Science.gov

Sample records for 7t mri scanner

  1. High resolution polymer gel dosimetry for small beam irradiation using a 7T micro-MRI scanner

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng; Olsen, John; Best, Ryan; Bennett, Marcus; McGowin, Inna; Dorand, Jennifer; Link, Kerry; Bourland, J. Daniel

    2010-11-01

    The use of small field radiation beams has greatly increased with advanced radiation therapy techniques such as IMRT, rotational IMRT, and stereotactic body radiotherapy. In this work small field 3D dose distributions have been measured with high spatial resolution using polymer gels and 7T micro-MR imaging. A MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) polymer gel [1] phantom was used to capture the 3D dose distributions for two small field (5 × 5 mm2 and 10 × 10 mm2) for a 6MV x-ray beam. High resolution 3D T2 maps were obtained with 7T micro-MRI (0.156mm × 0.156mm × 1mm, MSME pulse sequence). For comparison T2 maps, the gel phantom was scanned in a 3T MRI clinical scanner (0.254mm × 0.254mm × 2mm, FSE pulse sequence). Normalized 3D dose maps were calculated in Matlab. Results show that 7T micro-MRI 3D gel dosimetry measurements are much more stable, less noisy, and have higher spatial resolution than those obtained using a 3T clinical scanner for the same amount of scan time. In general, 3D gel dosimetry results also agree with simultaneously-obtained radiochromic film dosimetry. This study indicates that the MAGIC polymer gel with 7T micro-MRI for 3D dose readout could potentially be used for small radiation beams, including measurements for micro-beams (field size ~ 100um).

  2. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    NASA Astrophysics Data System (ADS)

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  3. New shielding configurations for a simultaneous PET/MRI scanner at 7T.

    PubMed

    Peng, Bo J; Wu, Yibao; Cherry, Simon R; Walton, Jeffrey H

    2014-02-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  4. Classification of mouth movements using 7 T fMRI

    NASA Astrophysics Data System (ADS)

    Bleichner, M. G.; Jansma, J. M.; Salari, E.; Freudenburg, Z. V.; Raemaekers, M.; Ramsey, N. F.

    2015-12-01

    Objective. A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. Approach. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a ‘winner-takes-all’ design. Main results. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). Significance. The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  5. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  6. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  7. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    PubMed Central

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-01-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8x and 4.9x for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone. PMID:21402488

  8. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  9. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  10. 7T MRI in natalizumab-associated PML and ongoing MS disease activity

    PubMed Central

    Sinnecker, Tim; Othman, Jalal; Kühl, Marc; Mekle, Ralf; Selbig, Inga; Niendorf, Thoralf; Kunkel, Annett; Wienecke, Peter; Kern, Peter; Faiss, Juergen; Wuerfel, Jens

    2015-01-01

    Objective: To assess the ability of ultra-high-field MRI to distinguish early progressive multifocal leukoencephalopathy (PML) from multiple sclerosis (MS) lesions in a rare case of simultaneous presentation of natalizumab–associated PML and ongoing MS activity. Methods: Advanced neuroimaging including 1.5T, 3T, and 7T MRI with a spatial resolution of up to 0.08 mm3 was performed. Results: 7T MRI differentiated between PML-related and MS-related brain damage in vivo. Ring-enhancing MS plaques displayed a central vein, whereas confluent PML lesions were preceded by punctate or milky way–like T2 lesions. Conclusions: Given the importance of early diagnosis of treatment-associated PML, future systematic studies are warranted to assess the value of highly resolving MRI in differentiating between early PML- and MS-induced brain parenchymal lesions. PMID:26568970

  11. Quest for an open MRI scanner.

    PubMed

    Bertora, Franco; Borceto, Alice; Viale, Andrea; Sandini, Giulio

    2014-01-01

    A study of the motor cortex during the programming, execution and mental representation of voluntary movement is of great relevance; its evaluation in conditions close to reality is necessary, given the close integration of the visuomotor, sensory feedback and proprioceptive systems, as of yet, a functional Magnetic Resonance Imaging (fMRI) scanner allowing a human subject to maintain erect stance, observe the surroundings and conserve limb freedom is still a dream. The need for high field suggests a solenoid magnet geometry that forces an unnatural posture that affects the results, particularly when the motor cortex is investigated. In contrast in a motor functional study, the scanner should allow the subject to sit or stand, with unobstructed sight and unimpeded movement. Two approaches are presented here to solve this problem. In the first approach, an increased field intensity in an open magnet is obtained lining the "back wall" of the cavity with a sheet of current: this boosts the field intensity at the cost of the introduction of a gradient, which has to be canceled by the introduction of an opposite gradient; The second approach is an adaptation of the "double doughnut" architecture, in which the cavity widens at the center to provide additional room for the subject. The detailed design of this kind of structure has proven the feasibility of the solution. PMID:25227008

  12. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15-25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T.

  13. Compressed Sensing Sodium MRI of Cartilage at 7T: Preliminary Study

    PubMed Central

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15 to 25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T. PMID:22204825

  14. Thalamic lesions in multiple sclerosis by 7T MRI: clinical implications and relationship to cortical pathology

    PubMed Central

    Harrison, Daniel M.; Oh, Jiwon; Roy, Snehashis; Wood, Emily T.; Whetstone, Anna; Seigo, Michaela A.; Jones, Craig K.; Pham, Dzung; van Zijl, Peter; Reich, Daniel S.; Calabresi, Peter A.

    2014-01-01

    Objective Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. Methods 7T MRI scans were obtained on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Results Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing remitting (mean ± SD, 10.7 ± 0.7 vs. 3.0 ± 0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Conclusions 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. PMID:25583851

  15. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI

    PubMed Central

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl’s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  16. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI.

    PubMed

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl's Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  17. Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Seidel, Eva-Maria; Sladky, Ronald; Kraus, Christoph; Küblböck, Martin; Pfabigan, Daniela M; Hummer, Allan; Grahl, Arvina; Ganger, Sebastian; Windischberger, Christian; Lamm, Claus; Lanzenberger, Rupert

    2013-11-15

    Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation

  18. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  19. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  20. A probabilistic atlas of the basal ganglia using 7 T MRI

    PubMed Central

    Keuken, Max C.; Forstmann, Birte U.

    2015-01-01

    A common localization procedure in functional imaging studies includes the overlay of statistical parametric functional magnetic resonance imaging (fMRI) maps or coordinates with neuroanatomical atlases in standard space, e.g., MNI-space. This procedure allows the identification of specific brain regions. Most standard MRI software packages include a wide range of atlases but have a poor coverage of the subcortex. We estimated that approximately 7% of the known subcortical structures are mapped in standard MRI-compatible atlases [1]. Here we provide a data description of a subcortical probabilistic atlas based on ultra-high resolution in-vivo anatomical imaging using 7 T (T) MRI. The atlas includes six subcortical nuclei: the striatum (STR), the globus pallidus internal and external segment (GPi/e), the subthalamic nucleus (STN), the substantia nigra (SN), and the red nucleus (RN). These probabilistic atlases are shared on freely available platforms such as NITRC and NeuroVault and are published in NeuroImage “Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI” [2]. PMID:26322322

  1. Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project.

    PubMed

    Sotiropoulos, Stamatios N; Hernández-Fernández, Moisés; Vu, An T; Andersson, Jesper L; Moeller, Steen; Yacoub, Essa; Lenglet, Christophe; Ugurbil, Kamil; Behrens, Timothy E J; Jbabdi, Saad

    2016-07-01

    Determining the acquisition parameters in diffusion magnetic resonance imaging (dMRI) is governed by a series of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Considering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same subjects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k- and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial resolution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of combining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both datasets from the same subject into a single joint analysis. We use a generative model for performing parametric spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing each of the datasets individually. PMID:27071694

  2. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T.

    PubMed

    Hare, Hannah V; Blockley, Nicholas P; Gardener, Alexander G; Clare, Stuart; Bulte, Daniel P

    2015-05-15

    Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2. PMID:25783207

  3. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  4. Early knee changes in dancers identified by ultra-high-field 7 T MRI.

    PubMed

    Chang, G; Diamond, M; Nevsky, G; Regatte, R R; Weiss, D S

    2014-08-01

    We aimed to determine whether a unique, ultra-high-field 7 T magnetic resonance imaging (MRI) scanner could detect occult cartilage and meniscal injuries in asymptomatic female dancers. This study had Institutional Review Board approval. We recruited eight pre-professional female dancers and nine non-athletic, female controls. We scanned the dominant knee on a 7 T MRI scanner using a three-dimensional fast low-angle shot sequence and a proton density, fast spin-echo sequence to evaluate cartilage and menisci, respectively. Two radiologists scored cartilage (International Cartilage Repair Society classification) and meniscal (Stoller classification) lesions. We applied two-tailed z- and t-tests to determine statistical significance. There were no cartilage lesions in dancers or controls. For the medial meniscus, the dancers demonstrated higher mean MRI score (2.38 ± 0.61 vs 1.0 ± 0.97, P < 0.0001) and higher frequency of mean grade 2 lesions (88% vs 11%, P < 0.01) compared with the controls. For the lateral meniscus, there was no difference in score (0.5 ± 0.81 vs 0.5 ± 0.78, P = 0.78) in dancers compared with the control groups. Asymptomatic dancers demonstrate occult medial meniscal lesions. Because this has been described in early osteoarthritis, close surveillance of dancers' knee symptoms and function with appropriate activity modification may help maintain their long-term knee health. PMID:23346987

  5. Germany gets largest ever MRI scanner

    NASA Astrophysics Data System (ADS)

    Stafford, Ned

    2008-07-01

    A 57-tonne cylindrical magnet has arrived at the Jülich Research Centre in Germany, where physicists are putting together the world's largest magnetic resonance imaging (MRI) system. When the machine comes online next year, medical researchers will use it to examine the brain in unprecedented detail, in the hope of gaining new insights into neurodegenerative diseases such as Alzheimer's.

  6. Whole brain 3D T2-weighted BOLD fMRI at 7T

    PubMed Central

    Hua, Jun; Qin, Qin; van Zijl, Peter C. M.; Pekar, James J.; Jones, Craig K.

    2014-01-01

    Purpose A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced. Methods It employs a T2-preparation module to induce BOLD contrast, followed by a single-shot 3D fast gradient-echo readout with short TE. It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the “dead time” due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed “3D T2prep-GRE”, was implemented at 7T with a typical spatial (2.5×2.5×2.5mm3) and temporal (TR=2.3s) resolution for fMRI and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence. Results In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination. Conclusion This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength. PMID:24338901

  7. Voxel-based morphometry at ultra-high fields. a comparison of 7T and 3T MRI data.

    PubMed

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2015-06-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 T and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7 T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7 T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7 T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs. 7 T) and pulse sequence (MPRAGE vs. MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7 T MPRAGE and 7 T MP2RAGE. Due to the fact that 7 T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7 T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7 T. Besides minor exceptions, these results were observed for 7 T MPRAGE as well for the 7 T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7 T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7 T and also for the advanced MP2RAGE sequence. Hence, our data support the use of 7 T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of the inferior cortical regions

  8. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  9. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  10. 7-T MRI in Cerebrovascular Diseases: Challenges to Overcome and Initial Results.

    PubMed

    Harteveld, Anita A; van der Kolk, Anja G; Zwanenburg, Jaco J M; Luijten, Peter R; Hendrikse, Jeroen

    2016-04-01

    . In this review, we will describe the key developments in the last decade of 7-T MRI of cerebrovascular diseases, subdivided for these 3 levels of assessment. PMID:27049246

  11. Digit somatotopy in the human cerebellum: a 7T fMRI study.

    PubMed

    van der Zwaag, Wietske; Kusters, Remy; Magill, Arthur; Gruetter, Rolf; Martuzzi, Roberto; Blanke, Olaf; Marques, José P

    2013-02-15

    The representation of the human body in the human cerebellum is still relatively unknown, compared to the well-studied homunculus in the primary somatosensory cortex. The investigation of the body representation in the cerebellum and its somatotopic organisation is complicated because of the relatively small dimensions of the cerebellum, compared to the cerebrum. Somatotopically organised whole-body homunculi have previously been reported in both humans and rats. However, whether individual digits are represented in the cerebellum in a somatotopically organised way is much less clear. In this study, the high spatial resolution and high sensitivity to the blood oxygenation level dependent (BOLD) signal of 7T fMRI were employed to study the BOLD responses in the human cerebellum to the stroking of the skin of individual digits, the hand and forearm. For the first time, a coarse somatotopic organisation of the digits, ordered from D1-D5, could be visualised in individual human subjects in both the anterior (lobule V) and the posterior (lobule VIII) lobes of the cerebellum using a somatosensory stimulus. The somatotopic gradient in lobule V was found consistently in the posterior to anterior direction, with the thumb most posterior, while the direction of the somatotopic gradient in lobule VIII differed between subjects. No somatotopic organisation was found in Crus I. A comparison of the digit patches with the hand patch revealed that the digit regions are completely covered by the hand region in both the anterior and posterior lobes of the cerebellum, in a non-somatotopic manner. These results demonstrate the promise of ultra-high field, high-resolution fMRI for studies of the cerebellum. PMID:23238433

  12. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  13. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  14. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were

  15. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    PubMed Central

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim; Kondziella, Daniel; Niendorf, Thoralf; Kerrn-Jespersen, Bjørg Morell; Lindelof, Mette; Lassmann, Hans; Kristensen, Bjarne Winther; Paul, Friedemann

    2016-01-01

    Objective: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. Methods: We performed a detailed neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential advantages of 7.0T MRI compared to 3.0T MRI in reflecting widespread inflammation, perivascular pathology, and axonal damage, and (3) the possibility of lymphoma. Results: In the autopsy case, perivascular inflammation dominated by CD4+ T cells was not only detected in the brainstem and cerebellum but also in brain areas with normal appearance on 3.0T MRI, including supratentorial regions and cranial nerve roots. There was no evidence of lymphoma in any of the 4 patients. The 7.0T MRI in clinical remission also revealed supratentorial lesions and perivascular pathology in vivo with contrast-enhancing lesions centered around a small venous vessel. Ultra-high-field MRI at 7.0T disclosed prominent T1 hypointensities in the brainstem, which were not seen on 3.0T MRI. This corresponded to neuropathologic detection of axonal injury in the autopsy case. Conclusion: Our findings suggest more widespread perivascular inflammation and postinflammatory axonal injury in patients with CLIPPERS. PMID:27144217

  16. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner.

    PubMed

    Webb, A G

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials. PMID:22341210

  17. Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner

    NASA Astrophysics Data System (ADS)

    Webb, A. G.

    2012-03-01

    MRI represents a unique method to visualize directly different resonant modes of arbitrarily-shaped dielectric resonators in the radiofrequency spectrum via construction of resonators filled with distilled, deionized water which has a low conductivity and high relative permittivity. The required dimensions, particularly for higher order modes, are large and so a high field whole-body MRI system is needed to visualize these modes. In this study, using a simple cylindrical geometry, many higher order modes were identified and confirmed using electromagnetic simulations. In addition, coupled modes between more than one resonator were investigated, with possible future applications including direct visualization of fields in metamaterials.

  18. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation

    PubMed Central

    Bosshard, John C.; Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M.

    2015-01-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for 1H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  19. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation.

    PubMed

    Cui, Jiaming; Bosshard, John C; Rispoli, Joseph V; Dimitrov, Ivan E; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M

    2015-07-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for (1)H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  20. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T

    PubMed Central

    Sinnecker, Tim; Schumacher, Sophie; Mueller, Katharina; Pache, Florence; Dusek, Petr; Harms, Lutz; Ruprecht, Klemens; Nytrova, Petra; Chawla, Sanjeev; Niendorf, Thoralf; Kister, Ilya; Ge, Yulin; Wuerfel, Jens

    2016-01-01

    Objective: To characterize paramagnetic MRI phase signal abnormalities in neuromyelitis optica spectrum disorder (NMOSD) vs multiple sclerosis (MS) lesions in a cross-sectional study. Methods: Ten patients with NMOSD and 10 patients with relapsing-remitting MS underwent 7-tesla brain MRI including supratentorial T2*-weighted imaging and supratentorial susceptibility weighted imaging. Next, we analyzed intra- and perilesional paramagnetic phase changes on susceptibility weighted imaging filtered magnetic resonance phase images. Results: We frequently observed paramagnetic rim-like (75 of 232 lesions, 32%) or nodular (32 of 232 lesions, 14%) phase changes in MS lesions, but only rarely in NMOSD lesions (rim-like phase changes: 2 of 112 lesions, 2%, p < 0.001; nodular phase changes: 2 of 112 lesions, 2%, p < 0.001). Conclusions: Rim-like or nodular paramagnetic MRI phase changes are characteristic for MS lesions and not frequently detectable in NMOSD. Future prospective studies should ask whether these imaging findings can be used as a biomarker to distinguish between NMOSD- and MS-related brain lesions. PMID:27489865

  1. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises

    PubMed Central

    Sodickson, Daniel K.; Krombach, Gabriele A.; Schulz-Menger, Jeanette

    2010-01-01

    Objective To consider potential clinical needs, technical solutions and research promises of ultrahigh-field strength cardiovascular MR (CMR). Methods A literature review is given, surveying advantages and disadvantages of CMR at ultrahigh fields (UHF). Key concepts, emerging technologies, practical considerations and applications of UHF CMR are provided. Examples of UHF CMR imaging strategies and their added value are demonstrated, including the numerous unsolved problems. A concluding section explores future directions in UHF CMR. Results UHF CMR can be regarded as one of the most challenging MRI applications. Image quality achievable at UHF is not always exclusively defined by signal-to-noise considerations. Some of the inherent advantages of UHF MRI are offset by practical challenges. But UHF CMR can boast advantages over its kindred lower field counterparts by trading the traits of high magnetic fields for increased temporal and/or spatial resolution. Conclusions CMR at ultrahigh-field strengths is a powerful motivator, since speed and signal may be invested to overcome the fundamental constraints that continue to hamper traditional CMR. If practical challenges can be overcome, UHF CMR will help to open the door to new approaches for basic science and clinical research. PMID:20676653

  2. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.

  3. Perivenular Brain Lesions in a Primate Multiple Sclerosis Model at 7T-MRI

    PubMed Central

    Gaitán, María I.; Maggi, Pietro; Wohler, Jillian; Leibovitch, Emily; Sati, Pascal; Calandri, Ismael L.; Merkle, Hellmut; Massacesi, Luca; Silva, Afonso C.; Jacobson, Steven; Reich, Daniel S.

    2016-01-01

    Background Magnetic resonance imaging (MRI) can provide in vivo assessment of tissue damage, allowing evaluation of multiple sclerosis (MS) lesion evolution over time – a perspective not obtainable with postmortem histopathology. Relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is an experimental model of MS that can be induced in the common marmoset, a small new world primate, and that causes perivenular white matter lesions similar to those observed in MS. Methods Brain lesion development and evolution were studied in vivo and postmortem in 4 marmosets with EAE through serial T2- and T2*-weighted scans at 7 tesla. Supratentorial white matter lesions were identified and characterized. Results Of 97 lesions observed, 86 (88%) were clearly perivenular, and 62 (72%) developed around veins that were visible even prior to EAE induction. The perivenular configuration was confirmed by postmortem histopathology. Most affected veins, and their related perivascular Virchow-Robin spaces, passed into the subarachnoid space rather than the ventricles. Conclusion As in human MS, the intimate association between small veins and EAE lesions in the marmoset can be studied with serial in vivo MRI. This further strengthens the usefulness of this model for understanding the process of perivenular lesion development and accompanying tissue destruction in MS. PMID:23773983

  4. Individual trial analysis for 7T fMRI data by a data-driven multi scale approach.

    PubMed

    da Rocha Amaral, Selene

    2014-03-01

    An important interest in event-related single trial fMRI is the possibility of studying cognitive processes that vary in time (e.g. learning or adaptation). Region-specific modelling and the inter-trial variability of the evoked response play an important role. We showed how the use of the iterated multigrid priors (iMGP) method, a previously introduced data-driven multi scale Bayesian iterative approach, may be extended for a trial-by-trial analysis on ultra-high magnetic field data. We used both artificial (present real physiological noise) and real (unilateral finger tapping experiment) data at 7T and compared to other methods. Since the iMGP does not need to spatially smooth the data, avoiding a loss of sensitivity, we take advantage of the high SNR available at 7T. For artificial data, we showed receiver operating characteristic curves parametrized by the activity threshold and by the addition of extra thermal noise and compared with correlation technique results.The method showed be very robust in terms of specificity for very noisy data and capable of capturing the temporal variability imposed artificially across regions. For real data, we examined the inter-trial spatial relationships for four subjects and the time-to-peak of the evoked response estimated by the iMGP across trials, regions and subjects. To stress the reliability of the iMGP in single trial studies, an illustrative comparison with the variational Bayes approach (implemented in the very popular Statistical Parametric Mapping software) was done for a single subject. Despite the extravascular signals are still present at 7T and the confounds of physiological noise and hemodynamic variability affecting single trial approaches, we showed that with the iMGP method it is possible to detect individual HR robustly. PMID:23813209

  5. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  6. Sodium Inversion Recovery MRI of the Knee Joint In Vivo at 7T

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-01-01

    The loss of proteoglycans in the articular cartilage is an early signature of osteoarthritis. The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on 5 healthy volunteers, with a (Nyquist) resolution of ~3.6 mm and a signal-to-noise ratio of ~30 in cartilage without IR and ~20 with IR. Due to specific absorption rate limitations, the total acquisition time was ~17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence. PMID:20813569

  7. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium

  8. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  9. Correction of Gradient Nonlinearity Artifacts in Prospective Motion Correction for 7T MRI

    PubMed Central

    Yarach, U.; Luengviriya, C.; Danishad, K.A.; Stucht, D.; Godenschweger, F.; Schulze, P.; Speck, O.

    2014-01-01

    Purpose To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient non-linearity artifacts in prospective motion correction (Mo-Co). Methods Non-linear gradients can induce geometric distortions in MRI, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction. The gradient-related displacements are approximated using Spherical Harmonic (SPH) functions. In addition, the combination of this method with a retrospective correction of the changes in the coil sensitivity profiles relative to the object (augmented SENSE) was evaluated in simulation and experimental data. Results Prospective Mo-Co under gradient fields and coils sensitivity inconsistencies results in residual blurring, spatial distortion, and coil sensitivity mismatch artifacts. These errors can be considerably mitigated by the proposed method. High image quality with very little remaining artifacts was achieved after a few iterations. The relative image errors decreased from 25.7% to below 17.3% after 10 iterations. Conclusion The combined correction of gradient non-linearity and sensitivity map variation leads to a pronounced reduction of residual motion artifacts in prospectively motion-corrected data. PMID:24798889

  10. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded. PMID:25609637

  11. Impact of fMRI Scanner Noise on Affective State and Attentional Performance

    PubMed Central

    Jacob, Shawna N.; Shear, Paula K.; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M.; Cerullo, Michael; Fleck, David E.; Lee, Jing-Huei; Eliassen, James C.

    2015-01-01

    Introduction Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in an MRI environment. Method Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a self-assessment manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. Results The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. Conclusions The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar fMRI tasks. PMID:26059389

  12. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI

    PubMed Central

    Da Costa, Sandra; Bourquin, Nathalie M.-P.; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds. PMID:25938430

  13. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function.

    PubMed

    van Rooden, Sanneke; Buijs, Mathijs; van Vliet, Marjolein E; Versluis, Maarten J; Webb, Andrew G; Oleksik, Ania M; van de Wiel, Lotte; Middelkoop, Huub A M; Blauw, Gerard Jan; Weverling-Rynsburger, Annelies W E; Goos, Jeroen D C; van der Flier, Wiesje M; Koene, Ted; Scheltens, Philip; Barkhof, Frederik; van de Rest, Ondine; Slagboom, P Eline; van Buchem, Mark A; van der Grond, Jeroen

    2016-09-01

    Studies have suggested that, in subjects with subjective cognitive impairment (SCI), Alzheimer's disease (AD)-like changes may occur in the brain. Recently, an in vivo study has indicated the potential of ultra-high-field MRI to visualize amyloid-beta (Aβ)-associated changes in the cortex in patients with AD, manifested by a phase shift on T2 *-weighted MRI scans. The main aim of this study was to investigate whether cortical phase shifts on T2 *-weighted images at 7 T in subjects with SCI can be detected, possibly implicating the deposition of Aβ plaques and associated iron. Cognitive tests and T2 *-weighted scans using a 7-T MRI system were performed in 28 patients with AD, 18 subjects with SCI and 27 healthy controls (HCs). Cortical phase shifts were measured. Univariate general linear modeling and linear regression analysis were used to assess the association between diagnosis and cortical phase shift, and between cortical phase shift and the different neuropsychological tests, adjusted for age and gender. The phase shift (mean, 1.19; range, 1.00-1.35) of the entire cortex in AD was higher than in both SCI (mean, 0.85; range, 0.73-0.99; p < 0.001) and HC (mean, 0.94; range, 0.79-1.10; p < 0.001). No AD-like changes, e.g. increased cortical phase shifts, were found in subjects with SCI compared with HCs. In SCI, a significant association was found between memory function (Wechsler Memory Scale, WMS) and cortical phase shift (β = -0.544, p = 0.007). The major finding of this study is that, in subjects with SCI, an increased cortical phase shift measured at high field is associated with a poorer memory performance, although, as a group, subjects with SCI do not show an increased phase shift compared with HCs. This increased cortical phase shift related to memory performance may contribute to the understanding of SCI as it is still unclear whether SCI is a sign of pre-clinical AD. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25522735

  14. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  15. A modified electrode cap for EEG recordings in MRI scanners.

    PubMed

    Baumann, S B; Noll, D C

    1999-12-01

    A stretchable electrode cap containing 64 electrodes was modified to make it compatible for functional magnetic resonance imaging (fMRI). Metallic components were individually tested for magnetic susceptibility, and those that perturbed a free-swinging magnet or moved in a strong magnetic field were replaced with non-ferromagnetic components. Studies with a phantom indicate that placement of the cables carrying signals from the cap to the amplifiers can significantly affect MR image quality. Anatomical and functional images obtained with the modified electrode cap show modest signal loss, but not enough to substantially interfere with the low-noise images required for fMRI. The cap enables faster application of large arrays of electrodes in conjunction with MRI studies, and thus makes combined EEG/fMRI studies more practical, especially those with EEG source localization as one of the goals. PMID:10616125

  16. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner

    PubMed Central

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  17. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  18. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement.

    PubMed

    Fellner, M-C; Volberg, G; Mullinger, K J; Goldhacker, M; Wimber, M; Greenlee, M W; Hanslmayr, S

    2016-06-01

    Simultaneous EEG-fMRI provides an increasingly attractive research tool to investigate cognitive processes with high temporal and spatial resolution. However, artifacts in EEG data introduced by the MR scanner still remain a major obstacle. This study, employing commonly used artifact correction steps, shows that head motion, one overlooked major source of artifacts in EEG-fMRI data, can cause plausible EEG effects and EEG-BOLD correlations. Specifically, low-frequency EEG (<20Hz) is strongly correlated with in-scanner movement. Accordingly, minor head motion (<0.2mm) induces spurious effects in a twofold manner: Small differences in task-correlated motion elicit spurious low-frequency effects, and, as motion concurrently influences fMRI data, EEG-BOLD correlations closely match motion-fMRI correlations. We demonstrate these effects in a memory encoding experiment showing that obtained theta power (~3-7Hz) effects and channel-level theta-BOLD correlations reflect motion in the scanner. These findings highlight an important caveat that needs to be addressed by future EEG-fMRI studies. PMID:27012498

  19. Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner.

    PubMed

    Cusack, Rhodri; Cumming, Nick; Bor, Daniel; Norris, Dennis; Lyzenga, Johannes

    2005-04-01

    There are several types of experiment in which it is useful to have subjects speak overtly in a magnetic resonance imaging (MRI) scanner, including those studying the articulatory apparatus and the neural basis of speech production, and fMRI experiments in which speech is used as a response modality. Although it is relatively easy to record sound from the bore, it can be difficult to hear the speech over the very loud acoustic noise from the scanner. This is particularly a problem during echo-planar imaging, which is usually used for fMRI. We present a post-hoc sound cancellation algorithm, and describe a Windows-based tool that implements it. The tool is fast and operates with minimal user intervention. We evaluate cancellation performance in terms of the improvement in signal-to-noise ratio, and investigate the effect of the recording medium. A substantial improvement in audibility was obtained. PMID:15678480

  20. Small PET scanner based on MRI-compatible light sensor

    NASA Astrophysics Data System (ADS)

    Molnar, J.; Balkay, L.; Berenyi, E.

    2015-03-01

    Improving the quality of life of elderly people requires diagnostic and therapeutic capabilities for diseases of the central nervous system, such as Alzheimer's, Parkinson's, and epilepsy which have a rapidly growing impact on society. Minimallyinvasive imaging technologies such as PET and MRI allow for monitoring and tracking these illnesses, starting from their preliminary manifestations.

  1. Experimental and numerical analysis of B1(+) field and SAR with a new transmit array design for 7T breast MRI.

    PubMed

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1(+) field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1(+) intensity (μT) and homogeneity represented by coefficient of variation (CoV=standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7T. PMID:27240143

  2. Experimental and numerical analysis of B1+ field and SAR with a new transmit array design for 7 T breast MRI

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S.

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1+ field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7 T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1+ intensity (μT) and homogeneity represented by coefficient of variation (CoV = standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7 T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7 T.

  3. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.

    PubMed

    Kilsdonk, Iris D; Jonkman, Laura E; Klaver, Roel; van Veluw, Susanne J; Zwanenburg, Jaco J M; Kuijer, Joost P A; Pouwels, Petra J W; Twisk, Jos W R; Wattjes, Mike P; Luijten, Peter R; Barkhof, Frederik; Geurts, Jeroen J G

    2016-05-01

    The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type

  4. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  5. Development of a PET scanner for simultaneously imaging small animals with MRI and PET.

    PubMed

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  6. Inter-site and inter-scanner diffusion MRI data harmonization.

    PubMed

    Mirzaalian, H; Ning, L; Savadjiev, P; Pasternak, O; Bouix, S; Michailovich, O; Grant, G; Marx, C E; Morey, R A; Flashman, L A; George, M S; McAllister, T W; Andaluz, N; Shutter, L; Coimbra, R; Zafonte, R D; Coleman, M J; Kubicki, M; Westin, C F; Stein, M B; Shenton, M E; Rathi, Y

    2016-07-15

    We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the

  7. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.

    PubMed

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-07-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among "good quality" structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects' tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion-even at levels which do not manifest in visible motion artifact-can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. Hum Brain Mapp 37:2385-2397, 2016. © 2016 Wiley Periodicals, Inc. PMID:27004471

  8. Interventional and intraoperative MRI at low field scanner--a review.

    PubMed

    Blanco, Roberto T; Ojala, Risto; Kariniemi, Juho; Perälä, Jukka; Niinimäki, Jaakko; Tervonen, Osmo

    2005-11-01

    Magnetic resonance imaging (MRI) is a cutting edge imaging modality in detecting diseases and pathologic tissue. The superior soft tissue contrast in MRI allows better definition of the pathology. MRI is increasingly used for guiding, monitoring and controlling percutaneous procedures and surgery. The rapid development of interventional techniques in radiology has led to integration of imaging with computers, new therapy devices and operating room like conditions. This has projected as faster and more accurate imaging and hence more demanding procedures have been applied to the repertoire of the interventional radiologist. In combining features of various other imaging modalities and adding some more into them, interventional MRI (IMRI) has potential to take further the interventional radiology techniques, minimally invasive therapies and surgery. The term "Interventional MRI" consists in short all those procedures, which are performed under MRI guidance. These procedures can be either percutaneous or open surgical of nature. One of the limiting factors in implementing MRI as guidance modality for interventional procedures has been the fact, that most widely used magnet design, a cylindrical magnet, is not ideal for guiding procedures as it does not allow direct access to the patient. Open, low field scanners usually operating around 0.2 T, offer this feature. Clumsy hardware, bad patient access, slow image update frequency and strong magnetic fields have been other limiting factors for interventional MRI. However, the advantages of MRI as an imaging modality have been so obvious that considerable development has taken place in the 20-year history of MRI. The image quality has become better, ever faster software, new innovative sequences, better MRI hardware and increased computing power have accelerated imaging speed and image quality to a totally new level. Perhaps the most important feature in the recent development has been the introduction of open

  9. The Interconnection of MRI Scanner and MR-Compatible Robotic Device: Synergistic Graphical User Interface to Form a Mechatronic System.

    PubMed

    Ozcan, Alpay; Tsekos, Nikolaos

    2008-06-01

    MRI scanner and magnetic resonance (MR)-compatible robotic devices are mechatronic systems. Without an interconnecting component, these two devices cannot be operated synergetically for medical interventions. In this paper, the design and properties of a graphical user interface (GUI) that accomplishes the task is presented. The GUI interconnects the two devices to obtain a larger mechatronic system by providing command and control of the robotic device based on the visual information obtained from the MRI scanner. Ideally, the GUI should also control imaging parameters of the MRI scanner. Its main goal is to facilitate image-guided interventions by acting as the synergistic component between the physician, the robotic device, the scanner, and the patient. PMID:21544216

  10. Changes during pentetrazol-induced epilepsy in rat recorded by simultaneous EEG/MRI at 7T

    NASA Astrophysics Data System (ADS)

    Verhoye, Marleen; Michiels, Ive; Sijbers, Jan; Eelen, Jan; Peeters, Ronald; Van Audekerke, Johan; D'hooge, Rudi; De Deyn, P. P.; Van der Linden, Anne-Marie

    2000-04-01

    Simultaneously acquired EEG and BOLD (Blood Oxygenation level dependent contrast) MRI allowed to study on line the neurophysiological changes in rat brain during epileptic seizures. MRI and EEG data were acquired with a specially designed high quality MR RF-antenna with incorporated non- invasive carbon EEG electrodes. The problem of severe pollution of the EEG data due to MR gradient switching during simultaneous EEG/MRI acquisitions was solved by a specially designed automated effective filtering algorithm. We measured continuously EEG data, and T2*-weighted coronal MRI sections of rat brain before and after the injection of pentetrazol (43 mg/(kg body weight) PTZ; convulsive dose 97%), an epilepsy inductor. In this way, we could correlate the abnormalities in the EEG traces, with changes in the MRI BOLD signal intensities. Immediately after PTZ induction and before epileptic discharges were observed on the EEG traces, the cortex displayed an increase in BOLD signal intensity (increase in blood flow). Much later and correlated with epileptic discharges on the EEG traces, the ventromedial hypothalamic nuclei showed an increased BOLD signal while the BOLD signal intensity dropped in the entire brain, except for the hypothalamus. The decreased BOLD signal reflected general hypoxia and subsequent ischemia as a consequence of the sustained depolarization of neurons during the seizure.

  11. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  12. Decoding the direction of imagined visual motion using 7T ultra-high field fMRI.

    PubMed

    Emmerling, Thomas C; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A; Goebel, Rainer

    2016-01-15

    There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673

  13. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner.

    PubMed

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2010-05-01

    Upgraded gradient coils can effectively enhance the MRI steering of magnetic microparticles in a branching channel. Applications of this method include MRI targeting of magnetic embolization agents for oncologic therapy. A magnetic suspension of Fe(3)O(4) magnetic particles was injected inside a y-shaped microfluidic channel. Magnetic gradients of 0, 50, 100, 200, and 400 mT/m were applied to the magnetic particles perpendicularly to the flow by a custom-built gradient coil inside a 1.5-T MRI scanner. Measurement of the steering ratio was performed both by video analyses and quantification of the mass of the particles collected at each outlet of the microfluidic channel, using atomic absorption spectroscopy. Magnetic particles steering ratios of 0.99 and 0.75 were reached with 400 mT/m gradient amplitude and measured by video analyses and atomic absorption spectroscopy, respectively. Experimental data shows that the steering ratio increases with higher magnetic gradients. Moreover, theory suggests that larger particles (or aggregates), higher magnetizations, and lower flows can also be used to improve the steering ratio. The technological limitation of the approach is that an MRI gradient amplitude increase to a few hundred milliteslas per meter is needed. A simple analytical method based on magnetophoretic velocity predictions and geometric considerations is proposed for steering ratio calculation. PMID:20432304

  14. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  15. Depiction of Achilles Tendon Microstructure In-Vivo Using High-Resolution 3D Ultrashort Echo-Time MRI at 7T

    PubMed Central

    Han, Misung; Larson, Peder E. Z.; Liu, Jing; Krug, Roland

    2014-01-01

    Objectives To demonstrate the feasibility of depicting the internal structure of the Achilles tendon in vivo using high-resolution 3D ultrashort echo-time (UTE) magnetic resonance imaging (MRI) at 7T. Materials and Methods For our UTE imaging, a minimum-phase radiofrequency pulse and an anisotropic field-of-view 3D radial acquisition were used to minimize the echo time and scan time. A fat saturation pulse was applied every eight spoke acquisitions to reduce blurring and chemical shift artifacts from fat and to improve dynamic range of the tendon signal. Five healthy volunteers and one patient were scanned with an isotropic spatial resolution of up to 0.6 mm. Fat-suppressed UTE images were qualitatively evaluated and compared to non-fat-suppressed UTE images and longer echo-time images. Results High-resolution UTE imaging was able to visualize the microstructure of the Achilles tendon. Fat suppression substantially improved the depiction of the internal structure. The UTE images revealed a fascicular pattern in the Achilles tendon and fibrocartilage at the tendon insertion. In a patient who had tendon elongation surgery after birth there was clear depiction of disrupted tendon structure. Conclusions High-resolution fat-suppressed 3D UTE imaging at 7T allows for evaluation of the Achilles tendon microstructure in vivo. PMID:24500089

  16. Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7T MRI and histology.

    PubMed

    Fracasso, Alessio; van Veluw, Susanne J; Visser, Fredy; Luijten, Peter R; Spliet, Wim; Zwanenburg, Jaco J M; Dumoulin, Serge O; Petridou, Natalia

    2016-06-01

    The human cerebral cortex is characterized by a number of features that are not uniformly distributed, such as the presence of multiple cytoarchitectonic elements and of myelinated layers running tangentially to the cortex surface. The presence and absence of these features are the basis of the parcellation of the cerebral cortex in several areas. A number of areas show myelin increases localized within the cortex, e.g., the stria of Gennari located in layer IV of the primary visual cortex. Sub-millimeter MRI can resolve myelin variations across the human cortex and may allow in vivo parcellation of these brain areas. Here, we image within-area myelination. We modified a T1-weighted (T1-w) MPRAGE sequence to enhance myelin visualization within the cortex. First, we acquired images from an ex vivo sample, and compared MRI laminar profiles from calcarine (corresponding to primary visual cortex) and extra-calcarine areas with histology sections from the same locations. Laminar profiles between myelin stained sections and the T1-w images were similar both in calcarine as well as extra-calcarine cortex. In calcarine cortex, the profile reveals the stria of Gennari. In extra-calcarine cortex, a similar profile exists which we suggest corresponds to the lines of Baillarger. Next, we adapted the same sequence to image within-area myelination in vivo. Also in in vivo data, we discriminated similar laminar profiles in calcarine and extra-calcarine cortex, extending into parietal and frontal lobes. We argue that this myelin pattern outside the calcarine cortex represents the lines of Baillarger. PMID:26947519

  17. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  18. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  19. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  20. Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion.

    PubMed

    Jorge, João; Grouiller, Frédéric; Gruetter, Rolf; van der Zwaag, Wietske; Figueiredo, Patrícia

    2015-10-15

    The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field. PMID:26169325

  1. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI.

    PubMed

    Da Costa, Sandra; Saenz, Melissa; Clarke, Stephanie; van der Zwaag, Wietske

    2015-01-01

    The tonotopic representations within the primary auditory cortex (PAC) have been successfully mapped with ultra-high field fMRI. Here, we compared the reliability of this tonotopic mapping paradigm at 7 T with 1.5 mm spatial resolution with maps acquired at 3 T with the same stimulation paradigm, but with spatial resolutions of 1.8 and 2.4 mm. For all subjects, the mirror-symmetric gradients within PAC were highly similar at 7 T and 3 T and across renderings at different spatial resolutions; albeit with lower percent signal changes at 3 T. In contrast, the frequency maps outside PAC tended to suffer from a reduced BOLD contrast-to-noise ratio at 3 T for a 1.8 mm voxel size, while robust at 2.4 mm and at 1.5 mm at 7 T. Overall, our results showed the robustness of the phase-encoding paradigm used here to map tonotopic representations across scanners. PMID:25098273

  2. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  3. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  4. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    PubMed

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T. PMID:27078089

  5. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    NASA Astrophysics Data System (ADS)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  6. Visceral pain perception in patients with irritable bowel syndrome and healthy volunteers is affected by the MRI scanner environment

    PubMed Central

    Wong, Reuben K; Van Oudenhove, Lukas; Li, Xinhua; Cao, Yang; Ho, Khek Yu

    2015-01-01

    Background The MRI scanner environment induces marked psychological effects, but specific effects on pain perception and processing are unknown and relevant to all brain imaging studies. Objectives and methods We performed visceral and somatic quantitative sensory and pain testing and studied endogenous pain modulation by heterotopic stimulation outside and inside the functional MRI scanner in 11 healthy controls and 13 patients with irritable bowel syndrome. Results Rectal pain intensity (VAS 0–100) during identical distension pressures increased from 39 (95% confidence interval: 35–42) outside the scanner to 53 (43–63) inside the scanner in irritable bowel syndrome, and from 42 (31–52) to 49 (39–58), respectively, in controls (ANOVA for scanner effect: p = 0.006, group effect: p = 0.92). The difference in rectal pain outside versus inside correlated significantly with stress (r = −0.76, p = 0.006), anxiety (r = −0.68, p = 0.02) and depression scores (r = −0.67, p = 0.02) in controls, but not in irritable bowel syndrome patients, who a priori had significantly higher stress and anxiety scores. ANOVA analysis showed trends for effect of the scanner environment and subject group on endogenous pain modulation (p = 0.09 and p = 0.1, respectively), but not on somatic pain (p > 0.3). Conclusion The scanner environment significantly increased visceral, but not somatic, pain perception in irritable bowel syndrome patients and healthy controls in a protocol specifically aimed at investigating visceral pain. Psychological factors, including anxiety and stress, are the likely underlying causes, whereas classic endogenous pain modulation pathways activated by heterotopic stimulation play a lesser role. These results are highly relevant to a wide range of imaging applications and need to be taken into account in future pain research. Further controlled studies are indicated to clarify these findings. PMID:26966533

  7. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  8. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs.

    PubMed

    Luechinger, R; Duru, F; Scheidegger, M B; Boesiger, P; Candinas, R

    2001-02-01

    Magnetic resonance imaging (MRI) is a widely accepted tool for the diagnosis of a variety of disease states. However, the presence of an implanted pacemaker is considered to be a strict contraindication to MRI in a vast majority of centers due to safety concerns. In phantom studies, the authors investigated the force and torque effects of the static magnetic field of MRI on pacemakers and ICDs. Thirty-one pacemakers (15 dual chamber and 16 single chamber units) from eight manufacturers and 13 ICDs from four manufacturers were exposed to the static magnetic field of a 1.5-Tesla MRI scanner. Magnetic force and acceleration measurements were obtained quantitatively, and torque measurements were made qualitatively. For pacemakers, the measured magnetic force was in the range of 0.05-3.60 N. Pacemakers released after 1995 had low magnetic force values as compared to the older devices. For these devices, the measured acceleration was even lower than the gravity of the earth (< 9.81 N/kg). Likewise, the torque levels were significantly reduced in newer generation pacemakers (< or = 2 from a scale of 6). ICD devices, except for one recent model, showed higher force (1.03-5.85 N), acceleration 9.5-34.2 N/kg), and torque (5-6 out of 6) levels. In conclusion, modern pacemakers present no safety risk with respect to magnetic force and torque induced by the static magnetic field of a 1.5-Tesla MRI scanner. However, ICD devices, despite considerable reduction in size and weight, may still pose problems due to strong magnetic force and torque. PMID:11270700

  9. Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7 T.

    PubMed

    Mullinger, Karen; Brookes, Matthew; Stevenson, Claire; Morgan, Paul; Bowtell, Richard

    2008-09-01

    The increased blood oxygenation level-dependent contrast available at high field makes the implementation of combined EEG/fMRI experiments at 7 T highly worthwhile from the point of view of fMRI data quality, but the higher field poses greater technical challenges for achieving good quality EEG data. A study of the feasibility of recording EEG signals from human subjects at 7 T using a commercially available, MR-compatible EEG system has therefore been carried out. This involved systematic measurement of the sources of noise in EEG recordings made in the 7 T scanner and measurement of RF heating effects on a gel phantom in the presence of a 32-electrode EEG cap. Having found no significant safety concerns and identified a set-up (involving switching off the magnet's cryo-cooler pumps and mounting the EEG amplifier on a cantilever) that limited scanner-induced noise, combined EEG/fMRI experiments employing visual stimulation were then successfully carried out on two human subjects. With the use of beamformer-based analysis of the EEG data, driven responses and alpha-band, event-related desynchronisation were identified in both subjects. PMID:18508217

  10. Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose: initial results

    PubMed Central

    Noebauer-Huhmann, Iris-Melanie; Szomolanyi, P.; Kronnerwetter, C.; Widhalm, G.; Weber, M.; Nemec, S.; Juras, V.; Ladd, M. E.; Prayer, D.; Trattnig, S.

    2015-01-01

    Objectives To compare the contrast agent effect of a full dose and half the dose of gadobenate dimeglumine in brain tumours at 7 Tesla (7T) MR versus 3 Tesla (3T). Methods Ten patients with primary brain tumours or metastases were examined. Signal intensities were assessed in the lesion and normal brain. Tumour-to-brain contrast and lesion enhancement were calculated. Additionally, two independent readers subjectively graded the image quality and artefacts. Results The enhanced mean tumour-to-brain contrast and lesion enhancement were significantly higher at 7T than at 3T for both half the dose (91.8±45.8 vs. 43.9±25.3 [p=0.010], 128.1±53.7 vs. 75.5±32.4 [p=0.004]) and the full dose (129.2±50.9 vs. 66.6±33.1 [p=0.002], 165.4±54.2 vs. 102.6±45.4 [p=0.004]). Differences between dosages at each field strength were also significant. Lesion enhancement was higher with half the dose at 7T than with the full dose at 3T (p=.037), while the tumour-to-brain contrast was not significantly different. Subjectively, contrast enhancement, visibility, and lesion delineation were better at 7T and with the full dose. All parameters were rated as good, at the least. Conclusion Half the routine contrast agent dose at 7T provided higher lesion enhancement than the full dose at 3T which indicates the possibility of dose reduction at 7T. PMID:25194707

  11. Optimisation of T₂*-weighted MRI for the detection of small veins in multiple sclerosis at 3 T and 7 T.

    PubMed

    Dixon, Jennifer Elizabeth; Simpson, Ashley; Mistry, Niraj; Evangelou, Nikos; Morris, Peter Gordon

    2013-05-01

    T₂*-weighted magnetic resonance imaging at 7 T has recently been shown to allow differentiation between white-matter multiple sclerosis lesions and asymptomatic white-matter lesions, by the presence or absence of a detectable central blood vessel. The aim of the present work is to improve the technique by increasing the sensitivity to veins at both 3 T and 7 T, and to assess the benefit of ultra-high-field imaging. Signal-to-noise ratio (SNR) measurements and simulations are used to compare the sensitivity of magnitude T₂*-weighted and susceptibility-weighted images for the detection of small veins (<1 pixel in diameter), both with and without the use of gadolinium. The simulations are used to predict the optimal scanning parameters in order to increase the sensitivity to these veins at both field strengths, and to reduce the inherent dependence on vessel orientation. The sensitivities of the sequences at both field strengths are compared, theoretically and experimentally, in order to quantify the benefit of imaging at ultra-high-field. Subjects with multiple sclerosis (MS) are scanned at both field strengths, using the optimised sequence parameters, as well as those used in previously published work, and the optimisation is shown to improve the detection of veins within lesions. PMID:22138119

  12. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  13. Design and Simulation of a Birdcage Coil using CST Studio Suite for Application at 7T

    NASA Astrophysics Data System (ADS)

    Palau Tomas, Bernat; Li, Houmin; Anjum, M. R.

    2013-12-01

    This work describes the study of coils for Magnetic Resonance Imaging (MRI) applications. The principal objective is the design of a birdcage Radio Frequency (RF) coil to use in a 7 Tesla (7T) scanner. Higher strength field generates a better SNR and increased chemical shift effect, improving spectral fat suppression and spectroscopy. Moreover, a better SNR increases the spatial resolution or reduces the imaging time. This research work presented recent developments based on high field 7T design using CST studio. The birdcage coil achieves circular polarization and generates a high homogeneous radio frequency magnetic field under many conditions. Design of a Birdcage coil for a 7T to obtain the images from s mall animals (i.e. mouse). It opens the door to design and construct a Birdcage coil for a 7T to obtain human brain images. Firstly we design a birdcage coil then the results are obtained with simulator CST Wave Studio, creating a 3D model and generating a simulation. Finally the parameters are re adjusted to obtain our desired Larmor frequency 298.2 MHz for a correct operation in 7T. This research work demonstrates the theoretical results from our design and shows the designed antenna behavior.

  14. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner

    PubMed Central

    Assis, Zarina Abdul; Saini, Jitender; Ranjan, Manish; Gupta, Arun Kumar; Sabharwal, Paramveer; Naidu, Purushotham R

    2015-01-01

    Context: Primary intracranial tumors in children are commonly located in the posterior fossa. Conventional MRI offers limited information regarding the histopathological type of tumor which is essential for better patient management. Aims: The purpose of the study was to evaluate the usefulness of advanced MR imaging techniques like diffusion tensor imaging (DTI) in distinguishing the various histopathological types of posterior fossa tumors in children. Settings and Design: DTI was performed on a 3T MRI scanner in 34 untreated children found to have posterior fossa lesions. Materials and Methods: Using third party software, various DTI parameters [apparent diffusion coefficient (ADC), fractional anisotropy (FA), radial diffusivity, planar index, spherical index, and linear index] were calculated for the lesion. Statistical Analysis Used: Data were subjected to statistical analysis [analysis of variance (ANOVA)] using SPSS 15.0 software. Results: We observed significant correlation (P < 0.01) between ADC mean and maximum, followed by radial diffusivity (RD) with the histopathological types of the lesions. Rest of the DTI parameters did not show any significant correlation in our study. Conclusions: The results of our study support the hypothesis that most cellular tumors and those with greater nuclear area like medulloblastoma would have the lowest ADC values, as compared to less cellular tumors like pilocytic astrocytoma. PMID:26752824

  15. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  16. Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7T Whole Body MRI Magnet

    SciTech Connect

    Quettier, Lionel

    2010-06-01

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working at 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.

  17. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms

    PubMed Central

    Abdel-Rehim, S.; Bagirathan, S.; Al-Benna, S.; O’Boyle, C.

    2014-01-01

    Summary Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  18. Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T

    NASA Astrophysics Data System (ADS)

    Tsang, Adrian; Stobbe, Robert W.; Beaulieu, Christian

    2013-05-01

    Off-resonance can result in signal loss on triple-quantum-filtered (TQF) sodium images. Three correction methods have been proposed to mitigate this problem, but their effectiveness and necessity has not yet been evaluated for human brain. This evaluation is warranted given the doubling or quadrupling of scan length without the expected signal-to-noise ratio (SNR) benefit. First, simulations and agar gel experiments showed that the off-resonance effects on signal loss were asymmetric about on-resonance. Second, the two scan length doubling correction methods were tested for two sets of TQF acquisition parameters in 10 healthy volunteers at 4.7 Tesla. Using only manual shimming on the sodium signal and a 3-pulse TQF sequence with an optimal preparation time value of 6 ms, the majority of brain tissue voxels (87-94% depending on sequence parameters) experienced B0 inhomogeneity amounting to less than 10% signal losses. Relative signal intensities of 0.96 ± 0.04 and 0.98 ± 0.02 were measured in these voxels relative to on-resonant voxels for SNR-optimized and standard TQF parameters. The remaining brain voxels in regions with known susceptibility problems suffered more substantial signal losses, which were partially recovered with the correction methods. At field strengths below 4.7 T, at similar ranges of offset frequencies at higher fields and in typical volunteers, B0 correction appears unnecessary for TQF analysis in most of the brain. In many cases where regions with known susceptibility issues are not of concern, a doubling of scan time may be better spent to either improve SNR or spatial resolution in the TQF sodium images.

  19. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI

    PubMed Central

    Hu, Xiaoqing; Chen, Xiao; Liu, Xin; Zheng, Hairong

    2014-01-01

    An 8-channel planar phased array was proposed based on the common-mode differential-mode (CMDM) structure for ultrahigh field MRI. The parallel imaging performance of the 8-channel CMDM planar array was numerically investigated based on electromagnetic simulations and Cartesian sensitivity encoding (SENSE) reconstruction. The signal-to-noise ratio (SNR) of multichannel images combined using root-sum-of-squares (rSoS) and covariance weighted root-sum-of-squares (Cov-rSoS) at various reduction factors were compared between 8-channel CMDM array and 4-channel CM and DM array. The results of the study indicated the 8-channel CMDM array excelled the 4-channel CM and DM in SNR. The g-factor maps and artifact power were calculated to evaluate parallel imaging performance of the proposed 8-channel CMDM array. The artifact power of 8-channel CMDM array was reduced dramatically compared with the 4-channel CM and DM arrays demonstrating the parallel imaging feasibility of the CMDM array. PMID:24649433

  20. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner.

    PubMed

    Mériaux, Sébastien; Boucher, Marianne; Marty, Benjamin; Lalatonne, Yoann; Prévéral, Sandra; Motte, Laurence; Lefèvre, Christopher T; Geffroy, Françoise; Lethimonnier, Franck; Péan, Michel; Garcia, Daniel; Adryanczyk-Perrier, Géraldine; Pignol, David; Ginet, Nicolas

    2015-05-01

    The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T₂-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water-dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r₂ four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T₂(*) -weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 μmoliron kg(-1)), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy-to-produce biocompatible contrast agents derived from bacterial magnetosomes. PMID:25676134

  1. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.

    PubMed

    Connell, Ian R O; Gilbert, Kyle M; Abou-Khousa, Mohamed A; Menon, Ravi S

    2015-04-01

    Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods. PMID:25415982

  2. MRI scanner variability studies using a semi-automated analysis system.

    PubMed

    Hyde, R J; Ellis, J H; Gardner, E A; Zhang, Y; Carson, P L

    1994-01-01

    Due to the unique design of the Parallel Rod Test Object (PRoTO) and the associated semi-automated analysis program, it was necessary to test it extensively for precision and accuracy, and preliminarily for utility, before its distribution for wider use in MRI system quality control (QC). The test object and analysis program measured the desired quantities reproducibly and they accurately measured predicted changes from intentionally adjusted imaging system parameters, yielding sensitivity of the various test measures to deviation in the system operating parameters. From a single scan of the most recent revision of the test object, multiple quantitative quality control measures were obtained throughout the scanning volume on two MR imaging systems over periods of six and twelve months, respectively. From these and earlier trials, an initial indication was obtained of which performance measures are worth monitoring for QC. This experience suggests that signal-to-noise ratio (SNR) and distortion (including display scale) should be monitored but not necessarily the resolution. The latter was only found to alter at the same time or later than other parameters such as SNR had changed. Slice thickness was found to vary on some units and this measure was also used in normalizing the SNR by voxel volume. SNR, distortion, and resolution measurements using field-echo sequences were less stable than those using spin-echo sequences. Use of this QC program to test a wide variety of image quality measures allowed timely assessment of the long-term variability of the units tested. Long-term variability may become among the most important measures for comparison of system performance and maintenance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7997096

  3. A job interview in the MRI scanner: How does indirectness affect addressees and overhearers?

    PubMed

    Bašnáková, Jana; van Berkum, Jos; Weber, Kirsten; Hagoort, Peter

    2015-09-01

    In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2014). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee

  4. Interventional loopless antenna at 7 T.

    PubMed

    Ertürk, Mehmet Arcan; El-Sharkawy, Abdel-Monem M; Bottomley, Paul A

    2012-09-01

    The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T. Here, for the first time, the signal-to-noise ratio performance and radiofrequency safety of the loopless antenna are investigated both theoretically, using the electromagnetic method-of-moments, and experimentally in a standard 7 T human scanner. The results are compared with equivalent 3 T devices. An absolute signal-to-noise ratio gain of 5.7 ± 1.5-fold was realized at 7 T vs. 3 T: more than 20-fold higher than at 1.5 T. The effective field-of-view area also increased approximately 10-fold compared with 3 T. Testing in a saline gel phantom suggested that safe operation is possible with maximum local 1-g average specific absorption rates of <12 W kg(-1) and temperature increases of <1.9°C, normalized to a 4 W kg(-1) radiofrequency field exposure at 7 T. The antenna did not affect the power applied to the scanner's transmit coil. The signal-to-noise ratio gain enabled magnetic resonance imaging microscopy at 40-50 μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-field-of-view or endoscopic magnetic resonance imaging for targeted intervention in focal disease. PMID:22161992

  5. Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners.

    PubMed

    Bonutti, F; Tecchio, M; Maieron, M; Trevisan, D; Negro, C; Calligaris, F

    2016-03-01

    The purpose of this work is to give a contribution to the construction of a comprehensive knowledge of the exposure levels to gradient magnetic fields (GMF) in terms of the weighed peak (WP), especially for 3 Tesla scanners for which there are still few works available in the literature. A new generation probe for the measurement of electromagnetic fields in the range of 1 Hz-400 kHz was used to assess the occupational exposure levels to the GMF for 1.5 and 3.0 Tesla MRI body scanners, using the method of the WP according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) approach. The probe was placed at a height of 1.1 m, close to the MRI scanners, where operators could stay during some medical procedures with particular issues. The measurements were performed for a set of typical acquisition sequences for body (liver) and head exams. The measured values of WP were in compliance with ICNIRP 2010 reference levels for occupational exposures. PMID:25987585

  6. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  7. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    SciTech Connect

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G.

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  8. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG.

    PubMed

    Kobald, S Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-01-01

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention. PMID:27324456

  9. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG

    PubMed Central

    Kobald, S. Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-01-01

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention. PMID:27324456

  10. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    PubMed

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  11. Time-efficient interleaved human (23)Na and (1)H data acquisition at 7 T.

    PubMed

    de Bruin, Paul W; Koken, Peter; Versluis, Maarten J; Aussenhofer, Sebastian A; Meulenbelt, Ingrid; Börnert, Peter; Webb, Andrew G

    2015-10-01

    The aim of this study was to implement and evaluate a flexible and time-efficient interleaved imaging approach for the acquisition of proton and sodium images of the human knee at 7 T within a clinically relevant timescale. A flexible software framework was established which allowed the interleaving of multiple, different, fully specific absorption ratio (SAR)-validated scans. The system was able to switch between these different scans at flexible time points. The practical example presented consists of interleaved proton (Dixon imaging and T2* mapping) and sodium (mapping the sodium content and fluid-suppressed component separately) sequences with the key idea to perform proton MRI whilst the sodium nuclei relax towards thermal equilibrium, and vice versa. Comparisons were made between these four scans being acquired sequentially in the normal mode of scanner operation and those acquired in an interleaved fashion. Images acquired in the interleaved mode were very similar to those acquired in sequential scans with no image artifacts produced by the slight intra-sequence variation in steady-state magnetization. A reduction in scanning time of almost a factor of two was established using the interleaved scans, allowing such a protocol to be completed within 30 min. Phantom experiments and in vivo scans performed in healthy volunteers and in one patient proved the basic feasibility of this approach. This approach for the interleaving of multiple proton and sodium scans, each with different contrasts, is an efficient method for the design of new practical clinical protocols for sodium MRI. PMID:26269329

  12. In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner.

    PubMed

    Zhang, Z; van den Bos, E J; Wielopolski, P A; de Jong-Popijus, M; Bernsen, M R; Duncker, D J; Krestin, G P

    2005-09-01

    Iron oxide-labelled, single, living human umbilical vein endothelial cells (HUVECs) were imaged over time in vitro using a clinical 3.0-T magnetic resonance (MR) microscopy system. Labelling efficiency, toxicity, cell viability, proliferation and differentiation were assessed using flow cytometry, magnetic cell sorting and a phenanthroline assay. MR images were compared with normal light and fluorescence microscopy. Efficient uptake of iron oxide into HUVECs was shown, although with higher label uptake dose-dependent cytotoxic effects were observed, affecting cell viability. For MR imaging, a T2* weighted three-dimensional protocol was used with in-plane resolution of 39 x 48 microm2 and 100-microm slices with a scan time of 13 min. MRI could detect living cells in standard culture dishes at single-cell resolution, although label loss was observed that corresponded with the intracellular iron measurements. MR microscopy using iron oxide labels is a promising tool for studying HUVEC migration and cell biology in vitro and in vivo, but possible toxic effects of label uptake and loss of label over time should be taken into account. PMID:16096808

  13. Susceptibility-weighted MR Imaging of Radiation Therapy-induced Cerebral Microbleeds in Patients with Glioma: A Comparison Between 3T and 7T

    PubMed Central

    Bian, Wei; Hess, Christopher P.; Chang, Susan M.; Nelson, Sarah J.; Lupo, Janine M.

    2016-01-01

    Introduction Cerebral microbleeds have been observed in normal-appearing brain tissue of patients with glioma years after receiving radiation therapy. The contrast of these paramagnetic lesions varies with field strength due to differences in the effects of susceptibility. The purpose of this study was to compare 3T and 7T MRI as platforms for detecting cerebral microbleeds in patients treated with radiotherapy using SWI. Methods SWI was performed with both 3T and 7T MR scanners on 10 patients with glioma who had received prior radiotherapy. Imaging sequences were optimized to obtain data within a clinically acceptable scan time. Both T2*-weighted magnitude images and SWI data were reconstructed, minimum-intensity projection was implemented, and microbleeds were manually identified. The number of microbleeds was counted and compared among datasets. Results Significantly more microbleeds were identified on SWI than magnitude images at both 7T (p=0.002) and 3T (p=0.023). 7T SWI detected significantly more microbleeds than 3T SWI for 7 out of 10 patients who had tumors located remote from deep brain regions (p=0.016), but when the additional 3 patients with more inferior tumors were included, the difference was not significant. Conclusion SWI is more sensitive for detecting microbleeds than magnitude images at both 3T and 7T. For areas without heightened susceptibility artifacts, 7T SWI is more sensitive to detecting radiation therapy-induced microbleeds than 3T SWI. Tumor location should be considered in conjunction with field strength when selecting the most appropriate strategy for imaging microbleeds. PMID:24281386

  14. Skin and proximity effects in the conductors of split gradient coils for a hybrid Linac-MRI scanner

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Lopez, Hector Sanchez; Freschi, Fabio; Smith, Elliot; Li, Yu; Fuentes, Miguel; Liu, Feng; Repetto, Maurizio; Crozier, Stuart

    2014-05-01

    In magnetic resonance imaging (MRI), rapidly changing gradient fields are applied to encode the magnetic resonance signal with spatial position; however eddy currents are induced in the surrounding conducting structures depending on the geometry of the conductor and the excitation waveform. These alternating fields change the spatial profile of the current density within the coil track with the applied frequencies of the input waveform and by their proximity to other conductors. In this paper, the impact of the conductor width and the excited frequency over the parameters that characterise the performance of split transverse and longitudinal gradient coils are studied. Thirty x-gradient coils were designed using a “free-surface” coil design method and the track width was varied from 1 mm to 30 mm with an increment value of 1 mm; a frequency sweep analysis in the range of 100 Hz to 10 kHz was performed using the multi-layer integral method (MIM) and parameters such as power loss produced by the coil and generated in the cryostat, inductance, coil efficiency (field strength/operating current), magnetic field profile produced by the coil and the eddy currents were studied. An experimental validation of the theoretical model was performed on an example coil. Coils with filamentary conductor segments were also studied to compare the simulated parameters with those produced by coils with a finite track. There was found to be a significant difference between the parameters calculated using filamentary coils and those obtained when the coil is simulated using finite size tracks. A wider track width produces coil with superior efficiency and low resistance; however, due to the skin effect, the power loss increases faster in wider tracks than in those generated in coils with narrow tracks. It was demonstrated that rapidly changing current paths must be avoided in order to mitigate the power loss and the spatial asymmetry in the current density profile. The decision of

  15. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: a comparison with gradient-echo EPI using a color-word Stroop task.

    PubMed

    Boyacioğlu, Rasim; Schulz, Jenni; Müller, Nils C J; Koopmans, Peter J; Barth, Markus; Norris, David G

    2014-08-15

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo (GE) EPI multiband sequence (TR of 1.4 s) using a color-word Stroop task. PINS RF pulses were used for refocusing to reduce RF amplitude requirements and SAR, summed and phase-optimized standard pulses were used for excitation enabling a transverse or oblique slice orientation. The distortions were minimized with the use of parallel imaging in the phase encoding direction and a post-acquisition distortion correction. In general, GE-EPI shows higher efficiency and higher CNR in most brain areas except in some parts of the visual cortex and superior frontal pole at both the group and individual-subject levels. Gradient-echo EPI was able to detect robust activation near the air/tissue interfaces such as the orbito-frontal and subcortical regions due to reduced intra-voxel dephasing because of the thin slices used and high in-plane resolution. PMID:24736172

  16. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  17. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  18. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  19. SU-E-QI-19: Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model

    SciTech Connect

    Chen, X; Chen, L; Hensley, H; Cvetkovic, D; Fan, J; Ma, C; Zhang, C

    2014-06-15

    Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on the tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.

  20. Cylindrical Scanner

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  1. Cylindrical Scanner

    SciTech Connect

    Hall, Thomas E.

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.

  2. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  3. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  4. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging. PMID:25920367

  5. Coil combination of multichannel MRSI data at 7 T: MUSICAL.

    PubMed

    Strasser, B; Chmelik, M; Robinson, S D; Hangel, G; Gruber, S; Trattnig, S; Bogner, W

    2013-12-01

    The goal of this study was to evaluate a new method of combining multi-channel (1)H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the (1)H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil (1)H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér-Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér-Rao lower bounds (-34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in (1)H MRSI of the human brain at 7 T, and could be extended to other (1)H MRSI techniques. PMID:24038331

  6. Vestibular Effects of a 7 Tesla MRI Examination Compared to 1.5 T and 0 T in Healthy Volunteers

    PubMed Central

    Theysohn, Jens M.; Kraff, Oliver; Eilers, Kristina; Andrade, Dorian; Gerwig, Marcus; Timmann, Dagmar; Schmitt, Franz; Ladd, Mark E.; Ladd, Susanne C.; Bitz, Andreas K.

    2014-01-01

    Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or “postural instability” even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B0 (n = 20), 7 T in & out B0 (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B0. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B0) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B0 or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B0 exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or “over-compensation” of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. PMID:24658179

  7. Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers.

    PubMed

    Theysohn, Jens M; Kraff, Oliver; Eilers, Kristina; Andrade, Dorian; Gerwig, Marcus; Timmann, Dagmar; Schmitt, Franz; Ladd, Mark E; Ladd, Susanne C; Bitz, Andreas K

    2014-01-01

    Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or "postural instability" even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B0 (n = 20), 7 T in & out B0 (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B0. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B0) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B0 or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B0 exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or "over-compensation" of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. PMID:24658179

  8. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  9. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    SciTech Connect

    Fischbach, Frank; Bunke, Juergen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.

  10. Focal Cortical Lesion Detection in Multiple Sclerosis: 3T DIR versus 7T FLASH-T2*

    PubMed Central

    Nielsen, A. Scott; Kinkel, R. Philip; Tinelli, Emanuele; Benner, Thomas; Cohen-Adad, Julien; Mainero, Caterina

    2014-01-01

    Purpose To evaluate the inter-rater agreement of cortical lesion detection using 7T FLASH-T2* and 3T DIR sequences. Materials and Methods Twenty-six patients with multiple sclerosis were scanned on a human 7T (Sidemen’s) and 3T MRI (TIM Trio, Sidemen’s) to acquire 3T DIR/MEMPR and 7T FLASH-T2* sequences. Four independent reviewers scored and categorized cortical lesions in the bilateral pre-central gyri (motor strips) as leukocortical, intracortical, or subpial. Inter-rater agreement was assessed according to lesion category using the kappa statistic. The sensitivity of recent MAGNIMS consensus guidelines for cortical lesion detection using 3T DIR was assessed with 7T FLASH-T2* as the reference gold standard. Results Inter-rater agreement at 7T was excellent compared to 3T (k=0.97 vs. 0.12). FLASH-T2* at 7T detected subpial lesions while 3T DIR did not. The predicted sensitivity of 3T DIR sequence for cortical lesions in vivo is modest (range of 13.6 to 18.3%). Conclusion 7T FLASH-T2* detects more cortical—particularly subpial—lesions compared to 3T DIR. In the absence of DIR/post-mortem data, 7T FLASH-T2* is a suitable gold-standard instrument and should be incorporated into future consensus guidelines. PMID:22045554

  11. What is Scanner and NonScanner?

    Atmospheric Science Data Center

    2014-12-08

    ... (ERBE ADM). The scanner is designed for regional to large scale analysis, and due to the smaller footprint, the scanner product is able ... The large footprint (1000 km) is designed only for large scale analysis, thus products provide only all-sky data. Because the nonscanner ...

  12. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  13. 26 CFR 1.904-7T - Transition rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Transition rules (temporary). 1.904-7T Section 1.904-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Income from Sources Without the United States § 1.904-7T Transition rules...

  14. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction.

    PubMed

    Stucht, Daniel; Danishad, K Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  15. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  16. 3DQRS: A method to obtain reliable QRS complex detection within high field MRI using 12-lead ECG traces

    PubMed Central

    Gregory, T. Stan; Schmidt, Ehud J.; Zhang, Shelley Hualei; Tse, Zion Tsz Ho

    2014-01-01

    Purpose To develop a technique that accurately detects the QRS complex in 1.5T, 3T and 7T MRI scanners.” Theory and Methods During early systole, blood is rapidly ejected into the aortic arch, traveling perpendicular to the MRI’s main field, which produces a strong voltage (VMHD) that eclipses the QRS complex. Greater complexity arises in arrhythmia patients, since VMHD can vary between sinus-rhythm and arrhythmic beats. The 3DQRS method uses a kernel consisting of 6 ECG precordial leads, compiled from a 12-lead ECG performed outside the magnet. The kernel is cross-correlated with signals acquired inside the MRI in order to identify the QRS complex in real time. The 3DQRS method was evaluated against a Vectorcardiogram-based (VCG) approach in 2 Premature Ventricular Contraction (PVC) and 2 Atrial Fibrillation (AF) patients, a healthy exercising athlete and 8 healthy volunteers, within 1.5T and 3T MRIs, using a prototype MRI-conditional 12 lead ECG system. 2 volunteers were recorded at 7T using a Holter recorder. Results For QRS complex detection, 3DQRS subject-averaged sensitivity levels, relative to VCG were: 1.5T (100% vs. 96.7%), 3T (98.9% vs. 92.2%), 7T (96.2% vs. 77.7%). Conclusions The 3DQRS method was shown to be more effective in cardiac gating than a conventional VCG-based method. PMID:24453116

  17. Sodium MRI: methods and applications.

    PubMed

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R; Jerschow, Alexej

    2014-05-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges, limitations, and current and potential new applications of sodium MRI. PMID:24815363

  18. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  19. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping.

    PubMed

    Wei, Hongjiang; Xie, Luke; Dibb, Russell; Li, Wei; Decker, Kyle; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2016-08-15

    The proper microstructural arrangement of complex neural structures is essential for establishing the functional circuitry of the brain. We present an MRI method to resolve tissue microstructure and infer brain cytoarchitecture by mapping the magnetic susceptibility in the brain at high resolution. This is possible because of the heterogeneous magnetic susceptibility created by varying concentrations of lipids, proteins and irons from the cell membrane to cytoplasm. We demonstrate magnetic susceptibility maps at a nominal resolution of 10-μm isotropic, approaching the average cell size of a mouse brain. The maps reveal many detailed structures including the retina cell layers, olfactory sensory neurons, barrel cortex, cortical layers, axonal fibers in white and gray matter. Olfactory glomerulus density is calculated and structural connectivity is traced in the optic nerve, striatal neurons, and brainstem nerves. The method is robust and can be readily applied on MRI scanners at or above 7T. PMID:27181764

  20. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  1. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  2. Scanner matching optimization

    NASA Astrophysics Data System (ADS)

    Kupers, Michiel; Klingbeil, Patrick; Tschischgale, Joerg; Buhl, Stefan; Hempel, Fritjof

    2009-03-01

    Cost of ownership of scanners for the manufacturing of front end layers is becoming increasingly expensive. The ability to quickly switch the production of a layer to another scanner in case it is down is important. This paper presents a method to match the scanner grids in the most optimal manner so that use of front end scanners in effect becomes interchangeable. A breakdown of the various components of overlay is given and we discuss methods to optimize the matching strategy in the fab. A concern here is how to separate the scanner and process induced effects. We look at the relative contributions of intrafield and interfield errors caused by the scanner and the process. Experimental results of a method to control the scanner grid are presented and discussed. We compare the overlay results before and after optimizing the scanner grids and show that the matching penalty is reduced by 20%. We conclude with some thoughts on the need to correct the remaining matching errors.

  3. Tunable Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Montagu, Jean I.

    1987-01-01

    The most attractive features of resonant scanners are high reliability and eternal life as well as extremely low wobble and jitter. Power consumption is also low, electronic drive is simple, and the device is capable of handling large beams. All of these features are delivered at a low cost in a small package. The resonant scanner's use in numerous high precision applications, however, has been limited because of the difficulty in controlling its phase and resonant frequency. This paper introduces the concept of tunable/controllable resonant scanners, discusses their features, and offers a number of tuning techniques. It describes two angular scanner designs and presents data on tunable range and life tests. It also reviews applications for these new tunable resonant scanners that preserve the desirable features of earlier models while removing the old problems with synchronization or time base flexibility. The three major types of raster scanning applications where the tunable resonant scanner may be of benefit are: 1. In systems with multiple time bases such as multiple scanner networks or with scanners keyed to a common clock (the line frequency or data source) or a machine with multiple resonant scanners. A typical application is image and text transmission, also a printer with a large data base where a buffer is uneconomical. 2. In systems sharing data processing or laser equipment for reasons of cost or capacity, typically multiple work station manufacturing processes or graphic processes. 3. In systems with extremely precise time bases where the frequency stability of conventional scanners cannot be relied upon.

  4. Accuracy of q-space related parameters in MRI: simulations and phantom measurements.

    PubMed

    Lätt, Jimmy; Nilsson, Markus; Malmborg, Carin; Rosquist, Hannah; Wirestam, Ronnie; Ståhlberg, Freddy; Topgaard, Daniel; Brockstedt, Sara

    2007-11-01

    The accuracy of q-space measurements was evaluated at a 3.0-T clinical magnetic resonance imaging (MRI) scanner, as compared with a 4.7-T nuclear magnetic resonance (NMR) spectrometer. Measurements were performed using a stimulated-echo pulse-sequence on n-decane as well as on polyethylene glycol (PEG) mixed with different concentrations of water, in order to obtain bi-exponential signal decay curves. The diffusion coefficients as well as the modelled diffusional kurtosis K(fit) were obtained from the signal decay curve, while the full-width at half-maximum (FWHM) and the diffusional kurtosis K were obtained from the displacement distribution. Simulations of restricted diffusion, under conditions similar to those obtainable with a clinical MRI scanner, were carried out assuming various degrees of violation of the short gradient pulse (SGP) condition and of the long diffusion time limit. The results indicated that an MRI system can not be used for quantification of structural sizes less than about 10 microm by means of FWHM since the parameter underestimates the confinements due to violation of the SGP condition. However, FWHM can still be used as an important contrast parameter. The obtained kurtosis values were lower than expected from theory and the results showed that care must be taken when interpreting a kurtosis estimate deviating from zero. PMID:18041259

  5. Early Knee Changes in Dancers Identified by Ultra High Field 7 Tesla MRI

    PubMed Central

    Chang, Gregory; Diamond, Matthew; Nevsky, Gregory; Regatte, Ravinder R.; Weiss, David S.

    2012-01-01

    Introduction We aimed to determine whether a unique, ultra high-field 7 Tesla (T) MRI scanner could detect occult cartilage and meniscal injuries in asymptomatic female dancers. Materials and Methods This study had institutional review board approval. We recruited eight pre-professional female dancers and nine non-athletic, female controls. We scanned the dominant knee on a 7T MRI scanner using a 3D-FLASH sequence and a proton density, fast spin-echo sequence to evaluate cartilage and menisci, respectively. Two radiologists scored cartilage (International Cartilage Repair Society classification) and meniscal (Stoller classification) lesions. We applied two-tailed z- and t-tests to determine statistical significance. Results There were no cartilage lesions in dancers or controls. For the medial meniscus, the dancers compared to controls demonstrated higher mean MRI score (2.38±0.61 vs. 1.0±0.97, p<0.0001) and higher frequency of mean grade 2 lesions (88% vs. 11%, p<0.01). For the lateral meniscus, there was no difference in score (0.5±0.81 vs. 0.5±0.78, p=0.78) in dancers compared to controls. Discussion Asymptomatic dancers demonstrate occult medial meniscal lesions. Because this has been described in early osteoarthritis, close surveillance of dancers’ knee symptoms and function with appropriate activity modification may help maintain their long-term knee health. PMID:23346987

  6. Investigation of Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Xiang, Lian Qin

    Holographic scanners are capable of challenging both the speed and resolution of polygon scanners. This work investigates, in detail, the design and operation of a holographic scanner with an aspherical reflector. The characteristics of this holographic scanner are presented through theoretical analyses and computer simulation. The calculated data and the experimental results show that this system has excellent scan line straightness and scan linearity. The influence of the eccentricity and wobble of the hologram on the quality of the scan lines can be minimized by proper choice of system parameters. This unique system can readily perform 1-D, 2 -D, 3-D and selective scans. These features make suitable applications for robot vision, part inspection, high speed printing, and input/output devices for computers. If the hologram is operating in the reflective mode, there are no transmissive components in this scanner. It can be used with acoustic waves and electromagnetic waves with longer wavelengths, such as infrared, microwaves, millimeter waves. Since it is difficult to find a suitable recording material for these waves, a technique for making computer -generated holograms has also been developed here. The practical considerations for making quality holograms are summarized. An improved coating process for photoresist and a novel anti-reflection setup for the hologram plate are developed. The detailed experimental processes are included. The planar grating scanner for one dimensional, two-dimensional and cross-scanning patterns is analyzed and demonstrated. A comparison is made with two other two-dimensional scanners.

  7. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  8. Whole-body imaging at 7T: preliminary results.

    PubMed

    Vaughan, J Thomas; Snyder, Carl J; DelaBarre, Lance J; Bolan, Patrick J; Tian, Jinfeng; Bolinger, Lizann; Adriany, Gregor; Andersen, Peter; Strupp, John; Ugurbil, Kamil

    2009-01-01

    The objective of this study was to investigate the feasibility of whole-body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the "landscape" of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. PMID:19097214

  9. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  10. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    PubMed

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. PMID

  11. MRI Catheterization in Cardiopulmonary Disease

    PubMed Central

    Rogers, Toby; Ratnayaka, Kanishka

    2014-01-01

    Diagnosis and prognostication in patients with complex cardiopulmonary disease can be a clinical challenge. A new procedure, MRI catheterization, involves invasive right-sided heart catheterization performed inside the MRI scanner using MRI instead of traditional radiographic fluoroscopic guidance. MRI catheterization combines simultaneous invasive hemodynamic and MRI functional assessment in a single radiation-free procedure. By combining both modalities, the many individual limitations of invasive catheterization and noninvasive imaging can be overcome, and additional clinical questions can be addressed. Today, MRI catheterization is a clinical reality in specialist centers in the United States and Europe. Advances in medical device design for the MRI environment will enable not only diagnostic but also interventional MRI procedures to be performed within the next few years. PMID:24394821

  12. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  13. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  14. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  15. Element decoupling of 7T dipole body arrays by EBG metasurface structures: Experimental verification.

    PubMed

    Hurshkainen, Anna A; Derzhavskaya, Tatyana A; Glybovski, Stanislav B; Voogt, Ingmar J; Melchakova, Irina V; van den Berg, Cornelis A T; Raaijmakers, Alexander J E

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298MHz. To improve the detection range of the B1+ field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7T MRI machine indicated redistribution of the B1+ field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14dB accompanied by a strong field redistribution. In contrast, when put at a

  16. Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hurshkainen, Anna A.; Derzhavskaya, Tatyana A.; Glybovski, Stanislav B.; Voogt, Ingmar J.; Melchakova, Irina V.; van den Berg, Cornelis A. T.; Raaijmakers, Alexander J. E.

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7 T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7 T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7 T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298 MHz. To improve the detection range of the B1 + field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7 T MRI machine indicated redistribution of the B1 + field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14 dB accompanied by a strong field redistribution. In contrast, when put

  17. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  18. SEMI-AUTOMATIC SEGMENTATION OF BRAIN SUBCORTICAL STRUCTURES FROM HIGH-FIELD MRI

    PubMed Central

    Kim, Jinyoung; Lenglet, Christophe; Sapiro, Guillermo; Harel, Noam

    2015-01-01

    Volumetric segmentation of subcortical structures such as the basal ganglia and thalamus is necessary for non-invasive diagnosis and neurosurgery planning. This is a challenging problem due in part to limited boundary information between structures, similar intensity profiles across the different structures, and low contrast data. This paper presents a semi-automatic segmentation system exploiting the superior image quality of ultra-high field (7 Tesla) MRI. The proposed approach handles and exploits multiple structural MRI modalities. It uniquely combines T1-weighted (T1W), T2-weighted (T2W), diffusion, and susceptibility-weighted (SWI) MRI and introduces a dedicated new edge indicator function. In addition to this, we employ prior shape and configuration knowledge of the subcortical structures in order to guide the evolution of geometric active surfaces. Neighboring structures are segmented iteratively, constraining over-segmentation at their borders with a non-overlapping penalty. Extensive experiments with data acquired on a 7T MRI scanner demonstrate the feasibility and power of the approach for the segmentation of basal ganglia components critical for neurosurgery applications such as deep brain stimulation. PMID:25192576

  19. Comparison between optimized GRE and RARE sequences for 19F MRI studies

    NASA Astrophysics Data System (ADS)

    Soffientini, Chiara D.; Mastropietro, Alfonso; Caffini, Matteo; Cocco, Sara; Zucca, Ileana; Scotti, Alessandro; Baselli, Giuseppe; Bruzzone, Maria Grazia

    2014-03-01

    In 19F-MRI studies limiting factors are the presence of a low signal due to the low concentration of 19F-nuclei, necessary for biological applications, and the inherent low sensitivity of MRI. Hence, acquiring images using the pulse sequence with the best signal to noise ratio (SNR) by optimizing the acquisition parameters specifically to a 19F compound is a core issue. In 19F-MRI, multiple-spin-echo (RARE) and gradient-echo (GRE) are the two most frequently used pulse sequence families; therefore we performed an optimization study of GRE pulse sequences based on numerical simulations and experimental acquisitions on fluorinated compounds. We compared GRE performance to an optimized RARE sequence. Images were acquired on a 7T MRI preclinical scanner on phantoms containing different fluorinated compounds. Actual relaxation times (T1, T2, T2*) were evaluated in order to predict SNR dependence on sequence parameters. Experimental comparisons between spoiled GRE and RARE, obtained at a fixed acquisition time and in steady state condition, showed RARE sequence outperforming the spoiled GRE (up to 406% higher). Conversely, the use of the unbalanced-SSFP showed a significant increase in SNR compared to RARE (up to 28% higher). Moreover, this sequence (as GRE in general) was confirmed to be virtually insensitive to T1 and T2 relaxation times, after proper optimization, thus improving marker independence from the biological environment. These results confirm the efficacy of the proposed optimization tool and foster further investigation addressing in-vivo applicability.

  20. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  1. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  2. Freestanding Complex Optical Scanners.

    ERIC Educational Resources Information Center

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  3. Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection

    PubMed Central

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [59Fe]-superparamagnetic iron oxide nanoparticles ([59Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. 59Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [59Fe]-SPIONs. The transverse relaxivity of [59Fe]-SPIONs (97±3 s-1mM-1) was characterized and found to be similar to non-radioactive SPIONs (72±10 s-1mM-1), indicating that 59Fe incorporation does not alter the SPIONs’ MRI contrast properties. [59Fe]-SPIONs were used to evaluate the nanoparticle biodistribution by ex vivo gamma counting and MRI. Nude mice (n=15) were injected with [59Fe]-SPIONs and imaged at various time points with 7T small animal MRI scanner. Ex vivo biodistribution was evaluated by tissue-based gamma counting. MRI signal contrast qualitatively correlates with the %ID/g of [59Fe]-SPIONs, with high contrast in liver (45±6%), medium contrast in kidneys (21±5%), and low contrast in brain (4±6%) at 24 hours. This work demonstrates the synthesis and in vivo application of intrinsically radiolabeled [59Fe]-SPIONs for bimodal detection and provides a proof of concept for incorporation of both gamma- and positron-emitting inorganic radionuclides into the core of metal based MRI contrast agent nanoparticles. PMID:25250204

  4. What Scanner products are available?

    Atmospheric Science Data Center

    2014-12-08

    ... There are single satellite and combined-satellite scanner products. The best source for these data is to order the ERBE scanner CD which gives all the S4G monthly mean 2.5 degree gridded data from ...

  5. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils. PMID:26952724

  6. Myelin contrast across lamina at 7T, ex-vivo and in-vivo dataset.

    PubMed

    Fracasso, Alessio; van Veluw, Susanne J; Visser, Fredy; Luijten, Peter R; Spliet, Wim; Zwanenburg, Jaco J M; Dumoulin, Serge O; Petridou, Natalia

    2016-09-01

    In this article we report the complete data obtained in-vivo for the paper: "Lines of Baillarger in vivo and ex-vivo: myelin contrast across lamina at 7T MRI and histology" (Fracasso et al., 2015) [1]. Single participant data (4 participants) from the occipital lobe acquisition are reported for axial, coronal and sagittal slices; early visual area functional localization and laminar profiles are reported. Data from whole brain images are reported and described (5 participants), for axial, coronal and sagittal slices. Laminar profiles from occipital, parietal and frontal lobes are reported. The data reported in this manuscript complements the paper (Fracasso et al., 2015) [1] by providing the full set of results from the complete pool of participants, on a single-participant basis. Moreover, we provide histological images from the ex-vivo sample reported in Fracasso et al. (2015) [1]. PMID:27508254

  7. Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization.

    PubMed

    Zong, Xiaopeng; Park, Sang Hyun; Shen, Dinggang; Lin, Weili

    2016-01-15

    Noninvasive imaging of perivascular spaces (PVSs) may provide useful insights into their role in normal brain physiology and diseases. Fast MRI sequences with sub-millimeter spatial resolutions and high contrast-to-noise ratio (CNR) are required for accurate delineation of PVS in human. To achieve the optimal condition for PVS imaging at 7T, we carried out detailed simulation and experimental studies to characterize the dependence of CNR on imaging sequences (T1 versus T2-weighted) and sequence parameters. In addition, PVSs were segmented semi-automatically, which revealed much larger numbers of PVSs in young healthy subjects (age 21-37years) than previously reported. To the best of our knowledge, our study provides, for the first time, detailed length, volume, and diameter distributions of PVS in the white matter and subcortical nuclei, which can serve as a reference for future studies of PVS abnormalities under diseased conditions. PMID:26520772

  8. Measurement of T1 of human arterial and venous blood at 7T

    PubMed Central

    Rane, S.; Gore, J.C.

    2012-01-01

    Techniques for measuring cerebral perfusion require accurate longitudinal relaxation (T1) of blood, a MRI parameter that is field dependent. T1 of arterial and venous human blood was measured at 7T using three different sources – pathology laboratory, blood bank and in vivo. The T1 of venous blood was measured from sealed samples from a pathology lab and in vivo. Samples from a blood bank were oxygenated and mixed to obtain different physiological concentrations of hematocrit and oxygenation. T1 relaxation times were estimated using a three-point fit to a simple inversion recovery equation. At 37° C, the T1 of blood at arterial pO2was 2.29 ± 0.1 s and 2.07 ± 0.12 at venous pO2. The in vivo T1 of venous blood, in three subjects, was slightly longer at 2.45 ± 0.11s. T1 of arterial and venous blood at 7T was measured and found to be significantly different. The T1 values were longer in vivo than in vitro. While the exact cause for the discrepancy is unknown, the additives in the blood samples, degradation during experiment, oxygenation differences, and the non-stagnant nature of blood in vivo could be potential contributors to the lower values of T1 in the venous samples. PMID:23102945

  9. Detection of Lactate with a Hadamard Slice Selected, Selective Multiple Quantum Coherence, Chemical Shift Imaging Sequence (HDMD-SelMQC-CSI) on a clinical MRI scanner: Application to Tumors and Muscle Ischemia

    PubMed Central

    Mellon, Eric A.; Lee, Seung-Cheol; Pickup, Stephen; Kim, Sungheon; Goldstein, Steven C.; Floyd, Thomas F.; Poptani, Harish; Delikatny, E. James; Reddy, Ravinder; Glickson, Jerry D.

    2010-01-01

    Lactate is an important metabolite in normal and malignant tissues detectable by NMR spectroscopy; however, it has been difficult to clinically detect the lactate methyl resonance because it is obscured by lipid resonances. The selective homonuclear multiple quantum coherence transfer (SelMQC) technique offers a method for distinguishing lipid and lactate resonances. We implemented a 3D SelMQC version with Hadamard slice selection and 2D phase encoding (HDMD-SelMQC-CSI) on a conventional clinical MR scanner. Hadamard slice selection is explained and demonstrated in vivo. This is followed by 1cm3 resolution lactate imaging with detection to 5 mM concentration in 20 minutes on a 3T clinical scanner. An analysis of quantum selection gradient duration and amplitude effects on lactate and lipid signal is presented. To demonstrate clinical feasibility, a 5 minute lactate scan of a patient with a non-Hodgkin's lymphoma in the superficial thigh is reported. The elevated lactate signal coincides with the T2-weighted image of this tumor. As a test of SelMQC sensitivity, a thigh tourniquet was applied to a normal volunteer and an increase in lactate was detected immediately after tourniquet flow constriction. In conclusion, the HDMD-SelMQC-CSI sequence is demonstrated on a phantom and in two lipid-rich, clinically relevant, in vivo conditions. PMID:19785016

  10. Novel technologies and configurations of superconducting magnets for MRI

    NASA Astrophysics Data System (ADS)

    Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao

    2013-09-01

    A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.

  11. LIGA Scanner Control Software

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  12. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  13. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  14. Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens.

    PubMed

    Ma, Ya-Jun; Chang, Eric Y; Bydder, Graeme M; Du, Jiang

    2016-07-01

    Ultrashort-TE (UTE) sequences can obtain signal directly from short-T2 , collagen-rich tissues. It is generally accepted that bound and free water can be detected with UTE techniques, but the ability to detect protons directly on the collagen molecule remains controversial. In this study, we investigated the potential of UTE sequences on a 3-T clinical scanner to detect collagen protons via freeze-drying and D2 O-H2 O exchange studies. Experiments were performed on bovine cortical bone and human Achilles tendon specimens, which were either subject to freeze-drying for over 66 h or D2 O-H2 O exchange for 6 days. Specimens were imaged using two- and three-dimensional UTE with Cones trajectory techniques with a minimum TE of 8 μs at 3 T. UTE images before treatment showed high signal from all specimens with bi-component T2 * behavior. Bovine cortical bone showed a shorter T2 * component of 0.36 ms and a longer T2 * component of 2.30 ms with fractions of 78.2% and 21.8% by volume, respectively. Achilles tendon showed a shorter T2 * component of 1.22 ms and a longer T2 * component of 15.1 ms with fractions of 81.1% and 18.9% by volume, respectively. Imaging after freeze-drying or D2 O-H2 O exchange resulted in either the absence or near-absence of signal. These results indicate that bound and free water are the sole sources of UTE signal in bovine cortical bone and human Achilles tendon samples on a clinical 3-T scanner. Protons on the native collagen molecule are not directly visible when imaged using UTE sequences. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27148693

  15. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  16. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  18. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    PubMed

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  19. MRI driven magnetic microswimmers.

    PubMed

    Kósa, Gábor; Jakab, Péter; Székely, Gábor; Hata, Nobuhiko

    2012-02-01

    Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach. PMID:22037673

  20. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T

    NASA Astrophysics Data System (ADS)

    Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam

    2015-06-01

    The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.

  1. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  2. Optical Scanner for Linear Arrays

    NASA Technical Reports Server (NTRS)

    Finkel, M. W.

    1986-01-01

    Optical scanner instantaneously reads contiguous lines forming scene or target in object plane. Reading active or passive and scans, continuous or discrete. Scans essentially linear with scan angle and symmetric about axial ray. Nominal focal error, resulting from curvature of scan, well within Rayleigh limit. Scanner specifically designed to be fully compatible with general requirements of linear arrays.

  3. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  4. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    SciTech Connect

    Wang Silun; Tryggestad, Erik; Zhou Tingting; Armour, Michael; Wen Zhibo; Fu Dexue; Ford, Eric; Zijl, Peter C.M. van; Zhou Jinyuan

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  5. Functional magnetic resonance imaging of the rat cerebellum during electrical stimulation of the fore- and hindpaw at 7 T

    NASA Astrophysics Data System (ADS)

    Peeters, Ronald; Verhoye, Marleen; Vos, Bart; De Schutter, Erik; Van der Linden, Anne-Marie

    1999-05-01

    Blood oxygenation level dependent contrast (BOLD) functional MRI responses at 7T were observed in the cerebellum of alpha- chloralose anesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing a high level of reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and medio-lateral band organization, more pronounced ipsilaterally. There was no overlap between the cerebellar activations caused by forepaw or hindpaw stimulation. Most remarkable was the overall horizontal organization of these responses: for both stimulation paradigms the patches and bands of activation were roughly positioned in either a cranial or caudal plane running antero-posteriorly through the whole cerebellum. This is the first fMRI study in the cerebellum of the rat. We relate our findings to the known projection patterns found with other techniques and to human fMRI studies. The horizontal organization found wasn't observed before in other studies using other techniques.

  6. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-7T Relationship to...

  7. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 9 2014-04-01 2014-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-7T Relationship to...

  8. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Miscellaneous Provisions § 1.892-7T Relationship to other Internal...

  9. Multiple single-point imaging (mSPI) as a tool for capturing and characterizing MR signals and repetitive signal disturbances with high temporal resolution: the MRI scanner as a high-speed camera.

    PubMed

    Bakker, Chris J G; van Gorp, Jetse S; Verwoerd, Jan L; Westra, Albert H; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R

    2013-09-01

    In this paper we aim to lay down and demonstrate the use of multiple single-point imaging (mSPI) as a tool for capturing and characterizing steady-state MR signals and repetitive disturbances thereof with high temporal resolution. To achieve this goal, various 2D mSPI sequences were derived from the nearest standard 3D imaging sequences by (i) replacing the excitation of a 3D slab by the excitation of a 2D slice orthogonal to the read axis, (ii) setting the readout gradient to zero, and (iii) leaving out the inverse Fourier transform in the read direction. The thus created mSPI sequences, albeit slow with regard to the spatial encoding part, were shown to result into a series of densely spaced 2D single-point images in the time domain enabling monitoring of the evolution of the magnetization with a high temporal resolution and without interference from any encoding gradients. The high-speed capabilities of mSPI were demonstrated by capturing and characterizing the free induction decays and spin echoes of substances with long T2s (>30 ms) and long and short T2*s (4 - >30 ms) and by monitoring the perturbation of the transverse magnetization by, respectively, a titanium cylinder, representing a static disturbance; a pulsed magnetic field gradient, representing a stimulus inherent to a conventional MRI experiment; and a pulsed electric current, representing an external stimulus. The results of the study indicate the potential of mSPI for assessing the evolution of the magnetization and, when properly synchronized with the acquisition, repeatable disturbances thereof with a temporal resolution that is ultimately limited by the bandwidth of the receiver, but in practice governed by the SNR of the experiment and the magnitude of the disturbance. Potential applications of mSPI can be envisaged in research areas that are concerned with MR signal behavior, MR system performance and MR evaluation of magnetically evoked responses. PMID:23759651

  10. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  11. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  12. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  13. Michigan experimental multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1972-01-01

    A functional description of a multispectral airborne scanner system that provides spectral bands along a single optical line of sight is reported. The airborne scanner consists of an optical telescope for scanning plane perpendicular to the longitudinal axis of the aircraft and radiation detectors for converting radiation to electrical signals. The system makes a linear transformation of input radiation to voltage recorded on analog magnetic tape.

  14. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  15. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  16. Low-Cost High-Performance MRI.

    PubMed

    Sarracanie, Mathieu; LaPierre, Cristen D; Salameh, Najat; Waddington, David E J; Witzel, Thomas; Rosen, Matthew S

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm(3) imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  17. Low-Cost High-Performance MRI

    PubMed Central

    Sarracanie, Mathieu; LaPierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5–3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  18. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  19. MRI Meets MPI: a bimodal MPI-MRI tomograph.

    PubMed

    Vogel, Patrick; Lother, Steffen; Rückert, Martin A; Kullmann, Walter H; Jakob, Peter M; Fidler, Florian; Behr, Volker C

    2014-10-01

    While magnetic particle imaging (MPI) constitutes a novel biomedical imaging technique for tracking superparamagnetic nanoparticles in vivo, unlike magnetic resonance imaging (MRI), it cannot provide anatomical background information. Until now these two modalities have been performed in separate scanners and image co-registration has been hampered by the need to reposition the sample in both systems as similarly as possible. This paper presents a bimodal MPI-MRI-tomograph that combines both modalities in a single system.MPI and MRI images can thus be acquired without moving the sample or replacing any parts in the setup. The images acquired with the presented setup show excellent agreement between the localization of the nanoparticles in MPI and the MRI background data. A combination of two highly complementary imaging modalities has been achieved. PMID:25291350

  20. Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T.

    PubMed

    van der Zwaag, Wietske; Marques, José P; Hergt, Martin; Gruetter, Rolf

    2009-10-01

    In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes. PMID:19261421

  1. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  2. Using fMRI to decode true thoughts independent of intention to conceal.

    PubMed

    Yang, Zhi; Huang, Zirui; Gonzalez-Castillo, Javier; Dai, Rui; Northoff, Georg; Bandettini, Peter

    2014-10-01

    Multi-variate pattern analysis (MVPA) applied to BOLD-fMRI has proven successful at decoding complicated fMRI signal patterns associated with a variety of cognitive processes. One cognitive process, not yet investigated, is the mental representation of "Yes/No" thoughts that precede the actual overt response to a binary "Yes/No" question. In this study, we focus on examining: (1) whether spatial patterns of the hemodynamic response carry sufficient information to allow reliable decoding of "Yes/No" thoughts; and (2) whether decoding of "Yes/No" thoughts is independent of the intention to respond honestly or dishonestly. To achieve this goal, we conducted two separate experiments. Experiment 1, collected on a 3T scanner, examined the whole brain to identify regions that carry sufficient information to permit significantly above-chance prediction of "Yes/No" thoughts at the group level. In Experiment 2, collected on a 7T scanner, we focused on the regions identified in Experiment 1 to examine the capability of achieving high decoding accuracy at the single subject level. A set of regions--namely right superior temporal gyrus, left supra-marginal gyrus, and left middle frontal gyrus--exhibited high decoding power. Decoding accuracy for these regions increased with trial averaging. When 18 trials were averaged, the median accuracies were 82.5%, 77.5%, and 79.5%, respectively. When trials were separated according to deceptive intentions (set via experimental cues), and classifiers were trained on honest trials, but tested on trials where subjects were asked to deceive, the median accuracies of these regions still reached 66%, 75%, and 78.5%. These results provide evidence that concealed "Yes/No" thoughts are encoded in the BOLD signal, retaining some level of independence from the subject's intentions to answer honestly or dishonestly. These findings also suggest the theoretical possibility for more efficient brain-computer interfaces where subjects only need to think

  3. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  4. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention.

    PubMed

    Krieger, Axel; Iordachita, Iulian I; Guion, Peter; Singh, Anurag K; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A; Camphausen, Kevin; Fichtinger, Gabor; Whitcomb, Louis L

    2011-11-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system-a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  5. 7 T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging. PMID:27008461

  6. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  7. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex. PMID:25788020

  8. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  9. Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1

    PubMed Central

    Polimeni, Jonathan R.; Fischl, Bruce; Greve, Douglas N.; Wald, Lawrence L.

    2010-01-01

    With sufficient image encoding, high-resolution fMRI studies are limited by the biological point-spread of the hemodynamic signal. The extent of this spread is determined by the local vascular distribution and by the spatial specificity of blood flow regulation, as well as by measurement parameters that (i) alter the relative sensitivity of the acquisition to activation-induced hemodynamic changes and (ii) determine the image contrast as a function of vessel size. In particular, large draining vessels on the cortical surface are a major contributor to both the BOLD signal change and to the spatial bias of the BOLD activation away from the site of neuronal activity. In this work, we introduce a laminar surface-based analysis method and study the relationship between spatial localization and activation strength as a function of laminar depth by acquiring 1 mm isotropic, single-shot EPI at 7 T and sampling the BOLD signal exclusively from the superficial, middle, or deep cortical laminae. We show that highly-accelerated EPI can limit image distortions to the point where a boundary-based registration algorithm accurately aligns the EPI data to the surface reconstruction. The spatial spread of the BOLD response tangential to the cortical surface was analyzed as a function of cortical depth using our surface-based analysis. Although sampling near the pial surface provided the highest signal strength, it also introduced the most spatial error. Thus, avoiding surface laminae improved spatial localization by about 40% at a cost of 36% in z-statistic, implying that optimal spatial resolution in functional imaging of the cortex can be achieved using anatomically-informed spatial sampling to avoid large pial vessels. PMID:20460157

  10. A multichannel, real-time MRI RF power monitor for independent SAR determination

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.; Edelstein, William A.

    2012-01-01

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing. PMID:22559603

  11. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  12. A case study in scanner optimisation

    PubMed Central

    Gibson, NM

    2013-01-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55–70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  13. Evidence for a motor and a non-motor domain in the human dentate nucleus--an fMRI study.

    PubMed

    Küper, M; Dimitrova, A; Thürling, M; Maderwald, S; Roths, J; Elles, H G; Gizewski, E R; Ladd, M E; Diedrichsen, J; Timmann, D

    2011-02-14

    Dum and Strick (J. Neurophysiol. 2003; 89, 634-639) proposed a division of the cerebellar dentate nucleus into a "motor" and "non-motor" area based on anatomical data in the monkey. We asked the question whether motor and non-motor domains of the dentate can be found in humans using functional magnetic resonance imaging (fMRI). Therefore dentate activation was compared in motor and cognitive tasks. Young, healthy participants were tested in a 1.5 T MRI scanner. Data from 13 participants were included in the final analysis. A block design was used for the experimental conditions. Finger tapping of different complexities served as motor tasks, while cognitive testing included a verbal working memory and a visuospatial task. To further confirm motor-related dentate activation, a simple finger movement task was tested in a supplementary experiment using ultra-highfield (7 T) fMRI in 23 participants. For image processing, a recently developed region of interest (ROI) driven normalization method of the deep cerebellar nuclei was used. Dorso-rostral dentate nucleus activation was associated with motor function, whereas cognitive tasks led to prominent activation of the caudal nucleus. The visuospatial task evoked activity bilaterally in the caudal dentate nucleus, whereas verbal working memory led to activation predominantly in the right caudal dentate. These findings are consistent with Dum and Strick's anatomical findings in the monkey. PMID:21081171

  14. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  15. Multispectral scanner (MSS), ERTS-1

    NASA Technical Reports Server (NTRS)

    Arlauskas, J.

    1973-01-01

    The multispectral scanner onboard ERTS-A spacecraft provides simultaneous images in three visible bands and one near infrared band. The instrument employs fiber optics to transfer optical images to the detectors and photomultiplier tubes. Detector outputs are digitized and multiplexed for transmission from the spacecraft by analog to digital processor.

  16. Holographic analyzer and image scanner

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The characteristics, components, and operating procedures are described for a holographic camera real images projection displayer and scanner unit having the capability to upgrade to multiple types of automated raster scan patterns. Schematics of the optical components are included with a diagram of the electric circuit connections.

  17. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  18. 26 CFR 1.1441-7T - General provisions relating to withholding agents (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 12 2012-04-01 2012-04-01 false General provisions relating to withholding agents (temporary). 1.1441-7T Section 1.1441-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Withholding of Tax on Nonresident Aliens and Foreign Corporations...

  19. 26 CFR 1.468A-7T - Manner of and time for making election (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (temporary). 1.468A-7T Section 1.468A-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.468A... a copy of the schedule of ruling amounts provided pursuant to the rules of § 1.468A-3T to...

  20. 26 CFR 1.382-7T - Built-in gains and losses (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Built-in gains and losses (temporary). 1.382-7T... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.382-7T Built-in gains and losses... recognized built-in gain. The term prepaid income means any amount received prior to the change date that...

  1. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  2. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  3. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  4. Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    PubMed Central

    Fite, Brett Z.; Liu, Yu; Kruse, Dustin E.; Caskey, Charles F.; Walton, Jeffrey H.; Lai, Chun-Yen; Mahakian, Lisa M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C. PMID:22536396

  5. GRAPPA-based Susceptibility-Weighted Imaging of Normal Volunteers and Patients with Brain Tumor at 7T

    PubMed Central

    Lupo, Janine M.; Banerjee, Suchandrima; Hammond, Kathryn E.; Kelley, Douglas A.C.; Xu, Duan; Chang, Susan M.; Vigneron, Daniel B.; Majumdar, Sharmila; Nelson, Sarah J.

    2016-01-01

    Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a GRAPPA-based SWI technique at 7 Tesla in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a 2-fold or more reduction in scan time without compromising vessel contrast and small vessel detection. Post-processing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7T revealed regions of microvascularity, hemorrhage, and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects. PMID:18823730

  6. Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla.

    PubMed

    Mullinger, Karen; Debener, Stefan; Coxon, Ronald; Bowtell, Richard

    2008-03-01

    Although the focus of attention on data degradation during simultaneous MRI/EEG recording has to date largely been upon EEG artefacts, the presence of the conducting wires and electrodes of the EEG recording system also causes some degradation of MRI data quality. This may result from magnetic susceptibility effects which lead to signal drop-out and image distortion, as well as the perturbation of the radiofrequency fields, which can cause local signal changes and a global reduction in the signal to noise ratio (SNR) of magnetic resonance images. Here, we quantify the effect of commercially available 32 and 64 electrode caps on the quality of MR images obtained in scanners operating at magnetic fields of 1.5, 3 and 7 T, via the use of MR-based, field-mapping techniques and analysis of the SNR in echo planar image time series. The electrodes are shown to be the dominant source of magnetic field inhomogeneity, although the localised nature of the field perturbation that they produce means that the effect on the signal intensity from the brain is not significant. In the particular EEG caps investigated here, RF inhomogeneity linked to the longer ECG and EOG leads causes some reduction in the signal intensity in images obtained at 3 and 7 T. Measurements of the standard deviation of white matter signal in EPI time series indicates that the introduction of the EEG cap produces a small reduction in the image signal to noise ratio, which increases with the number of electrodes used. PMID:17689767

  7. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  8. Heart MRI

    MedlinePlus

    ... severe kidney problems. People have been harmed in MRI machines when they did not remove metal objects from their clothes or when metal objects were left in the room by others. MRI is most often not recommended for traumatic injuries. ...

  9. In Situ Deformation of Cartilage in Cyclically Loaded Tibiofemoral Joints by Displacement-Encoded MRI

    PubMed Central

    Chan, D.D.; Neu, C.P.; Hull, M.L.

    2009-01-01

    Objectives Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-dependency of these measures across specimens. Design Juvenile porcine tibiofemoral joints were cyclically compressed at one and two times body weight at 0.1 Hz to achieve quasi-steady state load-displacement response. A 7T MRI scanner was used for displacement-encoded stimulated echoes with a fast spin echo acquisition (DENSE-FSE) in eight intact joints. Two-dimensional displacements and strains were determined throughout the thickness of the tibial and femoral cartilage and then normalized over the tissue thickness. Results Two-dimensional displacements and strains were heterogeneous through the depth of femoral and tibial cartilage under cyclic compression. Strains in the loading direction were compressive and were maximal in the middle zone of femoral and tibial cartilage, and tensile strains were observed in the direction transverse to loading. Conclusions This study determined the depth-dependent displacements and strains in intact juvenile porcine tibiofemoral joints using displacement-encoded imaging. Displacement and strain distributions reflect the heterogeneous biochemistry of cartilage and the biomechanical response of the tissue to compression in the loading environment of an intact joint. This unique information about the biomechanics of cartilage has potential for comparisons of healthy and degenerated tissue and in the design of engineered replacement tissues. PMID:19447213

  10. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.

    PubMed

    Hara, Masayuki; Salomon, Roy; van der Zwaag, Wietske; Kober, Tobias; Rognini, Giulio; Nabae, Hiroyuki; Yamamoto, Akio; Blanke, Olaf; Higuchi, Toshiro

    2014-09-30

    Bodily self-consciousness has become an important topic in cognitive neuroscience aiming to understand how the brain creates a unified sensation of the self in a body. Specifically, full body illusion (FBI) in which changes in bodily self-consciousness are experimentally introduced by using visual-tactile stimulation has led to improve understanding of these mechanisms. This paper introduces a novel approach to the classic FBI paradigm using a robotic master-slave system which allows us to examine interactions between action and the sense of body ownership in behavioral and MRI experiments. In the proposed approach, the use of the robotic master-slave system enables unique stimulation in which experimental participants can administer tactile cues on their own back using active self-touch. This active self-touch has never been employed in FBI experiments and it allows to test the role of sensorimotor integration and agency (the feeling of control over our actions) in FBI paradigms. The objective of this study is to propose a robotic-haptic platform allowing a new FBI paradigm including the active self-touch in MRI environments. This paper, first, describes the design concept and the performance of the prototype device in the fMRI environment (for 3T and 7T MRI scanners). In addition, the prototype device is applied to a classic FBI experiment, and we verify that the use of the prototype device succeeded in inducing the FBI. These results indicate that the proposed approach has a potential to drive advances in our understanding of human body ownership and agency by allowing novel manipulation and paradigms. PMID:24924875

  11. Optical scanner. [laser doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (Inventor)

    1977-01-01

    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility.

  12. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  13. IR line scanner on UAV

    NASA Astrophysics Data System (ADS)

    Liu, Shi-chao; Qin, Jie-xin; Qi, Hong-xing; Xiao, Gong-hai

    2011-08-01

    This paper introduces the designing principle and method of the IR line scanner on UAV in three aspects of optical-mechanical system, electronics system and processing software. It makes the system achieve good results in practical application that there are many features in the system such as light weight, small size, low power assumption, wide field of view, high instantaneous field of view, high noise equivalent temperature difference, wirelessly controlled and so on. The entire system is designed as follows: Multi-element scanner is put into use for reducing the electrical noise bandwidth, and then improving SNR; Square split aperture scanner is put into use for solving the image ratation distortion, besides fit for large velocity to height ratio; DSP is put into use for non-uniformity correction and background nosie subtraction, and then improving the imagery quality; SD card is put into use as image data storage media instead of the hard disk; The image data is stored in SD card in FAT32 file system, easily playbacked by processing software on Windows and Linux operating system; wireless transceiver module is put into use for wirelessly controlled.

  14. Robust scanner identification based on noise features

    NASA Astrophysics Data System (ADS)

    Gou, Hongmei; Swaminathan, Ashwin; Wu, Min

    2007-02-01

    A large portion of digital image data available today is acquired using digital cameras or scanners. While cameras allow digital reproduction of natural scenes, scanners are often used to capture hardcopy art in more controlled scenarios. This paper proposes a new technique for non-intrusive scanner model identification, which can be further extended to perform tampering detection on scanned images. Using only scanned image samples that contain arbitrary content, we construct a robust scanner identifier to determine the brand/model of the scanner used to capture each scanned image. The proposed scanner identifier is based on statistical features of scanning noise. We first analyze scanning noise from several angles, including through image de-noising, wavelet analysis, and neighborhood prediction, and then obtain statistical features from each characterization. Experimental results demonstrate that the proposed method can effectively identify the correct scanner brands/models with high accuracy.

  15. A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation

    PubMed Central

    Baecke, Sebastian; Lützkendorf, Ralf; Mallow, Johannes; Luchtmann, Michael; Tempelmann, Claus; Stadler, Jörg; Bernarding, Johannes

    2015-01-01

    Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments. PMID:25672521

  16. A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation.

    PubMed

    Baecke, Sebastian; Lützkendorf, Ralf; Mallow, Johannes; Luchtmann, Michael; Tempelmann, Claus; Stadler, Jörg; Bernarding, Johannes

    2015-01-01

    Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments. PMID:25672521

  17. Quantitative pharmacologic MRI in mice.

    PubMed

    Perles-Barbacaru, Teodora-Adriana; Procissi, Daniel; Demyanenko, Andrey V; Jacobs, Russell E

    2012-04-01

    Pharmacologic MRI (phMRI) uses functional MRI techniques to provide a noninvasive in vivo measurement of the hemodynamic effects of drugs. The cerebral blood volume change (ΔCBV) serves as a surrogate for neuronal activity via neurovascular coupling mechanisms. By assessing the location and time course of brain activity in mouse mutant studies, phMRI can provide valuable insights into how different behavioral phenotypes are expressed in deferring brain activity response to drug challenge. In this report, we evaluate the utility of three different intravascular ultrasmall superparamagnetic iron oxide (USPIO) contrast agents for phMRI using a gradient-echo technique, with temporal resolution of one min at high magnetic field. The tissue half-life of the USPIOs was studied using a nonlinear detrending model. The three USPIOs are candidates for CBV weighted phMRI experiments, with r(2)/r(1) ratios ≥ 20 and apparent half-lives ≥ 1.5 h at the described doses. An echo-time of about 10 ms or longer results in a functional contrast to noise ratio (fCNR) > 75 after USPIO injection, with negligible decrease between 1.5-2 h. phMRI experiments were conducted at 7 T using cocaine as a psychotropic substance and acetazolamide, a global vasodilator, as a positive control. Cocaine acts as a dopamine-serotonin-norepinephrine reuptake inhibitor, increasing extracellular concentrations of these neurotransmitters, and thus increasing dopaminergic, serotonergic and noradrenergic neurotransmission. phMRI results showed that CBV was reduced in the normal mouse brain after cocaine challenge, with the largest effects in the nucleus accumbens, whereas after acetazolamide, blood volume was increased in both cerebral and extracerebral tissue. PMID:21793079

  18. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  19. PET/MRI: challenges, solutions and perspectives.

    PubMed

    Herzog, Hans

    2012-12-01

    Already from the start of PET/CT integrating positron emission tomography (PET) and computed tomography (CT) in one instrument, there have been considerations how to combine PET and magnetic resonance imaging (MRI) so that their complementary abilities can be utilized in a single investigation. Since classical PET electronics fail in an even weak magnetic field and PET signal processing might disturb high-frequency signals of MRI, it soon became clear that new solutions had to be found to avoid mutual interferences. During the last fifteen years a number of different approaches towards PET/MRI for small animal imaging have been developed by research groups which together with their specific features are summarized in this review. Recently, PET/MRI for human imaging became available as well - this time by industrial initiatives. First some prototypes of BrainPET/MRI were developed followed by commercial products for simultaneous and non-simultaneous whole-body PET/MRI. Although only PET/MRI integrated in one scanner offers the full diversity of complementary multiparametric imaging, there are also promising applications of non-simultaneous sequential PET/MRI. While describing the present instrumentation for human PET/MRI, this review discusses the challenges and promises related to this new imaging technology. PMID:22925652

  20. 7-T magnetic resonance imaging of the inner ear's anatomy by using dual four-element radiofrequency coil arrays and the VIBE sequence

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-02-01

    An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.

  1. Hospitals cannot afford to be without access to MRI.

    PubMed

    Dougherty, E; Hagin, D

    1989-05-01

    Although practicing state-of-the-art diagnostic medicine is impossible without access to magnetic resonance imaging, this high-ticket technology is a mixed blessing in an era of cost containment. The good news is that MRI's diagnostic capabilities continue to grow, and the prices for scanners are dropping. However, MRI services remain expensive, and reimbursement is declining. To get the maximum benefit from MRI, physicians must stay up to date with the latest advances, a task that hospitals can facilitate through educational programs. Hospitals need to plan carefully for the introduction or expansion of MRI services, but the end result will be better patient care. PMID:10293190

  2. Advances in multimodality imaging through a hybrid PET/MRI system.

    PubMed

    Fatemi-Ardekani, Ali; Samavati, Navid; Tang, Jin; Kamath, Markad V

    2009-01-01

    The development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET) is currently being explored in a number of laboratories and industrial settings. PET/MRI scanners for both preclinical and human research applications are being developed. PET/MRI overcomes many limitations of PET/computed tomography (CT), such as limited tissue contrast and high radiation doses delivered to the patient or the animal being studied. In addition, recent PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data, which could not have been achieved through a combination of PET and CT scanners. In a combined PET/CT scanner, while both scanners share a common patient bed, they are hard-wired back-to-back and therefore do not allow simultaneous data acquisition. While PET/MRI offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. In this review, we discuss motivations, challenges, and potential research applications of developing PET/MRI technology. A brief overview of both MRI and PET is presented and preclinical and clinical applications of PET/MRI are identified. Finally, issues and concerns about image quality, clinical practice, and economic feasibility are discussed. PMID:20565381

  3. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Adjustments § 1.482-7T Methods to...

  4. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-7T Methods to determine taxable...

  5. Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T

    PubMed Central

    Bruant, Guillaume; Lévesque, Marie-Josée; Peter, Chardeen; Guiot, Serge R.; Masson, Luke

    2010-01-01

    Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7T possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO2 fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7T chromosome. The functionality of these pathways was also confirmed by growth of P7T on CO and production of CO2 as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7T was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7T genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas. PMID:20885952

  6. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI

    PubMed Central

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed. PMID:26745803

  7. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  8. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  9. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. PMID:23000258

  10. fMRI-Compatible Electromagnetic Haptic Interface.

    PubMed

    Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S

    2005-01-01

    A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected. PMID:17281892

  11. Diffuse Axonal Injury at Ultra-High Field MRI

    PubMed Central

    Moenninghoff, Christoph; Kraff, Oliver; Maderwald, Stefan; Umutlu, Lale; Theysohn, Jens M.; Ringelstein, Adrian; Wrede, Karsten H.; Deuschl, Cornelius; Altmeppen, Jan; Ladd, Mark E.; Forsting, Michael; Quick, Harald H.; Schlamann, Marc

    2015-01-01

    Objective Diffuse axonal injury (DAI) is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs) are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T) and 7 T susceptibility weighted imaging (SWI) to evaluate possible diagnostic benefits of ultra-high field (UHF) MRI. Material and Methods 10 study participants (4 male, 6 female, age range 20-74 years) with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra) and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany) each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC). Count and diameter of TMB were evaluated with Wilcoxon signed rank test. Results Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25) at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5) at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5) at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005). Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T. Conclusion 7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases. PMID:25793614

  12. Code-multiplexed optical scanner

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Arain, Muzammil A.

    2003-03-01

    A three-dimensional (3-D) optical-scanning technique is proposed based on spatial optical phase code activation on an input beam. This code-multiplexed optical scanner (C-MOS) relies on holographically stored 3-D beam-forming information. Proof-of-concept C-MOS experimental results by use of a photorefractive crystal as a holographic medium generates eight beams representing a basic 3-D voxel element generated via a binary-code matrix of the Hadamard type. The experiment demonstrates the C-MOS features of no moving parts, beam-forming flexibility, and large centimeter-size apertures. A novel application of the C-MOS as an optical security lock is highlighted.

  13. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  14. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  15. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  16. Scanner Art and Links to Physics

    ERIC Educational Resources Information Center

    Russell, David

    2005-01-01

    A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…

  17. Academic and Career Advising of Scanners

    ERIC Educational Resources Information Center

    Bloom, Arvid J.; Tripp, Philip R.; Shaffer, Leigh S.

    2011-01-01

    "Scanners" has become a common term for a recently identified category of people who find choosing just one interest or career path difficult (Sher, 2006). Academic and career advisors who work with scanners will likely find that these students have difficulty selecting an academic major or career path and that they seem to suffer anxiety and a…

  18. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  19. Discriminant analyses of Bendix scanner data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Leamer, R. W.; Gerbermann, A. H.; Torline, R. J.

    1972-01-01

    Flights over Weslaco, Texas are discussed, using the 9-channel Bendix scanner, providing calibrated data in the 380 to 1000 nm wavelength interval. These flights were at 2000 ft. These data gave seasonal coverage from the time signals, representing mainly the soil background. The ground truth data are provided; signature processing studies relating scanner data to ground truth were also carried out.

  20. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  1. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  2. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  3. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  4. Automatic quality assessment protocol for MRI equipment.

    PubMed

    Bourel, P; Gibon, D; Coste, E; Daanen, V; Rousseau, J

    1999-12-01

    The authors have developed a protocol and software for the quality assessment of MRI equipment with a commercial test object. Automatic image analysis consists of detecting surfaces and objects, defining regions of interest, acquiring reference point coordinates and establishing gray level profiles. Signal-to-noise ratio, image uniformity, geometrical distortion, slice thickness, slice profile, and spatial resolution are checked. The results are periodically analyzed to evaluate possible drifts with time. The measurements are performed weekly on three MRI scanners made by the Siemens Company (VISION 1.5T, EXPERT 1.0T, and OPEN 0.2T). The results obtained for the three scanners over approximately 3.5 years are presented, analyzed, and compared. PMID:10619255

  5. Evaluating Commercial Scanners for Astronomical Image Digitization

    NASA Astrophysics Data System (ADS)

    Simcoe, R. J.

    2009-08-01

    Many organizations have been interested in understanding if commercially available scanners are adequate for scientifically useful digitization. These scanners range in price from a few hundred to a few tens of thousands of dollars (USD), often with little apparent difference in performance specifications. This paper describes why the underlying technology used in flatbed scanners tends to effectively limit resolutions to the 600-1200 dots per inch (dpi) range and how the overall system Modulation Transfer Function (MTF) can be used to evaluate the quality of the digitized data for the small feature sizes found in astronomical images. Two scanners, the Epson V750 flatbed scanner and the Nikon Cool Scan 9000ED film strip scanner, are evaluated through their Modulation Transfer Functions (MTF). The MTF of the Harvard DASCH scanner is also shown for comparison. The particular goal of this evaluation was to understand if the scanners could be used for digitizing spectral plates at the University of Toronto. The plates of primary interest were about 15 mm (5/8 inch) wide by 180 mm (7~inches) long and ˜50 mm x 80 mm (2 x 3 inches). The results of the MTF work show that the Epson scanner, despite claims of high resolution, is of limited value for scientific imaging of feature sizes below about 50 μm and therefore not a good candidate for digitizing the spectral plates and problematic for scanning direct plates. The Nikon scanner is better and, except for some frustrating limitations in its software, its performance seems to hold promise as a digitizer for spectral plates in the University of Toronto collection.

  6. Musculoskeletal MRI.

    PubMed

    Sage, Jaime E; Gavin, Patrick

    2016-05-01

    MRI has the unique ability to detect abnormal fluid content, and is therefore unparalleled in its role of detection, diagnosis, prognosis, treatment planning and follow-up evaluation of musculoskeletal disease. MRI in companion animals should be considered in the following circumstances: a definitive diagnosis cannot be made on radiographs; a patient is nonresponsive to medical or surgical therapy; prognostic information is desired; assessing surgical margins and traumatic and/or infectious joint and bone disease; ruling out subtle developmental or early aggressive bone lesions. The MRI features of common disorders affecting the shoulder, elbow, stifle, carpal, and tarsal joints are included in this chapter. PMID:26928749

  7. Low-field MRI can be more sensitive than high-field MRI.

    PubMed

    Coffey, Aaron M; Truong, Milton L; Chekmenev, Eduard Y

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium 'hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of (1)H and (13)C spins. Experimental SNRs at 0.0475T were ∼40% of those obtained at 4.7T. Conservatively, theoretical SNRs at 0.0475T 1.13-fold higher than those at 4.7T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7T and 0.0475T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters. PMID:24239701

  8. Low-field MRI can be more sensitive than high-field MRI

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  9. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen

    2014-01-01

    Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259

  10. MRI simulator: a teaching tool for radiology

    NASA Astrophysics Data System (ADS)

    Rundle, Debra A.; Kishore, Sheel; Seshadri, Sridhar B.; Wehrli, Felix W.

    1990-08-01

    The increasing use of magnetic resonance imaging (MRI) as a clinical modality has put an enormous burden on medical institutions to cost-effectively teach Mill scanning techniques to technologists and physicians. Since MRI scanner time is a scarce resource, it would be ideal if the teaching could be effectively performed off-line. In order to meet this goal, the Radiology Department has designed and developed a Magnetic Resonance Imaging Simulator. The Simulator in its current implementation mimics the General Electric Signa scanner's user-interface for image acquisition. The design is general enough to be applied to other MRI scanners. One unique feature of the simulator is its incorporation of an image-synthesis module which permits the user to derive images for any arbitrary combination of pulsing parameters for spin-echo, gradient-echo, and inversion recovery pulse sequences. These images are computed in five seconds. The development platform chosen is a standard Apple Macintosh-Il computer with no specialized hardware peripherals. The user-interface is implemented in HyperCard. All other software development including synthesis and display functions are implemented under the MPW 'C' environment. The scan parameters, demographics and images are tracked using an Oracle database. Images are currently stored on magnetic disk but could be stored on optical media with minimal effort.

  11. 26 CFR 1.1275-7T - Inflation-indexed debt instruments (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Inflation-indexed debt instruments (temporary... Losses § 1.1275-7T Inflation-indexed debt instruments (temporary). (a) through (h) For further guidance, see § 1.1275-7(a) through (h). (i) (j) Treasury Inflation-Protected Securities issued with more than...

  12. 16. SITE BUILDING 002 SCANNER BUILDING FRONT LOBBY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SITE BUILDING 002 - SCANNER BUILDING - FRONT LOBBY VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 17. SITE BUILDING 002 SCANNER BUILDING COMMANDER'S OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SITE BUILDING 002 - SCANNER BUILDING - COMMANDER'S OFFICE VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. Heart MRI

    MedlinePlus

    ... an imaging method that uses powerful magnets and radio waves to create pictures of the heart. It does ... radiation involved in MRI. The magnetic fields and radio waves used during the scan have not been shown ...

  15. Obstetric MRI.

    PubMed

    Levine, Deborah

    2006-07-01

    Ultrasound is the imaging modality of choice for pregnant patients. However, MRI is increasingly utilized in patients in whom the sonographic diagnosis is unclear. These include maternal conditions unique to pregnancy such as ectopic pregnancy, placenta accreta, and uterine dehiscence. MRI is also being increasingly utilized in the assessment of abdominopelvic pain in pregnancy, in particular in assessment for appendicitis. Fetal MRI is performed to assess central nervous system (CNS) abnormalities and patients who are considering fetal surgery for conditions such as neural tube defects, congenital diaphragmatic hernia, and masses that obstruct the airway. In the future, functional MRI and fetal volumetry may provide additional information that can aid in our care of complicated pregnancies. PMID:16736491

  16. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  17. Future image acquisition trends for PET/MRI.

    PubMed

    Boss, Andreas; Weiger, Markus; Wiesinger, Florian

    2015-05-01

    Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques. PMID:25841275

  18. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  19. Optical design for POS hologram scanner

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kozo; Ichikawa, Toshiyuki; Ikeda, Hiroyuki; Inagaki, Takefumi

    1986-08-01

    This paper presents newly developed optical design techniques for a shallow-type POS hologram scanner. POS scanner optical design involves design of the scan pattern to read the bar code and design of the detection system. For scan pattern design, we have developed a "readability map" method and a "scanning diagram" method. Detection system design took into account laser safety standards, and we used a technique for estimating the power of the detected signal. We have realized a shallow-type POS hologram scanner which is only 16cm high and can be operated from a sitting position.

  20. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  1. Pulsed Doppler lidar airborne scanner

    NASA Astrophysics Data System (ADS)

    Dimarzio, C. A.; McVicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-10-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  2. Flexure pivots for oscillatory scanners

    NASA Astrophysics Data System (ADS)

    Brown, David C.; Pruyn, Kristopher

    2002-06-01

    Flexures are quite ancient, and their use as pivots is also ancient. Long before the use of the most primitive sleeve bearings leather strap flexures were used as trunk lidhinges and the like. Early engines of war, including the ballista of the Romans, technically advanced hand bows, and the cross bows of the fourteenth century all employ flexure pivots as their enabling technology. Designers of modern scientific instruments, including optical and laser scanning equipment exploit the same attributes of the flexure which appealed to their forefathers: simplicity, reliability, lack of internal clearance, long service life, ease of construction, and often, it's high mechanical Q. A special case of the flexure pivot, the torsional pivot, has made possible very long lived scanners at speeds which are far out of the reach of other bearing types. Since success with flexures requires consideration of some simple but non-intuitive issues such as stress distribution and stress corrosion, this talk will emphasize the practicum of flexure design and application.

  3. Auditory intensity processing: Effect of MRI background noise.

    PubMed

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise. PMID:26778471

  4. Functional MRI: A confluence of fortunate circumstances.

    PubMed

    Bandettini, Peter A

    2012-02-01

    Functional MRI has existed for about twenty years and by almost all measures has been incredibly successful. What are the reasons behind this success? In this review, eight extremely fortunate circumstances came together to produce BOLD based fMRI as we know it today. They are as follows: 1. The MRI signal, 2. The MRI relaxation rates, 3. The oxygen-dependent magnetic susceptibility of blood, 4. Neuronal-hemodynamic coupling, 5. The spatial scale of brain activation, 6. The prevalence of scanners able to perform echo planar imaging (EPI), 7. The parallel development of computing power, and 8. The very large group of neuroscientists who, pre-1991, were perfectly poised, willing, and able to exploit the capability of fMRI. These circumstances are discussed in detail. The desired goal of this review is primarily to convey the field of fMRI from the perspective of what was critically important before, during and after its inception and how things might have been if these circumstances would have been different. While there are many instances where circumstances could have been better, it is clear that they worked out extremely well, as the field of fMRI, a major aspect of functional neuroimaging today, is thriving. PMID:22342876

  5. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  6. 26 CFR 1.367(a)-7T - Outbound transfers of property described in section 361(a) or (b).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Outbound transfers of property described in section 361(a) or (b). 1.367(a)-7T Section 1.367(a)-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Effects on Corporation § 1.367(a)-7T Outbound transfers of...

  7. 26 CFR 1.6038D-7T - Exceptions from the reporting of certain assets under Section 6038D (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Exceptions from the reporting of certain assets under Section 6038D (temporary). 1.6038D-7T Section 1.6038D-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038D-7T Exceptions from...

  8. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  9. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  10. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  11. Breast MRI at 7 Tesla with a Bilateral Coil and Robust Fat Suppression

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2013-01-01

    Purpose To develop a bilateral coil and optimized fat suppressed T1-weighted sequence for 7T breast MRI. Materials and Methods A dual-solenoid coil and 3D T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed for 7T. T1w FS image quality was characterized through image uniformity and fat/water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7 T SNR advantage. Results Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T T1w FS image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat/water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. Conclusion 7T T1w FS bilateral breast imaging is feasible with a custom RF coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. PMID:24123517

  12. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  13. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  14. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    PubMed Central

    Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

    2012-01-01

    Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study. PMID:22701525

  15. Physical Mapping of Hybrid Bacteriophage T7/T3 RNA Polymerase Genes

    PubMed Central

    Ryan, Thecla; McConnell, David J.

    1982-01-01

    The late regions of the T7 and T3 bacteriophage genomes are transcribed by phage-specified RNA polymerases, the products of gene 1. Although these phage transcriptional systems share many characteristics and are obviously related, they have diverged to such an extent that neither of their respective RNA polymerases utilizes the promotor sites of the other phage at an appreciable rate. However, it is possible to construct viable T7/T3 hybrids which have hybrid gene 1 sequences; the resultant hybrid enzymes exhibit altered transcriptional patterns in that they are capable of transcribing both T7 and T3 DNA to various degrees. The aim of this study was to define more closely the region(s) of the gene 1 sequence which encodes the transcriptional selectivity determinant by correlating the genetic constitution of these hybrid gene 1 sequences with their transcriptional properties. The recombinant sites within the gene 1 regions of several T7/T3 hybrids were mapped by using restriction sites as genetic markers. The results indicated that forcing a crossover event within a particular region often results in the inadvertant selection of additional genetic rearrangements. Several of the hybrid gene 1 sequences were found to have resulted from multiple crossover events, even though only one was directly selected for. In some cases the predicted crossovers were not detected; instead, several hybrids contained recombination sites elsewhere in the gene 1 region. These findings suggest that only certain combinations of T7/T3 gene 1 sequences are compatible; it may be that active hybrid T7/T3 gene 1 sequences rarely result from single genetic rearrangements. Taken together, the results of this study suggest that more than one region of the gene 1 sequence is involved in transcriptional selectivity. More specifically, the region from approximately 25 to 59% (from the left of the gene), together with the carboxyl end, appears to play an important role. Images PMID:6292465

  16. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  17. Slice profile distortions in single slice continuously moving table MRI

    NASA Astrophysics Data System (ADS)

    Sengupta, Saikat; Smith, David S.; Welch, E. B.

    2015-03-01

    Continuously Moving Table (CMT) MRI is a rapid imaging technique that allows scanning of extended fields of view (FOVs) such as the whole-body in a single continuous scan.1 A highly efficient approach to CMT MRI is single slice imaging, where data are continuously acquired from a single axial slice at isocenter with concurrent movement of the patient table.2 However, the continuous motion of the scanner table and supply of fresh magnetization into the excited slice can introduce deviations in the slice magnetization profile. The goal of this work is to investigate and quantify the distortion in the slice profile in CMT MRI. CMT MRI with a table speed of 20 mm/s was implemented on a 3 Tesla whole-body MRI scanner, with continuous radial data acquisition. Simulations were performed to characterize the transient and steady state slice profiles and magnetization effects. Simulated slice profiles were compared to actual slice profile measurements performed in the scanner. Both simulations and experiments revealed an asymmetric slice profile characterized by a skew towards the lagging edge of the moving table, in contrast to the nominal profiles associated with scanning a stationary object. The true excited slice width (FWHM) and pitch of the acquisition was observed to be dependent on table velocity, with larger table speeds resulting in larger slice profile deviations from the nominal shape.

  18. J-refocused coherence transfer spectroscopic imaging at 7 T in human brain.

    PubMed

    Pan, J W; Avdievich, N; Hetherington, H P

    2010-11-01

    Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B(1) sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684

  19. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  20. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration. PMID:24110643

  1. [Combined PET-MRI of the abdomen].

    PubMed

    Vag, Tibor; Eiber, M; Schwaiger, M

    2015-12-01

    The first fully integrated combined positron emission tomography-magnetic resonance imaging (PET-MRI) scanners have been clinically available since 2010. Large prospective studies regarding indications and diagnostic accuracy of this new modality are not yet available; however, preliminary studies have shown a higher diagnostic accuracy and confidence compared to PET-computed tomography (PET-CT) in regions where MRI is known to be superior to CT, such as the liver. The benefit of MRI in accurate lesion characterization and the additional value of diffusion-weighted imaging (DWI) as a complementary functional modality by means of the apparent diffusion coefficient (ADC) is apparent in entities with low tracer uptake (e.g. due to small size) and a decreased or absent accumulation pattern on PET. PMID:26610681

  2. Two-Point Magnitude MRI for Rapid Mapping of Brown Adipose Tissue and Its Application to the R6/2 Mouse Model of Huntington Disease

    PubMed Central

    Müller, Hans-Peter; Bornstedt, Axel; Ludolph, Albert C.; Landwehrmeyer, G. Bernhard; Rottbauer, Wolfgang; Kassubek, Jan; Rasche, Volker

    2014-01-01

    The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes. PMID:25144457

  3. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  4. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  5. MRI-Safe Robot for Endorectal Prostate Biopsy.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B; Hricak, Hedvig

    2013-09-16

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot's accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  6. MRI-Safe Robot for Endorectal Prostate Biopsy

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B.; Hricak, Hedvig

    2014-01-01

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot’s accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  7. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  8. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  9. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  10. The PRESTO technique for fMRI

    PubMed Central

    van Gelderen, P.; Duyn, J.H.; Ramsey, N.F.; Liu, G.; Moonen, C.T.W.

    2012-01-01

    In the early days of BOLD fMRI, the acquisition of T2* weighted data was greatly facilitated by rapid scan techniques such as EPI. The latter, however, was only available on a few MRI systems that were equipped with specialized hardware that allowed rapid switching of the imaging gradients. For this reason, soon after the invention of fMRI, the scan technique PRESTO was developed to make rapid T2* weighted scanning available on standard clinical scanning. This method combined echo shifting, which allows for echo times longer than the sequence repetition time, with acquisition of multiple k-space lines per excitation. These two concepts were combined in order to achieve a method fast enough for fMRI, while maintaining a sufficiently long echo time for optimal contrast. PRESTO has been primarily used for 3D scanning, which minimized the contribution of large vessels due to inflow effects. Although PRESTO is still being used today, its appeal has lessened somewhat due to increased gradient performance of modern MRI scanners. Compared to 2D EPI, PRESTO may have somewhat reduced temporal stability, which is a disadvantage for fMRI that may not outweigh the advantage of reduced inflow effects provided by 3D scanning. In this overview, the history of the development of the PRESTO is presented, followed by a qualitative comparison with EPI. PMID:22245350

  11. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  12. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  13. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  14. Development of a novel laser range scanner

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Lennon, Brian; Simpson, Amber L.; Miga, Michael I.

    2011-03-01

    Laser range scanning an organ surface intraoperatively provides a cost effective and accurate means of measuring geometric changes in tissue. A novel laser range scanner with integrated tracking was designed, developed, and analyzed with the goal of providing intraoperative surface data during neurosurgery. The scanner is fitted with passive spheres to be optically tracked in the operating room. The design notably includes a single-lens system capable of acquiring the geometric information (as a Cartesian point cloud) via laser illumination and charge-coupled device (CCD) collection, as well as the color information via visible light collection on the same CCD. The geometric accuracy was assessed by scanning a machined phantom of known dimensions and comparing relative distances of landmarks from the point cloud to the known distances. The ability of the scanner to be tracked was first evaluated by perturbing its orientation in front of the optical tracking camera and recording the number of spheres visible to the camera at each orientation, and then by observing the variance in point cloud locations of a fixed object when the tracking camera is moved around the scanner. The scanning accuracy test resulted in an RMS error of 0.47 mm with standard deviation of 0.40 mm. The sphere visibility test showed that four diodes were visible in most of the probable operating orientations, and the overall tracking standard deviation was observed to be 1.49 mm. Intraoperative collection of cortical surface scans using the new scanner is currently underway.

  15. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  16. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  17. Management of a sandbag accident in an MRI unit.

    PubMed

    Lee, Chee Hwee; Lin, Ming-Fang; Chan, Wing P

    2015-11-01

    Our aim is to report the cause and management of a ferromagnetic sandbag accident that occurred when an unconscious patient was sent for brain MRI. A 2-kg sandbag had been placed in the vicinity of his right groin to aid hemostasis after a femoral venous puncture for thrombocytopenia. His clothing and blanket had not been examined thoroughly before he was moved to the scanner and the sandbag went unnoticed. Its attraction to the scanner and adherence to the scanner rim resulted in a minor abrasion and bruise on the patient's face. We decided to manually remove some of the pellets from the sandbag after cutting the vinyl bag at one corner with a nonferromagnetic screwdriver. Piece-meal removal of about two-thirds of the pellets facilitated removal of the remaining pellets and the sandbag as a whole. The word "sandbag" is misleading and led to a lack of communication between the clinical team and the MRI staff and failure by the MRI staff to recognize a sandbag as a ferromagnetic object. Careful manual removal of small amounts of pellets can be used to avoid more time- and labor-intensive strategies to deal with a sandbag accident (e.g., magnet quench or ramp-down). Installation of a ferromagnetic material detector to screen patients before entering the scanner room is recommended. PMID:26226646

  18. Laser scanners: from industrial to biomedical applications

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin

    2013-11-01

    We present a brief overview of our contributions in the field of laser scanning technologies, applied for a variety of applications, from industrial, dimensional measurements to high-end biomedical imaging, such as Optical Coherence Tomography (OCT). Polygon Mirror (PM) scanners are presented, as applied from optical micrometers to laser sources scanned in frequency for Swept Sources (SSs) OCT. Galvanometer-based scanners (GSs) are approached to determine the optimal scanning function in order to obtain the highest possible duty cycle. We demonstrated that this optimal scanning function is linear plus parabolic, and not linear plus sinusoidal, as it has been previously considered in the literature. Risley prisms (rotational double wedges) scanners are pointed out, with our exact approach to determine and simulate their scan patterns in order to optimize their use in several types of applications, including OCT. A discussion on the perspectives of scanning in biomedical imaging, with a focus on OCT concludes the study.

  19. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  20. High precision kinematic surveying with laser scanners

    NASA Astrophysics Data System (ADS)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  1. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  2. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.

    PubMed

    van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T

    1995-07-18

    Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. PMID:7624341

  3. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.

    PubMed Central

    van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T

    1995-01-01

    Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. Images Fig. 2 Fig. 3 PMID:7624341

  4. Cervical cyst of the ligamentum flavum and C7-T1 subluxation: case report.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Gorgoglione, Leonardo; Bisceglia, Michele; D'Angelo, Vincenzo

    2005-10-01

    A patient with progressive gait disturbance resulting from a cyst of the cervical ligamentum flavum associated with C7-T1 listhesis is reported. Surgical removal of the cyst improved the patient's myelopathy. Intraspinal degenerative cysts are preferentially located in the lumbar region:unusual is the cervical localization. Differential diagnosis includes ligamentum flavum cyst, synovial and ganglion cysts. Association between degenerative intraspinal cysts and listhesis is discussed. To our knowledge, this is the first case of cyst of the ligamentum flavum associated with cervical subluxation. PMID:15981000

  5. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  6. Multisegmented ion chamber for CT scanner dosimetry

    SciTech Connect

    Moore, M.M.; Cacak, R.K.; Hendee, W.R.

    1981-01-01

    A multisegmented, ionization chamber capable of determining dosimetric profiles from a CT scanner has been developed and tested. The chamber consists of a number of 2 mm wide electrically isolated segments from which ionization currents may be measured. Presented here are the performance characteristics of the chamber including energy response, dose linearity, and corrections for ''cross talk'' between segments. Sample dosimetric profiles are depicted for 3 and 6 mm nominal beam widths at two locations in a dosimetric phantom positioned in the x-ray beam of a fourth generation CT scanner. The results agree well with the conventional method of obtaining dosimetry measurements with TLD chips.

  7. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  8. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  9. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  10. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  11. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  12. Functional Extensions To High Performance Document Scanners

    NASA Astrophysics Data System (ADS)

    Green, W. B.; Chansky, L. M.; Land, R. A.; Van den Heuvel, R. C.; Kraemer, E. J.; Steele, L. W.; Sherrill, C. J.

    1989-07-01

    Document processing systems based on electronic imaging technology are evolving rapidly, motivated by technology advances in optical storage, image scanners, image compression, high speed digital communications, and high resolution displays. These evolving systems require high speed reliable image scanning systems to create the digital image data base that is at the heart of the applications addressed by these evolving systems. High speed production document scanners must provide the capability of converting a wide variety of input material into high quality digital imagery. The required capabilities include: (i) the ability to scan varying sizes and weights of paper, (ii) image enhancement techniques adequate to produce quality imagery from a document material that may depart significantly from standard high contrast black and white office correspondence, (iii) standard compression options, and (iv) a standard interface to a host or control processor providing full control of all scanner operations and all image processing options. As electronic document processing systems proliferate, additional capabilities will be required to support automated or semi-automated document indexing and selective capture of document content. Capabilities now present on microfilming systems will be required as options or features on document capture systems. These capabilities will include: endorsers, bar code readers, and optical character recognition (OCR) capability. Bar code and OCR capabilities will be required to support automated indexing of scanned material, and OCR capability within specific areas of scanned document material will be required to support indexing and specific application needs. These features will also be supported and controlled through a standard host interface. This paper describes the architecture of the TDC DocuScan Digital Image Scanner. The scanner is a double-sided scanner that produces compressed imagery of both sides of a scanned page in under two

  13. Infrared scanner concept verification test report

    NASA Technical Reports Server (NTRS)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  14. Battlefield MRI

    SciTech Connect

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  15. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  16. Mapping of cerebral oxidative metabolism with MRI

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Elliott, Mark A.; Reddy, Ravinder

    2010-01-01

    Using a T1ρ MRI based indirect detection method, we demonstrate the detection of cerebral oxidative metabolism and its modulation by administration of the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) in a large animal model with minimum utilization of gas. The study was performed by inhalation in swine during imaging on clinical MRI scanners. Metabolic changes in swine were determined by two methods. First, in a series of animals, increased metabolism caused by DNP injection was measured by exhaled gas analysis. The average whole-body metabolic increase in seven swine was 11.9%+/-2.5% per mg/kg, stable over three hours. Secondly, hemispheric brain measurements of oxygen consumption stimulated by DNP injection were made in five swine using T1ρ MRI following administration of gas. Metabolism was calculated from the change in the T1ρ weighted MRI signal due to H217O generated from inhalation before and after doubling of metabolism by DNP. These results were confirmed by direct oxygen-17 MR spectroscopy, a gold standard for in vivo H217O measurement. Overall, this work underscores the ability of indirect oxygen-17 imaging to detect oxygen metabolism in an animal model with a lung capacity comparable to the human with minimal utilization of expensive gas. Given the demonstrated high efficiency in use of and the proven feasibility of performing such measurements on standard clinical MRI scanners, this work enables the adaption of this technique for human studies dealing with a broad array of metabolic derangements. PMID:20547874

  17. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  18. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  19. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  20. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2013-07-22

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  1. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  2. Characterization of color scanners based on SVR

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Yi-xin

    2012-01-01

    By researching the principle of colorimetric characterization method and Support Vector Regression (SVR), we analyze the feasibility of nonlinear transformation from scanner RGB color space to CIELAB color space based on SVR and built a new characterization model. Then we use the MATLABR2009a software to make a data simulation experiment to verify the accuracy of this model and figure out the color differences by CIEDE2000 color difference formula. Based on CIEDE2000 color difference formula, the average, the maximum and the minimum color differences of the training set are 1.2376, 2.5593 and 0.2182, the average, the maximum and the minimum color differences of the text set are 1.9318, 4.1421 and 0.4228. From the experimental results, we can make a conclusion that SVR can realize the nonlinear transformation from scanner RGB color space to CIELAB color space and the model satisfies the accuracy of scanner characterization. Therefore, SVR can be used into the color scanner characterization management.

  3. Bottled liquid explosive scanner by near infrared

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo

    2016-05-01

    A bottled liquid explosive scanner has been developed using near infrared technology for glass or PET bottles and ultrasound technology for metal cans. It has database of near infrared absorbance spectra and sound velocities of various liquids. Scanned liquids can be identified by using this database. This device has been certified by ECAC and installed at Japanese international airport.

  4. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  5. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  6. Biomedical Applications of Sodium MRI In Vivo

    PubMed Central

    Madelin, Guillaume; Regatte, Ravinder R.

    2013-01-01

    In this article, we present an up-to-date overview of the potential biomedical applications of sodium MRI in vivo. Sodium MRI is a subject of increasing interest in translational imaging research as it can give some direct and quantitative biochemical information on the tissue viability, cell integrity and function, and therefore not only help the diagnosis but also the prognosis of diseases and treatment outcomes. It has already been applied in vivo in most of human tissues, such as brain for stroke or tumor detection and therapeutic response, in breast cancer, in articular cartilage, in muscle and in kidney, and it was shown in some studies that it could provide very useful new information not available through standard proton MRI. However, this technique is still very challenging due to the low detectable sodium signal in biological tissue with MRI and hardware/software limitations of the clinical scanners. The article is divided in three parts: (1) the role of sodium in biological tissues, (2) a short review on sodium magnetic resonance, and (3) a review of some studies on sodium MRI on different organs/diseases to date. PMID:23722972

  7. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  8. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 28. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SITE BUILDING 002 - SCANNER BUILDING - AT INTERIOR OF LEVEL 5, FACE A - SHOWS ANTENNA RECEIVERS, EMITTERS/RECEIVERS, IN GENERAL ARRANGEMENT. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 31. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SITE BUILDING 002 - SCANNER BUILDING AT INTERIOR - BACK OF POWER SUPPLY UNITS 3045-17 AND 3046-29. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. 3. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 30° WEST AT "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 32. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF OPERATIONAL SCHEMATIC OF COOLING SYSTEM LOOPS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 18. SITE BUILDING 002 SCANNER BUILDING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SITE BUILDING 002 - SCANNER BUILDING - VIEW OF SITE SECURITY OFFICE ACCESS DOOR FROM EXTERIOR OF OFFICE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 13. SITE BUILDING 002 SCANNER BUILDING "B" FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SITE BUILDING 002 - SCANNER BUILDING - "B" FACE LOADING DOCK AND PERSONNEL ACCESS RAMP TO FALLOUT SHELTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 33. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF CHILLER ROOM MOTOR CONTROL CENTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 1. SITE BUILDING 022 SCANNER BUILDING VIEW IS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SITE BUILDING 022- SCANNER BUILDING - VIEW IS LOOKING NORTH 70°WEST AT "B" AND "A" FACES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 4. SITE BUILDING 002 SCANNER BUILDING SOUTH 30° ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SITE BUILDING 002 - SCANNER BUILDING - SOUTH 30° WEST - VIEW IS LOOKING AT "B" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. 22. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL ROOM. RECEIVER EQUIPMENT ON RIGHT WITH RF RADIATION MONITOR CABINET. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. Replication of Functional MRI Detection of Deception

    PubMed Central

    Kozel, F. Andrew; Laken, Steven J.; Johnson, Kevin A.; Boren, Bryant; Mapes, Kimberly S.; Morgan, Paul S.; George, Mark S.

    2009-01-01

    Background Several studies support the use of fMRI for detecting deception. There have been, however, no reported replications on different scanners or at different locations. In a previous study, deception was accurately detected in at least 90% of the participants in two independent cohorts. This study attempted to replicate those findings using a different scanner and location. Methods Healthy participants 18–50 years of age were recruited from the local community. After providing written informed consent, participants were screened to ensure that they were healthy, not taking any medications, and safe to have an MRI. For the testing paradigm, subjects chose one of two objects (ring or watch) to “steal” and placed it in their locker. Participants were then scanned while being visually presented with a series of questions. Functional MRI analysis was performed in the same manner as described in Kozel et al. 2005. A Chi-Squared test was used to test for a significant difference between the results in the previous study and in this replication study. Results Thirty subjects (20 women, mean age 29.0±6.5 years) were scanned with one subject being noncompliant with the protocol. Twenty-five of twenty-nine (86%) participants were correctly identified when being deceptive. There was no statistical difference between the accuracy rate obtained in this study (25/29) versus the previous study (28/31) (Chi-Squared, χ2=0.246, p=0.6197). Conclusions Our methodology for detecting deception was successfully replicated at a different site suggesting that this methodology is robust and independent of both scanner and location. PMID:19844599

  3. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  4. Leg MRI scan

    MedlinePlus

    ... imaging - leg; Magnetic resonance imaging - lower extremity; MRI - ankle; Magnetic resonance imaging - ankle; MRI - femur; MRI - leg ... or bone scan Birth defects of the leg, ankle, or foot Bone pain and fever Broken bone ...

  5. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  6. Calibration and equivalency analysis of image plate scanners

    SciTech Connect

    Williams, G. Jackson Maddox, Brian R.; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  7. Calibration and equivalency analysis of image plate scanners.

    PubMed

    Williams, G Jackson; Maddox, Brian R; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-01

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system. PMID:25430350

  8. Nineteen-Channel Receive Array and Four-Channel Transmit Array Coil for Cervical Spinal Cord Imaging at 7T

    PubMed Central

    Zhao, Wei; Cohen-Adad, Julien; Polimeni, Jonathan R.; Keil, Boris; Guerin, Bastien; Setsompop, Kawin; Serano, Peter; Mareyam, Azma; Hoecht, Philipp; Wald, Lawrence L.

    2016-01-01

    Purpose To design and validate a radiofrequency (RF) array coil for cervical spinal cord imaging at 7T. Methods A 19-channel receive array with a four-channel transmit array was developed on a close-fitting coil former at 7T. Transmit efficiency and specific absorption rate were evaluated in a B1+ mapping study and an electromagnetic model. Receive signal-to-noise ratio (SNR) and noise amplification for parallel imaging were evaluated and compared with a commercial 3T 19-channel head–neck array and a 7T four-channel spine array. The performance of the array was qualitatively demonstrated in human volunteers using high-resolution imaging (down to 300 μm in-plane). Results The transmit and receive arrays showed good bench performance. The SNR was approximately 4.2-fold higher in the 7T receive array at the location of the cord with respect to the 3T coil. The g-factor results showed an additional acceleration was possible with the 7T array. In vivo imaging was feasible and showed high SNR and tissue contrast. Conclusion The highly parallel transmit and receive arrays were demonstrated to be fit for spinal cord imaging at 7T. The high sensitivity of the receive coil combined with ultra-high field will likely improve investigations of microstructure and tissue segmentation in the healthy and pathological spinal cord. PMID:23963998

  9. Scanner show-through reduction using reflective optics

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-fan

    2003-12-01

    Document scanners are used to convert paper documents to digital format for document distribution or archiving. Scanners are also used in copier and fax machine to convert document to electrical signal in analog and digital format. Most document scanners use white backing to avoid black border or black hole in scanned images. One problem with white backing is that show-through from the backside is visible for duplex printed (two sided) documents. This paper describes an optical method to eliminate show-through without reverting back to the black border or black hole. The scanner cover is made into a saw-tooth shaped mirror surface. The surface is oriented so that it reflects the light from the scanner lamp to the scanner lens. When scanning the scanner cover as in the case of a hole in the paper, it reflects light (specular reflection) from the scanner lamp directly to the scanner lens. Because the scanner lamp is much brighter than the reflected light from the document, only a small portion of the reflected light is needed to have the same output as scanning a piece of white paper. Radiometric calculation shows that this new approach can reduce the overall reflection from the scanner cover to 8% when scanning a document, and yet, appear to be white when no document is in between the cover and scan bar. The show-through is greatly reduced due to this reduced overall reflection from the scanner cover.

  10. Single-Event-Upset Laser Scanner With Optical Bias

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup

    1992-01-01

    Light-assisted microelectronic advanced laser scanner (LAMEALS) is augmented version of microelectronic advanced laser scanner (MEALS) described in article, "Laser Scanner Tests For Single-Event Upsets", (NPO-18216). Only major difference, steady illumination from helium/neon laser, argon-ion laser, and/or other source(s) combined with pulsed dye-laser illumination of MEALS into single illuminating beam.

  11. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  12. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test...

  13. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  16. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  17. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section...

  19. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section...

  20. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section...

  1. A radiofrequency coil configuration for imaging the human vertebral column at 7 T

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Teeuwisse, W.; Reijnierse, M.; Collins, C. M.; Smith, N. B.; Webb, A. G.

    2011-02-01

    We describe the design and testing of a quadrature transmit, eight-channel receive array RF coil configuration for the acquisition of images of the entire human spinal column at 7 T. Imaging parameters were selected to enable data acquisition in a clinically relevant scan time. Large field-of-view (FOV) scanning enabled sagittal imaging of the spine in two or three-stations, depending upon the height of the volunteer, with a total scan time of between 10 and 15 min. A total of 10 volunteers have been scanned, with results presented for the three subjects spanning the range of heights and weights, namely one female (1.6 m, 50 kg), one average male (1.8 m, 70 kg), and one large male (1.9 m, 100 kg).

  2. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  3. MRI--the investigation of choice in syringomyelia?

    PubMed

    Dowling, R J; Tress, B M

    1989-11-01

    During a 12 month period of operation of a 0.3 Tesla MRI iron cored resistive scanner 74 cases of syringomyelia were diagnosed on clinical, radiological and/or surgical grounds. Without knowledge of any clinical or radiological data the syrinxes were classified into five groups--idiopathic, idiopathic associated with Chiari malformation, tumour associated, post-traumatic and arachnoiditis associated--and the lesion characteristics within each group were compared. Although MRI was extremely sensitive in picking up even small syrinxes, there was considerable overlap of MRI characteristics across the sub-groups, so that two post-traumatic syrinxes had lesion characteristics identifiable with those of tumour syrinx and one intramedullary tumour syrinx had the MRI characteristics of a benign, idiopathic syrinx. It is concluded that meticulous attention to technique, including axial as well as sagittal T1 weighted sequences, and the administration of intravenous paramagnetic contrast media are necessary for detection and accurate classification of syrinxes. PMID:2633734

  4. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  5. Automatic Brachytherapy Seed Placement Under MRI Guidance

    PubMed Central

    Patriciu, Alexandru; Petrisor, Doru; Muntener, Michael; Mazilu, Dumitru; Schär, Michael; Stoianovici, Dan

    2011-01-01

    The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy. PMID:17694871

  6. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications. PMID:26907043

  7. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  8. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  9. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  10. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  11. Design of a Second Generation Firewire Based Data Acquisition System for Small Animal PET Scanners

    PubMed Central

    Lewellen, T.K.; Miyaoka, R.S.; MacDonald, L.R.; Haselman, M.; DeWitt, D.; Hunter, William; Hauck, S.

    2009-01-01

    The University of Washington developed a Firewire based data acquisition system for the MiCES small animal PET scanner. Development work has continued on new imaging scanners that require more data channels and need to be able to operate within a MRI imaging system. To support these scanners, we have designed a new version of our data acquisition system that leverages the capabilities of modern field programmable gate arrays (FPGA). The new design preserves the basic approach of the original system, but puts almost all functions into the FPGA, including the Firewire elements, the embedded processor, and pulse timing and pulse integration. The design has been extended to support implementation of the position estimation and DOl algorithms developed for the cMiCE detector module. The design is centered around an acquisition node board (ANB) that includes 65 ADC channels, Firewire 1394b support, the FPGA, a serial command bus and signal lines to support a rough coincidence window implementation to reject singles events from being sent on the Firewire bus. Adapter boards convert detector signals into differential paired signals to connect to the ANB. PMID:20228958

  12. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  13. Scanner-based macroscopic color variation estimation

    NASA Astrophysics Data System (ADS)

    Kuo, Chunghui; Lai, Di; Zeise, Eric

    2006-01-01

    Flatbed scanners have been adopted successfully in the measurement of microscopic image artifacts, such as granularity and mottle, in print samples because of their capability of providing full color, high resolution images. Accurate macroscopic color measurement relies on the use of colorimeters or spectrophotometers to provide a surrogate for human vision. The very different color response characteristics of flatbed scanners from any standard colorimetric response limits the utility of a flatbed scanner as a macroscopic color measuring device. This metamerism constraint can be significantly relaxed if our objective is mainly to quantify the color variations within a printed page or between pages where a small bias in measured colors can be tolerated as long as the color distributions relative to the individual mean values is similar. Two scenarios when converting color from the device RGB color space to a standardized color space such as CIELab are studied in this paper, blind and semi-blind color transformation, depending on the availability of the black channel information. We will show that both approaches offer satisfactory results in quantifying macroscopic color variation across pages while the semi-blind color transformation further provides fairly accurate color prediction capability.

  14. A near-infrared confocal scanner

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  15. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  16. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  17. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  18. PET/MRI: THE NEXT GENERATION OF MULTI-MODALITY IMAGING?

    PubMed Central

    Pichler, Bernd; Wehrl, Hans F; Kolb, Armin; Judenhofer, Martin S

    2009-01-01

    Multi-modal imaging is now well-established in routine clinical practice. Especially in the field of Nuclear Medicine, new PET installations are comprised almost exclusively of combined PET/CT scanners rather than PET-only systems. However, PET/CT has certain notable shortcomings, including the inability to perform simultaneous data acquisition and the significant radiation dose to the patient contributed by CT. MRI offers, compared to CT, better contrast among soft tissues as well as functional-imaging capabilities. Therefore, the combination of PET with MRI provides many advantages which go far beyond simply combining functional PET information with structural MRI information. Many technical challenges, including possible interference between these modalities, have to be solved when combining PET and MRI and various approaches have been adapted to resolving these issues. Here we present an overview of current working prototypes of combined PET/MRI scanners from different groups. In addition, besides PET/MR images of mice, the first such images of a rat PET/MR, acquired with the first commercial clinical PET/MRI scanner, are presented. The combination of PET and MR is a promising tool in pre-clinical research and will certainly progress to clinical application. PMID:18396179

  19. A Prototype RF Dosimeter for Independent Measurement of the Average Specific Absorption Rate (SAR) During MRI

    PubMed Central

    Stralka, John P; Bottomley, Paul A

    2008-01-01

    Purpose To develop a scanner-independent dosimeter for measuring the average radio frequency (RF) power deposition and specific absorption rates (SAR) for human MRI exposure. Materials and Methods A prototype dosimeter has a transducer with orthogonal conducting loops surrounding a small signal-generating MRI sample. The loops contain resistors whose values are adjusted to load the scanner’s MRI coils equivalent to an average head or body during MRI. The scanner adjusts its power output to normal levels during setup, using the MRI sample. Following calibration, the total power and average SAR deposited in the transducer are measured from the root-mean-square (rms) power induced in the transducer during MRI. Results A 1.5 Tesla head transducer was adjusted to elicit the same load as the average of nine adult volunteers. Once adjusted, the transducer loads other head coils the same as the head does. The dosimeter is calibrated at up to 20 W total deposited power and 4.5 W/kg SAR in the average head, with about 5% accuracy. Conclusion This dosimeter provides a simple portable means of measuring the power deposited in a body-equivalent sample load, independent of the scanner. Further work will develop SAR dosimetry for the torso and for higher fields. PMID:17969145

  20. Variable power combiner for RF mode shimming in 7-T MR imaging.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus; Bitz, Andreas K

    2012-09-01

    This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level. PMID:22752102

  1. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  2. Transmit B1 Field Correction at 7T using Actively Tuned Coupled Inner Elements

    PubMed Central

    Merkle, Hellmut; Murphy-Boesch, Joseph; van Gelderen, Peter; Wang, Shumin; Li, Tie-Qiang; Koretsky, Alan P.; Duyn, Josef H.

    2011-01-01

    When volume coils are used for 1H imaging of the human head at 7T, wavelength effects in tissue cause intensity variations that are typically brighter at the center of the head and darker in the periphery. Much of this image non-uniformity can be attributed to variation in the effective transmit B1 field, which falls by about 50% to the left and right of center at mid-elevation in the brain. Because most of this B1 loss occurs in the periphery of the brain, we have explored use of actively controlled, off-resonant loop elements to locally enhance the transmit B1 field in these regions. When tuned to frequencies above the NMR frequency, these elements provide strong local enhancement of the B1 field of the transmit coil. Because they are tuned off-resonance, some volume coil detuning results, but resistive loading of the coil mode remains dominated by the sample. By digitally controlling their frequency offsets, the field enhancement of each inner element can be placed under active control. Using an array of eight, digitally-controlled elements placed around a custom-built head phantom, we demonstrate the feasibility of improving the B1 homogeneity of a transmit/receive volume coil without the need for multiple RF transmit channels. PMID:21437974

  3. Hybrid monopole/loop coil array for human head MR imaging at 7T

    PubMed Central

    Yan, Xinqiang; Wei, Long; Xue, Rong; Zhang, Xiaoliang

    2015-01-01

    The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing 4 monopole channels and 4 loop channels was developed for human head MR imaging at 7T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has higher SNR and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields. PMID:26120252

  4. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible. PMID:22692894

  5. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (Principal Investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  6. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  7. A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects

    ERIC Educational Resources Information Center

    Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene

    2012-01-01

    We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…

  8. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  9. Functional MRI compliance in children with attention deficit hyperactivity disorder

    PubMed Central

    Karakaş, Sirel; Dinçer, Elvin Doğutepe; Ceylan, Arzu Özkan; Tileylioğlu, Emre; Karakaş, Hakkı Muammer; Talı, E. Turgut

    2015-01-01

    PURPOSE We aimed to test the effect of prescan training and orientation in functional magnetic resonance imaging (fMRI) in children with attention deficit hyperactivity disorder (ADHD) and to investigate whether fMRI compliance was modified by state anxiety. METHODS Subjects included 77 males aged 6–12 years; there were 53 patients in the ADHD group and 24 participants in the healthy control group. Exclusion criteria included neurological and/or psychiatric comorbidities (other than ADHD), the use of psychoactive drugs, and an intelligence quotient outside the normal range. Children were individually subjected to prescan orientation and training. Data were acquired using a 1.5 Tesla scanner and an 8-channel head coil. Functional scans were performed using a standard neurocognitive task. RESULTS The neurocognitive task led to reliable fMRI maps. Compliance was not significantly different between ADHD and control groups based on success, failure, and repetition rates of fMRI. Compliance of ADHD patients with extreme levels of anxiety was also not significantly different. CONCLUSION The fMRI compliance of ADHD children is typically lower than that of healthy children. However, compliance can be increased to the level of age-matched healthy control children by addressing concerns about the technical and procedural aspects of fMRI, providing orientation programs, and performing on-task training. In patients thus trained, compliance does not change with the level of state anxiety suggesting that the anxiety hypothesis of fMRI compliance is not supported. PMID:25519454

  10. Polarization characteristics of an altazimuth sky scanner

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.

    1980-01-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.

  11. Initial coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The characteristics of the Nimbus-7 Coastal Zone Color Scanner are presented and the atmospheric correction and bio-optical algorithms are reviewed. Comparison of imagery before and after atmospheric correction shows that water features such as color fronts and small scale eddies can be retrieved even through a hazy and horizontally inhomogeneous atmosphere. Imagery is also presented to show that features revealed in color are sometimes completely absent from simultaneous thermal imagery implying that color and thermal imagery can provide complementary rather than redundant information.

  12. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  13. A laser scanner for 35mm film

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1977-01-01

    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer.

  14. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  15. System analysis of bar code laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Jianpu; Chen, Zhaofeng; Lu, Zukang

    1996-10-01

    This paper focuses on realizing the three important aspects of bar code scanner: generating a high quality scanning light beam, acquiring a fairly even distribution characteristic of light collection, achieving a low signal dynamic range over a large depth of field. To do this, we analyze the spatial distribution and propagation characteristics of scanning laser beam, the vignetting characteristic of optical collection system and their respective optimal design; propose a novel optical automatic gain control method to attain a constant collection over a large working depth.

  16. An all-nickel magnetostatic MEMS scanner

    NASA Astrophysics Data System (ADS)

    Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2012-12-01

    The design, fabrication and detailed characterization of a fully electroplated, magnetostatic low-cost MEMS scanning mirror are presented. By electroplating bright nickel on a sacrificial substrate, robust soft-magnetic micromirrors may be fabricated. The technology is simpler and cheaper than the standard process using bulk silicon micromachining of silicon-on-insulator wafers for fabricating magnetostatic scanners. The presented Ni mirrors exhibit deflection angles of ±7° at resonance for small external magnetic fields of 0.23 mT. Such magnetic fields are easily generated by miniaturized solenoids, making integration, for instance, into endoscopic systems possible.

  17. Chemical exchange saturation transfer of the cervical spinal cord at 7 T.

    PubMed

    Dula, Adrienne N; Pawate, Siddharama; Dethrage, Lindsey M; Conrad, Benjamin N; Dewey, Blake E; Barry, Robert L; Smith, Seth A

    2016-09-01

    High-magnetic-field (7 T) chemical exchange saturation transfer (CEST) MRI provides information on the tissue biochemical environment. Multiple sclerosis (MS) affects the entire central nervous system, including the spinal cord. Optimal CEST saturation parameters found via simulation were implemented for CEST MRI in 10 healthy controls and 10 patients with MS, and the results were examined using traditional asymmetry analysis and a Lorentzian fitting method. In addition, T1 - and T2 *-weighted images were acquired for lesion localization and the transmitted B1 (+) field was evaluated to guide imaging parameters. Distinct spectral features for all tissue types studied were found both up- and downfield from the water resonance. The z spectra in healthy subjects had the expected z spectral shape with CEST effects apparent from 2.0 to 4.5 ppm. The z spectra from patients with MS demonstrated deviations from this expected normal shape, indicating this method's sensitivity to known pathology as well as to tissues appearing normal on conventional MRI. Examination of the calculated CESTasym revealed increased asymmetry around the amide proton resonance (Δω = 3.5 ppm), but it was apparent that this measure is complicated by detail in the CEST spectrum upfield from water, which is expected to result from the nuclear Overhauser effect. The z spectra upfield (negative ppm range) were also distinct between healthy and diseased tissue, and could not be ignored, particularly when considering the conventional asymmetry analysis used to quantify the CEST effect. For all frequencies greater than +1 ppm, the Lorentzian differences (and z spectra) for lesions and normal-appearing white matter were distinct from those for healthy white matter. The increased frequency separation and signal-to-noise ratio, in concert with prolonged T1 at 7 T, resulted in signal enhancements necessary to detect subtle tissue changes not possible at lower field strengths. This study

  18. Biomedical applications of a real-time terahertz color scanner.

    PubMed

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner's potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  19. 7 Tesla MRI with a Transmit/Receive Loopless Antenna and B1-Insensitive Selective Excitation

    PubMed Central

    Erturk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Moore, Jay; Bottomley, Paul A.

    2014-01-01

    Purpose Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1) penetration, B1-inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils. Methods External coils were replaced by semi-rigid or biocompatible transmit/receive loopless antennae requiring only a few Watts of peak RF power. Slice selection was provided by spatially selective B1-insensitive composite RF pulses that compensate for the antenna’s intrinsically nonuniform B1-field. Power was adjusted to maintain local temperature rise ≤1° C. Fruit, intravascular MRI of diseased human vessels in vitro, and MRI of rabbit aorta in vivo are demonstrated. Results Scout MRI with the transmit/receive antennae yielded a ≤10 cm cylindrical field-of-view, enabling subsequent targeted localization at ~100 μm resolution in 10-50 s and/or 50 μm MRI in ~2 min in vitro, and 100–300 μm MRI of the rabbit aorta in vivo. Conclusion A simple, low-power, one-device approach to interventional MRI at 7T offers the potential of truly high-resolution MRI, while avoiding issues with external coil excitation and interactions at 7T. PMID:23963978

  20. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  1. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T

    PubMed Central

    Haas, Martin; Darji, Niravkumar; Speck, Oliver

    2015-01-01

    Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637

  2. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

    PubMed Central

    Xiao, YiZi; Zitella, Laura M.; Duchin, Yuval; Teplitzky, Benjamin A.; Kastl, Daniel; Adriany, Gregor; Yacoub, Essa; Harel, Noam; Johnson, Matthew D.

    2016-01-01

    Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS. PMID:27375422

  3. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI.

    PubMed

    Maramraju, Sri Harsha; Smith, S David; Junnarkar, Sachin S; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L; Schlyer, David J

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI. PMID:21441651

  4. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  5. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  6. Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus

    PubMed Central

    Plantinga, Birgit R.; Roebroeck, Alard; Kemper, Valentin G.; Uludağ, Kâmil; Melse, Maartje; Mai, Jürgen; Kuijf, Mark L.; Herrler, Andreas; Jahanshahi, Ali; ter Haar Romeny, Bart M.; Temel, Yasin

    2016-01-01

    Introduction: The subthalamic nucleus, substantia nigra, and globus pallidus, three nuclei of the human basal ganglia, play an important role in motor, associative, and limbic processing. The network of the basal ganglia is generally characterized by a direct, indirect, and hyperdirect pathway. This study aims to investigate the mesoscopic nature of these connections between the subthalamic nucleus, substantia nigra, and globus pallidus and their surrounding structures. Methods: A human post mortem brain specimen including the substantia nigra, subthalamic nucleus, and globus pallidus was scanned on a 7 T MRI scanner. High resolution diffusion weighted images were used to reconstruct the fibers intersecting the substantia nigra, subthalamic nucleus, and globus pallidus. The course and density of these tracks was analyzed. Results: Most of the commonly established projections of the subthalamic nucleus, substantia nigra, and globus pallidus were successfully reconstructed. However, some of the reconstructed fiber tracks such as the connections of the substantia nigra pars compacta to the other included nuclei and the connections with the anterior commissure have not been shown previously. In addition, the quantitative tractography approach showed a typical degree of connectivity previously not documented. An example is the relatively larger projections of the subthalamic nucleus to the substantia nigra pars reticulata when compared to the projections to the globus pallidus internus. Discussion: This study shows that ultra-high field post mortem tractography allows for detailed 3D reconstruction of the projections of deep brain structures in humans. Although the results should be interpreted carefully, the newly identified connections contribute to our understanding of the basal ganglia. PMID:27378864

  7. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. Commercial scanner application for reverse engineering and inspection

    NASA Astrophysics Data System (ADS)

    Crump, Craig; Kressin, Ken

    1997-01-01

    A commercial scanner provides economical and extremely accurate images. This paper discuses the scanner and how it is used in the CGI RE1000 reverse engineering and inspection system. The RE1000 complements existing laser, CMM, and x- ray technologies. The RE1000 provides greater accuracy, captures complete internal geometry, and is automatic. For opaque, machinable parts less than 1000 cubic inches, the commercial scanner and CGI RE1000 system produce the best alternative for capturing accurate, internal and external geometry.

  9. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  10. An empirical study of scanner system parameters

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.; Biehl, L.; Simmons, W.

    1976-01-01

    The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.

  11. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  12. Laser scanner ophthalmoscope with free selectable wavelength

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Kalve, B.; Leistritz, Lutz; Scibor, Mateusz; Hammer, Martin

    1996-12-01

    Multispectral images can provide useful information for objective diagnosis, control of the effect of therapy and for a patient-specific optimization of therapy regime in ophthalmology. Laser scanner systems have the advantage of a high radiation power also in case of small spectral bandwidth. Additionally, the flying spot principle reduces the irradiation of the patient. Commercial laser scanner ophthalmoscopes (LSO) are developed till now only for qualitative, visual interpretation. Maximal four fixed wavelengths are available with a stabilized radiation power. Using the spectral properties of fundus pigments like xanthophyll, rhodopsin or of pathological alterations, e.g. hard exudates, its optical density or local distribution can be determined in this way before and after therapy. As also three wavelengths can be chosen which are best suited for determination of oxygen saturation (OS) in the blood, the validity of the 3-(lambda) -method for 2D calculation of OS can be tested. These investigations are first steps in functional diagnosis of the metabolism in the human ocular fundus.

  13. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  14. Micromachined scanner actuated by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Barbaroto, Pedro R.; Ferreira, Luiz O. S.; Doi, Ioshiaki

    2002-10-01

    A novel micromachined scanner with electromagnetic induction actuation principle is presented. It was manufactured by Si-LIG technique, where its mechanical structure was made by bulk silicon micromachining of 200μm thick (100) silicon substrate, and its electric circuit was made by deep UV lithography and Au electroplating. The monolithic mechanical structure is a 12×24 mm2 rectangular frame connected by 4.5mm long torsion bars to a 4×10mm2 rectangular rotor. On one face of the rotor is the electric circuit, a 70μm thick, single turn, electroplated Au coil with 3.3mΩ electrical resistance. The other face of the rotor was mirrored by a 1480Å thick Al film. An external magnetic circuit generated a constant 1150 Gauss magnetic field parallel to the coil plane and a 100 Gauss (peak value) field normal to the coil plane. Maximum deflection angle of 6.5°pp at the 1311Hz resonance frequency was measured, and the quality factor Q was 402. The results shown that electromagnetic induction actuation is adequate for meso-scale systems and capable of producing resonant scanners with performance compatible with applications like bar code readers.

  15. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  16. A 3D airborne ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  17. 26 CFR 1.904(f)-7T - Separate limitation loss and the separate limitation loss account (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Separate limitation loss and the separate... Without the United States § 1.904(f)-7T Separate limitation loss and the separate limitation loss account (temporary). (a) Overview of regulations. This section provides rules for determining a taxpayer's...

  18. Cardiac Imaging at 7T: Single- and Two-Spoke RF Pulse Design with 16-channel Parallel Excitation

    PubMed Central

    Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J.; Vaughan, J. Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2013-01-01

    Purpose Higher SNR and improved contrast have been demonstrated at Ultra-high magnetic fields (≥7T) in multiple targets, often with multi-channel transmit B1+ methods to address the deleterious impact on tissue contrast due to spatial variations in B1+ profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare 2-spoke parallel transmit (pTX) RF pulses with static B1+ shimming in cardiac imaging at 7T. Methods Using a 16-channel pTX system, slice-selective 2-spoke pTX pulses and static B1+ shimming were applied in cardiac CINE imaging. B1+ and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Results 2-spoke pulses provide higher excitation homogeneity than B1+ shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for higher flip angle, hence increased tissue contrast. Image quality with 2-spoke excitation proved to be stable throughout the entire cardiac cycle. Conclusion 2-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared to B1+ shimming. PMID:24038314

  19. Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader.

    PubMed

    Purswani, Jessica; Guisado, Isabel M; Gonzalez-Lopez, Jesus; Pozo, Clementina

    2016-01-01

    We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7(T) (= CECT 8558(T) = DSM 29760(T)), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties. PMID:26893420

  20. 26 CFR 1.132-7T - Treatment of employer-operated eating facilities-1985 through 1988 (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Treatment of employer-operated eating facilities... Excluded from Gross Income § 1.132-7T Treatment of employer-operated eating facilities—1985 through 1988...-operated eating facility for employees is excludable from gross income as a de minimis fringe only if—...

  1. Draft Genome Sequence of Paenibacillus etheri sp. nov. SH7T, a Methyl Tert-Butyl Ether Degrader

    PubMed Central

    Guisado, Isabel M.; Gonzalez-Lopez, Jesus; Pozo, Clementina

    2016-01-01

    We report here the draft genome sequence of Paenibacillus etheri sp. nov. SH7T (= CECT 8558T = DSM 29760T), isolated from a hydrocarbon-contaminated soil pilot plant in Granada, Spain. The bacterium was isolated and sequenced due to its methyl tert-butyl ether (MTBE)-degrading properties. PMID:26893420

  2. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6049-7T Market discount fraction... (temporary). For purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to...

  3. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES Information Returns § 1.6049-7T Market discount fraction reported with... purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to be reported with...

  4. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

    PubMed

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny J J

    2015-06-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields. PMID:25837601

  5. Towards MRI-guided linear accelerator control: gating on an MRI accelerator

    NASA Astrophysics Data System (ADS)

    Crijns, S. P. M.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2011-08-01

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  6. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF).

    PubMed

    Steyrl, David; Patz, Franz; Krausz, Gunther; Edlinger, Günter; Müller-Putz, Gernot R

    2015-08-01

    Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 μV (-14.4 dB). RLAS achieves 0.78 μV (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 μV (-49.2 dB). AAS alone achieves 5.7 μV (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype. PMID:26737122

  7. What Is Chest MRI?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Chest MRI? Chest MRI (magnetic resonance imaging) is a safe, noninvasive ... creates detailed pictures of the structures in your chest, such as your chest wall, heart, and blood ...

  8. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  9. Breast MRI scan

    MedlinePlus

    ... breast MRI may be done in combination with mammography or ultrasound . It is not a replacement for mammography. ... breast screening with MRI as an adjunct to mammography. CA Cancer J Clin . 2007;57:75-89. ...

  10. Pelvis MRI scan

    MedlinePlus

    ... The table slides into the middle of the MRI machine. Small devices, called coils, may be placed around ... anxious. Or your provider may suggest an open MRI in which the machine is not as close to the body. Before ...

  11. Lumbar MRI scan

    MedlinePlus

    ... resonance imaging (MRI) scan uses energy from strong magnets to create pictures of the lower part of ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  12. Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T.

    PubMed

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A D; van Zijl, Peter C M

    2012-08-01

    High-resolution magnetic resonance phase- or frequency-shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor( ̅χ). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS=(χ(//)+2 χ(⊥))/3 and a magnetic susceptibility anisotropy, MSA=χ(//)-χ(⊥), where χ(//) and χ(⊥) are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°-30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1 × 1 × 1 mm(3) frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from -0.037 to -0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with the

  13. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. PMID:25802212

  14. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  15. A direct modulated optical link for MRI RF receive coil interconnection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Wei, Juan; Shen, G. X.

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3 T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  16. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  17. 13C MR imaging of methionine-rich gliomas at 4.7T: a pilot study.

    PubMed

    Sasao, Akira; Hirai, Toshinori; Iriguchi, Norio; Nakamura, Hideo; Kudo, Mareina; Sasao, Ako; Yamashita, Yasuyuki

    2011-01-01

    We explored the feasibility of using carbon-13 ((13)C) magnetic resonance imaging ((13)C-MRI) to depict (13)C-labeled methionine-enriched gliomas at 4.7 tesla. We transplanted 2 types of glioma cells separately to 2 subcutaneous tissue sites on the backs of mice weighing 15 to 20 g. After confirming tumor growth, we used (13)C-MRI and (1)H-MRI to scan 4 mice that had been administered (13)C-labeled methionine and 2 control mice. (13)C-MRI of all 4 transplanted mice administered with (13)C-labeled methionine revealed 2 areas of hyperintensity that corresponded to the tumor sites on (1)H-MR images, but no such areas were visualized in transplanted controls. Our data suggest that (13)C-MRI can show the accumulation of (13)C-labeled tracer by gliomas. PMID:21720117

  18. Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI

    PubMed Central

    Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.

    2015-01-01

    One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852

  19. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  20. MRI in cranial tuberculosis.

    PubMed

    Just, M; Higer, H P; Betting, O; Bockenheimer, S; Pfannenstiel, P

    1987-11-01

    A case of multiple intracranial tuberculomas is presented. CT and MRI findings are discussed and compared. MRI showed multiple tuberculomas characterised by the same signal intensity as the surrounding brain parenchyma. Differentiation could be achieved only by the perifocal oedema of high signal intensity. Changes of the lesions during chemotherapy were monitored by CT and MRI and the results are presented. PMID:3691545

  1. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    PubMed

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously. PMID:26979605

  2. New Control Software for CEBAF Wire Scanners

    SciTech Connect

    Pavel Chevtsov

    2005-03-01

    Wire scanners (WS) are the most popular beam profile measurement devices at Jefferson Lab. The WS for the CEBAF accelerator and beam extraction lines were created and supported by different user groups. As a result, they are not only implemented in different hardware standards (CAMAC and VME) but until recently also had different control functions that made them very difficult to use for accelerator beam diagnostic applications. To integrate all WS into one homogeneous system that is very easy to support and use for accelerator operations, new WS control software has been created. The software is implemented as a library of WS control and status modules. The control modules handle the WS hardware components and make their data available for beam diagnostic applications. The status modules monitor data communication channels between WS components and control computers and generate alarms in case of hardware failures. The paper presents the functionality of the new WS control software a nd its positive impact on accelerator operations.

  3. Development of scintillation materials for PET scanners

    NASA Astrophysics Data System (ADS)

    Korzhik, Mikhail; Fedorov, Andrei; Annenkov, Alexander; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-02-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  4. Landsat-4 horizon scanner flight performance

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.

    1984-01-01

    This paper presents an analysis of the flight data from a new design of horizon scanner flown on Landsat-4. The salient features in the data are described and demonstrated by data plots. High frequency noise must be filtered out to achieve good accuracy, but this is effectively done by 128-point averaging. Sun and moon interference effects are identified. The effects of earth oblateness and spacecraft altitude variations are modeled, and the residual systematic errors are analyzed. Most of the residual errors are apparently explained by the effects of earth radiance variation, with the winter polar regions showing the highest variability in the attitude measurements due to winter stratosphere temperature variations. In general, this sensor provides improved accuracy over those flown on previous missions.

  5. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  6. Upgraded airborne scanner for commercial remote sensing

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  7. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  8. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  9. 27. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC MONITOR NO. 4 IN OPERATION AT 2002 ZULU, OCTOBER 26, 1999 CAPE COD, AS PAVE PAWS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. 34. SITE BUILDING 002 SCANNER BUILDING ROOM 105 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SITE BUILDING 002 - SCANNER BUILDING - ROOM 105 - CHILLER ROOM, SHOWING SINGLE COMPRESSOR, LIQUID CHILLERS AND "CHILLED WATER RETURN", COOLING TOWER 'TOWER WATER RETURN" AND 'TOWER WATER SUPPLY" LINES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 12. SITE BUILDING 002 SCANNER BUILDING MAIN ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SITE BUILDING 002 - SCANNER BUILDING - MAIN ENTRANCE LOOKING AT MAIN ENTRANCE TO TECHNICAL FACILITY, GROUND LEVEL. VIEW IS LOOKING SOUTH 20° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Thermionic scanner pinpoints work function of emitter surfaces

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.

    1966-01-01

    In the electron tube testing, a thermionic scanner makes accurate spatial resolution measurements of the metallic surface work functions of emitters. The scanner determines the emitter function and its local departures from the mean value on a point-by-point basis for display on an oscilloscope.

  18. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  19. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  4. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. Implementation of Vascular-space-occupancy (VASO) MRI at 7 Tesla

    PubMed Central

    Hua, Jun; Jones, Craig K.; Qin, Qin; van Zijl, Peter C. M.

    2012-01-01

    VASO-MRI exploits the difference between blood and tissue T1 to null blood signal and measure cerebral blood volume (CBV) changes using the residual tissue signal. VASO imaging is more difficult at higher field because of sensitivity loss due to the convergence of tissue and blood T1 values and increased contamination from BOLD effects. In addition, compared to 3T, 7T MRI suffers from increased geometrical distortions, e.g. when using echo-planar-imaging (EPI), and from increased power deposition, the latter especially problematic for the spin-echo-train sequences commonly used for VASO-MRI. Third, non-steady-state blood spin effects become substantial at 7T when only a head coil is available for radiofrequency transmit. In this study, the magnetization-transfer-enhanced-VASO (MT-VASO) approach was applied to maximize tissue-blood signal difference, which boosted SNR by 149 ± 13% (n=7) compared to VASO. Second, a 3D fast gradient-echo sequence with low flip-angle (7°) and short echo-time (1.8ms) was employed to minimize the BOLD effect and to reduce image distortion and power deposition. Finally, a magnetization-reset technique was combined with a motion-sensitized-driven-equilibrium (MSDE) approach to suppress three types of non-steady-state spins. Our initial fMRI results in normal human brains at 7T with this optimized VASO sequence showed better SNR than at 3T. PMID:22585570

  6. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    NASA Astrophysics Data System (ADS)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion

  7. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  8. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  9. Biodegradable Magnetic Particles for Cellular MRI

    NASA Astrophysics Data System (ADS)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  10. Scalable multichannel MRI data acquisition system.

    PubMed

    Bodurka, Jerzy; Ledden, Patrick J; van Gelderen, Peter; Chu, Renxin; de Zwart, Jacco A; Morris, Doug; Duyn, Jeff H

    2004-01-01

    A scalable multichannel digital MRI receiver system was designed to achieve high bandwidth echo-planar imaging (EPI) acquisitions for applications such as BOLD-fMRI. The modular system design allows for easy extension to an arbitrary number of channels. A 16-channel receiver was developed and integrated with a General Electric (GE) Signa 3T VH/3 clinical scanner. Receiver performance was evaluated on phantoms and human volunteers using a custom-built 16-element receive-only brain surface coil array. At an output bandwidth of 1 MHz, a 100% acquisition duty cycle was achieved. Overall system noise figure and dynamic range were better than 0.85 dB and 84 dB, respectively. During repetitive EPI scanning on phantoms, the relative temporal standard deviation of the image intensity time-course was below 0.2%. As compared to the product birdcage head coil, 16-channel reception with the custom array yielded a nearly 6-fold SNR gain in the cerebral cortex and a 1.8-fold SNR gain in the center of the brain. The excellent system stability combined with the increased sensitivity and SENSE capabilities of 16-channel coils are expected to significantly benefit and enhance fMRI applications. PMID:14705057

  11. On the spectral quality of scanner illumination with LEDs

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2013-01-01

    Document scanner illumination has evolved along with general illumination technologies. LEDs have become more and more popular as the illumination sources for document scanning. LED technologies provide a wide range of choices both in terms of structural design and spectral compositions. In this report, we examine some popular LED technologies used for document scanner. We evaluate the color rendering performance of scanner models with different illumination technologies by examining their rendering of the Macbeth ColorChecker™ in sRGB. We found that more phosphors in phosphor conversion types of white LEDs may not be necessarily advantageous in terms of scanner color rendering performance. Also CIS type of scanner may be sensitive to the peak wavelength shift and can be particularly problematic when the peaks are out of certain range.

  12. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  13. A method of switching the signal in an MRI phantom based on trace ion currents.

    PubMed

    Qiu, Yujie; Kwok, WingChi Edmund; Hornak, Joseph P

    2014-08-01

    A method for electrically changing the hydrogen nuclear magnetic resonance (NMR) signal intensity in a magnetic resonance imaging (MRI) phantom is presented. The method is based on creating local magnetic field inhomogeneities from impurity ion currents in a polar hydrocarbon. The effect is demonstrated using the propylene carbonate on an NMR spectrometer and an MRI scanner. This effect is largest when the electric field is applied perpendicular to the static magnetic field in magnetic resonance, and is linear with applied voltage. The applicability of a switchable signal in an MRI phantom is demonstrated with a spin-echo, echo planar imaging sequence where the MRI signal is changed between blocks of 10 images in a series of 200 images. This technique may find applications in inter and intra platform fMRI quality control. PMID:25012030

  14. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  15. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  16. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner.

    PubMed

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil. PMID:27372211

  17. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  18. Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol

    PubMed Central

    Apostolova, Liana G.; Zarow, Chris; Biado, Kristina; Hurtz, Sona; Boccardi, Marina; Somme, Johanne; Honarpisheh, Hedieh; Blanken, Anna E.; Brook, Jenny; Tung, Spencer; Lo, Darrick; Ng, Denise; Alger, Jeffry R.; Vinters, Harry V.; Bocchetta, Martina; Duvernoy, Henri; Jack, Clifford R.; Frisoni, Giovanni; Bartzokis, George; Csernansky, John G.; de Leon, Mony J.; deToledo-Morrell, Leyla; Killiany, Ronald J.; Lehéricy, Stéphane; Malykhin, Nikolai; Pantel, Johannes; Pruessner, Jens C.; Soininen, Hilkka; Watson, Craig

    2015-01-01

    Objective The pathologic validation of European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Center Harmonized Hippocampal Segmentation Protocol (HarP). Methods Temporal lobes of nine Alzheimer's disease (AD) and seven cognitively normal subjects were scanned post-mortem at 7 Tesla. Hippocampal volumes were obtained with HarP. Six-micrometer-thick hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet. Hippocampal subfields were manually traced. Neuronal counts, Aβ, and tau burden for each hippocampal subfield were obtained. Results We found significant correlations between hippocampal volume and Braak and Braak staging (ρ = −0.75, P = .001), tau (ρ = −0.53, P = .034), Aβ burden (ρ = −0.61, P = .012), and neuronal count (ρ = 0.77, P < .001). Exploratory subfield-wise significant associations were found for Aβ in CA1 (ρ = −0.58, P = .019) and subiculum (ρ = −0.75, P = .001), tau in CA2 (ρ = −0.59, P = .016), and CA3 (ρ = −0.5, P = .047), and neuronal count in CA1 (ρ = 0.55, P = .028), CA3 (ρ = 0.65, P = .006), and CA4 (ρ = 0.76, P = .001). Conclusions The observed associations provide the pathological confirmation of hippocampal morphometry as a valid biomarker for AD and the pathologic validation of HarP. PMID:25620800

  19. Measurements of the ripple effect and geometric distribution of switched gradient fields inside a magnetic resonance scanner.

    PubMed

    Sundström, Henrik; Mild, Kjell Hansson; Wilén, Jonna

    2015-02-01

    Knowledge of patient exposure during magnetic resonance imaging (MRI) procedures is limited, and the need for such knowledge has been demonstrated in recent in vitro and in vivo studies of the genotoxic effects of MRI. This study focuses on the dB/dt of the switched gradient field (SGF) and its geometric distribution. These values were characterized by measuring the peak dB/dt generated by a programmed gradient current of alternating triangles inside a 1.5T MR scanner. The maximum dB/dt exposure to the gradient field was 6-14 T/s, and this occurred at the edges of the field of view (FOV) 20-25 cm from the isocenter in the longitudinal direction. The dB/dt exposure dropped off to roughly half the maximum (3-7 T/s) at the edge of the bore. It was found that the dB/dt of the SGF was distorted by a 200 kHz ripple arising from the amplifier. The ripple is small in terms of B-field, but the high frequency content contributes to a peak dB/dt up to 18 times larger than that predicted by the slew rate (4 T/s m) and the distance from the isocenter. Measurements on a 3 T MRI scanner, however, revealed a much smaller filtered ripple of 100 kHz in dB/dt. These findings suggest that the gradient current to each coil together with information on the geometrical distribution of the gradient field and ripple effects could be used to assess the SGF exposure within an MRI bore. PMID:25399749

  20. Multicenter Evaluation of Geometric Accuracy of MRI Protocols Used in Experimental Stroke.

    PubMed

    Milidonis, Xenios; Lennen, Ross J; Jansen, Maurits A; Mueller, Susanne; Boehm-Sturm, Philipp; Holmes, William M; Sena, Emily S; Macleod, Malcolm R; Marshall, Ian

    2016-01-01

    It has recently been suggested that multicenter preclinical stroke studies should be carried out to improve translation from bench to bedside, but the accuracy of magnetic resonance imaging (MRI) scanners routinely used in experimental stroke has not yet been evaluated. We aimed to assess and compare geometric accuracy of preclinical scanners and examine the longitudinal stability of one scanner using a simple quality assurance (QA) protocol. Six 7 Tesla animal scanners across six different preclinical imaging centers throughout Europe were used to scan a small structural phantom and estimate linear scaling errors in all orthogonal directions and volumetric errors. Between-scanner imaging consisted of a standard sequence and each center's preferred sequence for the assessment of infarct size in rat models of stroke. The standard sequence was also used to evaluate the drift in accuracy of the worst performing scanner over a period of six months following basic gradient calibration. Scaling and volumetric errors using the standard sequence were less variable than corresponding errors using different stroke sequences. The errors for one scanner, estimated using the standard sequence, were very high (above 4% scaling errors for each orthogonal direction, 18.73% volumetric error). Calibration of the gradient coils in this system reduced scaling errors to within ±1.0%; these remained stable during the subsequent 6-month assessment. In conclusion, despite decades of use in experimental studies, preclinical MRI still suffers from poor and variable geometric accuracy, influenced by the use of miscalibrated systems and various types of sequences for the same purpose. For effective pooling of data in multicenter studies, centers should adopt standardized procedures for system QA and in vivo imaging. PMID:27603704