for the full AdS entropy Ssem(H), as a function of the usual Bekenstein-Hawking entropy S sem(0)(H). For Lcl ≫ ℓPlanck, i.e. for low H ≪ c/ℓPlanck, or classical regime, S sem(0)(H) is the leading term with its logarithmic correction, but for high H ≥ c/ℓPlanck or quantum regime, no phase transition operates, in contrast to de Sitter space, and the entropy Ssem(H) is very different from the Bekenstein-Hawking term S sem(0)(H).
Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit
NASA Technical Reports Server (NTRS)
Elgradechi, Amine M.
1993-01-01
Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.
Anti-De Sitter Island-Universes from 5d Standing Waves
NASA Astrophysics Data System (ADS)
Gogberashvili, Merab; Singleton, Douglas
We construct simple standing wave solutions in a 5D spacetime with a ghost-like scalar field. The nodes of these standing waves are "islands" of 4D anti-de Sitter spacetime. In the case of increasing (decreasing) warp factor, there are a finite (infinite) number of nodes and thus a finite (infinite) number of anti-de Sitter island-universes having different gravitational and cosmological constants. This is similar to the landscape models, which postulate a large number of universes with different parameters.
Kar, Supriya
2006-12-15
We obtain de Sitter (dS) and anti-de Sitter (AdS) generalized Reissner-Nordstrom-like black hole geometries in a curved D{sub 3}-brane framework, underlying a noncommutative gauge theory on the brane world. The noncommutative scaling limit is explored to investigate a possible tunneling of an AdS vacuum in string theory to dS vacuum in its low energy gravity theory. The Hagedorn transition is invoked into its self-dual gauge theory to decouple the gauge nonlinearity from the dS geometry, which in turn is shown to describe a pure dS vacuum.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.
Solodukhin, Sergey N
2006-11-17
A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted. PMID:17155672
Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.
Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor
2015-02-20
Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946
The anti-de Sitter Gott universe: a rotating BTZ wormhole
NASA Astrophysics Data System (ADS)
Holst, Sören; Matschull, Hans-Jürgen
1999-10-01
Recently, it has been shown that a (2 + 1)-dimensional black hole can be created by the collapse of two colliding massless particles in an otherwise empty anti-de Sitter space. Here we generalize this construction to the case of a non-zero impact parameter. The resulting spacetime, which may be regarded as a Gott universe in an anti-de Sitter background, contains closed timelike curves. By treating these as singular we are able to interpret our solution as a rotating black hole, hence providing a link between the Gott universe and the BTZ black hole. When analysing the spacetime we see how the full causal structure of the interior can be almost completely inferred just from considerations of the conformal boundary.
NASA Astrophysics Data System (ADS)
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-03-01
We report a -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Resonant Dynamics and the Instability of Anti-de Sitter Spacetime.
Bizoń, Piotr; Maliborski, Maciej; Rostworowski, Andrzej
2015-08-21
We consider spherically symmetric Einstein-massless-scalar field equations with a negative cosmological constant in five dimensions and analyze the evolution of small perturbations of anti-de Sitter (AdS) spacetime using the recently proposed resonant approximation. We show that for typical initial data the solution of the resonant system develops an oscillatory singularity in finite time. This result hints at a possible route to establishing the instability of AdS under arbitrarily small perturbations. PMID:26340178
Anti-de Sitter-wave solutions of higher derivative theories.
Gürses, Metin; Hervik, Sigbjørn; Şişman, Tahsin Çağrı; Tekin, Bayram
2013-09-01
We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors. PMID:25166648
Resonant Dynamics and the Instability of Anti-de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Maliborski, Maciej; Rostworowski, Andrzej
2015-08-01
We consider spherically symmetric Einstein-massless-scalar field equations with a negative cosmological constant in five dimensions and analyze the evolution of small perturbations of anti-de Sitter (AdS) spacetime using the recently proposed resonant approximation. We show that for typical initial data the solution of the resonant system develops an oscillatory singularity in finite time. This result hints at a possible route to establishing the instability of AdS under arbitrarily small perturbations.
Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space
NASA Astrophysics Data System (ADS)
Shyaka, Claude; Kharel, Savan
2016-03-01
The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.
Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes
Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk E-mail: petr.slany@fpf.slu.cz
2011-01-01
Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It is demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.
Generic cosmic-censorship violation in anti-de Sitter space.
Hertog, Thomas; Horowitz, Gary T; Maeda, Kengo
2004-04-01
We consider (four-dimensional) gravity coupled to a scalar field with potential V(phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti-de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results. PMID:15089592
Anyonic Strings and Membranes in Anti-de Sitter Space and Dual Aharonov-Bohm Effects
Hartnoll, Sean A.
2007-03-16
It is observed that strings in AdS{sub 5}xS{sup 5} and membranes in AdS{sub 7}xS{sup 4} exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2{pi}/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.
Bjorken flow from an anti-de Sitter space Schwarzschild black hole.
Alsup, James; Siopsis, George
2008-07-18
We consider a large black hole in asymptotically anti-de Sitter spacetime of arbitrary dimension with a Minkowski boundary. By performing an appropriate slicing as we approach the boundary, we obtain via holographic renormalization a gauge theory fluid obeying Bjorken hydrodynamics in the limit of large longitudinal proper time. The metric we obtain reproduces to leading order the metric recently found as a direct solution of the Einstein equations in five dimensions. Our results are also in agreement with recent exact results in three dimensions. PMID:18764245
Massive higher derivative gravity in D-dimensional anti-de Sitter spacetimes
Guellue, Ibrahim; Tekin, Bayram
2009-09-15
We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three-dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and that its Newtonian limit is equivalent to that of the usual massive gravity in flat space.
Anti-de Sitter-Space/Conformal-Field-Theory Casimir Energy for Rotating Black Holes
Gibbons, G.W.; Perry, M.J.; Pope, C.N.
2005-12-02
We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.
The Hawking-Page crossover in noncommutative anti-deSitter space
NASA Astrophysics Data System (ADS)
Nicolini, Piero; Torrieri, Giorgio
2011-08-01
We study the problem of a Schwarzschild-anti-deSitter black hole in a non-commutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.
Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant
Dehghani, M.H.
2004-09-15
In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce static solutions whose three surfaces at fixed r and t have constant positive (k=1), negative (k=-1), or zero (k=0) curvature. I show that for k={+-}1 one can have asymptotically de Sitter, AdS, and flat spacetimes, while for the case of k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m+2{alpha}|k|, which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. Second, I add angular momentum to the static solutions with k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.
NASA Astrophysics Data System (ADS)
Yin, Shaoyu; Wang, Bin; Mann, Robert; Lee, Chong Oh; Lin, Chi-Yong; Su, Ru-Keng
2010-09-01
We investigate the stability of a new warped black string with nontrivial topologies in five-dimensional anti-de Sitter spacetime. After studying the linear gravitational perturbation, we find that this black string is unstable when the Kaluza-Klein mass falls in a certain range, and the instability exists for all topological spacetimes.
From the Anti-Yang Model to the Anti-Snyder Model and Anti-De Sitter Special Relativity
NASA Astrophysics Data System (ADS)
Qi, Wei-Jun; Ren, Xin-An
2013-04-01
Based on Yang's quantized space-time model, a complete Yang model from (5+1)-dimensional space with Minkowski signature is discussed using the projective geometry method and Dirac procedure. We introduce an anti-Yang model and an anti-Snyder model to discuss the duality relations between the anti-Snyder model and anti-de Sitter special relativity.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2016-05-01
In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.
Strings in five-dimensional anti-de Sitter space with a symmetry
Koike, Tatsuhiko; Kozaki, Hiroshi; Ishihara, Hideki
2008-06-15
The equation of motion of an extended object in spacetime reduces to an ordinary differential equation in the presence of symmetry. By properly defining the symmetry with the notion of cohomogeneity, we discuss the method for classifying all these extended objects. We carry out the classification for the strings in the five-dimensional anti-de Sitter space by the effective use of the local isomorphism between SO(4,2) and SU(2,2). In the case where the string is described by the Nambu-Goto action, we present a general method for solving the trajectory. We then apply the method to one of the classification cases, where the spacetime naturally obtains a Hopf-like bundle structure, and find a solution. The geometry of the solution is analyzed and found to be a timelike, helicoidlike surface.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes. PMID:27104693
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Ong, Yen Chin
2016-02-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Holzegel, Gustav; Shao, Arick
2016-02-01
We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein-Gordon-type equations {Box_g φ + σ φ = G ( φ, partial φ )} , {σ in R} , on a large class of such spacetimes. Our main result establishes that if {φ} vanishes to sufficiently high order (depending on {σ} ) on a sufficiently long time interval along the conformal boundary I, then the solution necessarily vanishes in a neighborhood of I. In particular, in the {σ} -range where Dirichlet and Neumann conditions are possible on I for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.
Collapse of Self-Interacting Scalar Field in Anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Ji, Li-Wei; Yang, Run-Qiu
2016-03-01
The gravitational collapse of a massless scalar field with a self-interaction term λφ4 in anti-de Sitter space is investigated. We numerically investigate the effect of the self-interaction term on the critical amplitudes, forming time of apparent horizon, stable island, and energy transformation. The results show that a positive λ suppresses the formation of black hole, while a negative λ enhances the process. We define two susceptibilities to characterize the effect of the self-interaction on the black hole formation, and find that near the critical amplitude, there exists a universal scaling relation with the critical exponent α ≈ 0.74 for the time of black hole formation. Supported by the National Natural Science Foundation of China under Grant Nos. 11375247 and 11435006
Homoclinic accretion solutions in the Schwarzschild-anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Mach, Patryk
2015-04-01
The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type accretion solutions in the Schwarzschild-anti-de Sitter space-time. The homoclinic solutions have recently been discovered numerically for polytropic equations of state. Here I show that they exist also for certain isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas, ultrahard equation of state) there exist global solutions that can be continued to infinity, similarly to standard Michel's solutions in the Schwarzschild space-time. In contrast to that global solutions should not exist for matter models with a nonvanishing rest-mass component, and this is demonstrated for polytropes. For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which stationary transonic accretion is allowed.
Charged anti-de Sitter scalar-tensor black holes and their thermodynamic phase structure
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.; Todorov, Michail D.
2010-05-15
In the present paper we numerically construct new charged anti-de Sitter black holes coupled to nonlinear Born-Infeld electrodynamics within a certain class of scalar-tensor theories. The properties of the solutions are investigated both numerically and analytically. We also study the thermodynamics of the black holes in the canonical ensemble. For large values of the Born-Infeld parameter and for a certain interval of the charge values we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a certain small charge subinterval two phase transitions have been observed, one of zeroth and one of first order. It is important to note that such phase transitions are also observed for pure Einstein-Born-Infeld-AdS black holes.
Simulation of Black Hole Collisions in Asymptotically anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Romatschke, Paul
2015-04-01
The main purpose of this talk is to describe, in detail, the necessary ingredients for achieving stable Cauchy evolution of black hole collisions in asymptotically anti-de Sitter (AdS) spacetimes. I will begin by motivating this program in terms of the heavy-ion physics it is intended to clarify. I will then give an overview of asymptotically AdS spacetimes, the mapping to the dual conformal field theory on the AdS boundary, and the method we use to numerically solve the fully non-linear Einstein field equations with AdS boundary conditions. As a concrete example of these ideas, I will describe the first proof of principle simulation of stable AdS black hole mergers in 5 dimensions.
Holographic thermalization, stability of anti-de sitter space, and the Fermi-Pasta-Ulam paradox.
Balasubramanian, Venkat; Buchel, Alex; Green, Stephen R; Lehner, Luis; Liebling, Steven L
2014-08-15
For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a large class of spherically symmetric initial conditions that are close to anti-de Sitter space (AdS) but whose numerical evolution does not result in black hole formation. According to the AdS/conformal field theory (CFT) dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT configurations that do not equilibrate. We develop a two-time-scale perturbative formalism that captures both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate regime. We also show that this formalism admits a large class of quasiperiodic solutions. Finally, we demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou problem. PMID:25170699
Simulation of Black Hole Collisions in Asymptotically Anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Romatschke, Paul
2015-02-01
We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability
NASA Astrophysics Data System (ADS)
Bosch, Pablo; Green, Stephen R.; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Anti-De Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories
NASA Astrophysics Data System (ADS)
Witten, Edward
2014-03-01
The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super Yang-Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.
Abundant stable gauge field hair for black holes in anti-de Sitter space.
Baxter, J E; Helbling, Marc; Winstanley, Elizabeth
2008-01-11
We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed. PMID:18232751
New Features of Gravitational Collapse in Anti-de Sitter Spacetimes.
Santos-Oliván, Daniel; Sopuerta, Carlos F
2016-01-29
Gravitational collapse of a massless scalar field in spherically symmetric anti-de Sitter (AdS) spacetimes presents a new phenomenology with a series of critical points whose dynamics is discretely self-similar as in the asymptotically flat case. Each critical point is the limit of a branch of scalar field configurations that have bounced off the AdS boundary a fixed number of times before forming an apparent horizon. We present results from a numerical study that focus on the interfaces between branches. We find that there is a mass gap between branches and that subcritical configurations near the critical point form black holes with an apparent horizon mass that follows a power law of the form M(AH)-M(g)∝(p(c)-p)^(ξ), where M(g) is the mass gap and the exponent ξ≃0.7 appears to be universal. PMID:26871317
Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.
Bantilan, Hans; Romatschke, Paul
2015-02-27
We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times. PMID:25768753
The Derivation and Quasinormal Mode Spectrum of Acoustic Anti-de Sitter Black Hole Analogues
NASA Astrophysics Data System (ADS)
Babb, James Patrick
Dumb holes (also known as acoustic black holes) are fluid flows which include an "acoustic horizon": a surface, analogous to a gravitational horizon, beyond which sound may pass but never classically return. Soundwaves in these flows will therefore experience "effective geometries" which are identical to black hole spacetimes up to a conformal factor. By adjusting the parameters of the fluid flow, it is possible to create an effective geometry which is conformal to the Anti-de Sitter black hole spacetime---a geometry which has received a great deal of attention in recent years due to its conjectured holographic duality to Conformal Field Theories. While we would not expect an acoustic analogue of the AdS-CFT correspondence to exist, this dumb hole provides a means, at least in principle, of experimentally testing the theoretical properties of the AdS spacetime. In particular, I have calculated the quasinormal mode spectrum of this acoustic geometry.
Conserved charges for gravity with locally anti-de sitter asymptotics
Aros; Contreras; Olea; Troncoso; Zanelli
2000-02-21
A new formula for the conserved charges in 3+1 gravity for spacetimes with local anti-de Sitter asymptotic geometry is proposed. It is shown that requiring the action to have an extremum for this class of asymptotia sets the boundary term that must be added to the Lagrangian as the Euler density with a fixed weight factor. The resulting action gives rise to the mass and angular momentum as Noether charges associated to the asymptotic Killing vectors without requiring specification of a reference background in order to have a convergent expression. A consequence of this definition is that any negative constant curvature spacetime has vanishing Noether charges. These results remain valid in the Lambda = 0 limit. PMID:11017591
New Features of Gravitational Collapse in Anti-de Sitter Spacetimes
NASA Astrophysics Data System (ADS)
Santos-Oliván, Daniel; Sopuerta, Carlos F.
2016-01-01
Gravitational collapse of a massless scalar field in spherically symmetric anti-de Sitter (AdS) spacetimes presents a new phenomenology with a series of critical points whose dynamics is discretely self-similar as in the asymptotically flat case. Each critical point is the limit of a branch of scalar field configurations that have bounced off the AdS boundary a fixed number of times before forming an apparent horizon. We present results from a numerical study that focus on the interfaces between branches. We find that there is a mass gap between branches and that subcritical configurations near the critical point form black holes with an apparent horizon mass that follows a power law of the form MAH-Mg∝(pc-p )ξ, where Mg is the mass gap and the exponent ξ ≃0.7 appears to be universal.
Quantum groups, roots of unity and particles on quantized Anti-de Sitter space
Steinacker, H
1997-05-23
Quantum groups in general and the quantum Anti-de Sitter group U{sub q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin {ge} 1, {open_quotes}naive{close_quotes} representations are unitarizable only after factoring out a subspace of {open_quotes}pure gauges{close_quotes}, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U{sub q}(g), which plays the role of a BRST operator in the case of U{sub q}(so(2,3)) at roots of unity, for any spin {ge} 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard {open_quotes}truncated{close_quotes} tensor product as well as many-particle representations.
Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Abel, Paul G.; Winstanley, Elizabeth
2016-08-01
We consider a massless quantum scalar field on a two-dimensional space-time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space-time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies-Fulling-Unruh prescription for computing the renormalized expectation value of the stress-energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle-Hawking vacuum on an eternal black hole space-time.
NASA Astrophysics Data System (ADS)
Vasudevan, Muraari; Stevens, Kory A.
2005-12-01
We study the Hamilton-Jacobi and massive Klein-Gordon equations in the general Kerr-(Anti) de Sitter black hole background in all dimensions. Complete separation of both equations is carried out in cases when there are two sets of equal black hole rotation parameters. We analyze explicitly the symmetry properties of these backgrounds that allow for this Liouville integrability and construct a nontrivial irreducible Killing tensor associated with the enlarged symmetry group which permits separation. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. This work greatly generalizes previously known results for both the Myers-Perry metrics, and the Kerr-(Anti) de Sitter metrics in higher dimensions.
Gibbons, G. W.; Perry, M. J.; Pope, C. N.
2006-10-15
We reformulate the Bekenstein bound as the requirement of positivity of the Helmholtz free energy at the minimum value of the function L=E-S/(2{pi}R), where R is some measure of the size of the system. The minimum of L occurs at the temperature T=1/(2{pi}R). In the case of n-dimensional anti-de Sitter spacetime, the rather poorly defined size R acquires a precise definition in terms of the AdS radius l, with R=l/(n-2). We previously found that the Bekenstein bound holds for all known black holes in AdS. However, in this paper we show that the Bekenstein bound is not generally valid for free quantum fields in AdS, even if one includes the Casimir energy. Some other aspects of thermodynamics in anti-de Sitter spacetime are briefly touched upon.
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, ShuZheng
2009-04-01
The 1/2 spin fermions tunneling at the horizon of n-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter is researched via semi-classical approximation method, and the Hawking temperature and fermions tunneling rate are obtained in this Letter. Using a new method, the semi-classical Hamilton-Jacobi equation is gotten from the Dirac equation in this Letter, and the work makes several quantum tunneling theories more harmonious.
Black hole formation from pointlike particles in three-dimensional anti-de Sitter space
NASA Astrophysics Data System (ADS)
Lindgren, E. J.
2016-07-01
We study collisions of many point-like particles in three-dimensional anti-de Sitter space, generalizing the known result with two particles. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massless particles falling in radially from the boundary. We find that when going away from the case of equal energies and discrete rotational symmetry, this is not a trivial generalization of the two-particle case, but requires that the excised wedges corresponding to the particles must be chosen in a very precise way for a consistent solution. We also explicitly take the limit when the number of particles goes to infinity and obtain thin shell solutions that in general break rotational invariance, corresponding to an instantaneous and inhomogeneous perturbation at the boundary. We also compute the stress–energy tensor of the shell using the junction formalism for null shells and obtain agreement with the point particle picture.
Conserved quantities and dual turbulent cascades in Anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Green, Stephen; Buchel, Alex; Lehner, Luis; Liebling, Steven
2015-04-01
We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in Anti-de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy E of the modes: The particle number N and Hamiltonian H of our TTF system. H represents the next-order contribution after E to the total ADM mass M. Simultaneous conservation of E and N implies that weak turbulent processes undergo dual cascades (direct cascade of E and inverse cascade of N or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of E and N limits the region of phase space that can be explored within the TTF approximation and in particular rules out equipartion of energy among the modes for general initial data. Finally, we discuss possible effects of conservation of N and E on late time dynamics.
Conserved quantities and dual turbulent cascades in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Buchel, Alex; Green, Stephen R.; Lehner, Luis; Liebling, Steven L.
2015-03-01
We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in anti-de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy E of the modes: The particle number N and Hamiltonian H of our TTF system. Simultaneous conservation of E and N implies that weakly turbulent processes undergo dual cascades (direct cascade of E and inverse cascade of N or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of E and N limits the region of phase space that can be explored within the TTF approximation and, in particular, rules out equipartition of energy among the modes for general initial data. Finally, we discuss the possible effects of conservation of N and E on late time dynamics.
Precise relativistic orbits in Kerr and Kerr (anti) de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Kraniotis, G. V.
2004-10-01
The timelike geodesic equations resulting from the Kerr gravitational metric element are derived and solved exactly including the contribution from the cosmological constant. The geodesic equations are derived, by solving the Hamilton Jacobi partial differential equation by separation of variables. The solutions can be applied in the investigation of the motion of a test particle in the Kerr and Kerr (anti) de Sitter gravitational fields. In particular, we apply the exact solutions of the timelike geodesics: (i) to the precise calculation of dragging (Lense Thirring effect) of a satellite's spherical polar orbit in the gravitational field of Earth assuming Kerr geometry; (ii) assuming the galactic centre is a rotating black hole we calculate the precise dragging of a stellar polar orbit around the galactic centre for various values of the Kerr parameter including those supported by recent observations. The exact solution of non-spherical geodesics in Kerr geometry is obtained by using the transformation theory of elliptic functions. The exact solution of spherical polar geodesics with a nonzero cosmological constant can be expressed in terms of Abelian modular theta functions that solve the corresponding Jacobi's inversion problem.
Scalar hair on the black hole in asymptotically anti--de Sitter spacetime
Torii, Takashi; Maeda, Kengo; Narita, Makoto
2001-08-15
We examine the no-hair conjecture in asymptotically anti--de Sitter (AdS) spacetime. First, we consider a real scalar field as the matter field and assume static spherically symmetric spacetime. Analysis of the asymptotics shows that the scalar field must approach the extremum of its potential. Using this fact, it is proved that there is no regular black hole solution when the scalar field is massless or has a 'convex' potential. Surprisingly, while the scalar field has a growing mode around the local minimum of the potential, there is no growing mode around the local maximum. This implies that the local maximum is a kind of 'attractor' of the asymptotic scalar field. We give two examples of the new black hole solutions with a nontrivial scalar field configuration numerically in the symmetric or asymmetric double well potential models. We study the stability of these solutions by using the linear perturbation method in order to examine whether or not the scalar hair is physical. In the symmetric double well potential model, we find that the potential function of the perturbation equation is positive semidefinite in some wide parameter range and that the new solution is stable. This implies that the black hole no-hair conjecture is violated in asymptotically AdS spacetime.
Globally regular instability of 3-dimensional anti-de Sitter spacetime.
Bizoń, Piotr; Jałmużna, Joanna
2013-07-26
We consider three-dimensional anti-de Sitter (AdS) gravity minimally coupled to a massless scalar field and study numerically the evolution of small smooth circularly symmetric perturbations of the AdS3 spacetime. As in higher dimensions, for a large class of perturbations, we observe a turbulent cascade of energy to high frequencies which entails instability of AdS3. However, in contrast to higher dimensions, the cascade cannot be terminated by black hole formation because small perturbations have energy below the black hole threshold. This situation appears to be challenging for the cosmic censor. Analyzing the energy spectrum of the cascade we determine the width ρ(t) of the analyticity strip of solutions in the complex spatial plane and argue by extrapolation that ρ(t) does not vanish in finite time. This provides evidence that the turbulence is too weak to produce a naked singularity and the solutions remain globally regular in time, in accordance with the cosmic censorship hypothesis. PMID:23931347
Quasinormal modes of (anti-)de Sitter black holes in the 1 /D expansion
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro
2015-04-01
We use the inverse-dimensional expansion to compute analytically the frequencies of a set of quasinormal modes of static black holes of Einstein-(Anti-)de Sitter gravity, including the cases of spherical, planar or hyperbolic horizons. The modes we study are decoupled modes localized in the near-horizon region, which are the ones that capture physics peculiar to each black hole (such as their instabilities), and which in large black holes contain hydrodynamic behavior. Our results also give the unstable Gregory-Laflamme frequencies of Ricci-flat black branes to two orders higher in 1 /D than previous calculations. We discuss the limits on the accuracy of these results due to the asymptotic but not convergent character of the 1 /D expansion, which is due to the violation of the decoupling condition at finite D. Finally, we compare the frequencies for AdS black branes to calculations in the hydrodynamic expansion in powers of the momentum k. Our results extend up to k 9 for the sound mode and to k 8 for the shear mode.
Spherical and planar three-dimensional anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Zanchin, Vilson T.; Miranda, Alex S.
2004-02-01
The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein Maxwell dilaton theory was built from the usual four-dimensional (4D) Einstein Maxwell Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner Nordström AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail.
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin; Wu, Shuang-Qing
2008-03-01
Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3 + 1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1 + 1)-dimensional effective metric from these black strings need not be equal to one (√{ - g } ≠ 1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1 + 1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant.
Rainbow valley of colored (anti) de Sitter gravity in three dimensions
NASA Astrophysics Data System (ADS)
Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong
2016-04-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.
Randall-Sundrum membrane model with 7D anti-de Sitter space
Bao, Ruoyu; Lykken, Joseph D.; /Chicago U., EFI /Chicago U. /Fermilab
2005-09-01
In the same sense that AdS{sub 5} warped geometries arise naturally from Type IIB string theory with stacks of D3 branes, AdS{sub 7} warped geometries arise naturally from M theory with stacks of M5 branes. We compactify two spatial dimensions of AdS{sub 7} to get AdS{sub 5} x {Sigma}{sup 2}, where {Sigma}{sup 2} is e.g. a torus T{sup 2} or a sphere S{sup 2}. The metric for {Sigma} inherits the same warp factor as appears in the AdS{sub 5}. Bulk fields generically have both Kaluza-Klein and winding modes associated with {Sigma}. In the effective 5d action these will contribute exotic new excitations. We analyze the 5d spectrum in detail for the case of a bulk scalar or a graviton in AdS{sub 5} x T{sup 2}, in a setup which mimics the first Randall-Sundrum model. The results display several novel features, some of which might be observed in experiments at the LHC. For example, we obtain TeV scale string winding states without lowering the string scale. This is due to the double warping which is a generic feature of winding states along compactified AdS directions. Experimental verification of these signatures of AdS{sub 7} could be interpreted as direct evidence for M theory.
Miranda, Alex S.; Zanchin, Vilson T.
2006-03-15
We study in detail the quasinormal modes of linear gravitational perturbations of plane-symmetric anti-de Sitter black holes. The wave equations are obtained by means of the Newman-Penrose formalism and the Chandrasekhar transformation theory. We show that oscillatory modes decay exponentially with time such that these black holes are stable against gravitational perturbations. Our numerical results show that in the large (small) black hole regime the frequencies of the ordinary quasinormal modes are proportional to the horizon radius r{sub +} (wave number k). The frequency of the purely damped mode is very close to the algebraically special frequency in the small horizon limit, and goes as ik{sup 2}/3r{sub +} in the opposite limit. This result is confirmed by an analytical method based on the power series expansion of the frequency in terms of the horizon radius. The same procedure applied to the Schwarzschild anti-de Sitter spacetime proves that the purely damped frequency goes as i(l-1)(l+2)/3r{sub +}, where l is the quantum number characterizing the angular distribution. Finally, we study the limit of high overtones and find that the frequencies become evenly spaced in this regime. The spacing of the frequency per unit horizon radius seems to be a universal quantity, in the sense that it is independent of the wave number, perturbation parity, and black hole size.
Test of the Anti-de Sitter-Space/Conformal-Field-Theory Correspondence Using High-Spin Operators
Benna, M. K.; Benvenuti, S.; Klebanov, I. R.; Scardicchio, A.
2007-03-30
In two remarkable recent papers the planar perturbative expansion was proposed for the universal function of the coupling appearing in the dimensions of high-spin operators of the N=4 super Yang-Mills theory. We study numerically the integral equation derived by Beisert, Eden, and Staudacher, which resums the perturbative series. In a confirmation of the anti-de Sitter-space/conformal-field-theory (AdS/CFT) correspondence, we find a smooth function whose two leading terms at strong coupling match the results obtained for the semiclassical folded string spinning in AdS{sub 5}. We also make a numerical prediction for the third term in the strong coupling series.
Quasinormal modes of black holes in anti-de Sitter space: A numerical study of the eikonal limit
Morgan, Jaqueline; Zanchin, Vilson T.; Cardoso, Vitor; Miranda, Alex S.; Molina, C.
2009-07-15
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Quasilocal thermodynamics of Kerr and Kerr--anti-de Sitter spacetimes and the AdS/CFT correspondence
Dehghani, M. H.; Mann, R. B.
2001-08-15
We consider the quasilocal thermodynamics of rotating black holes in asymptotically flat and asymptotically anti--de Sitter (AdS) spacetimes. Using the minimal number of intrinsic boundary counterterms inspired by the AdS/conformal field theory correspondence, we find that we are able to carry out an analysis of the thermodynamics of these black holes for virtually all possible values of the rotation parameter and cosmological constant that leave the quasilocal boundary well defined, going well beyond what is possible with background subtraction methods. Specifically, we compute the quasilocal energy E and angular momentum J for arbitrary values of the rotation, mass, and cosmological constant parameters for the (3+1)-dimensional Kerr, Kerr-AdS black holes, and (2+1)-dimensional Banados-Teitelboim-Zannelli (BTZ) black hole. We perform a quasilocal stability analysis and find phase behavior that is commensurate with previous analyses carried out at infinity.
NASA Astrophysics Data System (ADS)
Santos-Oliván, Daniel; Sopuerta, Carlos F.
2016-05-01
We present a new hybrid Cauchy-characteristic evolution scheme that is particularly suited to study gravitational collapse in spherically symmetric asymptotically (global) anti-de Sitter (AdS) spacetimes. The Cauchy evolution allows us to track the scalar field through the different round trips to the AdS boundary, while the characteristic method can bring us very close to the point of formation of an apparent horizon. We describe all the details of the method, including the transition between the two evolution schemes and the details of the numerical implementation for the case of massless scalar fields. We use this scheme to provide more numerical evidence for a recent conjecture on the power law scaling of the apparent horizon mass resulting from the collapse of subcritical configurations. We also compute the critical exponents and echoing periods for a number of critical points and confirm the expectation that their values should be the same as in the asymptotically flat case.
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, ShuZheng
2009-10-01
Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the "tortoise" coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r - t) sector is important to our research. Because we only need to study the (r - t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.
NASA Astrophysics Data System (ADS)
Li, Ran; Zhao, Jun-Kun
2016-04-01
We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter (AdS) black holes in conformal gravity by using the tunneling method. It is well known that the dynamics of massive vector particles are governed by the Proca field equation. Applying WKB approximation to the Proca equation, the tunneling probabilities and radiation spectrums of the emitted particles are derived. Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered, which is consistent with the previous result in the literature. Supported by the National Natural Science Foundation of China under Grant No. 11205048, and the Foundation for Young Key Teacher of Henan Normal University
NASA Astrophysics Data System (ADS)
Rahman, M. Atiqur; Hossain, M. Ilias
2013-06-01
The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SAdS black hole.
Maeda, Kengo; Fujii, Shunsuke; Koga, Jun-ichirou
2010-06-15
We investigate instability of four-dimensional Reissner-Nordstroem-anti-de Sitter (RN-AdS{sub 4}) black holes with various topologies by charged scalar field perturbations. We numerically find that the RN-AdS{sub 4} black holes become unstable against the linear perturbations below a critical temperature. It is analytically shown that charge extraction from the black holes occurs during the unstable evolution. To explore the end state of the instability, we perturbatively construct static black hole solutions with the scalar hair near the critical temperature. It is numerically found that the entropy of the hairy black hole is always larger than the one of the unstable RN-AdS{sub 4} black hole in the microcanonical ensemble. Our results support the speculation that the black hole with charged scalar hair always appears as the final fate of the instability of the RN-AdS{sub 4} black hole.
NASA Astrophysics Data System (ADS)
Wu, Shuang-Qing
2009-03-01
It is shown that the Dirac equation is separable by variables in a five-dimensional rotating Kerr (anti-)de Sitter black hole with two independent angular momenta. A first-order symmetry operator that commutes with the Dirac operator is constructed in terms of a rank-3 Killing Yano tensor whose square is a second-order symmetric Stäckel Killing tensor admitted by the five-dimensional Kerr (anti-)de Sitter spacetime. We highlight the construction procedure of such a symmetry operator. In addition, the first law of black hole thermodynamics has been extended to the case that the cosmological constant can be viewed as a thermodynamical variable.
NASA Astrophysics Data System (ADS)
Wang, Mengjie; Herdeiro, Carlos; Sampaio, Marco O. P.
2015-12-01
Perturbations of asymptotically anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.
NASA Astrophysics Data System (ADS)
Wang, Mengjie; Herdeiro, Carlos
2016-03-01
Scalar and gravitational perturbations on Kerr-anti-de Sitter (Kerr-AdS) black holes have been addressed in the literature and have been shown to exhibit a rich phenomenology. In this paper, we complete the analysis of bosonic fields on this background by studying Maxwell perturbations, focusing on superradiant instabilities and vector clouds. For this purpose, we solve the Teukolsky equations numerically, imposing the boundary conditions we have proposed in [1] for the radial Teukolsky equation. As found therein, two Robin boundary conditions can be imposed for Maxwell fields on Kerr-AdS black holes, one of which produces a new set of quasinormal modes even for Schwarzschild-AdS black holes. Here, we show these different boundary conditions produce two different sets of superradiant modes. Interestingly, the "new modes" may be unstable in a larger parameter space. We then study stationary Maxwell clouds that exist at the threshold of the superradiant instability, with the two Robin boundary conditions. These clouds, obtained at the linear level, indicate the existence of a new family of black hole solutions at the nonlinear level, within the Einstein-Maxwell-AdS system, branching off from the Kerr-Newman-AdS family. As a comparison with the Maxwell clouds, scalar clouds on Kerr-AdS black holes are also studied, and it is shown there are Kerr-AdS black holes that are stable against scalar, but not vector, modes with the same "quantum numbers".
Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation
Brihaye, Yves; Hartmann, Betti
2011-10-15
We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.
Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Shepherd, Ben L.; Winstanley, Elizabeth
2016-03-01
We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.
NASA Astrophysics Data System (ADS)
Ghosh, Shubhrangshu; Banik, Prabir
2015-07-01
In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central
Uchikata, Nami; Yoshida, Shijun
2011-03-15
We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r{sub +}<
Berenstein, David; Correa, Diego H.; Vazquez, Samuel E.
2005-11-04
We study an XXX open spin chain with variable number of sites, where the variability is introduced only at the boundaries. This model arises naturally in the study of giant gravitons in the anti-de Sitter-space/conformal field-theory correspondence. We show how to quantize the spin chain by mapping its states to a bosonic lattice of finite length with sources and sinks of particles at the boundaries. Using coherent states, we show how the Hamiltonian for the bosonic lattice gives the correct description of semiclassical open strings ending on giant gravitons.
NASA Astrophysics Data System (ADS)
Mehdipour, S. Hamid
2014-09-01
We try to study the thermodynamical features of a non-commutative inspired Schwarzschild-anti-de Sitter black hole in the context of the entropic gravity model, particularly for the model that is employed in a broad range of scales, from the short distances to the large distances. At small length scales, the Newtonian force fails because one finds a linear relation between the entropic force and the distance. In addition, there are some deviations from the standard Newtonian gravity at large length scales.
Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio
2009-03-13
We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N{sub c}{yields}{infinity} supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.
Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio
2009-03-13
We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence. PMID:19392107
NASA Astrophysics Data System (ADS)
Ilias Hossain, M.; Atiqur Rahman, M.
2013-09-01
We have investigated Hawking non-thermal and purely thermal Radiations of Reissner Nordström anti-de Sitter (RNAdS) black hole by massive particles tunneling method. The spacetime background has taken as dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has derived from Hamilton-Jacobi equation. We have supposed that energy and angular momentum are conserved and have shown that the non-thermal and thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results for RNAdS black hole is also in the same manner with Parikh and Wilczek's opinion and explored the new result for Hawking radiation of RNAdS black hole.
NASA Astrophysics Data System (ADS)
Li, Ran; Zhang, Hongbao; Zhao, Junkun
2016-07-01
Reissner-Nordström Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.
Dias, Goncalo A. S.; Lemos, Jose P. S.
2009-02-15
The Hamiltonian thermodynamics formalism is applied to the general d-dimensional Reissner-Nordstroem-anti-de Sitter black hole with spherical, planar, and hyperbolic horizon topology. After writing its action and performing a Legendre transformation, surface terms are added in order to guarantee a well-defined variational principle with which to obtain sensible equations of motion, and also to allow later on the thermodynamical analysis. Then a Kuchar canonical transformation is done, which changes from the metric canonical coordinates to the physical parameters coordinates. Again, a well-defined variational principle is guaranteed through boundary terms. These terms influence the falloff conditions of the variables and at the same time the form of the new Lagrange multipliers. Reduction to the true degrees of freedom is performed, which are the conserved mass and charge of the black hole. Upon quantization a Lorentzian partition function Z is written for the grand canonical ensemble, where the temperature T and the electric potential {phi} are fixed at infinity. After imposing Euclidean boundary conditions on the partition function, the respective effective action I{sub *}, and thus the thermodynamical partition function, is determined for any dimension d and topology k. This is a quite general action. Several previous results can be then condensed in our single general formula for the effective action I{sub *}. Phase transitions are studied for the spherical case, and it is shown that all the other topologies have no phase transitions. A parallel with the Bose-Einstein condensation can be established. Finally, the expected values of energy, charge, and entropy are determined for the black hole solution.
DeSitter entropy, quantum entanglement and ADS/CFT
NASA Astrophysics Data System (ADS)
Hawking, Stephen; Maldacena, Juan; Strominger, Andrew
2001-05-01
A de Sitter brane-world bounding regions of anti-de Sitter space has a macroscopic entropy given by one-quarter the area of the observer horizon. A proposed variant of the AdS/CFT correspondence gives a dual description of this cosmology as conformal field theory coupled to gravity in de Sitter space. In the case of two-dimensional de Sitter space this provides a microscopic derivation of the entropy, including the one-quarter, as quantum entanglement of the conformal field theory across the horizon.
Conformally covariant quantization of the Maxwell field in de Sitter space
NASA Astrophysics Data System (ADS)
Faci, S.; Huguet, E.; Queva, J.; Renaud, J.
2009-12-01
In this article, we quantize the Maxwell (“massless spin one”) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO0(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R6 and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.
Anti-de Sitter universe dynamics in loop quantum cosmology
Bentivegna, Eloisa; Pawlowski, Tomasz
2008-06-15
A model for a flat isotropic universe with a negative cosmological constant {lambda} and a massless scalar field as sole matter content is studied within the framework of loop quantum cosmology. By application of the methods introduced for the model with {lambda}=0, the physical Hilbert space and the set of Dirac observables are constructed. As in that case, the scalar field plays here the role of an emergent time. The properties of the system are found to be similar to those of the k=1 Friedmann-Robertson-Walker (FRW) model: for small energy densities, the quantum dynamics reproduces the classical one, whereas, due to modifications at near-Planckian densities, the big bang and big crunch singularities are replaced by a quantum bounce connecting deterministically the large semiclassical epochs. Thus in loop quantum cosmology the evolution is qualitatively cyclic.
Anti-de Sitter D-branes in curved backgrounds
NASA Astrophysics Data System (ADS)
Huang, Wung-Hong
2005-07-01
We investigate the properties of the AdS D1-branes which are the bound states of a curved D1-brane with n fundamental strings (F1) in the AdS3 spacetime, and the AdS D2-branes which are the axially symmetric bound states of a curved D2-brane with m D0-branes and n fundamental strings in the AdS3 × S3 spacetime. We see that, while the AdS D1-branes asymptotically approach to the event horizon of the AdS3 spacetime the AdS D2-branes will end on it. As the near horizon geometry of the F1/NS5 becomes the spacetime of AdS3 × S3 × T4 with NS-NS three form turned on, we furthermore investigate the corresponding AdS D-branes in the NS5-branes and macroscopic F-strings backgrounds, as an attempt to understand the origin of the AdS D-branes. From the found DBI solutions we see that in the F-strings background, both of the AdS D1-branes and AdS D2-branes will asymptotically approach to the position with a finite distance away from the F-strings. However, the AdS D2-branes therein could also end on the F-strings once it carries sufficient D0-branes charges. We also see that there does not exist any stable AdS D-branes in the NS5-branes backgrounds. We present physical arguments to explain these results, which could help us in understanding the intriguing mechanics of the formation of the AdS D-branes.
Anti-de Sitter universe dynamics in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa; Pawlowski, Tomasz
2008-06-01
A model for a flat isotropic universe with a negative cosmological constant Λ and a massless scalar field as sole matter content is studied within the framework of loop quantum cosmology. By application of the methods introduced for the model with Λ=0, the physical Hilbert space and the set of Dirac observables are constructed. As in that case, the scalar field plays here the role of an emergent time. The properties of the system are found to be similar to those of the k=1 Friedmann-Robertson-Walker (FRW) model: for small energy densities, the quantum dynamics reproduces the classical one, whereas, due to modifications at near-Planckian densities, the big bang and big crunch singularities are replaced by a quantum bounce connecting deterministically the large semiclassical epochs. Thus in loop quantum cosmology the evolution is qualitatively cyclic.
Covariant quantization of the Maxwell field in de Sitter space from SO0(2,4)-invariance
NASA Astrophysics Data System (ADS)
Huguet, E.; Faci, S.; Queva, J.; Renaud, J.
2011-03-01
We present a SO0(2,4)-invariant quantization of the free electromagnetic field in de Sitter space. Precisely, we quantize the Maxwell ("massless spin one") de Sitter field in a conformally invariant gauge. This result is obtained thanks to a canonical quantization scheme of the Gupta-Bleuler type and to a geometrical formalism in which the Minkowski, de Sitter and anti-de Sitter spaces are realized as intersections of the five dimensional null cone of ℝ6 and a moving hyperplane. We obtain a new and simple de Sitter invariant two-point function.
Constraints on Meta-stable de Sitter Flux Vacua
Soroush, Masoud
2007-03-05
We consider flux compactification of type IIB string theory as the orientifold limit of an F-theory on a Calabi-Yau fourfold. We show that when supersymmetry is dominantly broken by the axion-dilaton and the contributions of the F-terms associated with complex structure moduli are small, the Hessian of the flux potential always has tachyonic modes for de Sitter vacua. This implies that there exist no meta-stable de Sitter vacua in this limit. Moreover, we find that the stability requirement imposes a relation between the values of cosmological constant and the scale of supersymmetry breaking for non-supersymmetric anti de Sitter vacua in this limit. The proof is general and does rely on the details of the geometry of the compact Calabi-Yau internal space. We finally analyze the consequences of these constraints on the statistics of meta-stable de Sitter vacua and address some other related issues.
Extremal surfaces in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Narayan, K.
2015-06-01
We study extremal surfaces in de Sitter space in the Poincare slicing in the upper patch, anchored on spatial subregions at the future boundary I+, restricted to constant boundary Euclidean time slices (focusing on strip subregions). We find real extremal surfaces of minimal area as the boundaries of past light-cone wedges of the subregions in question: these are null surfaces with vanishing area. We also find complex extremal surfaces as complex extrema of the area functional, and the area is not always real valued. In dS4 the area is real. The area has structural resemblance with entanglement entropy in a dual conformal field theory. There are parallels with analytic continuation from the Ryu-Takayanagi expressions for holographic entanglement entropy in anti-de Sitter. We also discuss extremal surfaces in the de Sitter (dS) black brane and the de Sitter "bluewall" studied previously. The dS4 black brane complex surfaces exhibit a real finite cutoff-independent extensive piece. In the bluewall geometry, there are real surfaces that go from one asymptotic universe to the other through the Cauchy horizons.
Instability of the de Sitter Reissner–Nordstrom black hole in the 1/D expansion
NASA Astrophysics Data System (ADS)
Tanabe, Kentaro
2016-06-01
We study the large D effective theory for D dimensional charged (Anti) de Sitter black holes. Then we show that the de Sitter Reissner–Nordstrom black hole becomes unstable against gravitational perturbations at larger charge than a critical charge in a higher dimension. Furthermore, we find that there is a nontrivial zero-mode static perturbation at the critical charge. The existence of static perturbations suggests the appearance of non-spherical symmetric solution branches of static charged de Sitter black holes. This expectation is confirmed by constructing the non-spherical symmetric static solutions of large D effective equations.
Classical and Quantum Symmetries of de Sitter Space
NASA Astrophysics Data System (ADS)
Anninos, Dionysios Theodoros
2011-10-01
De Sitter space is the maximally symmetric cosmology satisfying Einstein's equations with a positive cosmological constant. It has played a crucial role in the theory of inflationary cosmology. Recent astronomical observations indicate our universe is entering a new asymptotically de Sitter phase, with a mysteriously small value for the cosmological constant. We study several aspects of de Sitter and de Sitter-esque geometries in three and four spacetime dimensions. Particularly, we discuss the asymptotic symmetry group (ASG) of four-dimensional de Sitter space at future infinity, I+ , in Einstein gravity with positive cosmological constant. We find, very much unlike its anti-de Sitter cousin, an infinite dimensional group consisting of the three-dimensional diffeomorphisms acting on I+ . We then move on to rotating black holes in de Sitter space and focus on a limit where the black hole and cosmological horizons coincide. We compute the ASG of the near (cosmological) horizon geometry, the rotating Nariai geometry, which has its own future boundary I+RN and find a Virasoro algebra. This is suggestive of a holographically dual interpretation in terms of a two-dimensional CFT. Scalar waves in the rotating Nariai geometry are studied to provide further evidence for the proposal. Finally, we find toy models of the rotating Nariai geometry in three-dimensional theories of gravity with a gravitational Chern-Simons term and further explore the possibility of a holographic duality. Interestingly, we find a de Sitter like vacuum, warped dS3, whose smooth quotients contain both a cosmological as well as an internal event horizon. In contrast, quotients of Lorentzian dS3 always contain conical singularities.
Decay of magnetic fields in de Sitter and FRW universes
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.; Ferrández, A.
2011-11-01
Magnetic curvature effects, investigated by Barrow and Tsagas (Phys. Rev. D 77, 107302 (2008)), as a mechanism for magnetic field decay in open Friedmann universes ( Λ < 0), are applied to dynamo geometric Ricci flows in 3D curved substrate in laboratory. By simple derivation, a covariant three-dimensional magnetic self-induction equation is obtained. The presence of these curvature effects indicates that de Sitter cosmological constant ( Λ ≥ 0 leads to enhancement in the fast kinematic dynamo action which induces a stretching in plasma flows. From the magnetic growth rate, the strong shear case implies an anti-de Sitter case ( Λ < 0) where BT magnetic decaying fields are possible. For weak shear, fast dynamos are possible. The self-induced equation in Ricci flows is similar to the equation derived by BT in the (3 + 1)-spacetime continuum. Lyapunov-de Sitter metric is obtained from Ricci flow eigenvalue problem. In the de Sitter analogue there is a decay rate of γ ≈ - Λ ≈ -10-35 s-2 from the corresponding cosmological constant Λ. This shows that, even in the dynamo case, the magnetic field growth is slower than de Sitter inflation, which renders strongly support to BT result.
Black hole solutions for scale-dependent couplings: the de Sitter and the Reissner-Nordström case
NASA Astrophysics Data System (ADS)
Koch, Benjamin; Rioseco, Paola
2016-02-01
Allowing for scale dependence of the gravitational couplings leads to a generalization of the corresponding field equations. In this work, these equations are solved for the Einstein-Hilbert and the Einstein-Maxwell case, leading to generalizations of the (Anti)-de Sitter and the Reissner-Nordström black holes. These solutions are discussed and compared to their classical counterparts.
A note on Schwarzschild-de Sitter black holes in mimetic F(R) gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2016-05-01
In this paper, we investigate the conditions under which a Schwarzschild-de Sitter black hole spacetime is a solution of the mimetic F(R) gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic F(R) gravity is a slight modification of the ordinary F(R) gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary F(R) gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordström anti-de Sitter black hole.
'Micromanaging de Sitter holography'
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
2010-08-26
We develop tools to engineer de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT duals. The dual brane construction is compact and constitutes a microscopic realization of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped compactification down to (d-1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors. This provides a parametric microscopic interpretation of the Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples in three dimensions, and describe ongoing work on four-dimensional constructions. The Gibbons-Hawking entropy of the de Sitter horizon [1] invites a microscopic interpretation and a holographic formulation of inflating spacetimes. Much progress was made in the analogous problem in black hole physics using special black holes in string theory whose microstates could be reliably counted, such as those analyzed in [2,3]; this led to the AdS/CFT correspondence [4]. In contrast, a microscopic understanding of the entropy of de Sitter space is more difficult for several reasons including its potential dynamical connections to other backgrounds (metastability), the absence of a non-fluctuating timelike boundary, and the absence of supersymmetry. In this paper, we develop a class of de Sitter constructions in string theory, built up from AdS/CFT dual pairs along the lines of [5], which are simple enough to provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking entropy. These models realize microscopically a semi-holographic description of metastable de Sitter space which had been derived macroscopically in [6]. It would also be interesting to connect this to other approaches to de Sitter holography such as [7, 8] and to other manifestations of the de Sitter entropy such as [9]. The construction is somewhat analogous to neutral black branes analyzed in [11]. We will
De Sitter vacua and N = 2 supergravity
NASA Astrophysics Data System (ADS)
Ogetbil, Orcan Bahri
After reviewing the existing results we give an extensive analysis of the critical points of the potentials of the gauged N = 2 Yang-Mills/Einstein Supergravity theories coupled to tensor- and hyper multiplets in five dimensions. Our analysis includes all the possible gaugings of all N = 2 Maxwell-Einstein supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets contributions from R-symmetry gauging, tensor couplings and hyper-couplings. We show that the coupling of a hypermultiplet into a theory whose potential has a non-zero value at its critical point, and gauging a compact subgroup of the hyperscalar isometry group will only rescale the value of the potential at the critical point by a positive factor, and therefore will not change the nature of an existing critical point. However this is not the case for non-compact SO(1, 1) gaugings. An SO(1, 1) gauging of the hyper isometry will generally lead to de Sitter vacua, which is analogous to the ground states found by simultaneously gauging SO(1, 1) symmetry of the real scalar manifold of the five dimensional vector multiplets with U(1)R in earlier literature. SO(m, 1) gaugings with m > 1, which give contributions to the scalar potential only in the Magical Jordan family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically obtained when the U(1)R symmetry is gauged. We also show that it is possible to embed certain generic Jordan family theories into the Magical Jordan family while preserving the nature of the ground states. However the Magical Jordan family theories admit additional vacua which are not found in the generic Jordan family theories. The five dimensional stable de Sitter ground states obtained by gauging SO(1, 1) symmetry of the real symmetric scalar manifold (in particular a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup Rs of the R-symmetry group descend to four
Silverstein, Eva; /Stanford U., Phys. Dept. /SLAC
2008-01-07
We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable dS minima of the potential for moduli obtained from a compactification on a product of two Nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, KK, and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential.
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Martínez, Cristián; Troncoso, Ricardo
2011-12-01
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the “massive graviton”) is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
One-loop effective action and Schwinger effect in (anti-) de Sitter space
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Kim, Sang Pyo
2014-09-01
We study the Schwinger mechanism by a uniform electric field in dS2 and AdS2 and the curvature effect on the Schwinger effect, and further propose a thermal interpretation of the Schwinger formula in terms of the Gibbons-Hawking temperature and the Unruh temperature for an accelerating charge in dS2 and an analogous expression in AdS2. The exact one-loop effective action is found in the proper-time integral in each space, which is determined by the effective mass, the Maxwell scalar, and the scalar curvature, and whose pole structure gives the imaginary part of the effective action and the exact pair-production rate. The exact pair-production rate is also given the thermal interpretation.
Conformally Coupled Scalars, Instantons, and Vacuum Instability in 4D Anti-de Sitter Space
Haro, Sebastian de; Papadimitriou, Ioannis; Petkou, Anastasios C.
2007-06-08
We show that a scalar field conformally coupled to AdS gravity in four dimensions with a quartic self-interaction can be embedded into M theory. The holographic effective potential is exactly calculated, allowing us to study nonperturbatively the stability of AdS{sub 4} in the presence of the conformally coupled scalar. It is shown that there exists a one-parameter family of conformal scalar boundary conditions for which the boundary theory has an unstable vacuum. In this case, the bulk theory has instanton solutions that mediate the decay of the AdS{sub 4} space. These results match nicely with the vacuum structure and the existence of instantons in an effective three-dimensional boundary model.
Quasinormal frequencies of asymptotically anti-de Sitter black holes in two dimensions
NASA Astrophysics Data System (ADS)
Cordero, R.; López-Ortega, A.; Vega-Acevedo, I.
2012-04-01
We calculate exactly the quasinormal frequencies of Klein-Gordon and Dirac test fields propagating in 2D uncharged Achucarro-Ortiz black hole. For both test fields we study whether the quasinormal frequencies are well defined in the massless limit. We use their values to discuss the classical stability of the quasinormal modes in uncharged Achucarro-Ortiz black hole and to check the recently proposed Time Times Temperature bound. Furthermore we extend some of these results to the charged Achucarro-Ortiz black hole.
Anti-de Sitter-space/conformal-field-theory correspondence and large-N volume independence
Poppitz, Erich; Uensal, Mithat
2010-09-15
We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the gravity dual of N=4 super-Yang-Mills on R{sup 3}xS{sup 1}. We show that D-branes geometrize volume independence in the center-symmetric vacuum and give supergravity predictions for the range of validity of reduced large-N models at strong coupling.
On a canonical quantization of 3D Anti de Sitter pure gravity
NASA Astrophysics Data System (ADS)
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
NASA Astrophysics Data System (ADS)
Rubin, Vera C.
2010-07-01
Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a Ph.D. degree at the University of California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 Moore moved to the National Bureau of Standards (NBS), to supervise preparation of the widely-used tables of atomic energy levels. Following the successful launching (1946) of a V2 rocket to obtain the ultraviolet spectrum of the Sun, she started working also with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with both the NBS and the NRL until her death in 1990. Charlotte Moore was a rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are reliable.
Infrared surprises in the de Sitter universe
NASA Astrophysics Data System (ADS)
Moschella, Ugo
2016-06-01
We describe a few unexpected features of de Sitter quantum field theory (QFT) that have no Minkowskian counterparts. These phenomena show that even when the cosmological constant is tiny a Minkowskian way of fast thinking about de Sitter can lead to mistakes and that de Sitter QFT is essentially different from standard relativistic (Minkowskian) QFT.
De Sitter brane-world, localization of gravity, and the cosmological constant
NASA Astrophysics Data System (ADS)
Neupane, Ishwaree P.
2011-04-01
Cosmological models with a de Sitter 3-brane embedded in a 5-dimensional de Sitter spacetime (dS5) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world models in anti-de Sitter 5-dimensional spacetime(AdS5). Yet, there arise a few important differences as compared to the results with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF) MPl2=M(5)3ℓAdS as well as the relationship MPl2=MPl(4+n)n+2Ln (with L being the average size or the radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compactifications get modified in cosmological backgrounds. In an expanding universe, a physically relevant MRF encodes information upon the 4-dimensional Hubble expansion parameter, in addition to the length and mass parameters L, MPl, and MPl(4+n). If a bulk cosmological constant is present in the solution, then the reduction formula is further modified. With these new insights, we show that the localization of a massless 4D graviton as well as the mass hierarchy between MPl and MPl(4+n) can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter bulk is that in this case the zero-mass wave function is normalizable, which is not necessarily the case if the bulk spacetime is anti-de Sitter. In spacetime dimensions D≥7, however, the bulk cosmological constant Λb can take either sign (Λb<0, =0, or >0). The D=6 case is rather inconclusive, in which case Λb may be introduced together with 2-form gauge field (or flux). We obtain some interesting classical gravity solutions that compactify higher-dimensional spacetime to produce a Robertson-Walker universe with de Sitter-type expansion plus one extra noncompact direction. We also show that such models can admit both an effective 4-dimensional Newton constant that remains finite and a normalizable zero-mode graviton wave function.
An evaluation of a sitter reduction program intervention.
Spiva, LeeAnna; Feiner, Therese; Jones, Darcia; Hunter, Donna; Petefish, Jayne; VanBrackle, Lewis
2012-01-01
Hospitals use sitters as an alternative to reduce patient falls. The purpose of the study was to evaluate the effectiveness of a sitter reduction program by examining the differences between sitter use and falls in an acute care hospital. Findings indicate that a significant decrease in sitter use and falls remained constant. Reducing sitter use is possible without significantly increasing fall rates. PMID:22692004
Noncommutative de Sitter and FRW spaces
NASA Astrophysics Data System (ADS)
Burić, Maja; Madore, John
2015-10-01
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss.
Infrared divergences in de Sitter space
Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)
1991-03-15
Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.
NASA Astrophysics Data System (ADS)
Dadras, Pouria; Firouzjaee, J. T.; Mansouri, Reza
2012-11-01
We propose a special solution of Einstein equations in the general Vaidya form representing a dynamical black hole having horizon cross-sections with toroidal topology. The concrete model enables us to study for the first time dynamical horizons with toroidal topology, its area law, and the question of matter flux inside the horizon, without using a cut-and-paste technology to construct the solution.
Negative mass bubbles in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Mbarek, Saoussen; Paranjape, M. B.
2014-11-01
We study the possibility of the existence of negative mass bubbles within a de Sitter spacetime background with matter content corresponding to a perfect fluid. It is shown that there exist configurations of the perfect fluid that satisfy everywhere the dominant energy condition, the Einstein equations and the equations of hydrostatic equilibrium which asymptotically approach the exact solution of Schwarzschild—de Sitter spacetime with a negative mass.
Faizal, Mir; Higuchi, Atsushi
2008-09-15
The propagators of the Faddeev-Popov (FP) ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, however, that the modes responsible for these divergences will not contribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. Therefore, we propose that the IR-divergent FP-ghost propagator should be regularized by a small mass term that is sent to zero in the end of any perturbative calculations. This proposal is equivalent to using the effective FP-ghost propagators, which we present in an explicit form, obtained by removing the modes responsible for the IR divergences. We also make some comments on the corresponding propagators in anti-de Sitter spacetime.
NASA Astrophysics Data System (ADS)
Nishi, Masato
2016-07-01
We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.
Cosmological perturbations in inflation and in de Sitter space
NASA Astrophysics Data System (ADS)
Pimentel, Guilherme Leite
holography and entanglement entropy to study superhorizon correlations in quantum field theories in de Sitter space. The entropy has interesting terms that have no equivalent in flat space field theories. These new terms are due to particle creation in an expanding universe. The entropy is calculated directly for free massive scalar theories. For theories with holographic duals, it is determined by the area of some extremal surface in the bulk geometry. We calculate the entropy for different classes of holographic duals. For one of these classes, the holographic dual geometry is an asymptotically Anti-de Sitter space that decays into a crunching cosmology, an open Friedmann-Robertson-Walker universe. The extremal surface used in the calculation of the entropy lies almost entirely on the slice of maximal scale factor of the crunching cosmology.
A natural fuzzyness of de Sitter spacetime
NASA Astrophysics Data System (ADS)
Gazeau, Jean-Pierre; Toppan, Francesco
2010-01-01
A non-commutative structure for de Sitter spacetime is naturally introduced by replacing ('fuzzyfication') the classical variables of the bulk in terms of the dS analogs of the Pauli-Lubanski operators. The dimensionality of the fuzzy variables is determined by a Compton length and the commutative limit is recovered for distances much larger than the Compton distance. The choice of the Compton length determines different scenarios. In scenario I the Compton length is determined by the limiting Minkowski spacetime. A fuzzy dS in scenario I implies a lower bound (of the order of the Hubble mass) for the observed masses of all massive particles (including massive neutrinos) of spin s > 0. In scenario II the Compton length is fixed in the de Sitter spacetime itself and grossly determines the number of finite elements ('pixels' or 'granularity') of a de Sitter spacetime of a given curvature.
Observation assistants: sitter effectiveness and industry measures.
Harding, Andrew D
2010-01-01
Patient safety remains a strategic goal and of societal importance for better health care. Direct observation remains an ineffective and expensive means of providing for patient safety. The nursing quality team found that using assessment tools helped to objectively categorize which patients are at risk. Defining patient volume, actual productive sitter usage, and assessing demand for patients in psychiatric crisis and patients at high risk to fall in the form of average daily census provided an easy-to-translate, familiar unit of measure to compare patient volume to demand and utilization. The sitter utilization case was unable to provide correlation of sitter use to decreased fall rates, elopement, or assault behaviors. Currently, there is no research to suggest the use of constant observation reduces the risk of patient harm related to their risk for falling or harming themselves. PMID:21158254
Remark on massive particle's de Sitter tunneling
Jiang, Qing-Quan; Chen, De-You; Wen, Dan E-mail: deyouchen@126.com
2013-11-01
In the work [J. Y. Zhang and Z. Zhao, Massive particles's black hole tunneling and de Sitter tunneling, Nucl. Phys. B 725 (2005) 173.], the Hawking radiation of the massive particle via tunneling from the de Sitter cosmological horizon has been first described in the tunneling framework. However, the geodesic equation of the massive particle was unnaturally and awkwardly defined there by investigating the relation between the group and phase velocity. In this paper, we start from the Lagrangian analysis on the action to naturally produce the geodesic equation of the tunneling massive particle. Then, based on the new definition for the geodesic equation, we revisit the Hawking radiation of the massive particle via tunneling from the de Sitter cosmological horizon. It is noteworthy that, the highlight of our work is a new and important development of the Parikh-Wilczek's tunneling method, which can make it more physical.
Entropic uncertainty relation in de Sitter space
NASA Astrophysics Data System (ADS)
Jia, Lijuan; Tian, Zehua; Jing, Jiliang
2015-02-01
The uncertainty principle restricts our ability to simultaneously predict the measurement outcomes of two incompatible observables of a quantum particle. However, this uncertainty could be reduced and quantified by a new Entropic Uncertainty Relation (EUR). By the open quantum system approach, we explore how the nature of de Sitter space affects the EUR. When the quantum memory A freely falls in the de Sitter space, we demonstrate that the entropic uncertainty acquires an increase resulting from a thermal bath with the Gibbons-Hawking temperature. And for the static case, we find that the temperature coming from both the intrinsic thermal nature of the de Sitter space and the Unruh effect associated with the proper acceleration of A also brings effect on entropic uncertainty, and the higher the temperature, the greater the uncertainty and the quicker the uncertainty reaches the maximal value. And finally the possible mechanism behind this phenomenon is also explored.
NASA Astrophysics Data System (ADS)
Akcay, Sarp; Matzner, Richard A.
2011-04-01
It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant Λ was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on Λ. We recall that in a Λ > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M2. We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the (Λ, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordström-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordström-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).
New instabilities of de Sitter spacetimes
Copsey, Keith; Mann, Robert
2010-04-15
We construct an instanton describing the pair production of non-Kaluza-Klein bubbles of nothing in higher odd-dimensional de Sitter spaces. In addition to showing that higher-dimensional de Sitter spaces have a nonzero probability to become topologically nontrivial, this process provides direct evidence for the association of entropy with cosmological horizons as well as evidence that non-Kaluza-Klein bubbles of nothing are a necessary ingredient in string theory or any other consistent quantum theory of gravity in higher dimensions.
Schwinger effect in de Sitter space
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Garriga, Jaume; Kanno, Sugumi; Sasaki, Misao; Soda, Jiro; Tanaka, Takahiro; Vilenkin, Alexander
2014-04-01
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field phi of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ``in" vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ``upward" and ``downward" tunneling contribute to the build-up of the current. For heavy fields, with m2 gg eE,H2, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m ll H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mHlesssimeE ll H2 leads to a very large current J ~ H3/E. We also show that all Hadamard states for phi necessarily break de Sitter invariance. Finally, we comment on the role of initial conditions, and ``persistence of memory" effects.
Schwinger effect in de Sitter space
Fröb, Markus B.; Garriga, Jaume; Kanno, Sugumi; Sasaki, Misao; Tanaka, Takahiro; Soda, Jiro; Vilenkin, Alexander E-mail: jaume.garriga@ub.edu E-mail: misao@yukawa.kyoto-u.ac.jp E-mail: tanaka@yukawa.kyoto-u.ac.jp
2014-04-01
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m{sup 2} >> eE,H{sup 2}, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼
Matter-coupled de Sitter supergravity
NASA Astrophysics Data System (ADS)
Kallosh, R. E.
2016-05-01
The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Quevedo, Fernando; Valandro, Roberto
2016-03-01
Hidden sector D7-branes with non-zero gauge flux are a generic feature of type IIB compactifications. A non-vanishing Fayet-Iliopoulos term induced by non-zero gauge flux leads to a T-brane configuration. Expanding the D7-brane action around this T-brane background in the presence of three-form supersymmetry breaking fluxes, we obtain a positive definite contribution to the moduli scalar potential which can be used as an uplifting source for de Sitter vacua. In this way we provide a higher-dimensional understanding of known 4D mechanisms of de Sitter uplifting based on hidden sector F-terms which are non-zero because of D-term stabilisation.
Horizon complementarity in elliptic de Sitter space
NASA Astrophysics Data System (ADS)
Hackl, Lucas; Neiman, Yasha
2015-02-01
We study a quantum field in elliptic de Sitter space dS4/Z2—the spacetime obtained from identifying antipodal points in dS4. We find that the operator algebra and Hilbert space cannot be defined for the entire space, but only for observable causal patches. This makes the system into an explicit realization of the horizon complementarity principle. In the absence of a global quantum theory, we propose a recipe for translating operators and states between observers. This translation involves information loss, in accordance with the fact that two observers see different patches of the spacetime. As a check, we recover the thermal state at the de Sitter temperature as a state that appears the same to all observers. This thermal state arises from the same functional that, in ordinary dS4, describes the Bunch-Davies vacuum.
Quantum Dynamics for de Sitter Radiation
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
2012-02-01
We revisit the Hamiltonian formalism for a massive scalar field and study the particle production in a de Sitter space. In the invariant-operator picture the time-dependent annihilation and creation operators are constructed in terms of a complex solution to the classical equation of motion for the field and the Gaussian wave function for each Fourier mode is found which is an exact solution to the Schrödinger equation. The in-out formalism is reformulated by the annihilation and creation operators and the Gaussian wave functions. The de Sitter radiation from the in-out formalism differs from the Gibbons-Hawking radiation in the planar coordinates, and we discuss the discrepancy of the particle production by the two methods.
De Sitter's theory of Galilean satellites
NASA Astrophysics Data System (ADS)
Broer, Henk; Zhao, Lei
2016-08-01
In this article, we investigate the mathematical part of De Sitter's theory on the Galilean satellites, and further extend this theory by showing the existence of some quasi-periodic librating orbits by application of KAM theorems. After showing the existence of De Sitter's family of linearly stable periodic orbits in the Jupiter-Io-Europa-Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of masses among which one sufficiently dominates the others.
Quantum statistical entropy of Schwarzchild-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua
2012-10-01
Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.
De Sitter Space Without Dynamical Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2016-06-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.
De Sitter Space Without Dynamical Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2016-03-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.
Compactifying de Sitter space naturally selects a small cosmological constant
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Dahlen, Alex; Masoumi, Ali
2014-12-01
We study compactifications of D -dimensional de Sitter space with a q -form flux down to D -N q dimensions. We show that for (N -1 )(q -1 )≥2 there are double-exponentially or even infinitely many compact de Sitter vacua, and that their effective cosmological constants accumulate at zero. This population explosion of Λ ≪1 de Sitters arises by a mechanism analogous to natural selection.
The Role of Sitters in Delirium: an Update
Carr, Frances M.
2013-01-01
Purpose The concept behind constant observation is not new. Whilst traditionally performed by nursing staff, it is now commonly performed by sitters. Details surrounding the usage, job description, training, clinical and cost effectiveness of sitters are not known; hence the reason for this review. Methods A literature search was performed in MEDLINE, Cochrane Database of Systematic Reviews, and PubMed from the years 1960 to October 2011. The definition for sitter used in the articles was accepted for this review. Results From this review, it is evident that sitters are being employed in a variety of settings. The question of which type of person would provide the most benefit in the sitter role is still not clear; whilst sitters have typically included family and volunteers, it may be trained volunteers who may offer the most cost-effective solution. The paucity of information available regarding the training and assessments of sitters and the lack of formal guidelines regulating sitters’ use results in a lack of information available regarding these sitters, and current available evidence is conflicting regarding the benefits in terms of cost and clinical outcome. The only strong evidence relating to clinical benefit comes from the use of fully-trained sitters as part of a multi-interventional program (i.e., HELP) Conclusions Current evidence supports a role for the sitter as part of the management of patients with delirium. The most cost-effective sitter role appears to be trained volunteers. Further research is needed to determine the specific type of training required for the sitter role. The creation of a national set of regulations or guidelines would provide safeguards in the industry to ensure safe and effective patient care. PMID:23440038
A new vacuum state in de Sitter space
NASA Astrophysics Data System (ADS)
Pfautsch, Jonathan D.
1982-11-01
We present a new vacuum state which can be defined in a region of de Sitter space. This region corresponds to a K=-1 Robertson-Walker coordinatization of de Sitter space. The renormalized expectation value of the stress tensor for the conformally invariant massless scalar field in this vacuum is evaluated, and is found to differ from the corresponding result in the usual de Sitter-invariant vacuum by the absence of a pure radiation term. We also indicate that this can be accounted for by regarding the de Sitter-invariant vacuum as a thermal state relative to the new vacuum.
Inflation Driven by q-de Sitter
NASA Astrophysics Data System (ADS)
Setare, M. R.; Momeni, D.; Kamali, V.; Myrzakulov, R.
2016-02-01
We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ϕ e n d , the spectral index and the associated running of the spectral index are n s - 1 ˜ -2 𝜖, α s ≡ 0. To end the inflation: we should have q={3}/{4}. We deduce that the inflation ends when the evolution of the scale factor is a( t) = e 3/4( t). With this scale factor there is no need to specify ϕ e n d . As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. n s = 1) may be approximately presented by (q={9}/{10}, ~N=70). Also there is a range of values of R and n s which is compatible with the BICEP2 data where q={9}/{10}. In case Γ = Γ1 V( ϕ), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by (q,N) = ({9}/{10},70). For q={9}/{10} a range of values of R and n s is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.
Generalized elastica on 2-dimensional de Sitter space S12
NASA Astrophysics Data System (ADS)
Huang, Rongpei; Yu, Junyan
2016-02-01
In this paper, the extremals of curvature energy actions on non-null regular curves in 2-dimensional de Sitter space are studied. We completely solve the Euler-Lagrange equation by quadratures. By using the Killing field, we construct three special coordinate systems and express the generalized elastica in 2-dimensional de Sitter space S12 by integral explicitly.
Dirac oscillator and nonrelativistic Snyder-de Sitter algebra
Stetsko, M. M. E-mail: mykola@ktf.franko.lviv.ua
2015-01-15
Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.
Dirac oscillator and nonrelativistic Snyder-de Sitter algebra
NASA Astrophysics Data System (ADS)
Stetsko, M. M.
2015-01-01
Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I. Pascu, Gabriel
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
De Sitter uplift with Dynamical Susy Breaking
NASA Astrophysics Data System (ADS)
Retolaza, Ander; Uranga, Angel
2016-04-01
We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family SU(5) DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution. PMID:26317710
de Sitter Vacua via Consistent D Terms
Villadoro, Giovanni; Zwirner, Fabio
2005-12-02
We introduce a new mechanism for producing locally stable de Sitter or Minkowski vacua, with spontaneously broken N=1 supersymmetry and no massless scalars, applicable to superstring and M-theory compactifications with fluxes. We illustrate the mechanism with a simple N=1 supergravity model that provides parametric control on the sign and the size of the vacuum energy. The crucial ingredient is a gauged U(1) that involves both an axionic shift and an R symmetry, and severely constrains the F- and D-term contributions to the potential.
de Sitter vacua via consistent terms.
Villadoro, Giovanni; Zwirner, Fabio
2005-12-01
We introduce a new mechanism for producing locally stable de Sitter or Minkowski vacua, with spontaneously broken N = 1 supersymmetry and no massless scalars, applicable to superstring and M-theory compactifications with fluxes. We illustrate the mechanism with a simple N = 1 supergravity model that provides parametric control on the sign and the size of the vacuum energy. The crucial ingredient is a gauged U(1) that involves both an axionic shift and an R symmetry, and severely constrains the F- and D-term contributions to the potential. PMID:16384294
Gravitational waves in a de Sitter universe
NASA Astrophysics Data System (ADS)
Bishop, Nigel T.
2016-02-01
The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, leading to a determination of the energy measured by such observers. It is found that gravitational wave energy conservation does not normally apply to inertial observers but that it can be formulated for a class of accelerated observers, i.e., with worldlines that are timelike but not geodesic.
Graviton propagator in a general invariant gauge on de Sitter
Mora, P. J.; Woodard, R. P.; Tsamis, N. C.
2012-12-15
We construct the graviton propagator on de Sitter background in the one parameter family of exact, de Sitter invariant gauges. Our result takes the form of a universal spin two part and a gauge dependent spin zero part. Scalar equations are derived for the structure functions of each part. There is no de Sitter invariant solution for either structure function, although the de Sitter breaking contribution to the spin zero part may drop out for certain choices of the gauge parameter. Our results imply that de Sitter breaking is universal for the graviton propagator, and hence that there is an error in the contrary results derived by analytic continuation of average gauge fixing techniques.
The critical phenomena of charged rotating de Sitter black holes
NASA Astrophysics Data System (ADS)
Guo, Xiongying; Li, Huaifan; Zhang, Lichun; Zhao, Ren
2016-07-01
In this paper, we investigate the effective thermodynamic quantities in Kerr–Newman–de Sitter spacetime by considering the relations between the black hole event horizon and the cosmological event horizon. We find the effect of the critical point of Kerr–Newman–de Sitter spacetime for the different state parameters. We study the critical phenomena of the system taking different state parameters. This result is consistent with the nature of a liquid–gas phase transition at the critical point, hence deepening the understanding of the analogy of charged de Sitter spacetime and liquid–gas systems.
de Sitter symmetry of Neveu-Schwarz spinors
NASA Astrophysics Data System (ADS)
Epstein, Henri; Moschella, Ugo
2016-05-01
We study the relations between Dirac fields living on the 2-dimensional Lorentzian cylinder and the ones living on the double-covering of the 2-dimensional de Sitter manifold, here identified as a certain coset space of the group SL(2 , R). We show that there is an extended notion of de Sitter covariance only for Dirac fields having the Neveu-Schwarz anti-periodicity and construct the relevant cocycle. Finally, we show that the de Sitter symmetry is naturally inherited by the Neveu-Schwarz massless Dirac field on the cylinder.
Neutrino Tunneling from NUT Kerr Newman de Sitter Black Hole
NASA Astrophysics Data System (ADS)
Yang, Nan; Yang, Juan; Li, Jin
2013-08-01
In this paper, the method of semi-classical is applied to explore the Hawking radiation of a NUT-Kerr-Newman de Sitter Black Hole from tunneling point of view. The Hamilton-Jacobi equation in NUT-Kerr-Newman de Sitter space time is derived by the method presented by Lin and Yang (Chin. Phys. B, 20:110403, 2011). We obtain the Hawking temperatures at the event horizon and cosmological horizon and we also obtain the tunneling probability of neutrino following the semi-classical quantum equation. The results show the common features of NUT-Kerr-Newman de Sitter Black Hole.
NASA Astrophysics Data System (ADS)
Chen, Xiang
2012-11-01
We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.
Gravitational waves in open de Sitter space
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, Thomas; Turok, Neil
2000-09-01
We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The background spacetime is taken to be the continuation of an O(5) symmetric instanton saddle point of the Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclidean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work, the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the spectrum.
Ghost inflation and de Sitter entropy
NASA Astrophysics Data System (ADS)
Jazayeri, Sadra; Mukohyama, Shinji; Saitou, Rio; Watanabe, Yota
2016-08-01
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.
Perdurance of multiply connected de Sitter space
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.
1999-06-01
This paper deals with a study of the effects that spherically symmetric first-order metric perturbations and vacuum quantum fluctuations have on the stability of the multiply connected de Sitter spacetime recently proposed by Gott and Li. It is the main conclusion of this study that although such a spacetime is stable to the classical metric perturbations for any size of the nonchronal region, it is only stable against the quantum fluctuations of vacuum if the size of the multiply connected region is of the order of the Planck scale. Therefore, boundary conditions for the state of the universe based on the notion that the universe created itself in a regime where closed timelike curves were active and stable still appear to be physically and philosophically well supported as are those boundary conditions relying on the notion that the universe was created out of nothing.
A de Sitter tachyon thick braneworld
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel; Rocha, Roldão da E-mail: aha@fis.unam.mx E-mail: rigel@ifm.umich.mx
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.
On higher spin symmetries in de Sitter QFTs
NASA Astrophysics Data System (ADS)
Costa, Renato; Morrison, Ian A.
2016-03-01
We consider the consequences of global higher-spin symmetries in quantum field theories on a fixed de Sitter background of spacetime dimension D ≥ 3. These symmetries enhance the symmetry group associated with the isometries of the de Sitter background and thus strongly constrain the dynamics of the theory. In particular, we consider the case when a higher spin charge acts linearly on a scalar operator to leading order in a Fefferman-Graham expansion near the future/past conformal boundaries. We show that this implies that the expectation values of the operator inserted near the boundaries are asymptotically Gaussian. Thus, these operators have trivial cosmological spectra, and on global de Sitter these operators have only Gaussian correlations between operators inserted near future/past infinity. The latter result may be interpreted as an analogue of the Coleman-Mandula theorem for QFTs on de Sitter spacetime.
Breaking of de Sitter invariance in quantum cosmological gravity
NASA Astrophysics Data System (ADS)
Kleppe, Gary
1993-11-01
The effects of de Sitter transformations on linearized quantum gravity in a de Sitter space background are worked out explicitly. It is shown that the linearized solutions are closed under the transformations of the de Sitter group. To do this it is necessary to use a compensating gauge transformation to return the transformed solution to the original gauge. It is then shown that the form of the graviton propagator in this background, as found by Tsamis and Woodard, is not de Sitter invariant, and no suitable invariant propagator exists, even when gauge transformations which compensate for the noninvariant gauge choice are introduced. This leads us to conclude that the vacuum is not invariant. Address after 1 August 1993: Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA.
NASA Astrophysics Data System (ADS)
Baxter, J. Erik
2016-02-01
We investigate dyonic black hole and dyon solutions of four-dimensional 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N - 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our main result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.
Farakos, K.; Kouretsis, A. P.; Pasipoularides, P.
2009-09-15
We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper are characterized by four functions f(r), a(r), {phi}(r), and V({phi}(r)). Only the functions {phi}(r) and a(r) are determined analytically, while the functions f(r) and V({phi}(r)) are expressed semianalytically by integral formulas in terms of a(r). We present our numerical results and study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a nonconvex form in agreement with the corresponding 'no hair theorem' for AdS spacetimes.
NASA Astrophysics Data System (ADS)
Farakos, K.; Kouretsis, A. P.; Pasipoularides, P.
2009-09-01
We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper are characterized by four functions f(r), a(r), ϕ(r), and V(ϕ(r)). Only the functions ϕ(r) and a(r) are determined analytically, while the functions f(r) and V(ϕ(r)) are expressed semianalytically by integral formulas in terms of a(r). We present our numerical results and study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a nonconvex form in agreement with the corresponding “no hair theorem” for AdS spacetimes.
Tachyons in classical de Sitter vacua
NASA Astrophysics Data System (ADS)
Junghans, Daniel
2016-06-01
We revisit the possibility of de Sitter vacua and slow-roll inflation in type II string theory at the level of the classical two-derivative supergravity approximation. Previous attempts at explicit constructions were plagued by ubiquitous tachyons with a large η parameter whose origin has not been fully understood so far. In this paper, we determine and explain the tachyons in two setups that are known to admit unstable dS critical points: an SU(3) structure compactification of massive type IIA with O6-planes and an SU(2) structure compactification of type IIB with O5/O7-planes. We explicitly show that the tachyons are always close to, but never fully aligned with the sgoldstino direction in the considered examples and argue that this behavior is explained by a generalized version of a no-go theorem by Covi et al, which holds in the presence of large mixing in the mass matrix between the sgoldstino and the orthogonal moduli. This observation may also provide a useful stability criterion for general dS vacua in supergravity and string theory.
General aspects of the de Sitter phase
NASA Astrophysics Data System (ADS)
Imponente, G.; Montani, G.
2005-10-01
We present a detailed discussion of the inflationary scenario in the context of inhomogeneous cosmologies. After a review of the fundamental features characterizing the inflationary model, as referred to a homogeneous and isotropic Universe, we develop a generalization in view of including small inhomogeneous corrections in the theory. A second step in our discussion is devoted to show that the inflationary scenario provides a valuable dynamical “bridge” between a generic Kasner-like regime and a homogeneous and isotropic Universe in the horizon scale. This result is achieved by solving the Hamilton-Jacobi equation for a Bianchi IX model in the presence of a cosmological space-dependent term. In this respect, we construct a quasi-isotropic inflationary solution based on the expansion of the Einstein equations up to first two orders of approximation, in which the isotropy of the Universe is due to the dominance of the scalar field kinetic term; the first order of approximation corresponds to the inhomogeneous corrections and is driven by the matter evolution. We show how such a quasi-isotropic solution contains a certain freedom in fixing the space functions involved in the problem. The main physical issue of this analysis corresponds to outline the impossibility for the classical origin of density perturbations, due to the exponential decay of the matter term during the de Sitter phase.
Charlotte Moore Sitterly: A Life of Spectroscopy
NASA Astrophysics Data System (ADS)
Rubin, Vera C.
2010-01-01
Dr. Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a PhD degree at U. California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 she moved to the National Bureau of Science (NBS), to supervise preparation of the widely used tables of atomic energy levels. Following the successful lunching (1946) of a V2 rocket to obtain the ultra violet spectrum of the sun, Moore started working with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with NBS and NRL until her death in 1990. Charlotte Moore was rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are accurate.
Thermal interpretation of infrared dynamics in de Sitter
NASA Astrophysics Data System (ADS)
Rigopoulos, Gerasimos
2016-07-01
The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12H2, averaged over horizon sized regions of physical volume VH = (4π/3)(1/H)3, can be interpreted as Brownian motion in a medium with de Sitter temperature TDS = hbarH/2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature TDS which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂μphi and takes a well defined value per horizon volume ½langle(∇phi)2rangle = ‑ ½TDS/VH. This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor langleTμνrangle for an arbitrary scalar potential.
Vacua and correlators in hyperbolic de Sitter space
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Fotios V.; Kabir, Laurens; Mosk, Benjamin; Parikh, Maulik; van der Schaar, Jan Pieter
2015-06-01
We study the power- and bi-spectrum of vacuum fluctuations in a hyperbolic section of de Sitter space, comparing two states of physical interest: the Bunch-Davies and hyperbolic vacuum. We introduce a one-parameter family of de Sitter hyperbolic sections and their natural vacua, and identify a limit in which it reduces to the planar section and the corresponding Bunch-Davies vacuum state. Selecting the Bunch-Davies vacuum for a massless scalar field implies a mixed reduced density matrix in a hyperbolic section of de Sitter space. We stress that in the Bunch-Davies state the hyperbolic de Sitter n-point correlation functions have to match the planar de Sitter n-point correlation functions. The expressions for the planar and hyperbolic Bunch-Davies correlation functions only appear different because of the transformation from planar to hyperbolic coordinates. Initial state induced deviations from the standard inflationary predictions are instead obtained by considering the pure hyperbolic vacuum, as we verify explicitly by computing the power- and bi-spectrum. For the bi-spectrum in the hyperbolic vacuum we find that the corrections as compared to the standard Bunch-Davies result are not enhanced in specific momentum configurations and strongly suppressed for momenta large compared to the hyperbolic curvature scale. We close with some final remarks, in particular regarding the implications of these results for more realistic inflationary bubble scenarios.
Holography for a De Sitter-Esque geometry
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane
2011-05-01
Warped dS3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ ℓ 2 and Chern-Simons coefficient 1/ μ in the region μ 2 ℓ 2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when μ 2 ℓ 2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.
Hawking's radiation in non-stationary rotating de Sitter background
NASA Astrophysics Data System (ADS)
Ibohal, N.; Ibungochouba, T.
2011-05-01
Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.
Super-gauge field in de Sitter universe
NASA Astrophysics Data System (ADS)
Parsamehr, S.; Enayati, M.; Takook, M. V.
2016-05-01
The Gupta-Bleuler triplet for a vector-spinor gauge field is presented in the de Sitter ambient space formalism. The invariant space of field equation solutions is obtained with respect to an indecomposable representation of the de Sitter group. By using the general solution of the massless spin-3/2 field equation, the vector-spinor quantum field operator and its corresponding Fock space is constructed. The quantum field operator can be written in terms of the vector-spinor polarization states and a quantum conformally coupled massless scalar field, which is constructed on Bunch-Davies vacuum state. The two-point function is also presented, which is de Sitter covariant and analytic.
Super-Hubble de Sitter fluctuations and the dynamical RG
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Leblond, L.; Holman, R.; Shandera, S.
2010-03-01
Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.
(Anti-)evaporation of Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Hawking, Stephen W.
1998-02-01
We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evaporate. However, there is a different perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of cosmological holes nucleates.
Smooth transitions from the Schwarzschild vacuum to de Sitter space
Conboy, Steven; Lake, Kayll
2005-06-15
We provide an infinity of spacetimes which contain part of both the Schwarzschild vacuum and de Sitter space. The transition, which occurs below the Schwarzschild event horizon, involves only boundary surfaces (no surface layers). An explicit example is given in which the weak and strong energy conditions are satisfied everywhere (except in the de Sitter section) and the dominant energy condition is violated only in the vicinity of the boundary to the Schwarzschild section. The singularity is avoided by way of a change in topology in accord with a theorem due to Borde.
How to use retarded Green's functions in de Sitter spacetime
Higuchi, Atsushi; Cheong, Lee Yen
2008-10-15
We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.
Consistency of scalar potentials from quantum de Sitter space
NASA Astrophysics Data System (ADS)
Espinosa, José R.; Fortin, Jean-François; Trépanier, Maxime
2016-06-01
Consistency of the unconventional view of de Sitter space as a quantum theory of gravity with a finite number of degrees of freedom requires that Coleman-De Luccia tunneling rates to vacua with negative cosmological constant should be interpreted as recurrences to low-entropy states. This demand translates into two constraints, or consistency conditions, on the scalar potential that are generically as follows: (1) the distance in field space between the de Sitter vacuum and any other vacuum with negative cosmological constant must be of the order of the reduced Planck mass or larger and (2) the fourth root of the vacuum energy density of the de Sitter vacuum must be smaller than the fourth root of the typical scale of the scalar potential. These consistency conditions shed a different light on both outstanding hierarchy problems of the standard model of particle physics: the scale of electroweak symmetry breaking and the scale of the cosmological constant. Beyond the unconventional interpretation of quantum de Sitter space, we complete the analytic understanding of the thin-wall approximation of Coleman-De Luccia tunneling, extend its numerical analysis to generic potentials and discuss the role of gravity in stabilizing the standard model potential.
Snyder-de Sitter model from two-time physics
Carrisi, M. C.; Mignemi, S.
2010-11-15
We show that the symplectic structure of the Snyder model on a de Sitter background can be derived from two-time physics in seven dimensions and propose a Hamiltonian for a free particle consistent with the symmetries of the model.
Further investigations of the Kerr--de Sitter space
Khanal, U.
1985-08-15
Some recursion relations pertaining to the radial functions of Dirac, electromagnetic, and gravitational fields in the Kerr--de Sitter universe are proved. The behavior of the tortoise coordinate is investigated and it is shown that super radiance can also occur in this space.
Quantum Vacuum Instability of ``Eternal'' de Sitter Space
NASA Astrophysics Data System (ADS)
Mottola, Emil
2015-04-01
The Euclidean or Bunch-Davies state of quantum fields in global de Sitter space is shown to be unstable to small perturbations, even for a massive free field with no self-interactions. There are perturbations of this state with arbitrarily small energy density at early times that is exponentially blueshifted in the contracting phase of ``eternal'' de Sitter space, and becomes large enough to disturb the classical geometry through the semiclassical Einstein eqs. at later times. In the closely analogous case of a constant, uniform electric field, a time symmetric state equivalent to the de Sitter invariant one is constructed, which is also not a stable vacuum state under perturbations. The role of a quantum anomaly in the growth of perturbations and symmetry breaking is emphasized in both cases. The anomaly stress tensor shows that states invariant under the O(4) subgroup of the de Sitter group are also unstable to perturbations of lower spatial symmetry, implying that both the O(4) subgroup are broken by quantum fluctuations. Consequences of this result for cosmology and the problem of vacuum energy will be discussed.
Inflation in Non-de Sitter Background with Coherent States
NASA Astrophysics Data System (ADS)
Yusofi, E.; Mohsenzadeh, M.; M. R., Tanhayi
2016-03-01
We use the excited coherent states built over the initial non-de Sitter modes, to study the modification of spectra of primordial scalar fluctuation. Non-de Sitter modes are actually the asymptotic solution of the inflaton field equation [J. High Energy Phys. 09 (2014) 020]. We build excited coherent states over the non-de Sitter modes and despite the lack of interactions in the Lagrangian, we find a non-zero one-point function. It is shown that the primordial non-Gaussianity resulting from excited-de Sitter modes depend both of time and background space-time. It is very tiny of order (≤ 10-24), at the Planck initial fixed time that confirmed by resent observations for single field inflation but it grows in the present epoch. Moreover, our results at the leading order are similar to what obtained with general initial states and in the dS limit leads to standard results [J. Cosmol. Astropart. Phys. 1202 (2012) 005]. We will show that the non-dS modes and its resulting spectrum are more usable for far past time limit.
Macroscopicity and classicality of quantum fluctuations in de Sitter space
Wada, S.
1988-08-01
On the basis of the non-probabilistic interpretation of quantum mechanics, the authors define ''macroscopicity'' and ''classicality'' of quantum fluctuations as closely related but separate concepts. Then these properties are examined in quantum states (wave functions) of matter fields in de Sitter spacetime.
Macroscopicity and Classicality of Quantum Fluctuations in de Sitter Space
NASA Astrophysics Data System (ADS)
Wada, Sumio
On the basis of the non-probabilistic interpretation of quantum mechanics, we define “macroscopicity” and “classicality” of quantum fluctuations as closely related but separate concepts. Then these properties are examined in quantum states (wave functions) of matter fields in de Sitter spacetime.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of âpublic offeringâ as used in section 7(d) of the Act with respect to certain Canadian tax-deferred retirement savings accounts. 270.7d-2 Section 270.7d-2 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND...
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Pandey, K. Priyabrat; Singh, Sunita; Kar, Supriya
2013-05-01
The U(1) gauge dynamics on a D 4-brane is revisited, with a two form, to construct an effective curvature theory in a second order formalism. We exploit the local degrees in a two form, and modify its dynamics in a gauge invariant way, to incorporate a non-perturbative metric fluctuation in an effective D 4-brane. Interestingly, the near horizon D 4-brane is shown to describe an asymptotic Anti de Sitter (AdS) in a semi-classical regime. Using Weyl scaling(s), we obtain the emergent rotating geometries leading to primordial de Sitter (dS) and AdS vacua in a quantum regime. Under a discrete transformation, we re-arrange the mixed dS patches to describe a Schwazschild-like dS (SdS) and a topological-like dS (TdS) black holes. We analyze SdS vacuum for Hawking radiations to arrive at Nariai geometry, where a discrete torsion forms a condensate. We perform thermal analysis to identify Nariai vacuum with a TdS. Investigation reveals an AdS patch within a thermal dS brane, which may provide a clue to unfold dS/CFT. In addition, the role of dark energy, sourced by a discrete torsion, in the dS vacua is investigated using Painleve geometries. It is argued that a D-instanton pair is created by a discrete torsion, with a Big Bang/Crunch, at the past horizon in a pure dS. Nucleation, of brane/anti-brane pair(s), is qualitatively analyzed to construct an effective space-time on a D 4-brane and its anti brane. Analysis re-assures the significant role played by a non-zero mode, of NS-NS two form, to generalize the notion of branes within a brane.
Fermionic Schwinger effect and induced current in de Sitter space
NASA Astrophysics Data System (ADS)
Hayashinaka, Takahiro; Fujita, Tomohiro; Yokoyama, Jun'ichi
2016-07-01
We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.
Schwinger effect and backreaction in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Stahl, Clément; Xue, She-Sheng
2016-09-01
We consider the particle-antiparticle pairs produced by both a strong electric field and de Sitter curvature. We investigate in 1 + 1 D the backreaction of the pairs on the electromagnetic field. To do so we describe the canonical quantization of an electromagnetic field in de Sitter space and add in the Einstein-Maxwell equation the fermionic current induced by the pairs. After solving this equation, we find that the electric field gets either damped or unaffected depending on the value of the pair mass and the gauge coupling. No enhancement of the electromagnetic field to support a magnetogenesis scenario is found. The physical picture is that the Schwinger pairs locally created screen the production and amplification of the electromagnetic field. However, if one considers light bosons created by the Schwinger mechanism, we report a solution to the Einstein-Maxwell equation with an enhancement of the electromagnetic field. This solution could be a new path to primordial magnetogenesis.
Gravitomagnetic effects in Kerr-de Sitter space-time
Iorio, Lorenzo; Ruggiero, Matteo Luca E-mail: matteo.ruggiero@polito.it
2009-03-15
We explicitly worked out the orbital effects induced on the trajectory of a test particle by the the weak-field approximation of the Kerr-de Sitter metric. It results that the node, the pericentre and the mean anomaly undergo secular precessions proportional to k. We used such theoretical predictions and the latest observational determinations of the non-standard precessions of the perihelia of the inner planets of the Solar System to put a bound on k getting k {<=} 10{sup -29} m{sup -2}. The node rate of the LAGEOS Earth's satellite yields k {<=} 10{sup -26} m{sup -2}. The periastron precession of the double pulsar PSR J0737-3039A/B allows to obtain k {<=} 3 Multiplication-Sign 10{sup -21} m{sup -2}. Interpreting k as a cosmological constant {Lambda}, it turns out that such constraints are weaker than those obtained from the Schwarzschild-de Sitter metric.
Quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model
NASA Astrophysics Data System (ADS)
Meitei, Irom Ablu; Singh, T. Ibungochouba; Singh, K. Yugindro
2014-08-01
Using the Hamilton-Jacobi method a study of quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model is carried out. It is shown that there exist seas of positive and negative energy states in the vicinity of the cosmological event horizon and there also exists a forbidden energy gap between the two seas. The forbidden energy gap vanishes on the surface of the cosmological event horizon so that the positive and negative energy levels overlap. The width of the forbidden energy gap and the energy of the particle at the cosmological event horizon are found to depend on the cosmological constant, the rotation parameter, positions of the particle and the cosmological event horizon, angular momentum of the particle, evaporation rate and shape of the cosmological event horizon. The tunneling probability of the emitted particles constituting Hawking radiation is also deduced for stationary nonrotating de Sitter cosmological model and the standard Hawking temperature is recovered.
de Sitter Vacua from an Anomalous Gauge Symmetry
NASA Astrophysics Data System (ADS)
Buchmuller, Wilfried; Dierigl, Markus; Ruehle, Fabian; Schweizer, Julian
2016-06-01
We find a new class of metastable de Sitter solutions in compactifications of six-dimensional supergravity motivated by type IIB or heterotic string vacua. Two Fayet-Iliopoulos terms of a local U(1) symmetry are generated by magnetic flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The interplay between the induced D term, the moduli dependence of the effective gauge coupling, and a nonperturbative superpotential stabilizes the moduli and determines the size of the extra dimensions.
Semiclassical fermion pair creation in de Sitter spacetime
Stahl, Clément Eckhard, Strobel
2015-12-17
We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.
Hawking radiation of the Vaidya Bonner de Sitter black hole
NASA Astrophysics Data System (ADS)
Chen, Deyou; Yang, Shuzheng
2007-08-01
Considering the unfixed background space-time and the self-gravitational interaction, we view the Hawking radiation of the Vaidya Bonner de Sitter black hole by the Hamilton Jacobi method and the radial geodesic method. The result shows the tunneling rate is related not only to the change of Bekenstein Hawking entropy but also to the integral of the black hole mass and charge, which does not satisfy the unitary theory and is not in accordance with the known result.
The solar photon thruster as a terrestrial pole sitter.
Matloff, Gregory L
2004-05-01
Geosynchronous satellites are invisible at high latitudes. A pole-sitting spacecraft would have communication, climate-studies, and near-polar Earth observation applications. We present a pole-sitter based on the solar photon thruster (SPT), a two-sail variant of the solar sail using a large curved collector sail (always normal to the Sun) to direct sunlight against a much smaller thruster. Thrust decreases slower for an SPT than for a conventional sail arrangement as the angle between sunlight and the collector normal increases. An SPT pole-sitter is offset from the terrestrial pole so that a component of Earth gravity balances the solar radiation-pressure component pushing the SPT off station. The component of gravitational attraction of the Earth pulling the spacecraft towards Earth is also balanced by a solar radiation-pressure component. Results are presented for 80-100% collector/thruster reflectivities. For a spacecraft areal mass thickness of 0.002 kg/m(2), collector and thruster reflectivities of 0.9, the SPT can be situated above latitude 45 degrees at a distance of approximately 60 Earth radii. An SPT pole sitter would be affected by lunar perturbation, which can be compensated for by an on-board rocket thruster producing 2 x 10(-6) g acceleration, a second SPT thruster sail thrusting against the influence of the Moon, or by directing a microwave beam against the spacecraft. Since an SPT pole sitter is in a position rather than an orbit, the effect of terrestrial gravitation limits the size and design of the payload package, which limits terrestrial target resolution. PMID:15220163
Dynamics of test bodies with spin in de Sitter spacetime
Obukhov, Yuri N.; Puetzfeld, Dirk
2011-02-15
We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.
Solutions of minimal four-dimensional de Sitter supergravity
NASA Astrophysics Data System (ADS)
Gutowski, J. B.; Sabra, W. A.
2010-12-01
Pseudo-supersymmetric solutions of minimal N = 2, D = 4 de Sitter supergravity are classified using spinorial geometry techniques. We find three classes of solutions. The first class of solution consists of geometries which are fibrations over a three-dimensional manifold equipped with a Gauduchon-Tod structure. The second class of solution is the cosmological Majumdar-Papapetrou solution of Kastor and Traschen, and the third corresponds to gravitational waves propagating in the Nariai cosmology.
Incompressible fluids of the de Sitter horizon and beyond
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Anous, Tarek; Bredberg, Irene; Ng, Gim Seng
2012-05-01
There are (at least) two surfaces of particular interest in eternal de Sitter space. One is the timelike hypersurface constituting the lab wall of a static patch observer and the other is the future boundary of global de Sitter space. We study both linear and non-linear deformations of four-dimensional de Sitter space which obey the Einstein equation. Our deformations leave the induced conformal metric and trace of the extrinsic curvature unchanged for a fixed hypersurface. This hypersurface is either timelike within the static patch or spacelike in the future diamond. We require the deformations to be regular at the future horizon of the static patch observer. For linearized perturbations in the future diamond, this corresponds to imposing incoming flux solely from the future horizon of a single static patch observer. When the slices are arbitrarily close to the cosmological horizon, the finite deformations are characterized by solutions to the incompressible Navier- Stokes equation for both spacelike and timelike hypersurfaces. We then study, at the level of linearized gravity, the change in the discrete dispersion relation as we push the timelike hypersurface toward the worldline of the static patch. Finally, we study the spectrum of linearized solutions as the spacelike slices are pushed to future infinity and relate our calculations to analogous ones in the context of massless topological black holes in AdS4.
Probing Planckian physics in de Sitter space with quantum correlations
Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng; Sun, Cheng-Yi; Yang, Wen-Li
2014-12-15
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.
Closed conformal Killing Yano tensor and the uniqueness of generalized Kerr NUT de Sitter spacetime
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Oota, Takeshi; Yasui, Yukinori
2009-02-01
The higher-dimensional Kerr NUT de Sitter spacetime describes the general rotating asymptotically de Sitter black hole with NUT parameters. It is known that such a spacetime possesses a rank-2 closed conformal Killing Yano (CKY) tensor as a 'hidden' symmetry which provides the separation of variables for the geodesic equations and Klein Gordon equations. We present a classification of higher-dimensional spacetimes admitting a rank-2 closed CKY tensor. This provides a generalization of the Kerr NUT de Sitter spacetime. In particular, we show that the Kerr NUT de Sitter spacetime is the only spacetime with a non-degenerate CKY tensor.
Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.
Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang
2016-01-01
Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice. PMID:26771609
Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice
Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang
2016-01-01
Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice. PMID:26771609
Kinematics of particles with quantum-de Sitter-inspired symmetries
NASA Astrophysics Data System (ADS)
Barcaroli, Leonardo; Gubitosi, Giulia
2016-06-01
We present the first detailed study of the kinematics of free relativistic particles whose symmetries are compatible with the ones described by a quantum deformation of the de Sitter algebra, known as q -de Sitter Hopf algebra. In such algebra, the quantum deformation parameter is a function of the Planck length ℓ and the de Sitter radius H-1, such that when the Planck length vanishes, the algebra reduces to the de Sitter algebra, while when the de Sitter radius is sent to infinity, one recovers the κ -Poincaré Hopf algebra. In the first limit, the picture is that of a particle with trivial momentum space geometry moving on de Sitter spacetime; in the second one, the picture is that of a particle with de Sitter momentum space geometry moving on Minkowski spacetime. When both the Planck length and the inverse of the de Sitter radius are nonzero, effects due to spacetime curvature and nontrivial momentum space geometry are both present and affect each other. The particles' motion is then described in a full phase-space picture. We find that redshift effects that are usually associated with spacetime curvature become energy dependent. Also, the energy dependence of the particles' travel times that is usually associated with momentum space nontrivial properties is modified in a curvature-dependent way.
Gauge theory of a group of diffeomorphisms. II. The conformal and de Sitter groups
NASA Astrophysics Data System (ADS)
Lord, Eric A.
1986-12-01
The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.
How To Feel Good about Leaving Your Children with A Sitter.
ERIC Educational Resources Information Center
Lane, Jordan
2003-01-01
Presents suggestions to help parents feel at ease when they leave their children with a babysitter, offering tips on: how to find a sitter, scheduling the sitter, paying fairly, laying down the rules, ensuring safety, preparing a list, and providing food. (SM)
Inflation in de Sitter spacetime and CMB large scale anomaly
NASA Astrophysics Data System (ADS)
Zhao, Dong; Li, Ming-Hua; Wang, Ping; Chang, Zhe
2015-09-01
The influence of cosmological constant-type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fit to explore the cosmological parameter space by using the CosmoMC package with the recently released Planck TT and WMAP polarization datasets. Using the results from the global fit, we compute a new CMB temperature-temperature (TT) spectrum. The obtained TT spectrum has lower power compared with that based on the ACDM model at large scales. Supported by National Natural Science Foundation of China (11375203)
Reexamination of the Power Spectrum in De Sitter Inflation
NASA Astrophysics Data System (ADS)
Agulló, Iván; Navarro-Salas, José; Olmo, Gonzalo J.; Parker, Leonard
2008-10-01
We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar (inflaton) field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble’s scale at the inflationary period, it is determined by the square of the mass of the inflaton fluctuation field.
Holographic de Sitter Geometry from Entanglement in Conformal Field Theory
NASA Astrophysics Data System (ADS)
de Boer, Jan; Heller, Michal P.; Myers, Robert C.; Neiman, Yasha
2016-02-01
We demonstrate that, for general conformal field theories (CFTs), the entanglement for small perturbations of the vacuum is organized in a novel holographic way. For spherical entangling regions in a constant time slice, perturbations in the entanglement entropy are solutions of a Klein-Gordon equation in an auxiliary de Sitter (dS) spacetime. The role of the emergent timelike direction in dS spacetime is played by the size of the entangling sphere. For CFTs with extra conserved charges, e.g., higher-spin charges, we show that each charge gives rise to a separate dynamical scalar field in dS spacetime.
Schwarzschild-De Sitter Black Hole from Entropic Viewpoint
NASA Astrophysics Data System (ADS)
Ee, Chang-Young; Eune, Myungseok; Kimm, Kyoungtae; Lee, Daeho
In a Schwarzschild-de Sitter space, we consider an equipotential surface which consists of two holographic screens. Adapting the Bousso-Hawking's reference point of vanishing force, we divide the space into two regions, which are from the reference point to each holographic screen. These two regions can be treated as independent thermodynamical systems, because the Bousso-Hawking reference point with zero temperature behaves like a thermally insulating wall. The entropy obtained in this way agrees with the conventional results: (i) when the holographic screens lie at the black hole and cosmological horizons, (ii) in the Nariai limit.
The deflationary universe: An instability of the de Sitter universe
NASA Astrophysics Data System (ADS)
Barrow, John D.
1986-11-01
The relevance is discussed of the initial value structure of the cosmological problem for inflationary explanations of its present structure. Existing proofs of the cosmic ``no hair'' conjecture are found to make use of an unrealistic strong energy condition on the stress tensor of the matter fields not driving the inflation. It is shown by explicit example that the no hair conjecture fails even in isotropic cosmological models if the strong energy conditions is relaxed. A class of exact cosmological models are given which begin in a de Sitter state but subsequently deflate towards the flat Friedman model. Various implications of these examples are discussed.
Clark, Andrew T.; Smith, Kelley; Muhandiram, Ranjith; Edmondson, Stephen P.; Shriver, John W.
2007-01-01
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side chains in defining the stability and function of these Archaeal chromatin proteins, pKas were measured for all of the acidic residues in both proteins using 13C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pKa values in low salt, indicating that the observed pH dependence of stability was primarily due to these three residues. The pH dependence of backbone amide NMR resonances demonstrated that perturbation of all three pKas was primarily the result of side chain-backbone amide hydrogen bonds. Titration data at higher salt for both Sso7d and Sac7d were consistent with this interpretation. Few of the significantly perturbed acidic pKas in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (3) of significantly altered pKa values was in good agreement with a linkage analysis of the temperature, pH, and salt dependence of folding. The linkage of the ionization of two or more side chains to protein folding leads to apparent cooperativity in the pH dependence of folding, although each group titrates independently with a Hill coefficient near unity. These results demonstrate that the acid pH dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pKas perturbed primarily by hydrogen bonding of the side chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing
Initial states and infrared physics in locally de Sitter spacetime
NASA Astrophysics Data System (ADS)
Larjo, Klaus; Lowe, David A.
2012-02-01
The long wavelength physics in a de Sitter region depends on the initial quantum state. While such long wavelength physics is under control for massive fields near the Hartle-Hawking vacuum state, such initial states make unnatural assumptions about initial data outside the region of causal contact of a local observer. We argue that a reasonable approximation to a maximum entropy state, one that makes minimal assumptions outside an observer’s horizon volume, is one where a cutoff is placed on a surface bounded by timelike geodesics, just outside the horizon. For sufficiently early times, such a cutoff induces secular logarithmic divergences with the expansion of the region. For massive fields, these effects sum to finite corrections at sufficiently late times. The difference between the cutoff correlators and Hartle-Hawking correlators provides a measure of the theoretical uncertainty due to lack of knowledge of the initial state in causally disconnected regions. These differences are negligible for primordial inflation, but can become significant during epochs with very long-lived de Sitter regions, such as we may be entering now.
Auxiliary ``Massless'' Spin-2 Field in De Sitter Universe
NASA Astrophysics Data System (ADS)
Pejhan, H.; Tanhayi, M. R.; Takook, M. V.
2010-09-01
For the tensor field of rank-2 there are two unitary irreducible representation (UIR) in de Sitter (dS) space denoted by Pi^{±}_{2,2} and Pi^{±}_{2,1} (Dixmier in Bull Soc. Math. France 89:9, 1961). In the flat limit only the Pi^{±}_{2,2} coincides to the UIR of Poincaré group, the second one becomes important in the study of conformal gravity. In the previous work, Dirac’s six-cone formalism has been utilized to obtain conformally invariant (CI) field equation for the “massless” spin-2 field in dS space (Dehghani et al. in Phys. Rev. D 77:064028, 2008). This equation results in a field which transformed according to Pi^{±}_{2,1}, we name this field the auxiliary field. In this paper this auxiliary field is considered and also related two-point function is calculated as a product of a polarization tensor and “massless” conformally coupled scalar field. This two-point function is de Sitter invariant.
Rotating, radiating mass imbedded in a de Sitter universe
Hadley, R.H.
1991-01-01
This study presents a new solution to the Einstein field equations for a rotating, radiating mass imbedded in a de Sitter universe, the Kerr de Sitter-Vaidya or KDV line element. Solutions presented were precursers to the new solution. One of these, the Vaidya-Mallett or VM metric is used as a starting point to derive the KDV metric by a method called complexification. The mathematical framework for the KDV metric is the Newman-Penrose formalism, a powerful tool that provides insight into the various properties of the space-time geometry and optical properties of the radiation field. Using this formalism, the metric can be expressed in tetrad form and the Newman-Penrose spin coefficient equations solved for tetrad components of the trace-free Ricci tensor, Ricci scalar, Maxwell tensor, and Weyl tensor. Using the tetrad components of the Weyl tensor, the Petrov type for the gravitational and electromagnetic fields are found. The new solution is shown to be a solution to the Einstein-Maxwell equations for a particular choice of energy-momentum tensor which is studied in detail.
Superluminal Neutrinos from Special Relativity with de Sitter Spacetime Symmetry
NASA Astrophysics Data System (ADS)
Yan, Mu-Lin; Xiao, Neng-Chao; Huang, Wei; Hu, Sen
2012-05-01
We explore the recent OPERA experiment of superluminal neutrinos in the framework of special relativity with de Sitter spacetime symmetry (dS-SR). According to Einstein, a photon is treated as a massless particle in the framework of special relativity. In special relativity (SR) we have the universal parameter c, the photon velocity cphoton and the phase velocity of a light wave in vacuum cwave = λν. Due to the null experiments of Michelson-Morley we have c = cwave. The parameter cphoton is determined by the Noether charges corresponding to the spacetime symmetries of SR. In Einstein's special relativity (E-SR) we have c = cphoton. In dS-SR, i.e. the special relativity with SO(4, 1) de Sitter spacetime symmetry, we have cphoton > c. In this paper, the OPERA datum are examined in the framework of dS-SR. We show that OPERA anomaly is in agreement with the prediction of dS-SR with R≃1.95×1012 l.y. Based on the p-E relation of dS-SR, we also prove that the Cohen and Glashow's argument of possible superluminal neutrino's Cherenkov-like radiation is forbidden. We conclude that OPERA and ICARUS results are consistent and they are explained in the dS-SR framework.
Probing Planckian physics in de Sitter space with quantum correlations
NASA Astrophysics Data System (ADS)
Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng; Sun, Cheng-Yi; Yang, Wen-Li
2014-12-01
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch-Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points Hc of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved.
One-loop gravitational wave spectrum in de Sitter spacetime
Fröb, Markus B.; Verdaguer, Enric
2012-08-01
The two-point function for tensor metric perturbations around de Sitter spacetime including one-loop corrections from massless conformally coupled scalar fields is calculated exactly. We work in the Poincare patch (with spatially flat sections) and employ dimensional regularization for the renormalization process. Unlike previous studies we obtain the result for arbitrary time separations rather than just equal times. Moreover, in contrast to existing results for tensor perturbations, ours is manifestly invariant with respect to the subgroup of de Sitter isometries corresponding to a simultaneous time translation and rescaling of the spatial coordinates. Having selected the right initial state for the interacting theory via an appropriate iε prescription is crucial for that. Finally, we show that although the two-point function is a well-defined spacetime distribution, the equal-time limit of its spatial Fourier transform is divergent. Therefore, contrary to the well-defined distribution for arbitrary time separations, the power spectrum is strictly speaking ill-defined when loop corrections are included.
Quasinormal modes in de Sitter space: Plane wave method
NASA Astrophysics Data System (ADS)
Tanhayi, M. Reza
2014-09-01
Recently, in the context of dS/CFT correspondence, quasinormal modes have been put forward to address certain features of this conjecture. In particular, it is argued that the dual states of quasinormal modes are in fact the states of CFT3 which are created by operator insertions. For a scalar field in dS4, quasinormal modes which are singular on the past horizon of the south pole and decay exponentially towards the future have been considered in [G. S. Ng and A. Strominger, Classical Quantum Gravity 30, 104002 (2013); D. L. Jafferis et al., arXiv:1305.5523]; these modes lie in two complex highest-weight representations of the dS4 isometry group. In this work, we present a simple group representation analysis of these modes so that the de Sitter invariance is obviously manifest. By making use of the so-called plane wave method, we will show that the quasinormal modes correspond to one class of the unitary irreducible representation of the de Sitter group. This consideration could be generalized straightforwardly for higher-spin fields and higher dimensions; in particular, we will study the quasinormal modes for gauge and spinor fields, and, in the case of a scalar field, the generalization to higher dimensions is also obtained.
A note on entropy of de Sitter black holes
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2016-03-01
A de Sitter black hole or a black hole spacetime endowed with a positive cosmological constant has two Killing horizons—a black hole and a cosmological event horizon surrounding it. It is natural to expect that the total Bekenstein-Hawking entropy of such spacetimes should be the sum of the two horizons' areas. In this work we apply the recently developed formalism using the Gibbons-Hawking-York boundary term and the near horizon symmetries to derive the total entropy of such two horizon spacetimes. We construct a suitable general geometric set up for general stationary axisymmetric spacetimes with two or more than two commuting Killing vector fields in an arbitrary spacetime dimensions. This framework helps us to deal with both horizons on an equal footing. We show that in order to obtain the total entropy of such spacetimes, the near horizon mode functions for the diffeomorphism generating vector fields have to be restricted in a certain manner, compared to the single horizon spacetimes. We next discuss specific known exact solutions belonging to the Kerr-Newman or the Plebanski-Demianski-de Sitter families to show that they fall into the category of our general framework. We end with a sketch of further possible extensions of this work.
Inhibition and Role of let-7d in Idiopathic Pulmonary Fibrosis
Pandit, Kusum V.; Corcoran, David; Yousef, Hanadie; Yarlagadda, Manohar; Tzouvelekis, Argyris; Gibson, Kevin F.; Konishi, Kazuhisa; Yousem, Samuel A.; Singh, Mandal; Handley, Daniel; Richards, Thomas; Selman, Moises; Watkins, Simon C.; Pardo, Annie; Ben-Yehudah, Ahmi; Bouros, Demosthenes; Eickelberg, Oliver; Ray, Prabir; Benos, Panayiotis V.; Kaminski, Naftali
2010-01-01
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation. Objectives: To determine changes in expression and role of microRNAs in IPF. Methods: RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-β. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry. Measurements and Main Results: Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-β down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and α-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells. Conclusions: Our results indicate a role for microRNAs in IPF. The down-regulation of let-7d in IPF and the profibrotic effects of this down-regulation in vitro and in vivo suggest a key
Plane waves in de Sitter space: Spin-1/2 field
NASA Astrophysics Data System (ADS)
Reza Tanhayi, M.; Mohsenzadeh, M.; Yusofi, E.
2016-06-01
We employ the coordinate-independent plane wave solution in de Sitter space to study the spin-1/2 particle production. The so-called plane waves in the zero-curvature limit reduce to the usual plane waves in flat space. Previously in (Int. J. Mod. Phys. D 24, 1550052 (2015)) we used such modes to study the instability of the de Sitter space, here, by explicit calculation, we study the sipn-1/2 particle creation in de Sitter space caused by mixing modes.
Separability of Gravitational Perturbation in Generalized Kerr-Nut Sitter Space-Time
NASA Astrophysics Data System (ADS)
Oota, Takeshi; Yasui, Yukinori
Generalized Kerr-NUT-de Sitter space-time is the most general space-time which admits a rank-2 closed conformal Killing-Yano tensor. It contains the higher-dimensional Kerr-de Sitter black holes with partially equal angular momenta. We study the separability of gravitational perturbations in the generalized Kerr-NUT-de Sitter space-time. We show that a certain type of tensor perturbations admits the separation of variables. The linearized perturbation equations for the Einstein condition are transformed into the ordinary differential equations of Fuchs type.
Code of Federal Regulations, 2014 CFR
2014-04-01
... COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-2 Definition of “public... Canadian law. (3) Eligible Security means a security issued by a Qualified Company that: (i) Is offered to a Participant, or sold to his or her Canadian Retirement Account, in reliance on this section;...
Code of Federal Regulations, 2012 CFR
2012-04-01
... COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-2 Definition of “public... Canadian law. (3) Eligible Security means a security issued by a Qualified Company that: (i) Is offered to a Participant, or sold to his or her Canadian Retirement Account, in reliance on this section;...
Code of Federal Regulations, 2011 CFR
2011-04-01
... COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-2 Definition of “public... Canadian law. (3) Eligible Security means a security issued by a Qualified Company that: (i) Is offered to a Participant, or sold to his or her Canadian Retirement Account, in reliance on this section;...
Code of Federal Regulations, 2013 CFR
2013-04-01
... COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-2 Definition of “public... Canadian law. (3) Eligible Security means a security issued by a Qualified Company that: (i) Is offered to a Participant, or sold to his or her Canadian Retirement Account, in reliance on this section;...
Lecture Notes on Interacting Quantum Fields in de Sitter Space
NASA Astrophysics Data System (ADS)
Akhmedov, E. T.
2013-09-01
We discuss peculiarities of quantum fields in de Sitter (dS) space on the example of the self-interacting massive real scalar, minimally coupled to the gravity background. Nonconformal quantum field theories (QFTs) in dS space show very special infrared behavior, which is not shared by quantum fields neither in flat nor in anti-dS space: in dS space loops are not suppressed in comparison with tree level contributions because there are strong infrared corrections. That is true even for massive fields. Our main concern is the interrelation between these infrared effects, the invariance of the QFT under the dS isometry and the (in)stability of dS invariant states (and of dS space itself) under nonsymmetric perturbations.
Lecture Notes on Interacting Quantum Fields in de Sitter Space
NASA Astrophysics Data System (ADS)
Akhmedov, E. T.
2014-10-01
We discuss peculiarities of quantum fields in de Sitter (dS) space on the example of the self-interacting massive real scalar, minimally coupled to the gravity background. Nonconformal quantum field theories (QFTs) in dS space show very special infrared behavior, which is not shared by quantum fields neither in flat nor in anti-dS space: in dS space loops are not suppressed in comparison with tree level contributions because there are strong infrared corrections. That is true even for massive fields. Our main concern is the interrelation between these infrared effects, the invariance of the QFT under the dS isometry and the (in)stability of dS invariant states (and of dS space itself) under nonsymmetric perturbations.
Gauge dependence in QED amplitudes in expanding de Sitter space
NASA Astrophysics Data System (ADS)
Nicolaevici, Nistor
2016-04-01
We consider first-order transition amplitudes in external fields in QED in the expanding de Sitter space and point out that they are gauge dependent quantities. We examine the gauge variations of the amplitudes assuming a decoupling of the interaction at large times, which allows to conclude that the source of the problem lies in the fact that the frequencies of the modes in the infinite future become independent of the comoving momenta. We show that a possibility to assure the gauge invariance of the external field amplitudes is to restrict to potentials which vanish sufficiently fast at infinite times, and briefly discuss a number of options in the face of the possible gauge invariance violation in the full interacting theory.
Brane induced supersymmetry breaking and de Sitter supergravity
NASA Astrophysics Data System (ADS)
Bandos, Igor; Martucci, Luca; Sorokin, Dmitri; Tonin, Mario
2016-02-01
We obtain a four-dimensional supergravity with spontaneously broken super-symmetry allowing for de Sitter vacua by coupling a superspace action of minimal N = 1, D = 4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N = 1, D = 4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.
Entanglement entropy of α-vacua in de Sitter space
NASA Astrophysics Data System (ADS)
Kanno, Sugumi; Murugan, Jeff; Shock, Jonathan P.; Soda, Jiro
2014-07-01
We consider the entanglement entropy of a free massive scalar field in the one parameter family of α-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An α-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the α-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Rényi entropy and find that it increases as α increases. We argue these features stem from pair condensation within the non-trivial α-vacua where the pairs have an intrinsic quantum correlation.
De Sitter space in gauge/gravity duality
NASA Astrophysics Data System (ADS)
Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.
2015-10-01
We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena-Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of) the scalars along the fifth (radial) direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (A) dS 4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.
Energy, momentum and angular momentum conservations in de Sitter gravity
NASA Astrophysics Data System (ADS)
Lu, Jia-An
2016-08-01
In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity.
Nonlinear Laplace equation, de Sitter vacua, and information geometry
Loran, Farhang
2005-06-15
Three exact solutions say {phi}{sub 0} of massless scalar theories on Euclidean space, i.e. D=6 {phi}{sup 3}, D=4 {phi}{sup 4} and D=3 {phi}{sup 6} models are obtained which share similar properties. The information geometry of their moduli spaces coincide with the Euclidean AdS{sub 7}, AdS{sub 5} and AdS{sub 4} respectively on which {phi}{sub 0} can be described as a stable tachyon. In D=4 we recognize that the SU(2) instanton density is proportional to {phi}{sub 0}{sup 4}. The original action S[{phi}] written in terms of new scalars {phi}-tilde={phi}-{phi}{sub 0} is shown to be equivalent to an interacting scalar theory on D-dimensional de Sitter background.
Quantum backreactions in slow-roll andde Sitter spacetimes
NASA Astrophysics Data System (ADS)
Losic, Bojan
2006-06-01
approximation of a slowly rolling spacetime may, under reasonable circumstances, be intrinsically sick since higher order contributions are comparable to, or substantially larger than, the linear contributions. In the third and final project, backreactions are considered in a pure de Sitter space whose cosmological constant is generated by the potential of scalar field. The leading order effect of matter backreactions on the gravitational field is considered. The initial value problem for the perturbed Einstein equations is proven to generically possess linearization instabilites. I furthermore show that these linearization instabilities can be avoided by assuming strict de Sitter invariance of the quantum states of the linearized fluctuations. This invariance constraint applies to the entire spectrum of states, from the vacuum to the excited states, and is in that sense much stronger than the usual Poincare invariance of the Minkowski vacuum. Some sketches are presented on how to construct de Sitter invariant states. The main conclusion is that to leading order in their effect on the gravitational field, the quantum states of the matter and metric fluctuations must be de Sitter invariant.
Surviving in a metastable de Sitter space-time
NASA Astrophysics Data System (ADS)
Kashyap, Sitender Pratap; Mondal, Swapnamay; Sen, Ashoke; Verma, Mritunjay
2015-09-01
In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.
Interpretational conflicts between the static and non-static forms of the de Sitter metric.
Mitra, Abhas
2012-01-01
The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the "Principle of Energy Conservation" is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = -density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359
Conformally invariant 'massless' spin-2 field in the de Sitter universe
Dehghani, M.; Rouhani, S.; Takook, M. V.; Tanhayi, M. R.
2008-03-15
A massless spin-2 field equation in de Sitter space, which is invariant under the conformal transformation, has been obtained. The framework utilized is the symmetric rank-2 tensor field of the conformal group. Our method is based on the group theoretical approach and six-cone formalism, initially introduced by Dirac. Dirac's six-cone is used to obtain conformally invariant equations on de Sitter space. The solution of the physical sector of massless spin-2 field (linear gravity) in de Sitter ambient space is written as a product of a generalized polarization tensor and a massless minimally coupled scalar field. Similar to the minimally coupled scalar field, for quantization of this sector, the Krein space quantization is utilized. We have calculated the physical part of the linear graviton two-point function. This two-point function is de Sitter invariant and free of pathological large-distance behavior.
Kapteyn and de Sitter; a rare and special teacher-student and coach-player relationship
NASA Astrophysics Data System (ADS)
de Sitter, Wolter Reinold
Measured along the yardstick of subsequent success, Willem de Sitter [1872-1934] was one of Kapteyn's foremost pupils along with van Rhijn, Schilt and Jan Hendrik Oort. From his appointment as professor at Leiden University in 1908 until Kapteyn's death in 1922, de Sitter maintained in close contact with his teacher. Kapteyn was his trusted sounding board and consultant in scientific and administrative matters, as well as academic politics. De Sitter had his ideas on a complete reorganisation and restructuring of Leiden Observatory scrutinized by Kapteyn's experienced judgement, and together they developed ideas and completed a plan of action, including touchy staffing, salary and budgettary aspects. Together they were a formidable team and operated as such. Notes by de Sitter and many letters from Kapteyn illustrate their fruitful relationship.
Filling the Gaps: "The Baby-Sitters Club," the Series Book, and the Learning Reader.
ERIC Educational Resources Information Center
Mackey, Margaret
1990-01-01
Explores the enormous attraction for young readers of series books (such as Nancy Drew, Hardy Boys, and currently "The Baby-Sitters Club"). Discusses what children might learn from such reading, often thought of as pap literature by adults. (SR)
Doukas, Jason; Cho, H. T.; Cornell, A. S.; Naylor, Wade
2009-08-15
In this article we present results for tensor graviton modes (in seven dimensions and greater, n{>=}3) for gray-body factors of Kerr-de Sitter black holes and for Hawking radiation from simply rotating (n+4)-dimensional Kerr black holes. Although there is some subtlety with defining the Hawking temperature of a Kerr-de Sitter black hole, we present some preliminary results for emissions assuming the standard Hawking normalization and a Bousso-Hawking-like normalization.
Light bending in Reissner-Nordstrom-de Sitter black hole by Rindler-Ishak method
NASA Astrophysics Data System (ADS)
Heydari-Fard, M.; Mojahed, S.; Rokni, S. Y.
2014-05-01
We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.
Contribution of the cosmological constant to the bending of light in Kerr-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Sultana, Joseph
2013-08-01
We examine the effect of the cosmological constant Λ on the angle of deflection of null geodesics in the equatorial plane of the Kerr-de Sitter spacetime. This is done by employing a procedure used recently by Rindler and Ishak to obtain the bending angle of light in the Schwarzschild-de Sitter geometry. We show that this approach yields a contribution from the cosmological constant in the expression for the bending angle.
Holography and quantum states in elliptic de Sitter space
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Neiman, Yasha
2015-12-01
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space d{S}_4/{Z}_2 , obtained by identifying antipodal points in dS 4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable d{S}_4/{Z}_2 . We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in d{S}_4/{Z}_2 , in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Auxiliary Conformally Invariant Higher-Spin Field in de Sitter Space
NASA Astrophysics Data System (ADS)
Elmizadeh, M.; Tanhayi, M. R.
2016-03-01
We employ de Sitter isometry to study a mixed symmetric rank-3 tensor field in de Sitter space by finding the field equation, solution and two-point function which are conformally invariant. It is proved that such a tensor field plays a key role in conformal theory of linear gravity (Binegar et al., Phys. Rev. D 27, 2249, 1983) . In de Sitter space from the group theoretical point of view this kind of tensor could associate with two unitary irreducible representations (UIR) of the de Sitter group (Takook et al., J.Math. Phys. 51, 032503, 2010), which one representation has a flat limit, namely, in zero curvature coincides to the UIR of Poincaré group, however, the second one which is named as auxiliary field, becomes significant in the study of conformal gravity in de Sitter background. We show that the rank-3 tensor solution can be written in terms of a massless minimally coupled scalar field and also the related two-point function is a function of a massless minimally coupled scalar two-point function.
The mystery of let-7d - a small RNA with great power.
Kolenda, Tomasz; Przybyła, Weronika; Teresiak, Anna; Mackiewicz, Andrzej; Lamperska, Katarzyna M
2014-01-01
miRNAs belong to a class of small non-coding RNAs which can modulate gene expression. Disturbances in their expression and function may cause cancer formation, progression and cell response to various types of stress. The let-7 family is one of the most studied groups of miRNAs. The family contains 13 members with similar sequences and a wide spectrum of target genes. In this paper, we mostly focus on one member of the family - let-7d. This miRNA is dysregulated in many types of cancers. It can be over- or down-expressed, and it acts as a tumor suppressor or oncogene. It regulates various genes such as LIN28, C-MYC, K-RAS, HMGA2 and IMP-1. Moreover, let-7d has a significant impact on epithelial-to-mesenchymal transition (EMT) and formation of cancer initiating cells which are resistant to irradiation and chemical exposure and responsible for cancer metastasis. Let-7d can serve as a prognostic and predictive marker for personalization of the treatment. Let-7d is a small RNA with great power, but in different cell genetic backgrounds it acts in different ways, which makes this molecule still mysterious. PMID:25477749
Severe Infections with Human Adenovirus 7d in 2 Adults in Family, Illinois, USA, 2014
Ison, Michael G.
2016-01-01
Human adenovirus 7d, a genomic variant with no reported circulation in the United States, was isolated from 2 adults with severe respiratory infections in Illinois. Molecular typing identified a close relationship with strains of the same genome type isolated from cases of respiratory disease in several provinces of China since 2009. PMID:26982199
Pathways to relativistic curved momentum spaces: de Sitter case study
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Palmisano, Giovanni
2016-01-01
Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called κ-momentum space, with de Sitter (dS) metric and κ-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi-Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.
Riemann correlator in de Sitter including loop corrections from conformal fields
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Roura, Albert; Verdaguer, Enric
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H4/mp4. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.
Riemann correlator in de Sitter including loop corrections from conformal fields
Fröb, Markus B.; Verdaguer, Enric
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.
Dark fluid or cosmological constant: Why there are different de Sitter-type spacetimes
NASA Astrophysics Data System (ADS)
Nouri-Zonoz, M.; Koohbor, J.; Ramezani-Aval, H.
2015-03-01
Many different forms of the de Sitter metric in different coordinate systems are used in the general relativity literature. Two of them are the most common: the static form and the cosmological (exponentially expanding) form. The staticity and nonstationarity of these two different forms are traced back to the noncomoving and comoving nature of the corresponding coordinate systems. In this paper, using the quasi-Maxwell form of the Einstein field equations and a definition of static spacetimes based upon them, we look at these two different forms of the same solution from a new perspective which classifies them as a special case in a general one-parameter family of solutions. Specifically it is proved that, irrespective of the spacetime symmetry, a one-element perfect fluid in any frame noncomoving with the fluid could be the source of a static spacetime, only if its equation of state is that of a dark fluid, namely, p =-ρ =const . These static solutions, which include the well-known de Sitter spacetime, are called de Sitter-type spacetimes. To answer the question posed in the title, we consider static axially and cylindrically symmetric de Sitter-type spacetimes and their dynamic (cosmological) versions. It is shown how despite the seemingly natural expectation based on the presence of Λ as their only parameter, the nonspherical expansions of these genuinely different solutions should be expected indeed. To the best of our knowledge the dynamic version of the cylindrically symmetric de Sitter-type spacetime is introduced here for the first time. Finally it is noted that the identification of the geometric term Λ gi j with a perfect fluid with equation of state p =-ρ =const , although mathematically consistent, obscures the crucial role of the (dark) fluid's velocity in defining a preferred (comoving) coordinate system in de Sitter-type spacetimes.
Gravitationally induced adiabatic particle production: from big bang to de Sitter
NASA Astrophysics Data System (ADS)
de Haro, Jaume; Pan, Supriya
2016-08-01
In the background of a flat homogeneous and isotropic space–time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.
Nonperturbative semiclassical stability of de Sitter spacetime for small metric deviations
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Papadopoulos, Demetrios B.; Roura, Albert; Verdaguer, Enric
2013-03-01
We consider the linearized semiclassical Einstein equations for small deviations around de Sitter spacetime including the vacuum polarization effects of conformal fields. Employing the method of order reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type). Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal theory, even self-interacting ones with arbitrarily strong coupling.
More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime
Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.
2009-11-15
In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.
Distinguishing de Sitter universe from thermal Minkowski spacetime by Casimir-Polder-like force
NASA Astrophysics Data System (ADS)
Tian, Zehua; Jing, Jiliang
2014-07-01
We demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.
NASA Astrophysics Data System (ADS)
Görnitz, Th.; Weizsäcker, C. F. V.
The theory of urs (basic two-valued observables) is used to describe particles in cosmic space-time. Cosmic position space is described as S3, interpreted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass are deduced by a special rule of contraction.
Fermion production in dipolar electric field on de Sitter expanding universe
NASA Astrophysics Data System (ADS)
Bǎloi, Mihaela-Andreea; Crucean, Cosmin
2015-12-01
The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.
Annihilation of the scalar pair into a photon in a de Sitter universe
NASA Astrophysics Data System (ADS)
Băloi, Mihaela-Andreea
2016-05-01
The annihilation of massive scalar particles in one photon in de Sitter expanding universe is studied, using perturbative QED. The amplitude and probability corresponding to this process is computed using the exact solutions of the Klein-Gordon and Maxwell equations on de Sitter geometry. Our results show that the expression of the total probability of photon emission is a function dependent on the ratio mass/expansion factor. We perform a graphical study of the total probability in terms of the parameter mass/expansion factor, showing that this effect is significant only in strong gravitational fields. We also obtain that the total probability for this process vanishes in the Minkowski limit.
Fermion production in dipolar electric field on de Sitter expanding universe
Băloi, Mihaela-Andreea Crucean, Cosmin
2015-12-07
The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.
Solution of the Dyson-Schwinger equation on a de Sitter background in the infrared limit
NASA Astrophysics Data System (ADS)
Akhmedov, E. T.; Burda, Ph.
2012-08-01
We propose an ansatz which solves the Dyson-Schwinger equation for the real scalar fields in a Poincaré patch of de Sitter space in the infrared limit. The Dyson-Schwinger equation for this ansatz reduces to the kinetic equation, if one considers scalar fields from the principal series. Solving the latter equation we show that under the adiabatic switching on and then off of the coupling constant, the Bunch-Davies vacuum relaxes in future infinity to the state with the flat Gibbons-Hawking density of out-Jost harmonics on top of the corresponding de Sitter invariant out vacuum.
Mission analysis and systems design of a near-term and far-term pole-sitter mission
NASA Astrophysics Data System (ADS)
Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.; Biggs, James D.
2014-01-01
This paper provides a detailed mission analysis and systems design of a near-term and far-term pole-sitter mission. The pole-sitter concept was previously introduced as a solution to the poor temporal resolution of polar observations from highly inclined, low Earth orbits and the poor high-latitude coverage from geostationary orbit. It considers a spacecraft that is continuously above either the north or south pole and, as such, can provide real-time, continuous and hemispherical coverage of the polar regions. Being on a non-Keplerian orbit, a continuous thrust is required to maintain the pole-sitter position. For this, two different propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar electric propulsion (SEP) and a far-term pole-sitter mission where the SEP thruster is hybridized with a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. In order to maximize the spacecraft mass at the start of the operations phase of the mission, the transfer from Earth to the pole-sitter orbit is designed and optimized assuming either a Soyuz or an Ariane 5 launch. The maximized mass upon injection into the pole-sitter orbit is subsequently used in a detailed mass budget analysis that will allow for a trade-off between mission lifetime and payload mass capacity. Also, candidate payloads for a range of applications are investigated. Finally, transfers between north and south pole-sitter orbits are considered to overcome the limitations in observations due to the tilt of the Earth's rotational axis that causes the poles to be alternately situated in darkness. It will be shown that in some cases these transfers allow for propellant savings, enabling a further extension of the pole-sitter mission.
Physical and geometrical aspects of de sitter interior of a gravastar
NASA Astrophysics Data System (ADS)
Morawiec, Pawel Jan
The principal motivation for the investigations reported in this thesis is the gravastar model for physical black holes. According to this model the final state of the gravitational collapse of cold super-dense stars with the mass greater than some critical value is a non-singular object called a gravastar. This thesis presents results related to the various aspects of the de Sitter interior of a gravastar. The main object of the research was a generalized rotating interior of a gravastar. It was shown that the rotation, characterized by the vorticity, is localized on the vortex line. The metric under considerations is the de Sitter metric, however in some variant of the oblate spheroidal coordinates. Additionally a cosmic string on the rotation axis is present. This new result is the de Sitter version of the Mazur string, which was obtained from the four dimensional Levi-Civita metric as the generalization of the three-dimensional cosmic string by Adler and Jackiw. Also, using analogy between rotation in the superfluid and the magnetic field we gave another example of the Cosmic No Hair Theorem, this time "no magnetic fields in de Sitter space". But we also have shown that when the de Sitter event horizon is replaced by a thin shell (with a finite thickness), as it is in the gravastar model, the non-vanishing magnetic field could be present. To our knowledge these are new results. In this thesis we have studied behavior of the massless Dirac field as an example of a matter field in the de Sitter spacetime in the vicinity of an event horizon. We found convenient to work in the frame of the optical geometry of the de Sitter space as it is related to the metric in the static coordinates through a conformal Weyl rescaling and the dynamics of the massless Dirac fields is conformally invariant. The fact that the spatial part of the metric in the optical geometry of de Sitter space is the constant negative curvature Lobachevski space (the Euclidean ant-de Sitter space
Regulation of PBX3 expression by androgen and Let-7d in prostate cancer
2011-01-01
Background The pre-leukemia transcription factor 3 (PBX) is part of the PBX family of transcription factors, which is known to regulate genes involved in differentiation of urogenital organs and steroidogenesis. This is of interest with regard to prostate cancer progression as regulation of steroidogenesis is one of the mechanisms involved in the development of castration-resistant prostate cancer. In light of this we wanted to investigate the possible involvement of androgen regulation of PBX3 expression in prostate cancer. Results In this study, we show that PBX3 is post-transcriptionally regulated by androgen in prostate cancer cells and that the effect might be independent of the androgen receptor. Furthermore, PBX3 was identified as a target of Let-7d, an androgen regulated microRNA. Let-7d was down-regulated in malignant compared to benign prostate tissue, whereas up-regulation of PBX3 expression was observed. Conclusions We demonstrate that PBX3 is up-regulated in prostate cancer and post- transcriptionally regulated by androgen through Let-7d. PMID:21548940
Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos.
López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E
2012-01-01
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them.In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419
Cocaine Modulates the Expression of Opioid Receptors and miR-let-7d in Zebrafish Embryos
López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E.
2012-01-01
Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them. In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419
Covariant and infrared-free graviton two-point function in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Pejhan, Hamed; Rahbardehghan, Surena
2016-02-01
In this paper, the two-point function of linearized gravitons on de Sitter (dS) space is presented. Technically, respecting the dS ambient space notation, the field equation is given by the coordinate-independent Casimir operators of the de Sitter group. Analogous to the quantization of the electromagnetic field in Minkowski space, the field equation admits gauge solutions. The notation allows us to exhibit the formalism of Gupta-Bleuler triplets for the present field in exactly the same manner as it occurs for the electromagnetic field. In this regard, centering on the spin-two part (the traceless part, Kt), the field solution is written as a product of a generalized polarization tensor and a minimally coupled massless scalar field. Then, admitting a de Sitter-invariant vacuum through the so-called "Krein space quantization," the de Sitter fully covariant two-point function is calculated. This function is interestingly free of pathological large distance behavior (infrared divergence). Moreover, the spin-zero part (the pure-trace part; Kp t) of the field is discussed in this paper. It is shown that the implications of the dS group unitary irreducible representations restrict the gauge-fixing parameter to the optimal value, which remarkably results in the pure-trace part be written in terms of a conformally coupled massless scalar field.
The Booth Sitters of Santa Fe's Indian Market: Making and Maintaining Authenticity
ERIC Educational Resources Information Center
Bernstein, Bruce
2007-01-01
In this article, the author addresses the burden of non-Native expectation on Native artists, highlighting issues of authenticity, creation, and public display. The author writes about the booth sitters hired by collectors to sit--sometimes all night--and wait for the official opening of the annual Indian Market in Santa Fe, New Mexico. He focuses…
A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, Shu-Zheng
2009-06-01
Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.
On the solution of the Dirac equation in de Sitter space
NASA Astrophysics Data System (ADS)
Klishevich, V. V.; Tyumentsev, V. A.
2005-10-01
It is shown that the maximal number of first-order symmetry operators for the Dirac equation (including spin symmetries), both in arbitrary signature flat space and in de Sitter space, is equal. The isomorphic representation of 11-dimensional nonlinear symmetry algebra (W-algebra) of first-order operators for the Dirac operator in flat space and de Sitter space is considered. The algebra is an extension of the Lie algebra of the group of pseudo-orthogonal rotations and this extension is unique. We have found all linear Lie subalgebras in the nonlinear algebra that satisfy the conditions of the noncommutative integration theorem. Using one subalgebra we have integrated the Dirac equation in the generalized spherical system of coordinates and have constructed the complete class of exact solutions. The solution is found by a method that differs from the variable separation method and is new in the literature. The massive particle spectrum, models of particle into antiparticle transmutation, the disappearance of particles and the quantization conditions of the motion are discussed. One can use the results of the paper to pose the boundary problem for the Dirac equation in de Sitter space if the interval is used in the boundary condition. As an example, we consider a model of asymptotically flat space that is glued from the de Sitter space and flat space. We interpret the model as a gravitational well or barrier.
Interpretational conflicts between the static and non-static forms of the de Sitter metric
Mitra, Abhas
2012-01-01
The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the “Principle of Energy Conservation” is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = –density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359
Relative unitary implementability of perturbed quantum field dynamics on de-Sitter space
NASA Astrophysics Data System (ADS)
Poon, Gary K.
In this article, we study the quantum dynamics of a Klein-Gordon field on de-Sitter space. We prove time evolution is not unitarily implementable. We also consider a Klein-Gordon field perturbed by a local potential V. In this case we prove that the deviation from the V = 0 dynamics is unitarily implementable.
General Solution of Massless Spin-{3}/{2} Field in de Sitter Universe
NASA Astrophysics Data System (ADS)
Parsamehr, S.
2016-02-01
This paper is devoted to a general solution of the massless spin-{3}/{2} field in de Sitter space without any conditions in ambient space formalism. A general solution of the second-order field equation can be written in terms of a vector-spinor polarization state and a massless conformally coupled scalar field.
Instability of higher-dimensional charged black holes in the de sitter world.
Konoplya, R A; Zhidenko, A
2009-10-16
We have shown that higher-dimensional Reissner-Nordström-de Sitter black holes are gravitationally unstable for large values of the electric charge and cosmological constant in D>or=7 space-time dimensions. We have found the shape of the slightly perturbed black hole at the threshold point of instability. PMID:19905685
On the weak field approximation of the de Sitter gauge theory of gravity
NASA Astrophysics Data System (ADS)
Ma, Meng-Sen; Huang, Chao-Guang
2013-01-01
The weak field approximation of a model of de Sitter gauge theory of gravity is studied in two cases. Without torsion and spin current, the model cannot give the right non-relativistic approximation unless the density is a constant. With small torsion, a satisfactory Newtonian approximation can be obtained.
Reliability and Validity of a Domain-Specific Last 7-d Sedentary Time Questionnaire
WIJNDAELE, KATRIEN; DE BOURDEAUDHUIJ, ILSE; GODINO, JOB G.; LYNCH, BRIGID M.; GRIFFIN, SIMON J.; WESTGATE, KATE; BRAGE, SØREN
2014-01-01
ABSTRACT Purpose The objective of this study is to examine test–retest reliability, criterion validity, and absolute agreement of a self-report, last 7-d sedentary behavior questionnaire (SIT-Q-7d), which assesses total daily sedentary time as an aggregate of sitting/lying down in five domains (meals, transportation, occupation, nonoccupational screen time, and other sedentary time). Dutch (DQ) and English (EQ) versions of the questionnaire were examined. Methods Fifty-one Flemish adults (ages 39.4 ± 11.1 yr) wore a thigh accelerometer (activPAL3™) and simultaneously kept a domain log for 7 d. The DQ was subsequently completed twice (median test–retest interval: 3.3 wk). Thigh-acceleration sedentary time was log annotated to create comparable domain-specific and total sedentary time variables. Four hundred two English adults (ages 49.6 ± 7.3 yr) wore a combined accelerometer and HR monitor (Actiheart®) for 6 d to objectively measure total sedentary time. The EQ was subsequently completed twice (median test–retest interval: 3.4 wk). In both samples, the questionnaire reference frame overlapped with the criterion measure administration period. All participants had five or more valid days of criterion data, including one or more weekend day. Results Test–retest reliability (intraclass correlation coefficient (95% CI)) was fair to good for total sedentary time (DQ: 0.68 (0.50–0.81); EQ: 0.53 (0.44–0.62)) and poor to excellent for domain-specific sedentary time (DQ: from 0.36 (0.10–0.57) (meals) to 0.66 (0.46–0.79) (occupation); EQ: from 0.45 (0.35–0.54) (other sedentary time) to 0.76 (0.71–0.81) (meals)). For criterion validity (Spearman rho), significant correlations were found for total sedentary time (DQ: 0.52; EQ: 0.22; all P <0.001). Compared with domain-specific criterion variables (DQ), modest-to-strong correlations were found for domain-specific sedentary time (from 0.21 (meals) to 0.76 (P < 0.001) (screen time)). The questionnaire
Late-time structure of the Bunch-Davies de Sitter wavefunction
Anninos, Dionysios; Anous, Tarek; Freedman, Daniel Z.; Konstantinidis, George
2015-11-30
We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunction contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.
Perturbative approach to the problem of particle production in electric field on de Sitter universe
NASA Astrophysics Data System (ADS)
Crucean, Cosmin; Băloi, Mihaela-Andreea
2016-04-01
In this paper, we study the problem of scalar particle production in external electric field in de Sitter geometry. The total probability is calculated using the previously obtained result in [M. A. Băloi, Mod. Phys. Lett. A 29, 1450138 (2014)] for transition amplitude in external electric field on de Sitter space. Then we make a graphical study of the total probability in terms of the ratio mass of the particle/expansion factor. Our results show that the probability depend on the direction in which the particles are emitted and that the probability becomes maximum when particles are emitted on the direction of the electric field. In the Minkowski limit, we obtain that the probability is vanishing.
Isometry generators in momentum representation of the Dirac theory on the de Sitter spacetime
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel
2015-11-01
In this paper, it is shown that the covariant representation (CR) transforming the Dirac field under de Sitter isometries is equivalent to a direct sum of two unitary irreducible representations (UIRs) of the Sp(2, 2) group transforming alike the particle and antiparticle field operators in momentum representation. Their basis generators and Casimir operators are written down for the first time finding that these representations are equivalent to an UIR from the principal series whose canonical labels are determined by the fermion mass and spin. The properties of the conserved observables (i.e. one-particle operators) associated to the de Sitter isometries via Noether theorem and of the corresponding Pauli-Lubanski type operator are also pointed out.
Gravitational lensing effects of a Reissner-Nordstrom-de Sitter black hole
NASA Astrophysics Data System (ADS)
Zhao, Fan; Tang, Jianfeng; He, Feng
2016-06-01
We investigate the influence of cosmological constant Λ on gravitational lensing. By the method of an elliptic integral, we give out the solution to the null geodesic equation in the Reissner-Nordstrom-de Sitter spacetime. The deflection angle of light is obtained by studying the intrinsic geometry of the spatial equatorial plane in the Reissner-Nordstrom-de Sitter spacetime. By applying the expansion of elliptic integrals, we find the deflection angle in the weak field limit and in the strong field limit, respectively. We find the angular position and magnification of images and discuss its behavior under changed Λ . At last, we give out the higher-order term in the strong field limit.
Equilibration of a quantum field in de Sitter space-time
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Holman, R.; Richard, Benoit J.
2015-02-01
We address the following question: To what extent can a quantum field tell if it has been placed in de Sitter space? Our approach is to use the techniques of nonequilibrium quantum field theory to compute the time evolution of a state which starts off in flat space for (conformal) times η <η0 and then evolves in a de Sitter background turned on instantaneously at η =η0. We find that the answer depends on what quantities one examines. We study a range of them, all based on two-point correlation functions, and analyze which ones approach the standard Bunch-Davies values over time. The outcome of this analysis suggests that the nature of the equilibration process in this system is similar to that in more familiar systems.
Late-time structure of the Bunch-Davies de Sitter wavefunction
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Anous, Tarek; Freedman, Daniel Z.; Konstantinidis, George
2015-11-01
We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunction contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.
Evidence for a bound on the lifetime of de Sitter space
NASA Astrophysics Data System (ADS)
Freivogel, Ben; Lippert, Matthew
2008-12-01
Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(1022) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.
Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime
Cheong, Lee Yen; Yan, Chew Xiao
2014-03-05
The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in its geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.
Slipher's Redshifts as Support for de Sitter's Model and the Discovery of the Dynamic Universe
NASA Astrophysics Data System (ADS)
Nussbaumer, H.
2013-04-01
Of the first two relativistic world models, only the one by de Sitter predicted redshifted spectra from far away astronomical objects. Slipher's redshifts therefore seemed to arbitrate against Einstein's model which made no such predictions. Both models were trying to describe a static universe. However, Lemaître found that de Sitter's construct resulted in a spatially inhomogeneous universe. He then opted for a model that corresponded to Einstein's closed, curved universe but allowed the radius of curvature to change with time. Slipher's redshifts suggested to him that the universe is dynamic and expanding. We also discuss the respective merits of Friedman and Lemaître in revealing the dynamic nature of the universe.
Lifting of Flat Directions of the MSSM in de Sitter Background
Garbrecht, Bjoern
2008-11-23
We derive one-loop effective potentials in de Sitter background for scalar, fermion and gauge-boson loops. The results are applied to flat directions of the MSSM. It is found that due to Yukawa couplings, a lifting mass term of order of the Hubble rate arises. The lifting contributions mediated by the gauge couplings are found to cancel at leading order in the Hubble rate.
Point splitting renormalization of Schwinger induced current in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Hayashinaka, Takahiro; Yokoyama, Jun'ichi
2016-07-01
The covariant and gauge invariant calculation of the current expectation value in the homogeneous electric field in 1+3 dimensional de Sitter spacetime is shown. The result accords with previous work obtained by using adiabatic subtraction scheme. We therefore conclude the counterintuitive behaviors of the current in the infrared (IR) regime such as IR hyperconductivity and negative current are not artifacts of the renormalization scheme, but are real IR effects of the spacetime.
Quantum nonthermal effect of the Vaidya-Bonner-de Sitter black hole
NASA Astrophysics Data System (ADS)
Pan, Wei-Zhen; Yang, Xue-Jun; Yu, Guo-Xiang
2014-02-01
Using the Hamilton-Jacobi equation of a scalar particle in the curve space-time and a correct-dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya-Bonner-de Sitter black hole is investigated. The energy condition for the occurrence of the Starobinsky-Unruh process is obtained. The event horizon surface gravity and the Hawking temperature on the event horizon are also given.
Quantum Radiation of a Non-stationary Kerr Newman Black Hole in de Sitter Space Time
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Yang, Shu-Zheng
2006-12-01
Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.
All gaugings and stable de Sitter in D = 7 half-maximal supergravity
NASA Astrophysics Data System (ADS)
Dibitetto, Giuseppe; Fernández-Melgarejo, Jose J.; Marqués, Diego
2015-11-01
We study the general formulation of gauged supergravity in seven dimensions with sixteen supercharges keeping duality covariance by means of the embedding tensor formalism. We first classify all inequivalent duality orbits of consistent deformations. Secondly, we analyse the complete set of critical points in a systematic way. Interestingly, we find the first examples of stable de Sitter solutions within a theory with such a large amount of supersymmetry.
Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole
Myung, Yun Soo
2008-05-15
We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization.
Global Results for Linear Waves on Expanding Kerr and Schwarzschild de Sitter Cosmologies
NASA Astrophysics Data System (ADS)
Schlue, Volker
2015-03-01
In this global study of solutions to the linear wave equation on Schwarzschild de Sitter spacetimes we attend to the cosmological region of spacetime which is bounded in the past by cosmological horizons and to the future by a spacelike hypersurface at infinity. We prove an energy estimate capturing the expansion of that region, which combined with earlier results for the static region, yields a global boundedness result for linear waves. It asserts that a general finite energy solution to the global initial value problem has a limit on the future boundary at infinity that can be viewed as a function on the standard cylinder with finite energy, and that, moreover, any decay along the cosmological horizon is inherited along the future boundary. In particular, we exhibit an explicit nonvanishing quantity on the future boundary of the spacetime consistent with our expectations for the nonlinear stability problem. Our results apply to a large class of expanding cosmologies near the Schwarzschild de Sitter geometry, in particular subextremal Kerr de Sitter spacetimes.
Equivalence between Euclidean and in-in formalisms in de Sitter QFT
Higuchi, Atsushi; Marolf, Donald; Morrison, Ian A.
2011-04-15
We study the relation between two sets of correlators in interacting quantum field theory on de Sitter space. The first are correlators computed using in-in perturbation theory in the expanding cosmological patch of de Sitter space (also known as the conformal patch, or the Poincare patch), and for which the free propagators are taken to be those of the free Euclidean vacuum. The second are correlators obtained by analytic continuation from Euclidean de Sitter; i.e., they are correlators in the fully interacting Hartle-Hawking state. We give an analytic argument that these correlators coincide for interacting massive scalar fields with any m{sup 2}>0. We also verify this result via direct calculation in simple examples. The correspondence holds diagram by diagram, and at any finite value of an appropriate Pauli-Villars regulator mass M. Along the way, we note interesting connections between various prescriptions for perturbation theory in general static spacetimes with bifurcate Killing horizons.
Huygens' principle for the Klein-Gordon equation in the de Sitter spacetime
Yagdjian, Karen
2013-09-15
In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass m of the scalar field and the dimension n⩾ 2 of the spatial variable are tied by the equation m{sup 2}= (n{sup 2}−1)/4. Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveals that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n= 1, 3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m= 0 and m{sup 2}= (n{sup 2}−1)/4), which obey incomplete Huygens' principle, is equivalent to the condition n= 3, the spatial dimension of the physical world. In fact, Paul Ehrenfest in 1917 addressed the question: “Why has our space just three dimensions?”. For n= 3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m{sup 2}= (n{sup 2}−1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time.
Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime
Tian, Zehua; Jing, Jiliang
2014-11-15
In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.
Geometric phase of two-level atoms and thermal nature of de Sitter spacetime
NASA Astrophysics Data System (ADS)
Tian, Zehua; Jing, Jiliang
2013-04-01
In the framework of open quantum systems, we study the geometric phase acquired by freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar fields in de Sitter-invariant vacuum. We find that, for the freely falling atom, the geometric phase gets a correction resulting from a thermal bath with the Gibbons-Hawking temperature, thus it clearly reveals the intrinsic thermal nature of de Sitter spacetime from a different physical context. For the static atom, there is a correction to the geometric phase coming from both the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the proper acceleration of the atom. Furthermore, in a gedanken experiment, we estimate the magnitude of the correction to the geometric phase as opposed to that in a flat spacetime. We find that the correction for the freely falling atom is too tiny to be measured, and that for the static atom achieves an observable magnitude only when the atom almost locates at the horizon.
Dingle and de Sitter Against the Metaphysicians, or Two Ways to Keep Modern Cosmology Physical
NASA Astrophysics Data System (ADS)
Gale, George
It would be hard to find two more radically different personalities than the irascible Herbert Dingle and the courtly Willem de Sitter. Yet, when it came to their philosophy of science, these two otherwise-so-different men were united against a common enemy, those they both called the "metaphysicians." Right from 1917, de Sitter attempted always to keep cosmology tightly bound to real observations made upon a real world. In Kosmos, written near the end of his life, he re-affirms most strongly his principle that "there is nothing an orthodox physicist abhors more than metaphysics." Dingle, for his part, accepts early on the positivist use of the verifiability principle to eliminate metaphysics from science, and continuously wields the principle as a weapon against those errant cosmologists who would sacrifice science for a sort of mysticism. Both men reject the strict and literal use of the term "universe," and for the same reasons: there is no observation, no verification, of statements containing that term. Both men reject the "cosmological principle" as Milne and others use it, on the grounds, as de Sitter puts it, that "we have . . . no means of communicating with other observers, situated on faraway stars." Eddington, although always closely associated with de Sitter personally, comes in for his own fine share of criticism. After de Sitter's death, Dingle carried on the battle alone, always on the bases that he and de Sitter had earlier established. The two peaks in Dingle's long struggle were the notorious 1937 controversy in the pages of Nature, a nasty dogfight which managed to involve almost every single important physicist in Britain; thirteen years later, the long war with the metaphysicians ended with the pyrrhic victory of Dingle's Royal Astronomical Society Presidential Address' invective against the latest and greatest metaphysical creation, Bondi's steady state universe theory. In the end, however, it would be a mistake to believe that the campaign
Zhao, Ning; Schmitt, Margaret A; Fisk, John D
2016-04-01
Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment. PMID:26835881
MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.
Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel
2016-09-01
Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908
Woodcock, Barry G.; Luger, Veronika
2015-01-01
Transparency and evidence-based medicine are cornerstones of good publication practices (GPP), and concern publishers, editors, research investigators, and reviewers alike. Methods for implementing these principles within the framework of GPP are described. The main aspects include obtaining a Manuscript Agreement Contract, a Statement on Transparency of Authorship and a Declaration of Conflicts of Interest from the authors. Assessing whether a manuscript meets the requirements of EBM is demonstrated using the “7-D assessment”. The main purpose of this tool is to established that the (1) right Design, (2) right Diagnosis, (3) right Drug molecule, (4) right Dosage, (5) right Data, (6) right Deductions, and (7) right Documentation have been implemented in order to meet the objectives of the investigation. If the findings from any one of these assessments is questionable, the compliance of the research with EBM principles will be weakened and the reviewers and editors will make recommendations to the publisher accordingly. The guidelines described will help to provide a fair and transparent process of scientific publication and foster the freedom of clinical pharmacological research. PMID:26329349
Thermodynamic analysis of universes with the initial and final de Sitter eras
NASA Astrophysics Data System (ADS)
Moradpour, H.; Sabet, M. T. Mohammadi; Ghasemi, A.
2015-08-01
Our aim is studying the thermodynamics of cosmological models including initial and final de Sitter eras. For this propose, bearing Cai-Kim temperature in mind, we investigate the thermodynamic properties of a dark energy (DE) candidate with variable energy density, and show that the state parameter of this dark energy candidate (ωD) should obey the ωD≠ - 1 constraint, whiles there is no interaction between the fluids filled the universe, and the universe is not in the de Sitter eras. Additionally, based on the thermal fluctuation theory, we study the possibility of inducing fluctuations to the entropy of the DE candidate due to a mutual interaction between the cosmos sectors. Therefore, we find a relation between the thermal fluctuations and the mutual interaction between the cosmos sectors, whiles the DE candidate has a varying energy density. Finally, bearing the coincidence problem in mind, we derive a constraint on the vacuum energy, and investigate its relation with the entropy evolution of the DE candidate. We also point to a model with initial and final de Sitter eras in which a gravitationally induced particle production process leads to change the expansion eras, whiles the corresponding pressure is considered as the cause of current accelerated phase. We study its thermodynamics, and show that such processes may also leave thermal fluctuations into the system. We also find an expression between the thermal fluctuations and the particle production rate. Finally, we use Hayward-Kodama temperature to get a relation for the horizon entropy in models including the gravitationally induced particle production process. Our study shows that the first law of thermodynamics is available on the apparent horizon whiles, the gravitationally induced particle production process, as the DE candidate, may add an additional term to the Bekenstein limit of the horizon. The relation between the validity of the second law of thermodynamics and the gravitationally particle
NASA Astrophysics Data System (ADS)
Mehdipour, S. Hamid
2013-06-01
We study some features of entropic force approach in the presence of a noncommutative Schwarzschild-deSitter black hole. In this setup, there exists a similarity between the small and large scales. There are two finite cut-off in very short and long distances wherein the force and energy graph stop abruptly at those scales. We find that the existence of a deSitter core around the origin, induced by noncommutativity, in addition to a standard deSitter background at large scale may lead to a violation of the equivalence principle. Finally in order to directly observe the finite cut-off at short-scale gravity, caused by noncommutativity quantum fluctuations, we derive an effective gravitational constant.
Conformally invariant spin-3/2 field equation in de Sitter space-time
NASA Astrophysics Data System (ADS)
Fatahi, N.
2015-09-01
In the previous paper (Behroozi et al., Phys Rev D 74:124014, 2006; Dehghani et al., Phys Rev D 77:064028, 2008), conformal invariance for massless tensor fields (scalar, vector and spin-2 fields) was studied and the solutions of their wave equations and two-point functions were obtained. In the present paper, conformally invariant wave equation for massless spinor field in de Sitter space-time has been obtained. For this propose, we use Dirac's six-cone formalism. The solutions of massless spin-1/2 and -3/2 equations, in the ambient space notation, have been calculated.
New tortoise coordinate transformation and Hawking's radiation in de Sitter space
NASA Astrophysics Data System (ADS)
Ibohal, N.; Ibungochouba, T.
2013-01-01
Hawking's radiation effect of Klein-Gordon equation, Dirac particles and Maxwell's electromagnetic fields in the non-stationary rotating de Sitter cosmological space-time is investigated by using a new method of generalized tortoise coordinate transformation. It is found that the new transformation produces constant additional terms in the expressions of the surface gravities and the Hawking's temperatures. If the constant terms are set to zero, then the surface gravities and Hawking's temperatures will be equal to those obtained from the old generalized tortoise coordinate transformations. This shows that the new transformations are more reasonable. The Fermionic spectrum of Dirac particles displays a new spin-rotation coupling effect.
Solution of Dirac equation in Reissner-Nordström de Sitter space
NASA Astrophysics Data System (ADS)
Lyu, Yan; Cui, Song
2009-02-01
The radial parts of the Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space numerically. An accurate approximation, the polynomial approximation, is used to approximate the modified tortoise coordinate \\hat r_* , which leads to the inverse function r = r(\\hat r_* ) and the potential V(\\hat r_* ). The potential V(\\hat r_* ) is replaced by a collection of step functions in sequence. Then the solution of the wave equation as well as the reflection and transmission coefficients is computed by a quantum mechanical method.
Spinor Field at the Phase Transition Point of Reissner-Nordström de Sitter Space
NASA Astrophysics Data System (ADS)
Lyu, Yan; Zhang, Li-Qing; Zheng, Wei; Pan, Qing-Chao
2010-08-01
The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space when it is at the phase transition point. We use an accurate polynomial approximation to approximate the modified tortoise coordinate hat{r}_{*} in order to get the inverse function r=r(hat{r}_{*}) and the potential V(hat{r}_{*}). Then we use a quantum mechanical method to solve the wave equation numerically. We consider two cases, one is when the two horizons are lying close to each other, the other is when the two horizons are widely separated.
Real scalar field scattering in the nearly extremal Schwarzschild—de Sitter space
NASA Astrophysics Data System (ADS)
Guo, Guang-Hai
2010-11-01
Reasonable approximations are introduced to investigate the real scalar field scattering in the nearly extremal Schwarzschild—de Sitter (SdS) space. The approximations naturally lead to the invertible x(r) and the global replacement of the true potential by a Pöshl—Teller one. Meanwhile, the Schrödinger-like wave equation is transformed into a solvable form. Our numerical solutions to the wave equation show that the wave is characteristically similar to the harmonic under the tortoise coordinate x, while the wave piles up near the two horizons and the wavelength tends to its maximum as the potential approaches to the peak under the radial coordinate r.
Hawking radiation of a Reissner-Nordström-de Sitter black hole
NASA Astrophysics Data System (ADS)
Zhao, Ren; Zhang, Li-Chun; Li, Huai-Fan
2010-04-01
Generalizing the method proposed by Damour-Ruffini, we discuss Hawking radiation of a Reissner-Nordström-de Sitter (RNdS) black hole. Under the condition that total energy and charge are conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the interrelation between the event horizon and cosmological horizon, we investigate radiation spectrum of RNdS spacetime by a new Tortoise coordinate transformation. This radiation spectrum is no longer a purely thermal spectrum. It is related to the changes in the Bekenstein-Hawking entropy corresponding the event horizon and cosmological horizon. The result satisfies the unitary principle.
The algebra of supertraces for (2 + 1) super de Sitter gravity
Urrutia, L.F. ); Waelbroeck, H. ); Zertuche, F. )
1992-09-21
In this paper, the authors calculate the algebra of the observables for 2 + 1 super de Sitter gravity, for one genus of the spatial surface. The algebra turns out to be an infinite Lie algebra subject to nonlinear constraints. The authors solve the constraints explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which we refer to as a central extension of the quantum algebra SU(2)[sub q].
Production of scalar particles in electric field on de Sitter expanding universe
NASA Astrophysics Data System (ADS)
Băloi, Mihaela-Andreea
2014-08-01
The scalar particle production from vacuum in the presence of an electric field, on the de Sitter spacetime is studied. We use perturbation methods to define the transition amplitude. We obtain that the momentum is not conserved in this process. The probability density of pair production is computed by squaring the transition amplitude. Our graphical representations show that, the probability of scalar particle production was important only in the early stages of the universe, when Hubble's constant was very large in comparison with the mass of the particle. Also, we propose here a criterion for particle-antiparticle separation.
On Fayet-Iliopoulos Terms and de Sitter Vacua in Supergravity: Some Easy Pieces
Catino, Francesca; Villadoro, Giovanni; Zwirner, Fabio; /Padua U. /INFN, Padua
2012-03-27
We clarify a number of issues on Fayet-Iliopoulos (FI) terms in supergravity, keeping the formalism at a minimum and making use of explicit examples. We explain why, if the U(1) vector is massive everywhere in field space, FI terms are not genuine and can always be redefined away or introduced when they are not present. We formulate a simple anomaly-free model with a genuine FI term, a classically stable de Sitter (dS) vacuum and no global symmetries. We explore the relation between N = 2 and N = 1 FI terms by discussing N = 1 truncations of N = 2 models with classically stable dS vacua.
Indications of de Sitter spacetime from classical sequential growth dynamics of causal sets
Ahmed, Maqbool; Rideout, David
2010-04-15
A large class of the dynamical laws for causal sets described by a classical process of sequential growth yields a cyclic universe, whose cycles of expansion and contraction are punctuated by single 'origin elements' of the causal set. We present evidence that the effective dynamics of the immediate future of one of these origin elements, within the context of the sequential growth dynamics, yields an initial period of de Sitter-like exponential expansion, and argue that the resulting picture has many attractive features as a model of the early universe, with the potential to solve some of the standard model puzzles without any fine-tuning.
A barren landscape? - Metastable de Sitter vacua are nongeneric in string theory
Robbins, Daniel; Sethi, Savdeep
2005-02-15
We consider the generation of a nonperturbative superpotential in F-theory compactifications with flux. We derive a necessary condition for the generation of such a superpotential in F theory. For models with a single volume modulus, we show that the volume modulus is never stabilized by either Abelian instantons or gaugino condensation. We then comment on how our analysis extends to a larger class of compactifications. From our results, it appears that among large volume string compactifications, metastable de Sitter vacua (should any exist) are nongeneric.
Hawking radiation of Kerr-de Sitter black holes using Hamilton-Jacobi method
NASA Astrophysics Data System (ADS)
Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.
2013-05-01
Hawking radiation of Kerr-de Sitter black hole is investigated using Hamilton-Jacobi method. When the well-behaved Painleve coordinate system and Eddington coordinate are used, we get the correct result of Bekenstein-Hawking entropy before and after radiation but a direct computation will lead to a wrong result via Hamilton-Jacobi method. Our results show that the tunneling probability is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal but it is consistent with underlying unitary theory.
The Stokes phenomenon and quantum tunneling for de Sitter radiation in nonstationary coordinates
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
2010-09-01
We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.
Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method
NASA Astrophysics Data System (ADS)
Rahman, M. Atiqur; Hossain, M. Ilias
2012-05-01
We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.
One loop graviton self-energy in a locally de Sitter background
tSAMIS, n.c. |; Woodard, R.P.
1996-02-01
The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the former context we show that the self-energy obeys the appropriate Ward identity. We also show that its flat space limit agrees with the flat space result obtained by Capper in what should be the same gauge. 15 refs., 4 figs., 10 tabs.
Smeared hair and black holes in three-dimensional de Sitter spacetime
Park, Mu-In
2009-10-15
It is known that there is no three-dimensional analog of de Sitter black holes. I show that the analog does exist when non-Gaussian (i.e., ring-type) smearings of point matter hairs are considered. This provides a new way of constructing black hole solutions from hairs. I find that the obtained black hole solutions are quite different from the usual large black holes in that there are (i) large to small black hole transitions which may be considered as inverse Hawking-Page transitions and (ii) solitonlike (i.e., nonperturbative) behaviors. For Gaussian smearing, there is no black hole but a gravastar solution exists.
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
Quantum scalar corrections to the gravitational potentials on de Sitter background
NASA Astrophysics Data System (ADS)
Park, Sohyun; Prokopec, Tomislav; Woodard, R. P.
2016-01-01
We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass M . The Schwinger-Keldysh formalism is used to derive real and causal effective field equations. When evaluated at the one-loop order, the gravitational potentials exhibit a secular decrease in the observed gravitational coupling G. This can also be interpreted as a (time dependent) anti-screening of the mass M.
Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.
Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan
2015-03-01
Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract. PMID:25212824
NASA Astrophysics Data System (ADS)
Zou, Li; Li, Fang-Yu; Li, Tao
2014-11-01
In this paper, we first deduce the Tolman-Oppenheimer-Volkoff (TOV) equations and Schwarzschild-de Sitter (SdS) constant-density interior solutions of perfect fluid spheres in hydrostatic equilibrium by the Einstein equations with a nonzero cosmological constant. The TOV equations and the spacetime properties of exact solutions inside uniform perfect fluid spheres with different spatial curvature and cosmological constants will be respectively analyzed in detail. Moreover, a brief comparison between the internal static solutions of the SdS type and the dynamical Einstein-Strauss-de Sitter (ESdS) vacuole spacetime is obtained.
Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.
2004-01-01
We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.
17 CFR 259.404 - Certificate to be filed pursuant to § 250.7(d) of this chapter.
Code of Federal Regulations, 2010 CFR
2010-04-01
... List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Certificate to be filed pursuant to Â§ 250.7(d) of this chapter. 259.404 Section 259.404 Commodity and Securities...
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...
Langdon, C.J.; Vance, M.M.; Harmon, V.L.; Kreeger, K.E.; Kreeger, D.A.; Chapman, G.A.
1996-10-01
The purpose of this study was to develop a short term (7-d) toxicity test for marine pollutants that is practical to perform at sites remote from a source of test organisms. Laboratory culture methods were developed that allowed successful long-term rearing of populations of the mysid Mysidopsis intii, a species indigenous to the Pacific coast of the United States. Mysidopsis intii was found to have a short life cycle of 20 d at 20 C, making it useful for chronic toxicity tests. A 7-d toxicity test was developed by comparing the sensitivities of various life stages of M. intii to sodium dodecyl sulfate (SDS). The most sensitive end point was found to be growth (final body length) of juveniles during the first 7 d after release. The sensitivity of mysids to SDS decreased with increasing age. To allow for shipping newly released juveniles to remote sites, a 7-d test was evaluated starting with 2-d-old mysids. The median lethal concentration for M. intii exposed to SDS at ages from 2 to 9 d was 4.59 mg/L (95% confidence limits, 4.21--5.00), and the maximum acceptable SDS concentration was 4.99 mg/L for both survival and growth.
Recessional velocities and Hubble's law in Schwarzschild-de Sitter space
NASA Astrophysics Data System (ADS)
Klein, David; Collas, Peter
2010-03-01
We consider a spacetime with empty Schwarzschild-de Sitter exterior and Schwarzschild-de Sitter interior metric for a spherical fluid with constant density. The fluid interior may be taken to represent a galaxy supercluster, for which the proper distance from the center of the supercluster to the cosmological horizon has the same order of magnitude as the Hubble radius derived from Friedmann-Robertson-Walker cosmologies. The fluid interior and surrounding vacuum may also be considered as a model of the Local Group of galaxies in the far future. Particle motion is subject both to the attractive gravity exerted by the fluid and the repelling cosmological constant. Using global Fermi coordinates for the central observer within the fluid, the Fermi velocity, the astrometric velocity, the kinematic velocity, and the spectroscopic velocity, relative to the central (Fermi) observer, of a radially receding test particle are calculated and compared. We find that the Fermi relative velocity can exceed the speed of light in this model, but the presence of a positive cosmological constant causes recessional speeds of distant high energy particles to decrease rather than increase. We derive a version of Hubble’s law for this spacetime which might be applicable for the analysis of a receding mass within a great void adjacent to a supercluster, relatively isolated from gravitational sources other than the supercluster. We also compare some of our results to related behavior in Friedmann-Robertson-Walker cosmologies and consider implications to arguments regarding the expansion of space.
A note on the nonperturbative nature of the Schwinger effect in the expanding de Sitter space
NASA Astrophysics Data System (ADS)
Nicolaevici, Nistor
2015-02-01
We reconsider a recent perturbative calculation [M. A. Băloi, Mod. Phys. Lett. A29, 1450138 (2014)] of particle production in the expanding de Sitter space in an external electromagnetic field and apply it to the case of a constant uniform electric field in two dimensions. We show that perturbative number of created particles significantly differs from the existing nonperturbative result based on the Bogoliubov transformation method. We also point out that for a physically meaningful perturbative amplitude one should restrict to external potentials Aμ which in conformal coordinates vanish at infinite times. Potentials which do not respect this condition lead to gauge-dependent amplitudes, which also show close similarities with amplitudes in flat space in the unphysical case when the external potential suddenly vanishes. These problems are intimately linked with the finite upper limit of the conformal time in the de Sitter space and most probably a similar restriction should be imposed in perturbative calculations in FRW spacetimes with the same property.
Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe
NASA Astrophysics Data System (ADS)
Kobayashi, Takeshi; Afshordi, Niayesh
2014-10-01
We investigate pair creation by an electric field in four-dimensional de Sitter space. The expectation value of the induced current is computed, using the method of adiabatic regularization. Under strong electric fields the behavior of the current is similar to that in flat space, while under weak electric fields the current becomes inversely proportional to the mass squared of the charged field. Thus we find that the de Sitter space obtains a large conductivity under weak electric fields in the presence of a charged field with a tiny mass. We then apply the results to constrain electromagnetic fields in the early universe. In particular, we study cosmological scenarios for generating large-scale magnetic fields during the inflationary era. Electric fields generated along with the magnetic fields can induce sufficiently large conductivity to terminate the phase of magnetogenesis. For inflationary magnetogenesis models with a modified Maxwell kinetic term, the generated magnetic fields cannot exceed 10-30 G on Mpc scales in the present epoch, when a charged field carrying an elementary charge with mass of order the Hubble scale or smaller exists in the Lagrangian. Similar constraints from the Schwinger effect apply for other magnetogenesis mechanisms.
Massive gravity on de Sitter and unique candidate for partially massless gravity
Rham, Claudia de; Renaux-Petel, Sébastien E-mail: srenaux@lpthe.jussieu.fr
2013-01-01
We derive the decoupling limit of Massive Gravity on de Sitter in an arbitrary number of space-time dimensions d. By embedding d-dimensional de Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and helicity-0 polarizations of the graviton. The resulting decoupling theory is similar to that obtained around Minkowski. We take great care at exploring the partially massless limit and define the unique fully non-linear candidate theory that is free of the helicity-0 mode in the decoupling limit, and which therefore propagates only four degrees of freedom in four dimensions. In the latter situation, we show that a new Vainshtein mechanism is at work in the limit m{sup 2} → 2H{sup 2} which decouples the helicity-0 mode when the parameters are different from that of partially massless gravity. As a result, there is no discontinuity between massive gravity and its partially massless limit, just in the same way as there is no discontinuity in the massless limit of massive gravity. The usual bounds on the graviton mass could therefore equivalently well be interpreted as bounds on m{sup 2}−2H{sup 2}. When dealing with the exact partially massless parameters, on the other hand, the symmetry at m{sup 2} = 2H{sup 2} imposes a specific constraint on matter. As a result the helicity-0 mode decouples without even the need of any Vainshtein mechanism.
Hawking radiation of stationary and non-stationary Kerr-de Sitter black holes
NASA Astrophysics Data System (ADS)
Singh, T. Ibungochouba
2015-07-01
Hawking radiation of the stationary Kerr-de Sitter black hole is investigated using the relativistic Hamilton-Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr-de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.
Infrared dynamics of the massive ϕ4 theory on de Sitter space
NASA Astrophysics Data System (ADS)
Akhmedov, E. T.; Popov, F. K.; Slepukhin, V. M.
2013-07-01
We study massive real scalar ϕ4 theory in the expanding Poincare patch of de Sitter space. We calculate the leading two-loop infrared contribution to the two-point function in this theory. We do that for the massive fields both from the principal and complementary series. As can be expected at this order, light fields from the complementary series show stronger infrared effects than the heavy fields from the principal one. For the principal series, unlike the complementary one, we can derive the kinetic equation from the system of Dyson-Schwinger equation, which allows us to sum up the leading infrared contributions from all loops. We find two peculiar solutions of the kinetic equation. One of them describes the stationary Gibbons-Hawking-type distribution for the density per comoving volume. Another solution shows explosive (square root of the pole in finite proper time) growth of the particle number density per comoving volume. That signals the possibility of the destruction of the expanding Poincaré patch even by the very massive fields. We conclude with the consideration of the infrared divergences in global de Sitter space and in its contracting Poincaré patch.
Long-time asymptotics of a Bohmian scalar quantum field in de Sitter space-time
NASA Astrophysics Data System (ADS)
Tumulka, Roderich
2016-01-01
We consider a model quantum field theory with a scalar quantum field in de Sitter space-time in a Bohmian version with a field ontology, i.e., an actual field configuration \\varphi (x,t) guided by a wave function on the space of field configurations. We analyze the asymptotics at late times (t→ ∞ ) and provide reason to believe that for more or less any wave function and initial field configuration, every Fourier coefficient \\varphi _k(t) of the field is asymptotically of the form c_k√{1+k^2 exp (-2Ht)/H^2}, where the limiting coefficients c_k=\\varphi _k(∞) are independent of t and H is the Hubble constant quantifying the expansion rate of de Sitter space-time. In particular, every field mode \\varphi _k possesses a limit as t→ ∞ and thus "freezes." This result is relevant to the question whether Boltzmann brains form in the late universe according to this theory, and supports that they do not.
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Rummel, Markus; Sumitomo, Yoske; Valandro, Roberto
2015-12-01
In [1] a mechanism to fix the closed string moduli in a de Sitter minimum was proposed: a D-term potential generates a linear relation between the volumes of two rigid divisors which in turn produces at lower energies a race-track potential with de Sitter minima at exponentially large volume. In this paper, we systematically search for implementations of this mechanism among all toric Calabi-Yau hypersurfaces with h 1,1 ≤ 4 from the Kreuzer-Skarke list. For these, topological data can be computed explicitly allowing us to find the subset of three-folds which have two rigid toric divisors that do not intersect each other and that are orthogonal to h 1,1 - 2 independent four-cycles. These manifolds allow to find D7-brane configurations compatible with the de Sitter uplift mechanism and we find an abundance of consistent choices of D7-brane fluxes inducing D-terms leading to a de Sitter minimum. Finally, we work out a couple of models in detail, checking the global consistency conditions and computing the value of the potential at the minimum.
Relative measurement of the photoionization cross section of the 7D5/2 state of cesium
NASA Astrophysics Data System (ADS)
Armstrong, D. J.; Westling, L. A.; Smith, S. J.
1991-06-01
We have carried out a relative measurement of the total photoionization cross section of the excited 7D5/2 state of cesium for photoelectron energies in the range 0.103-0.127 Ry above the ionization threshold. Separate measurements were made using two different combinations of laser sources to populate and photoionize the 7D5/2 state. The first measurement was made with a cw diode laser and two pulsed dye lasers, while the second was made with three pulsed dye lasers. The measured cross section was found to vary slowly within experimental uncertainty over this energy range but was otherwise featureless. This result disagrees with the cross section predicted by a Hartree-Slater calculation [J. Lahiri and S. T. Manson, Phys. Rev. A 33, 3151 (1986)], which displayed a deep minimum in this spectral region.
Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein
Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.; Hooper, Jay W.; Garboczi, David N.
2007-11-25
Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizing activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics.
Harmon, V.L.; Langdon, C.J.
1996-10-01
The sensitivity of the Pacific coast mysid Mysidopsis intii to pollutants was compared in 7-d toxicity tests with that of the Gulf coast mysid M. bahia and the Pacific coast mysid Holmesimysis costata. Survival and growth responses of M. intii to zinc (maximum acceptable toxicant concentration [MATC] survival and growth, 152 {micro}g/L) were as sensitive as survival of both M. bahia (MATC survival, 152 {micro}g/L) and H. costata (MATC survival, 152 {micro}g/L). In contrast, the 7-d test for M. intii was less sensitive (MATC growth and survival, 4.99 mg/L) than the test for H. costata (MATC survival, 1.99 mg/L) when sodium dodecyl sulfate (SDS) was used as the toxicant. Interlaboratory evaluation of the 7-d test for M. intii exposed to SDS indicated that the test was reliable. The mean test results for the group of participating laboratories were not significantly different from those of a group of three in-house tests, indicating that shipping and handling did not affect mysid sensitivity to SDS. Mysid growth was not as sensitive to SDS as survival in the interlaboratory tests. Although there were significant differences in median lethal concentration (LC50) values among participating laboratories, coefficients of variation of LC50 and MATC survival values among laboratories were 10.3 and 37%, respectively. These coefficients were comparable to those reported for interlaboratory tests with H. costata.
Corrected Stefan—Boltzmann Law and Lifespan of Schwarzschild-de-sitter Black Hole
NASA Astrophysics Data System (ADS)
Yan, Shi; He, Tang-Mei; Zhang, Jing-Yi
2016-06-01
In this paper, we correct the Stefan—Boltzmann law by considering the generalized uncertainty principle, and with this corrected Stefan—Boltzmann law, the lifespan of the Schwarzschild-de-sitter black holes is calculated. We find that the corrected Stefan—Boltzmann law contains two terms, the T4 term and the T6 term. Due to the modifications, at the end of the black hole radiation, it will arise a limited highest temperature and leave a residue. It is interesting to note that the mass of the residue and the Planck mass is in the same order of magnitude. The modified Stefan—Boltzmann law also gives a correction to the lifespan of the black hole, although it is very small. Supported by the National Natural Science Foundation of China under Grant Nos. 11273009 and 11303006
Quantum radiation of Maxwell’s electromagnetic field in nonstationary Kerr-de Sitter black hole
NASA Astrophysics Data System (ADS)
Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.
2016-03-01
Quantum radiation properties of nonstationary Kerr-de Sitter (KdS) black hole is investigated using the method of generalized tortoise coordinate transformation. The locations of horizons and the temperature of the thermal radiation as well as the maximum energy of the nonthermal radiation are derived. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Maxwell’s electromagnetic field equations which is absent in the thermal radiation spectrum of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the nonthermal radiation for KdS black hole. It is also shown that the generalized tortoise coordinate transformation produces a constant term in the expression of the surface gravity and Hawking temperature.
Real scalar field scattering with polynomial approximation around Schwarzschild—de Sitter black-hole
NASA Astrophysics Data System (ADS)
Liu, Mo-Lin; Liu, Hong-Ya; Zhang, Jing-Fei; Yu, Fei
2008-05-01
As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild—de Sitter black-hole. The complicated relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schrödinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type problem. Then this boundary value problem can be solved numerically for two limiting cases: the first one is the Nariai black-hole whose horizons are close to each other, the second one is the black-hole with the horizons widely separated. Compared with previous results (Brevik and Tian), the field near the event horizon and cosmological horizon can have a better description.
Numerical solution of the Dirac equation in Schwarzschild de Sitter spacetime
NASA Astrophysics Data System (ADS)
Lyu, Y.; Gui, Y. X.
2007-02-01
The radial parts of the Dirac equation between the inner and the outer horizon in Schwarzschild-de Sitter geometry are solved. Two limiting cases are concerned. The first case is when the two horizons are far apart and the second case is when the horizons are close to each other. In each case, a 'tangent' approximation is used to replace the modified 'tortoise' coordinate r*, which leads to a simple analytically invertible relation between r* and the radius r. The potential V(r*) is replaced by a collection of step functions in sequence. Then the solutions of the wave equation as well as the reflection and transmission coefficients are computed by a quantum mechanical method.
The Solution of Dirac Equation in Quasi-Extreme REISSNER-NORDSTRÖM de Sitter Space
NASA Astrophysics Data System (ADS)
Lyu, Yan; Cui, Song; Liu, Ling
The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon in quasi-extreme Reissner-Nordström de Sitter (RNdS) geometry is solved numerically. We use an accurate polynomial approximation to mimic the modified tortoise coordinate hat r*(r), for obtaining the inverse function r=r(hat r*) and V=V(hat r*). We then use a quantum mechanical method to solve the wave equation and give the reflection and transmission coefficients. We concentrate on two limiting cases. The first case is when the two horizons are close to each other, and the second case is when the horizons are far apart.
The fate of Schwarzschild-de Sitter black holes in f(R) gravity
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Capozziello, Salvatore
2016-03-01
The semiclassical effects of anti-evaporating black holes can be discussed in the framework of f(R) gravity. In particular, the Bousso-Hawking-Nojiri-Odinstov anti-evaporation instability of degenerate Schwarzschild-de Sitter black holes (the so-called Nariai spacetime) leads to a dynamical increasing of black hole horizon in f(R) gravity. This phenomenon causes the following transition: emitting marginally trapped surfaces (TS) become space-like surfaces before the effective Bekenstein-Hawking emission time. As a consequence, Bousso-Hawking thermal radiation cannot be emitted in an anti-evaporating Nariai black hole. Possible implications in cosmology and black hole physics are also discussed.
Pair creation of higher dimensional black holes on a de Sitter background
Dias, Oscar J.C.; Lemos, Jose P.S.
2004-12-15
We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime.
Spin 1 /2 field and regularization in a de Sitter and radiation dominated universe
NASA Astrophysics Data System (ADS)
Ghosh, Suman
2016-02-01
We construct a simple algorithm to derive number density of spin 1 /2 particles created in spatially flat Friedmann-Lemaitre-Robertson-Walker spacetimes and resulting renormalized energy-momentum tensor within the framework of adiabatic regularization. Physical quantities thus found are in agreement with the known results. This formalism can be considered as an appropriate extension of the techniques originally introduced for scalar fields, applicable to fermions in curved space. We apply this formalism to compute the particle number density and the renormalized energy density and pressure analytically (wherever possible) and numerically, in two interesting cosmological scenarios: a de Sitter spacetime and a radiation dominated universe. Results prove the efficiency of the methodology presented here.
de Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications
NASA Astrophysics Data System (ADS)
Buchmuller, Wilfried; Dierigl, Markus; Ruehle, Fabian; Schweizer, Julian
2016-07-01
We consider six-dimensional supergravity with Abelian bulk flux compactified on an orbifold. The effective low-energy action can be expressed in terms of N =1 chiral moduli superfields with a gauged shift symmetry. The D -term potential contains two Fayet-Iliopoulos terms which are induced by the flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The Green-Schwarz term also leads to a correction of the gauge kinetic function which turns out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli stabilization is achieved by the interplay of the D -term and a nonperturbative superpotential. Varying the gauge coupling and the superpotential parameters, the scale of the extra dimensions can range from the GUT scale down to the TeV scale. Supersymmetry is broken by F - and D -terms, and the scale of gravitino, moduli, and modulini masses is determined by the size of the compact dimensions.
Constraining the Schwarzschild-de Sitter solution in models of modified gravity
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo; Ruggiero, Matteo Luca; Radicella, Ninfa; Saridakis, Emmanuel N.
2016-09-01
The Schwarzschild-de Sitter (SdS) solution exists in the large majority of modified gravity theories, as expected, and in particular the effective cosmological constant is determined by the specific parameters of the given theory. We explore the possibility to use future extended radio-tracking data from the currently ongoing New Horizons mission in the outskirts peripheries of the Solar System, at about 40 au, in order to constrain this effective cosmological constant, and thus to impose constrain on each scenario's parameters. We investigate some of the recently most studied modified gravities, namely f(R) and f(T) theories, dRGT massive gravity, and Hořava-Lifshitz gravity, and we show that New Horizons mission may bring an improvement of one-two orders of magnitude with respect to the present bounds from planetary orbital dynamics.
Single-step de Sitter vacua from nonperturbative effects with matter
NASA Astrophysics Data System (ADS)
Guarino, Adolfo; Inverso, Gianluca
2016-03-01
A scenario of moduli stabilization based on the interplay between closed and open string sectors is explored in a bottom-up approach. We study N =1 effective supergravities inspired by type IIB orientifold constructions that include background fluxes and nonperturbative effects. The former generate the standard flux superpotential for the axiodilaton and complex structure moduli. The latter can be induced by gaugino condensation in a non-Abelian sector of D7-branes and involve the overall Kähler modulus of the compactification as well as matter fields. We analyze the dynamics of this coupled system and show that it is compatible with single-step moduli stabilization in a metastable de Sitter vacuum. A novelty of the scenario is that the F-term potential suffices to generate a positive cosmological constant and to stabilize all moduli, except for a flat direction that can be either lifted by a mass term or eaten up by an anomalous U(1).
The structure of perturbative quantum gravity on a de Sitter background
Tsamis, N.C.; Woodward, R.P.
1992-05-01
Classical gravitation on de Sitter space suffers from a linearization instability. One consequence is that the response to a spatially localized distribution of positive energy cannot be globally regular. We use this fact to show that no causal Green`s function can give the correct linearized response to certain bilocalized distributions, even though these distributions obey the constraints of linearization stability. We avoid the problem by working on the open submanifold spanned by conformal coordinates. The retarded Green`s function is first computed in a simple gauge, then the rest of the propagator is inferred by analyticity -- up to the usual ambiguity about real, analytic and homogeneous terms. We show that the latter can be chosen so as to give a propagator which does not grow in any direction. The ghost propagator is also given and the interaction vertices are worked out.
The structure of perturbative quantum gravity on a de Sitter background
Tsamis, N.C. . Dept. of Physics); Woodward, R.P. . Dept. of Physics)
1992-05-01
Classical gravitation on de Sitter space suffers from a linearization instability. One consequence is that the response to a spatially localized distribution of positive energy cannot be globally regular. We use this fact to show that no causal Green's function can give the correct linearized response to certain bilocalized distributions, even though these distributions obey the constraints of linearization stability. We avoid the problem by working on the open submanifold spanned by conformal coordinates. The retarded Green's function is first computed in a simple gauge, then the rest of the propagator is inferred by analyticity -- up to the usual ambiguity about real, analytic and homogeneous terms. We show that the latter can be chosen so as to give a propagator which does not grow in any direction. The ghost propagator is also given and the interaction vertices are worked out.
Fermion production in a magnetic field in a de Sitter universe
NASA Astrophysics Data System (ADS)
Crucean, Cosmin; Bǎloi, Mihaela-Andreea
2016-02-01
The process of fermion production in the field of a magnetic dipole on a de Sitter expanding universe is analyzed. The amplitude and probability for production of massive fermions are obtained using the exact solution of the Dirac equation written in the momentum-helicity basis. We found that the most probable transitions are those that generate the fermion pair perpendicular to the direction of the magnetic field. The behavior of the probability is graphically studied for large/small values of the expansion factor, and a detailed analysis of the probability in terms of the angle between the momenta vectors of the particle and antiparticle is performed. The phenomenon of fermion production is significant only at a large expansion, which corresponds to the conditions from the early universe. When the expansion factor vanishes, we recover the Minkowski limit where this process is forbidden by the simultaneous energy-momentum conservation.
Energy, momentum and angular momentum conservations in de Sitter special relativity
NASA Astrophysics Data System (ADS)
Lu, Jia-An
2016-01-01
In de Sitter (dS) special relativity (SR), two kinds of conserved currents are derived. The first kind is a 5-dimensional dS-covariant angular momentum (AM) current, which unites the energy-momentum (EM) and 4d AM current in an inertial-type coordinate system. The second kind is a dS-invariant AM current, which can be generalized to a conserved current for the coupling system of the matter field and gravitational field in dS gravity. Moreover, an inherent EM tensor is predicted, which comes from the spin part of the dS-covariant current. All the above results are compared to the ordinary SR with Lorentz invariance.
Characterization of (asymptotically) Kerr–de Sitter-like spacetimes at null infinity
NASA Astrophysics Data System (ADS)
Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter
2016-08-01
We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars–Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr–de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.
Explorations in de Sitter space and amorphous black hole bound states in string theory
NASA Astrophysics Data System (ADS)
Anous, Tarek
This dissertation is split into two distinct halves. The first covers various calculations done in order gain insights on holography in de Sitter space. The dispersion relation of linear perturbations of empty de Sitter space are numerically computed as a function of the location of a hypersurface on which conformal Dirichlet boundary conditions are imposed. When the hypersurface is near the south pole, the dispersion relation is linear, whereas for a hypersurface near the cosmological horizon, it satisfies that of the incompressible Navier-Stokes equation. This result is shown to hold for non-linear perturbations. We also compute the thermodynamic stability of rotating black holes in dS4 as a function of their mass and angular momentum. We focus particularly on the rotating Nariai geometry, which is a near horizon limit of the rotating black hole as the outer and cosmological horizons tend towards each other. We study massless scalar fields in these backgrounds and obtain their quasinormal mode spectrum explicitly. We uncover an interesting structure in their two-point functions, namely that they resemble thermal Green's functions of a two-dimensional conformal field theory. The second half of this dissertation deals with the study of multicentered black holes in string theory and their finite temperature extensions. We show that there exist finite temperature single-centered solutions in N = 2 supergravity in asymptotically flat space that admit bound states with BPS probe particles. We compute the existence regions of these bound states as well as their dependence on temperature. We embed these solutions in Fayet-Illiopoulos gauged supergravity and show that bound states persist in asymptotically AdS4 spacetimes. We make attempts to understand these disordered bound states as amorphous/glassy phases of the dual conformal field theory.
Anabalón, Andrés; Astefanesei, Dumitru
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Verdaguer, Enric
2016-03-01
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds to a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar
2007-02-01
In this Letter we study the generation of gravitational waves during inflation from a 5D vacuum theory of gravity. Within this formalism, on an effective 4D de Sitter background, we recover the typical results obtained with 4D inflationary theory in general relativity, for the amplitude of gravitational waves generated during inflation. We also obtain a range of values for the amplitude of tensor to scalar ratio which is in agreement with COBE observations.
Blaga, Robert
2015-12-07
We investigate the energy radiated by an inertial scalar charge evolving in the expanding Poincaré patch of de Sitter spacetime, in the framework of scalar QED perturbation theory. We approximate the transition amplitude in the small expansion parameter limit and show that the leading contribution to the radiated energy has the form of the energy radiated by an accelerated particle in Minkowski space.
Zhang, Ye; Cheng, Caiyu; He, Duofen; Shi, Weibin; Fu, Chunjiang; Wang, Xukai; Zeng, Chunyu
2016-04-15
Transcriptional gene silencing (TGS) induced by synthetic exogenous short interfering RNAs (siRNAs) that are fully complementary to gene promoters has been demonstrated in mammalian cells. However, it remains unclear whether microRNAs (miRNAs), which are endogenous small regulatory RNAs, can also silence gene transcription. We investigated the regulation mechanism of let-7d on dopamine D3 receptor (DRD3) in immortalized renal proximal tubule (RPT) cells of rats, where let-7d has a predicted homologous target site within DRD3 promoter. We found that let-7d mimics repressed DRD3 expression at the transcription level in RPT cells. Let-7d induced DRD3 inhibition via DNA-methyltransferase 1 (DNMT1) and DNA-methyltransferase 3b (DNMT3b) dependent DNA methylation and the inhibition could be abolished by 5'-aza-2'-deoxycytidine (5-aza-dc), a DNA methylation inhibitor. Let-7d induced DRD3 repression was associated with the recruitment of Argonaute 2 (AGO2) protein. Histone 3 lysine 9 dimethylation (H3K9me2) was involved in the let-7d induced DRD3 TGS, indicating the chromatin-level silencing. In conclusion, our results demonstrated that let-7d may induce DRD3 repression in a transcriptional manner by means of DNMTs dependent DNA methylation and histone modification. It is suggested that miRNAs may act as a transcriptional gene regulator via the recognition of the homologous target site within the gene promoter. PMID:26802971
Chu, Yi-Zen
2014-09-15
Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere.
Higher-spin realization of a de Sitter static patch/cut-off CFT correspondence
NASA Astrophysics Data System (ADS)
Karch, Andreas; Uhlemann, Christoph F.
2013-08-01
We derive a holographic relation for the de Sitter (dS) static patch with the dual field theory defined on the observer horizon. The starting point is the duality of higher-spin theory on AdS4 and the O(N) vector model. We build on a similar analytic continuation as used recently to obtain a realization of dS/CFT and adapt it to the static patch. The resulting duality relates higher-spin theory on the dS4 static patch to a cutoff conformal field theory on the cylinder R×S2. The construction permits a derivation of the finite thermodynamic entropy associated to the horizon of the static patch from the dual field theory. As a further brick, we recover the spectrum of quasinormal frequencies from the correlation functions of the boundary theory. In the last part, we incorporate the dS/dS correspondence as an independent proposal for holography on dS and show that a concrete realization can be obtained by similar reasoning.
Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius
NASA Astrophysics Data System (ADS)
Rabounski, Dmitri; Borissova, Larissa
2010-04-01
Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 < 0 and p = -ρ0 c^2 > 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.
Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-06-15
To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regular black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.
Metastable SUSY breaking, de Sitter moduli stabilisation and Kähler moduli inflation
NASA Astrophysics Data System (ADS)
Krippendorf, Sven; Quevedo, Fernando
2009-11-01
We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to Script N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kähler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kähler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kähler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.
Constructing de Sitter vacua in no-scale string models without uplifting
NASA Astrophysics Data System (ADS)
Covi, Laura; Gomez-Reino, Marta; Gross, Christian; Palma, Gonzalo A.; Scrucca, Claudio A.
2009-03-01
We develop a method for constructing metastable de Sitter vacua in Script N = 1 supergravity models describing the no-scale volume moduli sector of Calabi-Yau string compactifications. We consider both heterotic and orientifold models. Our main guideline is the necessary condition for the existence of metastable vacua coming from the Goldstino multiplet, which constrains the allowed scalar geometries and supersymmetry-breaking directions. In the simplest non-trivial case where the volume is controlled by two moduli, this condition simplifies and turns out to be fully characterised by the intersection numbers of the Calabi-Yau manifold. We analyse this case in detail and show that once the metastability condition is satisfied it is possible to reconstruct in a systematic way the local form of the superpotential that is needed to stabilise all the fields. We apply then this procedure to construct some examples of models where the superpotential takes a realistic form allowed by flux backgrounds and gaugino condensation effects, for which a viable vacuum arises without the need of invoking corrections to the Kähler potential breaking the no-scale property or uplifting terms. We finally discuss the prospects of constructing potentially realistic models along these lines.
Einstein-vector gravity, emerging gauge symmetry, and de Sitter bounce
NASA Astrophysics Data System (ADS)
Geng, Wei-Jian; Lü, H.
2016-02-01
We construct a class of Einstein-vector theories where the vector field couples bilinearly to the curvature polynomials of arbitrary order in such a way that only the Riemann tensor rather than its derivative enters the equations of motion. The theories can thus be ghost free. The U (1 ) gauge symmetry may emerge in the vacuum and also in some weak-field limit. We focus on the two-derivative theory and study a variety of applications. We find that in this theory, the energy-momentum tensor of dark matter provides a position-dependent gauge-violating term to the Maxwell field. We also use the vector as an inflaton and construct cosmological solutions. We find that the expansion can accelerate without a bare cosmological constant, indicating a new candidate for dark energy. Furthermore, we obtain exact solutions of de Sitter bounce, generated by the vector which behaves like a Maxwell field at later times. We also obtain a few new exact black holes that are asymptotic to flat and Lifshitz spacetimes. In addition, we construct exact wormholes and Randall-Sundrum II domain walls.
Group theoretical interpretation of the modified gravity in de Sitter space
NASA Astrophysics Data System (ADS)
Dehghani, M.
2016-03-01
A framework has been presented for theoretical interpretation of various modified gravitational models which is based on the group theoretical approach and unitary irreducible representations (UIR's) of de Sitter (dS) group. In order to illustrate the application of the proposed method, a model of modified gravity has been investigated. The background field method has been utilized and the linearized modified gravitational field equation has been obtained in the 4-dimensional dS space-time as the background. The field equation has been written as the eigne-value equation of the Casimir operators of dS space using the flat 5-dimensional ambient space notations. The Minkowskian correspondence of the theory has been obtained by taking the zero curvature limit. It has been shown that under some simple conditions, the linearized modified field equation transforms according to two of the UIR's of dS group labeled by Π 2,1 ± and Π 2,2 ± in the discrete series. It means that the proposed modified gravitational theory can be a suitable one to describe the quantum gravitational effects in its linear approximation on dS space. The field equation has been solved and the solution has been written as the multiplication of a symmetric rank-2 polarization tensor and a massless scalar field using the ambient space notations. Also the two-point function has been calculated in the ambient space formalism. It is dS invariant and free of any theoretical problems.
Baby de Sitter black holes and dS3/CFT2
NASA Astrophysics Data System (ADS)
de Buyl, Sophie; Detournay, Stéphane; Giribet, Gaston; Ng, Gim Seng
2014-02-01
Unlike three-dimensional Einstein gravity, three-dimensional massive gravity admits asymptotically de Sitter space (dS) black hole solutions. These black holes present interesting features and provide us with toy models to study the dS/CFT correspondence. A remarkable property of these black holes is that they are always in thermal equilibrium with the cosmological horizon of the space that hosts them. This invites us to study the thermodynamics of these solutions within the context of dS/CFT. We study the asymptotic symmetry group of the theory and find that it indeed coincides with the local two-dimensional conformal algebra. The charge algebra associated to the asymptotic Killing vectors consists of two copies of the Virasoro algebra with non-vanishing central extension. We compute the mass and angular momentum of the dS black holes and verify that a naive application of Cardy's formula exactly reproduces the entropy of both the black hole and the cosmological horizon. By adapting the holographic renormalization techniques to the case of dS space, we define the boundary stress tensor of the dual Euclidean conformal field theory.
Electromagnetic self-force on a static charge in Schwarzschild-de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Kuchar, Joseph; Poisson, Eric; Vega, Ian
2013-12-01
We compute the self-force acting on an electric charge at rest in Schwarzschild-de Sitter spacetimes, allowing the cosmological constant to be either positive or negative. In the case of a positive cosmological constant, we show that the self-force is always positive, representing a repulsion from the black hole, and monotonically decreasing with increasing distance from the black hole. The spectrum of results is richer in the case of a negative cosmological constant. Here, the self-force is not always positive—it is negative when the black-hole and cosmological scales are comparable and the charge is close to the black hole—and not always monotonically decreasing—it is actually monotonically increasing when the cosmological scale is sufficiently small compared to the black-hole scale. The self-force also approaches a constant asymptotic value when the charge is moved to large cosmological distances; this feature can be explained in terms of an interaction between the charge and the conformal boundary at infinity, which acts as a grounded conductor.
MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis
Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong
2013-01-01
MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3′ UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3′ UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders. PMID:23435502
Di Fiore, Riccardo; Drago-Ferrante, Rosa; Pentimalli, Francesca; Di Marzo, Domenico; Forte, Iris Maria; Carlisi, Daniela; De Blasio, Anna; Tesoriere, Giovanni; Giordano, Antonio; Vento, Renza
2016-08-01
Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc. PMID:26679758
Scalar Casimir densities induced by a cylindrical shell in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Saharian, A. A.; Manukyan, V. F.
2015-01-01
We evaluate the positive-frequency Wightman function, the vacuum expectation values (VEVs) of the field squared, and the energy-momentum tensor for a massive scalar field with general curvature coupling for a cylindrical shell in the background of de Sitter (dS) spacetime. The field is prepared in the Bunch-Davies vacuum state and on the shell, and the corresponding operator obeys the Robin boundary condition (BC). In the region inside the shell and for non-Neumann BC, the Bunch-Davies vacuum is a physically realizable state for all values of the mass and curvature coupling parameter. For both interior and exterior regions, the VEVs are decomposed into boundary-free dS and shell-induced parts. We show that the shell-induced part of the vacuum energy-momentum tensor has a nonzero off-diagonal component corresponding to the energy flux along the radial direction. Unlike in the case of a shell in Minkowski bulk, for the dS background, the axial stresses are not equal to the energy density. In dependence of the mass and the coefficient in the BC, the vacuum energy density and the energy flux can be either positive or negative. The influence of the background gravitational field on the boundary-induced effects is crucial at distances from the shell larger than the dS curvature scale. In particular, the decay of the VEVs with distance is power-law (monotonic or oscillatory with dependence of the mass) for both massless and massive fields. For the Neumann BC, the decay is faster than that for non-Neumann conditions.
Mora, P.J.; Woodard, R.P.; Tsamis, N.C. E-mail: tsamis@physics.uoc.gr
2013-10-01
We use the Hartree approximation to the Einstein equation on de Sitter background to solve for the one loop correction to the graviton mode function. This should give a reasonable approximation to how the ensemble of inflationary gravitons affects a single external graviton. At late times we find that the one loop correction to the plane wave mode function u(η,k) goes like GH{sup 2}ln (a)/a{sup 2}, where a is the inflationary scale factor. One consequence is that the one loop corrections to the ''electric'' components of the linearized Weyl tensor grow compared to the tree order result.
Quasinormal modes and a new instability of Einstein-Gauss-Bonnet black holes in the de Sitter world
NASA Astrophysics Data System (ADS)
Cuyubamba, M. A.; Konoplya, R. A.; Zhidenko, A.
2016-05-01
Analysis of time-domain profiles for gravitational perturbations shows that Gauss-Bonnet black holes in a de Sitter world possess a new kind of dynamical instability which does not take place for asymptotically flat Einstein-Gauss-Bonnet black holes. The new instability is in the gravitational perturbations of the scalar type and is due to the nonvanishing cosmological constant. Analysis of the quasinormal spectrum in the stability sector shows that although the scalar type of gravitational perturbations alone does not obey Hod's conjectural bound, connecting the damping rate and the Hawking temperature, the vector and tensor types (and thereby the gravitational spectrum as a whole) do obey it.
Real Scalar Field Scattering Around the Extreme Reissner-Nordström Black Hole in de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Guo, Guanghai; Yan, Pengfei; Wang, Suojie
2015-02-01
The real scalar field scattering of the extreme Reissner-Nordström black hole in de Sitter spacetime is investigated numerically via the polynomial approximation. It is found that the scalar field behaves like harmonic waves under the tortoise coordinate, while piles up near the outer event horizon and the cosmological horizon. The abnormity in previous work is eliminated by appropriate application of the boundary conditions in numerical calculations. Substituting the continuous effective potential with a stair potential of n steps, we evaluate the transmission and reflection coefficients of the scalar field in high and low energy regimes, where an asymptotical formula is derived.
NASA Astrophysics Data System (ADS)
Brizuela, David; Kiefer, Claus; Krämer, Manuel
2016-05-01
We present detailed calculations for quantum-gravitational corrections to the power spectra of gauge-invariant scalar and tensor perturbations during inflation. This is done by performing a semiclassical Born-Oppenheimer type of approximation to the Wheeler-DeWitt equation, from which we obtain a Schrödinger equation with quantum-gravitational correction terms. As a first step, we perform our calculation for a de Sitter universe and find that the correction terms lead to an enhancement of power on the largest scales.
Dirac equation for massive neutrinos in a Schwarzschild-de Sitter spacetime from a 5D vacuum
NASA Astrophysics Data System (ADS)
Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio
2011-11-01
Starting from a Dirac equation for massless neutrino in a 5D Ricci-flat background metric, we obtain the effective 4D equation for massive neutrino in a Schwarzschild-de Sitter (SdS) background metric from an extended SdS 5D Ricci-flat metric. We use the fact that the spin connection is defined to an accuracy of a vector, so that the covariant derivative of the spinor field is strongly dependent of the background geometry. We show that the mass of the neutrino can be induced from the extra space-like dimension.
NASA Astrophysics Data System (ADS)
Chen, Shi-Wu; Liu, Xiong-Wei; Lin, Kai; Zeng, Xiao-Xiong; Yang, Shu-Zheng
2008-08-01
Hawking radiation from cosmological horizon and event horizon of the Reissner Nordström de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.
Generalized parton distributions in AdS/QCD
Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.
2011-02-01
The nucleon helicity-independent generalized parton distributions of quarks are calculated in the zero skewness case, in the framework of the anti-de Sitter/QCD model. The present approach is based on a matching procedure of sum rules relating the electromagnetic form factors to generalized parton distributions and anti-de Sitter modes.
NASA Astrophysics Data System (ADS)
Pappas, T.; Kanti, P.; Pappas, N.
2016-07-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.
A line source in Minkowski for the de Sitter spacetime scalar Green’s function: massive case
NASA Astrophysics Data System (ADS)
Chu, Yi-Zen
2015-07-01
For certain classes of space(time)s embeddable in a higher dimensional flat space(time), it appears possible to compute the minimally coupled massless scalar Green’s function in the former by convolving its cousin in the latter with an appropriate scalar charge density. The physical interpretation is that beings residing in the higher dimensional flat space(time) may set up sources to fool the observer confined on the lower dimensional curved submanifold that she is detecting the field generated by a space(time) point source in her own world. In this paper we extend the general formula to include a non-zero mass. We then employ it to derive the Green’s function of the massive wave operator in (d≥slant 2)-dimensional de Sitter spacetime and that of the Helmholtz differential operator—the Laplacian plus a ‘mass term’—on the (d≥slant 2)-sphere. For both cases, the trajectories of the scalar sources are the same as that of the massless case, while the required scalar charge densities are determined by solving an eigenvalue equation. To source these massive Green’s functions, we show that the (d+1)-dimensional Minkowski/Euclidean experimentalists may choose to use either massive or massless scalar line charges. In de Sitter spacetime, the embedding method employed here leads directly to a manifest separation between the null cone versus tail terms of the Green’s functions.
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Khlopov, Maxim
2015-07-01
We address the question of regular primordial black holes with de Sitter interior, their remnants and gravitational vacuum solitons G-lumps as heavy dark matter candidates providing signatures for inhomogeneity of early universe, which is severely constrained by the condition that the contribution of these objects in the modern density does not exceed the total density of dark matter. Primordial black holes and their remnants seem to be most elusive among dark matter candidates. However, we reveal a nontrivial property of compact objects with de Sitter interior to induce proton decay or decay of neutrons in neutron stars. The point is that they can form graviatoms, binding electrically charged particles. Their observational signatures as dark matter candidates provide also signatures for inhomogeneity of the early universe. In graviatoms, the cross-section of the induced proton decay is strongly enhanced, what provides the possibility of their experimental searches. We predict proton decay paths induced by graviatoms in the matter as an observational signature for heavy dark matter searches at the IceCUBE experiment.
NASA Astrophysics Data System (ADS)
AlMuhammad, A. S.; Lopez-Mobilia, R.
2016-03-01
We use the f2FF model to study the generation of primordial magnetic fields (PMF) in the context of large field inflation (LFI), described by the potential, V ˜ M φp. We compute the magnetic and electric spectra for all possible values of the model parameters under de Sitter and power law expansion. We show that scale invariant PMF are not obtained in LFI to first order in the slow roll approximation, if we impose the constraint V(φ=0)˜ 0. Alternatively, if these constraints are relaxed, the scale invariant PMF can be generated. The associated electric field energy can fall below the energy density of inflation, ρInf for the ranges of comoving wavenumbers, k > 8 × 10-7 Mpc-1 and k > 4 × 10-6 Mpc-1 in de Sitter and power law (PL) expansion. Further, it can drop below ρInf on the ranges, e-foldings N > 51, p<1.66, p >2.03, l_0 > 3 × 105 MPl-1 (H_i < 3.3 × 10-6 MPl), and M > 2.8 × 10-3 MPl. All of the above ranges fit with the observational constraints.
Coulomb's law corrections and fermion field localization in a tachyonic de Sitter thick braneworld
NASA Astrophysics Data System (ADS)
Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio
2016-05-01
Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ̅ in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb's law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb's law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb's law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or
Hwang, Jae Jin; Lee, Dong Ho; Lee, Ae-Ra; Yoon, Hyuk; Shin, Cheol Min; Park, Young Soo; Kim, Nayoung
2015-01-01
AIM: To evaluate the efficacy of the 14-d moxifloxacin-based triple therapy for the second-line eradication of Helicobacter pylori (H. pylori) infection. METHODS: Between 2011 and 2013, we conducted a retrospective review of the medical records of 160 patients who had experienced failure of their first-line proton pump inhibitor-based eradication therapy and subsequently received the moxifloxacin-based triple therapy as a second-line eradication treatment regimen. The patients who were treated with the moxifloxacin-based triple therapy (oral 20 mg rabeprazole b.i.d., 1000 mg amoxicillin b.i.d., and 400 mg moxifloxacin q.d.) for 7 d were assigned to the RAM-7 group (n = 79) while those who took them for 14 days were assigned to RAM-14 group (n = 81). The eradication rates for both groups were determined by intention-to-treat (ITT) and per-protocol (PP) analyses. ITT analysis compared the treatment groups as originally allocated while the PP analysis including only those patients who had completed the treatment as originally allocated. Successful eradication therapy for H. pylori infection was defined as the documentation of a negative 13C-urea breath test 4 wk after the end of the eradication treatment. RESULTS: The overall ITT eradication rate was 76.2% (122/160). The final ITT eradication rates were 70.8% (56/79; 95%CI: 63.3%-77.1%) in the RAM-7 group and 81.4% (66/81; 95%CI: 74.6%-88.3%) in the RAM-14 group (P = 0.034). The overall PP eradication rate was 84.1% (122/145), and the final PP eradication rates were 77.7% (56/72; 95%CI: 70.2%-85.3%) in the RAM-7 group and 90.4% (66/73; 95%CI: 82.8%-98.1%) in the RAM-14 group (P = 0.017). The H. pylori-eradication rates in the RAM-14 group were significantly higher compared with that of the RAM-7 group according to both the ITT (P = 0.034) and the PP analyses (P = 0.017). Both groups exhibited good treatment compliance (RAM-7/RAM-14 group: 100%/100%). The adverse event rates were 19.4% (14/72) and 20.5% (15/73) in the
Scalar particles mass spectrum and localization on FRW branes embedded in a 5D de Sitter bulk
NASA Astrophysics Data System (ADS)
Dariescu, Marina-Aura; Dariescu, Ciprian
2014-07-01
In this paper, we study the scalar fields evolving on a FRW brane embedded in a five-dimensional de Sitter bulk. The scale function and the warp factor, solutions of the Einstein equations, are employed in the five-dimensional Gordon equation describing the massive scalar field, whose wave function depends on the cosmic time and on the extra-dimension. We point out the existence of bounded states and find a minimum value of the effective four-dimensional mass. For the test (scalar) field envelope along the extra-dimension, we derive the corresponding Schrödinger-like equation which is formally that for the Pöschl-Teller potential. Accordingly, we have obtained the quantization law for the mass parameter of the tested scalar field.
Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2015-09-01
We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.
Conformally de Sitter space from anisotropic space-like D3-brane of type IIB string theory
NASA Astrophysics Data System (ADS)
Roy, Shibaji
2014-05-01
We construct a four-dimensional de Sitter space up to a conformal transformation by compactifying the anisotropic SD3-brane solution of type IIB string theory on a six-dimensional product space of the form H5×S1, where H5 is a five-dimensional hyperbolic space and S1 is a circle. The radius of the hyperbolic space is chosen to be constant. The radius of the circle and the dilaton in four dimensions are time dependent and not constant in general. By different choices of parameters characterizing the SD3-brane solution, either the dilaton or the radius of the circle can be made constant but not both. The form field is also nonvanishing in general, but it can be made to vanish without affecting the solution. This construction might be useful for a better understanding of dS/CFT correspondence as well as for cosmology.
Lentjes, Marleen A H; McTaggart, Alison; Mulligan, Angela A; Powell, Natasha A; Parry-Smith, David; Luben, Robert N; Bhaniani, Amit; Welch, Ailsa A; Khaw, Kay-Tee
2014-02-01
The aim of the present study was to describe the energy, nutrient and crude v. disaggregated food intake measured using 7 d diet diaries (7dDD) for the full baseline Norfolk cohort recruited for the European Prospective Investigation into Cancer (EPIC-Norfolk) study, with emphasis on methodological issues. The first data collection took place between 1993 and 1998 in Norfolk, East Anglia (UK). Of the 30,445 men and women, aged 40-79 years, registered with a general practitioner invited to participate in the study, 25,639 came for a health examination and were asked to complete a 7dDD. Data from diaries with data recorded for at least 1 d were obtained for 99% members of the cohort; 10,354 (89·8%) of the men and 12,779 (91·5%) of the women completed the diet diaries for all 7 d. Mean energy intake (EI) was 9·44 (SD 2·22) MJ/d and 7·15 (SD 1·66) MJ/d, respectively. EI remained approximately stable across the days, but there was apparent under-reporting among the participants, especially among those with BMI >25 kg/m². Micronutrient density was higher among women than among men. In conclusion, under-reporting is an issue, but not more so than that found in national surveys. How foods were grouped (crude or disaggregated) made a difference to the estimates obtained, and comparison of intakes showed wide limits of agreement. The choice of variables influences estimates obtained from the food group data; while this may not alter the ranking of individuals within studies, this issue may be relevant when comparing absolute food intakes between studies. PMID:24041116
Shi, Rong; Xu, Chengshi; Wang, Yun; Cai, Jun; Yue, Yun; Wu, Anshi
2015-01-01
MicroRNAs (miRNAs) play a key role in different nervous system diseases. We sought to determine the role of miRNAs in isoflurane-induced learning and memory impairment in aged rats. Male Sprague-Dawley (SD) rats of 18 month were randomly assigned to control group (exposed to mock anesthesia), 2-hour group and 6-hour group (exposed to 2% isoflurane for 2 and 6 hours respectively). By Morris Water Maze, 6-hour group showed impaired learning and memory ability while 2-hour group not. As shown by miRNA array, control group and 2-hour group showed a similar miRNA expression profile. And 38 miRNAs are differently expressed in 6-hour group compared to the other 2 groups, including 21 up-regulated miRNAs and 17 down-regulated miRNAs. And 4 of the differentially expressed miRNAs were validated independently by qRT-PCR. Let-7d was downregulated in 6-hour group. Additionally, we demonstrated that amyloid precursor protein (APP) was a direct target of let-7d by Fluorescent report assay. Increased expression of APP and amyloid-β (Aβ) were found in the hippocampi of 6-hour group. Downregulation of let-7d might contribute to isoflurane-induced learning and memory impairment through upregulating its target APP, and increasing the production of Aβ subsequently. PMID:25799420
NASA Astrophysics Data System (ADS)
Pejhan, Hamed; Rahbardehghan, Surena
2016-04-01
Respecting that any consistent quantum field theory in curved space-time must include black hole radiation, in this paper, we examine the Krein-Gupta-Bleuler (KGB) formalism as an inevitable quantization scheme in order to follow the guideline of the covariance of minimally coupled massless scalar field and linear gravity on de Sitter (dS) background in the sense of Wightman-Gärding approach, by investigating thermodynamical aspects of black holes. The formalism is interestingly free of pathological large distance behavior. In this construction, also, no infinite term appears in the calculation of expectation values of the energy-momentum tensor (we have an automatic and covariant renormalization) which results in the vacuum energy of the free field to vanish. However, the existence of an effective potential barrier, intrinsically created by black holes gravitational field, gives a Casimir-type contribution to the vacuum expectation value of the energy-momentum tensor. On this basis, by evaluating the Casimir energy-momentum tensor for a conformally coupled massless scalar field in the vicinity of a nonrotating black hole event horizon through the KGB quantization, in this work, we explicitly prove that the hole produces black-body radiation which its temperature exactly coincides with the result obtained by Hawking for black hole radiation.
Stability of the Schwarzschild-de Sitter black hole in the dRGT massive gravity theory
NASA Astrophysics Data System (ADS)
Kodama, Hideo; Arraut, Ivan
2014-03-01
The Schwarzschild-de Sitter solution in the Einstein theory with a positive cosmological constant Λ =m^2/α becomes an exact solution to the de Rham-Gabadadze-Tolley (dRGT) nonlinear massive gravity theory with the mass parameter m when the theory parameters α and β satisfy the relation β =α ^2. We study the perturbative behavior of this black hole solution in the nonlinear dRGT theory with β =α ^2. We find that the linear perturbation equations become identical to those for the vacuum Einstein theory when they are expressed in terms of gauge-invariant variables. This implies that this black hole is stable in the dRGT theory as far as the spacetime structure is concerned, in contrast to the case of the bi-Schwarzschild solution in the bi-metric theory. However, we have also found a pathological feature that the general solution to the perturbation equations contain a single arbitrary function of spacetime coordinates. This implies a degeneracy of dynamics in the Stückelberg field sector at the linear perturbation level in this background. The physical significance of this degeneracy depends on how the Stückelberg fields couple observable fields.
Zhao, Suhui; Wan, Chengsong; Ke, Changwen; Seto, Jason; Dehghan, Shoaleh; Zou, Lirong; Zhou, Jie; Cheng, Zetao; Jing, Shuping; Zeng, Zhiwei; Zhang, Jing; Wan, Xuan; Wu, Xianbo; Zhao, Wei; Zhu, Li; Seto, Donald; Zhang, Qiwei
2014-01-01
Human adenoviruses (HAdVs) are highly contagious pathogens causing acute respiratory disease (ARD), among other illnesses. Of the ARD genotypes, HAdV-7 presents with more severe morbidity and higher mortality than the others. We report the isolation and identification of a genome type HAdV-7d (DG01_2011) from a recent outbreak in Southern China. Genome sequencing, phylogenetic analysis, and restriction endonuclease analysis (REA) comparisons with past pathogens indicate HAdV-7d has re-emerged in Southern China after an absence of twenty-one years. Recombination analysis reveals this genome differs from the 1950s-era prototype and vaccine strains by a lateral gene transfer, substituting the coding region for the L1 52/55 kDa DNA packaging protein from HAdV-16. DG01_2011 descends from both a strain circulating in Southwestern China (2010) and a strain from Shaanxi causing a fatality and outbreak (Northwestern China; 2009). Due to the higher morbidity and mortality rates associated with HAdV-7, the surveillance, identification, and characterization of these strains in population-dense China by REA and/or whole genome sequencing are strongly indicated. With these accurate identifications of specific HAdV types and an epidemiological database of regional HAdV pathogens, along with the HAdV genome stability noted across time and space, the development, availability, and deployment of appropriate vaccines are needed. PMID:25482188
Nuovo, Gerard J; Garofalo, Michela; Valeri, Nicola; Roulstone, Vicki; Volinia, Stefano; Cohn, David E; Phelps, Mitch; Harrington, Kevin J; Vile, Richard; Melcher, Alan; Galanis, Evanthia; Sehl, Sarah; Adair, Rob; Scott, Karen; Rose, Ailsa; Toogood, Giles; Coffey, Matthew C
2014-01-01
We analyzed the in situ molecular correlates of infection from cancer patients treated with reovirus. Melanoma, colorectal, and ovarian cancer samples from such patients showed variable infection of the cancer cells but not the intermingled benign cells. RT in situ PCR showed most cancer cells contained the viral genome with threefold less having productive viral infection as documented by either tubulin or reoviral protein co-expression. Productive infection in the cancer cells was strongly correlated with co-expression of p38 and caspase-3 as well as apoptosis-related death (P<0.001). The cancer cell apoptotic death was due to a marked viral-induced inhibition of microRNA-let-7d that, in turn, upregulated caspase-3 activity. In summary, reovirus shows a striking tropism to cancer cells in clinical samples. A rate-limiting factor of reovirus-induced cancer cell death is productive viral infection that operates via the marked reduction of microRNA-let-7d and concomitant elevated caspase-3 expression. PMID:22699519
Marais, G F; Marais, A S
1990-02-01
Endopeptidase zymograms of the translocation line 'Indis' revealed the presence of several major and minor bands that had differential expression in coleoptile and seed tissues. While 'Indis' lacks Ep-D1a, which is present in the parental cultivar 'Inia 66', it also may not express any of the Th. distichum bands. The 'Indis' zymogram was found to be identical to that of an isogenic line of 'Inia 66' possessing Lr19. Since the absence of an Ep-D1a product appears to be linked to the 7DL translocation, it is possible to use the null condition as a marker for both the Lr19 or 'Indis' translocations. The 'Indis' translocation also did not show recombination with the cn-D1 chlorophyl mutant on 7DL, confirming that a part of 7D was involved. The results of a telocentric mapping experiment involving the 7D telosomes indicated that in 'Indis' a chromosome segment from Th. distichum replaced a large section of 7DL of 'Inia 66'. PMID:24226216
NASA Astrophysics Data System (ADS)
Alam, Mahboob; Alam, Mohammad Jane; Nami, Shahab A. A.; Lee, Dong-Ung; Azam, Mohammad; Ahmad, Shabbir
2016-03-01
The present paper reports the detailed computational study including molecular docking of a biologically active steroidal tetrazole, 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole-3β-yl chloride. The molecular structure, IR and NMR (13C and 1H) spectra of the tetrazole were interpreted by comparing the experimental results with the theoretical, B3LYP/6-311G(d,p) calculations. The vibrational bands appearing in the FTIR are assigned with great accuracy using animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. The theoretical results are found in good correlation with the experimental data. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The in vitro anti-tumor activity of 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole-3β-yl chloride has also been carried out against five human tumor cell lines. Doxorubicin is used as a standard drug for the in vitro anti-tumor screening.
NASA Astrophysics Data System (ADS)
Alam, Mahboob; Alam, Mohammad Jane; Nami, Shahab A. A.; Khan, Mohd Shoeb; Ahmad, Shabbir; Lee, Dong-Ung
2015-11-01
The DFT (B3LYP) calculations on a synthetic steroidal molecule 7a-Aza-B-homostigmast-5-eno [7a,7-d] tetrazole, C29H48N4, have been performed. The molecular structure, IR and NMR (13C and 1H) spectra of the present compound were interpreted using experiments (XRD, FTIR, NMR) as well as theoretical, B3LYP/6-311 + G(2d,p), calculations. The vibrational bands appearing in FTIR are assigned with great accuracy using animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and Mullikan's atomic charges have been presented at the same level of theory. The theoretical results are found in good correlation with experimental data. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The in vivo cytotoxicity of 7a-Aza-B-homostigmast-5-eno [7a,7-d] has also been carried out against brine shrimp nauplii by lethality bioassay.
Zhao, Suhui; Wan, Chengsong; Ke, Changwen; Seto, Jason; Dehghan, Shoaleh; Zou, Lirong; Zhou, Jie; Cheng, Zetao; Jing, Shuping; Zeng, Zhiwei; Zhang, Jing; Wan, Xuan; Wu, Xianbo; Zhao, Wei; Zhu, Li; Seto, Donald; Zhang, Qiwei
2014-01-01
Human adenoviruses (HAdVs) are highly contagious pathogens causing acute respiratory disease (ARD), among other illnesses. Of the ARD genotypes, HAdV-7 presents with more severe morbidity and higher mortality than the others. We report the isolation and identification of a genome type HAdV-7d (DG01_2011) from a recent outbreak in Southern China. Genome sequencing, phylogenetic analysis, and restriction endonuclease analysis (REA) comparisons with past pathogens indicate HAdV-7d has re-emerged in Southern China after an absence of twenty-one years. Recombination analysis reveals this genome differs from the 1950s-era prototype and vaccine strains by a lateral gene transfer, substituting the coding region for the L1 52/55 kDa DNA packaging protein from HAdV-16. DG01_2011 descends from both a strain circulating in Southwestern China (2010) and a strain from Shaanxi causing a fatality and outbreak (Northwestern China; 2009). Due to the higher morbidity and mortality rates associated with HAdV-7, the surveillance, identification, and characterization of these strains in population-dense China by REA and/or whole genome sequencing are strongly indicated. With these accurate identifications of specific HAdV types and an epidemiological database of regional HAdV pathogens, along with the HAdV genome stability noted across time and space, the development, availability, and deployment of appropriate vaccines are needed. PMID:25482188
Nonsingular AdS-dS transitions in a landscape scenario
NASA Astrophysics Data System (ADS)
Gupt, Brajesh; Singh, Parampreet
2014-03-01
Understanding transitions between different vacua of a multiverse allowing eternal inflation is an open problem whose resolution is important to gain insights on the global structure of the spacetime as well as the problem of measure. In the classical theory, transitions from the anti-de Sitter to de Sitter vacua are forbidden due to the big-crunch singularity. In this paper, we consider toy landscape potentials: a double well and a triple well potential allowing anti-de Sitter and de Sitter vacua, in the effective dynamics of loop quantum cosmology for the k=-1 FRW model. We show that due to the nonperturbative quantum gravity effects as understood in loop quantum cosmology, nonsingular anti-de Sitter to de Sitter transitions are possible. In the future evolution, an anti-de Sitter bubble universe does not encounter a big-crunch singularity but undergoes a big bounce occurring at a scale determined by the underlying quantum geometry. These nonsingular transitions provide a mechanism through which a probe or a "watcher," used to define a local measure, can safely evolve through the bounce and geodesics can be smoothly extended from anti-de Sitter to de Sitter vacua.
Non-singular AdS-dS transitions in a landscape scenario
NASA Astrophysics Data System (ADS)
Gupt, Brajesh; Singh, Parampreet
2014-03-01
In the multiverse scanario allowing eternal inflation, it is an important problem to understand transitions between different vacua, of which the ones from anti-deSitter to de-Sitter is forbidden in the classical theory. In this talk, we consider toy landscape potentials: a double well and a triple well potential allowing anti-deSitter and de-Sitter vacua, in the effective dynamics of loop quantum cosmology for the k = - 1 FRW model. We show that due to the non-perturbative quantum gravity effects as understood in loop quantum cosmology, non-singular anti-deSitter to de-Sitter transitions are possible. In the future evolution, an anti-deSitter bubble universe does not encounter a big crunch singularity but undergoes a big bounce occurring at a scale determined by the underlying quantum geometry. These non-singular transitions provide a mechanism through which a probe or a ``watcher,'' used to define a local measure, can safely evolve through the bounce and geodesics can be smoothly extended from anti-deSitter to de-Sitter vacua.
NASA Astrophysics Data System (ADS)
Kapoor, Richa; Kar, Supriya; Singh, Deobrat
2015-12-01
We investigate an effective torsion curvature in a second-order formalism underlying a two-form world-volume dynamics in a D5-brane. In particular, we consider the two form in presence of a background (open string) metric in a U(1) gauge theory. Interestingly the formalism may be viewed via a noncoincident pair of (D{\\bar D})5-brane with a global Nereu-Schwarz (NS) two form on an anti-brane and a local two form on a brane. The energy-momentum tensor is computed in the six-dimensional (6D) conformal field theory (CFT). It is shown to source a metric fluctuation on a vacuum created pair of (D{\\bar D})4-brane at a cosmological horizon by the two-form quanta in the gauge theory. The emergent gravity scenario is shown to describe a low-energy (perturbative) string vacuum in 6D with a nonperturbative (NP) quantum correction by a lower (p < 5) dimensional Dp-brane or an anti-brane in the formalism. A closed string exchange between a pair of (D{\\bar D})4-brane, underlying a closed/open string duality, is argued to describe the Einstein vacuum in a low-energy limit. We obtain topological de Sitter (TdS) and Schwarzschild brane universe in six dimensions. The brane/anti-brane geometries are analyzed to explore some of their characteristic and thermal behaviors in presence of the quantum effects. They reveal an underlying nine-dimensional type IIA and IIB superstring theories on S1.
NASA Astrophysics Data System (ADS)
Feng, Zhong-wen; Li, Guo-ping; Zhang, Yan; Zu, Xiao-tao
2015-02-01
In this paper, we combine the Hamilton-Jacobi equation with a new general tortoise coordinate transformation to study quantum tunneling of scalar particles and fermions from the non-stationary higher dimensional Vaidya-de Sitter black hole. The results show that Hamilton-Jacobi equation is a semi-classical foundation equation which can easily derived from the particles' dynamic equations, it can helps us understand the origin of Hawking radiation. Besides, based on the dimensional analysis, we believed that the new general tortoise coordinate transformation is more reasonable than old ones.
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Higuchi, Atsushi; Lima, William C. C.
2016-06-01
We construct the graviton two-point function for a two-parameter family of linear covariant gauges in n -dimensional de Sitter space. The construction is performed via the mode-sum method in the Bunch-Davies vacuum in the Poincaré patch, and a Fierz-Pauli mass term is introduced to regularize the infrared (IR) divergences. The resulting two-point function is de Sitter invariant and free of IR divergences in the massless limit (for a certain range of parameters), although analytic continuation with respect to the mass for the pure-gauge sector of the two-point function is necessary for this result. This general result agrees with the propagator obtained by analytic continuation from the sphere [Phys. Rev. D 34, 3670 (1986); Classical Quantum Gravity 18, 4317 (2001)]. However, if one starts with strictly zero mass theory, the IR divergences are absent only for a specific value of one of the two parameters, with the other parameter left generic. These findings agree with recent calculations in the Landau (exact) gauge [J. Math. Phys. 53, 122502 (2012)], where IR divergences do appear in the spin-two (tensor) part of the two-point function. However, we find the strength (including the sign) of the IR divergence to be different from the one found in this reference.
The pomeron in closed bosonic string theory
Fazio, A. R.
2010-12-22
We compute the couplings of the pomeron to the first few mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.
Yang, Xiaofei; Wang, Changyou; Li, Xin; Chen, Chunhuan; Tian, Zengrong; Wang, Yajuan; Ji, Wanquan
2015-01-01
Leymus mollis (2n = 4x = 28, NsNsXmXm) possesses novel and important genes for resistance against multi-fungal diseases. The development of new wheat—L. mollis introgression lines is of great significance for wheat disease resistance breeding. M11003-3-1-15-8, a novel disomic substitution line of common wheat cv. 7182 –L. mollis, developed and selected from the BC1F5 progeny between wheat cv. 7182 and octoploid Tritileymus M47 (2n = 8x = 56, AABBDDNsNs), was characterized by morphological and cytogenetic identification, analysis of functional molecular markers, genomic in situ hybridization (GISH), sequential fluorescence in situ hybridization (FISH)—genomic in situ hybridization (GISH) and disease resistance evaluation. Cytological observations suggested that M11003-3-1-15-8 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. The GISH investigations showed that line contained 40 wheat chromosomes and a pair of L. mollis chromosomes. EST-STS multiple loci markers and PLUG (PCR-based Landmark Unique Gene) markers confirmed that the introduced L. mollis chromosomes belonged to homoeologous group 7, it was designated as Lm#7Ns. While nulli-tetrasomic and sequential FISH-GISH analysis using the oligonucleotide Oligo-pSc119.2 and Oligo-pTa535 as probes revealed that the wheat 7D chromosomes were absent in M11003-3-1-15-8. Therefore, it was deduced that M11003-3-1-15-8 was a wheat–L. mollis Lm#7Ns (7D) disomic substitution line. Field disease resistance demonstrated that the introduced L. mollis chromosomes Lm#7Ns were responsible for the stripe rust resistance at the adult stage. Moreover, M11003-3-1-15-8 had a superior numbers of florets. The novel disomic substitution line M11003-3-1-15-8, could be exploited as an important genetic material in wheat resistance breeding programs and genetic resources. PMID:26465140
Sedghi, M; Golian, A; Kolahan, F; Afsar, A
2015-01-01
Three experiments were conducted to evaluate the applicability of the Taguchi method (TM) and optimisation algorithms to optimise the branch chain amino acids (BCAA) requirements in 0 to 7 d broiler chicks. In the first experiment, the standardised digestible (SID) amino acids and apparent metabolisable energy (AME) values of maize, wheat and soya bean meal were evaluated. In the second experiment, three factors including leucine (Leu), isoleucine (Ile) and valine (Val), each at 4 levels, were selected, and an orthogonal array layout of L16 (4(3)) using TM was performed. After data collection, optimisation of average daily gain (ADG) and feed conversion ratio (FCR) were obtained using TM. The multiobjective genetic algorithm (MOGA) and random search algorithm (RSA) were also applied to predict the optimal combination of BCAA for broiler performance. In the third experiment, a growth study was conducted to evaluate the applicability of obtained optimum BCAA requirements data by TM, MOGA and RSA, and results were compared with those of birds fed with a diet formulated according to Ross 308 recommendations. In the second experiment, the TM resulted in 13.45 g/kg SID Leu, 8.5 g/kg SID Ile and 10.45 g/kg SID Val as optimum level for maximum ADG (21.57 g/bird/d) and minimum FCR (1.11 g feed/g gain) in 0- to 7-d-old broiler chickens. MOGA predicted the following combinations: SID Leu = 14.8, SID Ile = 9.1 and SID Val = 10.3 for maximum ADG (22.05) and minimum FCR (1.11). The optimisation using RSA predicted Leu = 16.0, Ile = 9.5 and Val = 10.2 for maximum ADG (22.67), and Leu = 15.5, Ile = 9.0 and Val = 10.4 to achieve minimum FCR (1.08). The validation experiment confirmed that TM, MOGA and RSA yielded optimum determination of dietary amino acid requirements and improved ADG and FCR as compared to Aviagen recommendations. However, based on the live animal validation trial, MOGA and RSA overpredicted the optimum requirement as compared to TM. In
Born-Infeld gravity in three dimensions
Alishahiha, Mohsen; Naseh, Ali; Soltanpanahi, Hesam
2010-07-15
In this paper we explore different aspects of three dimensional Born-Infeld as well as Born-Infeld-Chern-Simons gravity. We show that the models have anti-de Sitter and anti-de Sitter wave vacuum solutions. Moreover, we observe that although Born-Infeld-Chern-Simons gravity admits a logarithmic solution, Born-Infeld gravity does not, though it has a limiting logarithmic solution as we approach the critical point.
On the stability of dyons and dyonic black holes in Einstein-Yang-Mills theory
NASA Astrophysics Data System (ADS)
Nolan, Brien C.; Winstanley, Elizabeth
2016-02-01
We investigate the stability of four-dimensional dyonic soliton and black hole solutions of {su}(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter solution, there exist non-trivial dyonic soliton and black hole solutions of the field equations which are stable under linear, spherically symmetric, perturbations of the metric and non-Abelian gauge field.
The cosmological potential of supergravity
NASA Astrophysics Data System (ADS)
Hull, C. M.
The implications of a supergravity model for defining a theory for unifying all the laws of nature are discussed. Attention is given to extended supergravity and properties of anti-de Sitter space, positive mass, and stability. Implications of positive mass for anti-de Sitter space are explored, together with supersymmetry breaking, the invalidity of a bubble solution due to positive energy theorems, and the role of space-time foam (Hawking, 1978) in determining a value for the cosmological constant.
Casimir energy and variational methods in AdS spacetime
NASA Astrophysics Data System (ADS)
Garattini, Remo
2000-08-01
Following the subtraction procedure for manifolds with boundaries, we calculate by variational methods, the Schwarzschild-anti-de Sitter and the anti-de Sitter space energy difference. By computing the one-loop approximation for TT (traceless and transverseless) tensors we discover the existence of an unstable mode at zero temperature, which can be stabilized by the boundary reduction method. Implications for a foam-like space are discussed.
Upadhyaya, Mihir; Kale, Sachin; Chaudhary, Prasad; Dhar, Sanjay
2016-01-01
Introduction: Giant cell tumor accounts for 5 to 9 percent of all primary bony tumors. Giant cell tumors are usually found in the long bones, most often the distal femur, proximal tibia, distal radius and rarely arising from the ribs. In this paper, we describe a case of giant cell tumor presented at an unusual location of the costovertebral junction as a dumbbell shaped tumor. Case Report: Authors report a case of a 27 year old male patient with a giant cell tumor arising from the costovertebral junction at D7, D8, and D9 levels compressing the cord. Well-defined osteolysis with nonsclerotic borders were visualized on radiographs and CT scan images. Intermediate signal intensity on T1 sequences and central high signal and peripheral intermediate signal intensity on T2 sequences was visualized on MRI images. CT guided biopsy was reported as a moderately vascular lesion with spindle cell neoplasm suggestive of schwannoma. The cord was decompressed, tumor mass was surgically resected and stabilization with instrumentation was done. Histopatholgy was suggestive of giant cell tumor. Conclusion: Giant cell tumor may be included in the differential diagnosis in a well-defined lytic lesion when involving the costovertebral junction presenting as a spindle cell tumor on biopsy reports. PMID:27299118
Fluctuation induced magneto-conductivity of Y3Ba5Cu8O18±x and YBa2Cu3O7-d
NASA Astrophysics Data System (ADS)
Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Hamrita, A.; Ben Salem, M.; Ben Azzouz, F.
2015-12-01
A comparative study of the fluctuation magneto-conductivity in YBa2Cu3O7-d (noted Y-123) and Y3Ba5Cu8O18±x (noted Y-358) polycrystalline samples was carried out. Samples were synthesized in oxygen atmosphere using a standard solid state reaction technique. Phases and microstructure have been systematically investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magneto-conductivity was measured in a magnetic field ranging from 0 T to 7 T applied perpendicular to the current path direction. The magneto-conductivity data were analyzed in terms of the temperature derivative of the resistivity and the logarithmic temperature derivative of the conductivity χσ = -d(ln Δσ) dT, where Δσ is the fluctuation conductivity. Analyses of the magneto-conductivity data reveal that Y-123 possesses a better quality of intrinsic Josephson junction compared to Y-358 one while in the former one the depression in superconducting temperature is more pronounced. The applied magnetic field narrowed substantially the three dimensions (3D) Gaussian regime and for Y-358 sample this regime is vanished for high magnetic field ( >1 T). Results are discussed in relation with the difference in the structure and microstructure Y-358 and Y-123. The upper critical and the irreversibility magnetic fields were estimated and were found to be higher in the Y-358 sample.
Allard, Johane P; Keller, Heather; Teterina, Anastasia; Jeejeebhoy, Khursheed N; Laporte, Manon; Duerksen, Donald R; Gramlich, Leah; Payette, Helene; Bernier, Paule; Davidson, Bridget; Lou, Wendy
2015-11-28
This prospective cohort study was conducted in eighteen Canadian hospitals with the aim of examining factors associated with nutritional decline in medical and surgical patients. Nutritional decline was defined based on subjective global assessment (SGA) performed at admission and discharge. Data were collected on demographics, medical information, food intake and patients' satisfaction with nutrition care and meals during hospitalisation; 424 long-stay (≥7 d) patients were included; 38% of them had surgery; 51% were malnourished at admission (SGA B or C); 37% had in-hospital changes in SGA; 19·6% deteriorated (14·6% from SGA A to B/C and 5% from SGA B to C); 17·4% improved (10·6% from SGA B to A, 6·8% from SGA C to B/A); and 63·0 % patients were stable (34·4% were SGA A, 21·3% SGA B, 7·3% SGA C). One SGA C patient had weight loss ≥5%, likely due to fluid loss and was designated as stable. A subset of 364 patients with admission SGA A and B was included in the multiple logistic regression models to determine factors associated with nutritional decline. After controlling for SGA at admission and the presence of a surgical procedure, lower admission BMI, cancer, two or more diagnostic categories, new in-hospital infection, reduced food intake, dissatisfaction with food quality and illness affecting food intake were factors significantly associated with nutritional decline in medical patients. For surgical patients, only male sex was associated with nutritional decline. Factors associated with nutritional decline are different in medical and surgical patients. Identifying these factors may assist nutritional care. PMID:26369948
NASA Astrophysics Data System (ADS)
Lee, Sung Hoon; Lee, Soon-Gul
2016-02-01
We have studied the effects of high-energy electron-beam irradiation on the transition properties of superconducting YBa2Cu3O7- d (YBCO) grain boundary junctions, bicrystal junctions and step-edge junctions, on SrTiO3 substrates. A uniform 1-MeV electron beam irradiated all over the samples. The irradiation doses were 0, 4.7 × 1014, 4.7 × 1015, and 4.7 × 1016 e/cm2. For each junction type, we used at least two samples for each dose level and compared the transition parameters before and after irradiation. For comparison, we also studied the same irradiation effects for YBCO microbridges. We measured the resistive transition temperature, the current-voltage characteristics, the normal-state resistance, and the critical current. The effect of irradiation was the most significant for the bicrystal grain-boundary junction and the least significant for the microbridges. The critical current data for the YBCO bicrystal grain-boundary junction showed a maximum at (0.47 ˜ 0.9) × 1015 e/cm2, and those for the microbridges showed a monotonic decrease with increasing dose. The normal-state resistance increased monotonically with increasing dose for all samples by up to ˜40% for the microbridges and ˜20% for the grain-boundary junctions at 4.7 × 1015 e/cm2. The change in the superconducting temperature ( T c) was negligible except for the bicrystal junction at 4.7 × 1016 e/cm2, which was not superconducting at 77 K. These results show that grain-boundary junctions are more susceptive to irradiation, indicating that their critical currents are controllable by using high-energy electron-beam irradiation.
Wang, Hwang-Huei; Chou, Jen-Wei; Liao, Kuan-Fu; Lin, Zong-Yi; Lai, Hsueh-Chou; Hsu, Chang-Hu; Chen, Chih-Bin
2005-01-01
AIM: To investigate the long-term role of a 3-d rabeprazole-based triple therapy in patients with Helicobacter pylori(H pylori)-infected active peptic ulcers. METHODS: We prospectively studied 115 consecutive patients with H pylori-infected active peptic ulcers. H pylori infection was confirmed if any two of H pylori DNA, histology, and rapid urease test were positive. Patients were assigned to either an open-labeled 3-d course of oral amoxicillin 1000 mg b.i.d., clarithromycin 500 mg b.i.d., and rabeprazole 20 mg b.i.d., or 7-d course of oral amoxicillin 1000 mg b.i.d., clarithromycin 500 mg b.i.d., and rabeprazole 20 mg b.i.d. Subsequently, all patients received oral rabeprazole 20 mg once daily until the 8th wk. Three months after therapy, all patients were followed-up endoscopically for the peptic ulcer, H pylori DNA, histology, and rapid urease test. One year after therapy, H pylori infection was tested using the 13C-urea breath test. RESULTS: The ulcer healing rates 3 mo after therapy were 81.0% vs 75.4% for the 3-d and 7-d groups [intention-to-treat (ITT) analysis, P = 0.47] respectively, and 90.4% vs 89.6% for the 3-d and 7-d groups [per-protocol (PP) analysis, P = 0.89] respectively. The eradication rates 3 mo after therapy were 75.9% vs 73.7% for the 3-d and 7-d groups (ITT, P = 0.79) respectively, and 84.6% vs 87.5% for the 3-d and 7-d groups (PP, P = 0.68) respectively. One year after therapy, seventy-five patients returned to receive the 13C-urea breath test, and the eradication rates were 78.4% vs 81.6% in 3-d and 7-d groups (PP, P = 0.73) respectively. CONCLUSION: Our study showed the eradication rates against H pylori infection 3 and 12 mo after triple therapy were not different between the 3-d and 7-d rabeprazole-based groups. Therefore, the 3-d rabeprazole-based triple therapy may be an alternative treatment for peptic ulcers with H pylori infection. PMID:15786549
MONOPOLES AND DYONS IN THE PURE EINSTEIN YANG MILLS THEORY
HOSOTANI,Y.; BJORAKER,J.
1999-08-16
In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole and dyon solutions. The spectrum of the solutions is discrete in asymptotically flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter space. The solutions are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class of monopole solutions have no node in non-Abelian magnetic fields, and are stable against spherically symmetric perturbations.
Stability of branes trapped by d-dimensional black holes
Hioki, Kenta; Miyamoto, Umpei; Nozawa, Masato
2009-10-15
The system of extended objects interacting with a black hole describes or mimics various gravitational phenomena. In this brief paper, we report the results of stability analysis of codimension-one Dirac-Nambu-Goto branes at rest at the equatorial plane of d-dimensional spherical black holes, including the Schwarzschild and Schwarzschild-(anti-)de Sitter black holes. For the Schwarzschild and Schwarzschild-anti-de Sitter backgrounds the stability of branes is shown analytically by means of a deformation technique. In contrast, for the Schwarzschild-de Sitter background we demonstrate with the help of numerics that the brane is unstable (only) against the s-wave sector of perturbations.
Stability of branes trapped by d-dimensional black holes
NASA Astrophysics Data System (ADS)
Hioki, Kenta; Miyamoto, Umpei; Nozawa, Masato
2009-10-01
The system of extended objects interacting with a black hole describes or mimics various gravitational phenomena. In this brief paper, we report the results of stability analysis of codimension-one Dirac-Nambu-Goto branes at rest at the equatorial plane of d-dimensional spherical black holes, including the Schwarzschild and Schwarzschild-(anti-)de Sitter black holes. For the Schwarzschild and Schwarzschild-anti-de Sitter backgrounds the stability of branes is shown analytically by means of a deformation technique. In contrast, for the Schwarzschild-de Sitter background we demonstrate with the help of numerics that the brane is unstable (only) against the s-wave sector of perturbations.
NASA Astrophysics Data System (ADS)
Kirchbach, M.; Compean, C. B.
2016-07-01
The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Pöschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS4, the conformal symmetries of these interactions are revealed. On dS4 the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS4 space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ˜ 2350 MeV into four conformal families of particles placed on linear f0, π , η , and a0 resonance trajectories, plotted on the ℓ/ M plane. Upon extending the sec2 χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 "missing" mesons. We furthermore notice that the f0 and π trajectories can be viewed as chiral partners, same as the η and a0 trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal multiplets rather than, as usually assumed, only in terms of parity
Hayes, Anthony J; Hughes, Clare E; Smith, Susan M; Caterson, Bruce; Little, Christopher B; Melrose, James
2016-06-01
We compared the immunohistochemical distribution of (1) the novel chondroitin sulfate (CS) sulfation motifs 7D4, 4C3, and 3B3[-], (2) native heparan sulfate (HS) and Δ-HS "stubs" generated by heparitinase III digestion and (3) the HS-proteoglycan (PG), perlecan, in the fetal human elbow joint. Putative stem cell populations associated with hair bulbs, humeral perichondrium, humeral and ulnar rudiment stromal/perivascular tissues expressed the CS motifs 4C3, 7D4, and 3B3[-] along with perlecan in close association but not colocalized. Chondrocytes in the presumptive articular cartilage of the fetal elbow expressed the 4C3 and 7D4 CS sulfation motifs consistent with earlier studies on the expression of these motifs in knee cartilage following joint cavitation. This study also indicated that hair bulbs, skin, perichondrium, and rudiment stroma were all perlecan-rich progenitor cell niches that contributed to the organization and development of the human fetal elbow joint and associated connective tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulfation motifs 7D4, 4C3, and 3B3[-] decorate cell surface PGs on activated stem/progenitor cells and thus can be used to identify these cells in transitional areas of tissue development and in repair tissues and may be applicable to determining a more precise mode of action of stem cells in these processes. Isolation of perlecan from 12 to 14 week gestational age fetal knee rudiments demonstrated that perlecan in these fetal tissues was a HS-CS hybrid PG further supporting roles for CS in tissue development. PMID:27068010
Chandrasekar, Vijay; Dreyer, Jean-Luc
2011-05-01
Molecular adaptations underlying drug seeking and relapse remain largely unknown. Studies highlight post-transcriptional modifications mediated by microRNAs (miRNAs) in addiction and other neurological disorders. We have previously shown that chronic cocaine suppresses miR-124 and let-7d and induces the expression of miR-181a in mesolimbic pathway. To further address the role and target gene regulation network of these miRNAs in vivo in cocaine addiction, we developed lentiviral vector (LV)-expressing miRNAs and their corresponding silencers for stable and regulatable miRNA expression. We tested in vivo miRNA gain and loss of function on cocaine-induced conditioned place preference (CPP) by localized LV-miRNA regulation in the nucleus accumbens (NAc). LV-miR-124 and let-7d expression in the NAc attenuates cocaine CPP, whereas LV-miR-181a enhances it. Silencing miRNAs by corresponding LV-miRNA silencers expressing perfect miRNA target sequences inversed this effect on cocaine CPP. Doxycycline treatment for switching off silencer expression abolished the observed behavioral changes. Behavioral changes mediated by LV-miRNA regulation resulted in dynamic alterations in transcription factors, receptors, and other effector genes involved in cocaine-induced plasticity. Our results describe a complex regulatory pathway mediated by miRNAs in cocaine-mediated neuronal adaptations. PMID:21307844
Dimensionally continued wormhole solutions
Li, X. School of Science, East China University of Science Technology, Shanghai 200237 )
1994-09-15
In this paper we consider wormhole solutions for the action of special Lovelock gravity'' recently discussed by Banados, Teitelboim, and Zanelli. This action is, in odd dimensions, the Chern-Simons form for the anti--de Sitter group and, in even dimensions, the Euler density constructed with the Lorentz part of the anti--de Sitter curvature tensor. We present a systematic study of classical wormhole solutions in the special Lovelock theory with various matter content, including a perfect fluid energy-momentum tensor, axionic field, and conformal scalar field.
Stringy stability of charged dilaton black holes with flat event horizon
Ong, Yen Chin; Chen, Pisin
2015-01-15
Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.
Spin field equations and Heun's equations
NASA Astrophysics Data System (ADS)
Jiang, Min; Wang, Xuejing; Li, Zhongheng
2015-06-01
The Kerr-Newman-(anti) de Sitter metric is the most general stationary black hole solution to the Einstein-Maxwell equation with a cosmological constant. We study the separability of the equations of the massless scalar (spin s=0), neutrino ( s=1/2), electromagnetic ( s=1), Rarita-Schwinger ( s=3/2), and gravitational ( s=2) fields propagating on this background. We obtain the angular and radial master equations, and show that the master equations are transformed to Heun's equation. Meanwhile, we give the condition of existence of event horizons for Kerr-Newman-(anti) de Sitter spacetime by using Sturm theorem.
Quantum probabilities for inflation from holography
NASA Astrophysics Data System (ADS)
Hartle, James B.; Hawking, S. W.; Hertog, Thomas
2014-01-01
The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in hbar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.
Quantum probabilities for inflation from holography
Hartle, James B.; Hawking, S.W.; Hertog, Thomas E-mail: S.W.Hawking@damtp.cam.ac.uk
2014-01-01
The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in h-bar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Katsumata, T.; Yamaguchi, A.; Yasuoka, H.; Kawahara, T.; Sato, Y.; Osada, M.; Kakihana, M.
2002-10-01
We measured the resistivity and the optical reflectivity spectra, and performed the coulometric titration to examine the average hole density in tetragonal (La 1- xCa x)(Ba 1.75- xLa 0.25+ x)Cu 3O 7+ d superconductors. High-purity polycrystalline samples were synthesized for Ca cation content 0⩽ x⩽1 by the amorphous metal-complex method. With increasing xTc increases until x= 0.5-0.6, then decreases over x=0.6. Temperature dependence of the resistivity in 0.4⩽ x⩽0.9 shows a linear relation like a metallic behavior. The resistivity at room temperature decreases until x=0.5, and increases over x=0.5. The x dependence of the optical conductivity within the low energy region is consistent with the results of electrical dc conductivity. The results of the plasma frequency and the coulometric titration also show the tendency that the hole density increases until x=0.5 and decreases over x=0.5 with increasing x.
NASA Astrophysics Data System (ADS)
Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.; Yunin, P. A.
2016-06-01
We investigate the structural and electrical properties of planar superconducting structures based on the YBa2Cu3O7- d (YBCO) epitaxial films obtained by preliminary modification of the substrate surface. A special master mask was formed on the substrates, so that, at the standard YBCO film deposition onto such a substrate, an insulator layer grew in the modified areas and a superconducting film, in the unmodified ones. Thus, the planar superconducting structure of a desired topology was formed, and the YBCO deposition finished the process. Using this technique, YBCO bridges with widths of 4, 10, and 50 μm on films of different thicknesses and a planar inductive coil were formed. The superconducting transition temperature of the bridges was about 90 K, and the critical current density at a temperature of 77 K was up to 3 MA/cm2. The Q factor of the planar inductive coil at a frequency of 85 MHz was 53000 at a temperature of 77 K.
Rotating black holes in a Randall-Sundrum brane with a cosmological constant
NASA Astrophysics Data System (ADS)
Neves, J. C. S.; Molina, C.
2012-12-01
In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences.
Anciaux, Henri; Godoy, Yamile
2015-02-15
We give local, explicit representation formulas for n-dimensional spacelike submanifolds which are marginally trapped in the Minkowski space ℝ{sub 1}{sup n+2}, the de Sitter space dS{sup n+2}, the anti-de Sitter space AdS{sup n+2} and the Lorentzian products S{sup n+1} × ℝ and ℍ{sup n+1} × ℝ of the sphere and the hyperbolic space by the real line.
Validating variational principle for higher order theory of gravity
NASA Astrophysics Data System (ADS)
Ruz, Soumendranath; Sarkar, Kaushik; Sk, Nayem; Sanyal, Abhik Kumar
2015-06-01
Metric variation of higher order theory of gravity requires fixing of the Ricci scalar in addition to the metric tensor at the boundary. Fixing Ricci scalar at the boundary implies that the classical solutions are fixed once and forever to the de Sitter or anti-de Sitter (dS/AdS) solutions. Here, we justify such requirement from the standpoint of Noether symmetry.
Quantum Gravity as a Broken Symmetry Phase of a BF Theory
NASA Astrophysics Data System (ADS)
Miković, Aleksandar
2006-12-01
We explain how General Relativity with a cosmological constant arises as a broken symmetry phase of a BF theory. In particular we show how to treat de Sitter and anti-de Sitter cases simultaneously. This is then used to formulate a quantisation of General Relativity through a spin foam perturbation theory. We then briefly discuss how to calculate the effective action in this quantization procedure.
Salas, S P; Roblero, J S; López, L F; Tachibana, S; Huidobro-Toro, J P
1992-09-01
The i.v. administration of E-2078 ([N-methyl-Tyr1-N-methyl-Arg7-D-Leu8]-dynorphin-A-(1-8) ethylamide) to conscious animals in doses of 15, 50 or 200 micrograms/rat caused a dose-related diuretic response associated with a significant in crease in glomerular filtration rate (GFR) and in blood pressure. The overall excretion of Na+ was not modified by the opioid, whereas it reduced K+ output and its fractional excretion. Time course studies demonstrated that the increase in GFR and in blood pressure were transient and did not parallel the changes in urine outflow. Pretreatment of the animal with 1 mg/kg of naltrexone or of naloxone reduced the pressor response but did not reduce the renal action of E-2078. Doses of naltrexone 10 times larger (10 mg/kg) were required to attenuate the diuretic effect and abolish completely the changes in K+ excretion; however, the increase in GFR was not antagonized by 10 mg/kg of naltrexone. Consonant with the studies in conscious rats, perfusion of isolated rat kidneys with 0.2 to 1.8 microM E-2078 increased urine flow in a dose-dependent manner, and this effect was prevented by the simultaneous perfusion of 2 microM naltrexone with the peptide. In pentobarbital-anesthetized animals, E-2078 elicited a diuretic response that was not parallelled by changes in GFR or electrolyte excretion. In addition, E-2078 caused a long lasting decrease in blood pressure which was blocked completely by pretreatment of the animal with 1 mg/kg of naltrexone. The diuretic effect of E-2078 was not modified by pretreatment of the animals with beta-funaltrexamine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1356155
Scalar field evolution in Gauss-Bonnet black holes
Abdalla, E.; Konoplya, R.A.; Molina, C.
2005-10-15
It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.
Contraction-based classification of supersymmetric extensions of kinematical lie algebras
Campoamor-Stursberg, R.; Rausch de Traubenberg, M.
2010-02-15
We study supersymmetric extensions of classical kinematical algebras from the point of view of contraction theory. It is shown that contracting the supersymmetric extension of the anti-de Sitter algebra leads to a hierarchy similar in structure to the classical Bacry-Levy-Leblond classification.
NASA Astrophysics Data System (ADS)
Liang, Jun; Liu, Bo
2012-11-01
A noncommutative BTZ black hole is constructed in three-dimensional anti-de Sitter space. In this black-hole model, the noncommutative smearing is obtained by replacing the point-like source term with a Lorentzian distribution. We mainly investigate the thermodynamical properties of this black hole, including Hawking temperature, entropy, heat capacity and free energy.
Noncommutative geometry-inspired rotating black hole in three dimensions
NASA Astrophysics Data System (ADS)
Tejeiro, Juan Manuel; Larrañaga, Alexis
2012-01-01
We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.
Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature
NASA Astrophysics Data System (ADS)
Lowe, David A.
2016-09-01
Mack has conjectured that all conformal field theories are equivalent to string theories. We explore the example of the two-dimensional minimal model CFTs and confirm that the Mellin transformed amplitudes have the desired properties of string theory in three-dimensional anti-de Sitter spacetime.
On presymplectic structures for massless higher-spin fields
NASA Astrophysics Data System (ADS)
Sharapov, Alexey A.
2016-06-01
A natural presymplectic structure for non-Lagrangian equations of motion governing the dynamics of free higher-spin fields in four-dimensional anti-de Sitter space is proposed. This presymplectic structure is then used in the derivation of the conserved currents associated with the relativistic invariance and to the construction of local functionals of fields that are gauge invariant on shell.
Distance between Quantum States and Gauge-Gravity Duality.
Miyaji, Masamichi; Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-12-31
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an anti-de Sitter spacetime when the perturbation is exactly marginal. We confirm our claim in several examples. PMID:26764986
Jerusalem lectures on black holes and quantum information
NASA Astrophysics Data System (ADS)
Harlow, D.
2016-01-01
These lectures give an introduction to the quantum physics of black holes, including recent developments based on quantum information theory such as the firewall paradox and its various cousins. An introduction is also given to holography and the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, focusing on those aspects which are relevant for the black hole information problem.
Light and heavy mesons in a soft-wall holographic approach
Branz, Tanja; Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan; Vega, Alfredo
2010-10-01
We study the mass spectrum and decay constants of light and heavy mesons in a soft-wall holographic approach, using the correspondence of string theory in Anti-de Sitter space and conformal field theory in physical space-time.
Self-dual solutions of Yang-Mills theory on Euclidean AdS space
Sarioglu, Oezguer; Tekin, Bayram
2009-05-15
We find nontrivial, time-dependent solutions of the (anti) self-dual Yang-Mills equations in the four-dimensional Euclidean anti-de Sitter space. In contrast to the Euclidean flat space, the action depends on the moduli parameters and the charge can take any noninteger value.
Distance between Quantum States and Gauge-Gravity Duality
NASA Astrophysics Data System (ADS)
Miyaji, Masamichi; Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-12-01
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an anti-de Sitter spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
Chern-Simons modified general relativity: Conserved charges
Tekin, Bayram
2008-01-15
We construct the conserved charges (mass and angular momentum) of the Chern-Simons modified general relativity in asymptotically flat and anti-de Sitter (AdS) spacetimes. Our definition is based on background Killing symmetries and reduces to the known expressions in the proper limits.
Holographic representation of higher spin gauge fields
NASA Astrophysics Data System (ADS)
Sarkar, Debajyoti; Xiao, Xiao
2015-04-01
Extending the results of [1,2] on the holographic representation of local gauge field operators in anti-de Sitter space, here we construct the bulk operators for higher spin gauge fields at the leading order in 1/N expansion. Working in the holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin s >1 can be represented by an integration over a ball region, which is the interior region of the spacelike bulk light cone on the boundary. The construction is shown to be anti-de Sitter covariant up to gauge transformations, and the two-point function between higher spin gauge fields and the boundary higher spin current exhibits singularities on both bulk and boundary light cones. We also comment on a possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.
Quantum of volume in de Sitter space
Mielczarek, Jakub; Piechocki, Wlodzimierz
2011-05-15
We apply the nonstandard loop quantum cosmology method to quantize a flat Friedmann-Robertson-Walker cosmological model with a free scalar field and the cosmological constant {Lambda}>0. Modification of the Hamiltonian in terms of loop geometry parametrized by a length {lambda} introduces a scale dependence of the model. The spectrum of the volume operator is discrete and depends on {Lambda}. Relating quantum of the volume with an elementary lattice cell leads to an explicit dependence of {Lambda} on {lambda}. Based on this assumption, we investigate the possibility of interpreting {Lambda} as a running constant.
Higgs instability and de Sitter radiation
NASA Astrophysics Data System (ADS)
Goswami, Gaurav; Mohanty, Subhendra
2015-12-01
If the Standard Model (SM) of elementary particle physics is assumed to hold good to arbitrarily high energies, then, for the best fit values of the parameters, the scalar potential of the Standard Model Higgs field turns negative at a high scale μinst. If the physics beyond the SM is such that it does not modify this feature of the Higgs potential and if the Hubble parameter during inflation (Hinf) is such that Hinf ≫μinst, then, quantum fluctuations of the SM Higgs during inflation make it extremely unlikely that after inflation it will be found in the metastable vacuum at the weak scale. In this work, we assume that (i) during inflation, the SM Higgs is in Bunch-Davies vacuum state, and, (ii) the question about the stability of the effective potential must be answered in the frame of the freely falling observer (just like in Minkowski spacetime), and then use the well-known fact that the freely falling observer finds Bunch-Davies vacuum to be in thermal state to show that the probability to end up in the electroweak vacuum after inflation is reasonably high.
de Sitter and double asymmetric brane worlds
Guerrero, Rommel; Rodriguez, R. Omar; Torrealba, Rafael
2005-12-15
Asymmetric brane worlds with dS expansion and static double kink topology are obtained from a recently proposed method and their properties are analyzed. These domain walls interpolate between two spacetimes with different cosmological constants. In the dynamic case, the vacua correspond to dS and AdS geometry, unlike the static case where they correspond to AdS background. We show that it is possible to confine gravity on such branes. In particular, the double-brane world hosts two different walls, so that the gravity is localized on one of them.
Twin Paradox in de Sitter Spacetime
ERIC Educational Resources Information Center
Boblest, Sebastian; Muller, Thomas; Wunner, Gunter
2011-01-01
The "twin paradox" of special relativity offers the possibility of making interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline…
Sitterly, Charlotte Emma Moore (1898-1990)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Astrophysicist and atomic physicist, worked with HENRY NORRIS RUSSELL at Princeton on binary stars and their masses. She worked at Mount Wilson with Charles E St John and HAROLD BABCOCK analysing the atomic lines in the sunspot spectrum. At the National Bureau of Standards and the Naval Research Laboratory she analysed laboratory data on the solar spectrum and the atomic data by which spectral li...
19 CFR 4.7d - Container status messages.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CSM) in its equipment tracking system reporting that event. CSMs must be transmitted to Customs and... reporting that event: (1) When the booking relating to a container which is destined to arrive within the... equipment tracking system reporting that event, the carrier must transmit the CSM to CBP no later than...
19 CFR 4.7d - Container status messages.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CSM) in its equipment tracking system reporting that event. CSMs must be transmitted to Customs and... electronic equipment tracking system. (b) Events required to be reported. The following events must be reported if the carrier creates or collects a container status message in its equipment tracking...
19 CFR 4.7d - Container status messages.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CSM) in its equipment tracking system reporting that event. CSMs must be transmitted to Customs and... electronic equipment tracking system. (b) Events required to be reported. The following events must be reported if the carrier creates or collects a container status message in its equipment tracking...
Noncommutative approach to the cosmological constant problem
Garattini, Remo; Nicolini, Piero
2011-03-15
In this paper, we study the cosmological constant emerging from the Wheeler-DeWitt equation as an eigenvalue of the related Sturm-Liouville problem. We employ Gaussian trial functionals and we perform a mode decomposition to extract the transverse-traceless component, namely, the graviton contribution, at one loop. We implement a noncommutative-geometry-induced minimal length to calculate the number of graviton modes. As a result, we find regular graviton fluctuation energies for the Schwarzschild, de Sitter, and anti-de Sitter backgrounds. No renormalization scheme is necessary to remove infinities, in contrast to what happens in conventional approaches.
Charged scalar perturbations around Garfinkle-Horowitz-Strominger black holes
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Yong; Zhang, Shao-Jun; Wang, Bin
2015-10-01
We examine the stability of the Garfinkle-Horowitz-Strominger (GHS) black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
Spinning Particles in Scalar-Tensor Gravity with Torsion
Wang, C.-H.
2008-10-10
A new model of neutral spinning particles in scalar-tensor gravity with torsion is developed by using a Fermi coordinates associated with orthonormal frames attached to a timelike curve and Noether identities. We further analyze its equations of motion both in background Brans-Dicke torsion field and the constant pseudo-Riemannian curvature with a constant scalar field. It turns that the particle's spin vector is parallel transport along its wordline in the Brans-Dicke torsion field and de Sitter spacetime. However, the dynamics of the spinning particle cannot completely determined in anti-de Sitter spacetime and it requires a further investigation.
Brane world in non-Riemannian geometry
Maier, R.; Falciano, F. T.
2011-03-15
We carefully investigate the modified Einstein's field equation in a 4-dimensional (3-brane) arbitrary manifold embedded in a 5-dimensional non-Riemannian bulk spacetime with a noncompact extra dimension. In this context the Israel-Darmois matching conditions are extended assuming that the torsion in the bulk is continuous. The discontinuity in the torsion first derivatives are related to the matter distribution through the field equation. In addition, we develop a model that describes a flat FLRW model embedded in a 5-dimensional de Sitter or anti-de Sitter, where a 5-dimensional cosmological constant emerges from the torsion.
Massive spin-2 fields of geometric origin in curved spacetimes
Nair, V. P.; Randjbar-Daemi, S.; Rubakov, V.
2009-11-15
We study the consistency of a model which includes torsion as well as the metric as dynamical fields and has massive spin-2 particle in its spectrum. It is known that this model is tachyon free and ghost free in Minkowski background. We show that this property remains valid and no other pathologies emerge in de Sitter and anti-de Sitter backgrounds, with some of our results extending to arbitrary Einstein space backgrounds. This suggests that the model is consistent, at least at the classical level, unlike, e.g., the Fierz-Pauli theory.
Out of equilibrium: understanding cosmological evolution to lower-entropy states
Aguirre, Anthony; Carroll, Sean M.; Johnson, Matthew C. E-mail: seancarroll@gmail.com
2012-02-01
Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.
A new approach to modified gravity models
NASA Astrophysics Data System (ADS)
Chakrabarti, Sayan K.; Saridakis, Emmanuel N.; Sen, Anjan A.
2011-11-01
We investigate f ( R)-gravity models performing the ADM-slicing of standard General Relativity. We extract the static, spherically-symmetric vacuum solutions in the general case, which correspond to either Schwarzschild de-Sitter or Schwarzschild anti-de-Sitter ones. Additionally, we study the cosmological evolution of a homogeneous and isotropic universe, which is governed by an algebraic and not a differential equation. We show that the universe admits solutions corresponding to acceleration at late cosmological epochs, without the need of fine-tuning the model-parameters or the initial conditions.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole. PMID:26406818
Thermodynamic instability of charged dilaton black holes in AdS spaces
Sheykhi, A.; Dehghani, M. H.; Hendi, S. H.
2010-04-15
We study thermodynamic instability of a class of (n+1)-dimensional charged dilatonic spherically symmetric black holes in the background of the anti-de Sitter universe. We calculate the quasilocal mass of the anti-de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are thermally stable for small {alpha}, while for large {alpha} the system has an unstable phase, where {alpha} is a coupling constant between the dilaton and matter field.
Rotation and the AdS-CFT correspondence
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hunter, C. J.; Taylor-Robinson, M. M.
1999-03-01
In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the thermal radiation would have to be corotating faster than light far from the black hole. However in asymptotically anti-de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the relationship between conformal field theory in rotating Einstein universes of dimensions two to four and Kerr-anti-de Sitter black holes in dimensions three to five. The five-dimensional solution is new. We find similar divergences in the partition function of the conformal field theory and the action of the black hole at the critical angular velocity at which the Einstein universe rotates at the speed of light. This should be an interesting limit in which to study large N Yang-Mills theory.
Hologram of a pure state black hole
NASA Astrophysics Data System (ADS)
Roy, Shubho R.; Sarkar, Debajyoti
2015-12-01
In this paper, we extend the Hamilton-Kabat-Lifschytz-Lowe (HKLL) holographic smearing function method to reconstruct (quasi)local anti-de Sitter bulk scalar observables in the background of a large anti-de Sitter black hole formed by null shell collapse (a "pure state" black hole), from the dual conformal field theory which is undergoing a sudden quench. In particular, we probe the near horizon and subhorizon bulk locality. First, we construct local bulk operators from the conformal field theory in the leading semiclassical limit, N →∞ . Then, we look at effects due to the finiteness of N , where we propose a suitable coarse-graining prescription involving early and late time cutoffs to define semiclassical bulk observables which are approximately local, their departure from locality being nonperturbatively small in N . Our results have important implications on the black hole information problem.
Rotating black string with nonlinear source
Hendi, S. H.
2010-09-15
In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.
Weak electromagnetic field admitting integrability in Kerr-NUT-(A)dS spacetimes
NASA Astrophysics Data System (ADS)
Kolář, Ivan; Krtouš, Pavel
2015-06-01
We investigate properties of higher-dimensional generally rotating black-hole spacetimes, so-called Kerr-NUT-(anti)-de Sitter spacetimes, as well as a family of related spaces which share the same explicit and hidden symmetries. In these spaces, we study a particle motion in the presence of a weak electromagnetic field and compare it with its operator analogies. First, we find general commutativity conditions for classical observables and for their operator counterparts, then we investigate a fulfillment of these conditions in the Kerr-NUT-(anti)-de Sitter and related spaces. We find the most general form of the weak electromagnetic field compatible with the complete integrability of the particle motion and the comutativity of the field operators. For such a field we solve the charged Hamilton-Jacobi and Klein-Gordon equations by separation of variables.
Integrability of some charged rotating supergravity black hole solutions in four and five dimensions
NASA Astrophysics Data System (ADS)
Vasudevan, Muraari
2005-09-01
We study the integrability of geodesic flow in the background of some recently discovered charged rotating solutions of supergravity in four and five dimensions. Specifically, we work with the gauged multicharge Taub-NUT-Kerr-(anti-)de Sitter metric in four dimensions, and the U(1) 3 gauged charged-Kerr-(anti-)de Sitter black hole solution of N = 2 supergravity in five dimensions. We explicitly construct the nontrivial irreducible Killing tensors that permit separation of the Hamilton-Jacobi equation in these spacetimes. These results prove integrability for a large class of previously known supergravity solutions, including several BPS solitonic states. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. Finally, we also examine the Klein-Gordon equation for a scalar field in these spacetimes and demonstrate separability.
Regular non-Abelian vacua in N=4, SO(4) gauged supergravity
Chamseddine, Ali H.; Volkov, Mikhail S.
2004-10-15
We present a family of globally regular N=1 vacua in the D=4, N=4 gauged supergravity of Gates and Zwiebach. These solutions are labeled by the ratio {xi} of the two gauge couplings, and for {xi}=0 they reduce to the supergravity monopole previously used for constructing the gravity dual of N=1 super Yang-Mills theory. For {xi}>0 the solutions are asymptotically anti- de Sitter, but with an excess of the solid angle, and they reduce exactly to anti-de Sitter for {xi}=1. Solutions with {xi}<0 are topologically R{sup 1}xS{sup 3}, and for {xi}=-2 they become R{sup 1}xS{sup 3} geometrically. All solutions with {xi}{ne}0 can be promoted to D=11 to become vacua of M-theory.
Unparticles as the holographic dual of gapped AdS gravity
NASA Astrophysics Data System (ADS)
Domokos, Sophia K.; Gabadadze, Gregory
2015-12-01
Naively applying holographic duality to gapped gravity on anti-de Sitter space seems to suggest that the stress tensor of the field theory dual cannot be conserved. On the other hand, by symmetry arguments, it seems that the dual should not violate Poincare symmetry. To clarify this apparent contradiction, we study a holographic dual of massive gravity where both the physical background metric and the fiducial metric are anti-de Sitter. Using the anomalous scaling of the energy-momentum tensor as our guide, we conclude that the dual theory is nonlocal. We find that the dual is similar to conformal invariant "unparticle" theories. We show that such theories can be viewed as dimensional reductions of flat-space field theories with inhomogeneous scaling properties.
Rényi entropy and the thermodynamic stability of black holes
NASA Astrophysics Data System (ADS)
Czinner, Viktor G.; Iguchi, Hideo
2016-01-01
Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking-Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.
Geometry and dynamics of emergent spacetime from entanglement spectrum
NASA Astrophysics Data System (ADS)
Matsueda, Hiroaki
We examine geometry and dynamics of classical spacetime derived from entanglement spectrum for 1D lattice free fermions. The spacetime is a kind of canonical parameter space defined by the Fisher information metric. The spectrum has exponential family form like thermal probability. Then, the metric is given by the second derivative of the Hessian potential that can be identified with the entanglement entropy. We emphasize that the canonical parameters are nontrivial functions of partial system size by the truncation, filling fraction of fermions, and time. We find that the emergent geometry becomes anti-de Sitter spacetime with imaginary time, and a radial axis as well as spacetime coordinates appears spontaneously. We also find that the information of the UV limit of the original fermions lives in the boundary of the anti-de Sitter spacetime. These findings strongly suggest that the Hessian potential for free fermions has enough geometrical meaning associated with gauge-gravity correspondence.
Black holes and wormholes in AdS branes
Molina, C.; Neves, J. C. S.
2010-08-15
In this work we have derived a class of geometries which describe black holes and wormholes in Randall-Sundrum-type brane models, focusing mainly on asymptotically anti-de Sitter backgrounds. We show that by continuously deforming the usual four-dimensional vacuum background, a specific family of solutions is obtained. Maximal extensions of the solutions are presented, and their causal structures are discussed.
Chern-Simons action for inhomogeneous Virasoro group as extension of three dimensional flat gravity
Barnich, Glenn; Giribet, Gastón; Leston, Mauricio
2015-07-15
We initiate the study of a Chern-Simons action associated to the semi-direct sum of the Virasoro algebra with its coadjoint representation. This model extends the standard Chern-Simons formulation of three dimensional flat gravity and is similar to the higher-spin extension of three dimensional anti-de Sitter or flat gravity. The extension can also be constructed for the exotic but not for the cosmological constant deformation of flat gravity.
Aspects of Gauge-Gravity Duality and Holography
NASA Astrophysics Data System (ADS)
Samani, Joshua Fred
We study three aspects of gauge-gravity duality. First, we explore holographic models of conformal field theories with boundary by way of holographic renormalization group flows. Second, we propose an extension and application of the covariant holographic entangelement entropy proposal to warped anti-de-Sitter spacetimes. Third, we exhibit the existence of higher-spin black holes with Lifshitz asymptotics in the Chern-Simons formulation of higher spin gravity.
NASA Astrophysics Data System (ADS)
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
AdS/CFT and Light-Front Holography: A Theory of Strong Interactions
Brodsky, Stanley J.; Teramond, Guy F.de; /Costa Rica U.
2009-02-23
Recent developments in the theory of strong interactions are discussed in the framework of the AdS/CFT duality between string theories of gravity in a higher dimension Anti-de Sitter space and conformal quantum field theories in physical space-time. This novel theoretical approach, combined with 'light-front holography', leads to new insights into the quark and gluon structure of hadrons and a viable first approximation to quantum chromodynamics, the fundamental theory of the strong and nuclear interactions.
AdS/QCD and Its Holographic Light-Front Partonic Representation
de Teramond, Guy F.; Brodsky, Stanley J.; ,
2008-11-12
Starting from the Hamiltonian equation of motion in QCD we find a single variable light-front equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS) space.
AdS/QCD and its Holographic Light-Front Partonic Representation
Teramond, Guy F. de; Brodsky, Stanley J.
2009-03-23
Starting from the Hamiltonian equation of motion in QCD we find a single variable light-front equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS) space.
Global scaling symmetry, Noether charge, and universality of shear viscosity
NASA Astrophysics Data System (ADS)
Liu, Hai-Shan
2016-05-01
Recently, it was established in Einstein-Maxwell-Dilaton gravity that the Kovtun-Son-Starinets viscosity/entropy ratio associated with anti-de Sitter planar black holes can be viewed as the boundary dual to the generalized Smarr relation of the black holes in the bulk. In this paper, we establish this relation in Einstein gravity with general minimally coupled matter and also in theories with an additional nonminimally coupled scalar field. We consider two examples for explicit demonstrations.
Geometric interpretation of Planck-scale-deformed co-products
NASA Astrophysics Data System (ADS)
Lobo, Iarley P.; Palmisano, Giovanni
2016-03-01
For theories formulated with a maximally symmetric momentum space we propose a general characterization for the description of interactions in terms of the isometry group of the momentum space. The well known cases of κ-Poincaré-inspired and (2+1)-dimensional gravity-inspired composition laws both satisfy our condition. Future applications might include the proposal of a class of models based on momenta spaces with anti-de Sitter geometry.