Science.gov

Sample records for 7li spin-lattice relaxation

  1. 7Li Spin-Lattice Relaxation at Low Temperatures in a Superionic Conductor β-LiGa

    NASA Astrophysics Data System (ADS)

    Endou, Shigeki; Ohno, Takashi; Kishimoto, Yutaka; Nishioka, Daisuke; Michihiro, Yoshitaka; Kawasaki, Yu; Ideta, Yukiichi; Kuriyama, Kazuo; Hamanaka, Hiromi; Yahagi, Masahito

    2009-10-01

    In order to investigate the Li+ ionic diffusion and the electronic states in a mixed conductor β-LiGa with high Li+ ionic diffusibility and electron/hole conductivity, 7Li NMR linewidth and spin-lattice relaxation measurements have been performed in 44.0, 47.0, and 50.0 at. % Li β-LiGa samples at 10.03 MHz in the temperature range between 10 and 320 K. The onset temperature TMN=70 K of the motional narrowing in 50.0 at. % sample has been determined from the temperature dependence of the linewidth. The Li+ ionic diffusion is found to contribute to the spin-lattice relaxation rate 1/T1 down to ˜0.5 TMN even below TMN where the motional narrowing does not occur. The high diffusibility of Li+ ions has been proved from a microscopic point of view. At low temperatures, the relations 1/T1T=3.5× 10-4, 3.8× 10-4, and 5.1× 10-4 s-1 K-1 are observed in 44.0, 47.0, and 50.0 at. % Li samples, respectively. The density of states of conduction electrons at the Fermi level in these compounds becomes higher with increasing Li content, which is consistent with the predictions by band calculations.

  2. Ion hopping in crystalline and glassy spodumene LiAl Si2 O6 : 7Li spin-lattice relaxation and 7Li echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, F.; Rier, C.; Böhmer, R.; Franke, W.; Heitjans, P.

    2005-09-01

    Nuclear magnetic resonance spectroscopy was used to study polycrystalline β -spodumene (β-LiAlSi2O6) as well as glassy specimens with the same chemical composition. Li7 spin-lattice relaxation measurements were carried out in a broad temperature range and for several Larmor frequencies. In addition to a pronounced rate maximum at high temperatures, stemming from the long-range Li motion in these aluminosilicates, we found a weak maximum in the crystalline modification near 120K . The latter result confirms the existence of a local double-well structure in which the Li ions reside. The ionic motion was also monitored by solid- and stimulated-echo spectra as well as by the decay of the Jeener-Broekaert echo. Under conditions which are discussed in detail, the latter is a direct measure of the hopping correlation function. For the glass this function was found to decay faster and more stretched than that of the crystal at a given temperature. Furthermore, the relevant barriers against the high-temperature long-range Li motion are larger in the crystal as compared to the glass.

  3. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  4. Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wink, Donald J.

    1989-01-01

    Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)

  5. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.

    2016-07-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.

  6. Effect of surfactant and solvent on spin-lattice relaxation dynamics of magnetic nanocrystals.

    PubMed

    Maiti, Sourav; Chen, Hsiang-Yun; Chen, Tai-Yen; Hsia, Chih-Hao; Son, Dong Hee

    2013-04-25

    The effect of varying the surfactant and solvent medium on the dynamics of spin-lattice relaxation in photoexcited Fe3O4 nanocrystals has been investigated by measuring the time-dependent magnetization employing pump-probe transient Faraday rotation technique. The variation of the surfactants having surface-binding functional groups modified not only the static magnetization but also the dynamics of the recovery of the magnetization occurring via spin-lattice relaxation in the photoexcited Fe3O4 nanocrystals. The variation of the polarity and size of the solvent molecules can also influence the spin-lattice relaxation dynamics. However, the effect is limited to the nanocrystals having sufficiently permeable surfactant layer, where the small solvent molecules (e.g., water) can access the surface and dynamically modify the ligand field on the surface. PMID:23003213

  7. Partial lattice participation in the spin-lattice relaxation of potassium chromium alum

    NASA Astrophysics Data System (ADS)

    Overweg, J. A.; Flokstra, J.; ter Brake, H. J. M.; Gerritsma, G. J.

    1981-08-01

    We developed a SQUID-based frequency sweeping system for a.c. susceptibility measurements. Using this instrument we found that in Potassium Chromium Alum only a part of the lattice system is involved in the spin-lattice relaxation process. This partial lattice participation amounts 60-75% of the total lattice specific heat.

  8. Silicon network structure and 29Si spin-lattice relaxation in amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Man Ken; Petrich, Mark A.

    1992-04-01

    We report a NMR study of amorphous hydrogenated silicon (a-Si:H) that measures the 29Si spin-lattice relaxation time T1. Measurements of 29Si T1 are useful in learning about the silicon network structure and the localized states within the mobility gap. Coupling to paramagnetic dangling bonds is the predominant 29Si spin-lattice relaxation mechanism in a-Si:H. Spin flipping of paramagnetic electrons, caused by coupling to the lattice, produces fluctuating local fields that stimulate nuclear spin-lattice relaxation. By comparing our experimental results with existing theory, we find that dangling bonds are randomly distributed in device-quality materials but are inhomogeneously distributed in non-device-quality materials. We also find that there are two simultaneously occurring dangling-bond spin-lattice relaxation mechanisms: one through the spin-orbit coupling modulated by thermal excitation of ``two-level systems,'' and the other through hopping conduction between localized states near the Fermi level. Simple chemical-shift measurements are also helpful in characterizing a-Si:H. We find that the 29Si resonance shifts upfield with increasing microstructure in the material.

  9. Application to Rat Lung of the Extended Rorschach-Hazlewood Model of Spin-Lattice Relaxation

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Goodrich, K. Craig; Chen, Songhua; Laicher, Gernot; Cutillo, Antonio G.

    1996-02-01

    The spin-lattice relaxation timeT1was measured in excised degassed (airless) rat lungs over the frequency range 6.7 to 80.5 MHz. The observed frequency dependence was fitted successfully to the water-biopolymer cross-relaxation theory proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)]. The rotating frame spin-lattice relaxation timeT1ρwas also measured in rat lung fragments over the frequency range 0.56 to 5.6 kHz, and the observed frequency dependence was explained with an extension of the RH model. The agreement between the theory and the experimental data in both cases is good.

  10. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  11. Dipolar Order and Spin-Lattice Relaxation in a Liquid Entrapped into Nanosize Cavities

    NASA Astrophysics Data System (ADS)

    Furman, Gregory; Goren, Shaul

    2011-12-01

    It was shown that by means of the two-pulse sequence, the spin system of a liquid entrapped into nanosize cavities can be prepared in quasi-equilibrium states of high dipolar order, which relax to thermal equilibrium with the molecular environment with a relaxation time T1d. Measurements of the inverse dipolar temperature and spin-lattice relaxation time in the local fields provide an important information about the cavity size V, its shape F, and orientation θ (with respect to the external magnetic field) of the nanopores.

  12. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions.

    PubMed

    Chen, Hanjiao; Maryasov, Alexander G; Rogozhnikova, Olga Yu; Trukhin, Dmitry V; Tormyshev, Victor M; Bowman, Michael K

    2016-09-28

    Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644

  13. Deuterium off-resonance rotating frame spin-lattice relaxation of macromolecular bound ligands.

    PubMed Central

    Rydzewski, J M; Schleich, T

    1996-01-01

    Deuterated 3-trimethylsilylpropionic acid binding to bovine serum albumin was used as a model system to examine the feasibility and limitations of using the deuterium off-resonance rotating frame spin-lattice relaxation experiment for the study of equilibrium ligand-binding behavior to proteins. The results of this study demonstrate that the rotational-diffusion behavior of the bound species can be monitored directly, i.e., the observed correlation time of the ligand in the presence of a protein is approximately equal to the correlation time of the ligand in the bound state, provided that the fraction of bound ligand is at least 0.20. The presence of local ligand motion and/or chemical exchange contributions to relaxation in the bound state was inferred from the observation that the correlation time of the bound ligand was somewhat smaller than the correlation time characterizing the overall tumbling of the protein. An approximate value for the fraction of bound ligand was obtained from off-resonance relaxation experiments when supplemental spin-lattice or transverse relaxation times were employed in the analysis. Incorporation of local motion effects for the bound species into the theoretical relaxation formalism enabled the evaluation of an order parameter and an effective correlation time, which in conjunction with a wobbling in a cone model, provided additional information about ligand motion in the bound state. PMID:8785304

  14. Investigation of wettability by NMR microscopy and spin-lattice relaxation

    SciTech Connect

    Doughty, D.A.; Tomutsa, Liviu

    1993-11-01

    The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

  15. The effect of fast electronic relaxation times on the 1H and 7Li magnetic relaxation dispersion modulated by the translational encounter of cation/cation pairs

    NASA Astrophysics Data System (ADS)

    Dinesen, T. R. J.; Bryant, R. G.

    1999-04-01

    1H and 7Li magnetic relaxation dispersion data are presented, showing the field dependence of the spin-lattice relaxation rates of (H 3C) 4N + and Li(H 2O) n+ in Gd(III) and Mn(II) solutions. The limit of short electronic relaxation time is observed for Gd(III) up to about 7 T, in contrast to Mn(II) solutions wherein the intermolecular contribution to nuclear relaxation is dominated by relative translational diffusion. These results contradict the assumption made by Fries et al. (Chem. Phys. Lett. 286 (1998) 93) that the electron relaxation times may be neglected in the analysis of tetramethylammonium proton relaxation rates in Gd(III) solutions.

  16. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  17. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis

    NASA Astrophysics Data System (ADS)

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n = 4 and m = 0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.

  18. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis.

    PubMed

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts. PMID:27055207

  19. Spin-lattice relaxation of the methyl group protons in solids revisited: damped quantum rotation approach.

    PubMed

    Szymański, S

    2012-07-21

    Proton spin-lattice relaxation of the methyl group in solids had been one of the most thoroughly addressed theoretical problems in nuclear magnetic resonance (NMR) spectroscopy, considered at different levels of sophistication. For systems with substantial quantum tunneling effects, several quantum mechanical treatments were reported, although in practical applications the quantum models were always augmented with or replaced by the classical jump model. However, the latter has recently proved invalid in the description of NMR line shape effects in variable-temperature spectra of hindered methyl groups, while the competing theory of damped quantum rotation (DQR) was shown to be adequate. In this work, the spin-lattice relaxation issue for the methyl protons is readdressed using the latter theory. The main outcome is that, while the existing formulas for the relaxation rates remain unchanged, the crucial parameter entering them, the correlation time of the relevant random process, need to be reinterpreted. It proves to be the inverse of one of the two quantum-rate constants entering the DQR model, neither of which, when taken separately, can be related to the jump process. It can be identified with one describing the life-time broadening of the tunnel peaks in inelastic neutron scattering (INS) spectra of the methyl groups. Such a relationship between the relaxation and INS effects was reported from another laboratory long ago, but only for the low-temperature limit where thermal population of the excited torsional levels of the methyl group can be neglected. The whole spectrum of cases encountered in practical relaxation studies on protonated methyl groups is addressed for the first time. Preliminary experimental confirmation of this novel approach is reported, based on already published NMR data for a single crystal of methylmalonic acid. The once extensively debated issues of quenching of the coherent tunneling and of the classical limit in the dynamics of the

  20. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  1. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions

    NASA Astrophysics Data System (ADS)

    Elajaili, Hanan B.; Biller, Joshua R.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.

  2. Spin-lattice relaxation via quantum tunneling in diluted crystals of Fe4 single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Repollés, A.; Cornia, A.; Luis, F.

    2014-02-01

    We investigate the dynamic susceptibility of Fe4 single-molecule magnets with integer spin (S =5) in the form of pure crystals as well as diluted in crystals of isostructural, but nonmagnetic, Ga4 clusters. Below approximately 1 K, the spin-lattice relaxation becomes dominated by a temperature-independent process. The spin-lattice relaxation time τ measured in this "quantum regime" is 12 orders of magnitude shorter than the characteristic time scale of direct phonon-induced processes but agrees with the relaxation times of pure (i.e., not assisted by phonons) spin tunneling events. The present results show that the latter phenomenon, despite conserving the energy of the ensemble of electronic and nuclear spins, drives the thermalization of electronic spins at very low temperatures. The spin-lattice relaxation time scales with the concentration of Fe4, thus suggesting that the main effect of dipolar interactions is to block tunneling. The data show therefore no evidence for the contribution of collective phonon emission processes, such as phonon superradiance, to the spin-lattice relaxation.

  3. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    PubMed

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite.

  4. Effect of glassy modes on electron spin-lattice relaxation in solid ethanol

    NASA Astrophysics Data System (ADS)

    Merunka, Dalibor; Kveder, Marina; Jokić, Milan; Rakvin, Boris

    2013-03-01

    Electron spin-lattice relaxation (SLR) of TEMPO radical was measured in the crystalline and glassy states of deuterated ethanol in the temperature range 5-80 K using X-band electron paramagnetic resonance (EPR). The measured SLR rates are higher in the glassy than in crystalline state and the excess SLR rate in glassy state is much lower than in ethanol. This result suggests that extra modes in glassy state, i.e. glassy modes, produce the excess SLR rate via the electron-nuclear dipolar (END) interaction between the electron spin of radical and the matrix protons or deuterons. Using the soft-potential model and assuming the END interaction between the electron spin and the matrix protons, the contributions to SLR rate of various mechanisms of glassy modes were theoretically analyzed. The evaluations of SLR rates in glassy ethanol indicate two main mechanisms of glassy modes: thermally activated relaxation of double-well systems and phonon-induced relaxation of quasi-harmonic local modes. The SLR rates induced by these mechanisms correlate well with the experimental data.

  5. Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby

    NASA Technical Reports Server (NTRS)

    Lyons, J. R.

    1989-01-01

    The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.

  6. Extension of the Rorschach-Hazlewood Theoretical Model for Spin-Lattice Relaxation in Biological Systems to Low Frequencies

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Laicher, Gernot; Goodrich, K. Craig; Cutillo, Antonio G.

    1996-02-01

    The water-biopolymer cross-relaxation model, proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)], explains the Larmor frequency dependence ofT1in many biological systems. However, the RH theory fails at low Larmor frequencies. In this paper, a more general version of the RH theory has been developed. This theory is valid at all frequencies. Use of the new expression for the spin-lattice relaxation rate (1/T1), earlier published experimental data in H2O/D2O bovine serum albumin, which had been measured over a wide frequency range (10 kHz to 100 MHz), were fitted over the entire frequency range. The agreement between theory and the experimental data is excellent. Theoretical expressions for the rotating-frame spin-lattice relaxation rate (1/T1ρ) were also obtained.

  7. Spin-lattice relaxation within a dimerized Ising chain in a magnetic field

    SciTech Connect

    Erdem, Rıza E-mail: rerdem29@hotmail.com; Gülpınar, Gül; Yalçın, Orhan; Pawlak, Andrzej

    2014-07-21

    A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.

  8. EPR and spin-lattice relaxation of rare-earth activated centres in Y 2SiO 5 single crystals

    NASA Astrophysics Data System (ADS)

    Kurkin, I. N.; Chernov, K. P.

    1980-08-01

    An investigation of the EPR spectra and spin-lattice relaxation of Ce 3+, Nd 3+ and Yb 3+ ions in Y 2SiO 5 single crystals has been carried out. Two different EPR spectra for each rare-earth ion are observed due to a substitution of Y 1 and Y 2 sites crytals. Spin-lattice relaxation times for both activated centres are shown to be essentially different, although static crystal field of Y 1 and Y 2 sites differ slightly.

  9. Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT).

    PubMed

    Piślewski, N; Tritt-Goc, J; Bielejewski, M; Rachocki, A; Ratajczyk, T; Szymański, S

    2009-06-01

    Proton spin-lattice relaxation studies are performed for powder samples of 9,10-dimethyltriptycene (DMT) and its isotopomer DMT-d(12) in which all the non-methyl protons in the molecule are replaced by deuterons. The relaxation data are interpreted in terms of the conventional relaxation theory based on the random jump model in which the Pauli correlations between the relevant spin and torsional states are discarded. The Arrhenius activation energies, obtained from the relaxation data, 25.3 and 24.8 kJ mol(-1) for DMT and DMT-d(12), respectively, are very high as for the methyl groups. The validity of the jump model in the present case is considered from the perspective of Haupt theory in which the Pauli principle is explicitly invoked. To this purpose, the dynamic quantities entering the Haupt model are reinterpreted in the spirit of the damped quantum rotation (DQR) approach introduced recently for the purpose of NMR lineshape studies of hindered molecular rotators. Theoretical modelling of the relevant methyl group dynamics, based on the DQR theory, was performed. From these calculations it is inferred that direct assessments of the torsional barrier heights, based on the Arrhenius activation energies extracted from relaxation data, should be treated with caution.

  10. Nuclear spin-lattice relaxation at field-induced level crossings in a Cr8F8 pivalate single crystal

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2016-01-01

    We construct a microscopic theory for the proton spin-lattice relaxation-rate 1 / T1 measurements around field-induced level crossings in a single crystal of the trivalent chromium ion wheel complex [Cr8F8(OOCtBu)16] at sufficiently low temperatures [E. Micotti et al., Phys. Rev. B 72 (2005) 020405(R)]. Exactly diagonalizing a well-equipped spin Hamiltonian for the individual clusters and giving further consideration to their possible interactions, we reveal the mechanism of 1 / T1 being single-peaked normally at the first level crossing but double-peaked intriguingly around the second level crossing. We wipe out the doubt about poor crystallization and find out a solution-intramolecular alternating Dzyaloshinsky-Moriya interaction combined with intermolecular coupling of antiferromagnetic character, each of which is so weak as several tens of mK in magnitude.

  11. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence

    SciTech Connect

    Sankar, S.S.; Mole, P.A.; Coulson, R.L.

    1986-12-01

    /sup 1/H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D/sub 2/O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations.

  12. Electron spin lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Sato, Hideo; Bottle, Steven E.; Blinco, James P.; Micallef, Aaron S.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-03-01

    Electron spin-lattice relaxation rates, 1/ T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300 K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution ( 2H and 15N) were used to distinguish the contributions of various processes. Below about 100 K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/ T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model.

  13. Temperature dependence of the electron spin-lattice relaxation rate from pulsed EPR of CUA and heme a in cytochrome c oxidase.

    PubMed Central

    Scholes, C P; Janakiraman, R; Taylor, H; King, T E

    1984-01-01

    This work shows the feasibility of using pulsed, saturation recovery EPR to study directly the magnetic relaxation properties of metal centers in cytochrome c oxidase in the 1.5-20 K range. Heme a and CuA both showed remarkably similar Tn temperature dependences in their spin-lattice relaxation rates. Either both are in environments with very similar protein backbone configurations (Stapleton, H.J., J.P. Allen, C.P. Flynn, D.G. Stinson, and S.R. Kurtz, 1980, Phys. Rev. Lett., 45:1456-1459; Allen, J.P., J.T. Colvin, D.G. Stinson, C.P. Flynn, and H.J. Stapleton, 1982, Biophys. J., 38:299-310), or the CuA is relaxed by nearby heme a. Spin-lattice relaxation of the nitrosylferrocytochrome a3 center in mixed valence oxidase showed enhancement of relaxation by a nearby paramagnetic center, most likely heme a. PMID:6329343

  14. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211

  15. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  16. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  17. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    NASA Astrophysics Data System (ADS)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  18. Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wooten, Jan B.; And Others

    1979-01-01

    The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)

  19. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    SciTech Connect

    Caines, G.H.; Schleich, T.; Morgan, C.F. ); Farnsworth, P.N. )

    1990-08-21

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of {sup 31}P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. {sup 31}P NMR spectra of calf lens homogenates were obtained at 10 and 18{degree}C at 7.05 T. Effective rotational correlation times ({tau}{sub 0,eff}) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs {omega}{sub e} data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole ({sup 1}H-{sup 31}P, {sup 31}P-{sup 31}P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole ({sup 1}H-{sup 31}P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs {omega}{sub e} curves to yield the fraction of free (unbound) metabolite ({Theta}{sub free}). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and p{sub i} (nucleus) in calf lens.

  20. Numerical Simulation of the Proton Spin-Lattice Relaxation in Bimetallic Chain Compounds

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.

    In response to recent proton spin relaxation-time measurements on a bimetallic chain compound NiCu(C7H6N2O6) (H2O)3\\cdot2H2O, we simulate the Raman relaxation process in Heisenberg alternating-spin chains on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T1-1 qualitatively varies with (S,s), while T1-1 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  1. Simulated nuclear spin-lattice relaxation in Heisenberg ferrimagnets: Indirect observation of quadratic dispersion relations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2000-01-01

    In response to recent proton spin-relaxation time measurements on NiCu(pba)(H2O)3.2H2O with pba=1,3-propylenebis(oxamato), which is an excellent one-dimensional ferrimagnetic Heisenberg model system of spin (1,12), we study the Raman relaxation process in spin-(S,s) quantum ferrimagnets on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T-11 qualitatively varies with (S,s), while T-11 is almost proportional to H-1/2 due to the characteristic dispersion relations.

  2. Matrix deuteration effects and spin-lattice relaxation in the lowest triplet of the palladium(II) complex Pd(2-thpy) 2

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Yersin, Hartmut; von Zelewsky, Alex

    1995-03-01

    Pd(2-thpy) 2 isolated in protonated or deuterated frozen n-octane (Shpol'skii matrices) exhibits highly resolved triplet emission and excitation spectra. One observes interesting differences for the two matrices: (i) The protonated matrix shows only one dominant guest site while the deuterated matrix exhibits two dominant sites. (ii) Low-energy satellites corresponding to lattice modes are distinctly shifted to lower energy due to deuteration of the matrix, (iii) At 1.3 K the triplet sublevels emit independently with lifetimes being nearly equal for both matrices. However, for 1.3 < T < 5 K one observes obvious differences in the decay behavior. This is explained by substantially smaller rates of spin-lattice relaxation in the deuterated host. Different mechanisms of spin-lattice relaxation are discussed.

  3. Observation of the vortex lattice melting by NMR spin-lattice relaxation in the mixed state

    SciTech Connect

    Bulaevskii, L.N.; Hammel, P.C.; Vinokur, V.M.

    1994-01-01

    For anisotropic layered superconductors the effect of moving vortices on the nuclear spin magnetization is calculated. Current is supposed to flow along layers, and applied magnetic field is tilted with respect to c-axis. In the solid phase the motion of the vortex lattice produces an alternating magnetic field perpendicular to the applied field which causes the decay of the spin-echo amplitude. This decay rate will display an array of peaks as a function of frequency. In the liquid phase this alternating field contribute to the longitudinal relaxation rate W{sub 1} which has a single peak.

  4. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  5. Spin-lattice relaxation in p-type gallium arsenide single crystals

    NASA Astrophysics Data System (ADS)

    Zerrouati, K.; Fabre, F.; Bacquet, G.; Bandet, J.; Frandon, J.; Lampel, G.; Paget, D.

    1988-01-01

    An optical-pumping technique is used to measure the spin-relaxation time of photogenerated conduction electrons in several p-type GaAs single crystals doped with various amounts of acceptors in the 1.7-300 K temperature range. Our experimental results are compared with those of the literature and with the predictions of the existing theoretical calculations. From about 10 K, the Bir-Aronov-Pikus (BAP) mechanism is found to be relevant for moderately doped (1017-1018 cm-3), up to about 150 K, or degenerate (up to 300 K) semiconductors, using the electronic temperature, deduced from the luminescence spectra, rather than the sample temperature. The D'yakonov-Perel' (DP) process was found to be active above 200 K for moderately doped samples and from about 80 K to room temperature for samples doped in the (1.6-6)×1016-cm-3 acceptor-concentration range. Our original results obtained at liquid-helium temperatures at whatever the doping level cannot be explained either by the DP mechanism or by the BAP process.

  6. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels

    PubMed Central

    Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.

    2011-01-01

    There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T−11) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T−11 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T−11 profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T−11 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz). PMID:21868272

  7. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    PubMed

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought. PMID:26451661

  8. Is the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers sensitive to excluded volume interactions?

    PubMed

    Shavykin, Oleg V; Neelov, Igor M; Darinskii, Anatolii A

    2016-09-21

    The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and

  9. Host spin-lattice relaxation narrowing and the electron paramagnetic resonance of Mn(II) in single crystals of hexakis(pyridine N-oxide)cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Murugesan, R.; Thamaraichelvan, A.; Milton Franklin, A.; Ramakrishnan, V.

    The electron paramagnetic resonance spectra of Mn(C5H5NO)6. X2 (X ≡ ClO-4, BF-4 and NO-3) doped in single crystals of isomorphous paramagnetic Co(C5H5NO)6. X2 are studied at various temperatures. Zero-field splitting in all three crystals is axially symmetric and the magnitude of D is unusually large for an octahedral coordination polyhedron with all ligands identical. The sharp resonance of Mn(II) in the paramagnetic host observed at high temperatures is interpreted in terms of random modulation of the dipolar interaction between the guest Mn(II) and host Co(II) ions by the rapid spin-lattice relaxation of Co(II). The spin-lattice relaxation times of Co(II) ions at 300 K, estimated from the temperature dependent linewidth of the Mn(II) resonance, are 24 × 10-12, 28 × 10-12 and 23 × 10-12 s in perchlorate, fluoborate and nitrate crystals respectively. The temperature dependence of the relaxation is of the form 1/(at + bt5) and below 270 K the direct process dominates.

  10. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    PubMed

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-01

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB. PMID:21690828

  11. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  12. Lattice sites, charge states and spin-lattice relaxation of Fe ions in 57Mn+ implanted GaN and AlN

    NASA Astrophysics Data System (ADS)

    Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Mølholt, T. E.; Ncube, M.; Shayestehaminzadeh, S.; Gíslason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    2016-03-01

    The lattice sites, valence states, resulting magnetic behaviour and spin-lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive 57Mn+ ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV γ-rays from the 57Fe Mössbauer state (populated from the 57Mn β- decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100-800 K show the presence of magnetically split sextets in the "wings" of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe3+ with rather slow spin-lattice relaxation rates which follow a T2 temperature dependence characteristic of a two-phonon Raman process.

  13. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  14. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  15. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    PubMed

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  16. Nuclear quadrupole spin-lattice relaxation in Bi{sub 4}Ge{sub 3}O{sub 12} single crystals doped with atoms of d or f elements. Crystal field effects in compounds exhibiting anomalous magnetic properties

    SciTech Connect

    Orlov, V. G. Sergeev, G. S.; Asaji, Tetsuo; Kravchenko, E. A.; Kargin, Yu. F.

    2010-02-15

    The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2-300 K for single crystals of Bi{sub 4}Ge{sub 3}O{sub 12} doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T{sub 2}* occurred upon doping the pure Bi{sub 4}Ge{sub 3}O{sub 12} sample. Unlike T{sub 2}*, the effective spin-lattice relaxation time T{sub 1}* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.

  17. Is the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers sensitive to excluded volume interactions?

    PubMed

    Shavykin, Oleg V; Neelov, Igor M; Darinskii, Anatolii A

    2016-09-21

    The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and

  18. (77)Se nuclear spin-lattice relaxation in binary Ge-Se glasses: insights into floppy versus rigid behavior of structural units.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Hung, Ivan; Gan, Zhehong

    2015-04-30

    The mechanism of (77)Se nuclear spin-lattice relaxation is investigated in binary Ge-Se glasses. The (77)Se nuclides in Se-Se-Se chain sites relax faster via dipolar coupling fluctuation compared to those in Ge-Se-Ge sites shared by GeSe4 tetrahedra that relax slower via the fluctuation of the chemical shift anisotropy. The relaxation rate for the Se-Se-Se sites decreases markedly with increasing magnetic field, whereas that for the Ge-Se-Ge sites displays no appreciable dependence on the magnetic field such that the extent of differential relaxation between the two Se environments becomes small at high fields on the order of 19.6 T. The corresponding dynamical correlation time is three orders of magnitude shorter (∼10(-9) s) for the Se-Se-Se sites, compared to that for the Ge-Se-Ge sites (∼10(-6) s). The large decoupling in the time scale between these Se environments provides direct experimental support to the commonly made assumption that the selenium chains are mechanically floppy, and the interconnected GeSe4 tetrahedra form the rigid elements in the selenide glass structure.

  19. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    NASA Astrophysics Data System (ADS)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  20. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    DOE PAGES

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for largemore » fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  1. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    SciTech Connect

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Moscicki, J.; Kowalewski, J.; Rössler, E. A.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  2. Gd3+ spin-lattice relaxation via multi-band conduction electrons in Y(1-x)Gd(x)In3: an electron spin resonance study.

    PubMed

    Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C

    2014-04-30

    Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.

  3. Electron spin-lattice and spin-spin relaxation study of a trinuclear iron(III) complex and its relevance in quantum computing.

    PubMed

    Mitrikas, George; Sanakis, Yiannis; Raptopoulou, Catherine P; Kordas, George; Papavassiliou, Georgios

    2008-02-01

    Electron spins of molecular magnets are promising candidates for large scale quantum information processing because they exhibit a large number of low-lying excited states. In this paper X-band pulse electron paramagnetic resonance spectroscopy is used to determine the intrinsic relaxation times T1 and T2 of a molecular magnet with an S = 1/2 ground state, namely the neutral trinuclear oxo-centered iron (III) complex, [Fe3(micro3-O)(O2CPh)5(salox)(EtOH)(EtOH)(H2O)]. The temperature dependence of the spin-lattice relaxation time T1 between 4.5 and 11 K shows that the Orbach relaxation process is dominant with the first excited state lying 57 cm(-1) above the ground state, whereas the phase memory time T(M) is of the order of 2.6 micros and exhibits a modest temperature dependence. These results together with previous magnetic measurements give further insight into the magnetic properties of the complex. The coherent manipulation of the electron spins is also examined by means of transient nutation experiments.

  4. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  5. Spin-lattice relaxation and ODMR linenarrowing of the photoexcited triplet state of pyrene in polycrystalline Shpol'skii hosts and glassy matrices

    NASA Astrophysics Data System (ADS)

    Tringali, Arthur E.; Brenner, Henry C.

    1998-01-01

    Phosphorescence and ODMR linewidths, and spin-lattice relaxation (SLR) rates were measured at pumped helium temperatures for the triplet excited state of pyrene doped in several n-alkane polycrystalline hosts as well as in 3-methylpentane (3-MP) glass, in order to test the expectation that the optimum Shpol'skii matrix for pyrene should lead to the slowest SLR rates. Among the series of n-alkanes, n-hexane showed the best Shpol'skii effect for pyrene in terms of the narrowest phosphorescence and weakest guest-host phonon coupling. The 2| E| and | D+ E| ODMR linewidths for pyrene were minimized in n-hexane as well. Microwave saturated phosphorescence decay and fast passage methods were used to measure the SLR rates in the range 1.75-4.2 K. SLR appeared to be slowest in n-octane rather than n-hexane, but was significantly faster in n-decane and 3-MP. A marked anisotropy was observed in all hosts, in which the in-plane ( x ⇄  y) relaxation rate was 20-40 times the other rates. While this was suggestive of a mechanism in which SLR occurs by means of thermal promotion to a local phonon state with rotated spin axes, the observed activation energy was too small (2-3 cm -1) to be consistent with such a mechanism. In n-hexane, the relaxation appears to proceed by means of a direct process (rate αT1) in this temperature range. In the 3-MP glass, relaxation was faster than in the polycrystalline hosts, and followed a power law temperature dependence with an exponent of 2.4±0.2, in agreement with earlier studies of naphthalene derivatives in the same host, indicating that a direct two-level-system phonon mechanism is important in this glassy host.

  6. Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR.

    PubMed

    Epp, V; Gün, O; Deiseroth, H-J; Wilkening, M

    2013-05-21

    Lithium-rich argyrodites belong to a relatively new group of fast ion conducting solids. They might serve as powerful electrolytes in all-solid-state lithium-ion batteries being, from a medium-term point of view, the key technology when safe energy storage systems have to be developed. Spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) measurements carried out in the rotating frame of reference turned out to be the method of choice to study Li dynamics in argyrodites. When plotted as a function of the inverse temperature, the SLR rates log10(R1ρ) reveal an asymmetric diffusion-induced rate peak. The rate peak contains information on the Li jump rate, the activation energy of the hopping process as well as correlation effects. In particular, considering the high-temperature flank of the SLR NMR rate peak recorded in the rotating frame of reference, an activation energy of approximately 0.49 eV is found. This value represents long-range lithium jump diffusion in crystalline Li7PSe6. As an example, at 325 K the Li jump rate determined from SLR NMR is in the order of 1.4 × 10(5) s(-1). The pronounced asymmetry of the rate peak R1ρ(1/T) points to correlated Li motion. It is comparable to that which is typically found for structurally disordered materials showing a broad range of correlation times.

  7. Linewidth narrowing in the epr spectra of Gd 3+ impurity ions due to the spin-lattice relaxation of lanthanide Kramers' host ions

    NASA Astrophysics Data System (ADS)

    Malhotra, V. M.; Dixon, J. M.; Buckmaster, H. A.

    1980-08-01

    Electron paramagnetic resonance (EPR) of Gd 3+ doped in some lanthanide Kramers' host ion single crytals of the sulfate octahydrates (Ln 2(SO 4) 3·8H 2O;Ln≡Nd,Sm,Dy and Er) and trichloride hexahydrates (LnCl 3·6H 2O;Ln≡Nd, Sm, Dy, Er and Yb) has been studied at T ≅ 297 K using a 9.4 GHz EPR spectrometer. The effect of the Kramers' host Ln 3+ ions on the g-values and linewidths of Gd 3+ spectra has been determined by comparison with those for the isostructural diamagnetic La, Y lattices. At 297 K,in the EPR transitions of Gd 3+ ions have narrow linewidths in spite of the presence of paramagnetic host ions like Nd 3+, Sm 3+ and Yb 3+, whereas an unusual variation in the linewidth is observed in the Dy 3+, Er 3+ hosts as well as a negative g-value shift. In these latter hosts, the linewidths of the Δ M = ± 1 transitions decrease progressively as the magnitude of M increases. The observation of resolved Gd 3+ spectra at 297 K in the above hosts has been interpreted in terms of a random modulation of the interactions between the Gd 3+ and the host Ln 3+ ions by the rapid spin-lattice relaxation of Ln 3+ ions following the generalized theory of magnetic resonance by Kubo and Tomita [15]. τ 1 for Ln 3+ has been estimated in the above mentioned Kramers' hosts from the observed EPR linewidths of Gd 3+ spectra. Values for τ 1 have also been computed for Ln 3+ ions in Ln(C 2H 5SO 4) 3. 9H 2O and LnF 3 from linewidth data in the literature. The results are consistent with an effective host spin-lattice time which is due to Orbach and/or Raman processes, depending upon the temperature and the ground state energy level scheme.

  8. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    SciTech Connect

    Benjamin Michael Meyer

    2003-05-31

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution

  9. Electron Spin-Lattice Relaxation in Two Heme Iron and Two Blue-Copper Proteins at Liquid Helium Temperatures

    NASA Astrophysics Data System (ADS)

    Thayer, Bradley Denton

    1990-01-01

    The relaxation rates in frozen aqueous solutions of whale ferri-myoglobin azide, bovine ferri-hemoglobin azide, cupric azurin (P. aeruginosa) and cupric spinach plastocyanin were measured at 9.5 GHz using the pulse-saturation recovery method. Measurements covered a temperature range of 1.4 K to as high as 22 K, with corresponding relaxation rates up to 10^5/sec. Improvements in the equipment and the methods of analysis have enabled more stringent tests of the temperature dependence of the rates. In particular, several models proposed in the literature to explain the anomalous temperature dependence of the Raman rates in proteins are shown to be insufficient, including two fractal models. In addition, it is shown that any model based exclusively on the protein structure fails due to the diversity of the data under various solvent conditions. A general functional form consistent with a crossover in the vibrational properties is proposed instead, similar to the localization crossover in amorphous materials. The effect on the relaxation rate of several cosolvents and solutes is also examined. The effect on the direct process is much more pronounced than on the Raman region. The differences are shown to be consistent with changes in the velocity of sound at room temperature caused by the addition of cosolvents and solutes. Finally, the EPR recovery form is analyzed. We propose that the deviations in the recovery from an exponential form are due to a distribution of relaxation rates. The source of the distribution is most likely sample heating in the lower temperatures and a distribution of conformations frozen in near the paramagnetic site in the higher temperatures. It is not likely that it is caused by spin-spin interactions. The exact form of the distribution is unclear, but the most successful functional form for the recoveries is a stretched exponential with an exponent ranging from 0.5 to 1.0. However, a simple exponential fit to a limited portion of the recovery

  10. 13C-NMR off-resonance rotating frame spin-lattice relaxation studies of bovine lens gamma-crystallin self association: effect of 'macromolecular crowding'.

    PubMed

    Stevens, A; Wang, S X; Caines, G H; Schleich, T

    1995-01-01

    The NMR technique of 13C off-resonance rotating frame spin-lattice relaxation, which provides an accurate assessment of the effective rotational correlation time (tau 0, eff) for macromolecular rotational diffusion, was applied to the study of gamma-crystallin association as a function of protein concentration and temperature. Values of the effective rotational correlation time for gamma-crystallin rotational diffusion were obtained at moderate to high protein concentrations (80-350 mg/ml) and at temperatures above, and below, the cold cataract phase transition temperature. With increasing concentration gamma-crystallin was observed to increasingly associate as reflected by larger values of tau 0, eff Decreasing temperature in the range of 35 to 22 degrees C was found to result in no change in the temperature corrected value of tau 0, eff at a gamma-crystallin concentration of 80 mg/ml, whereas at temperatures of 18 degrees C or below, this parameter was approx. twofold larger, suggesting the occurrence of a well defined phase transition, which correlated well with the cold cataract phase transition temperature. At higher protein concentrations, by contrast, tau 0, eff (temperature corrected) was found to increase by approx. 1.6- to 2-times in the temperature interval 35 degrees C to 22 degrees C, a result consistent with the dependence of the cold cataract phase transition temperature on gamma-crystallin concentration. Analysis of intensity ratio dispersion curves, using an assumed model of isodesmic association, permitted the estimation of the association constant characterizing the aggregation under particular conditions of concentration and temperature. The significant increase in the value of the association constant with moderate increases in protein concentration was rationalized by invoking the effect of 'macromolecular crowding'. The results obtained in this study suggest that in the intact lens, where high protein concentrations prevail, gamma

  11. Effects of Off-Resonance Irradiation, Cross-Relaxation, and Chemical Exchange on Steady-State Magnetization and Effective Spin-Lattice Relaxation Times

    NASA Astrophysics Data System (ADS)

    Kingsley, Peter B.; Monahan, W. Gordon

    2000-04-01

    In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.

  12. 7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zeghib, Nadir; Grucker, Daniel

    2001-09-01

    Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.

  13. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    SciTech Connect

    Wang, Xianlong E-mail: pbeckman@brynmawr.edu; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A. E-mail: pbeckman@brynmawr.edu

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  14. Non-Arrhenius conductivity in the fast ionic conductor Li{sub 0.5}La{sub 0.5}TiO{sub 3}: Reconciling spin-lattice and electrical-conductivity relaxations

    SciTech Connect

    Leon, C.; Santamaria, J.; Ibarra, J.; Torres, L.M.

    1997-09-01

    Nuclear magnetic resonance and electrical conductivity measurements are conducted to study the dynamics of the ionic diffusion process in the crystalline ionic conductor Li{sub 0.5}La{sub 0.5}TiO{sub 3}. dc conductivity shows a non-Arrhenius temperature dependence, similar to the one recently reported for some ionic conducting glasses. Spin-lattice and conductivity relaxations are analyzed in the same frequency and temperature range in terms of the non-Arrhenius dependence of the correlation time. Both relaxations are then described using a single correlation function of the form f(t)=exp{bold (}{minus}(t/{tau}){sup {beta}}{bold )}, with {beta}=0.4 over the whole temperature range. {copyright} {ital 1997} {ital The American Physical Society}

  15. Modified Jeener Solid-Echo Pulse Sequences for the Measurement of the Proton Dipolar Spin-Lattice Relaxation-Time ( T1D) of Tissue Solid-like Macromolecular Components

    NASA Astrophysics Data System (ADS)

    Yang, H.; Schleich, T.

    Modified Jeener solid-echo pulse sequences are proposed for the measurement of the proton dipolar spin-lattice relaxation time, T1D, of motionally restricted (solid-like) components in the presence of mobile molecular species, such as encountered in biological tissue. A phase-cycled composite-pulse sequence was used for detection of the dipolar signal and cancellation of the Zeeman signal. A homospoil gradient pulse was added to the Jeener echo pulse sequence to enhance dephasing of the transverse magnetization components of mobile species, thereby aiding in elimination of the Zeeman signal during dipolar signal acquisition. A modified Jeener echo sequence incorporating water suppression is also proposed as a means to further depress the Zeeman signal arising from mobile components. The modified Jeener echo sequences were successfully used for the measurement of proton T1D values of solid 2,6-dimethylphenol and Sephadex gels of differing degrees of cross linking and hydration.

  16. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  17. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  18. Spin-lattice relaxation of ligand nuclei in slowly reorienting paramagnetic complexes in the electronic doublet spin state ( S = {1}/{2}). A theoretical approach for strongly coupled two-spin systems

    NASA Astrophysics Data System (ADS)

    Benetis, Nikolas P.

    In this paper a general theory for treating the spin-lattice relaxation of a ligand nucleus (denoted by I) is derived for a metal complex in a doublet electron spin state ( S = {1}/{2}). The dipole-dipole SI interaction is treated for the case where the electron spin is also strongly coupled to the metal nucleus K. The SK interaction considered here is the hyperfine coupling, both scalar (SC) and dipolar (DD). The present theory is valid for slowly reorienting complexes in solution and can, furthermore, incorporate relaxation effects of the electron spin S, and the metal nucleus K due to processes which are faster than, and independent of, reorientation, i.e., for processes that fulfil the strong narrowing conditions. The effects of chemical exchange of the ligands and of anisotropic reorientation of the complex are also studied. Together with our previous studies of paramagnetic complexes with electron spin S ≧ 1, that have been recently reviewed by J. Kowalewski, L. Nordenskiöld, N. Benetis, and P. O. Westlund, ( Prog. NMR Spectrosc.17, 141 (1985)), the present work completes the elementary relaxation features of ligand nuclei of metal complexes in the slow motional regime. The present theory is shown to be more general than the theory of Bertini and co-workers ( J. Magn. Reson.59 , 213 (1984)), which can be obtained as a limit of the present approach by decoupling the reorientation from the motions of the S-K two spin system. The treatment of a strongly coupled two-spin system is emphasized since it provides a necessary step to the treatment of the relaxation of paramagnetic doublets.

  19. Measurement of Spin-Lattice Relaxation Times and Concentrations in Systems with Chemical Exchange Using the One-Pulse Sequence: Breakdown of the Ernst Model for Partial Saturation in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Richard G. S.; Fishbein, Kenneth W.

    2000-01-01

    A fundamental problem in Fourier transform NMR spectroscopy is the calculation of observed resonance amplitudes for a repetitively pulsed sample, as first analyzed by Ernst and Anderson in 1966. Applications include determination of spin-lattice relaxation times (T1's) by progressive saturation and correction for partial saturation in order to determine the concentrations of the chemical constituents of a spectrum. Accordingly, the Ernst and Anderson formalism has been used in innumerable studies of chemical and, more recently, physiological systems. However, that formalism implicitly assumes that no chemical exchange occurs. Here, we present an analysis of N sites in an arbitrary chemical exchange network, explicitly focusing on the intermediate exchange rate regime in which the spin-lattice relaxation rates and the chemical exchange rates are comparable in magnitude. As a special case of particular importance, detailed results are provided for a system with three sites undergoing mutual exchange. Specific properties of the N-site network are then detailed. We find that (i) the Ernst and Anderson analysis describing the response of a system to repetitive pulsing is inapplicable to systems with chemical exchange and can result in large errors in T1 and concentration measurements; (ii) T1's for systems with arbitrary exchange networks may still be correctly determined from a one-pulse experiment using the Ernst formula, provided that a short interpulse delay time and a large flip angle are used; (iii) chemical concentrations for exchanging systems may be correctly determined from a one-pulse experiment either by using a short interpulse delay time with a large flip angle, as for measuring T1's, and correcting for partial saturation by use of the Ernst formula, or directly by using a long interpulse delay time to avoid saturation; (iv) there is a significant signal-to-noise penalty for performing one-pulse experiments under conditions which permit accurate

  20. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  1. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    SciTech Connect

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for large fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.

  2. One-Shot Measurement of Spin-Lattice Relaxation Times in the Off-Resonance Rotating Frame of Reference with Applications to Breast

    NASA Astrophysics Data System (ADS)

    Fairbanks, Ethan Jefferson

    1994-01-01

    Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.

  3. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    PubMed

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements.

  4. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1).

    PubMed

    Sarewicz, Marcin; Dutka, Małgorzata; Pietras, Rafał; Borek, Arkadiusz; Osyczka, Artur

    2015-10-14

    Here, comparative electron spin-lattice relaxation studies of the 2Fe-2S iron-sulphur (Fe-S) cluster embedded in a large membrane protein complex - cytochrome bc1 - are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe-S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe-S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1(-1)) for the Fe-S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1(-1) (T) over the range 5-120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin-orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin-orbit coupling but was also influenced by other factors - possibly the modification of protein rigidity and therefore the vibrational modes around the Fe-S cluster that change upon the movement of the iron-sulphur head domain.

  5. Temperature-dependent 11B spin-lattice relaxation time for BF4 and CF3BF3 anions in room-temperature ionic liquids.

    PubMed

    Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro

    2011-01-01

    Temperature-dependent (11)B T(1) values were measured for the BF(4) anion and BF(3) in the CF(3)BF(3) anion in room-temperature ionic liquids (RTILs) composed of the cation N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME). Including the lithium-salt-doped samples, two neat and two binary ionic liquids were studied. Arrhenius plots of the (11)B T(1) showed T(1) minima for BF(4) in the temperature range between 243 (or above freezing) and 373 K. Using the Bloembergen, Pound, and Purcell(BPP) equations for the (11)B quadrupolar and (11)B-(19) F dipolar relaxation mechanisms, the correlation times for motions of BF(4) were calculated. Since the internal rotation of BF(3) is assumed in CF(3)BF(3), T(1) minimum was not observed. The effects of the addition of the lithium salt on the (11)B correlation time and (11)BT(1) for the anions in the ILs are discussed. PMID:21162135

  6. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  7. Relaxation times of spin states of all ranks and orders of quadrupolar nuclei estimated from NMR z-spectra: Markov chain Monte Carlo analysis applied to 7Li+ and 23Na+ in stretched hydrogels.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Puckeridge, Max; Chapman, Bogdan E; Szekely, David

    2011-09-01

    The NMR z-spectra of 7Li+ and 23Na+ in stretched hydrogels contain five minima, or critical values, with a sharp "dagger" on the central dip. The mathematical representation of such z-spectra from spin-3/2 nuclei contains nine distinct (the total is 15 but there is redundancy of the ±order-numbers) relaxation rate constants that are unique for each of the spin states, up to rank 3, order 3. We present an approach to multiple-parameter-value estimation that exploits the high level of separability of the effects of each of the relaxation rate constants on the features of the z-spectrum. The Markov chain Monte Carlo (MCMC) method is computationally demanding but it yielded statistically robust estimates (low coefficients of variation) of the parameter values. We describe the implementation of the MCMC analysis (in the present context) and posit that it can obviate the need for using multiple-quantum filtered RF-pulse sequences to estimate all relaxation rate constants/times under experimentally favorable, but readily achievable, circumstances.

  8. Magnetic Field-Independent ^17O and ^63, 65Cu Normal State Spin Lattice Relaxation as Inferred by ^17O T2 NMR up to 28 T in YBa_2Cu_3O_7

    NASA Astrophysics Data System (ADS)

    Mitrovic, V. F.; Bachman, H. N.; Halperin, W. P.

    1998-03-01

    ^17O spin-spin relaxation NMR (T_2) is a powerful probe of vortex fluctuations in high Tc cuprates.(H. N. Bachman et al)., Bull. Am. Phys. Soc., 41, 467 (1996). It is important to understand the normal state T2 relaxation in order to extract the vortex field fluctuations.^1,(C. H. Recchia et al)., Phys. Rev. Lett. 78, 3543 (1997). The study of T2 in YBCO has shown that, in the normal state, copper and oxygen spin fluctuations (T1 processes) dominate the time scales for T_2, the spin-echo height decay. Thus, measurements of T2 as a function of magnetic field are an indicator of ^17O and ^63, 65Cu T1 behavior. We report new T2 measurements taken in the normal state from 3.2 T up to 28.2 T in which the spin-spin relaxation rate is observed to be completely field independent. By comparison with the predicted spin echo height decay given by the Gaussian Phase Approximation model we show that T1 of ^63, 65Cu and ^17O must not deviate from their published low-field values, within experimental error, over the entire magnetic field range. Work at Northwestern University is supported by the NSF (DMR 91-20000) through the Science and Technology Center for Superconductivity. The NHMFL is supported through the NSF and the state of Florida.

  9. Magnetic relaxation dispersion of lithium ion in solutions of DNA.

    PubMed

    Victor, Ken G; Teng, Ching-Ling; Dinesen, T R D; Korb, Jean-Pierre; Bryant, Robert G

    2004-06-01

    The magnetic field dependence of the nuclear spin-lattice relaxation rate constant defines the magnetic relaxation dispersion (MRD) and provides a direct characterization of the molecular dynamics that cause fluctuations in the magnetic couplings in the system and may also indicate the dimensional constraints on the motion. The counterion cloud surrounding a linear polyelectrolyte ion, such as DNA in solution, provides an interesting opportunity for ion confinement that helps in understanding the thermodynamics and the dynamics of the interactions between the polyion and other solutes. The MRD profiles of lithium ion and tetramethylammonium ion were recorded in dilute aqueous solutions of native calf thymus DNA, which provides a long, charged rod that reorients slowly. The 7Li ion relaxes through the nuclear electric quadrupole coupling and the proton-lithium dipole-dipole coupling; the protons of the tetramethylammonium ion relax by dipole-dipole coupling. MRD profiles of the 7Li+ ion are dominated by transient interactions with the DNA that yield a linear dependence of the spin-lattice relaxation rate constant on the logarithm of the Larmor frequency. This magnetic field dependence is consistent with diffusive ion motions that modulate two spatial coordinates that characterize the relaxation couplings in the vicinity of the polyion. Motions around the rod and fluctuations in the ion distance from the rod are consistent with these constraints for lithium. The magnetic field dependence of the tetramethylammonium ion proton relaxation rate constant is weak, but also approximately a linear function of the logarithm of the Larmor frequency, which implies that the field dependence is caused in part by local order in the DNA solution.

  10. Spin-lattice coupling in iron jarosite

    SciTech Connect

    Buurma, A.J.C.; Handayani, I.P.; Mufti, N.; Blake, G.R.; Loosdrecht, P.H.M. van; Palstra, T.T.M.

    2012-11-15

    We have studied the magnetoelectric coupling of the frustrated triangular antiferromagnet iron jarosite using Raman spectroscopy, dielectric measurements and specific heat. Temperature dependent capacitance measurements show an anomaly in the dielectric constant at T{sub N}. Specific heat data indicate the presence of a low frequency Einstein mode at low temperature. Raman spectroscopy confirms the presence of a new mode below T{sub N} that can be attributed to folding of the Brillouin zone. This mode shifts and sharpens below T{sub N}. We evaluate the strength of the magnetoelectric coupling using the symmetry unrestricted biquadratic magnetoelectric terms in the free energy. - Graphical abstract: Sketch of two connected triangles formed by Fe{sup 3+} spins (red arrows) in the hexagonal basal plane of potassium iron jarosite. An applied magnetic field (H) below the antiferromagnetic ordering temperature induces shifts of the hydroxy ligands, giving rise to local electrical dipole moments (blue arrows). These electric displacements cancel out in pairwise fashion by symmetry. Ligand shifts are confined to the plane and shown by shadowing. Highlights: Black-Right-Pointing-Pointer Evidence has been found for spin-lattice coupling in iron jarosite. Black-Right-Pointing-Pointer A new optical Raman mode appears below T{sub N} and shifts with temperature. Black-Right-Pointing-Pointer The magnetodielectric coupling is mediated by superexchange. Black-Right-Pointing-Pointer Symmetry of Kagome magnetic lattice causes local electrical dipole moments to cancel.

  11. Metal-oxide-semiconductor field effect nanostructure spin lattice devices

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    This dissertation explored and developed technologies for silicon based spin lattice devices. Spin lattices are artificial electron spin systems with a periodic structure having one to a few electrons at each site. They are expected to have various magnetic and even superconducting properties when structured at an optimal scale with a specific number i of electrons. Silicon turns out to be a very good material choice in realizing spin lattices. A metal-oxide-semiconductor field-effect nanostructure (MOSFENS) device, which is closely related to a MOS transistor but with a nanostructured oxide-semiconductor interface, can define the spin lattices potential at the interface and alter the occupation i with the gate electrode potential to change the magnetic phase. The MOSFENS spin lattices engineering challenge addressed in this work has come from the practical difficulty of process integration in modifying a transistor fabrication process to accommodate the interface patterning requirements. Two distinct design choices for the fabrication sequences that create the nanostructure have been examined. Patterning the silicon surface before the MOS gate stack layers gives a "nanostructure first" process, and patterning the interface after forming the gate stack gives a "nanostructure last process." Both processes take advantage of a nano-LOCOS (nano-local oxidation of silicon) invention developed in this work. The nano-LOCOS process plays a central role in defining a clean, sharp confining potential for the spin lattice electrons. The MOSFENS process required a basic transistor fabrication process that can accommodate the nanostructures. The process developed for this purpose has a gate stack with a 15 nm polysilicon gate electrode and a 3 nm thermal gate oxide on a p-type silicon substrate. The measured threshold voltage is 0.25 V. Device processes were examined for either isolating the devices with windows in the field oxide or with mesas defined by the etched trenches

  12. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    DOE PAGES

    Egami, T.; Fine, B. V.; Parshall, D.; Subedi, A.; Singh, D. J.

    2010-01-01

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for themore » onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.« less

  13. Two-dimensional diffusion in Li0.7NbS2 as directly probed by frequency-dependent 7Li NMR.

    PubMed

    Epp, V; Nakhal, S; Lerch, M; Wilkening, M

    2013-05-15

    Li ion diffusion in layer-structured Li0.7NbS2 has been complementary investigated by nuclear magnetic resonance (NMR) spectroscopy from an atomic scale point of view. In the present case, (7)Li NMR spin-lattice relaxation (SLR) rates R1ρ probed in the rotating frame of reference proved very informative in characterizing the Li self-diffusion process in the van der Waals gap between the NbS2 layers. While temperature-variable SLRρ measurements were used to determine dynamic parameters such as jump rates (τ(-1)) and the activation energy (Ea), frequency-dependent measurements were used to specify the dimensionality of the diffusion process. In particular, the effect of annealing, i.e., the distribution of Li ions between the layers, on overall Li dynamics has been studied. When plotted in an Arrhenius diagram, the R1ρ rates of an annealed sample, which were recorded at a locking frequency of 20 kHz, pass through a diffusion-induced relaxation peak whose maximum shows up at 320 K. Employing an appropriate diffusion model and appropriately accounting for a non-diffusive background relaxation, a Li jump rate τ(-1)(300 K) ≈ 1.3 × 10(5) s(-1) and an activation energy Ea of 0.43(2) eV can be deduced. Most importantly, in the high-T limit of the diffusion-induced rate peak, i.e., when ω1τ < 1 holds, the rates follow a logarithmic frequency dependence. This points to a diffusion process of low dimensionality and is in good agreement with predictions of relaxation models developed for 2D diffusion.

  14. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades. Catalogue identifier: AFAN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Apache License, Version 2.0 No. of lines in distributed program, including test data, etc.: 1611165 No. of bytes in distributed program, including test data, etc.: 367246683

  15. Lattice dynamics in Bosonic 7 Li

    NASA Astrophysics Data System (ADS)

    Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund

    2016-05-01

    The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.

  16. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  17. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets.

    PubMed

    Bonetti, S; Hoffmann, M C; Sher, M-J; Chen, Z; Yang, S-H; Samant, M G; Parkin, S S P; Dürr, H A

    2016-08-19

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (∼30  fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering. PMID:27588880

  18. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Hoffmann, M. C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M. G.; Parkin, S. S. P.; Dürr, H. A.

    2016-08-01

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (˜30 fs ). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

  19. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    SciTech Connect

    Carretta, P.; Corti, M.; Rigamonti, A. )

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  20. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.

    PubMed

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-24

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed. PMID:27391746

  1. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  2. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    SciTech Connect

    Baklanova, Ya. V.; Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N.; Denisova, T.A.; Shein, I.R.; Maksimova, L.G.

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spin–lattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spin–lattice relaxation time decrease abruptly at the temperature increasing above ∼500 K, whereas the EFG parameters are averaged (〈ν{sub Q}〉=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: • Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. • Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. • The distribution of vacancies was clarified for both lithium sites. • The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  3. Strong spin-lattice coupling in CrSiTe3

    DOE PAGES

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M. -W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; et al

    2015-03-19

    CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons acrossmore » the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  4. Strong spin-lattice coupling in CrSiTe{sub 3}

    SciTech Connect

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M.-W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; Yan, J.-Q.; Mandrus, D.

    2015-04-01

    CrSiTe{sub 3} has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe{sub 3} is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted.

  5. Strong spin-lattice coupling in CrSiTe3

    SciTech Connect

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M. -W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; Yan, J. -Q.; Mandrus, D.

    2015-03-19

    CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.

  6. Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect.

    PubMed

    Schecter, Michael; Rudner, Mark S; Flensberg, Karsten

    2015-06-19

    We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.

  7. Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect.

    PubMed

    Schecter, Michael; Rudner, Mark S; Flensberg, Karsten

    2015-06-19

    We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase. PMID:26197005

  8. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-03-15

    Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  9. Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Parasuraman, E.; Gopi, D.; Prabhu, A.; Vicencio, Rodrigo A.

    2016-03-01

    We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferromagnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset of modulational instability both analytically in the framework of linear stability analysis and numerically by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange between low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting eventually in the formation of few long-lived high amplitude DBs.

  10. Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Rudner, Mark S.; Flensberg, Karsten

    2015-06-01

    We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.

  11. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    NASA Astrophysics Data System (ADS)

    Smith, Anders; Nielsen, Kaspar K.; Bez, Henrique N.; Bahl, Christian R. H.

    2016-08-01

    We measure the magnetocaloric effect of the manganite series La0.67Ca0.33 -xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence. In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.

  12. The cosmological 7Li problem from a nuclear physics perspective

    NASA Astrophysics Data System (ADS)

    Broggini, C.; Canton, L.; Fiorentini, G.; Villante, F. L.

    2012-06-01

    The primordial abundance of 7Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect assumptions about the nuclear reaction cross sections relevant for BBN. To do this, we introduce an efficient method to calculate the changes in the 7Li abundance produced by arbitrary (temperature dependent) modifications of the nuclear reaction rates. Then, considering that 7Li is mainly produced from 7Be via the electron capture process 7Be+e- → 7Li+νe, we assess the impact of the various channels of 7Be destruction. Differently from previous analysis, we consider the role of unknown resonances by using a complete formalism which takes into account the effect of Coulomb and centrifugal barrier penetration and that does not rely on the use of the narrow-resonance approximation. As a result of this, the possibility of a nuclear physics solution to the 7Li problem is significantly suppressed. Given the present experimental and theoretical constraints, it is unlikely that the 7Be+n destruction rate is underestimated by the 2.5 factor required to solve the problem. We exclude, moreover, that resonant destruction in the channels 7Be+t and 7Be+3He can explain the 7Li puzzle. New unknown resonances in 7Be+d and 7Be+α could potentially produce significant effects. Recent experimental results have ruled out such a possibility for 7Be+d. On the other hand, for the 7Be+α channel very favorable conditions are required. The possible existence of a partially suitable resonant level in 11C is studied in the framework of a coupled-channel model and the possibility of a direct measurement is considered.

  13. Barrier distributions for the 7Li+27Al reaction

    NASA Astrophysics Data System (ADS)

    Cárdenas, W. H. Z.

    2010-08-01

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the 7Li+27Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  14. Nitrogen-15 spin-rotation relaxation in ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Harnden, Anne M. C.; Hunter, Brian K.; Brown, R. Julian C.

    The spin-lattice relaxation time has been measured for 15N in ammonium perchlorate in the temperature range 240 to 292 K. The temperature dependence of T, suggests that spin-rotation is the dominant relaxation mechanism, and this is confirmed by calculation and by nuclear Overhauser effect measurements. The spin-rotation coupling constant for 15NH 4+ is estimated to be 11.1 ± 0.2 kHz.

  15. A {sup 11}B and {sup 7}Li MAS-NMR study of sol-gel lithium triborate glass subjected to thermal densification

    SciTech Connect

    Mustarelli, P.; Quartarone, E.; Benevelli, F.

    1997-06-01

    The effects of thermal densification on a sol-gel lithium triborate glass have been studied by {sup 11}B and {sup 7}Li NMR both static and at the magic angle (MAS). {sup 11}B spectra show that the boron average coordination is similar in sol-gel and melt-quenched samples and it does not change upon annealing. {sup 7}Li T{sub 1} is shorter ({approximately}8.5 s) in sol-gel glass as prepared than in its melt-quenched counterpart ({approximately}13 s) due to dipolar-dipolar Li-H interaction. {sup 7}Li longitudinal relaxation behavior captures a part of a complex devitrification process which is driven by the loss of both residual solvent and moisture.

  16. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-08-15

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  17. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chui, C. P.; Zhou, Yan

    2014-08-01

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  18. 79Br Nuclear Quadrupole Relaxation in the High Temperature Modification of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Sekiya, Harutaka; Ishikawa, Chiaki; Abe, Yoshihito

    1992-06-01

    The spin-lattice relaxation time of 79Br NQR has been measured between 4.2 K and room temperature. The result is compared with that of 35Cl NQR in NbCl5. The origin of the relaxation is attributed to the quadrupolar interaction and the temperature dependence is explained by the Raman process. The Debye temperature is determined to be 94 K and the relaxation time is related with the NQR frequency through the covalency.

  19. Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times

    SciTech Connect

    Angtuaco, T.L.; Mattison, D.R.; Thomford, P.J.; Jordan, J.

    1986-01-01

    Human placentas were obtained immediately following delivery and incubated with manganese chloride (MnCl/sub 2/) in concentrations ranging from 0.002 to 2.0 mM. Proton density, T1 and T2 were measured at times ranging from 5-200 minutes. There was rapid uptake of manganese by the placenta producing a dose-dependent decrease in placental T1 and T2. The major effect of manganese uptake was shortening of T1 suggesting that the contrast between placenta and myometrium will be enhanced predominantly for T1-dependent imaging pulse sequences.

  20. Matrix-dependent modulation of anisotropic effects on NMR spectra from 7Li+ and 23Na+ encapsulated in cryptands.

    PubMed

    Naumann, Christoph; Kuchel, Philip W

    2013-01-01

    (7)Li and (23)Na NMR spectra of the respective cations in gelatin and ι-carrageenan gels containing cryptand-[2.1.1] (for Li(+)) or cryptand-[2.2.2] (for Na(+)) displayed two transitions: the one at higher frequency corresponded to the cation surrounded by gel, the other to cation inside its appropriately sized cryptand. While binding to cryptands yielded much broader lines and shorter T (1) relaxation times, anisotropic splitting in first order (7)Li or (23)Na NMR spectra was not detected. Stretching the gels resulted in increasing the anisotropic electric field gradient tensor; thus, the NMR transitions of the cation in the gel were split (removal of degeneracy) to display its characteristic 3:4:3 triplet for spin = 3/2 nuclei. The transitions of the cryptand-bound cations (Li(+)-cryptand-[2.1.1] and Na(+)-cryptand-[2.2.2]) showed different extents of interaction with the electric field gradient tensor depending on the composition of the gel matrix. The NMR signal for (7)Li(+)-cryptand-[2.1.1] in stretched gelatin gel showed a five-fold increased splitting as compared to the (7)Li(+) signal in the reference gel. In stretched ι-carrageenan gels, no anisotropic splitting from the cryptand-bound Li(+) was recorded. Steady-state irradiation envelopes or z-spectra showed evidence of Li(+) exchange between isotropic (cryptand) and anisotropic (gel) sites only at higher temperatures (55 °C). For Na(+) bound to the cryptand-[2.2.2], anisotropic splitting (three-fold smaller compared with the (23)Na signal in the reference gel) was only recorded in stretched ι-carrageenan gels, whereas gelatin gels showed only anisotropic splitting for the (23)Na signal in the reference gel.

  1. Carbon relaxation analysis in proton coupled spin systems

    NASA Astrophysics Data System (ADS)

    Rossi, Claudio; Marchettini, Nadia; Bastianoni, Simone; Dongti, Alessandro

    1995-07-01

    Selective, non-selective and biselective carbon spin-lattice relaxation measurements were determined in methyl-salicylate DMSO-d 6 solution. The frequency dependence of biselective relaxation measurements of protonated aromatic carbons showed the effects of J-scalar modulation. The dipolar contribution induced by asymmetric selective proton inversion of the spin population of a single satellite peak could be useful for investigating of the Shimizu-Fujiwara-Mackor-Maclean relaxation rate. Analysis of the ratios is also proposed for the calculation of dipolar relaxation mechanism efficiency.

  2. Lithium motion in the anode material LiC6 as seen via time-domain 7Li NMR

    NASA Astrophysics Data System (ADS)

    Langer, J.; Epp, V.; Heitjans, P.; Mautner, F. A.; Wilkening, M.

    2013-09-01

    Since the commercialization of rechargeable lithium-ion energy storage systems in the early 1990s, graphite intercalation compounds (GICs) have served as the number one negative electrode material in most of today's batteries. During charging the performance of a battery is closely tied with facile Li insertion into the graphite host structure. So far, only occasionally time-domain nuclear magnetic resonance (NMR) measurements have been reported to study Li self-diffusion parameters in GICs. Here, we used several NMR techniques to enlighten Li hopping motions from an atomic-scale point of view. Li self-diffusion in the stage-1 GIC LiC6 has been studied comparatively by temperature-variable spin-spin relaxation NMR as well as (rotating frame) spin-lattice relaxation NMR. The data collected yield information on both the relevant activation energies and jump rates, which can directly be transformed into Li self-diffusion coefficients. At room temperature the Li self-diffusion coefficient turns out to be 10-15m2s-1, thus, slightly lower than that for layer-structured cathode materials such as Lix≈0.7TiS2.

  3. Metastable charged sparticles and the cosmological {sup 7}Li problem

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Luo, Feng; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: feng.luo@kcl.ac.uk E-mail: spanos@inp.demokritos.gr

    2012-12-01

    We consider the effects of metastable charged sparticles on Big-Bang Nucleosynthesis (BBN), including bound-state reaction rates and chemical effects. We make a new analysis of the bound states of negatively-charged massive particles with the light nuclei most prominent in BBN, and present a new code to track their abundances, paying particular attention to that of {sup 7}Li. Assuming, as an example, that the gravitino is the lightest supersymmetric particle (LSP), and that the lighter stau slepton, τ-tilde {sub 1}, is the metastable next-to-lightest sparticle within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), we analyze the possible effects on the standard BBN abundances of τ-tilde {sub 1} bound states and decays for representative values of the gravitino mass. Taking into account the constraint on the CMSSM parameter space imposed by the discovery of the Higgs boson at the LHC, we delineate regions in which the fit to the measured light-element abundances is as good as in standard BBN. We also identify regions of the CMSSM parameter space in which the bound state properties, chemistry and decays of metastable charged sparticles can solve the cosmological {sup 7}Li problem.

  4. Photoproduction of {pi}{pi} Pairs off {sup 7}Li

    SciTech Connect

    Maghrbi, Yasser

    2011-10-21

    This paper reports on the quasi-free photoproduction of {pi}{sup 0}{pi}{sup 0} and {pi}{sup 0}{pi}{sup +/-} pairs from {sup 7}Li in view of the in-medium properties of hadrons. Measurements have been done using the CB/TAPS detector setup and the Glasgow photon tagging spectrometer for incident photon energies up to 820 MeV. At small invariant masses, an enhancement of the neutral invariant mass distributions is seen compared to the mixed charged channel and could be explained either by an in-medium modification of the {pi}{pi} interaction in the I = J = 0 channel or by effects related to the final state interactions.

  5. Temperature Dependence of Electron Spin Relaxation of 2,2-diphenyl-1-picrylhydrazyl in Polystyrene

    PubMed Central

    Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    The electron spin relaxation rates for the stable radical DPPH (2,2-diphenyl-1-picrylhydrazyl) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01%) spin-lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5%) relaxation is orders of magnitude faster than at the lower concentration, and 1/T1 is approximately linearly dependent on temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups. PMID:23565040

  6. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  7. Relaxation modes in glass forming meta-toluidine.

    PubMed

    Carpentier, L; Decressain, R; Descamps, M

    2004-10-01

    The dynamics in supercooled meta-toluidine was studied using dielectric relaxation, modulated differential scanning calorimetry, proton spin-lattice relaxation times, and viscosity measurements. The combination of these different techniques has clearly shown a large decoupling of the relaxation modes whose origin is attributed to the formation of clusters via the NH2 bonding. This decoupling starts at a temperature also corresponding to a change of the dynamical behavior from a high temperature Arrhenius evolution to a Vogel-Fulcher-Tamman low temperature evolution.

  8. Coupled nuclear spin relaxation and internal rotations in magnesium fluosilicate hexahydrate.

    NASA Technical Reports Server (NTRS)

    Utton, D. B.; Tsang, T.

    1972-01-01

    Both proton and fluorine nuclear spin-lattice relaxations have been studied by the 180- to 90-deg pulse method in magnesium fluosilicate hexahydrate at 25 and 13 MHz over the temperature range from 170 to 350 K. Observed nonexponential behavior of the nuclear magnetic relaxation is explained by internal rotations of the doubly charged negative fluosilicate ions and doubly charged positive magnesium hexahydrate ions.

  9. Reaction mechanism of 7Li(3He,p)9Be and 7Li(3H,n)9Be and primordial nucleosynthesis of 9Be

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Kajino, T.; Kubo, K.-I.

    1993-02-01

    We investigate in a unified way the reaction mechanism of 7Li(3H,n)9Be and 7Li(3He, p)9Be at the low energies Ec.m.<=2 MeV of astrophysical interest. Assuming charge independence of the nuclear reaction amplitudes and taking account of the effects from different isospin contribution, Coulomb interaction, and associated kinematical conditions properly, we constrain the upper and lower bounds of the total cross section of 7Li(3H,n)9Be theoretically by using knowledge of the 7Li(3He, p)9Be reaction. It is found that the total cross section of 7Li(3H,n)9Be at Gamow window energy E~250 keV is dominated by the near-threshold T=1 resonance whose resonance parameters are not determined at all experimentally, although the direct reaction process makes progressively important contributions at higher energies 500 keV<=Ec.m.. Primordial abundance of 9Be calculated in the inhomogeneous and standard big-bang models by using the inferred reaction cross section for 7Li(3H,n)9Be is compared with recent results of astronomical observations.

  10. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electro-migration

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Kalugin, M. M.; Gabrielyan, A. V.; Martoyan, A. G.

    2016-01-01

    This paper deals with a new electro-membrane method of enrichment of 7Li isotope. The data are presented on the importance and application fields regarding the use of 7Li isotopes. Existing methods and criteria of separation of lithium isotopes are discussed. The principle of new technology, regimes of enrichment experiments, and analysis details of obtained products are briefly described.

  11. Spin-lattice interactions as revealed by the pressure-temperature phase diagram of Co[N(CN)2 ]2

    NASA Astrophysics Data System (ADS)

    Musfeldt, Janice; Brinzari, T. V.; O'Neal, K. R.; Chen, P.; Schleuter, J. A.; Manson, J. L.; Litvinchuk, A. P.; Liu, Z.

    2015-03-01

    We combined diamond anvil cell techniques, synchrotron-based infrared and Raman spectroscopies, and complementary lattice dynamics calculations to investigate spin-lattice coupling and the magnetic crossover mechanism in the molecule-based quantum magnet Co[N(CN)2]2. These findings along with prior magnetic properties work were brought together to create a pressure-temperature phase diagram in which the second-order structural boundaries converge on key areas of activity involving the spin state, exposing how the pressure-induced local lattice distortions trigger the ferromagnetic to antiferromagnetic crossover transition. Similar triggering events may take place in other materials. We thank the NSF and PRF for support of this work.

  12. Non-Gaussian error distribution of 7Li abundance measurements

    NASA Astrophysics Data System (ADS)

    Crandall, Sara; Houston, Stephen; Ratra, Bharat

    2015-07-01

    We construct the error distribution of 7Li abundance measurements for 66 observations (with error bars) used by Spite et al. (2012) that give A(Li) = 2.21 ± 0.065 (median and 1σ symmetrized error). This error distribution is somewhat non-Gaussian, with larger probability in the tails than is predicted by a Gaussian distribution. The 95.4% confidence limits are 3.0σ in terms of the quoted errors. We fit the data to four commonly used distributions: Gaussian, Cauchy, Student’s t and double exponential with the center of the distribution found with both weighted mean and median statistics. It is reasonably well described by a widened n = 8 Student’s t distribution. Assuming Gaussianity, the observed A(Li) is 6.5σ away from that expected from standard Big Bang Nucleosynthesis (BBN) given the Planck observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution reduces the discrepancy to 4.9σ, which is still significant.

  13. Nuclear Spin Relaxation Times for Methane-Helium ``Slush'' at 4 MHz using Pulsed NMR

    NASA Astrophysics Data System (ADS)

    Hamida, J. A.; Sullivan, N. S.

    2006-09-01

    We report measurements of the nuclear spin-lattice relaxation times (T1) and spin-spin relaxation times (T2) for small grains of methane suspended in liquid helium (methane-helium "slush") for temperatures 2 Krelaxation rate 1/T2 is consistent with internal diffusion as opposed to surface scattering, which has been shown to be dominant for hydrogen-helium "slush". The most interesting feature observed for methane-helium mixtures is the existence of three different time scales for samples aged at 4.2 K. The possible origins of this distribution of relaxation times are discussed.

  14. Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): a literature review.

    PubMed

    Soares, J C; Boada, F; Keshavan, M S

    2000-05-01

    7Li magnetic resonance spectroscopy (MRS) has been successfully used in recent years as a new tool to measure brain tissue lithium concentrations in vivo. After demonstration of its feasibility in animal studies over a decade ago, human investigations have characterized the brain pharmacokinetics of lithium. Preliminary studies have investigated brain pharmacokinetic correlates of clinical response in the treatment of bipolar disorder patients, with indication of possible clinical relevance of 7Li MRS measures. In this paper we reviewed the accumulated literature in this area, and discuss possible directions for this research in the context of preliminary studies conducted by our group that demonstrated the feasibility of 7Li MRS at 3 T.

  15. NMR relaxation rate and the libron energy of solid hydrogen

    NASA Technical Reports Server (NTRS)

    Sugawara, K.; Woollam, J. A.

    1978-01-01

    By taking the rotational relaxation of orthohydrogen (o-H2) in solid hydrogen into account, the authors have theoretically investigated the longitudinal NMR spin lattice relaxation rate of o-H2. The rate is characterized by an anomalous maximum, as a function of temperature, at temperatures close to the mean libron energy of o-H2. Application of the theory for o-H2 concentrations between 42% and 75% reveals a nearly concentration-independent mean libron energy equivalent to about 1 K. This qualitatively and quantitatively contradicts the conclusions of other theories, but agrees with recent experiments.

  16. Nucleon and triton production from nucleon-induced reactions on 7Li

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukinobu; Guo, Hairui; Nagaoka, Kohei; Matsumoto, Takuma; Ogata, Kazuyuki; Yahiro, Masanobu

    2016-06-01

    Nucleon (N) and triton production from nucleon-induced reactions on 7Li at an incident energy of 14 MeV are analyzed by using three-body continuum discretized coupled channels method (CDCC), final state interaction (FSI) model, and sequential decay (SD) model. The CDCC is used to describe nucleon and triton production via breakup continuum channels, 7Li(N,N')7Li*→ t + α. Triton production from p(n) + 7Li → t + 5Li(5He) channel and nucleon production from sequential decay of the ground-state 5Li(5He) are calculated by the FSI model and the SD model, respectively. The calculated double differential cross sections for both nucleon and triton production are in good agreement with experimental ones except at relatively low nucleon emission energies.

  17. NMR relaxation study of crosslinked cis-1,4-polybutadiene

    SciTech Connect

    Munie, G.C.; Jonas, J.; Rowland, T.J.

    1980-01-01

    Proton relaxation measurements have been used to investigate the effects of crosslinking on the segmental motion in cis-1,4-polybutadiene samples. The temperature dependence of proton spin-lattice relaxation time T/sub 1/ and spin-spin relaxation time T/sub 2/ at 60 and 24.3 MHz is reported in cis-1,4-polybutadiene (PB) samples with different crosslink density including uncrosslinked PB and samples with 140, 40, and 14 repeat units between crosslinks. In addition, spin-lattice relaxation times in rotating coordinate frame, T/sub 1p/, have also been determined. The relaxation data are interpreted in terms of the effects of crosslinks on segmental chain motions. Because of their sensitivity to low-frequency motion, T/sub 2/ data are of major interest. At temperatures well above the T/sub 1/ minimum the small T/sub 2/ temperature dependence resembles solidlike behavior reflecting the nonzero averaging of dipolar interactions due to anisotropic motion of the chain segments between crosslinks. The magnitude of T/sub 2/ at 60/sup 0/C is found to be proportional to the average mass between crosslinks.

  18. Ferroic ordering and charge-spin-lattice order coupling in Gd doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Abdelhamid, Ehab; Palihawadana Arachchige, Maheshika; Dixit, Ambesh; Lawes, Gavin; Naik, Vaman; Naik, Ratna

    Rare earth doped spinels have been extensively studied for their potential applications in magneto-optical recording and as MRI contrast agents. In the present study, we have investigated the effect of gadolinium doping (1-5 at.%) on the magnetic and dielectric properties of Fe3O4nanoparticles synthesized by the chemical co-precipitation method. The structure and morphology of the as-synthesized gadolinium doped Fe3O4(Gd-Fe3O4) nanoparticles were characterized by XRD, SEM and TEM, and the magnetic properties were measured by a Quantum Design physical property measurement system. We find that the penetration of excess Gd3+ ions into Fe3O4 spinel matrix significantly influences the average crystallite size and saturation magnetization in Gd-Fe3O4. The average crystallite size, estimated from XRD using Scherrer equation, increases with increasing Gd doping percentage and the saturation magnetization drops monotonically with excess Gd3+ ions. Interestingly, Gd- Fe3O4develops enhanced ferroelectric ordering at low temperatures. The details of the temperature dependent dielectric, ferroelectric and magnetocapacitance measurements to understand the onset of charge-spin-lattice coupling in Gd-Fe3O4 system will be presented.

  19. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  20. 19F nuclear spin relaxation and spin diffusion effects in the single-ion magnet LiYF4:Ho3+

    NASA Astrophysics Data System (ADS)

    Malkin, B. Z.; Vanyunin, M. V.; Graf, M. J.; Lago, J.; Borsa, F.; Lascialfari, A.; Tkachuk, A. M.; Barbara, B.

    2008-11-01

    Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.

  1. A study of molecular dynamics and freezing phase transition in tissues by proton spin relaxation.

    PubMed Central

    Rustgi, S N; Peemoeller, H; Thompson, R T; Kydon, D W; Pintar, M M

    1978-01-01

    Muscle, spleen, and kidney tissues from 4-wk-old C57 black mice were studied by proton magnetic resonance. Spin-lattice relaxation times at high fields and in the rotating frame, as well as the spin-spin relaxation times, are reported as a function of temperature in the liquid and frozen phase. Motions of large molecules and of water molecules and their changes at the freezing phase transition are studied. The shortcomings of the two-state fast-exchange relaxation model are discussed. PMID:667294

  2. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  3. Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure.

    PubMed

    Puchalski, Mariusz; Pachucki, Krzysztof

    2013-12-13

    Relativistic and QED corrections are calculated for a hyperfine splitting of the 2S1/2 ground state in 6,7Li atoms with a numerically exact account for electronic correlations. The resulting theoretical predictions achieve such a precision level that, by comparison with experimental values, they enable determination of the nuclear properties. In particular, the obtained results show that the 7Li nucleus, having a charge radius smaller than 6Li, has about a 40% larger Zemach radius. Together with known differences in the electric quadrupole and magnetic dipole moments, this calls for a deeper understanding of the Li nuclear structure.

  4. Effect of breakup coupling on fusion for 6,7Li+24Mg systems

    NASA Astrophysics Data System (ADS)

    Pradhan, M. K.; Mukherjee, A.; Dasmahapatra, B.

    2015-01-01

    To study the effect of breakup coupling on fusion we have derived fusion cross sections in the framework of continuum discretised coupled channels (CDCC) method using the coupled channels code FRESCO for the systems 6,7Li+24Mg. The CDCC predicted fusion cross sections for the 7Li+24Mg system agree well with the experimental fusion data whereas for the 6Li+24Mg system the agreement is reasonable at below barrier energies. However, within the limits of the present work no definite conclusion could be obtained from the quality of agreement at above barrier energies for the 6Li+24Mg system.

  5. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    SciTech Connect

    Hu, Jian Zhi

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  6. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods

    PubMed Central

    Wen, Tao; Wamer, Wayne G.; Subczynski, Witold K.; Hou, Shuai; Wu, Xiaochun; Yin, Jun-Jie

    2016-01-01

    Electron spin resonance (ESR) spectroscopy was used to investigate the switchable, light-dependent effects of gold nanorods (GNRs) on paramagnetic properties of nitroxide spin probes. The photoexcited GNRs enhanced the spin-spin and spin-lattice relaxations of nitroxide spin probes. It was shown that molecular oxygen plays the key role in this process. Our results demonstrate that ESR is a powerful tool for investigating the events following photoexcitation of GNRs. The novel light-controlled effects observed for GNRs on paramagnetic properties and activities of surrounding molecules have a number of significant applications where oxygen sensing and oxygen activity is important. PMID:27071507

  7. Parafermions in spin lattices

    NASA Astrophysics Data System (ADS)

    Dua, Arpit; Zheng, Huaixiu; Jiang, Liang

    We investigate the twist defects in the ZN Toric code model first introduced by Bombin [Phys. Rev. Lett.105, 030403 (2010)] for the Z2 model and then generalized and studied by You et al. [Phys. Rev. B 86, 161107(R) (2012)]. Using topological entanglement entropy (TEE) and generalized Jordan-Wigner transformation, we show explicitly that the twist defects carry unpaired Parafermion zero modes. We also demonstrate the fusion rules of these Parafermion modes using the TEE calculation. In addition, we propose a scheme for quantum non-demolition measurement of the topological charge of these modes. This scheme can be used to implement measurement-based braidings (MBBs) on Parafermions to implement gates for quantum computing.

  8. Pulsed NMRON relaxation measurements and thermometric NMR in the quasi-2 dimensional femomagnet: Mn(COOCH 3) 2·4H 2O

    NASA Astrophysics Data System (ADS)

    Le Gros, M.; Kotlicld, A.; Turrell, B. G.

    1990-08-01

    The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.

  9. Barrier distributions for the {sup 7}Li+{sup 27}Al reaction

    SciTech Connect

    Cardenas, W. H. Z.

    2010-08-04

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the {sup 7}Li+{sup 27}Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  10. Quantum defects in Rydberg nD states of optically cooled 7Li atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Vilshanskaya, E. V.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2016-11-01

    To observe Rydberg transitions we applied a spectroscopic technique based on the observation of the resonance fluorescence of cold atoms in a magneto-optical trap. By using this approach, we estimated the quantum defect in Rydberg nD states of 7Li atoms. The obtained results are in a good agreement with previously published data.

  11. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces.

    PubMed

    Stupic, Karl F; Cleveland, Zackary I; Pavlovskaya, Galina E; Meersmann, Thomas

    2006-02-01

    This work reports the first systematic study of relaxation experienced by the hyperpolarized (hp) noble gas isotope (83)Kr (I=9/2) in contact with surfaces. The spin-lattice relaxation of (83)Kr is found to depend strongly on the chemical composition of the surfaces in the vicinity of the gas. This effect is caused by quadrupolar interactions during brief periods of surface adsorption that are the dominating source of longitudinal spin relaxation in the (83)Kr atoms. Simple model systems of closest packed glass beads with uniform but variable bead sizes are used for the relaxation measurements. The observed relaxation rates depend strongly on the chemical treatment of the glass surfaces and on the surface to volume ratio. Hp (83)Kr NMR relaxation measurements of porous polymers with pore sizes of 70-250 microm demonstrate the potential use of this new technique for material sciences applications.

  12. Spin Gap and Luttinger Liquid Description of the NMR Relaxation in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Gulácsi, Miklós; Simon, Ferenc; Kuzmany, Hans

    2007-10-01

    Recent NMR experiments by Singer et al. [Singer , Phys. Rev. Lett. 95, 236403 (2005).PRLTAO0031-900710.1103/PhysRevLett.95.236403] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magnetic field and temperature dependent NMR C13 spin-lattice relaxation is given in the framework of the Tomonaga-Luttinger liquid. The low temperature properties are governed by a gapped relaxation due to a spin gap (˜30K), which crosses over smoothly to the Luttinger liquid behavior with increasing temperature.

  13. The cosmological {sup 7}Li problem from a nuclear physics perspective

    SciTech Connect

    Broggini, C.; Canton, L.; Fiorentini, G.; Villante, F.L. E-mail: luciano.canton@pd.infn.it E-mail: francesco.villante@lngs.infn.it

    2012-06-01

    The primordial abundance of {sup 7}Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect assumptions about the nuclear reaction cross sections relevant for BBN. To do this, we introduce an efficient method to calculate the changes in the {sup 7}Li abundance produced by arbitrary (temperature dependent) modifications of the nuclear reaction rates. Then, considering that {sup 7}Li is mainly produced from {sup 7}Be via the electron capture process {sup 7}Be+e{sup −} → {sup 7}Li+ν{sub e}, we assess the impact of the various channels of {sup 7}Be destruction. Differently from previous analysis, we consider the role of unknown resonances by using a complete formalism which takes into account the effect of Coulomb and centrifugal barrier penetration and that does not rely on the use of the narrow-resonance approximation. As a result of this, the possibility of a nuclear physics solution to the {sup 7}Li problem is significantly suppressed. Given the present experimental and theoretical constraints, it is unlikely that the {sup 7}Be+n destruction rate is underestimated by the 2.5 factor required to solve the problem. We exclude, moreover, that resonant destruction in the channels {sup 7}Be+t and {sup 7}Be+{sup 3}He can explain the {sup 7}Li puzzle. New unknown resonances in {sup 7}Be+d and {sup 7}Be+α could potentially produce significant effects. Recent experimental results have ruled out such a possibility for {sup 7}Be+d. On the other hand, for the {sup 7}Be+α channel very favorable conditions are required. The possible existence of a partially suitable resonant level in {sup 11}C is studied in the framework of a coupled-channel model and the possibility of a direct measurement is considered.

  14. Coupled channel effect in elastic scattering and fusion for 6,7Li+28Si

    NASA Astrophysics Data System (ADS)

    Sinha, Mandira; Roy, Subinit; Basu, P.; Majumdar, H.; Santra, S.; Parkar, V. V.; Golda, K. S.; Kailas, S.

    2011-10-01

    The fusion excitation and elastic angular distribution were measured for 6,7Li+28Si from below to above Coulomb barrier (≤ 3Vb) energies. The barrier distribution derived from the fusion data was found to be broad and asymmetric at the sub-barrier region, compared to 1D BPM estimation. Effect of rotational coupling on fusion was found to be not so dominant. Phenomenological optical potential parameters, with surface and volume type imaginary potentials, were obtained from f tting of elastic scattering data and energy dependence of real and imaginary surface strengths were investigated around the barrier. CDCC calculations considering only breakup of projectile were performed for 6,7Li+28Si with the elastic scattering data, using the code FRESCO. The effects of breakup of projectile on elastic cross section do not agree with the energy dependence of real and imaginary strength with volume type imaginary potential around the barrier.

  15. {sup 7}Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads

    SciTech Connect

    Tatsumi, K.; Akai, T.; Imamura, T.; Zaghib, K.; Iwashita, N.; Higuchi, S.; Sawada, Y.

    1996-06-01

    The stacking order of graphite layers in mesocarbon microbeads (MCMBs) heat-treated between 700 and 3,000 C was examined by analyses of X-ray diffraction measurements, and lithium insertion into the MCMBs has been observed using solid-state {sup 7}Li-nuclear magnetic resonance ({sup 7}Li-NMR) spectroscopy. In MCMBs heat-treated above 2,000 C, the fully lithiated MCMBs showed two bands at ca. 45 ppm (vs. KiCl) and ca. 27 ppm in their {sup 7}Li-NMR spectra. The profile of the band at 45 ppm was very close to that for the first-stage lithium graphite intercalation compound (Li-GIC), though the other band at 27 ppm could not be assigned to any phases of Li-GICs. From these results, it is suggested that the structures of the MCMBs heat-treated above 2,000 C for lithium insertion are classified as graphitic structure, which has the AB stacking order of graphite layers, and turbostatic structure with a random stacking sequence of graphite layers; the fully lithiated compositions of both structures were estimated as LiC{sub 6} and ca. Li{sub 0.2}C{sub 6}, respectively. Although MCMB heat-treated at 700 C gave a higher capacity than LiC{sub 6}, the line shift in the {sup 7}Li-NMR spectra indicated that lithium stored in the MCMB displayed an ionic character. Capacity change of the MCMBs during charge-discharge cycling up to 20 cycles and capacity loss at higher current densities (<200 mA/g) were also examined.

  16. An update on the big bang nucleosynthesis prediction for {sup 7}Li: the problem worsens

    SciTech Connect

    Cyburt, Richard H; Fields, Brian D; Olive, Keith A E-mail: bdfields@uiuc.edu

    2008-11-15

    The lithium problem arises from the significant discrepancy between the primordial {sup 7}Li abundance as predicted by big bang nucleosynthesis (BBN) theory and the Wilkinson Microwave Anisotropy Probe (WMAP) baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2-3 in {sup 7}Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data; in particular, the uncertainty on the reaction rate for{sup 3}He({alpha},{gamma}){sup 7}Be has reduced to 7.4%, nearly a factor of 2 tighter than previous determinations. (2) The WMAP five-year data set now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects. With these, we now find that the BBN+WMAP predicts{sup 7}Li/H = (5.24{sub -0.67}{sup +0.71}) Multiplication-Sign 10{sup -10}. The central value represents an increase by 23%, most of which is due to the upward shift in the{sup 3}He({alpha},{gamma}){sup 7}Be rate. More significant is the reduction in the{sup 7}Li/H uncertainty by almost a factor of 2, tracking the reduction in the{sup 3}He({alpha},{gamma}){sup 7}Be error bar. These changes exacerbate the Li problem; the discrepancy is now a factor 2.4 or 4.2{sigma} (from globular cluster stars) to 4.3 or 5.3{sigma} (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key experimental and astronomical measurements highlighted.

  17. Exploring Light Neutron Rich Nuclei via the ({sup 7}Li,{sup 7}Be) Reaction

    SciTech Connect

    Cavallaro, M.; Cappuzzello, F.; Cunsolo, A.; Foti, A.; Orrigo, S. E. A.; Rodrigues, M. R. D.; Borello-Lewin, T.; Lenske, H.; Petrascu, H.; Winfield, J. S.

    2008-11-11

    A systematic study of the nuclei that can be described as an integer number of {alpha} particles plus three neutrons via the ({sup 7}Li,{sup 7}Be) reaction at about 8 MeV/u has shown the presence of Bound States Embedded in the Continuum in the energy spectra. These are experimental signatures of the dynamical correlations of an easily polarizable core with a single-particle state of the valence neutron.

  18. New measurement of the 10B(n,α)7 Li through the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spartá, Roberta

    2016-04-01

    B(n,α) Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α1 contribution (coming from the first Li excited level) by the αo (related to the Li ground state), using a very thin target. Preliminary results are shown of the three-body B(d,α7 Li)H cross section.

  19. An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.

    2008-11-01

    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by big bang nucleosynthesis (BBN) theory and the Wilkinson Microwave Anisotropy Probe (WMAP) baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2-3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data; in particular, the uncertainty on the reaction rate for3He(α,γ)7Be has reduced to 7.4%, nearly a factor of 2 tighter than previous determinations. (2) The WMAP five-year data set now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects. With these, we now find that the BBN+WMAP predicts7Li/H = (5.24-0.67+0.71) × 10-10. The central value represents an increase by 23%, most of which is due to the upward shift in the3He(α,γ)7Be rate. More significant is the reduction in the7Li/H uncertainty by almost a factor of 2, tracking the reduction in the3He(α,γ)7Be error bar. These changes exacerbate the Li problem; the discrepancy is now a factor 2.4 or 4.2σ (from globular cluster stars) to 4.3 or 5.3σ (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key experimental and astronomical measurements highlighted.

  20. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  1. 4T 7Li 3D MRSI in the brains of bipolar disorder subjects

    PubMed Central

    Lee, Jing-Huei; Adler, Caleb; Norris, Matthew; Chu, Wen-Jang; Fugate, Elizabeth M; Strakowski, Stephen M.; Komoroski, Richard A.

    2012-01-01

    This work demonstrates the first whole brain “high spatial resolution” 7Li MRSI in bipolar disorder subjects. The in vivo quantification is validated by a phantom containing 5 mM lithium salt using the identical RF sequence and imaging protocol. This study is the first demonstration of the 7Li distribution in the brain of bipolar disorder patients on lithium therapy using a 3D MRSI approach. The results show that brain lithium level is strongly correlated with serum lithium concentration. The brain-to-serum lithium ratio for the average brain and the local maximum were 0.39 ± 0.08 (r = 0.93) and 0.92 ± 0.16 (r= 0.90), respectively. The lithium distribution is found to be non-uniform throughout the brain for all patients, which is somewhat unexpected and highly intriguing. This uneven distribution is more evident in subjects at a higher therapeutic serum lithium level. This finding may suggest that lithium targets specific brain tissues and/or certain enzymatic and macromolecular sites that are associated with therapeutic effect. Further investigations of bipolar disorder patients on lithium therapy using 3D 7Li MRSI are warranted. PMID:22692991

  2. {sup 7}Li(p,n) NUCLEAR DATA LIBRARY FOR INCIDENT PROTON ENERGIES TO 150 MEV

    SciTech Connect

    S. MASHNIK; ET AL

    2000-11-01

    Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Accelerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+{sup 7}Li reaction, to predict neutron production from thin and thick lithium targets. In this report we describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for incident protons with energies up to 150 MeV. The important {sup 7}Li(p,n{sub 0}) and {sup 7}Li(p,n{sub 1}) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. This leads to the emission of lower-energy neutrons and other charged particles and gamma-rays from preequilibrium and compound nucleus decay processes. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.

  3. Low-energy 7Li(t, α)6He cross sections

    NASA Astrophysics Data System (ADS)

    Cecil, F. E.; Fahlsing, R. F.; Jarmie, Nelson; Hardekopf, R. A.; Martinez, R.

    1983-01-01

    The thick target yield of the reaction 7Li(t, α) has been measured to the ground and first excited states of 6He for bombarding energies between 70 and 110 keV. These yields are used to deduce the reaction cross sections and astrophysical S factors at intermediate values of energy. The zero energy S factor S(0) for 7Li(t, α)6He*(1.81) is 14+/-2.5 MeVb. Applications of the measured values of the cross section for this reaction to the diagnostics of high temperature tritium plasmas are discussed. Efforts to detect alphas from induced reactions on other light targets 6Li, 9Be, 10B, and 11B are discussed. NUCLEAR REACTIONS 7Li(t, α)6He, 9Be(t, α)8Li, 11B(t, α)10Be Et=70-110 keV, θ=150°. Measured thick target yields. Deduced σ(θ, E), S(θ, E).

  4. Probing the cluster structure of 7Li via elastic scattering on protons and deuterons in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Pakou, A.; Soukeras, V.; Cappuzzello, F.; Acosta, L.; Agodi, C.; Aslanoglou, X.; Calabrese, S.; Carbone, D.; Cavallaro, M.; Foti, A.; Keeley, N.; Marquinez-Duran, G.; Martel, I.; Mazzocco, M.; Parascandolo, C.; Pierroutsakou, D.; Rusek, K.; Sgouros, O.; Strano, E.; Zagatto, V. A. B.

    2016-07-01

    Elastic scattering measurements were performed for the 7Li+p system in inverse kinematics at energies of 16, 25, 35, and 38.1 MeV and for the 7Li+d system at 38.1 MeV. The heavy ejectiles were detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud in Catania, Italy. The results are analyzed using the Jeukenne-Lejeune-Mahaux and continuum discretized coupled channel frameworks. In the latter case the cluster structure of 7Li proves to be critical for the theoretical interpretation of the experimental results.

  5. Relaxation dynamics in the frustrated Cr9 antiferromagnetic ring probed by NMR

    NASA Astrophysics Data System (ADS)

    Garlatti, E.; Bordignon, S.; Carretta, S.; Allodi, G.; Amoretti, G.; De Renzi, R.; Lascialfari, A.; Furukawa, Y.; Timco, G. A.; Woolfson, R.; Winpenny, R. E. P.; Santini, P.

    2016-01-01

    We investigate the magnetic properties and the phonon-induced relaxation dynamics of the first regular Cr9 antiferromagnetic (AF) ring, which represents a prototype frustrated AF ring. Geometrical frustration in Cr9 yields an energy spectrum with twofold degenerate low-lying levels and a low-spin ground state. The electronic relaxation dynamics is probed by 1H -NMR through the temperature dependence of the spin-lattice relaxation rate 1 /T1 . We develop a microscopic model that reproduces 1 /T1(T ) curves, taking also into account the wipeout effect. By interpreting these measurements we determine the spin-phonon coupling strength and we investigate the decay of the cluster magnetization due to the spin-phonon interaction. We find that at very low temperatures, the relaxation is characterized by a single dominating Arrhenius-type relaxation process, whereas several relevant processes emerge at higher temperatures. In addition, we calculate the temperature and magnetic field dependence of level lifetimes.

  6. Probing the fusion of 7Li with 64Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Nanal, V.; Pal, S.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-04-01

    Background: The stable isotopes of Li, 6Li6 and 7Li, have two-body cluster structures of α +d and α +t with α -separation energies or breakup thresholds at 1.47 and 2.47 MeV, respectively. The weak binding of these projectiles introduces several new reaction channels not usually observed in the case of strongly bound projectiles. The impact of these breakup or breakup-like reaction channels on fusion, the dominant reaction process at near-barrier energies, with different target masses is of current interest. Purpose: Our purpose is to explore the fusion, at above and below the Coulmb barrier, of 7Li with 64Ni target in order to understand the effect of breakup or breakup-like processes with medium-mass target in comparison with 6Li, which has a lower breakup threshold. Measurement: The total fusion (TF) excitation of the weakly bound projectile 7Li with the medium-mass target 64Ni has been measured at the near-barrier energies (0.8 to 2 VB). The measurement was performed using the online characteristic γ -ray detection method. The complete fusion (CF) excitation function for the system was obtained using the x n -evaporation channels with the help of statistical model predictions. Results: At the above barrier energies CF cross sections exhibit an average suppression of about 6.5% compared to the one-dimensional barrier penetration model (1DBPM) predictions, while the model describes the measured TF cross section well. But below the barrier, both TF and CF show enhancements compared to 1DBPM predictions. Unlike 6Li, enhancement of CF for 7Li could not be explained by inelastic coupling alone. Conclusion: Whereas the σTF cross sections are almost the same for both the systems in the above barrier region, the suppression of σCF at above the barrier is less for the 7Li+64Ni system than for the 6+64Ni system. Also direct cluster transfer has been identified as the probable source for producing large enhancement in TF cross sections.

  7. Bicollinear Antiferromagnetic Order, Monoclinic Distortion, and Reversed Resistivity Anisotropy in FeTe as a Result of Spin-Lattice Coupling

    NASA Astrophysics Data System (ADS)

    Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2016-09-01

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g˜ 12 between monoclinic lattice distortions and the spin-nematic order parameter with B2 g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g˜12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the "reversed" puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenides are presented. We conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.

  8. Bicollinear Antiferromagnetic Order, Monoclinic Distortion, and Reversed Resistivity Anisotropy in FeTe as a Result of Spin-Lattice Coupling.

    PubMed

    Bishop, Christopher B; Moreo, Adriana; Dagotto, Elbio

    2016-09-01

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g[over ˜]_{12} between monoclinic lattice distortions and the spin-nematic order parameter with B_{2g} symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g[over ˜]_{12} is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the "reversed" puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenides are presented. We conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe. PMID:27661717

  9. Bicollinear antiferromagnetic order, monoclinic distortion, and reversed resistivity anisotropy in FeTe as a result of spin-lattice coupling

    DOE PAGES

    Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2016-09-08

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g~12 between monoclinic lattice distortions and the spin-nematic order parameter with B2g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g~12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the reversed puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenides are presented. Here, we concludemore » that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.« less

  10. Pressure-induced superconductivity in the antiferromagnet κ - (ET) 2C F3S O3 with quasi-one-dimensional triangular spin lattice

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Asai, Takayuki; Shimizu, Yasuhiro; Hayama, Hiromi; Yoshida, Yukihiro; Saito, Gunzi

    2016-07-01

    We report an antiferromagnetic (AF) ordering at ambient pressure and a superconducting transition under pressure for κ - (ET) 2C F3S O3 [ ET =bis (ethylenedithio)tetrathiafulvalene], which has a two-dimensional electronic system with quasi-one-dimensional triangular spin lattice. At ambient pressure, AF ordering was detected at TN=2.5 K by 1H NMR, subsequent to two structural phase transitions at 230 and 190 K. Under hydrostatic pressures, metallic behavior appeared above ˜1.1 GPa, and a superconducting transition (maximum onset Tc=4.8 K at ˜1.3 GPa) was observed up to 2.2 GPa. Superconductivity was also found under c -axis strain, which reduced t'/t , but was absent under b -axis strain which increased t'/t .

  11. Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

    2015-01-01

    6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

  12. {alpha} resonance structure in {sup 11}B studied via resonant scattering of {sup 7}Li+{alpha}

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.; Wakabayashi, Y.; Kawabata, T.; Teranishi, T.

    2011-03-15

    A new measurement of {alpha} resonant scattering on {sup 7}Li was performed over the excitation energy of 10.2-13.0 MeV in {sup 11}B at the low-energy RI beam facility CNS Radioactive Ion Beam separator (CRIB) of the Center for Nuclear Study (CNS), University of Tokyo. The excitation function of {sup 7}Li+{alpha} at 180 deg. in the center-of-mass system was successfully measured for the first time with the inverse kinematics method, providing important information on the {alpha} cluster structure in {sup 11}B and the reaction rate of {sup 7}Li({alpha},{gamma}), which is relevant to the {sup 11}B production in the {nu} process in core-collapse supernovae. The excitation function of the {sup 7}Li({alpha},p) reaction cross section for 11.7-13.1 MeV was also measured.

  13. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  14. Proton magnetic relaxation and internal rotations in tetramethylammonium cadmium chloride

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Utton, D. B.

    1976-01-01

    Nuclear magnetic resonance (NMR) and relaxation studies of the proton spin-lattice relaxation time (PSLRT) and proton second moment (PSM) are reported. Tetramethylammonium cadmium chloride (TMCC) was selected as a diamagnetic member of the isomorphic series, and hence proton data relate directly to the motion of the tetramethylammonium ion in the absence of paramagnetic ions. In the model adopted, the correlation time for hindered motion of one of the methyl groups differs from that of the other three groups in the low-temperature phase below 104 K. PSLRT and PSM values agree closely with experimental data with this model. Crystallographic phase transitions in TMCC occur at 104 K and 119 K according to the PSLRT measurements. Dipolar interactions between adjacent protons account for the PSLR rates below 104 K.

  15. Resonances in transfer-triggered breakup of 7Li in near-barrier collisions

    NASA Astrophysics Data System (ADS)

    Simpson, E. C.; Cook, K. J.; Dasgupta, M.; Kalkal, S.; Luong, D. H.; Carter, I. P.; Hinde, D. J.; Williams, E.

    2016-09-01

    Above-barrier complete fusion cross sections of weakly-bound 6,7Li and 9Be are known to be suppressed with respect to single-barrier penetration model calculations. Breakup of the projectile — either via direct excitation of continuum states, or by transfer of nucleons — is thought to be the cause, preventing complete capture of the projectile charge. Using the example of 7Li→8Be→ α + α we show how the contributions to breakup from different resonances in 8Be can be identified, and discuss their likely influence on fusion.

  16. Experimental investigation of fusion of {sup 7}Li+{sup 28}Si above the Coulomb barrier

    SciTech Connect

    Sinha, Mandira; Majumdar, H.; Basu, P.; Roy, Subinit; Biswas, M.; Palit, R.; Mazumdar, I.; Joshi, P. K.; Jain, H. C.; Kailas, S.

    2007-08-15

    Excitation functions for the above-barrier fusion cross sections are measured for the first time for the {sup 7}Li+{sup 28}Si system by two methods--the characteristic {gamma}-ray method and the evaporation {alpha} measurement method--in the energy range E{sub lab}=11.5-26 MeV. Experimental results are consistent and agree with each other, and the one-dimensional Barrier Penetration Model (BPM) predictions describe the data well up to twice the Coulomb barrier, but they overestimate the data by about 15-20% at higher energies.

  17. Sub-barrier fusion excitation for the system {sup 7}Li + {sup 28}Si

    SciTech Connect

    Sinha, Mandira; Majumdar, H.; Basu, P.; Roy, Subinit; Biswas, M.; Pradhan, M. K.; Kailas, S.

    2008-08-15

    The sub-barrier fusion excitation functions are measured for the first time for the system {sup 7}Li+ {sup 28}Si by the characteristic {gamma}-ray method in the energy range E{sub lab}=7-11.5 MeV. The results show an enhancement, below the barrier, by about a factor of two when compared with the one-dimensional barrier penetration (1D BPM) model. Introduction of coupling with the rotational 2{sup +} state (1.779 MeV) of the target improves the fit somewhat, but still an enhancement of about 25-40% remains.

  18. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  19. Revisiting the (7)Li(p,n)(7)Be reaction near threshold.

    PubMed

    Herrera, María S; Moreno, Gustavo A; Kreiner, Andrés J

    2014-06-01

    In this work we review all the available experimental neutron data for the (7)Li(p,n) reaction near threshold which is necessary to obtain an accurate source model for Monte Carlo simulations in Boron Neutron Capture Therapy. Scattered published experimental results such as cross sections, differential neutron yields and total yields were collected and analyzed, exploring the sensitivity of the fitting parameters to the different possible variables and deriving a consistent working set of parameters to evaluate the neutron source near threshold.

  20. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. PMID:24345525

  1. Analogs of the giant dipole and spin-dipole resonances in {sup 4}He and in {alpha} clusters of {sup 6,7}Li studied by the {sup 4}He,{sup 6,7}Li({sup 7}Li,{sup 7}Be{gamma}) reactions

    SciTech Connect

    Nakayama, S.; Matsumoto, E.; Fushimi, K.; Hayami, R.; Kawasuso, H.; Yasuda, K.; Yamagata, T.; Akimune, H.; Ikemizu, H.; Asaji, S.; Ishida, T.; Kudoh, T.; Sagara, K.; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Oota, T.; Yosoi, M.; Greenfield, M. B.

    2008-07-15

    We studied analogs of the giant dipole resonance (GDR) and spin-dipole resonance (SDR) in {sup 4}He and in the {alpha} clusters of {sup 6,7}Li via the ({sup 7}Li,{sup 7}Be{gamma}) reactions on {sup 4}He, {sup 6}Li, and {sup 7}Li at an incident energy of 455 MeV and at a scattering angle of 0 deg. by measuring spin-nonflip and spin-flip spectra. The reaction Q-values for the analogs of the GDR and SDR in the {alpha} clusters of {sup 6,7}Li were found to be more negative than those in {sup 4}He by 2.0{+-}0.5 MeV. The ratios of the cross section for the analog of the GDR to that for the analog of the SDR in {sup 4}He and in the {alpha} clusters of {sup 6}Li and {sup 7}Li were found to be the same within errors, 0.5{+-}0.1. The cross sections for the analogs of the GDR as well as those for the analogs of the SDR in the {alpha} clusters of {sup 6,7}Li were 0.6{approx}0.8 times smaller than those in {sup 4}He. These results suggest that excitations of {alpha} clusters embedded in nuclei are suppressed as compared with excitations of free {alpha} particles.

  2. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  3. Characterizing longitudinal and transverse relaxation rates of ferrofluids in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jye; Liao, Shu-Hsien; Yang, Hong-Chang; Lee, Hsin-Yi; Liu, Yi-Jia; Chen, Hsin-Hsien; Horng, Herng-Er; Yang, Shieh-Yueh

    2011-12-01

    Shortening spin-lattice relaxation rates (1/T1) or spin-spin relaxation rates (1/T2) is the purpose of magnetic resonance imaging contrast agents. In this work, an ultralow field nuclear magnetic resonance spectrometer and imager are set up to characterize the spin relaxation rates of Fe3O4 superparamagnetic iron oxide (SPIO) for image contrast. It was found that both 1/T1 and 1/T2 increase linearly when the magnetic susceptibility χ of SPIO increases by increasing the concentration of SPIO dispersed in water. In an applied field, magnetic moments of SPIO generate microscopic field gradients that weaken the field homogeneity, in turn de-phasing the proton's nuclear spin and enhancing the relaxation rates. A T1-contrast image is demonstrated, using SPIO as the contrast agent and high-Tc superconducting quantum interference devices as the detector. T1-contrast imaging in microtesla fields might provide a potential modality for discriminating cancer.

  4. Astrophysical S factors for radiative proton capture by {sup 3}H and {sup 7}Li nuclei

    SciTech Connect

    Dubovichenko, S. B.

    2011-03-15

    Within the potential cluster model where orbital states are classified according to Young diagrams and isospin, astrophysical S factors are considered for radiative proton capture by {sup 3}H and {sup 7}Li nuclei at energies of up to 1 and 10 keV, respectively. It is shown that the approach used, which takes into account only the E1 transition for the p{sup 3}H capture process, makes it possible to describe well the most recent experimental data at c.m. energies in the range from 50 keV to 5MeV. In the case of proton capture by {sup 7}Li nuclei, an M1 processwas taken into account in addition to the E1 transition, and a general behavior and the magnitude of the experimental S factor could be correctly reproduced owing to this at astrophysical energies, including the region around the resonance at 0.441 MeV (in the laboratory frame).

  5. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb-15.7Li

    NASA Astrophysics Data System (ADS)

    Krauss, Wolfgang; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-01

    In the HCLL blanket design, ferritic-martensitic steels are in direct contact with the flowing liquid breeder Pb-15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb-15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  6. 7Li NMR study of intercalated lithium in curved carbon lattices

    NASA Astrophysics Data System (ADS)

    Gerald, R. E.; Johnson, C. S.; Rathke, J. W.; Klingler, R. J.; Sandí, G.; Scanlon, L. G.

    A device was invented that permits nuclear magnetic resonance (NMR) analysis of the internal elements of a coin cell battery. The Coin Cell Battery Imager was used to record wideline 7Li NMR spectra of the lithium ions that were electrochemically intercalated into three different types of carbon-based materials. The samples included graphite, corannulene, and carbon derived from sepiolite clay. All samples were excised from 2032-size coin cells that were cycled multiple times and left in a discharged state (i.e., fully lithiated). A comparison of the 7Li NMR spectra recorded for the three carbons revealed that the curved carbon lattice derived from sepiolite affected the lithium resonances in a manner similar to that observed for the curved molecule corannulene, while both differed from the flat lattice of graphite. In addition, it was possible to observe lithium dendrites on the surface of a hard carbon electrode even in the presence of a large lithium counter electrode using NMR imaging techniques.

  7. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  8. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  9. Nuclear magnetic relaxation in the ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O : three-magnon scattering?

    NASA Astrophysics Data System (ADS)

    Hori, Hiromitsu; Yamamoto, Shoji

    2004-12-01

    Recent proton spin-lattice relaxation-time (T1) measurements on the ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O are explained by an elaborately modified spin-wave theory. We give strong evidence of the major contribution to 1/T1 being made by the three-magnon scattering rather than the Raman scattering.

  10. Multi-scales nuclear spin relaxation of liquids in porous media

    NASA Astrophysics Data System (ADS)

    Korb, Jean-Pierre

    2010-03-01

    The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T(ω) is a rich source of dynamical information for characterizing the molecular dynamics of liquids in confined environments. Varying the magnetic field changes the Larmor frequency ω, and thus the fluctuations to which the nuclear spin relaxation is sensitive. Moreover, this method permits a more complete characterization of the dynamics than the usual measurements as a function of temperature at fixed magnetic field strength, because many common solvent liquids have phase transitions that may alter significantly the character of the dynamics over the temperature range usually studied. Further, the magnetic field dependence of the spin-lattice relaxation rate, 1/T(ω), provides a good test of the theories that relate the measurement to the microdynamical behavior of the liquid. This is especially true in spatially confined systems where the effects of reduced dimensionality may force more frequent reencounters of the studied proton spin-bearing molecules with paramagnetic impurities at the pore surfaces that may alter the correlation functions that enter the relaxation equations in a fundamental way. We show by low field NMR relaxation that changing the amount of surface paramagnetic impurities leads to striking different pore-size dependences of the relaxation times T and T of liquids in pores. Here, we focus mainly on high surface area porous materials including calibrated porous silica glasses, granular packings, heterogeneous catalytic materials, cement-based materials and natural porous materials such as clay minerals and rocks. Recent highlights NMR relaxation works are reviewed for these porous materials, like continuous characterization of the evolving microstructure of various cementitious materials and measurement of wettability in reservoir carbonate rocks. Although, the recent applications of 2-dimensional T-T and T-z-store-T correlation experiments for characterization of

  11. Measurement of fusion excitation function for 7Li+64Ni near the barrier

    NASA Astrophysics Data System (ADS)

    Moin Shaikh, Md.; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Pal, S.; Nanal, V.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-05-01

    Total fusion (TF) excitation function has been measured for the system 7Li + 64Ni at the energies near the Coulomb barrier of the system. The evaporation residue (ER) cross sections have been estimated through the online detection of characteristic γ-rays of the ERs. The summed ER cross sections yielding the experimental TF cross section have been compared with the theoretical one dimensional barrier penetration model (1DBPM) prediction. The measured and the model cross sections are very close to each other at above barrier energies. However, an enhancement of the experimental TF cross section with respect to the 1DBPM prediction is observed at below barrier energies. Coupled channels (CC) calculation with inelastic excitations alone could not explain the enhancement. The origin of the enhancement is identified as due to the enhanced population of the αxn channels.

  12. 7Li-induced reactions for fast-timing with LaBr3:Ce detectors

    NASA Astrophysics Data System (ADS)

    Mason, P. J. R.; Podolyàk, Zs.; Mǎrginean, N.; Regan, P. H.; Alexander, T.; Algora, A.; Alharbi, T.; Bowry, M.; Britton, R.; Bucurescu, D.; Bruce, A. M.; Bunce, M.; Cǎta-Danil, G.; Cǎta-Danil, I.; Cooper, N.; Deleanu, D.; Delion, D.; Filipescu, D.; Gelletly, W.; Glodariu, T.; Gheorghe, I.; Ghiťǎ, D.; Ilie, G.; Ivanova, D.; Kisyov, S.; Lalkovski, S.; Lica, R.; Liddick, S. N.; Mǎrginean, R.; Mihai, C.; Mulholland, K.; Negret, A.; Nita, C. R.; Rice, S.; Roberts, O. J.; Sava, T.; Smith, J. F.; Söderström, P.-A.; Stevenson, P. D.; Stroe, L.; Toma, S.; Townsley, C.; Werner, V.; Wilson, E.; Wood, R. T.; Zamfir, N. V.; Zhekova, M.

    2012-10-01

    7Li induced-reactions have been used with a 186W target to populate nuclei around A˜180-190 at the National Institute of Physics and Nuclear Engineering in Bucharest, Romania. An array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr3:Ce) detectors have been used to measure sub-nanosecond half-lives with fast-timing techniques. The yrast 2+ state in 190Os was measured to be t1/2 = 375(20)ps, in excellent agreement with the literature value. The previously unreported half-life of the 564-keV state in 189Ir has also been measured and a value of t1/2 = 540(100)ps ps obtained.

  13. TLD efficiency of 7LiF for doses deposited by high-LET particles

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Frank, A. L.; Benton, E. V.

    2000-01-01

    The efficiency of 7 LiF TLDs (TLD-700) in registering dose from high-LET (> or = 10 keV/micrometers) charged particles (relative to 137Cs gamma rays) has been measured for a number of accelerated heavy ions at various particle accelerator facilities. These measured efficiency values have been compared with similar results obtained from the open literature and a dose efficiency function has been fitted to the combined data set. While it was found that the dose efficiency is not only a function of LET, but also of the charge of the incident particle, the fitted function can be used to correct the undermeasured value of dose from exposures made in mixed radiation fields where LET information is available. This LET-dependent dose efficiency function is used in our laboratory in determining total absorbed dose and dose equivalent from combined TLD and CR-39 plastic nuclear track detector measurements.

  14. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.

    1996-02-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron fluence outside a thinner moderator as the neutron fluence from a 2.5 MeV proton beam with a thicker moderator.

  15. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    SciTech Connect

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  16. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  17. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  18. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  19. Significance of the direct relaxation process in the low-energy spin dynamics of a one-dimensional ferrimagnet NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.

    2000-11-01

    In response to recent nuclear magnetic resonance measurements on a ferrimagnetic chain compound NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O [Solid State Commun. 113 (2000) 433], we calculate the nuclear spin-lattice relaxation rate 1/ T1 in terms of a modified spin-wave theory. Emphasizing that the dominant relaxation mechanism arises from the direct (single-magnon) process rather than the Raman (two-magnon) one, we explain the observed temperature and applied-field dependences of 1/ T1. Ferrimagnetic relaxation phenomena are generally discussed and novel ferrimagnets with extremely slow dynamics are predicted.

  20. NMR and dielectric studies of hydrated collagen and elastin: Evidence for a delocalized secondary relaxation

    NASA Astrophysics Data System (ADS)

    Lusceac, Sorin A.; Rosenstihl, Markus; Vogel, Michael; Gainaru, Catalin; Fillmer, Ariane; Böhmer, Roland

    2011-01-01

    Using a combination of dielectric spectroscopy and solid-state deuteron NMR, the hydration water dynamics of connective tissue proteins is studied at sub-ambient temperatures. In this range, the water dynamics follows an Arrhenius law. A scaling analysis of dielectric losses, 'two-phase' NMR spectra, and spin-lattice relaxation times consistently yield evidence for a Gaussian distribution of energy barriers. With the dielectric data as input, random-walk simulations of a large-angle, quasi-isotropic water reorientation provide an approximate description of stimulated-echo data on hydrated elastin. This secondary process takes place in an essentially rigid energy landscape, but in contrast to typical {\\beta}-relaxations it is quasi-isotropic and delocalized. The delocalization is inferred from previous NMR diffusometry experiments. To emphasize the distinction from conventional {\\beta}-processes, for aqueous systems such a matrix-decoupled relaxation was termed a {\

  1. THE NEW DETECTIONS OF {sup 7}Li/{sup 6}Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    SciTech Connect

    Kawanomoto, S.; Kajino, T.; Aoki, W.; Ando, H.; Noguchi, K.; Tanaka, W.; Bessell, M.; Suzuki, T. K.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Watanabe, E.; Yoshida, M.; Sadakane, K.; Sato, B.; Tajitsu, A.; Takada-Hidai, M.

    2009-08-20

    We have determined the isotopic abundance ratio of {sup 7}Li/{sup 6}Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed {zeta} Oph for comparison with previous data. The observed abundance ratios were {sup 7}Li/{sup 6}Li = 8.1{sup +3.6} {sub -1.8} and 6.3{sup +3.0} {sub -1.7} for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within {+-}2{sigma} error bars and are also consistent with our measurement of {sup 7}Li/{sup 6}Li = 7.1{sup +2.9} {sub -1.6} for a cloud along the line of sight to {zeta} Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of {sup 7}Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  2. Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    SciTech Connect

    Bishop, R. F.; Li, P. H. Y.; Campbell, C. E.

    2014-10-15

    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the 'raw' LSUBm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m → ∞, of the truncation index m, which denotes the only approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J{sub 1}{sup XXZ}−J{sub 2}{sup XXZ} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J{sub 1} > 0 and J{sub 2} ≡ κJ{sub 1} > 0, respectively, where both interactions are of the same anisotropic XXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0 ≤ κ ≤ 1 of the frustration parameter and 0 ≤ Δ ≤ 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space.

  3. Relation between (e, e') sum rules in 6, 7Li and 4He nuclei: Experiment and cluster model

    NASA Astrophysics Data System (ADS)

    Efros, V. D.; Timchenko, I. S.; Buki, A. Yu.

    2016-09-01

    The sums over ( e, e') spectra of 6Li and 7Li nuclei which correspond to the longitudinal sum rule are studied. It is suggested that due to the cluster structure of the lithium isotopes these sums may approximately be expressed in terms of such a sum pertaining to the α-particle. Calculation of these sums is performed in the framework of cluster models with antisymmetrization done with respect to all the nucleons. At momentum transfers higher than 0.8 fm-1 the relations expressing the A = 6 or 7 sum in terms of the A = 4 sum prove to be valid with rather high accuracy. In the region of momentum transfers around 1 fm-1 the longitudinal correlation functions of 6Li and 7Li nuclei are found to be close to that of the α-particle. Basing on this, the difference between the q values at which the high- q limit of the inelastic sum rule is reached in the 6, 7Li cases and the 4He case is explained. The experimental longitudinal sums in the range between 0.450 and 1.625 fm-1 are employed to perform comparison with the theoretical sum rule calculated in the framework of cluster models. Out of the experimental sums, those in the range between 0.750 and 1.000 fm-1 in the 6Li case and between 0.750 and 1.125 fm-1 in the 7Li case are obtained in the present work. In the 6 Li case a complete agreement between experiment and the calculated sum rule is found while in the 7Li case an agreement only at a qualitative level is observed.

  4. Neutron Interactions With 7Be and the Primordial 7Li Problem

    NASA Astrophysics Data System (ADS)

    Kading, Emily E.; Gai, Moshe; Kahn, Merav; Lee, Morit; Tessler, Moshe; Paul, Michael; Weiss, Aryeh; Berkovitz, Dan; Halfon, Shlomi; Kijel, Danny; Kreisel, Arik; Shor, Asher; Silverman, Ido; Weissman, Leonid; Hass, Michael; Mukul, Ish; Maugeri, Emilio A.; Dressler, Rugard; Schumann, Dorothea; Heinitz, Stephan; Stora, Thierry; Ticehurst, David; Howell, Calvin R.

    2015-10-01

    We study the interaction of neutrons with 7Be to estimate the direct destruction of 7Be during BBN; i.e. the predicted primordial 7Li. We plan to use a 7Be target (15 GBq) prepared by electro-deposition at PSI. The intense neutron flux of up to 5×1010 n/sec/cm2 are produced with proton beams and a high power liquid-lithium target (LiLiT) from the SARAF (phase I) facility in Israel. The outgoing particles will be measured using CR-39 plates that were tested to be insensitive to the large neutron flux and were calibrated with protons and alpha-particles from the TUNL. In a separate stage implanted 7Be target will be prepared at the ISOLDE facility of CERN. The results of the calibration of the CR-39 plates and the test experiment at SARAF with 10B target as well as a very low activity 7Be test target prepared at PSI, will be presented. Supported in part by the US-Israel Binational Science Foundation Proposal No. 2012098, the USDOE Grants No. DE-FG02-94ER40870, DE-FG02-97ER41033, and the Pazi Foundation, Israel.

  5. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, B.L.; Donahue, R.J.

    1996-05-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron flux outside a thinner moderator as the neutron flux from a 2.5 MeV proton beam with a, thicker moderator. These results are based on optimization of the useful neutron spectrum in air at the point of irradiation, not on depth-dose profiles in tissue/tumor.

  6. Comparison of corrosion behavior of EUROFER and CLAM steels in flowing Pb-15.7Li

    NASA Astrophysics Data System (ADS)

    Konys, J.; Krauss, W.; Zhu, Z.; Huang, Q.

    2014-12-01

    Ferritic martensitic steels are envisaged to be applied as structural materials in HCLL blanket systems. Their compatibility with the liquid breeder, which is in direct contact with the structural alloy, will be essential for reliable and safe operation of the designed blankets. Formerly performed corrosion tests of RAFM steels in PICOLO loop of KIT were mainly done at high flow velocities, e.g., 0.22 m/s and delivered severe attack with material loss rates above 400 μm/yr at 823 K. Meanwhile, flow velocities for corrosion testing have been reduced into the 'cm range' to be near fusion relevant conditions. Among the international ITER-partners, many varieties of RAFM steels have been developed and manufactured within the last decade, e.g., the so-called Chinese Low Activation Martensitic steel (CLAM). In this paper, the long term corrosion behavior of EUROFER and CLAM steel in flowing Pb-15.7Li will be presented at a flow velocity of about 0.10 m/s and compared with earlier obtained results of RAFM steels exposed at other operation parameters of PICOLO loop. The observed corrosion attack is near 220 μm/yr and fits well to predictions made by MATLIM-modeling for low flow velocities in the turbulent flow regime.

  7. Muon spin relaxation studies of interstitial and molecular motion.

    PubMed

    Cox, S F

    1998-03-01

    The unusual methods of preparation and analysis of spin polarization in muSR spectroscopy, which exploit the unique properties of the positive muon, are introduced in this article. Following a summary overview of applications, particular attention is paid to the problem of spin-lattice relaxation for a muon experiencing a hyperfine interaction with a single unpaired electron. The specific cases considered are the interstitial diffusion of muonium--the 1-electron atom which may be considered as a light isotope of hydrogen-and the molecular dynamics of organic radicals labelled by muonium. Rate equations for the evolution of population in the hyperfine-coupled spin states are solved numerically for various relaxation mechanisms. The formalism is equally valid for conventional ESR studies of paramagnetic states but is pursued specifically to simulate T1-relaxation in muSR. The simulations are compared with literature data. Also treated is the case of intermittent hyperfine coupling, appropriate to electron capture and loss in semiconductors or soliton motion in polymers; for this, a Monte Carlo approach is used to simulate the muon response. (For low-dimensional motion, the relaxation function is not exponential, so that a unique value of T1 cannot be defined.) Finally, a proposal is made to implement muon-T1 measurements in the rotating frame; this is designed for the selective study of electronically diamagnetic muonium states (i.e., those without hyperfine coupling) in the presence of a paramagnetic muonium or radical fraction.

  8. Muon spin relaxation studies of interstitial and molecular motion.

    PubMed

    Cox, S F

    1998-03-01

    The unusual methods of preparation and analysis of spin polarization in muSR spectroscopy, which exploit the unique properties of the positive muon, are introduced in this article. Following a summary overview of applications, particular attention is paid to the problem of spin-lattice relaxation for a muon experiencing a hyperfine interaction with a single unpaired electron. The specific cases considered are the interstitial diffusion of muonium--the 1-electron atom which may be considered as a light isotope of hydrogen-and the molecular dynamics of organic radicals labelled by muonium. Rate equations for the evolution of population in the hyperfine-coupled spin states are solved numerically for various relaxation mechanisms. The formalism is equally valid for conventional ESR studies of paramagnetic states but is pursued specifically to simulate T1-relaxation in muSR. The simulations are compared with literature data. Also treated is the case of intermittent hyperfine coupling, appropriate to electron capture and loss in semiconductors or soliton motion in polymers; for this, a Monte Carlo approach is used to simulate the muon response. (For low-dimensional motion, the relaxation function is not exponential, so that a unique value of T1 cannot be defined.) Finally, a proposal is made to implement muon-T1 measurements in the rotating frame; this is designed for the selective study of electronically diamagnetic muonium states (i.e., those without hyperfine coupling) in the presence of a paramagnetic muonium or radical fraction. PMID:9650794

  9. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    PubMed

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  10. Equilibrium and Kinetic Isotopic Fractionation Processes Recorded in δ7Li Values of Highly Evolved Granitic Pegmatites

    NASA Astrophysics Data System (ADS)

    Barnes, E. M.; Weis, D. A.; Groat, L. A.

    2010-12-01

    In geologic settings, Li isotopes are significantly influenced by both equilibrium and kinetic fractionation mechanisms. This has the potential to make δ7Li values valuable in identifying geological processes or tracing source rocks. Lithium isotopic analysis is becoming an increasingly popular geochemical tool, however, a better understanding of the mechanisms involved in Li isotopic fractionation is necessary if this method is to achieve its full potential. This study combined δ7Li values, trace element geochemistry, mineralogy and primary textural evidence from rock-forming minerals (quartz, albite, spodumene and mica) and whole rock samples taken from a coeval swarm of rare element pegmatite dikes, to look at the extent and mechanisms of Li isotopic fractionation during pegmatite formation. Pegmatite crystallization can be extremely rapid, potentially on a similar timescale to Li diffusion, as a result the influence of variable, non-equilibrium conditions during consolidation was assessed. Rock-forming minerals (given above) from the Little Nahanni Pegmatite Group (Northwest Territories, Canada) display δ7Li values that correlate with textural evidence supporting consolidation of the dikes under non-equilibrium conditions. Two examples of spodumene from different pegmatite samples have comparable δ7Li values of +3.5 and +3.7‰. In contrast, the δ7Li value of mineral separates from co-precipitated mineral assemblages varies from sample to sample. Very uniform δ7Li values for co-precipitated minerals from one sample (muscovite at +7.9‰, plagioclase at +7.9‰ and quartz at +8.7‰), contrast with very different δ7Li values for the same mineral assemblage from a different sample (muscovite at +2.2‰, plagioclase at +3.4‰ and quartz at +15.7‰). Whole rock samples from the same outcrops suggest strong Li isotope fractionation in peraluminous magma is associated with F build up in the late stages of magmatic differentiation. Pegmatites derived from the

  11. The role of the glassy dynamics and thermal mixing in the dynamic nuclear polarization and relaxation mechanisms of pyruvic acid.

    PubMed

    Filibian, M; Colombo Serra, S; Moscardini, M; Rosso, A; Tedoldi, F; Carretta, P

    2014-12-28

    The temperature dependence of (1)H and (13)C nuclear spin-lattice relaxation rate 1/T1 has been studied in the 1.6-4.2 K temperature range in pure pyruvic acid and in pyruvic acid containing trityl radicals at a concentration of 15 mM. The temperature dependence of 1/T1 is found to follow a quadratic power law for both nuclei in the two samples. Remarkably the same temperature dependence is displayed also by the electron spin-lattice relaxation rate 1/T1e in the sample containing radicals. These results are explained by considering the effect of the structural dynamics on the relaxation rates in pyruvic acid. Dynamic nuclear polarization experiments show that below 4 K the (13)C build up rate scales with 1/T1e, in analogy to (13)C 1/T1 and consistently with a thermal mixing scenario where all the electrons are collectively involved in the dynamic nuclear polarization process and the nuclear spin reservoir is in good thermal contact with the electron spin system.

  12. Structures in 20O from the 14C(7Li, p) reaction at 44 MeV

    NASA Astrophysics Data System (ADS)

    Bohlen, H. G.; von Oertzen, W.; Milin, M.; Dorsch, T.; Krücken, R.; Faestermann, T.; Hertenberger, R.; Kokalova, Tz.; Mahgoub, M.; Wheldon, C.; Wirth, H.-F.

    2011-03-01

    We have studied the multi-nucleon transfer reaction 14 C(7 Li, p) at E Lab(7 Li) = 44 MeV populating states of the neutron-rich oxygen isotope 20O . The experiments have been performed at the Munich Tandem accelerator using the high-resolution Q3D magnetic spectrometer, with an overall energy resolution of 45keV. States were populated up to 20MeV excitation energy -65 states have been identified in the analysis, among which 42 are new. Rotational bands are proposed in terms of underlying intrinsic reflection-asymmetric cluster and prolate molecular structures (namely ensuremath ^{14}C⊗2n⊗α as parity doublet bands. A rectangular oblate structure is suggested for some very narrow states at high excitation energies.

  13. Nuclear microprobe analysis of 7Li profile induced in HfB 2 by a neutron irradiation

    NASA Astrophysics Data System (ADS)

    Simeone, D.; Deschanels, X.; Gosset, D.; Bonal, J. P.; Berthoumieux, E.

    2001-09-01

    HfB 2, a solid poor in boron, was irradiated by thermal neutrons in an experimental reactor. Using a nuclear microprobe, we have tracked lithium atoms produced by the 10B( n, α) 7Li reaction and compared the calculated and measured 7Li profiles in HfB 2 irradiated samples. This comparison shows that Li atoms do not diffuse during irradiation (323 K). The comparison of non-annealed and annealed irradiated HfB 2 plates clearly shows that lithium atoms do not migrate out of samples even at high temperatures (1273 K). These results associated to previous transmission electron microscopy (TEM) observations seem to show that lithium atoms are trapped by dislocation loops created by displacement cascades during neutron irradiation.

  14. Production cross section of At radionuclides from 7Li+natPb and 9Be+natTl reactions

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Lahiri, Susanta

    2011-12-01

    Earlier we reported theoretical studies on the probable production of astatine radionuclides from 6,7Li- and 9Be-induced reactions on natural lead and thallium targets, respectively. The production of astatine radionuclides were investigated experimentally with two heavy-ion-induced reactions: 9Be + natTl and 7Li + natPb. Formation cross sections of the evaporation residues, 207,208,209,210At, produced in the (HI,xn) channel, were measured by the stacked-foil technique followed by off-line γ spectrometry at low incident energies (<50 MeV). Measured excitation functions were interpreted in terms of a compound nuclear reaction mechanism using Weisskopf-Ewing and Hauser-Feshbach models. Measured cross-section values are lower than the respective theoretical predictions.

  15. Experimental probe for the production of 97Ru from the 7Li+93Nb reaction: A study of precompound emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Maiti, Moumita; Lahiri, Susanta

    2016-10-01

    Background: Interaction of weakly bound heavy ions with an intermediate or heavy target is not yet understood completely due to the scarcity of experimental data. In order to develop a clear understanding of breakup fusion or preequilibrium emission even in the low energy range, 3-10 MeV/nucleon, more experimental investigations are necessary. Purpose: We aim to study the reaction mechanisms involved in the weakly bound heavy-ion induced reaction 7Li+93Nb at low energies by measuring the production cross sections of the residual radionuclides. Method: Natural niobium (93Nb) foil, backed by an aluminum (Al) catcher, arranged in a stack was bombarded by 7Li ions of 20-45 MeV energy. Activity of the residues produced in each 93Nb target was measured by off line γ -ray spectrometry after the end of bombardment (EOB) and cross sections were calculated. Experimental cross sections were compared with those computed using compound and precompound models. Results: In general, measured excitation functions of all residues produced in the 7Li+93Nb reaction showed good agreement with the model calculations based on the Hauser-Feshbach formalism and the exciton model for compound and precompound processes, respectively. Significant preequilibrium emission of neutrons was observed at the relatively high energy tail of the excitation function of 97Ru. Conclusions: Preequilibrium processes played an important role in the enhancement of the cross section in the x n reaction channel over the compound reaction mechanism at higher energies for the 7Li+93Nb reaction. Additionally, indirect evidence of incomplete or breakup fusion was also perceived.

  16. Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2004-11-01

    The dose contribution of (10)B(n,alpha)(7)Li reaction in BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons can be increased through the use of materials referred to as boron-dose enhancers (BDE). In this paper, possible BDE optimization criteria were determined from the characteristics of candidate BDE materials namely (C(2)H(4))(n), (C(2)H(3)F)(n), (C(2)H(2)F(2))(n), (C(2)HF(3))(n), (C(2)D(4))(n), (C(2)F(4))(n), beryllium metal, graphite, D(2)O and (7)LiF. The treatable protocol depth (TPD) was used as the assessment index for evaluating the effect of these materials on the dose distribution in a medium undergoing BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons. The maximum TPD (TPD(max)) did not exhibit an explicit dependence on material type as evidenced by its small range and arbitrary variations. The dependence of TPD on BDE thickness was influenced by the BDE material used as indicated by the sharply peaked TPD versus BDE thickness curves for materials with hydrogen compared to the broader curves obtained for those without hydrogen. The BDE thickness required to achieve TPD(max) (BDE(TPD(max))) were also found to be thinner for materials with hydrogen. The TPD(max), the dependence of TPD on BDE thickness, and the BDE(TPD(max)) were established as appropriate BDE optimization parameters. Based on these criteria and other practical considerations, the suitable choice as BDE among the candidate materials considered in this study for treatments involving tumors located at shallow depths would be (C(2)H(4))(n) while beryllium metal was judged as more appropriate for treatment of deep-seated tumors.

  17. NMR relaxation investigation of the native corn starch structure with plasticizers

    NASA Astrophysics Data System (ADS)

    Cioica, N.; Fechete, R.; Cota, C.; Nagy, E. M.; David, L.; Cozar, O.

    2013-07-01

    The influences of starch, glycerol and water ratios on the structure, morphology and dynamics of starch polymer chains were investigated by NMR relaxation method. The 1H NMR CPMG echo decays and saturation recovery build-up curves were recorded and analyzed using the UPIN algorithm in order to get the spin-spin T2 and spin-lattice T1 relaxation times distributions. Significant differences between the CPMG curves were observed for native starch and the formulas in which water is added, whether these have or not glycerol in composition. For the formula which contains both plasticizers (water and glycerol), the CPMG curves decay slowly, indicating the presence of more mobile components.

  18. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  19. Generation of spin-polarized currents via cross-relaxation with dynamically pumped paramagnetic impurities

    SciTech Connect

    Meriles, Carlos A.; Doherty, Marcus W.

    2014-07-14

    Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.

  20. Prediction of a weakly bound excited state of Efimov character in a 7LiHe42 system

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Shan; Han, Hui-Li; Li, Cheng-Bin; Shi, Ting-Yun

    2014-12-01

    We carry out calculations on the van der Waals trimer 7LiHe42 using the mapping method within the frame of hyperspherical coordinates, which allows us to give accurate binding energies and wave functions for both the ground and excited state of the system. When the realistic two-body potentials are adopted, the system presents an excited state which shows Efimov character. We study the range of the interaction strength in which the excited state could exist and find that the state persists within the experiment error band for binding energy of LiHe molecule. We also study the three-body parameter (3BP) of 7LiHe42 system and its relationship with the background scattering length aHeHe. Our calculations demonstrate that the 3BP of 7LiHe42 system is dependent on the value of the scattering length aHeHe, independent of the short-range details of the He-He interaction. The results confirm the prediction of Wang et al. [Phys. Rev. Lett. 109, 243201 (2012), 10.1103/PhysRevLett.109.243201] that the 3BP for a heteronuclear atomic system is universally determined from the van der Waals lengths and the homonuclear scattering length.

  1. Threshold behavior of interaction potential for the system 7Li + 64Ni: Comparison with 6Li + 64Ni

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Das, Mili; Roy, Subinit; Sinha, M.; Pradhan, M. K.; Basu, P.; Datta, U.; Ramachandran, K.; Shrivastava, A.

    2016-09-01

    The elastic scattering angular distributions for the system 7Li + 64Ni were measured in the bombarding energy range of 12 MeV ≤Elab ≤ 26.4 MeV. A phenomenological optical model analysis was performed for the measured data. The strengths of the fitted potential components at the surface were estimated to extract their variation with energy. Further analyses of the measured angular distributions were performed with a hybrid potential composed of a renormalized folded real and a phenomenological imaginary potential. Both the model potentials predict similar energy dependent behavior for the effective interaction potential around the barrier. Unlike the heavy targets, 7Li + 64Ni does not show a normal threshold behavior. It also does not clearly exhibit a behavior similar to 6Li + 64Ni. The real potential for 7Li + 64Ni does not exhibit any significant energy dependence and the imaginary potential strength remains almost independent of energy above the Coulomb barrier (∼ 14 MeV). However, at energies below the barrier, a sudden drop in the imaginary potential strength is observed.

  2. Simultaneous effects of relaxation and polarization transfer in LaF3-type crystals as sources of dynamic information.

    PubMed

    Lips, O; Kruk, D; Privalov, A; Fujara, F

    2007-05-01

    Fluorine nuclear magnetic resonance (NMR) spin-lattice relaxation dispersion has been measured for pure LaF(3) and La(1-x)Sr(x)F(3-x) for admixture concentrations x ranging from 0.01% up to 16%. The relaxation dispersion experiments have been carried out in a wide frequency range (20 kHz-40 MHz) at temperatures between 300 and 1400 K. The data have been analyzed using the recently published [J. Magn. Res. 179 (2006) 250] relaxation model for multispin systems of mutually interacting quadrupolar and dipolar nuclei. Rate constants of the fluorine ionic jumps within and among distinct fluorine sublattices have been extracted. Characteristic effects of the polarization transfer between fluorine and lanthanum spins have been observed and attributed to slow dynamics within one of the fluorine sublattices.

  3. Paramagnetic relaxation in anisotropic materials in zero and weak constant fields

    SciTech Connect

    Fokina, N. P.; Khalvashi, E. Kh.; Khutsishvili, K. O.

    2014-12-21

    Paramagnetic relaxation in strongly anisotropic materials is analytically investigated in zero and weak constant magnetic fields. The objectives of the microscopic analytical investigation are (i) the weak-field electron paramagnetic resonance (EPR) linewidth and (ii) the electron spin relaxation rates given by a calorimetric Gorter type experiment in the zero constant field at the arbitrary low-frequency field directions, respectively, to the sample crystallographic axes. The EPR linewidth is calculated under the suggestion of its spin-phonon nature at the one-phonon mechanism of the spin-lattice relaxation in the case of the strong isotropic exchange interaction for the arbitrary direction Z of the constant magnetic field. The EPR linewidth is presented as the half sum of the zero-field relaxation rates, measured by the Gorter experiment with the low-frequency field oriented along the X, Y axes. With the help of the macroscopic consideration, it is shown that the zero-field relaxation rates describe the relaxation of the X and Y magnetization components in a zero or weak constant magnetic field. The relaxation rates of the magnetizations created along a,b,c crystallographic axes by a low-frequency field in a Gorter type experiment follow the obtained expressions in the particular cases and are in the experimentally confirmed relations with the EPR linewidth.

  4. The influence of temperature and salinity on the Li/Ca and d7Li of inorganic and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Marriott, C.; Staubwasser, M.; Crompton, R.; Henderson, G.

    2003-04-01

    Lithium is the sixth most abundant metal in the ocean. It is conservative with a residence time of around 1Ma and has two stable isotopes ^7Li and ^6Li that are not actively involved in biological processes. Isotopic fractionation is observed during incorporation into calcium carbonate but no previous work has systematically examined the controls on this fractionation. We have investigated Li incorporation and isotopic fraction in both inorganically precipitated calcite and coralline aragonite (1). In both cases there is an inverse correlation of Li concentration with temperature and no significant variation in isotopic fractionation. A decrease in D Li/Ca from 0.0092 to 0.0030 is seen over a temperature range of 5--30^oC, whilst an offset of approximately -8.5 ppm is seen in the δ^7Li ratio relative to the growth solution. The temperature dependence of Li/Ca has an increased sensitivity at low temperatures and might therefore be useful in examining changes in bottom water temperature. We are now investigating Li/Ca and δ^7Li of foraminifera. Previous work (2) has suggested little variability in Li/Ca with temperature, although this was for samples from warmer water where Li/Ca is not sensitive. In this study, Uvigerina are examined in a series of core top samples from the Arabian Sea with a depth range of 95--1800m and corresponding temperature range of 5--20^oC. A series of inorganic calcite samples have also been precipitated in order to examine the effect of salinity on Li/Ca, δ^7Li and δ44Ca over a salinity range of 10--50 psu. The distribution coefficient of Li shows a positive correlation with salinity over this range. δ^7Li and δ44Ca measurements for these samples are presently being analysed. (1) Marriott et al., 2002, GCA, 66, A485 (2) Delaney et al., 1985, GCA, 49, 1327

  5. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  6. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  7. Dynamics of [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] by means of {sup 1}H NMR relaxometry and quadrupole relaxation enhancement

    SciTech Connect

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-28

    {sup 1}H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] are presented. Two motional processes have been identified from the {sup 1}H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10{sup −8} s-10{sup −9} s and of about 10{sup −5} s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating {sup 1}H-{sup 14}N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the {sup 14}N nuclei in [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] have been determined. The {sup 1}H-{sup 14}N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as “quadrupole peaks”) has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  8. Destructions of {sup 7}Be and {sup 7}Li in Big Bang nucleosynthesis through reactions with exotic long-lived sub-strongly interacting massive particles

    SciTech Connect

    Kusakabe, Motohiko; Kawasaki, Masahiro

    2012-11-12

    An observed plateau abundance of {sup 7}Li in metal-poor halo stars indicates its primordial origin. The {sup 7}Li abundances are about a factor of three smaller than that predicted in standard big bang nucleosynthesis (BBN) model. In addition, some of the stars possibly contain {sup 6}Li in abundances larger than standard BBN prediction. Particle models sometimes include heavy longlived colored particles which are confined in exotic strongly interacting massive particles (SIMPs). We have found reactions which destroy {sup 7}Be and {sup 7}Li during BBN in the scenario of BBN affected by a long-lived sub-strongly interactingmassive particle (sub-SIMP, X). The reactions are non radiative X captures of {sup 7}Be and {sup 7}Li which can operate if the X particle interacts with nuclei strongly enough to drive {sup 7}Be destruction but not strongly enough to form a bound state with {sup 4}He of relative angular momentum L = 1. The processes can be a cause of the {sup 7}Li problem. In this paper we suggest new possible reactions for {sup 6}Li production. Especially, a {sup 6}Li production through the deuteron capture of {sup 4}He bound to X can operate in the parameter region solving the {sup 7}Li problem.

  9. Non-thermal processes in standard big bang nucleosynthesis: II. Two-body disintegration of D, 7Li, 7Be nuclei by fast neutrons

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.; Nakamura, Makoto; Nakao, Yasuyuki

    2009-05-01

    Continuing the analysis of non-thermal effects in standard big bang nucleosynthesis (JCAP05(2008)010), we examine the role of suprathermal nuclear reactions induced in the early universe plasma by energetic nucleons of various origins. The processes of present interest are break-ups of D, 7Li, 7Be nuclei induced by 14-MeV neutrons generated in the plasma via the T(d, n)4He reaction. It is shown that this reaction forms the ensemble of fast neutrons whose fraction in the plasma neutron component is at the level of 0.01 %. In spite of the small percentage, such neutrons can effectively destroy the loosely bound D, 7Li, 7Be nuclei. It is found that at temperatures T9 < 0.8 the n-induced non-thermal break-ups of D and 7Li dominate over other reactions occurring in the n+D and n+7Li systems. However, the non-thermal neutronic effects prove to be insufficiently strong to modify the standard picture of nucleosynthesis. The D, 3He, 4He abundances are obtained to remain unchanged, and only a little effect is marked for primordial 7Li. The 0.01 % fraction of plasma neutrons (fast DT neutrons) reduces the 7Li abundance by 0.02 %.

  10. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Ishikawa, Masayori; Hoshi, Masaharu

    2002-08-21

    A calculation method for the dosage of neutrons by near-threshold 7Li(p, n)7Be and gamma rays by 7Li(p, p'gamma)7Li was validated through experiments with variable distance between the Li target and the phantom, focusing on large angular dependence. The production of neutrons and gamma rays in the Li target was calculated by Lee's method and their transport in the phantom was calculated using the MCNP-4B code. The dosage in intra-operative boron neutron capture therapy (BNCT) using near-threshold 7Li(p, n)7Be direct neutrons was evaluated using the validated calculation method. The effectiveness of the usage of the direct neutrons was confirmed from the existence of the region satisfying the requirements of the protocol utilized in intra-operative BNCT for brain tumours in Japan. The boron-dose enhancer (BDE) introduced in this paper to increase the contribution of the 10B(n, alpha)7Li dose in the living body was effective. The void utilized to increase the dose in deep regions was also effective with BDE. For the investigation of 1.900 MeV proton beams, for example, it was found that intraoperative BNCT using near-threshold 7Li(p, n)7Be direct neutrons is feasible.

  11. Measuring the ratio of aqueous diffusion coefficients between 6Li +Cl - and 7Li +Cr - by osmometry

    NASA Astrophysics Data System (ADS)

    Fritz, Steven J.

    1992-10-01

    Osmotic equilibrium is a singular occurrence in the evolution of an osmotic cell because at this event the net solution flux is zero such that -J w · V¯w = J s · V¯s. At this juncture, the diffusion coefficient of the solute through the membrane (ω) equals the solute flux ( Js) divided by the osmotic pressure (ΔΠ). Because the solute permeability coefficient (ω) is related to the Fickian diffusion coefficient ( D) through the gas constant, temperature, and the membrane's thickness and tortuosity, the ratio of ω values for individual isotopic species equals the ratio of D values for the same isotopic components. A 0.9450 molal LiCl solution was placed within sealed dialysis tubing and osmoted against a kilogram of deionized water at 22°C. Osmotic equilibrium occurred at 164 ± 10 min. The ratio of ω6Li +Cl -/ω7Li +Cl - was measured to be 1.011 ± 0.003 - a value close to the square root of the mass ratio between 7LiCl and 6LiCl (= 1.012) as calculated by Graham's Law. The measured diffusion coefficient ratio was used to predict the degree of hyperfiltration-induced fractionation of Li isotopes as a function of membrane ideality. When a membrane's σ exceeds 0.95 (as is likely for low-porosity shales) the 6Li /7Li ratio on the high-pressure side of the membrane can theoretically vary by more than 0.0017.

  12. The Bare Astrophysical S(E) Factor of the 7Li(p, α)α Reaction

    NASA Astrophysics Data System (ADS)

    Lattuada, M.; Pizzone, R. G.; Typel, S.; Figuera, P.; Miljanić, Đ.; Musumarra, A.; Pellegriti, M. G.; Rolfs, C.; Spitaleri, C.; Wolter, H. H.

    2001-12-01

    The astrophysically important 7Li(p, α)α reaction has been studied via the Trojan horse method in the energy range E=10-400 keV. A new theoretical description, based on the distorted-wave Born approximation approach, allows one to extract information on the bare astrophysical S-factor, Sb(E), with Sb(0)=55+/-3 keV barns. The results are compared with direct experimental data leading to a model-independent value of the electron screening potential energy, Ue=330+/-40 eV, much higher than the adiabatic limit Uad=175 eV.

  13. Measurement of the absolute and differential cross sections for 7Li(γ, n0)6Li

    SciTech Connect

    W.A. Wurtz, R.E. Pywell, B.E. Norum, S. Kucuker, B.D. Sawatzky, H.R. Weller, M.W. Ahmed, S. Stave

    2011-10-01

    We have measured the cross section of the photoneutron reaction channel {sup 7}Li+{gamma}{yields}{sup 6}Li(g.s.)+n where the progeny nucleus is the ground state of {sup 6}Li. We obtained the absolute cross section at photon energies 10, 11, 12, 13, 15, 20, 25, 30, and 35 MeV and also the dependence of the cross section on polar angle for all but the highest photon energy. For the energies 10 to 15 MeV we were able to use linearly polarized photons to obtain the dependence of the cross section on the photon polarization.

  14. Microscopic Calculation of Astrophysical S-factor and Branching Ratio for the 3H(α, γ)7Li Reaction

    NASA Astrophysics Data System (ADS)

    Solovyev, Alexander S.; Igashov, Sergey Yu.; Tchuvill'sky, Yury M.

    2015-01-01

    In the present work the radiative capture reaction 3H(α, γ)7Li has been investigated. The astrophysical S-factor and the branching ratio of the reaction have been calculated within a microscopic approach - the algebraic version of the resonating-group model. The lowest compatible with the Pauli exclusion principle wave functions of the translation-invariant oscillator shell model are adopted as the internal wave functions of the colliding clusters. The modified Hasegawa-Nagata NN-potential was employed in the calculations. The results are in good agreement with the experimental data.

  15. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Yonai, Shunsuke; Baba, Mamoru; Hoshi, Masaharu

    2014-06-01

    The characteristics of moderator assembly dimension was investigated for the usage of (7)Li(p,n) neutrons by 2.3-2.8MeV protons and W(p,n) neutrons by 50MeV protons. The indexes were the treatable protocol depth (TPD) and advantage depth (AD). Consequently, a configuration for W target with the Fe filter, Fluental moderator, Pb reflector showed the TPD of 5.8cm and AD of 9.3cm. Comparable indexes were found for the Li target in a geometry with the MgF2 moderator and Teflon reflector.

  16. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  17. Temperature dependence of proton relaxation times in vitro.

    PubMed

    Nelson, T R; Tung, S M

    1987-01-01

    Accurate measurement of tissue relaxation characteristics is dependent on many factors, including field strength and temperature. The purpose of this study was to evaluate the relationship between sample temperature, viscosity and proton spin-lattice relaxation time (T1) and spin-spin relaxation time (T2). A review of two basic models of relaxation the simple molecular motion model and the fast exchange two state model is given with reference to their thermal dependencies. The temperature dependence for both T1 and T2 was studied on a 0.15 Tesla whole body magnetic resonance imager. Thirteen samples comprising both simple and complex materials were investigated by using a standard spin-echo (SE) technique and a modified Carr-Purcell-Meiboom-Gill (CPMG) multi-echo sequence. A simple linear relationship between T1 and temperature was observed for all samples over the range of 20 degrees C to 50 degrees C. There is an inverse relationship between viscosity and T1 and T2. A quantity called the temperature dependence coefficient (TDC) is introduced and defined as the percent rate of change of the proton relaxation time referenced to a specific temperature. The large TDC found for T1 values, e.g. 2.37%/degrees C for CuSO4 solutions and 3.59%/degrees C for light vegetable oils at 22 degrees C, indicates that a temperature correction should be made when comparing in-vivo and in-vitro T1 times. The T2 temperature dependence is relatively small. PMID:3041151

  18. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  19. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.

    PubMed

    Raitsimring, A; Dalaloyan, A; Collauto, A; Feintuch, A; Meade, T; Goldfarb, D

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd(3+) chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd(3+) chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd(3+)-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation. PMID:25442776

  20. On the hyperfine structures of the ground state(s) in the 6Li and 7Li atoms

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.

    2016-06-01

    The hyperfine structure of the ground 22 S-states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus, we determine the hyperfine structure of the ground (doublet) 22 S-state(s) in the 6Li and 7Li atoms. Our predicted values (228.2058 and 803.5581 MHz, respectively) agree well with the experimental values 228.20528(8) MHz (6Li) and 803.50404(48) MHz (7Li [R.G. Schlecht and D.W. McColm, Phys. Rev. 142, 11 (1966)]). The hyperfine structures of a number of lithium isotopes with short lifetimes, including 8Li, 9Li, and 11Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron 7Be+ and 9Be+ ions in their ground 22 S-states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n 3 S-states of the four-electron atoms and ions.

  1. Rapid MRI method for mapping the longitudinal relaxation time

    NASA Astrophysics Data System (ADS)

    Hsu, Jung-Jiin; Glover, Gary H.

    2006-07-01

    A novel method for mapping the longitudinal relaxation time in a clinically acceptable time is developed based on a recent proposal [J.-J. Hsu, I.J. Lowe, Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization, J. Magn. Reson. 169 (2004) 270-278] and the speed of the spiral pulse sequence. The method acquires multiple curve-fitting samples with one RF pulse train. It does not require RF pulses of specific flip angles (e.g., 90° or 180°), nor are the long recovery waiting time and the measurement of the magnetization at thermal equilibrium needed. Given the value of the flip angle, the curve fitting is semi-logarithmic and not computationally intensive. On a heterogeneous phantom, the average percentage difference between measurements of the present method and those of an inversion-recovery method is below 2.7%. In mapping the human brain, the present method, for example, can obtain four curve-fitting samples for five 128 × 128 slices in less than 3.2 s and the results are in agreement with other studies in the literature.

  2. Tacrine derivatives-acetylcholinesterase interaction: 1H NMR relaxation study.

    PubMed

    Delfini, Maurizio; Di Cocco, Maria Enrica; Piccioni, Fabiana; Porcelli, Fernando; Borioni, Anna; Rodomonte, Andrea; Del Giudice, Maria Rosaria

    2007-06-01

    Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.

  3. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.

    PubMed

    Aso, Y; Yoshioka, S; Kojima, S

    2000-03-01

    Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.

  4. Using the Doppler broadened γ line of the 10B(n,αγ)7Li reaction for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Ben-Galim, Y.; Wengrowicz, U.; Moreh, R.; Orion, I.; Raveh, A.

    2016-02-01

    When a thermal neutron is absorbed by 10B in the 10B(n,α)7Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited 7Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E(7Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving 7Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B4C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the 10B(n,αγ)7Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination.

  5. Molecular Level Insights on Collagen-Polyphenols Interaction Using Spin-Relaxation and Saturation Transfer Difference NMR.

    PubMed

    Reddy, R Ravikanth; Phani Kumar, Bandaru V N; Shanmugam, Ganesh; Madhan, Balaraman; Mandal, Asit B

    2015-11-01

    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., (1)H and (13)C chemical shifts (δH and δC), (1)H nonselective spin-lattice relaxation times (T1NS) and selective spin-lattice relaxation times (T1SEL), as well as spin-spin relaxation times (T2). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that -COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from (13)C analysis, while PG, which is devoid of -COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2', H5' and H6') and C-ring (H6 and H8) protons of CA, and A-ring (H2' and H6'), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective (1)H T1 measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols. PMID:26447653

  6. Achievement of high nuclear spin polarization using lanthanides as low-temperature NMR relaxation agents.

    PubMed

    Peat, David T; Horsewill, Anthony J; Köckenberger, Walter; Perez Linde, Angel J; Gadian, David G; Owers-Bradley, John R

    2013-05-28

    Many approaches are now available for achieving high levels of nuclear spin polarization. One of these methods is based on the notion that as the temperature is reduced, the equilibrium nuclear polarization will increase, according to the Boltzmann distribution. The main problem with this approach is the length of time it may take to approach thermal equilibrium at low temperatures, since nuclear relaxation times (characterized by the spin-lattice relaxation time T1) can become very long. Here, we show, by means of relaxation time measurements of frozen solutions, that selected lanthanide ions, in the form of their chelates with DTPA, can act as effective relaxation agents at low temperatures. Differential effects are seen with the different lanthanides that were tested, holmium and dysprosium showing highest relaxivity, while gadolinium is ineffective at temperatures of 20 K and below. These observations are consistent with the known electron-spin relaxation time characteristics of these lanthanides. The maximum relaxivity occurs at around 10 K for Ho-DTPA and 20 K for Dy-DTPA. Moreover, these two agents show only modest relaxivity at room temperature, and can thus be regarded as relaxation switches. We conclude that these agents can speed up solid state NMR experiments by reducing the T1 values of the relevant nuclei, and hence increasing the rate at which data can be acquired. They could also be of value in the context of a simple low-cost method of achieving several-hundred-fold improvements in polarization for experiments in which samples are pre-polarized at low temperatures, then rewarmed and dissolved immediately prior to analysis.

  7. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  8. Effects of spin-lock field direction on the quantitative measurement of spin-lattice relaxation time constant in the rotating frame (T1ρ) in a clinical MRI system

    SciTech Connect

    Yee, Seonghwan; Gao, Jia-Hong

    2014-12-15

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels of clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.

  9. Fusion cross sections for {sup 6,7}Li + {sup 24}Mg reactions at energies below and above the barrier

    SciTech Connect

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.

    2008-12-15

    Measurement of fusion cross sections for the {sup 6,7}Li + {sup 24}Mg reactions by the characteristic {gamma}-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these {gamma}-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l{sub cr}) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions.

  10. Review: biological effectiveness of thermal neutrons and 10B(n,alpha)7Li reaction on cultured cells.

    PubMed

    Fukuda, H; Ichihashi, M; Kobayashi, T; Matsuzawa, D; Kanda, K; Mishima, Y

    1989-01-01

    There are only a few reports on the relative biological effectiveness (RBE) of thermal neutrons and 10B(n,alpha)7Li reactions either in vitro or in vivo. The data in this paper summarize almost all previously published in vitro data. Because only a few reactors are available for biomedical purposes, it is difficult to make a comparison of data from experiments using the same kind of radiation, and also to make a comparison of data from experiments using the different kinds of radiations. However, it is indispensable for boron neutron capture therapy to make a radiobiological analysis. More intensive study, including repair process and oxygen effect, is necessary for establishing the fundamental basis of the clinical application of boron neutron capture therapy.

  11. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  12. Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study.

    PubMed

    Tucker, Michael C; Doeff, Marca M; Richardson, Thomas J; Fiñones, Rita; Cairns, Elton J; Reimer, Jeffrey A

    2002-04-17

    The (7)Li NMR isotropic shift for olivine LiMPO(4) (M = Fe, Mn, Co, Ni) is assigned to hyperfine coupling between the (7)Li nucleus and the transition metal unpaired electrons on the basis of the Curie-Weiss temperature dependence of the shift. The hyperfine shift arises from a linear combination of Li-O-M through-bond interactions wherein the unpaired A' electrons contribute a negative shift and the unpaired A' ' electrons contribute a positive shift. The hyperfine coupling constant is determined for each composition.

  13. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.

    PubMed

    Kobayashi, Tooru; Bengua, Gerard; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2007-02-01

    The usable range of thickness for the solid lithium target in the accelerator-based neutron production for BNCT via the near-threshold (7)Li(p,n)(7)Be reaction was investigated. While the feasibility of using a (7)Li-target with thickness equal to that which is required to slow down a mono-energetic 1.900 MeV incident proton to the 1.881 MeV threshold of the (7)Li(p,n)(7)Be reaction (i.e., t(min) = 2.33 microm) has already been demonstrated, dosimetric properties of neutron fields from targets greater than t(min) were assessed as thicker targets would last longer and offer more stable neutron production. Additionally, the characteristics of neutron fields generated by (7)Li(p,n)(7)Be for Gaussian incident protons with mean energy of 1.900 MeV were evaluated at a (7)Li-target thickness t(min). The main evaluation index applied in this study was the treatable protocol depth (TPD) which corresponds to the depth in an irradiated medium that satisfies the requirements of the adapted dose protocol. A maximum TPD (TPD(max)) was obtained for each irradiation condition from the relationship between the TPD and the thickness of boron dose enhancer (BDE) used. For a mono-energetic 1.900 MeV proton beam, the deepest TPD(max) of 3.88 cm was attained at the (7)Li-target thickness of t(min) and a polyethylene BDE of 1.10 cm. When the intended TPD for a BNCT clinical treatment is shallower than the deepest TPD(max), the usable (7)Li-target thickness would be between t(min) and an upper limit t(upper) whose value depends on the BDE thickness used. In terms of the effect of stability of the incident proton energy, Gaussian incident proton energies stable to within +/-10 keV of 1.900 MeV were found to be feasible for the neutron production via the near-threshold (7)Li(p,n)(7)Be reaction for BNCT provided that a suitable BDE is used.

  14. Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)

    SciTech Connect

    Rantaharju, Jyrki Mareš, Jiří Vaara, Juha

    2014-07-07

    The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

  15. Will spin-relaxation times in molecular magnets permit quantum information processing?

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang

    2007-03-01

    Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.

  16. NMR relaxation study of the phase transitions and relaxation mechanisms of the alums MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) single crystals

    SciTech Connect

    Lim, Ae Ran; Paik, Younkee; Lim, Kye-Young

    2011-06-15

    The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) single crystals have been investigated. The phase transition temperatures, NMR spectra, and the spin-lattice relaxation times T{sub 1} of the {sup 87}Rb and {sup 133}Cs nuclei in the two crystals were determined using DSC and FT NMR spectroscopy. The resonance lines and relaxation times of the {sup 87}Rb and {sup 133}Cs nuclei undergo significant changes at the phase transition temperatures. The sudden changes in the splitting of the Rb and Cs resonance lines are attributed to changes in the local symmetry of their sites, and the changes in the temperature dependences of T{sub 1} are related to variations in the symmetry of the octahedra of water molecules surrounding Rb{sup +} and Cs{sup +}. We also compared these {sup 87}Rb and {sup 133}Cs NMR results with those obtained for the trivalent cations Cr and Al in MCr(SO{sub 4}){sub 2}.12H{sub 2}O and MAl(SO{sub 4}){sub 2}.12H{sub 2}O crystals. - Graphical Abstract: The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb, Cs, and NH{sub 4}) single crystals have been investigated. Highlights: > The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) crystals {yields} The NMR spectra and the spin-lattice relaxation times T{sub 1} of the {sup 87}Rb and {sup 133}Cs nuclei in the two crystals {yields} The variations in the symmetry of the octahedra of water molecules surrounding Rb{sup +} and Cs{sup +}.

  17. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  18. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  19. A New 6Li Detection in a Halo Subgiant, and Constraints for the Depletion of the Big Bang 7Li Abundance

    NASA Astrophysics Data System (ADS)

    Deliyannis, C. P.; Ryan, S. G.

    2000-05-01

    We present measurements of the 6Li/7Li isotope ratio in ten metal-poor stars derived from very high resolution (100,000) and S/N (300-800/pixel) McDonald 2.7-meter coude spectra, including two possible 6Li detections. We present specific new evidence that we have indeed detected the 6Li absorption feature, and not a convective asymmetry of the 7Li feature. One of our detections argues in favor of a protostellar (and not a surface-spallated) origin for this 6Li. We find that 6Li has either not evolved strongly with metallicity, in contrast to what is observed for Be and B, or else concurrent 6Li production is matched by stellar depletion. While such fine-tuning seems unlikely, no models can explain the origin of 6Li without such depletion. In the context of the observed 9Be/7Li depletion correlation and its slow-mixing explanation, taking our data at face value implies that the Big Bang 7Li abundance is no more than 0.2-0.3 dex higher than the values observed in the halo Li plateau.

  20. Cross-section measurement for the /sup 7/Li(n,n't)/sup 4/He reaction at 14. 74 MeV

    SciTech Connect

    Smith, D.L.; Meadows, J.W.; Bretscher, M.M.; Cox, S.A.

    1984-09-01

    The cross section for the /sup 7/Li(n,n't)/sup 4/He reaction is measured at an average neutron energy of 14.74 MeV, with a resolution of 0.324 MeV, relative to the /sup 238/U neutron-fission cross section. Tritium activities for the irradiated lithium-metal samples (enriched to 99.95% in /sup 7/Li) are deduced using a liquid-scintillation counting method which relies upon the tritiated-water standard from the US National Bureau of Standards. The measured cross section ratio of /sup 7/Li(n,n't)/sup 4/He to /sup 238/U neutron fission is 0.2523 (+- 2.2%). The derived /sup 7/Li(n,n't)/sup 4/He reaction cross section is 0.301 (+- 5.3%) barn, based on the ENDF/B-V value of 1.193 (+- 4.8%) barn for the /sup 238/U neutron-fission cross section. 59 references.

  1. Study of the 3He(α,γ)7Be and 3H(α,γ)7Li reactions at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Ghasemi, R.

    2014-06-01

    We have studied the important astrophysical 3He(α,γ)7Be and 3H(α,γ)7Li reactions in the framework of a potential model. 3He(α,γ)7Be and 3H(α,γ)7Li processes are key reactions in both bigbang nucleosynthesis and the p-p chain of hydrogen-burning in stars. The stellar 3He(α,γ)7Be and 3H(α,γ)7Li reactions were analyzed at low energies on the basis of a direct radiative capture mechanism. The astrophysical S-factors near zero energy were calculated without using the effective expansion of the S-factor or the asymptotic wave functions. In this paper, 3He(α,γ)7Be and 3H(α,γ)7Li radiative capture reactions at very low energies are taken as a case study. Using the M3Y potential, we have calculated the astrophysical S-factors for the E1 transition. In comparison with other theoretical methods and available experimental data, excellent agreement is achieved for the astrophysical S-factors of these processes.

  2. Vector analyzing power measurement of pion scattering from polarized [sup 7]Li in the region of the [Delta][sub 33] resonance

    SciTech Connect

    Meier, R.; Boschitz, E.; Brinkmoeller, B.; Buehler, J.; Ritt, S.; Wessler, M. ); Konter, J.A.; Mango, S.; van den Brandt, B. ); Efimovykh, V.A.; Kovalev, A.I.; Prokofiev, A.N.; Polyakov, V.V. ); Chaumette, P.; Deregel, J.; Durand, G.; Fabre, J. ); Mach, R. ); Tacik, R. )

    1994-01-01

    The inclusive vector analyzing power [ital iT][sub 11] of [pi][sup +][r arrow][sup 7]Li elastic scattering and inelastic scattering to the 0.47 MeV excited state was measured at several angles for [ital T][sub [pi

  3. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  4. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    PubMed

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed.

  5. Electron spin echo and spin relaxation of low-symmetry Mn(2+)-complexes in ammonium oxalate monohydrate single crystal.

    PubMed

    Hoffmann, Stanisław K; Lijewski, Stefan; Goslar, Janina; Mielniczek-Brzóska, Ewa

    2014-09-01

    Pulse EPR experiments were performed on low concentration Mn(2+) ions in ammonium oxalate monohydrate single crystals at X-band, in the temperature range 4.2-60K at crystal orientation close to the D-tensor z-axis. Hyperfine lines of the resolved spin transitions were selectively excited by short nanosecond pulses. Electron spin echo signal was not observed for the low spin transition (+5/2↔+3/2) suggesting a magnetic field threshold for the echo excitation. Echo appears for higher spin transitions with amplitude, which grows with magnetic field. Opposite behavior displays amplitude of echo decay modulations, which is maximal at low field and negligible for high field spin transitions. Electron spin-lattice relaxation was measured by the pulse saturation method. After the critical analysis of possible relaxation processes it was concluded that the relaxation is governed by Raman T(7)-process. The relaxation is the same for all spin transitions except the lowest temperatures (below 20K) where the high field transitions (-3/2↔-1/2) and (-5/2↔-3/2) have a slower relaxation rate. Electron spin echo dephasing is produced by electron spectral diffusion mainly, with a small contribution from instantaneous diffusion for all spin transitions. For the highest field transition (-5/2↔-3/2) an additional contribution from nuclear spectral diffusion appears with resonance type enhancement at low temperatures.

  6. Excitation function shape and neutron spectrum of the 7Li(p ,n )7Be reaction near threshold

    NASA Astrophysics Data System (ADS)

    Martín-Hernández, Guido; Mastinu, Pierfrancesco; Maggiore, Mario; Pranovi, Lorenzo; Prete, Gianfranco; Praena, Javier; Capote-Noy, Roberto; Gramegna, Fabiana; Lombardi, Augusto; Maran, Luca; Scian, Carlo; Munaron, Enrico

    2016-09-01

    The forward-emitted low energy tail of the neutron spectrum generated by the 7Li(p ,n )7Be reaction on a thick target at a proton energy of 1893.6 keV was measured by time-of-flight spectroscopy. The measurement was performed at BELINA (Beam Line for Nuclear Astrophysics) of the Laboratori Nazionali di Legnaro. Using the reaction kinematics and the proton on lithium stopping power the shape of the excitation function is calculated from the measured neutron spectrum. Good agreement with two reported measurements was found. Our data, along with the previous measurements, are well reproduced by the Breit-Wigner single-resonance formula for s -wave particles. The differential yield of the reaction is calculated and the widely used neutron spectrum at a proton energy of 1912 keV was reproduced. Possible causes regarding part of the 6.5% discrepancy between the 197Au(n ,γ ) cross section measured at this energy by Ratynski and Kappeler [Phys. Rev. C 37, 595 (1988), 10.1103/PhysRevC.37.595] and the one obtained using the Evaluated Nuclear Data File version B-VII.1 are given.

  7. 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Reddy, M. Jaipal; Chu, Peter P.

    A composite of mesoporous silica (SBA-15) with a polyethylene oxide (PEO) polymer electrolyte is examined for use in various electrochemical devices. Incorporation of SBA-15 in a PEO:LiClO 4 polymer electrolyte facilitates salt dissociation, enhances ion conductivity, and improves miscibility between organic and inorganic moieties. Optimized conductivity is found at 10 wt.% SBA-15 composition, above this concentration the conductivity is reduced due to aggregation of a SBA-15:Li rich phase. Heating above melt temperature of PEO allows more of the polymer segments to interact with SBA-15. This results in a greater degree of disorder upon cooling, and the ion conductivity is enhanced. A 7Li MAS NMR study reveals three types of lithium-ion coordination. Two major types of conduction mechanism can be identified: one through conventional amorphous PEO; a second via hopping in a sequential manner by replacing the nearby vacancies ('holes') on the surface (both interior and exterior) of the SBA-15 channels.

  8. Estimation of free copper ion concentrations in blood serum using T1 relaxation rates

    NASA Astrophysics Data System (ADS)

    Blicharska, Barbara; Witek, Magdalena; Fornal, Maria; MacKay, Alex L.

    2008-09-01

    The water proton relaxation rate constant R1 = 1/ T1 (at 60 MHz) of blood serum is substantially increased by the presence of free Cu 2+ ions at concentrations above normal physiological levels. Addition of chelating agents to serum containing paramagnetic Cu 2+ nulls this effect. This was demonstrated by looking at the effect of adding a chelating agent—D-penicillamine (D-PEN) to CuSO 4 and CuCl 2 aqueous solutions as well as to rabbit blood serum. We propose that the measurement of water proton spin-lattice relaxation rate constants before and after chelation may be used as an alternative approach for monitoring the presence of free copper ions in blood serum. This method may be used in the diagnosis of some diseases (leukaemia, liver diseases and particularly Wilson's disease) because, in contrast to conventional methods like spectrophotometry which records the total number of both bound and free ions, the proton relaxation technique is sensitive solely to free paramagnetic ions dissolved in blood serum. The change in R1 upon chelation was found to be less than 0.06 s -1 for serum from healthy subjects but greater than 0.06 s -1 for serum from untreated Wilson's patients.

  9. Relaxation of biofunctionalized magnetic nanoparticles in ultra-low magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, H. C.; Chiu, L. L.; Liao, S. H.; Chen, H. H.; Horng, H. E.; Liu, C. W.; Liu, C. I.; Chen, K. L.; Chen, M. J.; Wang, L. M.

    2013-01-01

    In this work, the spin-spin relaxation rate, 1/T2, and spin-lattice relaxation rate, 1/T1, of protons' spins induced by biofunctionalized magnetic nanoparticles and ferrofluids are investigated using a high-Tc superconducting quantum interference device-detected magnetometer in ultra-low fields. The biofunctionalized magnetic nanoparticles are the anti-human C-reactive protein (antiCRP) coated onto dextran-coated superparamagnetic iron oxides Fe3O4, which is labeled as Fe3O4-antiCRP. The ferrofluids are dextran-coated iron oxides. It was found that both 1/T2 and 1/T1 of protons in Fe3O4-antiCRP are enhanced by the presence of magnetic nanoparticles. Additionally, both the 1/T1 and 1/T2 of Fe3O4-antiCRP are close to that of ferrofluids, which are dextran-coated Fe3O4 dispersed in phosphate buffer saline. Characterizing the relaxation of Fe3O4-antiCRP can be useful for biomedical applications.

  10. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  11. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sideris, Paul J.; Yew, Rowena; Nieves, Ian; Chen, Kaimin; Jain, Gaurav; Schmidt, Craig L.; Greenbaum, Steve G.

    2014-05-01

    Solid state 7Li and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) experiments are conducted on several cathodes containing CFx-Silver vanadium oxide (CFx-Ag2V4O11) hybrid cathodes discharged to 50% depth of discharge (DoD) and stored at their open-circuit voltage for a period of one and three months. Three carbonaceous sources for the CFx phase are investigated: petroleum coke-based, fibrous, and mixed fibrous. For each hybrid cathode, a measurable increase in the relative amount of lithium fluoride is observed after a three month resting period in both the 7Li and 19F NMR spectra. These changes are attributed to lithium ion migration from the silver vanadium oxide to the CFx phase during the resting period, and help clarify the mechanism behind high power handling capability of this cathode.

  12. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    NASA Astrophysics Data System (ADS)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  13. Alpha spectroscopic factors for 6Li, 7Li, 9Be and 12C from the ( overlinep, pα) reaction at 296 MeV

    NASA Astrophysics Data System (ADS)

    Yoshimura, T.; Okihana, A.; Warner, R. E.; Chant, N. S.; Roos, P. G.; Samanta, C.; Kakigi, S.; Koori, N.; Fujiwara, M.; Matsuoka, N.; Tamura, K.; Kubo, E.; Ushiro, K.

    1998-10-01

    Three-body breakup cross sections and analyzing powers for the 6Li, 7Li, 9Be and 12C( overlinep,pα) reactions were measured at an incident energy of 296 MeV. Data were analyzed using the plane wave impulse approximation (PWIA) and the distorted wave impulse approximation (DWIA) and compared with previous studies. DWIA calculations reproduce shapes of projected spectra and analyzing power distributions fairly well with the exception of the 12C( overlinep,pα) 8Be reactions. Extracted spectroscopic factors for 6Li, 9Be and 12C are larger than those found in the previous studies. In contrast, extracted spectroscopic factors for 7Li agree with the previous work. This work suggests that the spectroscopic factor for 6Li is ˜ 0.8, independent of incident energies and reaction types.

  14. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses.

    PubMed

    Adamiv, V; Teslyuk, I; Dyachok, Ya; Romanyuk, G; Krupych, O; Mys, O; Martynyuk-Lototska, I; Burak, Ya; Vlokh, R

    2010-10-01

    In the current work we report on the synthesis of LiKB(4)O(7), Li(2)B(6)O(10), and LiCsB(6)O(10) borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  15. Exchange Effects in the Radiative Capture Reactions 3H(α, γ)7Li and 3He(α, γ)7Be

    NASA Astrophysics Data System (ADS)

    Solovyev, A. S.; Igashov, S. Yu.; Tchuvil'sky, Yu. M.

    2016-05-01

    The mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions have been considered using the algebraic versions of the resonating group model and of the orthogonality conditions model. Exchange effects in interaction of the colliding nuclei and influence of the corresponding exchange terms in matrix elements of the interaction potential on calculated astrophysical S-factors for the reactions have been studied.

  16. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV

    NASA Astrophysics Data System (ADS)

    Majerle, M.; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-01

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  17. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses

    SciTech Connect

    Adamiv, V.; Teslyuk, I.; Dyachok, Ya.; Romanyuk, G.; Krupych, O.; Mys, O.; Martynyuk-Lototska, I.; Burak, Ya.; Vlokh, R.

    2010-10-01

    In the current work we report on the synthesis of LiKB4O7, Li2B6O10, and LiCsB6O10 borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  18. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  19. Partial diagenetic overprint of Late Jurassic belemnites from New Zealand: Implications for the preservation potential of δ7Li values in calcite fossils

    NASA Astrophysics Data System (ADS)

    Ullmann, Clemens V.; Campbell, Hamish J.; Frei, Robert; Hesselbo, Stephen P.; Pogge von Strandmann, Philip A. E.; Korte, Christoph

    2013-11-01

    The preservation potential and trends of alteration of many isotopic systems (e.g. Li, Mg, Ca) that are measured in fossil carbonates are little explored, yet extensive paleoenvironmental interpretations have been made on the basis of these records. Here we present a geochemical dataset for a Late Jurassic (˜153 Ma) belemnite (Belemnopsis sp.) from New Zealand that has been partially overprinted by alteration. We report the physical pathways and settings of alteration, the resulting elemental and isotopic trends including δ7Li values and Li/Ca ratios, and assess whether remnants of the primary shell composition have been preserved or can be extrapolated from the measured values. The δ18O and δ13C values as well as Sr/Ca and Mn/Ca ratios were analysed along two profiles. In addition, 6 samples were analysed for 87Sr/86Sr, Sr/Ca and Mn/Ca ratios. Five samples from the same specimen and 2 from the surrounding sediment were analysed for δ7Li values, Li/Ca, Sr/Ca and Mn/Ca ratios and are compared to results for 6 other Late Jurassic belemnite rostra (Belemnopsis sp. andHibolithes sp.) from the same region. The 87Sr/86Sr ratios are lower (less radiogenic) in the most altered part of the rostrum, whereas δ7Li values become more positive with progressive alteration. The direction and magnitude of the trends in the geochemical record indicate that one main phase of alteration that occurred in the Late Cretaceous caused most of the diagenetic signature in the calcite. Despite relatively deep burial, down to 4 km, and thus elevated temperatures, this diagenetic signature has subsequently been preserved even for the highly mobile element lithium, suggesting that primary lithium-isotope values can be maintained over geological timescales, at least in thick macrofossil shells. Our best δ7Li estimate for pristine Late Jurassic (˜155-148 Ma) belemnites is +27 ± 1‰, which points to a Late Jurassic seawater δ7Li of ˜29-32‰, compatible with the modern value of 31‰.

  20. Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation

    SciTech Connect

    Uvarov, Mikhail N.; Behrends, Jan; Kulik, Leonid V.

    2015-12-28

    Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about ten times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.

  1. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  2. Impurities and electron spin relaxations in nanodiamonds studied by multi-frequency electron spin resonance

    NASA Astrophysics Data System (ADS)

    Cho, Franklin; Takahashi, Susumu

    2014-03-01

    Nano-sized diamond or nanodiamond is a fascinating material for potential applications of fluorescence imaging and magnetic sensing of biological systems via nitrogen-vacancy defect centers in diamonds. Sensitivity of the magnetic sensing strongly depends on coupling to surrounding environmental noises, thus understanding of the environment is critical to realize the application. In the present study, we employ multi-frequency (X-band, 115 GHz and 230 GHz) continuous-wave (cw) and pulsed electron spin resonance (ESR) spectroscopy to investigate impurity contents and spin relaxation properties in various sizes of nanodiamonds. Spectra taken with our home-built 230/115 GHz cw/pulsed ESR spectrometer shows presence of two major impurity contents; single substitutional nitrogen impurities (P1) also common in bulk diamonds and paramagnetic impurities (denoted as X) unique to nanodiamonds. The ESR measurement also shows a strong dependence of the population ratio between P1 and X on particle size. Furthermore, we will discuss the nature of spin-lattice relaxation time T1 of nanodiamonds studied by pulsed ESR measurements at X-band, 115 GHz and 230 GHz.

  3. Neutron Spin-Echo Investigation of Slow Spin Dynamics in Kagome-Bilayer Frustrated Magnets as Evidence for Phonon Assisted Relaxation in SrCr{sub 9x}Ga{sub 12-9x}O{sub 19}

    SciTech Connect

    Mutka, H.; Ehlers, G.; Stewart, J. R.; Fouquet, P.; Payen, C.; Mevellec, J. Y.; Bono, D.; Mendels, P.; Blanchard, N.; Collin, G.

    2006-07-28

    A neutron spin-echo investigation of the low temperature spin dynamics in two well-characterized kagome bilayer compounds SrCr{sub 9x}Ga{sub 12-9x}O{sub 19} (x=0.95, SCGO) and Ba{sub 2}Sn{sub 2}ZnCr{sub 7x}Ga{sub 10-7x}O{sub 22} (x=0.97, BSZCGO) reveals two novel features. One is the slowing down of the relaxation rate without critical behavior at T{sub g}, where a macroscopic spin-glass-like freezing occurs. The second is, in SCGO at 4 K ({approx_equal}T{sub g})relaxation rate activation energy E{sub a}=7{+-}0.4 meV, equal to the energy of a phonon mode, pointing out the role of spin-lattice coupling.

  4. Highly enriched 7Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7Li origin

    NASA Astrophysics Data System (ADS)

    Molaro, P.; Izzo, L.; Mason, E.; Bonifacio, P.; Della Valle, M.

    2016-11-01

    We report on the evidence of highly blue-shifted resonance lines of the singly ionised isotope of 7BeII in high resolution UVES spectra of Nova Sagittarii 2015 No. 2 (V5668 Sgr). The resonance doublet lines 7BeII at lambda 313.0583, 313.1228 nm are clearly detected in several non saturated and partially resolved high velocity components during the evolution of the outburst. The total absorption identified with Beryllium has an equivalent width much larger than all other elements and comparable to hydrogen. We estimate an atomic fraction N(7Be)/N(Ca) ~ 53-69 from unsaturated and resolved absorption components. The detection of 7Be in several high velocity components shows that it has been freshly created in a thermonuclear runaway via the reaction 3He}(alpha,gamma) 7Be during the Nova explosion, as postulated by Arnould and Norgaard (1975) , however in much larger amounts than predicted by current models. 7Be decays to 7Li with a half-life of 53.22 days, comparable to the temporal span covered by the observations. The non detection of LiI requires that LiII remains ionised throughout our observations. The massive 7Be ejecta result into a 7Li production that is about 4.7-4.9 dex above the meteoritic abundance. If such a high production is common even in a small fraction (~5%) of Novae, they can make all the "stellar" 7Li of the Milky Way.

  5. The influence of oxygen-17 enriched oxygen-donor ligands on the electronic spin relaxation behaviour of paramagnetic metal ions

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Yim, Moon B.; Makinen, Marvin W.

    Continuous wave microwave power saturation of high-spin paramagnetic metalloprotein complexes of Co2+ and Fe3+ showed that the value of the saturation parameter P1/2 is influenced by the coordination of oxygen-17 enriched water to the metal ion. No change was observed for H218O or 2H2O. Pulse saturation and recovery of paramagnetic high-spin Fe3+ heme proteins identified a fast relaxation component sensitive to isotopic oxygen-17 composition that was assigned to the process of spectral diffusion. It is shown that the change in relaxation time for spectral diffusion can alter the (apparent) spin-lattice relaxation to account for the observed changes in continuous wave microwave power saturation experiments. These changes are shown to correlate with alterations in the extent of covalency between the metal ion and oxygen-donor ligand. The experimental results provide a basis for use of continuous wave microwave saturation to identify the presence of oxygen-donor ligands within the inner coordination shell of high-spin Co2+ or Fe3+ in metalloprotein and small molecule complexes and to qualitatively assess the extent of covalency between the metal ion and the oxygen-donor ligand.

  6. Electron spin relaxation times and rapid scan EPR imaging of pH-sensitive amino-substituted trityl radicals.

    PubMed

    Elajaili, Hanan B; Biller, Joshua R; Tseitlin, Mark; Dhimitruka, Ilirian; Khramtsov, Valery V; Eaton, Sandra S; Eaton, Gareth R

    2015-04-01

    Carboxy-substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino-substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X-band for the protonated and deprotonated forms of two amino-substituted triarylmethyl radicals. Comparison with relaxation times for carboxy-substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino-substituted triarylmethyl radicals facilitate spectral-spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image.

  7. Cluster structures of 18O and 20O up to 20 MeV excitation energy from the (7Li, p)-reaction

    NASA Astrophysics Data System (ADS)

    Dorsch, T.; Bohlen, H. G.; von Oertzen, W.; Krücken, R.; Faestermann, T.; Mahgoub, M.; Kokalova, T.; Wheldon, C.; Milin, M.; Wirth, H.; Hertenberger, R.

    2008-05-01

    We studied the band structure of 18O and 20O using the (7Li, p)-reaction at an incident energy of 44 MeV on 12C and 14C targets. Spectra have been measured from the ground state up to 20 MeV excitation energy. We found 27 and 38 new states for 18O and 20O, respectively. The even-parity bands have been analysed up to now, i.e., some bands were extended by further members. The 0+ band head of the molecular band in 18O at 7.796(5) MeV was identified for the first time.

  8. Elastic Scattering of {sup 7}Li+{sup 27}Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    SciTech Connect

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Abriola, D.; Capurro, O. A.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Fernandez Niello, J. O.

    2010-08-04

    We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.

  9. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  10. Strain coupling mechanisms and elastic relaxation associated with spin state transitions in LaCoO3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Koppensteiner, Johannes; Schranz, Wilfried; Prabhakaran, Dharmalingam; Carpenter, Michael A.

    2011-04-01

    Advantage is taken of the wealth of experimental data relating to the evolution with temperature of spin states of Co3 + in LaCoO3 in order to undertake a detailed investigation of the mechanisms by which changes in electronic structure can influence strain, and elastic and anelastic relaxations in perovskites. The macroscopic strain accompanying changes in the spin state in LaCoO3 is predominantly a volume strain arising simply from the change in effective ionic radius of the Co3 + ions. This acts to renormalize the octahedral tilting transition temperature in a manner that is easily understood in terms of coupling between the tilt and spin order parameters. Results from resonant ultrasound spectroscopy at high frequencies (0.1-1.5 MHz) reveal stiffening of the shear modulus which scales qualitatively with a spin order parameter defined in terms of changing Co-O bond lengths. From this finding, in combination with results from dynamic mechanical analysis at low frequencies (0.1-50 Hz) and data from the literature, four distinctive anelastic relaxation mechanisms are identified. The relaxation times of these are displayed on an anelasticity map and are tentatively related to spin-spin relaxation, spin-lattice relaxation, migration of twin walls and migration of magnetic polarons. The effective activation energy for the freezing of twin wall motion below ~ 590 K at low frequencies was found to be 182 ± 21 kJ mol - 1 (1.9 ± 0.2 eV) which is attributed to pinning by pairs of oxygen vacancies, though the local mechanisms appear to have a spread of relaxation times. It seems inevitable that twin walls due to octahedral tilting must have quite different characteristics from the matrix in terms of local spin configurations of Co3 + . A hysteresis in the elastic properties at high temperatures further emphasizes the importance of oxygen content in controlling the properties of LaCoO3.

  11. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.

    PubMed

    Mack, J W; Usha, M G; Long, J; Griffin, R G; Wittebort, R J

    2000-01-01

    We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.

  12. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.

    PubMed

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as (7)Li(+), (23)Na(+), (25)Mg(2+), (35)Cl(-), (39)K(+), or (133)Cs(+). Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion. PMID:26590539

  13. Ab initio and kinetic Monte Carlo study of lithium diffusion in LiSi, Li12Si7, Li13Si5 and Li15Si4

    NASA Astrophysics Data System (ADS)

    Moon, Janghyuk; Lee, Byeongchan; Cho, Maenghyo; Cho, Kyeongjae

    2016-10-01

    The kinetics of lithium atoms in various Li-Si binary compounds are investigated using density functional theory calculations and kinetic Monte Carlo calculations. The values of the Li migration energy barriers are identified by NEB calculations with vacancy-mediated, interstitial and exchange migration mechanisms in crystalline LiSi, Li12Si7, Li13Si4, and Li15Si4. A comparison of these NEB results shows that the vacancy-mediated Li migration is identified as the dominant diffusion mechanisms in Li-Si compounds. The diffusion coefficients of Li in Li-Si compounds at room temperature are determined by KMC simulation. From the KMC results, the recalculated migration energy barriers in LiSi, Li12Si7, Li13Si4, and Li15Si4 correspond to 0.306, 0.301, 0.367 and 0.320 eV, respectively. Compared to the Li migration energy barrier of 0.6 eV in crystalline Si, the drastic reduction in the Li migration energy barriers in the lithiated silicon indicates that the initial lithiation of the Si anode is the rate-limiting step. Furthermore, it is also found that Si migration is possible in Li-rich configurations. On the basis of these findings, the underlying mechanisms of kinetics on the atomic scale details are elucidated.

  14. Non-monotonic potentials and vector analyzing powers of 6,7Li scattering by 12C, 26Mg, 58Ni, and 120Sn

    NASA Astrophysics Data System (ADS)

    Basak, A. K.; Billah, M. M.; Kobra, M. J.; Sarkar, M. K.; Mizanur Rahman, M.; Das, Pretam K.; Hossain, S.; Abdullah, M. N. A.; Tariq, A. S. B.; Uddin, M. A.; Bhattacharjee, S.; Reichstein, I.; Malik, F. B.

    2011-06-01

    The data on the elastic scattering cross-section (CS) and vector analyzing power (VAP) of 6,7Li incident on 12C , 26Mg, 58Ni and 120Sn nuclei are analyzed in terms of an optical model (OM) potential, the real part of which is generated from a realistic two-nucleon interaction using the energy-density functional (EDF) formalism. The EDF-generated real part of the potential is non-monotonic (NM) in nature. This NM real potential part, without any renormalization, along with an empirically determined imaginary part and spin-orbit potential, embodying the underlying physics of projectile excitation, can successfully account for both CS and VAP data in all four cases. This investigation, for the first time, using the simple OM analysis accounts well for the opposite signs of the VAP data of elastically scattered 6,7Li by 58Ni at Elab≈20 MeV and by 120Sn at Elab=44 MeV. The ramification of successfully describing the data by the EDF-generated potential to the equation of state of nuclear matter is discussed.

  15. Evaluation of the /sup 7/Li(n,n't)/sup 4/He cross section for ENDF/B-VI and application to uncertainty analysis

    SciTech Connect

    Young, P.G.; Davidson, J.W.; Muir, D.W.

    1988-01-01

    A new covariance analysis of n+/sup 7/Li cross section data has been completed for Version VI of ENDF/B. The analysis updates our 1981 work for ENDF/B-V.2 to include new data that has become available since that time and to incorporate cross correlations between different experiments. The bulk of the new measured data consists of some 10 new (or newly revised) tritium-production measurements involving about 70 new data points. The new analysis results in only small changes in the previous evaluation of the tritium-production cross section but significantly reduces the magnitudes of uncertainties due to the more extensive and accurate data base that was used. A two-dimensional sensitivity and uncertainty analysis of the Lithium Blanket Module experiments at the LOTUS facility was performed in order to assess the effects of the new /sup 7/Li cross sections on tritium breeding uncertainty in a realistic system. 4 refs., 6 figs., 3 tabs.

  16. Modifications in TL characteristics of K2Ca2(SO4)3 : Eu by 7Li MeV ion beam

    NASA Astrophysics Data System (ADS)

    Sahare, P. D.; Salah, Numan; Lochab, S. P.; Mohanty, T.; Kanjilal, D.

    2005-11-01

    Highly sensitive K2Ca2(SO4)3 : Eu thermoluminescence detector phosphor was irradiated at room temperature by 7Li ion beams at 24 and 48 MeV for different ion fluences in the range 109-1012 ions/cm2 using a 16 MV Tandem Van de Graff Type Electrostatic Pelletron Accelerator at the Nuclear Science Centre, New Delhi, India. The samples from the same batch were also irradiated with γ-rays from a Cs137 source for comparative studies. Glow curves of the ion beam irradiated samples mainly consist of two prominent peaks at around 392 and 411 K while the γ-rays irradiated samples show only one peak at around 411 K. The appearance of the new peak (392 K peak) may be attributed to the defects/trapping centres due to 7Li ions that have been implanted deep inside during irradiation and act as a source of emission of thermoluminescence (TL). This was confirmed from the glow curve structure of Eu, Li ion co-doped samples.

  17. Thermoluminescence of Ba 0.97Ca 0.03SO 4:Eu irradiated with 48 MeV 7Li ion beam

    NASA Astrophysics Data System (ADS)

    Lochab, S. P.; Salah, Numan; Sahare, P. D.; Chauhan, R. S.; Ranjan, Ranju

    2007-01-01

    Thermoluminescence (TL) of Ba0.97Ca0.03SO4:Eu phosphor, irradiated with 48 MeV 7Li ions at different fluences in the range 1 × 109-1 × 1012 ions/cm2, has been studied. The phosphor was prepared by the chemical co-precipitation technique. Its pellets were irradiated using a 16 MV Tandem Van de-Graff type Electrostatic Pelletron Accelerator at Inter-University Accelerator Centre, New Delhi, India. The samples from the same batch were also irradiated with γ-rays from a Cs137 source for comparative studies. It has been found that the TL glow peak at 460 K, seen prominently in γ-irradiated sample, appeared as a small shoulder at around 465 K in 7Li3+ ion irradiated sample, while that observed as a shoulder in the former at 430 K, dominantly appeared in the latter at around 435 K. Trapping parameters of both, ion beam and γ-irradiated materials, were also obtained after the deconvolution of the glow curves and discussed in the paper. The TL response curve of the ion beam irradiated samples has a linear ion beam fluence response over the range 1 × 109-1 × 1010 ions/cm2. This property along with its low fading and simple glow curve structure makes Ba0.97Ca0.03SO4:Eu phosphor a suitable dosimeter for heavy charged particles (HCP).

  18. Relaxation selective pulses in fast relaxing systems.

    PubMed

    Lopez, Christopher J; Lu, Wei; Walls, Jamie D

    2014-05-01

    In this work, the selectivity or sharpness of the saturation profiles for relaxation selective pulses (R^rsps) that suppress magnetization possessing relaxation times of T2=T2(rsp) and T1=αT2 for α∈12,∞ was optimized. Along with sharpening the selectivity of the R^rsps, the selective saturation of these pulses was also optimized to be robust to both B0 and B1 inhomogeneities. Frequency-swept hyperbolic secant and adiabatic time-optimal saturation pulse inputs were found to work best in the optimizations, and the pulse lengths required to selectivity saturate the magnetization were always found to be less than the inversion recovery delay, T1ln(2). The selectivity of the optimized relaxation selective pulses was experimentally demonstrated in aqueous solutions with varying concentrations of the paramagnetic species, [Mn(+2)], and for use in solvent suppression. Finally, the "rotational" properties of spin relaxation were explored along with an analytical derivation of adiabatic time-optimal saturation pulses. PMID:24631803

  19. Proton and deuterium nuclear spin relaxation study of the SmA and SmC* phases of BP8Cl-d17 : a self-consistent analysis.

    PubMed

    Ferraz, A; Zhang, J; Sebastião, P J; Ribeiro, A C; Dong, Ronald Y

    2014-10-01

    A self-consistent analysis of proton and deuterium nuclear spin relaxation times in the smectic phases of a partially deuterated smectogen is presented here. Proton spin-lattice relaxation times T(1Z) were measured as a function of Larmor frequency over a range of 1 kHz to 300 MHz at selected temperatures. Deuterium spin relaxation times T(1Z) and T(1Q) were measured as a function of temperature at two different magnetic fields in the smectic A phase. The deuterium data provide dynamic parameters such as rotational diffusion constants and internal jump rates as well as the nematic order parameter S. The proton data are analyzed using a number of relaxation mechanisms, one of which is the molecular reorientation. It is found helpful in these latter analyses to use the nematic order parameter and to fix the contribution from molecular reorientations determined by the deuterium spin relaxation. The fits to the proton T(1) frequency and temperature dispersions by the remaining relaxation mechanisms such as layer undulations and translational self-diffusion will be discussed for the smectic A and chiral smectic C phases.

  20. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.

    PubMed

    Birkefeld, Anja Britta; Eckert, Hellmut; Pfleiderer, Bettina

    2004-08-01

    In this study 26 previously implanted silicone breast implants from the same manufacturer (Dow Corning) were investigated with two different analytical methods to characterize potential aging processes such as migration of monomer material from the gel and shell to local and distant sites, chemical alterations of the polymer, and infiltration of body compounds such as lipids. (1)H and (29)Si NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were used to study the molecular dynamics of polysiloxane chains, both in gels and in shells. In addition, changes in physical properties were monitored by differential scanning calorimetry (DSC). The results of these measurements indicate that NMR relaxation times are influenced by implant generation, implantation time, shell texture and implant status. (1)H T2 values of shells and gels show a tendency to increase with increasing implantation time, indicating higher mobility and possible disintegration of the polymer network of older implants. Furthermore, the data suggest that aging also involves the migration of low cyclic molecular weight (LMW) silicone and linear chain polymer material from the gels into the shells. The high "bleeding" rate of second-generation (G2) implants (implantation period around 1973-1985), exhibiting thin shells is reflected in reduced relaxation times of these devices, most likely due to a loss of low molecular weight fractions from the gels. Moreover, "gel bleeding" also influences the melting behavior observed in DSC studies. Increased shell rigidity (high Tm and Tg) tends to be correlated with longer (29)Si relaxation times of the corresponding gels, suggesting a reduced transfer of LMW silicones and linear chain polymer from the gel to the shell and to the outside. Remarkably, textured implants seem to be less susceptible to degradation processes than implants with thin shells.

  1. Electron spin relaxation time measurements using radiofrequency longitudinally detected ESR and application in oximetry.

    PubMed

    Panagiotelis, I; Nicholson, I; Hutchison, J M

    2001-03-01

    Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.

  2. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2004-03-01

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold 7Li(p,n)7Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C2H4)n, (C2H3F)n, (C2H2F2)n, (C2HF3)n, (C2D4)n, (C2F4)n, beryllium metal, graphite, D2O and 7LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPDmax) for each BDE material was found to be between 4 cm and 5 cm in the order of (C2H4)n < (C2H3F)n < (C2H2F2)n < (C2HF3)n < beryllium metal < (C2D4)n < graphite < (C2F4)n < D2O < 7LiF. Based on the small and arbitrary variations in the TPDmax for these materials, an explicit advantage of a candidate BDE material could not be established from the TPDmax alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPDmax (BDE(TPDmax)) was also found to depend on the type of BDE material used. Thicker BDE(TPDmax), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPDmax, the dependence of TPD on BDE thickness and the BDE (TPDmax) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials considered in this study. (C2H4)n was judged as the suitable material for near-surface tumours and beryllium metal for deeper tumours based on these optimization criteria and other practical considerations.

  3. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu; Unesaki, Hironobu

    2006-08-21

    An evaluation of mono-energetic proton energies ranging from 1.885 MeV to 1.920 MeV was carried out to determine the viability of these near threshold energies in producing neutrons for BNCT via the (7)Li(p,n)(7)Be reaction. Neutron fields generated at these proton energies were assessed using the treatable protocol depth (TPD) and the maximum TPD (TPD(max)) as evaluation indices. The heavy charged particle (HCP) dose rate to tumour was likewise applied as a figure of merit in order to account for irradiation time and required proton current. Incident proton energies closer to the reaction threshold generated deeper TPDs compared to higher energy protons when no boron dose enhancers (BDE) were placed in the irradiation field. Introducing a BDE resulted in improved TPDs for high proton energies but their achievable TPD(max) were comparatively lower than that obtained for lower proton energies. In terms of the HCP dose rate to tumour, higher proton energies generated neutron fields that yielded higher dose rates both at TPD(max) and at fixed depths of comparison. This infers that higher currents are required to deliver the prescribed treatment dose to tumours for proton beams with energies closer to the (7)Li(p,n)(7)Be reaction threshold and more achievable proton currents of around 10 mA or less for proton energies from 1.900 MeV and above. The dependence on incident proton energy of the TPD, TPD(max) and the HCP dose rate to tumour with respect to the (10)B concentration in tumour and healthy tissues were also clarified in this study. Increasing the (10)B concentration in tumour while maintaining a constant T/N ratio resulted in deeper TPD(max) where a greater change in TPD(max) was obtained for proton energies closer to the (7)Li(p,n)(7)Be reaction threshold. The HCP dose rates to tumour for all proton energies also went up, with the higher proton energies benefiting more from the increased (10)B concentration.

  4. Proton relaxation times and interstitial fluid pressure in human melanoma xenografts.

    PubMed Central

    Lyng, H.; Tufto, I.; Skretting, A.; Rofstad, E. K.

    1997-01-01

    The interstitial fluid pressure (IFP) and the proton spin-lattice and spin-spin relaxation times (T1 and T2) of some experimental tumours have been shown to be related to tumour water content. These observations have led to the hypothesis that magnetic resonance imaging (MRI) might be a clinically useful non-invasive method for assessment of tumour IFP. The purpose of the work reported here was to examine the general validity of this hypothesis. R-18 human melanoma xenografts grown intradermally in Balb/c nu/nu mice were used as the tumour model system. Median T1 and T2 were determined by spin-echo MRI using a 1.5-T clinical whole-body tomograph. IFP was measured using the wick-in-needle technique. No correlation was found between tumour IFP and fractional tumour water content. Moreover, there was no correlation between median T1 or T2 and IFP, suggesting that proton T1 and T2 values determined by MRI cannot be used clinically to assess tumour IFP and thereby to predict the uptake of macromolecular therapeutic agents. PMID:9010023

  5. Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme-copper site in cytochrome bo3, E. coli.

    PubMed

    Oganesyan, Vasily S; White, Gaye F; Field, Sarah; Marritt, Sophie; Gennis, Robert B; Yap, Lai Lai; Thomson, Andrew J

    2010-11-01

    A nitroxide spin label (SL) has been used to probe the electron spin relaxation times and the magnetic states of the oxygen-binding heme-copper dinuclear site in Escherichia coli cytochrome bo(3), a quinol oxidase (QO), in different oxidation states. The spin lattice relaxation times, T(1), of the SL are enhanced by the paramagnetic metal sites in QO and hence show a strong dependence on the oxidation state of the latter. A new, general form of equations and a computer simulation program have been developed for the calculation of relaxation enhancement by an arbitrary fast relaxing spin system of S ≥ 1/2. This has allowed us to obtain an accurate estimate of the transverse relaxation time, T (2), of the dinuclear coupled pair Fe(III)-Cu(B)(II) in the oxidized form of QO that is too short to measure directly. In the case of the F' state, the relaxation properties of the heme-copper center have been shown to be consistent with a ferryl [Fe(IV)=O] heme and Cu(B)(II) coupled by approximately 1.5-3 cm(-1) to a radical. The magnitude suggests that the coupling arises from a radical form of the covalently linked tyrosine-histidine ligand to Cu(II) with unpaired spin density primarily on the tyrosine component. This work demonstrates that nitroxide SLs are potentially valuable tools to probe both the relaxation and the magnetic properties of multinuclear high-spin paramagnetic active sites in proteins that are otherwise not accessible from direct EPR measurements.

  6. The Frequency-Dependence of the NMR Longitudinal Relaxation Rate, T(1)(-1), of Water in Cysts of the Brine Shrimp

    NASA Astrophysics Data System (ADS)

    Egan, Thomas F.

    The NMR spin-lattice relaxation rate, T(,1)(' -1), of water is independent of the Larmor frequency, (omega)/2(pi), in the normal rf range. However, T(,1)('-1) of intracellular water in biological systems, which accounts for as much as 80% of the cell mass, is frequency-dependent. This indicates that the NMR properties of water in the cellular environment are influenced by long-correlation time processes due to the interaction of water with proteins and other macromolecular constituents of the cell. In this research, the relaxation rate T(,1)(' -1) of water in the Artemia (brine shrimp) cyst is examined as a function of: (1) the proton NMR Larmor frequency for .01 <= (omega)/2(pi) <= 500 MHz, (2) different cyst hydration levels from 0.12 to 1.25 grams water/gram dry solid, (3) temperatures of 22C and 5C. The frequency-dependence of T(,1)('-1) is interpreted in terms of a two-phase exchange model. One water phase is similar to pure water and contributes a small constant relaxation rate. The second phase is water closely associated with the surfaces of large molecules and termed "hydration water". A polymer-dynamics relaxation mechanism, which treats fluctuations of long-chain molecules in aqueous solution, has been proposed by Rorschach and Hazlewood to explain the relaxation in this second water phase. In one limit, this mechanism predicts a frequency-dependent relaxation rate proportional to (omega)('- 1/2). This particular dependence has previously been observed in other NMR studies on biological systems and is also observed in this study for Artemia cysts between 10 and 500 MHz. At lower Larmor frequencies, below 1 MHz, the relaxation rates of water in brine shrimp cysts are influenced by additional relexation mechanisms; translational diffusion of hydration water is one possibility.

  7. [Main relaxation techniques].

    PubMed

    Mateos Rodilla, Juana

    2002-11-01

    After having provided a detailed explanation on what relaxation consists of (see Rev. Rol Enf 2002; 25(9):582-586), the author presents a recap of the major known relaxation techniques including progressive muscular therapy, yoga stretching exercises, breathing techniques, therapeutic massages, meditation,... emphasizing the theoretical basis and practical experience as a function of each technique; each person ought to adopt those techniques which are most appropriate.

  8. A novel laser-collider used to produce monoenergetic 13.3 MeV (7)Li (d, n) neutrons.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Li, Y T; Li, D Z; Rhee, Y J; Zhang, Z; Li, F; Zhu, B J; Li, Yan F; Han, B; Liu, C; Ma, Y; Li, Yi F; Tao, M Z; Li, M H; Guo, X; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Chen, L M; Fu, C B; Zhang, J

    2016-01-01

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel "laser-collider" method was used at the Shenguang II laser facility to produce monoenergetic neutrons via (7)Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons. PMID:27250660

  9. In situ7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process

    NASA Astrophysics Data System (ADS)

    Hu, Jian Zhi; Zhao, Zhenchao; Hu, Mary Y.; Feng, Ju; Deng, Xuchu; Chen, Xilin; Xu, Wu; Liu, Jun; Zhang, Ji-Guang

    2016-02-01

    Cesium ion (Cs+) has been reported to be an effective electrolyte additive to suppress Li dendrite growth which prevents the application of lithium (Li) metal as an anode for rechargeable Li batteries. In this work, we investigated the effect of Cs+ additive on Li depositions using quantitative in situ7Li and 133Cs nuclear magnetic resonance (NMR) with planar symmetric Li cells. It's found that the addition of Cs+ can significantly enhance both the formation of well aligned Li nanorods and reversibility of the Li electrode. In situ133Cs NMR directly confirms that Cs+ migrates to Li electrode to form a positively charged electrostatic shield during the charging process. Much more electrochemical "active" Li was found in Li films deposited with Cs+ additive, while more electrochemical "dead" and thicker Li rods were identified in Li films deposited without Cs+. Combining the in situ and the previous ex-situ results, a Li deposition model has been proposed to explain these observations.

  10. A Comprehensive Theoretical Analysis of 6,7Li + 64Zn Elastic Scattering in a Wide Angular Range Around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Ibraheem, Awad A.; Aygun, M.

    2016-08-01

    In this paper, the elastic scattering angular distributions of 6,7Li on 64Zn have been investigated by using various nuclear potentials. For this, we use the phenomenological Woods-Saxon potential, the real double folding potential with the density-independent M3Y effective interaction supplemented with an imaginary part in Woods-Saxon form and the double folding potentials multiplied with a normalization factor of the real and imaginary parts via the density-independent and CDM3Y6 density-dependent versions of the M3Y effective interaction have been used. The results have been compared with each other as well as with the experimental data. It has been observed that the agreement between the theoretical results and earlier reported data is perfect. Finally, the change of the total reaction cross sections with energy has been investigated.

  11. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons

    NASA Astrophysics Data System (ADS)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Li, Y. T.; Li, D. Z.; Rhee, Y. J.; Zhang, Z.; Li, F.; Zhu, B. J.; Li, Yan F.; Han, B.; Liu, C.; Ma, Y.; Li, Yi F.; Tao, M. Z.; Li, M. H.; Guo, X.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Chen, L. M.; Fu, C. B.; Zhang, J.

    2016-06-01

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel “laser-collider” method was used at the Shenguang II laser facility to produce monoenergetic neutrons via 7Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons.

  12. On the ^7^Be^*^ and ^7^Li^*^ de-excitation lines as a possible explanation of the gamma-ray feature observed in Nova Muscae1991.

    NASA Astrophysics Data System (ADS)

    Durouchoux, P.; Viaud, P.; Wallyn, P.; Mahoney, W. A.

    1996-12-01

    We consider two different models to explain the gamma-ray feature detected on Nova Muscae 1991: a thermal electron-positron plasma and α-α reactions. In the first case, a direct fit to the data using the detailed model spectrum developed by Svensson (1983ApJ...270..300S) gives a redshifted line (z=0.048^+0.017^_-0.027_) coming from a relatively low temperature pair plasma (T~4x10^7^K). In the second case, a Monte Carlo simulation of ^7^Be^*^-^7^Li^*^ de-excitation lines following Ramaty et al. (1979ApJS...40..487R) (RKL79 hereafter), gives a best fit model with monoenergetic and isotropic α particles of ~10-25 MeV/nucleon or power-law distributions of isotropic α particles with index of ~2 to 3.

  13. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons

    PubMed Central

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Li, Y. T.; Li, D. Z.; Rhee, Y. J.; Zhang, Z.; Li, F.; Zhu, B. J.; Li, Yan F.; Han, B.; Liu, C.; Ma, Y.; Li, Yi F.; Tao, M. Z.; Li, M. H.; Guo, X.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Chen, L. M.; Fu, C. B.; Zhang, J.

    2016-01-01

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel “laser-collider” method was used at the Shenguang II laser facility to produce monoenergetic neutrons via 7Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons. PMID:27250660

  14. Radiative neutron capture by {sup 2}H, {sup 7}Li, {sup 14}C, and {sup 14}N nuclei at astrophysical energies

    SciTech Connect

    Dubovichenko, S. B.

    2013-07-15

    The possibility of describing experimental data on the total cross sections for the n{sup 2}H, n{sup 7}Li, n{sup 14}C, and n{sup 14}N radiative-capture processes within the potential cluster model involving forbidden states and their classification according to Young's tableaux is considered. It is shown that this model and the methods used here to construct potentials make it possible to describe correctly the behavior of the experimental cross sections at energies between 5 to 10 meV (5 Multiplication-Sign 10{sup -3}-10 Multiplication-Sign 10{sup -3} eV) and 1 to 15MeV.

  15. A novel laser-collider used to produce monoenergetic 13.3 MeV (7)Li (d, n) neutrons.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Li, Y T; Li, D Z; Rhee, Y J; Zhang, Z; Li, F; Zhu, B J; Li, Yan F; Han, B; Liu, C; Ma, Y; Li, Yi F; Tao, M Z; Li, M H; Guo, X; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Chen, L M; Fu, C B; Zhang, J

    2016-06-02

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel "laser-collider" method was used at the Shenguang II laser facility to produce monoenergetic neutrons via (7)Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons.

  16. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.

    PubMed

    Atanackovic, J; Matysiak, W; Witharana, S; Dubeau, J; Waker, A J

    2014-10-01

    Neutron spectrometry measurements were carried out at the McMaster Accelerator Laboratory (MAL), which is equipped with a 3-MV Van de Graaff-type accelerator. Protons were accelerated onto a thick natural lithium target inducing the (7)Li(p,n)(7)Be threshold reaction. Depending on the proton energy, slightly different poly-energetic neutron fields were produced. Neutron spectra were measured at two incident proton energies: 2.15 and 2.24 MeV, which produced poly-energetic neutrons with maximum kinetic energies of 401 and 511 keV, respectively. Measurements were performed at a distance of 1.5 m from the target in the forward direction with three different instruments: Bonner sphere spectrometer, Nested Neutron Spectrometer and ROtational proton recoil SPECtrometer.

  17. Precise measurement of hyperfine structure in the 2P{sub 1/2} state of {sup 7}Li using saturated-absorption spectroscopy

    SciTech Connect

    Singh, Alok K.; Muanzuala, Lal; Natarajan, Vasant

    2010-10-15

    We report a precise measurement of the hyperfine interval in the 2P{sub 1/2} state of {sup 7}Li. The transition from the ground state (D{sub 1} line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer [Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P{sub 1/2} state as A=46.047(3), which is discrepant from theoretical calculations by >80 kHz.

  18. Search for solar axion emission from {sup 7}Li and D(p, γ){sup 3}He nuclear decays with the CAST γ-ray calorimeter

    SciTech Connect

    Andriamonje, S.; Aune, S.; Dafni, T.; Ferrer-Ribas, E.; Autiero, D.; Barth, K.; Davenport, M.; Lella, L. Di; Belov, A.; Beltrán, B.; Carmona, J.M.; Cebrián, S.; Bräuninger, H.; Englhauser, J.; Friedrich, P.; Collar, J.I.; Eleftheriadis, C.; Fanourakis, G.; Fischer, H.; Franz, J.; Collaboration: CAST collaboration; and others

    2010-03-01

    We present the results of a search for a high-energy axion emission signal from {sup 7}Li (0.478 MeV) and D(p, γ){sup 3}He (5.5 MeV) nuclear transitions using a low-background γ-ray calorimeter during Phase I of the CAST experiment. These so-called ''hadronic axions'' could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.

  19. Lattice dynamics, phase transitions and spin relaxation in [Fe(C5H5)2] PF6

    NASA Astrophysics Data System (ADS)

    Herber, R. H.; Felner, I.; Nowik, I.

    2016-12-01

    The organometallic compound ferrocenium hexafluorophosphate, [Fe(C5H5)2] PF6, has been studied by Mössbauer spectroscopy in the past, mainly to determine the crystal structure at high temperatures. Here we present studies at 95 K to 305 K and analyze the spectra in terms of spin relaxation theory which yields accurately the hyperfine interaction parameters and the spin-spin and spin-lattice relaxation rates in this paramagnetic compound. The spectral area under the resonance curve yields the recoil free fraction and thus the mean square of the vibration amplitude . One observes a large discontinuity in the slope of versus T at ˜210 K, indicative of a phase transition. The analysis of the spectra proves that the quadrupole interaction is small but certainly negative, ½e2qQ = -0.12(2) mm/s, and causes the asymmetry observed in the spectra. The detailed analysis yields also, for the first time, the fluctuating effective magnetic hyperfine field, H eff = 180(50) kOe.

  20. High-pressure nuclear-magnetic-resonance study of carbon-13 relaxation in 2-ethylhexyl benzoate and 2-ethylhexyl cyclohexanecarboxylate

    NASA Astrophysics Data System (ADS)

    Adamy, S. T.; Grandinetti, P. J.; Masuda, Y.; Campbell, D.; Jonas, J.

    1991-03-01

    Natural abundance carbon-13 spin-lattice relaxation times and 13G-1H nuclear Overhauser enhancement (NOE) times of 2-ethyl hexylbenzoate (EHB) and 2-ethyl hexylcyclohexanecarboxylate (EHC) have been measured along isotherms of -20, 0, 20, 40, and 80 °C at pressures of 1-5000 bars using high-pressure, high-resolution NMR techniques. The ability to use pressure as an experimental variable has allowed us to study a wide range of molecular motions from extreme narrowing into the slow motional regime. In addition, the high-resolution capability even at high pressure permits the measurement of 13C and NOE for each individual carbon in the molecules studied. Relaxation in both molecules is successfully analyzed in terms of a model assuming a Cole-Davidson distribution of correlation times. The comparison of parameters used in the model demonstrates the increased flexibility of the EHC ring over the EHB ring and also shows how the presence of the flexible ring contributes to the increased over-all mobility of the EHC molecule. The analysis of molecular reorientations in terms of activation volumes also indicates that EHB motion is highly restricted at low temperature.

  1. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  2. New study of the astrophysical reaction 13C(a,n)16O via the 13C(7Li,t)17O transfer reaction

    NASA Astrophysics Data System (ADS)

    Pellegriti, Maria Grazia; Hammache, F.; Roussel, P.; Audouin, L.; Beaumel, D.; Fortier, S.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schujl, A.; Stanoiu, M.; Tatischeff, V.; Vilmay, M.

    PoS(NIC-IX)161 , , [1] , L. Gaudefroy[2] , J. Kiener[3] , A. Lefebvre-Schuhl[3] , M. Stanoiu[4] , V. The cross section of the 13 C(α,n)16 O reaction is a key ingredient for the comprehension of the s-process (slow neutron captures) in stars. This reaction is considered as the main neutron source for the s-process in low-mass Asymptotic Giant Branch (AGB) stars (1-3 solar mass) [1, 2, 3]. At the α-13 C energies of astrophysical interest (Ecm around 190 keV, corresponding to a tem- perature of 108 K) the contribution of the 17 O α-decay subthreshold resonance at 6.356 MeV to the 13 C(α,n)16 O cross section should be taken into account. The effect of this resonance is controversial after the different analyses of the Kubono et al. measurement [4] of the 6.356 MeV α-spectroscopic factor (Sα ) via the transfer reaction 13 C(6 Li,d)17 O . In order to further investigate the contribution of the 6.356 MeV resonance to the 13 C(α,n)16 O cross section, we performed a new measurement of its Sα factor via a different α-transfer reac- tion, namely the 13 C(7 Li,t)17 O reaction. The experiment was performed at the Orsay Tandem by using a 7 Li beam of 28 and 34 MeV on a 13C target. The angular distribution for the transfer dif- ferential cross section was measured by detecting the tritons at the focal plane of the SPLITPOLE spectrometer. The analysis procedure used in order to extract the yield of the 6.356 MeV level will be described. Preliminary results of the angular distribution will be shown.

  3. The influence of high-energy 7Li ions on the TL response and glow curve structure of CaSO4 : Dy

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Sahare, P. D.

    2006-07-01

    Thermoluminescence (TL) of CaSO4 : Dy phosphor, irradiated by 48 MeV 7Li ions with different fluences in the range 1 × 109-5 × 1011 ions cm-2 has been studied. The samples from the same batch were also exposed to γ-rays from a Co60 source for comparative studies. The TL glow curve of the material, irradiated with the ion beam has a simple structure with a prominent peak at around 494 K along with three small shoulders at around 424, 592 and 662 K. The TL saturation has been observed at around the fluence 1 × 1011 ions cm-2. As the fluence is increased from 1 × 109 to 5 × 1011 ions cm-2, a shift in the peak positions towards the lower temperature side, by around 7 K was observed. However, with increasing fluence, the TL glow curve structure remains invariant with no change in the relative intensities between the 494 and 424 K peaks, while in the case of γ-irradiated samples, in contrast, the intensity ratios of these peaks increase exponentially with exposures. Theoretical analysis of the glow curves of the ion beam and γ-irradiated samples was done by the glow curve deconvolution method. The efficiency of CaSO4 : Dy to 48 MeV 7Li ions has been measured relative to γ-rays of Co60 and found to be 0.81. This result, along with the observed good linearity over a large span of fluences, shows that this phosphor is quite suitable as a dosimeter for heavy charged particles.

  4. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li.

    PubMed

    Pathak, Rupak; Dey, Subrata Kumar; Sarma, Asiti; Khuda-Bukhsh, Anisur Rahman

    2007-08-15

    Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.

  5. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: A quantum theoretical approach

    NASA Astrophysics Data System (ADS)

    Zamar, R. C.; Mensio, O.

    2004-12-01

    By means of the Jeener-Broekaert nuclear magnetic resonance pulse sequence, the proton spin system of a liquid crystal can be prepared in quasiequilibrium states of high dipolar order, which relax to thermal equilibrium with the molecular environment with a characteristic time (T1D). Previous studies of the Larmor frequency and temperature dependence of T1D in thermotropic liquid crystals, that included field cycling and conventional high-field experiments, showed that the slow hydrodynamic modes dominate the behavior of T1D, even at high Larmor frequencies. This noticeable predominance of the cooperative fluctuations (known as order fluctuations of the director, OFD) could not be explained by standard models based on the spin-lattice relaxation theory in the limit of high temperature (weak order). This fact points out the necessity of investigating the role of the quantum terms neglected in the usual high temperature theory of dipolar order relaxation. In this work, we present a generalization of the proton dipolar order relaxation theory for highly correlated systems, which considers all the spins belonging to correlated domains as an open quantum system interacting with quantum bath. As starting point, we deduce a formulation of the Markovian master equation of relaxation for the statistical spin operator, valid for all temperatures, which is suitable for introducing a dipolar spin temperature in the quantum regime, without further assumptions about the form of the spin-lattice Hamiltonian. In order to reflect the slow dynamics occurring in correlated systems, we lift the usual short-correlation-time assumption by including the average over the motion of the dipolar Hamiltonian together with the Zeeman Hamiltonian into the time evolution operator. In this way, we calculate the time dependence of the spin operators in the interaction picture in a closed form, valid for high magnetic fields, bringing into play the spin-spin interactions within the microscopic time

  6. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements.

    PubMed Central

    Early, T A; Kearns, D R; Hillen, W; Wells, R D

    1980-01-01

    The 1H NMR spectrum of a 12 base pair DNA restriction fragment has been measured at 300 and 600 MHz and resonances from over 70 protons are individually resolved. Relaxation rate measurements have been carried out at 300 MHz and compared with the theoretical predictions obtained using an isotropic rigid rotor model with coordinates derived from a Dreiding model of DNA. The model gives results that are in excellent agreement with experiment for most protons when a 7 nsec rotational correlation time is used, although agreement is improved for certain base protons by using a shorter correlation time for the sugar group, or by increasing the sugar-base interproton distances. A comparison of non-selective and selective spin-lattice relaxation rates for carbon bound protons indicates that there is extensive spin diffusion even in this short DNA fragment. Examination of the spin-spin relaxation rates for the same type of proton on different base pairs reveals little sequence effect on conformation. PMID:6258152

  7. High resolution MRI relaxation measurements of water in the articular cartilage of the meniscectomized rat knee at 4.7 T.

    PubMed

    Spandonis, Yiannis; Heese, Frank P; Hall, Laurance D

    2004-09-01

    Measurements by magnetic resonance imaging (MRI) of the spin-spin (T2), spin-lattice (T1) and spin-density (M0) parameters of water protons, optimized by using the Cramér-Rao Lower Bound (CRLB) theory, were made to quantify the effect of surgically induced osteoarthritis on rat knee cartilage at 4.7 T. Partial meniscectomy was performed on the right medial condyle of four Sprague Dawley rats, leaving the left medial condyle as a control. The animals were euthanized 3 weeks after the operation; the entire limbs were removed and T2 and T1 relaxation measurements and M0 measurements of the protons of water were obtained using conventional Carr-Purcell-Meiboom-Gill (CPMG) and saturation recovery methods. M0 was normalized with respect to a water phantom, to obtain the relative spin-density M0%. Weight-bearing cartilage areas on the meniscectomized medial condyles exhibited a significant increase of T2 relaxation time (p < 0.001) and of M0% (p < 0.01) with respect to the control; T1 relaxation times did not show any statistically significant changes. CRLB-based sampling optimization offered an insight to improved measurement precision and a reduction of scanning time against conventional sampling methods methods. Quantitative MRI assessment of the meniscectomized rat knee shows that cartilage exhibits changes in T2 and M0 values 3 weeks after operation.

  8. Very short NMR relaxation times of anions in ionic liquids: New pulse sequence to eliminate the acoustic ringing

    NASA Astrophysics Data System (ADS)

    Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas

    2014-11-01

    NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2 ≈ 0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ⩾10-8 s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.

  9. A multinuclear NMR relaxation study of the interaction of divalent metal ions with L-aspartic acid.

    PubMed

    Khazaeli, S; Viola, R E

    1984-09-01

    Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagnetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through alpha-amino and beta-carboxyl groups while Mn2+ coordinates most strongly through alpha- and beta-carboxyl groups, with the possibility of a weak interaction through the amino group. An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the beta-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the alpha-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the beta-carboxyl group (L-alanine) also results in Cu2+ coordination through the alpha-carboxyl and alpha-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the alpha-amino group of L-aspartic acid with an -SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+. PMID:6491655

  10. Diffraction dissociation of {sup 7}Li and {sup 7}Be relativistic nuclei on proton targets through the {sup 3}H({sup 3}He)+{sup 4}He channels

    SciTech Connect

    Fetisov, V. N.

    2015-07-15

    For the fragmentation of {sup 7}Li and {sup 7}Be relativistic nuclei (with momenta of, respectively, P = 3 GeV/c and P = 1.6 GeV/c per nucleon) on proton targets through the {sup 3}H({sup 3}He) + {sup 4}He channels, the differential cross sections with respect to the momentum transfer Q to the fragments were calculated on the basis of the cluster version of Akhiezer–Glauber–Sitenko diffraction theory by employing the twobody cluster model for the {sup 7}Li ({sup 3}H + {sup 4}He) and {sup 7}Be ({sup 3}He + {sup 4}He) nuclei. These calculations, performed in the impulse approximation in the interaction of intranuclear clusters with the target nucleus, explained a strong suppression of the cross sections for reactions on protons at Q lower than 100 MeV/c and higher than 350 MeV/c and the observed irregularities in the behavior off the cross section for {sup 7}Li fragmentation on complex track-emulsion nuclei. Cross-section values close to their experimental counterparts were obtained upon setting the coefficient of two-body clustering in the {sup 7}Li and {sup 7}Be nuclei to k ≃ 0.7.

  11. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  12. Li(+) Local Structure in Li-Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the (6/7)Li Isotopic Substitution Technique.

    PubMed

    Saito, Soshi; Watanabe, Hikari; Hayashi, Yutaka; Matsugami, Masaru; Tsuzuki, Seiji; Seki, Shiro; Canongia Lopes, José N; Atkin, Rob; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi; Kameda, Yasuo; Umebayashi, Yasuhiro

    2016-07-21

    Equimolar mixtures of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and tetraglyme (G4: CH3O-(CH2CH2O)4-CH3) yield the solvate (or chelate) ionic liquid [Li(G4)][TFSA], which is a homogeneous transparent solution at room temperature. Solvate ionic liquids (SILs) are currently attracting increasing research interest, especially as new electrolytes for Li-sulfur batteries. Here, we performed neutron total scattering experiments with (6/7)Li isotopic substitution to reveal the Li(+) solvation/local structure in [Li(G4)][TFSA] SILs. The experimental interference function and radial distribution function around Li(+) agree well with predictions from ab initio calculations and MD simulations. The model solvation/local structure was optimized with nonlinear least-squares analysis to yield structural parameters. The refined Li(+) solvation/local structure in the [Li(G4)][TFSA] SIL shows that lithium cations are not coordinated to all five oxygen atoms of the G4 molecule (deficient five-coordination) but only to four of them (actual four-coordination). The solvate cation is thus considerably distorted, which can be ascribed to the limited phase space of the ethylene oxide chain and competition for coordination sites from the TFSA anion. PMID:27388117

  13. Ab Initio Structure Search and in Situ 7Li NMR Studies of Discharge Products in the Li–S Battery System

    PubMed Central

    2014-01-01

    The high theoretical gravimetric capacity of the Li–S battery system makes it an attractive candidate for numerous energy storage applications. In practice, cell performance is plagued by low practical capacity and poor cycling. In an effort to explore the mechanism of the discharge with the goal of better understanding performance, we examine the Li–S phase diagram using computational techniques and complement this with an in situ 7Li NMR study of the cell during discharge. Both the computational and experimental studies are consistent with the suggestion that the only solid product formed in the cell is Li2S, formed soon after cell discharge is initiated. In situ NMR spectroscopy also allows the direct observation of soluble Li+-species during cell discharge; species that are known to be highly detrimental to capacity retention. We suggest that during the first discharge plateau, S is reduced to soluble polysulfide species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in the cell configuration studied here. The NMR data suggest that the second plateau is defined by the reduction of the residual soluble species to solid product (Li2S). A ternary diagram is presented to rationalize the phases observed with NMR during the discharge pathway and provide thermodynamic underpinnings for the shape of the discharge profile as a function of cell composition. PMID:25384082

  14. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    SciTech Connect

    Wang, C.K.C.; Sutton, M.; Evans, T.M.; Laster, B.H.

    1996-12-31

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions is very effective in cell killing. The death of a cell treated with GD-BOPP were attributed to either the {sup 10}B(n,{alpha}) {sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in Gadolinium neutron capture therapy (GDNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  15. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    PubMed

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling.

  16. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    SciTech Connect

    Wang, C.K.C.; Sutton, M.; Evans, T.M.; Laster, B.H.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  17. Metals, a Plasma of the Poor Man: Electron Screening in 7Li(p,{alpha}){alpha} and 6Li(p,{alpha})3He for Different Environments

    SciTech Connect

    Rolfs, C.

    2006-05-24

    The electron screening in the 7Li(p,{alpha}){alpha} reaction has been studied at Ep = 30 to 100 keV for different environments: Li2WO4 insulator, Li metal, and PdLi alloys. For the insulator a screening potential energy of Ue = 185{+-}150 eV was observed, consistent with previous work and the atomic adiabatic limit. However, for the Li metal and the PdLi alloys we find large values of Ue = 1280{+-}60 and 3790{+-}330 eV, respectively: the values can be explained by the plasma model of Debye applied to the quasi-free metallic electrons in these samples. Similar results have been found for the 6Li(p,{alpha})3He reaction supporting the hypothesis of the isotopic independence of the electron screening effect. The data together with previous studies of d(d,p)t and 9Be(p,{alpha})6Li in metals verify the Debye model scaling Ue {proportional_to} Zt (charge number of target)

  18. Formation of ultracold {sup 7}Li{sup 85}Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    SciTech Connect

    Altaf, Adeel Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P.; Elliott, D. S.

    2015-03-21

    We report the formation of ultracold {sup 7}Li{sup 85}Rb molecules in the a{sup 3}Σ{sup +} electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm{sup −1} below the {sup 7}Li 2s {sup 2}S{sub 1/2} + {sup 85}Rb 5p {sup 2}P{sub 1/2} asymptote. In addition, we use REMPI spectroscopy to probe the a{sup 3}Σ{sup +} state and excited electronic 3{sup 3}Π and 4{sup 3}Σ{sup +} states and identify a{sup 3}Σ{sup +} (v″ = 7–13), 3{sup 3}Π (v{sub Π}′ = 0–10), and 4{sup 3}Σ{sup +} (v{sub Σ}′ = 0–5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  19. Relaxation: mapping an uncharted world.

    PubMed

    Smith, J C; Amutio, A; Anderson, J P; Aria, L A

    1996-03-01

    Nine hundred and forty practitioners of massage, abbreviated progressive muscle relaxation (PMR), yoga stretching, breathing, imagery meditation, and various combination treatments described their technique experiences on an 82-item wordlist. Factor analysis yielded 10 interpretable relaxation categories: Joyful Affects and Appraisals (Joyful), Distant, Calm, Aware, Prayerful, Accepted, Untroubled, Limp, Silent, and Mystery The relaxation response and cognitive/somatic specificity models predict Calm and Limp, which account for only 5.5% of the variance of relaxation experience. Unlike much of previous relaxation research, we found important technique differences. PMR and massage are associated with Distant and Limp; yoga stretching, breathing, and meditation with Aware; meditation with Prayerful and all techniques except PMR with Joyful. Results are consistent with cognitive-behavioral relaxation theory and have implications for relaxation theory, treatment, training, assessment, and research. We close with a revised model of relaxation that posits three global dimensions; tension-relief, passive disengagement, and passive engagement.

  20. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  1. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  2. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  3. Li+ ionic diffusion and vacancy ordering in beta-LiGa.

    PubMed

    Nakamura, Koichi; Motoki, Keisuke; Michihiro, Yoshitaka; Kanashiro, Tatsuo; Yahagi, Masahito; Hamanaka, Hiromi; Kuriyama, Kazuo

    2007-01-01

    7Li and 71Ga NMR measurements have been performed to study the Li+ ionic motion and vacancy ordering in the lithium semimetal beta-LiGa. The temperature dependence of the spin-lattice relaxation rate, T1(-1) of the 7Li nuclei in the 50 atom% Li sample shows an asymmetric broad peak around 175 K and is interpreted in terms of fast Li ionic diffusion. The activation energy of hopping is estimated as 0.11 eV using a non-Debye type relaxation model. In the temperature dependence of T1(-1) of the 7Li nuclei in 44 and 47 atom% Li samples, steep peaks are observed at 225 and 195 K, respectively. The origin of these anomalous peaks is attributed to the order-disorder transformation of Li+ vacancies. The temperature dependence of T1(-1) of the 71Ga nuclei measured above 200 K is interpreted in terms of the relaxation originating from the fluctuation of the electric field gradient at the 71Ga nuclei due to mobile Li+ ions. The activation energy for the Li+ ionic diffusion estimated from T1(-1) of the 71Ga nuclei is comparable with that obtained from T1(-1) of the 7Li nuclei.

  4. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  5. Effect of tissue fat and water content on nuclear magnetic resonance relaxation times of cardiac and skeletal muscle.

    PubMed

    Scholz, T D; Fleagle, S R; Parrish, F C; Breon, T; Skorton, D J

    1990-01-01

    Understanding tissue determinants that affect the nuclear magnetic resonance (NMR) properties of myocardium would improve noninvasive characterization of myocardial tissue. To determine if NMR relaxation times would reflect changes in tissue fat content, two experimental models were investigated. First, an idealized model using mixtures of beef skeletal muscle and beef fat was studied to investigate the effects of a wide range of tissue fat content. Second, myocardium with varying fat content from hogs raised to have varying degrees of ponderosity was analyzed. Tissue fat and water contents and spin-lattice (T1) and spin-spin (T2) relaxation times at 20 MHz were measured. The skeletal muscle/fat mixtures ranged in fat content from 35% to 95% with water content variations from 50% to 75%. Water content decreased as fat content increased. A significant inverse linear relationship was found between T1 and sample fat content (r = -0.997). Spin-spin relaxation times showed a significant positive curvilinear relationship with fat content (r2 = 0.96). In the animal experiments, 18 hogs were studied with samples obtained from both right and left ventricular (LV) free walls, with care taken to avoid epicardial fat. Myocardial fat content ranged from 3% to 25%. A significant correlation was found between LV fat content and corrected LV mass (r = 0.62), which suggested that the increase in LV mass could be explained, at least in part, by changes in myocardial fat content. Similar to the muscle/fat mixture model, a significant positive curvilinear relationship was found between myocardial T2 and tissue fat content (r2 = 0.67) for all the myocardial samples.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  7. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  8. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  9. Nuclear spin relaxation times in hydrogen-helium and methane-helium slush at 4 MHz using pulsed NMR

    NASA Astrophysics Data System (ADS)

    Hamida, J. A.

    2005-03-01

    We compare the nuclear spin-lattice and nuclear spin-spin relaxation times observed for small grains of hydrogen suspended in liquid helium (hydrogen-helium ``slush'') with that of methane-helium ``slush.'' The transport properties of these ``slush'' materials are critical to NASA's goal of realizing atomic propellant designs for future spacecraft. Atoms of active propellants are stored cryogenically in a host matrix such as hydrogen (H2) or methane (CH4) to prevent recombination while liquid helium is ideal for holding the host matrix and for easy transportation. The host matrix must therefore be stable in liquid helium. We find that for hydrogen ``slush,'' NMR rate is consistent with scattering at grain boundaries due to the large electric quadrupole moment of hydrogen; on the other hand the ``slush'' rate for methane is consistent with internal diffusion as opposed to surface scattering. We conclude that for atomic propellants, methane is a better host than hydrogen because grains of methane are better isolated from the helium bath.

  10. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  11. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.

    PubMed

    Kobayashi, Tooru; Hayashizaki, Noriyosu; Katabuchi, Tatsuya; Tanaka, Kenichi; Bengua, Gerard; Nakao, Noriaki; Kosako, Kazuaki

    2014-06-01

    The near threshold (7)Li(p,n)(7)Be neutrons generated by incident proton energy having Gaussian distribution with mean energies from 1.85 to 1.95MeV, were studied as a practical neutron source for BNCT wherein an RFQ accelerator and a thick Li-target are used. Gaussian energy distributions with the standard deviation of 0, 10, 20 and 40keV for mean proton energies from 1.85 to 1.95MeV were surveyed in 0.01MeV increments. A thick liquid Li-target whose dimensions were established in our previous experiments (i.e., 1mm-thick with 50mm width and 50mm length) was considered in this study. The suitable incident proton energy and physical dimensions of Pb layer which serves as a gamma absorber and a Polyethylene layer which is used as a BDE were surveyed by means of the concepts of TPD. Dose distribution were calculated by using MCNP5. A proton beam with mean energy of 1.92MeV and a Gaussian energy distribution with a standard deviation of 20keV at a current of 10mA was selected from the viewpoint of irradiation time and practically achievable proton current. The suitable thicknesses of Pb gamma absorber was estimated to be about 3cm. The estimated thickness of the polyethylene BDE was about 24mm for an ideal proton current of 13mA, and was 18mm for a practical proton current of 10mA.

  12. Measurement of neutron energy spectra and neutron dose rates from 7Li(p,n)7Be reaction induced on thin LiF target

    NASA Astrophysics Data System (ADS)

    Atanackovic, Jovica; Matysiak, Witold; Dubeau, Jacques; Witharana, Sampath; Waker, Anthony

    2015-02-01

    The measurements of neutron energy spectra and neutron dose rates were performed using the KN Van de Graaff accelerator, located at the McMaster University Accelerator Laboratory (MAL). Protons were accelerated on the thin lithium fluoride (LiF) target and produced mono-energetic neutrons which were measured using three different spectrometers: Bonner Sphere Spectrometer (BSS), Nested Neutron Spectrometer (NNS), and Rotational Proton Recoil Spectrometer (ROSPEC). The purpose of this work is (1) measurement and quantification of low energy accelerator neutron fields in terms of neutron fluence and dose, (2) comparison of results obtained by three different instruments, (3) comparison of measurements with Monte Carlo simulations based on theoretical neutron yields from 7Li(p,n)7Be nuclear reaction, and (4) comparison of results obtained using different neutron spectral unfolding methods. The nominal thickness of the LiF target used in the experiment was 50 μg /cm2, which corresponds to the linear thickness of 0.19 μm and results in approximately 6 keV energy loss for the proton energies used in the experiment (2.2, 2.3, 2.4 and 2.5 MeV). For each of the proton energies, neutron fluence per incident proton charge was measured and several dosimetric quantities of interest in radiation protection were derived. In addition, theoretical neutron yield calculations together with the results of Monte Carlo (MCNP) modeling of the neutron spectra are reported. Consistent neutron fluence spectra were obtained with three detectors and good agreement was observed between theoretically calculated and measured neutron fluences and derived dosimetric quantities for investigated proton energies at 2.3, 2.4 and 2.5 MeV. In the case of 2.2 MeV, some plausibly explainable discrepancies were observed.

  13. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  14. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times.

    PubMed

    Cade-Menun, B J; Liu, C W; Nunlist, R; McColl, J G

    2002-01-01

    Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be used to avoid saturation of peaks. The objective of this study was to examine the effects of extractants on delay times and peak saturation. Two samples (a forest litter and a mineral soil sample) and three extractants (0.25 M NaOH, NaOH plus Chelex (Bio-Rad Laboratories, Hercules, CA), and NaOH plus EDTA) were used to determine the differences in the concentration of P and cations solubilized by each extractant, and to measure spin-lattice (T1) relaxation times of P peaks in each extract. For both soil and litter, NaOH-Chelex extracted the lowest concentrations of P. For the litter sample, T1 values were short for all extractants due to the high Fe concentration remaining after extraction. For the soil sample, there were noticeable differences among the extractants. The NaOH-Chelex sample had less Fe and Mn remaining in solution after extraction than the other extractants, and the longest delay times used in the study, 6.4 s, were not long enough for quantitative analysis. Delay times of 1.5 to 2 s for the NaOH and NaOH-EDTA were adequate. Line broadening was highest in the NaOH extracts, which had the highest concentration of Fe. On the basis of these results, recommendations for future analyses of soil and litter samples by solution 31P NMR spectroscopy include: careful selection of an extractant; measurement of paramagnetic ions extracted with P; use of appropriate delay times and the minimum number of scans; and measurement of T1 values whenever possible.

  15. [Death in a relaxation tank].

    PubMed

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  16. Topological constraints on magnetic relaxation.

    PubMed

    Yeates, A R; Hornig, G; Wilmot-Smith, A L

    2010-08-20

    The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with a nonzero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state. PMID:20868104

  17. The effectiveness of the high-LET radiations from the boron neutron capture [10B(n,α) 7Li] reaction determined for induction of chromosome aberrations and apoptosis in lymphocytes of human blood samples.

    PubMed

    Schmid, T E; Canella, L; Kudejova, P; Wagner, F M; Röhrmoser, A; Schmid, E

    2015-03-01

    Provided that a selective accumulation of (10)B-containing compounds is introduced in tumor cells, following irradiation by thermal neutrons produces high-LET alpha-particles ((4)He) and recoiling lithium-7 ((7)Li) nuclei emitted during the capture of thermalized neutrons (0.025 eV) from (10)B. To estimate the biological effectiveness of this boron neutron capture [(10)B(n,α)(7)Li] reaction, the chromosome aberration assay and the flow cytometry apoptosis assay were applied. At the presence of the clinically used compounds BSH (sodium borocaptate) and BPA (p-boronophenylalanine), human lymphocytes were irradiated by sub-thermal neutrons. For analyzing chromosome aberrations, human lymphocytes were exposed to thermally equivalent neutron fluences of 1.82 × 10(11) cm(-2) or 7.30 × 10(11) cm(-2) (corresponding to thermal neutron doses of 0.062 and 0.248 Gy, respectively) in the presence of 0, 10, 20, and 30 ppm of BSH or BPA. Since the kerma coefficient of blood increased by 0.864 × 10(-12) Gy cm(2) per 10 ppm of (10)B, the kerma coefficients in blood increase from 0.34 × 10(-12) cm(2) (blood without BSH or BPA) up to 2.93 × 10(-12) Gy cm(2) in the presence of 30 ppm of (10)B. For the (10)B(n, α)(7)Li reaction, linear dose-response relations for dicentrics with coefficients α = 0.0546 ± 0.0081 Gy(-1) for BSH and α = 0.0654 ± 0.0075 Gy(-1) for BPA were obtained at 0.062 Gy as well as α = 0.0985 ± 0.0284 Gy(-1) for BSH and α = 0.1293 ± 0.0419 Gy(-1) for BPA at 0.248 Gy. At both doses, the corresponding (10)B(n, α)(7)Li reactions from BSH and BPA are not significantly different. A linear dose-response relation for dicentrics also was obtained for the induction of apoptosis by the (10)B(n, α)(7)Li reaction at 0.248 Gy. The linear coefficients α = 0.0249 ± 0.0119 Gy(-1) for BSH and α = 0.0334 ± 0.0064 Gy(-1) for BPA are not significantly different. Independently of the applied thermal neutron doses of

  18. Relaxation Techniques for Trauma.

    PubMed

    Scotland-Coogan, Diane; Davis, Erin

    2016-01-01

    Physiological symptoms of posttraumatic stress disorder (PTSD) manifest as increased arousal and reactivity seen as anger outburst, irritability, reckless behavior with no concern for consequences, hypervigilance, sleep disturbance, and problems with focus (American Psychiatric Association, 2013 ). In seeking the most beneficial treatment for PTSD, consideration must be given to the anxiety response. Relaxation techniques are shown to help address the physiological manifestations of prolonged stress. The techniques addressed by the authors in this article include mindfulness, deep breathing, yoga, and meditation. By utilizing these techniques traditional therapies can be complemented. In addition, those who are averse to the traditional evidence-based practices or for those who have tried traditional therapies without success; these alternative interventions may assist in lessening physiological manifestations of PTSD. Future research studies assessing the benefits of these treatment modalities are warranted to provide empirical evidence to support the efficacy of these treatments. PMID:27119722

  19. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  20. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  1. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  2. Measuring the longitudinal NMR relaxation rates of fast relaxing nuclei using a signal eliminating relaxation filter.

    PubMed

    Hansen, D F; Led, J J

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  3. NMR T{sub 1} relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF{sub 4} and propylene carbonate

    SciTech Connect

    Richardson, P. M. Voice, A. M. Ward, I. M.

    2013-12-07

    Longitudinal relaxation (T{sub 1}) measurements of {sup 19}F, {sup 7}Li, and {sup 1}H in propylene carbonate/LiBF{sub 4} liquid electrolytes are reported. Comparison of T{sub 1} values with those for the transverse relaxation time (T{sub 2}) confirm that the measurements are in the high temperature (low correlation time) limit of the T{sub 1} minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T{sub 1} from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.

  4. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.

    PubMed

    Yu, W; Yue, G; Han, X; Chen, J; Tian, B

    1998-07-01

    Accelerator-based neutron source have been considered to be practical for boron neutron capture therapy (BNCT). Based on experience with a parameters of the Brookhaven National Laboratory BMRR reactor neutron source, which has been used in treatment experiments, the future accelerator-based neutron source for BNCT should have the properties of low energy distribution (< 100 keV) and high flux (about 10(9) neutrons per second per square centimeter) in the patient zone. Using protons to bombard thick 7Li targets, generating neutrons via the 7Li(p,n)7Be reaction, is one of the optimal choices for this kind of neutron source. Neutron yield data versus incident energy are necessary in order to select the proper incident energy and for estimating how high the incident proton current should be. The required proton beam current intensity is one of the key parameters for an accelerator useful for BNCT. In the present work, neutron yields of the 7Li(p,n)7Be reaction with a thick lithium target and incident energies of 1.885 and 1.9 MeV were measured at 0 degree with respect to the incident beam direction. The results are (3.08 +/- 0.17) x 10(12) and (5.71 +/- 0.32) x 10(12) neutrons/C sr, respectively. Neutron yield angular distribution measurements at 2 MeV incident energy were also performed. The proton beams were generated by the Peking University 4.5 MV electrostatic accelerator. The emitted neutrons from these reactions have the advantages of low energy distribution and forward angular distribution, which are requirements for a BNCT neutron source. The data obtained in this work can be used as a reference to study the accelerator-based neutron sources for BNCT.

  5. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  6. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  7. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    PubMed

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects. PMID:26267901

  8. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  9. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  10. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes.

  11. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  12. Absolute frequencies of the {sup 6,7}Li 2S {sup 2}S{sub 1/2}{yields}3S {sup 2}S{sub 1/2} transitions

    SciTech Connect

    Lien, Yu-Hung; Lo, Kuan-Ju; Chen, Jun-Ren; Liu, Yi-Wei; Chen, Hsuan-Chen; Tian, Jyun-Yu; Shy, Jow-Tsong

    2011-10-15

    The measurement of the absolute frequencies of the 2S{yields}3S of atomic lithium is reported. To reduce systematic effects, we employed a frequency-comb-stabilized excitation laser, a weakly collimated atomic beam, and the cascading 2P{yields}2S 670 nm fluorescence as the signal. The transition frequencies, including two isotopes ({sup 6,7}Li), were measured to an accuracy of < 330 kHz. In comparison with the previous GSI Group experiment, the frequency of the 2S{sub 1/2}{yields}3S{sub 1/2} transition of {sup 7}Li is 815 618 181.45(9) MHz, which is improved by a factor of 2. The resultant hyperfine constants of the 3S state and the deduced difference of the nuclear charge radii {delta} from the isotope shift are in good agreement with previous results. Since a more straightforward methodology is adopted, our measurement is less model dependent and serves as an independent investigation of the reported transitions.

  13. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 MeV proton-7Li reaction or from fission of 235U

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D2O moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.

  14. Extended optical model analyses of elastic scattering and fusion cross section data for the {sup 7}Li+{sup 208}Pb system at near-Coulomb-barrier energies using a folding potential

    SciTech Connect

    So, W. Y.; Udagawa, T.; Kim, K. S.; Hong, S. W.; Kim, B. T.

    2007-08-15

    Simultaneous {chi}{sup 2} analyses previously made for elastic scattering and fusion cross section data for the {sup 6}Li+{sup 208}Pb system are extended to the {sup 7}Li+{sup 208}Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the {chi}{sup 2} analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the coupled discretized continuum channels calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the {sup 7}Li+{sup 208}Pb system with the analysis previously made for the {sup 6}Li+{sup 208}Pb system.

  15. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  16. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  17. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  18. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  19. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  20. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  1. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  2. Molecular relaxations in amorphous phenylbutazone

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Thayyil, M. Shahin; Capaccioli, S.

    2016-05-01

    Molecular dynamics of phenylbutazone in the supercooled liquid and glassy state is studied using broadband dielectric spectroscopy for test frequencies 1 kHz, 10 kHz and 100 kHz over a wide temperature range. Above the glass transition temperature Tg, the presence of the structural α-relaxation peak was observed which shifts towards lower frequencies as the temperature decreases and kinetically freezes at Tg. Besides the structural α-relaxation peak, a β-process which arises due to the localized molecular fluctuations is observed at lower temperature.

  3. Cross sections for neutron-producing reactions induced by 14. 1 MeV neutrons incident on /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B, and carbon

    SciTech Connect

    Drosg, M.; Lisowski, P.W.; Drake, D.M.; Hardekopf, R.A.; Muellner, M.

    1988-10-01

    Using the time-of-flight technique, we have measured neutron emission spectra for /sup 6/Li, /sup 7/Li, /sup 10/B, /sup 11/B and carbon at an incident neutron energy of 14.1 MeV and at 10 angles between 30/degree/ and 143/degree/. Double differential cross sections and their integrated values have been extracted and are presented in tables and graphs. The nonelastic portion of the neutron emission spectra is noticeably higher than expected which may be due to uncertainties in the input library (ENDF/B-IV) used in the Monte Carlo correction for multiple scattering. In particular, the library for /sup 11/B appears to be very unrealistic with an integrated elastic cross section which should be higher by 50%. 20 refs., 1 fig., 12 tabs.

  4. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  5. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  6. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  7. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  8. Relaxation properties in classical diamagnetism.

    PubMed

    Carati, A; Benfenati, F; Galgani, L

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  9. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  10. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  11. Electrochemical performance and 7Li NMR studies on an inverse spinel LiNi 1/3Co 1/3Mn 1/3VO 4 for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Fey, George Ting-Kuo; Muralidharan, P.; Cho, Yung-Da; Chang, Pai-Ching; Kao, Hsien-Ming

    A new inverse spinel LiNi 1/3Co 1/3Mn 1/3VO 4 cathode material was synthesized through a citric acid assisted polyethylene glycol (CA:PEG; 3:1, 3:0.5 and 3:0) polymeric method, followed by calcination at 723 K for 5 h in air. The synthesized compound was characterized by TG/DTGA, XRD, FTIR, TEM, and 7Li NMR techniques. TG/DTGA curves showed that the formation of LiNi 1/3Co 1/3Mn 1/3VO 4 occurred between 523 and 673 K and the phase pure crystalline formed at 723 K, as also confirmed by XRD analysis which showed that the crystalline phase peaks formed when heated at 723 K for 5 h in air. TEM images revealed that nanosized particles ranged ∼170-190 nm. FTIR spectra showed that all organic residues were removed and LiNi 1/3Co 1/3Mn 1/3VO 4 formed. The 7Li MAS NMR spectrum of the LiNi 1/3Co 1/3Mn 1/3VO 4 sample revealed that the paramagnetic effect is small and small side band manifolds were observed. The galvanostatic cycling study suggests that the cycle stability and capacity retention were enhanced for LiNi 1/3Co 1/3Mn 1/3VO 4 prepared with a CA:PEG molar ratio of 3:1 when it was cycled between 2.8 and 4.9 V (versus Li) at a 0.15 C rate. The electrochemical impedance behavior suggested that a passive layer was formed on the surface of the cathode materials during continuous cycling.

  12. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  13. Correlations between lithium local structure and electrochemistry of layered LiCo(1-2x)Ni(x)Mn(x)O2 oxides: 7Li MAS NMR and EPR studies.

    PubMed

    Stoyanova, Radostina; Ivanova, Svetlana; Zhecheva, Ekaterina; Samoson, Ago; Simova, Svetlana; Tzvetkova, Pavleta; Barra, Anne-Laure

    2014-02-14

    Advanced (7)Li MAS NMR technologies and high frequency EPR are combined to identify structural motifs and their relation to electrochemical properties of layered lithium-cobalt-nickel-manganese oxides LiCo1-2xNixMnxO2 (0 < x ≤ 0.5) used as cathode materials in lithium ion batteries. Structural-chemical shift regularities were established by systematic variation of the ratio of diamagnetic Co(3+) to paramagnetic Ni/Mn ions with variable valences. While EPR allows identifying the oxidation state of transition metal ions inside the layers, (7)Li NMR probes the local structure of Li with respect to transition metal ions located in two adjacent layers. For assignment of the lithium chemical shifts, we examine first magnetically diluted LiCo1-2xNixMnxO2 with x = 0.02, where paramagnetic ions are stabilized only in Mn(4+) and Ni(3+) form. Then the studies are extended towards the intermediate compositions with x = 0.10 and 0.33, containing simultaneously paramagnetic Mn(4+), Ni(3+) and Ni(2+) ions and diamagnetic Co(3+) ions. The benefit of using NMR with ultrafast spinning rates is demonstrated for the end composition LiNi0.5Mn0.5O2 having only paramagnetic Ni(2+) and Mn(2+) ions. The local structure of Li is quantified in respect of the number of Ni(2+) and Mn(4+) neighbors. It has been demonstrated that Ni(2+) and Mn(4+) are non-randomly distributed around Li and their distribution depends on the method of synthesis. The extent of local cationic order and its effect on the electrochemical properties of LiNi0.5Mn0.5O2 are discussed.

  14. Enhancement of T1 and T2 relaxation by paramagnetic silica-coated nanocrystals

    SciTech Connect

    Gerion, D; Herberg, J; Gjersing, E; Ramon, E; Maxwell, R; Gray, J W; Budinger, T F; Chen, F F

    2006-08-28

    We present the first comprehensive investigation on water-soluble nanoparticles embedded into a paramagnetic shell and their properties as an MRI contrast agent. The nanoprobes are constructed with an inorganic core embedded into an ultra-thin silica shell covalently linked to chelated Gd{sup 3+} paramagnetic ions that act as an MRI contrast agent. The chelator contains the molecule DOTA and the inorganic core contains a fluorescent CdSe/ZnS qdots in Au nanoparticles. Optical properties of the cores (fluorescence emission or plasmon position) are not affected by the neither the silica shell nor the presence of the chelated paramagnetic ions. The resulting complex is a MRI/fluorescence probe with a diameter of 8 to 15 nm. This probe is highly soluble in high ionic strength buffers at pH ranging from {approx}4 to 11. In MRI experiments at clinical field strengths of 60 MHz, the QDs probes posses spin-lattice (T{sub 1}) and a spin-spin (T{sub 2}) relaxivities of 1018.6 +/- 19.4 mM{sup -1} s{sup -1} and 2438.1 +/- 46.3 mM{sup -1} s{sup -1} respectively for probes having {approx}8 nm. This increase in relaxivity has been correlated to the number of paramagnetic ions covalently linked to the silica shell, ranging from approximately 45 to over 320. We found that each bound chelated paramagnetic species contributes by over 23 mM{sup -1} s{sup -1} to the total T{sub 1} and by over 54 mM{sup -1} s{sup -1} to the total T{sub 2} relaxivity respectively. The contrast power is modulated by the number of paramagnetic moieties linked to the silica shell and is only limited by the number of chelated paramagnetic species that can be packed on the surface. So far, the sensitivity of our probes is in the 100 nM range for 8-10 nm particles and reaches 10 nM for particles with approximately 15-18 nm in diameter. The sensitivities values in solutions are equivalent of those obtained with small superparamagnetic iron oxide nanoparticles of 7 nm diameter clustered into a 100 nm polymeric

  15. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  16. Understanding the effects of diffusion and relaxation in magnetic resonance imaging using computational modeling

    NASA Astrophysics Data System (ADS)

    Russell, Greg

    The work described in this dissertation was motivated by a desire to better understand the cellular pathology of ischemic stroke. Two of the three bodies of research presented herein address and issue directly related to the investigation of ischemic stroke through the use of diffusion weighted magnetic resonance imaging (DWMRI) methods. The first topic concerns the development of a computationally efficient finite difference method, designed to evaluate the impact of microscopic tissue properties on the formation of DWMRI signal. For the second body of work, the effect of changing the intrinsic diffusion coefficient of a restricted sample on clinical DWMRI experiments is explored. The final body of work, while motivated by the desire to understand stroke, addresses the issue of acquiring large amounts of MRI data well suited for quantitative analysis in reduced scan time. In theory, the method could be used to generate quantitative parametric maps, including those depicting information gleaned through the use of DWMRI methods. Chapter 1 provides an introduction to several topics. A description of the use of DWMRI methods in the study of ischemic stroke is covered. An introduction to the fundamental physical principles at work in MRI is also provided. In this section the means by which magnetization is created in MRI experiments, how MRI signal is induced, as well as the influence of spin-spin and spin-lattice relaxation are discussed. Attention is also given to describing how MRI measurements can be sensitized to diffusion through the use of qualitative and quantitative descriptions of the process. Finally, the reader is given a brief introduction to the use of numerical methods for solving partial differential equations. In Chapters 2, 3 and 4, three related bodies of research are presented in terms of research papers. In Chapter 2, a novel computational method is described. The method reduces the computation resources required to simulate DWMRI experiments. In

  17. Relaxation Models for Glassy Systems

    NASA Astrophysics Data System (ADS)

    Ajay

    In this thesis we explore some models based on constrained dynamics to understand the origin and ubiquity of the stretched exponential relaxation q(t) = exp(-(t/tau)^{ beta}). The first chapter has a pedagogical introduction to this field. Then we explore two models based primarily on constraints to see whether they would exhibit a stretched exponential relaxation. The first is a sliding block type of model based on a child's puzzle which has blocks and vacancies. The blocks can move only when they are nearest neighbor to a vacancy. We simulate random walk of the blocks and explore the relaxation behavior to equilibrium. We obtain three regimes of relaxation. In the short time regime (where the constraints are strong) we see a stretched exponential behavior. The intermediate time regime is best described as a simple random walk and we obtain a power law (with exponent 1/2). The long time behavior is a simple exponential, as expected. We do a Monte Carlo simulation of random walk on a bond-diluted hypercube. The site-diluted version of this model was suggested by Campbell as an explanation of the relaxation behavior seen in spin glasses. We come to it from the perspective of a system which exemplifies only constraints and nothing else (we have hard constraints with {cal H} = 0). We see that the relaxation to equilibrium is exponential for all p >=q 1/2 and below that it is a stretched exponential. In fact, the beta decreases as p decreases and attains a value of 1/4 at the percolation threshold of p = 1/n, where n is the dimensionality of the hypercube. We also do a calculation for determining the probability of connectivity for finite graphs. This demonstrates that the usual numerical results provided in graph theory, which are in the limit of infinite graphs, are not accurate for finite graphs. The final chapter has a conclusion. We also propose a model based on random graphs and percolation for studying sliding block kind of models.

  18. Restricting query relaxation through user constraints

    SciTech Connect

    Gaasterland, T.

    1993-07-01

    This paper describes techniques to restrict and to heuristically control relaxation of deductive database queries. The process of query relaxation provides a user with a means to automatically identify new queries that are related to the user`s original query. However, for large databases, many relaxations may be possible. The methods to control and restrict the relaxation process introduced in this paper focus the relaxation process and make it more efficient. User restrictions over the data base domain may be expressed as user constraints. This paper describes how user constraints can restrict relaxed queries. Also, a set of heuristics based on cooperative answering techniques are presented for controlling the relaxation process. Finally, the interaction of the methods for relaxing queries, processing user constraints, and applying the heuristic rules is described.

  19. Plasmon-mediated energy relaxation in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-01

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  20. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  1. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  2. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  3. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  4. Localized relaxation in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Kirimoto, K.; Nobugai, K.; Wigmore, J. K.; Miyasato, T.

    2002-05-01

    Stabilized zirconia is well known for long-range transport of oxygen ions which is caused by diffusion relaxation of oxygen vacancies. We used torsional vibrations to measure the temperature dependence of internal friction in yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y 2O 3 and calcia-stabilized zirconia (CSZ) doped with 12 mol% CaO. In the temperature range 300- 700 K, the internal friction peak exhibits anisotropy, different in YSZ from CSZ, which we attribute to localized relaxation of oxygen vacancies. The results imply that some oxygen vacancies are bound within the local structure, a greater number in CSZ than in YSZ, and suggest that the defect symmetry of local structure depends on the type of dopant ion.

  5. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  6. Dynamic Relaxation of Financial Indices

    NASA Astrophysics Data System (ADS)

    Shen, J.; Zheng, B.; Lin, H.; Qiu, T.

    The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.

  7. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  8. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  9. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  10. Effects of Various Forms of Relaxation Training on Physiological and Self-Report Measures of Relaxation

    ERIC Educational Resources Information Center

    Reinking, Richard H.; Kohl, Marilyn L.

    1975-01-01

    Examines relative effectiveness of four types of relaxation training including Jacobson-Wolpe and electromyograph (EMG) feedback. Dependent measures are EMG recordings and self-report measures of relaxation. All groups reported increased relaxation, but EMG groups were superior in EMG measures of speed of learning and depth of relaxation.…

  11. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  12. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  13. Distinguishing spin relaxation mechanisms in organic semiconductors.

    PubMed

    Harmon, N J; Flatté, M E

    2013-04-26

    A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752

  14. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  15. Biaxial stress relaxation in glassy polymers - Polymethylmethacrylate.

    NASA Technical Reports Server (NTRS)

    Sternstein, S. S.; Ho, T. C.

    1972-01-01

    Biaxial stress relaxation studies were performed on glassy polymethylmethacrylate in combined torsion-tension strain fields using a specially designed apparatus with exceptionally high stiffness and low cross talk between the torsional and tensile load measuring transducers. It was found that at low strain levels uniaxial tension relaxation is slower than pure torsion relaxation; tensile-component relaxation rates are unaffected by the level of torsional strain; torsional-component relaxation rates decrease as tensile strain is increased; uniaxial tension relaxation rates approach the pure torsion rates at higher strains (about 2%). A phenomenological treatment is presented which shows that relaxation rates can be coupled to the strain fields in which they are observed and yet be consistent with the concepts of linear viscoelasticity and the Boltzmann superposition integral.

  16. In-situ imaging of charge carriers in an electrochemical cell.

    SciTech Connect

    Gerald, R. E. II

    1998-01-30

    A toroid cavity nuclear magnetic resonance (NMR) detector capable of quantitatively recording radial concentration profiles, diffusion constants, displacements of charge carriers, and radial profiles of spin-lattice relaxation time constants was employed to investigate the charge/discharge cycle of a solid-state electrochemical cell. One-dimensional radial concentration profiles (1D-images) of ions solvated in a polyethylene oxide matrix were recorded by {sup 19}F and {sup 7}Li NMR for several cells. A sequence of {sup 19}F NMR images, recorded at different stages of cell polarization, revealed the evolution of a region of the polymer depleted of charge carriers. From these images it is possible to extract the transference number for the Li{sup +} ion. Spatially localized diffusion coefficients and spin-lattice relaxation time constants can be measured simultaneously for the ions in the polymer electrolyte by a spin-labeling method that employs the radial B{sub 1}-field gradient of the toroid cavity. A spatial resolution of 7 {micro}m near the working electrode was achieved with a gradient strength of 800 gauss/cm. With this apparatus, it is also possible to investigate novel intercalation anode materials for lithium ion storage. These materials are coated onto the working electrode in a thin film. The penetration depth of lithium cations in these films can be imaged at different times in the charge/discharge cycle of the battery.

  17. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    SciTech Connect

    Lonski, P; Kron, T; Franich, R; Keehan, S; Siva, S; Taylor, M

    2014-06-15

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. The variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU at 18 MV.

  18. Relaxation damping in oscillating contacts.

    PubMed

    Popov, M; Popov, V L; Pohrt, R

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  19. Violent relaxation of ellipsoidal clouds

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Sylos Labini, Francesco

    2015-04-01

    An isolated, initially cold and ellipsoidal cloud of self-gravitating particles represents a relatively simple system in which to study the effects of deviations from spherical symmetry in the mechanism of violent relaxation. Initial deviations from spherical symmetry are shown to play a dynamical role that is equivalent to that of density fluctuations in the case of an initially spherical cloud. Indeed, these deviations control the amount of particle-energy change and thus determine the properties of the final energy distribution, particularly the appearance of two species of particles: bound and free. Ejection of mass and energy from the system, together with the formation of a density profile decaying as ρ(r) ˜ r-4 and a Keplerian radial velocity dispersion profile, are prominent features similar to those observed after the violent relaxation of spherical clouds. In addition, we find that ejected particles are characterized by highly non-spherical shapes, the features of which can be traced in the initial deviations from spherical symmetry that are amplified during the dynamical evolution: particles can indeed form anisotropic configurations, like bars and/or discs, even though the initial cloud was very close to spherical.

  20. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  1. Production of 93mMo through natY(7Li, 3n) reaction and subsequent studies on separation and extraction behaviour of no-carrier-added 93mMo from an yttrium target.

    PubMed

    Nayak, Dalia; Lahiri, Susanta

    2008-12-01

    The present work reports heavy-ion-assisted production of (93m)Mo from a natural yttrium target using the (89)Y((7)Li, 3n)(93m)Mo reaction. Three different methodologies based on liquid-liquid extraction (LLX), aqueous biphasic extraction and precipitation, have been developed for separation and extraction of no-carrier-added (nca) (93m)Mo (T(1/2)=6.85h) radionuclide from bulk yttrium target. Complete separation of nca Mo from the target Y has been achieved by employing LLX technique with 0.1M trioctylamine (TOA) dissolved in cyclohexane and 8M HCl. Quantitative separation of (93m)Mo from the yttrium target is also possible by precipitating bulk yttrium with 1M oxalic acid. However, for this particular case, studies have shown that the aqueous biphasic extraction is not the method of choice for separation of nca Mo. Nevertheless, the extraction pattern is important in the context of simulation experiments for studying the behaviour of (106)Sg. Similarity or dissimilarity between the extraction patterns in various analytical systems will be helpful to decisively place Sg in the right position in the periodic table.

  2. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-C x H(2 x+1)OSO3Li ( x = 12, 14, 16, 18, and 20)

    NASA Astrophysics Data System (ADS)

    Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi

    2015-04-01

    Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.

  3. Indirect study of the {sup 13}C({alpha},n){sup 16}O reaction via the {sup 13}C({sup 7}Li,t){sup 17}O transfer reaction

    SciTech Connect

    Pellegriti, M. G.; Hammache, F.; Roussel, P.; Audouin, L.; Beaumel, D.; Fortier, S.; Vilmay, M.; Descouvemont, P.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.; Stanoiu, M.

    2008-04-15

    The {sup 13}C({alpha},n){sup 16}O reaction is considered the main neutron source for the s process in low mass asymptotic giant branch (AGB) stars. In the Gamow peak, the cross section sensitively depends on the 1/2{sup +} subthreshold state of {sup 17}O (E{sub x}=6.356 MeV). In this work, we determined the astrophysical S factor through an evaluation of the {alpha} spectroscopic factor and the corresponding asymptotic normalization factor (ANC) of the 6.356 MeV state using the transfer reaction {sup 13}C({sup 7}Li,t){sup 17}O at two different incident energies. Our result confirms that the contribution of the 1/2{sup +} state is dominant at astrophysical energies. Our reaction rate at T=0.09 GK is slightly lower than the value adopted in the Nuclear Astrophysics Compilation of REaction rates (NACRE), but two times larger than the one obtained in a recent ANC measurement.

  4. Phase Transition and Spin Dynamics of the LiVFPO4 Insertion Electrode with the S = 1 Linear Chain and the Development of F-O Mixed System

    NASA Astrophysics Data System (ADS)

    Onoda, Masashige; Ishibashi, Takehiko

    2015-04-01

    The phase transition and spin dynamics of LiVFPO4 insertion electrode with the S = 1 linear chain of V-F-V are explored through measurements of x-ray diffraction, magnetization, and nuclear magnetic resonance. LiVFPO4 exhibits the one-dimensional paramagnetism above the antiferromagnetic transition temperature TN = 10 K, at around which the 7Li spin-lattice relaxation rate shows the critical behavior of spin fluctuations, while at the lower temperature, it has the exponential dependence attributed to the ground singlet state with an energy gap. For LiVF1-δOδPO4 with 0 < δ < 1 isolated by the full structure determination, the mixed valent V ions may have the one-dimensional property and a significant crystal field effect accompanied with the lowering of the flat voltage in the Li ion batteries.

  5. Conformational stability and thermal pathways of relaxation in triclosan (antibacterial/excipient/contaminant) in solid-state: combined spectroscopic ((1)H NMR) and computational (periodic DFT) study.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Tomczak, Marzena Agnieszka; Medycki, Wojciech

    2015-05-21

    The mechanism of molecular dynamics in the antibacterial/antifungal agent, triclosan (5-chloro-2-(2',4'-dichlorophenoxy)-phenol), in solid state was studied by (1)H NMR spectroscopy and periodic density functional theory (DFT) calculations. Temperature dependencies of the proton spin-lattice relaxation time (T1) in the ranges 86-293 and 90-250 K (at 15 and 24.667 MHz, respectively) and the second moment (M2) of the (1)H NMR resonant line in the range 103-300 K were measured. Two minima in the temperature dependence of T1 revealed a classical Arrhenius governed activation processes. The low temperature shallow minimum T1(T) of 71 s at 115 K, 15 MHz, which shifts with frequency, was assigned to classical hindered jumps of hydroxyl group around OC axis and with respect to a 5-chloro-2-phenol ring. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 9.68 kJ/mol. The pointed high temperature minimum T1(T) of 59 s at 190 K, 15 MHz, which also shifts with frequency, was assigned to the small angle librations by Θlib= ± 9° between two positions of equilibrium differing in energy by 7.42 kJ/mol. The activation energy of this motion estimated on the basis of the fit of the theoretical model to the experimental points is 31.1 kJ/mol. Both motions result in a negligible reduction in the (1)H NMR line second moment, thus the second moment delivers an irrelevant description of the molecular motions in triclosan.

  6. A numerical study of vector resonant relaxation

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Tremaine, Scott

    2015-04-01

    Stars bound to a supermassive black hole interact gravitationally. Persistent torques acting between stellar orbits lead to a rapid resonant relaxation of the orbital orientation vectors (`vector' resonant relaxation) and slower relaxation of the eccentricities (`scalar' resonant relaxation), both at rates much faster than two-body or non-resonant relaxation. We describe a new parallel symplectic integrator, N-RING, which follows the dynamical evolution of a cluster of N stars through vector resonant relaxation, by averaging the pairwise interactions over the orbital period and periapsis precession time-scale. We use N-RING to follow the evolution of clusters containing over 104 stars for tens of relaxation times. Among other results, we find that the evolution is dominated by torques among stars with radially overlapping orbits, and that resonant relaxation can be modelled as a random walk of the orbit normals on the sphere, with angular step size ranging from ˜0.5-1 rad. The relaxation rate in a cluster with a fixed number of stars is proportional to the root mean square (rms) mass of the stars. The rms torque generated by the cluster stars is reduced below the torque between Kepler orbits due to apsidal precession and declines weakly with the eccentricity of the perturbed orbit. However, since the angular momentum of an orbit also decreases with eccentricity, the relaxation rate is approximately eccentricity-independent for e ≲ 0.7 and grows rapidly with eccentricity for e ≳ 0.8. We quantify the relaxation using the autocorrelation function of the spherical multipole moments; this decays exponentially and the e-folding time may be identified with the vector resonant relaxation time-scale.

  7. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  8. Temperature relaxation in dense plasma mixtures

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  9. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  10. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  11. Isometric squeeze relaxation (progressive relaxation) vs meditation: absorption and focusing as predictors of state effects.

    PubMed

    Weinstein, M; Smith, J C

    1992-12-01

    We taught isometric squeeze relaxation (a variant of progressive relaxation) or meditation to 52 anxious subjects (16 men, 36 women). For meditation, pretreatment high absorption correlated with reductions in state cognitive and somatic anxiety as well as increments in state focusing. For isometric squeeze relaxation, pretreatment low state focusing correlated with reductions in somatic anxiety and increments in focusing. Results suggest that isometric squeeze relaxation (and progressive relaxation) may be more appropriate for individuals who have difficulty focusing, and meditation for those who already possess well-developed relaxation skills at a trait level. The results appear more consistent with Smith's cognitive-behavioral model of relaxation than with Benson's relaxation response or Davidson and Schwartz's specific effects models.

  12. Zen meditation and ABC relaxation theory: an exploration of relaxation states, beliefs, dispositions, and motivations.

    PubMed

    Gillani, N B; Smith, J C

    2001-06-01

    This study is an attempt to rigorously map the psychological effects of Zen meditation among experienced practitioners. Fifty-nine Zen meditators with at least six years of experience practiced an hour of traditional Zazen seated meditation. A control group of 24 college students spent 60 min silently reading popular magazines. Before relaxation, all participants took the Smith Relaxation States Inventory (SRSI), the Smith Relaxation Dispositions/Motivations Inventory (SRD/MI), and the Smith Relaxation Beliefs Inventory (SRBI). After practice, participants again took the SRSI. Analyses revealed that meditators are less likely to believe in God, more likely to believe in Inner Wisdom, and more likely to display the relaxation dispositions Mental Quiet, Mental Relaxation, and Timeless/Boundless/Infinite. Pre- and postsession analyses revealed that meditators showed greater increments in the relaxation states Mental Quiet, Love and Thankfulness, and Prayerfulness, as well as reduced Worry. Results support Smith's ABC Relaxation Theory.

  13. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  14. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  15. A Comparitive Study of the Experimental Features of the Bose-Einstein Condensates of 7Li, 23Na, 41K, 85Rb, 87Rb and 133Cs via a Linearly Perturbed Harmonic Oscillator Potential

    NASA Astrophysics Data System (ADS)

    Malik, G. P.; Varma, V. S.

    2013-05-01

    We show that the observed features of the above-named Bose-Einstein condensates can be understood via an effective confining potential of the form of: $V(r, T) = (1)/(2)mω 2[r^2+2(√ {(kT)/(mω ^2)})br ], \\quad (r = \\vertr \\vert) where T denotes the temperature, m the mass of an atom of the trapped gas, ω the geometric mean of the three frequencies used for confinement, k the Boltzmann constant and b a dimensionless perturbation parameter. Such an exercise is undertaken because Tcs calculated via earlier treatments based solely on an r2-potential lead to a mismatch with the experimental values. We fix b by substituting the density of states corresponding to V(r, T) into the equation for the number of excited atoms N} exc(T) and appealing to the experimental data at T = Tc. The values of b thus found are: 1.3426 (7Li), 1.8420 (23Na), 0.4998 (41K), 0.3486 (85Rb), 1.5332 (87Rb) and 1.2430 (133Cs). While these are used to calculate Nexc(T) for each of the condensates at T = Tc/2 and Tc/10, we also report on: (a) the variation of b for each condensate for some selected values of the pair (N} exc, Tc) and (b) the possibility of realizing the state (Nexc, pTc; p (a number) ≫1) for all of these condensates with a unique value of b, even though the parameter-sets {m, ω, Nexc, Tc} characterizing them differ widely. Attention is drawn to diverse fields where T-dependent Hamiltonians have found useful application.

  16. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-01

    The characteristics of moderator assembly dimension are investigated for the usage of 7Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D2O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors. PMID:16872076

  17. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using {sup 7}Li(p,n) neutrons at proton energy of 2.5 MeV

    SciTech Connect

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-15

    The characteristics of moderator assembly dimension are investigated for the usage of {sup 7}Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D{sub 2}O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.

  18. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  19. Contributions of excited {sup 6}Li and {sup 7}Li nuclei to the production of {sup 4}He+{sup 2}H and {sup 4}He+{sup 3}H systems in {sup 16}O{sub p} collisions at a momentum of 3.25 GeV/c per nucleon

    SciTech Connect

    Olimov, K.; Glagolev, V. V.; Gulamov, K. G.; Lutpullaev, S. L.; Kurbanov, A. R.; Olimov, A. K.; Petrov, V. I.; Yuldashev, A. A.

    2013-07-15

    New experimental data on the cross sections for the yield of excited {sup 6}Li* and {sup 7}Li* nuclei and on their contributions to the production of {sup 4}He + {sup 2}H and {sup 4}He+{sup 3}H light dinuclear systems in {sup 16}O{sub p} collisions at a momentumof 3.25 A GeV/c per nucleon are presented.

  20. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  1. Measurement of Young's relaxation modulus using nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Lu, Hongbing

    2006-09-01

    In a previous paper (Lu et al., Mechanics of Time-Dependent Materials, 7, 2003, 189 207), we described methods to measure the creep compliance of polymers using Berkovich and spherical indenters by nanoindentation. However, the relaxation modulus is often needed in stress and deformation analysis. It has been well known that the interconversion between creep compliance and relaxation function presents an ill-posed problem, so that converting the creep compliance function to the relaxation function cannot always give accurate results, especially considering that the creep data at short times in nanoindentation are often not reliable, and the overall nanoindentation time is short, typically a few hundred seconds. In this paper, we present methods to measure Young’s relaxation functions directly using nanoindentation. A constant-rate displacement loading history is usually used in nanoindentations. Using viscoelastic contact mechanics, Young’s relaxation modulus is extracted using nanoindentation load-displacement data. Three bulk polymers, Polymethyl Methacrylate (PMMA), Polycarbonate (PC) and Polyurethane (PU), are used in this study. The Young’s relaxation functions measured from the nanoindentation are compared with data measured from conventional tensile and shear tests to evaluate the precision of the methods. A reasonably good agreement has been reached for all these materials for indentation depth higher than a certain value, providing reassurance for these methods for measuring relaxation functions.

  2. A physiological and subjective evaluation of meditation, hypnosis, and relaxation.

    PubMed

    Morse, D R; Martin, J S; Furst, M L; Dubin, L L

    1977-01-01

    Ss were monitored for respiratory rate, pulse rate, blood pressure, skin resistance, EEG activity, and muscle activity. They were monitored during the alert state, meditation (TM or simple word type), hypnosis (relaxation and task types), and relaxation. Ss gave a verbal comparative evaluation of each state. The results showed significantly better relaxation responses for the relaxation states (relaxation, relaxation-hypnosis, meditation) than for the alert state. There were no significant differences between the relaxation states except for the measure "muscle activity" in which meditation was significantly better than the other relaxation states. Overall, there were significant differences between task-hypnosis and relaxation-hypnosis. No significant differences were found between TM and simple word meditation. For the subjective measures, relaxation-hypnosis and meditation were significantly better than relaxation, but no significant differences were found between meditation and relaxation-hypnosis.

  3. Relaxation of vibrational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Frohn, A.

    Shock tubes were used to measure relaxation times of the degrees of freedom in inelastic collisions of gas molecules. Design and construction of the experimental setup are described. For relaxation time measurements of vibrational degrees of freedom an initial pressure between 0.1 and 1 mbar is found to be optimal, and for dissociation between 1 and 10 mbar. The density gradients in the shock tube flow are measured with four differential laser interferometers and plotted with a transient recorder. A FORTRAN program was developed to determine the relaxation times. This measurement technique does not in general allow the degrees of freedom to be investigated separately.

  4. Relaxation time in disordered molecular systems

    SciTech Connect

    Rocha, Rodrigo P.; Freire, José A.

    2015-05-28

    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  5. Collisionless Relaxation in Non-Neutral Plasmas

    SciTech Connect

    Levin, Yan; Pakter, Renato; Teles, Tarcisio N.

    2008-02-01

    A theoretical framework is presented which allows us to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.

  6. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  7. Requirements for muscle relaxation in Friedreich's ataxia.

    PubMed

    Mouloudi, H; Katsanoulas, C; Frantzeskos, G

    1998-02-01

    Friedreich's ataxia is an inherited disorder of the nervous system, requiring special care during anaesthesia, because of increased sensitivity to muscle relaxants. We report a case of Friedreich's ataxia in a 31-year-old woman, anaesthetised on two occasions, for tendinoplasty and pes cavus repair. Atracurium was used for neuromuscular blockade and monitored by a train-of-four twitch technique. The patient's response was normal. She returned to adequate spontaneous breathing within 20 min of the last dose of the muscle relaxant without need for anticholinesterase administration. When neuromuscular function is monitored, normal doses of muscle relaxant can safely be used in these patients.

  8. Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Büchner, Bernd; Grafe, Hans-Joachim

    2014-05-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature (T) and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  9. Protein dynamics from nuclear magnetic relaxation.

    PubMed

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  10. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described. PMID:2647960

  11. METHOD OF HYPERBOLIC SYSTEMS WITH STIFF RELAXATION

    SciTech Connect

    R. B. LOWRIE; J. E. MOREL

    2001-03-01

    Three methods are analyzed for solving a linear hyperbolic system that contains stiff relaxation. We show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the relaxation time is unresolved (asymptotically preserving--AP). A recently developed central method is shown to be non-AP. To discriminate between AP and non-AP methods, we argue that one must study problems that are diffusion dominated.

  12. Relaxation techniques for children and young people.

    PubMed

    Hobbie, C

    1989-01-01

    The relaxation response, relaxation with mental imagery/self-hypnosis, and centering are techniques that can be used by the nurse practitioner in a variety of clinical situations to help children and young people manage stress. These approaches also can be used to treat certain common pediatric problems, such as headaches, enuresis, acute and chronic pain, and habit disorders. The techniques and their appropriate use are described.

  13. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-01

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  14. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  15. Applied Relaxation as Training in Self-Control

    ERIC Educational Resources Information Center

    Chang-Liang, Rosa; Denney, Douglas R.

    1976-01-01

    Text-anxious students who were high or low in general anxiety were treated with applied relaxation, systematic desensitization, relaxation only, or no treatment (control). The results indicated that applied relaxation was more effective in reducing anxiety than relaxation only and no treatment on measures of general anxiety and measures of test…

  16. Carrier relaxation dynamics in heavy fermion compounds

    SciTech Connect

    Demsar, J.; Tracy, L. A.; Averitt, R. D.; Trugman, S. A.; Sarrao, John L.,; Taylor, Antoinette J.,

    2002-01-01

    The first femtosecond carrier relaxation dynamics studies in heavy fermion compounds are presented. The carrier relaxation time shows a dramatic hundred-fold increase below the Kondo temperature revealing a dramatic sensitivity to the electronic density of states near the Fermi level. Femtosecond time-resolved optical spectroscopy is an excellent experimental alternative to conventional spectroscopic methods that probe the low energy electronic structure in strongly correlated electron systems. In particular, it has been shown that carrier relaxation dynamics are very sensitive to changes in the low energy density of states (e.g. associated with the formation of a low energy gap or pseudogap) providing new insights into the low energy electronic structure in these materials. In this report we present the first studies of carrier relaxation dynamics in heavy fermion (HF) systems by means of femtosecond time-resolved optical spectroscopy. Our results show that the carrier relaxation dynamics, below the Kondo temperature (T{sub K}), are extremely sensitive to the low energy density of states (DOS) near the Ferini level to which localized f-moments contribute. Specifically, we have performed measurements of the photoinduced reflectivity {Delta}R/R dynamics as a function of temperature and excitation intensity on the series of HF compounds YbXCu{sub 4} (X = Ag, Cd, In) in comparison to their non-magnetic counterparts LuXCu{sub 4}.

  17. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  18. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  19. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  20. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  1. Convex relaxations for gas expansion planning

    SciTech Connect

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution

  2. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  3. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  4. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  5. A general relaxation theory of simple liquids

    NASA Technical Reports Server (NTRS)

    Merilo, M.; Morgan, E. J.

    1973-01-01

    A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.

  6. Stratospheric Relaxation in IMPACT's Radiation Code

    SciTech Connect

    Edis, T; Grant, K; Cameron-Smith, P

    2006-11-13

    While Impact incorporates diagnostic radiation routines from our work in previous years, it has not previously included the stratospheric relaxation required for forcing calculations. We have now implemented the necessary changes for stratospheric relaxation, tested its stability, and compared the results with stratosphere temperatures obtained from CAM3 met data. The relaxation results in stable temperature profiles in the stratosphere, which is encouraging for use in forcing calculations. It does, however, produce a cooling bias when compared to CAM3, which appears to be due to differences in radiation calculations rather than the interactive treatment of ozone. The cause of this bias is unclear as yet, but seems to be systematic and hence cancels out when differences are taken relative to a control simulation.

  7. Substrate stress relaxation regulates cell spreading

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J.

    2015-02-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECMs are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behaviour through computational modelling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM.

  8. Swelling and Stress Relaxation in Portland Brownstone

    NASA Astrophysics Data System (ADS)

    Jimenez, I.; Scherer, G.

    2003-04-01

    Portland Brownstone (PB) is an arkose sandstone extensively used in the northeast-ern USA during the nineteenth century. This reddish-brown stone contains a fraction of swelling clays that are thought to contribute to its degradation upon cycles of wet-ting and drying. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is limited by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influ-ence of surfactants on the magnitude of swelling and the rate of the stress relaxation of PB. The implications of our findings for the understanding of damage due to swelling of clays are discussed.

  9. Substrate stress relaxation regulates cell spreading

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Darnell, Max; Klumpers, Darinka; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Mooney, David J

    2015-01-01

    Studies of cellular mechanotransduction have converged upon the idea that cells sense extracellular matrix (ECM) elasticity by gauging resistance to the traction forces they exert on the ECM. However, these studies typically utilize purely elastic materials as substrates, whereas physiological ECM are viscoelastic, and exhibit stress relaxation, so that cellular traction forces exerted by cells remodel the ECM. Here we investigate the influence of ECM stress relaxation on cell behavior through computational modeling and cellular experiments. Surprisingly, both our computational model and experiments find that spreading for cells cultured on soft substrates that exhibit stress relaxation is greater than cells spreading on elastic substrates of the same modulus, but similar to that of cells spreading on stiffer elastic substrates. These findings challenge the current view of how cells sense and respond to the ECM. PMID:25695512

  10. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  11. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  12. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  13. Magnetic Relaxation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Fornberg, Bengt; Flyer, Natasha; Low, B. C.

    2009-01-01

    This is a mathematical study of the long-lived hydromagnetic structures produced in the tenuous solar corona by the turbulent, resistive relaxation of a magnetic field under the condition of extremely high electrical conductivity. The relaxation theory of Taylor, originally developed for a laboratory device, is extended to treat the open atmosphere where the relaxing field must interact with its surrounding fields. A boundary-value problem is posed for a two-dimensional model that idealizes the corona as the half Cartesian plane filled with a potential field (1) that is anchored to a rigid, perfectly conducting base and (2) that embeds a force-free magnetic field in the form of a flux-rope oriented horizontally and perpendicular to the Cartesian plane. The flux-rope has a free boundary, which is an unknown in the construction of a solution for this atmosphere. Pairs of magnetostatic solutions are constructed to represent the initial and final states of a flux-rope relaxation that conserve both the total magnetic helicity and total axial magnetic flux, using a numerical iterative method specially developed for this study. The collection of numerical solutions found provides an insight into the interplay among several hydromagnetic properties in the formation of long-lived coronal structures. In particular, the study shows (1) that the outward spread of reconnection between a relaxing flux-rope and its external field may be arrested at some outer magnetic flux surface within which a constant-α force-free field emerges as the minimum-energy state and (2) that this outward spread is complicated by an inward, partial collapse of the relaxing flux-rope produced by a loss of internal magnetic pressure.

  14. Molecular Relaxations in Constrained Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.

    Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide

  15. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  16. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  17. Magnetic Relaxation Detector for Microbead Labels

    PubMed Central

    Liu, Paul Peng; Skucha, Karl; Duan, Yida; Megens, Mischa; Kim, Jungkyu; Izyumin, Igor I.; Gambini, Simone; Boser, Bernhard

    2014-01-01

    A compact and robust magnetic label detector for biomedical assays is implemented in 0.18-μm CMOS. Detection relies on the magnetic relaxation signature of a microbead label for improved tolerance to environmental variations and relaxed dynamic range requirement, eliminating the need for baseline calibration and reference sensors. The device includes embedded electromagnets to eliminate external magnets and reduce power dissipation. Correlated double sampling combined with offset servo loops and magnetic field modulation, suppresses the detector offset to sub-μT. Single 4.5-μm magnetic beads are detected in 16 ms with a probability of error <0.1%. PMID:25308988

  18. Nonlocal and collective relaxation in stellar systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  19. Centrally acting muscle relaxants in tetanus

    PubMed Central

    Webster, R. A.

    1961-01-01

    The anti-tetanus activity of a number of phenothiazine derivatives and other centrally acting muscle relaxants, such as mephenesin, dicyclopropyl ketoxime, 2-amino-6-methylbenzothiazole and meprobamate, has been determined in rabbits with experimental local tetanus. Structure-activity relationships were obtained for the phenothiazine derivatives and their anti-tetanus activity correlated with other central and peripheral properties. Both dicyclopropyl ketoxime and 2-amino-6-methyl-benzothiazole were twice as active as mephenesin. Meprobamate does not appear to be primarily a muscle relaxant of the mephenesin type. PMID:14005498

  20. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  1. Mechanics of myocardial relaxation: application of a model to isometric and isotonic relaxation of rat myocardium.

    PubMed

    Wiegner, A W; Bing, O H

    1982-01-01

    Using a simple model for cardiac muscle relaxation which takes into account muscle length, activation, elasticity and a rate constant for the decay of activation, we are able to use easily measured mechanical parameters to assess the state of the cardiac relaxing system. In isolated trabeculae carneae from the left ventricle of the rat, performing physiologically sequenced contractions, observations have been made (1) at varying preloads and afterloads, (2) with changes in temperature from 23 degrees to 33 degrees C, (3) with changes in bath Ca2+ concentration and (4) with the addition of isoproterenol. During isometric relaxation, the slope (SIM) of the curve relating maximum rate of decline of force (-dF/dtmax) to end-systolic muscle length is load-independent and sensitive to interventions which directly affect the cardiac relaxing system (e.g., temperature, isoproterenol); it is only slightly sensitive to bath calcium concentration. During isotonic relaxation, the maximum velocity of lengthening (+dL/dtmax) is in negative linear proportion to muscle shortening at a given preload, the slope (SIT) of the curve relating +dL/dtmax to end-systolic length is sensitive to the interventions which directly affect the cardiac relaxing system but insensitive to calcium-mediated inotropic interventions. The model provides a theoretical basis for the use of SIM and SIT as measures of the relaxation process. PMID:7161285

  2. A comparison of somatic relaxation and EEG activity in classical progressive relaxation and transcendental meditation.

    PubMed

    Warrenburg, S; Pagano, R R; Woods, M; Hlastala, M

    1980-03-01

    Oxygen consumption, electroencephalogram (EEG), and four other measures of somatic relaxation were monitored in groups of long-term practitioners of classical Jacobson's progressive relaxation (PR) and Transcendental Meditation (TM) and also in a group of novice PR trainees. All subjects (1) practiced relaxation or meditation (treatment), (2) sat with eyes closed (EC control), and (3) read from a travel book during two identical sessions on different days. EEG findings indicated that all three groups remained primarily awake during treatment and EC control and that several subjects in each group displayed rare theta (5-7 Hz) waveforms. All three groups demonstrated similar decrements in somatic activity during treatment and EC control which were generally of small magnitude (e. g., 2-5% in oxygen consumption). These results supported the "relaxation response" model for state changes in somatic relaxation for techniques practiced under low levels of stress but not the claim that the relaxation response produced a hypometabolic state. Despite similar state effects, the long-term PR group manifested lower levels of somatic activity across all conditions compared to both novice PR and long-term TM groups. We concluded that PR causes a generalized trait of somatic relaxation which is manifested in a variety of settings and situations. Two likely explanations for this trait were discussed: (1) PR practitioners are taught to generalize relaxation to daily activities, and/or (2) according to a "multiprocess model," PR is a "somatic technique," which should produce greater somatic relaxation than does TM, a "cognitive technique." Further research is required to elucidate these possibilities.

  3. Relaxation dynamics of multilayer triangular Husimi cacti.

    PubMed

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-14

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number. PMID:27634273

  4. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  5. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  6. Relaxation for Children. (Revised and Expanded Edition.)

    ERIC Educational Resources Information Center

    Rickard, Jenny

    Intended as a guide to reduce negative stress in children, this book suggests relaxation and meditation techniques to help children cope with stressful events. Part 1 provides an introduction to the format of the book. Part 2 contains summaries of the 10 sessions that make up the program. Each session has six sequential stages in which students…

  7. Relaxation processes in administered-rate pricing

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Arnold, Michael R.

    2000-10-01

    We show how the theory of anelasticity unifies the observed dynamics and proposed models of administered-rate products. This theory yields a straightforward approach to rate model construction that we illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demonstrate how the use of this formalism leads to a natural definition of market friction.

  8. Magnetic relaxation in dipolar magnetic nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Barker, Joe; Chantrell, Roy; Friedman, Gary; York-Drexel Collaboration

    2013-03-01

    Understanding the role of dipolar interactions on thermal relaxation in magnetic nanoparticle (MNP) systems is of fundamental importance in magnetic recording, for optimizing the hysteresis heating contribution in the hyperthermia cancer treatment in biomedicine, or for biological and chemical sensing, for example. In this talk, we discuss our related efforts to quantify the influence of dipolar interactions on thermal relaxation in small clusters of MNPs. Setting up the master equation and solving the associated eigenvalue problem, we identify the observable relaxation time scale spectra for various types of MNP clusters, and demonstrate qualitatively different spectral characteristics depending on the point group of symmetries of the particle arrangement within the cluster - being solely a dipolar interaction effect. Our findings provide insight into open questions related to magnetic relaxation in bulk MNP systems, and may prove to be also of practical relevance, e.g., for improving robustness of methodologies in biological and chemical sensing. OH gratefully acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under grant agreement PIEF-GA-2010-273014

  9. Relaxation Mechanisms in Hyperpolarized Polycrystalline ^129Xe

    NASA Astrophysics Data System (ADS)

    Samuelson, G.; Su, T.; Saam, B.

    2002-10-01

    Through spin exchange with optically polarized Rb vapor, it is possible to achieve upwards of 30% nuclear spin polarization in ^129Xe and a corresponding NMR signal some 5 orders of magnitude stronger than typical thermally polarized ^129Xe. Due to such a strong signal, hyperpolarized ^129Xe is being used for several leading-edge technologies (eg. biochemical spectroscopy, MRI, and polarization transfer). We have measured the nuclear spin relaxation rate of polycrystalline hyperpolarized ^129Xe at 77K (well below the freezing point of 160K) in a magnetic field of only a few Gauss and have observed that the hyperpolarization completely survives the freezing process. Furthermore, in this regime we have observed non-exponential spin relaxation that depends strongly on magnetic field, isotopic concentration (between ^129Xe and ^131Xe) and differences in crystallite formation. We present a simple spin-diffusion model that fits and explains the features of the data. Our results agree with the hypothesis that at low fields and temperatures the dominant spin relaxation mechanism is cross-relaxation with ^131Xe on the surface of the crystallites (Gatzke, et al., PRL b70, 690 (1993)).

  10. Collection Development: Relaxation & Meditation, September 1, 2010

    ERIC Educational Resources Information Center

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  11. Relaxation Treatment for Insomnia: A Component Analysis.

    ERIC Educational Resources Information Center

    Woolfolk, Robert L.; McNulty, Terrence F.

    1983-01-01

    Compared four relaxation treatments for sleep onset insomnia with a waiting-list control. Treatments varied in presence or absence of muscular tension-release instructions and in foci of attention. Results showed all treatment conditions reduced latency of sleep onset and fatigue; visual focusing best reduced the number of nocturnal awakenings.…

  12. Relaxation dynamics of multilayer triangular Husimi cacti

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  13. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  14. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  15. Dielectric Relaxation of Water in Complex Systems

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander A.; Ishai, Paul Ben; Levy, Evgenya

    Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

  16. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  17. The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits.

    PubMed

    Ziv, Naomi; Rotem, Tomer; Arnon, Zahi; Haimov, Iris

    2008-01-01

    A large percentage of older people suffer from chronic insomnia, affecting many aspects of life quality and well-being. Although insomnia is most often treated with medication, a growing number of studies demonstrate the efficiency of various relaxation techniques. The present study had three aims: first, to compare two relaxation techniques--music relaxation and progressive muscular relaxation--on various objective and subjective measures of sleep quality; second, to examine the effect of these techniques on anxiety and depression; and finally, to explore possible relationships between the efficiency of both techniques and personality variables. Fifteen older adults took part in the study. Following one week of base-line measurements of sleep quality, participants followed one week of music relaxation and one week of progressive muscular relaxation before going to sleep. Order of relaxation techniques was controlled. Results show music relaxation was more efficient in improving sleep. Sleep efficiency was higher after music relaxation than after progressive muscular relaxation. Moreover, anxiety was lower after music relaxation. Progressive muscular relaxation was related to deterioration of sleep quality on subjective measures. Beyond differences between the relaxation techniques, extraverts seemed to benefit more from both music and progressive muscular relaxation. The advantage of non-pharmacological means to treat insomnia, and the importance of taking individual differences into account are discussed.

  18. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations.

  19. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation.

    PubMed

    Rotz, Matthew W; Culver, Kayla S B; Parigi, Giacomo; MacRenaris, Keith W; Luchinat, Claudio; Odom, Teri W; Meade, Thomas J

    2015-03-24

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs.

  20. Nonlinear visco-elastic relaxation of non-lithostatic pressure

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Dabrowski, Marcin

    2014-05-01

    We investigate the rate of viscoelastic relaxation of non-lithostatic pressure as a function of a number of model parameters. Nonlinearity and anisotropy of viscosity are under investigation. We also study to what limit the pressure is relaxing.