Science.gov

Sample records for 7t mri scanner

  1. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  2. Reconstruction of 7T-Like Images From 3T MRI

    PubMed Central

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu

    2016-01-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  3. Reconstruction of 7T-Like Images From 3T MRI.

    PubMed

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu; Shen, Dinggang

    2016-09-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  4. Classification of mouth movements using 7 T fMRI

    NASA Astrophysics Data System (ADS)

    Bleichner, M. G.; Jansma, J. M.; Salari, E.; Freudenburg, Z. V.; Raemaekers, M.; Ramsey, N. F.

    2015-12-01

    Objective. A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. Approach. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a ‘winner-takes-all’ design. Main results. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). Significance. The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  5. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  6. Microstrip Butler matrix design and realization for 7 T MRI.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus

    2011-07-01

    This article presents the design and realization of 8 × 8 and 16 × 16 Butler matrices for 7 T MRI systems. With the focus on low insertion loss and high amplitude/phase accuracy, the microstrip line integration technology (microwave-integrated circuit) was chosen for the realization. Laminate material of high permittivity (ε(r) = 11) and large thickness (h = 3.2 mm) is shown to allow the best trade-off of circuit board size versus insertion loss, saving circuit area by extensive folding of branch-line coupler topology and meandering phase shifter and connecting strip lines and reducing mutual coupling of neighboring strip lines by shield structures between strip lines. With this approach, 8 × 8 Butler matrices were produced in single boards of 310 mm × 530 mm, whereas the 16 × 16 Butler matrices combined two submatrices of 8 × 8 with two smaller boards. Insertion loss was found at 0.73 and 1.1 dB for an 8 × 8 matrix and 16 × 16 matrix, respectively. Measured amplitude and phase errors are shown to represent highly pure mode excitation with unwanted modes suppressed by 40 and 35 dB, respectively. Both types of matrices were implemented with a 7 T MRI system and 8- and 16-element coil arrays for RF mode shimming experiments and operated successfully with 8 kW of RF power.

  7. Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations.

    PubMed

    DiFrancesco, M W; Rasmussen, J M; Yuan, W; Pratt, R; Dunn, S; Dardzinski, B J; Holland, S K

    2008-09-01

    Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for magnetic resonance microimaging were measured using two nearly identical magnetic resonance imaging (MRI) scanners operating at field strengths of 3 and 7 T. Six mice were scanned using two imaging protocols commonly applied for in vivo imaging of small animal brain: RARE and FLASH. An accounting was made of the field dependence of relaxation times as well as a small number of hardware disparities between scanner systems. Standard methods for relaxometry were utilized to measure T1 and T2 for two white matter (WM) and two gray matter (GM) regions in the mouse brain. An average increase in T1 between 3 and 7 T of 28% was observed in the brain. T2 was found to decrease by 27% at 7 T in agreement with theoretical models. The SNR was found to be uniform throughout the mouse brain, increasing at higher field by a factor statistically indistinguishable from the ratio of Larmor frequencies when imaging with either method. The CNR between GM and WM structures was found to adhere to the expected field dependence for the RARE imaging sequence. Improvement in the CNR for the FLASH imaging sequence between 3 and 7 T was observed to be greater than the Larmor ratio, reflecting a greater susceptibility to partial volume effects at the lower SNR values at 3 T. Imaging at 7 T versus 3 T in small animals clearly provides advantages with respect to the CNR, even beyond the Larmor ratio, especially in lower SNR regimes. This careful multifaceted assessment of the benefits of higher static field is instructive for those newly embarking on small animal imaging. Currently the number of 7 T MRI scanners in use for research in human subjects is increasing at a rapid pace with approximately 30 systems deployed worldwide in 2008. The data presented in this article verify that if system performance and radio frequency uniformity is optimized at 7 T, it should be possible to realize the expected improvements in the CNR and SNR

  8. Mapping of the internal structure of human habenula with ex vivo MRI at 7T

    PubMed Central

    Strotmann, Barbara; Kögler, Carsten; Bazin, Pierre-Louis; Weiss, Marcel; Villringer, Arno; Turner, Robert

    2013-01-01

    The habenula is a small but important nucleus located next to the third ventricle in front of the pineal body. It helps to control the human reward system and is considered to play a key role in emotion, showing increased activation in major depressive disorders. Its dysfunction may underlie several neurological and psychiatric disorders. It is now possible to visualize the habenula and its anatomical subdivisions—medial habenula (MHB) and lateral habenula (LHB)—using MR techniques. The aim of this study was to further differentiate substructures within human lateral habenula (LHB) using ex vivo ultra-high field MR structural imaging, distinguishing between a medial part (m-LHB) and a lateral part (l-LHB). High resolution T1w images with 0.3-mm isotropic resolution and T2*w images with 60-micrometer isotropic resolution were acquired on a 7T MR scanner and quantitative maps of T1 and T2* were calculated. Cluster analysis of image intensity was performed using the Fuzzy and Noise Tolerant Adaptive Segmentation Method (FANTASM) tool. Ultra-high resolution structural MRI of ex vivo brain tissue at 7T provided sufficient SNR and contrast to discriminate the medial and lateral habenular nuclei. Heterogeneity was observed in the lateral habenula (LHB) nuclei, with clear distinctions between lateral and medial parts (m-LHB, l-LHB) and with the neighboring medial habenula (MHB). Clustering analysis based on the T1 and T2* maps strongly showed 4–6 clusters as subcomponents of lateral and medial habenula. PMID:24391571

  9. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  10. A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Holmes, Martha J.; Newton, Allen T.; Morgan, Victoria L.; Landman, Bennett A.

    2012-02-01

    Ultra-high field 7T magnetic resonance imaging (MRI) offers potentially unprecedented spatial resolution of functional activity within the human brain through increased signal and contrast to noise ratios over traditional 1.5T and 3T MRI scanners. However, the effects physiological and imaging artifacts are also greatly increased. Traditional statistical parametric mapping theories based on distributional properties representative of data acquired at lower fields may be inadequate for new 7T data. Herein, we investigate the model fitting residuals based on two 7T and one 3T protocols. We find that model residuals are substantively more non-Gaussian at 7T relative to 3T. Imaging slices that passed through regions with peak inhomogeneity problems (e.g., mid-brain acquisitions for the 7T hippocampus) exhibited visually higher degrees of distortion along with spatially correlated and extreme values of kurtosis (a measure of non- Gaussianity). The impacts of artifacts have been previously addressed for 3T data by estimating the covariance matrix of the regression errors. We further extend the robust estimation approach for autoregressive models and evaluate the qualitative impacts of this technique relative to traditional inference. Clear differences in statistical significance are shown between inferences based on classical versus robust assumptions, which suggest that inferences based on Gaussian assumptions are subject to practical (as well as theoretical) concerns regarding their power and validity. Hence, modern statistical approaches, such as the robust autoregressive model posed herein, are appropriate and suitable for inference with ultra-high field functional magnetic resonance imaging.

  11. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    NASA Astrophysics Data System (ADS)

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-05-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8× and 4.9× for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone.

  12. Classification of the venous architecture of the pineal gland by 7T MRI.

    PubMed

    Cho, Zang-Hee; Choi, Sang-Han; Chi, Je-Gun; Kim, Young-Bo

    2011-10-01

    Magnetic resonance imaging (MRI) at 7.0 Tesla (7T) can show many details of anatomical structures with unprecedented resolution and contrast. In this report, we describe for the first time the unexpected wide variation in pineal gland structure, as visualized by MR images obtained with 7T in a group of healthy young volunteers. A total of 34 volunteers (22 men and 12 women) were enrolled in the study. Their 7T MR images revealed such wide variations in pineal gland shape that it led us to attempt to classify the patterns seen in these pineal glands. Indeed, they were successfully correlated with a previous human cadaver study of venous structures by Tamaki et al., who classified the venous structures of the pineal gland into three categories. This is the first human in vivo pineal vein imaging study using 7T MRI. Pineal venous imaging may permit the early diagnosis of a pineal tumor.

  13. Quest for an open MRI scanner.

    PubMed

    Bertora, Franco; Borceto, Alice; Viale, Andrea; Sandini, Giulio

    2014-01-01

    A study of the motor cortex during the programming, execution and mental representation of voluntary movement is of great relevance; its evaluation in conditions close to reality is necessary, given the close integration of the visuomotor, sensory feedback and proprioceptive systems, as of yet, a functional Magnetic Resonance Imaging (fMRI) scanner allowing a human subject to maintain erect stance, observe the surroundings and conserve limb freedom is still a dream. The need for high field suggests a solenoid magnet geometry that forces an unnatural posture that affects the results, particularly when the motor cortex is investigated. In contrast in a motor functional study, the scanner should allow the subject to sit or stand, with unobstructed sight and unimpeded movement. Two approaches are presented here to solve this problem. In the first approach, an increased field intensity in an open magnet is obtained lining the "back wall" of the cavity with a sheet of current: this boosts the field intensity at the cost of the introduction of a gradient, which has to be canceled by the introduction of an opposite gradient; The second approach is an adaptation of the "double doughnut" architecture, in which the cavity widens at the center to provide additional room for the subject. The detailed design of this kind of structure has proven the feasibility of the solution.

  14. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  15. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average

  16. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on

  17. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Chang, Gregory; Otazo, Ricardo; Jerschow, Alexej; Regatte, Ravinder R.

    2012-01-01

    Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular cartilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are therefore under development in order to detect and assess early biochemical degradation of cartilage, but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition times (15-25 min) even at high magnetic fields and are typically of low resolution. In this preliminary study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2 at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction technique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T.

  18. Rapid Isotropic 3D-Sodium MRI of the Knee Joint In-vivo at 7T

    PubMed Central

    Wang, Ligong; Wu, Yan; Chang, Gregory; Oesingmann, Niels; Schweitzer, Mark E.; Jerschow, Alexej; Regatte, Ravinder R.

    2009-01-01

    Purpose To demonstrate the feasibility of acquiring high resolution, isotropic 3D-sodium MR images of the whole knee joint in vivo at ultra high field strength (7.0T) via a 3D-radial acquisition with ultra short echo times and clinically acceptable acquisition times. Materials and Methods Five healthy controls (4 males, 1 female; mean ± standard deviation (SD) age 28.7 ± 4.8 years) and five patients with osteoarthritis (OA) (3 males, 2 females; mean ± SD age 52.4 ± 5.6 years) underwent 23Na–MRI on a 7T, multi-nuclei equipped whole body scanner. A quadrature 23Na knee coil and a 3D-gradient echo (GRE) imaging sequence with a radial acquisition were utilized. Cartilage sodium concentration was measured and compared between the healthy controls and OA patients. Results The average signal-to-noise ratio (SNR) for different spatial resolutions (1.2 mm – 4 mm) varied from ∼14 – 120, respectively. The mean sodium concentration of healthy subjects ranged from ∼240 ± 28 mM/L – 280 ± 22 mM/L. However, in OA patients the sodium concentrations were reduced, significantly by ∼30 – 60%, depending upon the degree of cartilage degeneration. Conclusion The preliminary results suggest that sodium imaging at 7T may be a feasible potential alternative for physiologic OA imaging and clinical diagnosis. PMID:19711406

  19. High-resolution MRI of uveal melanoma using a microcoil phased array at 7 T.

    PubMed

    Beenakker, J W M; van Rijn, G A; Luyten, G P M; Webb, A G

    2013-12-01

    High-field MRI is a promising technique for the characterisation of ocular tumours, both in vivo and after enucleation. For in vivo imaging at 7 T, a dedicated three-element microcoil array was constructed as a high-sensitivity receive-only device. Using a dedicated blink/fixation protocol, high-resolution in vivo images could be acquired within 3 min in volunteers and patients with no requirement for post-acquisition image registration. Quantitative measures of axial length, aqueous depth and lens thickness in a healthy volunteer were found to agree well with standard ocular biometric techniques. In a patient with uveal melanoma, in vivo MRI gave excellent tumour/aqueous body contrast. Ex vivo imaging of the enucleated eye showed significant heterogeneity within the tumour.

  20. Structural layers of ex vivo rat hippocampus at 7T MRI.

    PubMed

    Kamsu, Jeanine Manuella; Constans, Jean-Marc; Lamberton, Franck; Courtheoux, Patrick; Denise, Pierre; Philoxene, Bruno; Coquemont, Maelle; Besnard, Stephane

    2013-01-01

    Magnetic resonance imaging (MRI) applied to the hippocampus is challenging in studies of the neurophysiology of memory and the physiopathology of numerous diseases such as epilepsy, Alzheimer's disease, ischemia, and depression. The hippocampus is a well-delineated cerebral structure with a multi-layered organization. Imaging of hippocampus layers is limited to a few studies and requires high magnetic field and gradient strength. We performed one conventional MRI sequence on a 7T MRI in order to visualize and to delineate the multi-layered hippocampal structure ex vivo in rat brains. We optimized a volumic three-dimensional T2 Rapid Acquisition Relaxation Enhancement (RARE) sequence and quantified the volume of the hippocampus and one of its thinnest layers, the stratum granulare of the dentate gyrus. Additionally, we tested passive staining by gadolinium with the aim of decreasing the acquisition time and increasing image contrast. Using appropriated settings, six discrete layers were differentiated within the hippocampus in rats. In the hippocampus proper or Ammon's Horn (AH): the stratum oriens, the stratum pyramidale of, the stratum radiatum, and the stratum lacunosum moleculare of the CA1 were differentiated. In the dentate gyrus: the stratum moleculare and the stratum granulare layer were seen distinctly. Passive staining of one brain with gadolinium decreased the acquisition time by four and improved the differentiation between the layers. A conventional sequence optimized on a 7T MRI with a standard receiver surface coil will allow us to study structural layers (signal and volume) of hippocampus in various rat models of neuropathology (anxiety, epilepsia, neurodegeneration).

  1. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  2. Brain venular pattern by 7T MRI correlates with memory and haemoglobin in sickle cell anaemia.

    PubMed

    Novelli, Enrico M; Elizabeth Sarles, C; Jay Aizenstein, Howard; Ibrahim, Tamer S; Butters, Meryl A; Connelly Ritter, Anne; Erickson, Kirk I; Rosano, Caterina

    2015-07-30

    Sickle cell anaemia (SCA) is a hereditary hemoglobinopathy characterised by extensive vascular dysfunction that stems from inflammation, thrombosis and occlusion of post-capillary venules. Cognitive impairment is a neurological complication of SCA whose pathogenesis is unknown. We hypothesised that cerebral venular abnormalities are linked to cognitive impairment in SCA. Thus, we employed 7T magnetic resonance imaging (MRI) to examine the association between venular density and cognitive function in homozygous SCA. We quantified the density of total, long, and short venules in pre-defined regions of interest between the frontal and occipital cornu on each hemisphere. Cognitive function was assessed using the Hopkins Verbal Learning Test - Revised (HVLT-R) test of learning and memory. Patients (n=11) were compared with race, age and gender-equated controls (n=7). Compared to controls, patients had an overall venular rarefaction, with significantly lower density of long venules and greater density of short venules which was inversely related to HVLT-R performance and haemoglobin. To our knowledge, this is the first 7T MRI study in SCA and first report of associations between cerebral venular patterns and cognitive performance and haemoglobin. Future studies should examine whether these novel neuroimaging markers predict cognitive impairment longitudinally and are mechanistically linked to severity of anaemia.

  3. Evaluation of non-selective refocusing pulses for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W.; Gore, John C.

    2012-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (⩾7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.

  4. Evaluation of non-selective refocusing pulses for 7 T MRI.

    PubMed

    Moore, Jay; Jankiewicz, Marcin; Anderson, Adam W; Gore, John C

    2012-01-01

    There is a continuing need for improved RF pulses that achieve proper refocusing in the context of ultra-high field (≥ 7 T) human MRI. Simple block or sinc pulses are highly susceptible to RF field inhomogeneities, and adiabatic pulses are generally considered too SAR intensive for practical use at 7 T. The performance of the array of pulses falling between these extremes, however, has not been systematically evaluated. The aim of this work was to compare the performances of 21 non-selective refocusing pulses spanning a range of durations and SAR levels. The evaluation was based upon simulations and both phantom and in vivo human brain experiments conducted at 7 T. Tested refocusing designs included block, composite block, BIR-4, hyperbolic secant, and numerically optimized composite waveforms. These pulses were divided into three SAR classes and two duration categories, and, based on signal gain in a 3-D spin echo sequence, practical recommendations on usage are made within each category. All evaluated pulses were found to produce greater volume-averaged signals relative to a 180° block pulse. Although signal gains often come with the price of increased SAR or duration, some pulses were found to result in significant signal enhancement while also adhering to practical constraints. This work demonstrates the signal gains and losses realizable with single-channel refocusing pulse designs and should assist in the selection of suitable refocusing pulses for practical 3-D spin-echo imaging at 7 T. It further establishes a reference against which future pulses and multi-channel designs can be compared.

  5. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  6. Robotic Prostate Biopsy in Closed MRI Scanner

    DTIC Science & Technology

    2009-02-01

    and robot control. The functions of the device will be tested in phantom studies at the Brigham and Women’s Hospital.  Demonstrated integrated...system in 3T MRI at the Brigham and Women’s Hospital. See Reference [3].  Demonstrated needle placement in phantoms under real-time MR image guidance...workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the

  7. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners.

    PubMed

    Kännälä, Sami; Toivo, Tim; Alanko, Tommi; Jokela, Kari

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s(-1) for the 1 T scanner and 3 T s(-1) for the 3 T scanner when only the static field was present. Even higher values (6.5 T s(-1)) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  8. High-resolution 7T fMRI of Human Hippocampal Subfields during Associative Learning

    PubMed Central

    Suthana, Nanthia A.; Donix, Markus; Wozny, David R.; Bazih, Adam; Jones, Michael; Heidemann, Robin M.; Trampel, Robert; Ekstrom, Arne D.; Scharf, Maria; Knowlton, Barbara; Turner, Robert; Bookheimer, Susan Y.

    2015-01-01

    Examining the function of individual human hippocampal subfields remains challenging due to their small sizes and convoluted structures. Previous human functional magnetic resonance (fMRI) studies at 3 Tesla (T) have successfully detected differences in activation between hippocampal cornu ammonis (CA) field CA1, combined CA2, 3 and dentate gyrus (DG) region (CA23DG), and the subiculum during associative memory tasks. In this study we investigated hippocampal subfield activity in healthy participants using an associative memory paradigm during high-resolution functional magnetic resonance imaging (fMRI) scanning at 7T. We were able to localize fMRI activity to anterior CA2 and CA3 during learning, and to the posterior CA2 field, the CA1, and the posterior subiculum during retrieval of novel associations. These results provide insight into more specific human hippocampal subfield functions underlying learning and memory and a unique opportunity for future investigations of hippocampal subfield function in healthy individuals as well as those suffering from neurodegenerative diseases. PMID:25514656

  9. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  10. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  11. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    NASA Astrophysics Data System (ADS)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  12. Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data

    PubMed Central

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2017-01-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 Tesla and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs 7T) and pulse sequence (MPRAGE vs MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7T MPRAGE and 7T MP2RAGE. Due to the fact that 7T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7T. Besides minor exceptions, these results were observed for 7T MPRAGE as well for the 7T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7T also for the advanced MP2RAGE sequence. Hence, our data support the use of 7T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of inferior cortical regions, cerebellum and

  13. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations.

    PubMed

    Bianciardi, Marta; van Gelderen, Peter; Duyn, Jeff H; Fukunaga, Masaki; de Zwart, Jacco A

    2009-01-15

    The presence of spontaneous BOLD fMRI signal fluctuations in human grey matter compromises the detection and interpretation of evoked responses and limits the sensitivity gains that are potentially available through coil arrays and high field systems. In order to overcome these limitations, we adapted and improved a recently described correlated noise suppression method (de Zwart et al., 2008), demonstrating improved precision in estimating the response to ultra-short visual stimuli at 7 T. In this procedure, the temporal dynamics of spontaneous signal fluctuations are estimated from a reference brain region outside the area targeted with the stimulus. Rather than using the average signal in this region as regressor, as proposed in the original method, we used principal component analysis to derive multiple regressors in order to optimally describe nuisance signals (e.g. spontaneous fluctuations) and separate these from evoked activity in the target region. Experimental results obtained from application of the original method showed a 66% improvement in estimation precision. The novel, enhanced version of the method, using 18 PCA-derived noise regressors, led to a 160% increase in precision. These increases were relative to a control condition without noise suppression, which was simulated by randomizing the time-course of the nuisance-signal regressor(s) without altering their power spectrum. The increase of estimation precision was associated with decreased autocorrelation levels of the residual errors. These results suggest that modeling of spontaneous fMRI signal fluctuations as multiple independent sources can dramatically improve detection of evoked activity, and fully exploit the potential sensitivity gains available with high field technology.

  14. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner

    PubMed Central

    El-Sharkawy, AbdEl-Monem M.; Sotiriadis, Paul P.; Bottomley, Paul A.; Atalar, Ergin

    2007-01-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C–40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  15. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were

  16. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    PubMed Central

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim; Kondziella, Daniel; Niendorf, Thoralf; Kerrn-Jespersen, Bjørg Morell; Lindelof, Mette; Lassmann, Hans; Kristensen, Bjarne Winther; Paul, Friedemann

    2016-01-01

    Objective: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. Methods: We performed a detailed neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential advantages of 7.0T MRI compared to 3.0T MRI in reflecting widespread inflammation, perivascular pathology, and axonal damage, and (3) the possibility of lymphoma. Results: In the autopsy case, perivascular inflammation dominated by CD4+ T cells was not only detected in the brainstem and cerebellum but also in brain areas with normal appearance on 3.0T MRI, including supratentorial regions and cranial nerve roots. There was no evidence of lymphoma in any of the 4 patients. The 7.0T MRI in clinical remission also revealed supratentorial lesions and perivascular pathology in vivo with contrast-enhancing lesions centered around a small venous vessel. Ultra-high-field MRI at 7.0T disclosed prominent T1 hypointensities in the brainstem, which were not seen on 3.0T MRI. This corresponded to neuropathologic detection of axonal injury in the autopsy case. Conclusion: Our findings suggest more widespread perivascular inflammation and postinflammatory axonal injury in patients with CLIPPERS. PMID:27144217

  17. The impact of MRI scanner environment on perceptual decision-making.

    PubMed

    van Maanen, Leendert; Forstmann, Birte U; Keuken, Max C; Wagenmakers, Eric-Jan; Heathcote, Andrew

    2016-03-01

    Despite the widespread use of functional magnetic resonance imaging (fMRI), few studies have addressed scanner effects on performance. The studies that have examined this question show a wide variety of results. In this article we report analyses of three experiments in which participants performed a perceptual decision-making task both in a traditional setting as well as inside an MRI scanner. The results consistently show that response times increase inside the scanner. Error rates also increase, but to a lesser extent. To reveal the underlying mechanisms that drive the behavioral changes when performing a task inside the MRI scanner, the data were analyzed using the linear ballistic accumulator model of decision-making. These analyses show that, in the scanner, participants exhibit a slow down of the motor component of the response and have less attentional focus on the task. However, the balance between focus and motor slowing depends on the specific task requirements.

  18. MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI

    NASA Astrophysics Data System (ADS)

    Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.

    2016-11-01

    A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.

  19. MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.

    PubMed

    Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L

    2016-11-21

    A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.

  20. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation

    PubMed Central

    Bosshard, John C.; Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; McDougall, Mary Preston; Malloy, Craig; Wright, Steven M.

    2015-01-01

    In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for 1H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts. PMID:25706501

  1. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.

  2. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium

  3. Sodium inversion recovery MRI of the knee joint in vivo at 7T

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.

    2010-11-01

    The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.

  4. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  5. Experimental MRI-SPECT insert system with Hybrid Semiconductor detectors Timepix for MR animal scanner Bruker 47/20

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.

    2017-01-01

    Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.

  6. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI.

    PubMed

    Da Costa, Sandra; Bourquin, Nathalie M-P; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl's gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.

  7. On the effect of resistive EEG electrodes and leads during 7 T MRI: simulation and temperature measurement studies.

    PubMed

    Angelone, Leonardo M; Vasios, Christos E; Wiggins, Graham; Purdon, Patrick L; Bonmassar, Giorgio

    2006-07-01

    The purpose of the study was to assess the effects of electrodes and leads on electromagnetic field and specific absorption rate (SAR) distributions during simultaneous electroencephalography (EEG) and 7-T MRI. Two different approaches were evaluated and compared to the case without electrodes: (a) the use of different EEG lead resistivity and (b) the use of a radiofrequency (RF) resistor on the lead near the EEG electrode. These configurations are commonly used in research and clinical settings. Electromagnetic field and SAR distributions generated by the transmit RF coil were evaluated using finite difference time domain simulations on an anatomically accurate head model. The spatiotemporal changes of temperature were estimated with the heat equation. Temperature changes during turbo spin echo sequences were also measured using a custom-made phantom: the conductive head mannequin anthropomorphic (CHEMA). The results of this study showed that the SAR and temperature distributions in CHEMA (a) increased when using low resistive leads, with respect to the no-electrode case; (b) were affected by the resistivity of the EEG leads, with carbon fiber leads performing better than standard copper leads; and (c) were not affected by the use of an RF resistor between the EEG electrode and the lead.

  8. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI.

    PubMed

    Bouvy, W H; Geurts, L J; Kuijf, H J; Luijten, P R; Kappelle, L J; Biessels, G J; Zwanenburg, J J M

    2016-09-01

    Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qflow) sequence was used to measure blood flow velocities during the cardiac cycle in perforating arteries in the basal ganglia (BG) and semioval centre (CSO), from which a mean normalised pulsatility index (PI) per region was calculated (n = 6 human subjects, aged 23-29 years). The precision of the measurements was determined by repeated imaging and performance of a Bland-Altman analysis, and confounding effects of partial volume and noise on the measurements were simulated. The median number of arteries included was 14 in CSO and 19 in BG. In CSO, the average velocity per volunteer was in the range 0.5-1.0 cm/s and PI was 0.24-0.39. In BG, the average velocity was in the range 3.9-5.1 cm/s and PI was 0.51-0.62. Between repeated scans, the precision of the average, maximum and minimum velocity per vessel decreased with the size of the arteries, and was relatively low in CSO and BG compared with the M1 segment of the middle cerebral artery. The precision of PI per region was comparable with that of M1. The simulations proved that velocities can be measured in vessels with a diameter of more than 80 µm, but are underestimated as a result of partial volume effects, whilst pulsatility is overestimated. Blood flow velocity and pulsatility in cerebral perforating arteries have been measured directly in vivo for the first time, with moderate to good precision. This may be an interesting metric for the study of haemodynamic changes in aging and cerebral small vessel disease. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.

  9. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  10. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner.

    PubMed

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment.

  11. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  12. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    PubMed

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments.

  13. Small PET scanner based on MRI-compatible light sensor

    NASA Astrophysics Data System (ADS)

    Molnar, J.; Balkay, L.; Berenyi, E.

    2015-03-01

    Improving the quality of life of elderly people requires diagnostic and therapeutic capabilities for diseases of the central nervous system, such as Alzheimer's, Parkinson's, and epilepsy which have a rapidly growing impact on society. Minimallyinvasive imaging technologies such as PET and MRI allow for monitoring and tracking these illnesses, starting from their preliminary manifestations.

  14. A Novel Method for Quantifying Scanner Instability in fMRI

    PubMed Central

    Greve, Douglas N.; Mueller, Bryon A.; Liu, Thomas; Turner, Jessica A.; Voyvodic, James; Yetter, Elizabeth; Diaz, Michele; McCarthy, Gregory; Wallace, Stuart; Roach, Brian J.; Ford, Judy M.; Mathalon, Daniel H.; Calhoun, Vince D.; Wible, Cynthia G.; Potkin, Stephen G.; Glover, Gary

    2010-01-01

    A method was developed to quantify the effect of scanner instability on fMRI data by comparing the instability noise to endogenous noise present when scanning a human. The instability noise was computed from agar phantom data collected with two flip angles, allowing for a separation of the instability from the background noise. This method was used on human data collected at four 3T scanners, allowing the physiological noise level to be extracted from the data. In a “well-operating” scanner, the instability noise is generally less than 10% of physiological noise in white matter and only about 2% of physiological noise in cortex. This indicates that instability in a well-operating scanner adds very little noise to fMRI results. This new method allows researchers to make informed decisions about the maximum instability level a scanner can have before it is taken off line for maintenance or rejected from a multisite consortium. This method also provides information about the background noise, which is generally larger in magnitude than the instability noise. PMID:21413069

  15. Experimental and numerical analysis of B1+ field and SAR with a new transmit array design for 7 T breast MRI

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Krishnamurthy, Narayan; Santini, Tales; Zhao, Yujuan; Zhao, Tiejun; Bae, Kyongtae Ty; Ibrahim, Tamer S.

    2016-08-01

    Developing a radiofrequency (RF) coil system that produces a uniform B1+ field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7 T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1+ intensity (μT) and homogeneity represented by coefficient of variation (CoV = standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7 T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7 T.

  16. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  17. Simulation study on active noise control for a 4-T MRI scanner.

    PubMed

    Li, Mingfeng; Lim, Teik C; Lee, Jing-Huei

    2008-04-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.

  18. Inter-site and inter-scanner diffusion MRI data harmonization.

    PubMed

    Mirzaalian, H; Ning, L; Savadjiev, P; Pasternak, O; Bouix, S; Michailovich, O; Grant, G; Marx, C E; Morey, R A; Flashman, L A; George, M S; McAllister, T W; Andaluz, N; Shutter, L; Coimbra, R; Zafonte, R D; Coleman, M J; Kubicki, M; Westin, C F; Stein, M B; Shenton, M E; Rathi, Y

    2016-07-15

    We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the

  19. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  20. EEG-MRI co-registration and sensor labeling using a 3D laser scanner.

    PubMed

    Koessler, L; Cecchin, T; Caspary, O; Benhadid, A; Vespignani, H; Maillard, L

    2011-03-01

    This paper deals with the co-registration of an MRI scan with EEG sensors. We set out to evaluate the effectiveness of a 3D handheld laser scanner, a device that is not widely used for co-registration, applying a semi-automatic procedure that also labels EEG sensors. The scanner acquired the sensors' positions and the face shape, and the scalp mesh was obtained from the MRI scan. A pre-alignment step, using the position of three fiducial landmarks, provided an initial value for co-registration, and the sensors were automatically labeled. Co-registration was then performed using an iterative closest point algorithm applied to the face shape. The procedure was conducted on five subjects with two scans of EEG sensors and one MRI scan each. The mean time for the digitization of the 64 sensors and three landmarks was 53 s. The average scanning time for the face shape was 2 min 6 s for an average number of 5,263 points. The mean residual error of the sensors co-registration was 2.11 mm. These results suggest that the laser scanner associated with an efficient co-registration and sensor labeling algorithm is sufficiently accurate, fast and user-friendly for longitudinal and retrospective brain sources imaging studies.

  1. Silent speechreading in the absence of scanner noise: an event-related fMRI study.

    PubMed

    MacSweeney, M; Amaro, E; Calvert, G A; Campbell, R; David, A S; McGuire, P; Williams, S C; Woll, B; Brammer, M J

    2000-06-05

    In a previous study we used functional magnetic resonance imaging (fMRI) to demonstrate activation in auditory cortex during silent speechreading. Since image acquisition during fMRI generates acoustic noise, this pattern of activation could have reflected an interaction between background scanner noise and the visual lip-read stimuli. In this study we employed an event-related fMRI design which allowed us to measure activation during speechreading in the absence of acoustic scanner noise. In the experimental condition, hearing subjects were required to speechread random numbers from a silent speaker. In the control condition subjects watched a static image of the same speaker with mouth closed and were required to subvocally count an intermittent visual cue. A single volume of images was collected to coincide with the estimated peak of the blood oxygen level dependent (BOLD) response to these stimuli across multiple baseline and experimental trials. Silent speechreading led to greater activation in lateral temporal cortex relative to the control condition. This indicates that activation of auditory areas during silent speechreading is not a function of acoustic scanner noise and confirms that silent speechreading engages similar regions of auditory cortex as listening to speech.

  2. Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI

    PubMed Central

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-01-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among “good quality” structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects’ tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion—even at levels which do not manifest in visible motion artifact—can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. PMID:27004471

  3. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents.

  4. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner

    PubMed Central

    Magill, Arthur W.; Kuehne, Andre; Gruetter, Rolf; Moser, Ewald; Schmid, Albrecht Ingo

    2015-01-01

    Purpose Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. Methods A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous 31P and 1H spectroscopic acquisitions, and with interleaved 31P and 1H imaging. Results Signal amplitudes and signal‐to‐noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. Conclusion Interleaved and simultaneous 1H and 31P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with 31P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636–1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26608834

  5. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  6. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  7. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths.

    PubMed

    Jovicich, Jorge; Czanner, Silvester; Han, Xiao; Salat, David; van der Kouwe, Andre; Quinn, Brian; Pacheco, Jenni; Albert, Marilyn; Killiany, Ronald; Blacker, Deborah; Maguire, Paul; Rosas, Diana; Makris, Nikos; Gollub, Randy; Dale, Anders; Dickerson, Bradford C; Fischl, Bruce

    2009-05-15

    Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal and abnormal neuroanatomy, but little is known about measurement reliability. Here we assess the impact of image acquisition variables (scan session, MRI sequence, scanner upgrade, vendor and field strengths), FreeSurfer segmentation pre-processing variables (image averaging, B1 field inhomogeneity correction) and segmentation analysis variables (probabilistic atlas) on resultant image segmentation volumes from older (n=15, mean age 69.5) and younger (both n=5, mean ages 34 and 36.5) healthy subjects. The variability between hippocampal, thalamic, caudate, putamen, lateral ventricular and total intracranial volume measures across sessions on the same scanner on different days is less than 4.3% for the older group and less than 2.3% for the younger group. Within-scanner measurements are remarkably reliable across scan sessions, being minimally affected by averaging of multiple acquisitions, B1 correction, acquisition sequence (MPRAGE vs. multi-echo-FLASH), major scanner upgrades (Sonata-Avanto, Trio-TrioTIM), and segmentation atlas (MPRAGE or multi-echo-FLASH). Volume measurements across platforms (Siemens Sonata vs. GE Signa) and field strengths (1.5 T vs. 3 T) result in a volume difference bias but with a comparable variance as that measured within-scanner, implying that multi-site studies may not necessarily require a much larger sample to detect a specific effect. These results suggest that volumes derived from automated segmentation of T1-weighted structural images are reliable measures within the same scanner platform, even after upgrades; however, combining data across platform and across field-strength introduces a bias that should be considered in the design of multi-site studies, such as clinical drug trials. The results derived from the young groups (scanner upgrade effects and B1 inhomogeneity correction effects) should be considered as preliminary and in

  8. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  9. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7T

    NASA Astrophysics Data System (ADS)

    Aryal, Madhava Prasad

    This dissertation mainly focuses on establishing and evaluating a stable and reproducible procedure for assessing tumor microvasculature by measuring the tissue parameters: plasma volume (vp), forward transfer constant (Ktrans), interstitial volume (ve) and distribution volume (VD), utilizing T1-weighted dynamic contrast enhanced MRI (DCE-MRI) and examining their relationship with a histo measure, cell counting. In the first part of the work, two T1-weighted DCE-MRI studies at 24 hrs time interval, using a dual-echo gradient-echo pulse sequence, were performed in 18 athymic rats implanted with U251 cerebral glioma. Using the "standard," or "consensus" model, and a separate Logan graphical analysis, T1-weighted images before, during and after the injection of a gadolinium contrast agent were used to estimate the tissue parameters mentioned above. After MRI study rats were sacrificed, and sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Measurements in a region where a model selection process demonstrates that it can be reliably shown that contrast agent leaks from the capillary into the interstitial space quickly enough, and a concentration sufficient to measure its back flux to the vasculature, especially for Ktrans and ve, showed a remarkable stability. The combined mean parameter values in this region were: vp = (0.79+/-0.36)%, Ktrans = (2.23+/-0.71) x10-2 min -1, ve = (6.99+/-2.14)%, and VD = (7.57+/-2.32)%. In the second part of this work, the Logan graphical approach, after establishing its stability in an untreated control group, was applied to investigate a cohort of animals in which a therapeutic dose of 20 Gy radiation had been administered. In this cohort, tissue normalization appeared to be the most effective at 8 h after irradiation; this implies that the 8 hrs post-treatment time might be an ideal combination time for optimized therapeutic outcome in combined modalities. The relationship between non-invasive DCE-MRI

  10. In-Vivo Imaging Of Transplanted Human Hepatic Stem Cells: Negative Contrast Labeling And 7t Micro-MRI Tracking

    DTIC Science & Technology

    2004-12-01

    The goals of the current study are to develop effective procedures for labeling stem cells with contrast agents for magnetic resonance imaging (MRI...ms, 2 averages) were obtained. For the fixed whole mouse experiments, a 4.0 cm-diameter birdcage RF coil was used, and interleaved multislice...stem cells, EpCAM+ cells, were labeled to induce magnetic resonance imaging contrast by either magnetodendrimers or a novel microbead-antibody

  11. Improved traveling-wave efficiency in 7T human MRI using passive local loop and dipole arrays.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Gore, John C; Grissom, William A

    2017-02-09

    Traveling-wave MRI, which uses relatively small and simple RF antennae, has robust matching performance and capability for large field-of-view (FOV) imaging. However, the power efficiency of traveling-wave MRI is much lower than conventional methods, which limits its application. One simple approach to improve the power efficiency is to place passive resonators around the subject being imaged. The feasibility of this approach has been demonstrated in previous works using a single small resonant loop. In this work, we aim to explore how much the improvements can be maintained in human imaging using an array design, and whether electric dipoles can be used as local elements. First, a series of electromagnetic (EM) simulations were performed on a human model. Then RF coils were constructed and the simulation results using the best setup for head imaging were validated in MR experiments. By using the passive local loop and transverse dipole arrays, respectively, the transmit efficiency (B1(+)) of traveling-wave MRI can be improved by 3-fold in the brain and 2-fold in the knee. The types of passive elements (loops or dipoles) should be carefully chosen for brain or knee imaging to maximize the improvement, and the enhancement depends on the local body configuration.

  12. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging

    PubMed Central

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-01-01

    AIM To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). METHODS Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects’ hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects’ hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. RESULTS Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. CONCLUSION Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases. PMID:28298968

  13. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  14. An experimental study on use of 7T MRI for evaluation of myocardial infarction in SD rats transfected with pcDNA 3.1(+)/VEGF121 plasmid

    PubMed Central

    Zhang, Yan; Tian, Ruiqing; Shen, Xiangchun; Chen, Yushu; Chen, Wei; Gan, Lu; Shen, Guiquan; Ju, Haiyue; Yang, Li; Gao, Fabao

    2016-01-01

    This study aims to build the myocardial infarction model in SD rats transfected with pcDNA 3.1(+)/VEGF121 plasmid and study the effect of the transfection using 7T MRI. Twenty-four male SD rats were randomly divided into 2 groups, pcDNA 3.1(+)/VEGF121 plasmid transfection group (with improved coronary perfusion delivery) and myocardial infarction model group. Cardiac cine magnetic resonance imaging (Cine-MRI), T2-mapping and late gadolinium enhancement (LGE) cardiac imaging were performed at 24 h, 48 h, 72 h and 7 d after myocardial infarction, respectively. The signal intensity, area at risk (AAR), myocardium infarction core (MIC) and salvageable myocardial zone (SMZ) were compared. The hearts were harvested for anatomic characterization, which was related to pathological examination (TTC staining, HE staining, Masson staining and immunohistochemical staining). The Cine-MRI results showed that pcDNA 3.1(+)/VEGF121 plasmid transfection group had higher end-diastolic volume (EDV) with a reduction in MIC and SMZ, as compared with the myocardial infarction model group. MIC, SMZ and AAR of the plasmid transfection declined over time. At 7 d, the two groups did not differ significantly in AAR and T2 value. According to Western Blotting, VEGF was up-regulated, while CaSR and caspase-3 were downregulated in the plasmid transfection group, as compared with the model group. In conclusion, a good treatment effect was achieved by coronary perfusion of pcDNA 3.1(+)/VEGF121 plasmid. 7T CMR sequences provide a non-invasive quantification of the treatment efficacy. However, the assessment of myocardial injury using T2 value and AAR in the presence of edema is less accurate. The myocardial protection of the plasmid transfection group may be related to the inhibition of myocardial apoptosis, vascular endothelial cell (VEC) proliferation and collagen proliferation. The CaSR signaling pathway may contribute to reversing the apoptosis. PMID:27648128

  15. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  16. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  17. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  18. Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7- and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future.

    PubMed

    Mertz, Leslie

    2013-01-01

    Molecular imaging is one of the hot-button areas within medical imaging. This technology employs imaging techniques in concert with molecular probes, or biomarkers, that together noninvasively spy on cellular function and molecular processes. In some cases, this technology may be able to detect the very earliest stages of diseases and eliminate them on the spot. This paper discusses how miniaturized microscopes, microbubbles, 7T and 15T scanners, diffusion-tensor MRI and other molecular imaging technologies are pushing molecular imaging into the future.

  19. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T.

    PubMed

    Müller, Katharina; Kuchling, Joseph; Dörr, Jan; Harms, Lutz; Ruprecht, Klemens; Niendorf, Thoralf; Wuerfel, Jens; Paul, Friedemann; Sinnecker, Tim

    2014-10-01

    Intra-lesional venous lumen shrinking detectable by MRI was suggested as an in vivo marker of inflammation in multiple sclerosis (MS). In our study mean diameters of pre-, post- and intra-lesional venous sections were determined in 49 patients with MS or clinically isolated syndrome (CIS) using a pixel-wise analysis on susceptibility-weighted fluid-attenuated inversion recovery (sFLAIR) images and T2*-weighted (T2*w) imaging at 7 Tesla (T). We observed post-to-intra-lesional venous lumen shrinking on T2*w images (p = 0.036) in an analysis of 338 venous sections. Pre-to-intra-lesional venous lumen reduction was only detectable in less than 50% of lesions and failed statistical significance when analysing T2*w (p = 0.325) and sFLAIR images (p = 0.258). In conclusion, thinning of intra-lesional veins in MS is--if detectable at all--probably less severe than previously reported, and affects only a minority of MS lesions.

  20. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T

    PubMed Central

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950

  1. Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion.

    PubMed

    Jorge, João; Grouiller, Frédéric; Gruetter, Rolf; van der Zwaag, Wietske; Figueiredo, Patrícia

    2015-10-15

    The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.

  2. In Situ Active Control of Noise in a 4-Tesla MRI Scanner

    PubMed Central

    Li, Mingfeng; Rudd, Brent; Lim, Teik C.; Lee, Jing-Huei

    2011-01-01

    Purpose To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ. Materials and Methods Three typical scanning sequences, namely EPI (echo planar imaging), GEMS (gradient echo multi-slice) and MDEFT (Modified Driven Equilibrium Fourier Transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller. Results The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case. Conclusion The result is highly encouraging because it shows great potential for treating MRI noise with an ANC application during real time scanning. PMID:21751284

  3. Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

    PubMed

    Kemper, Valentin G; De Martino, Federico; Vu, An T; Poser, Benedikt A; Feinberg, David A; Goebel, Rainer; Yacoub, Essa

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  4. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  5. Numerical evaluation of E-fields induced by body motion near high-field MRI scanner.

    PubMed

    Crozier, S; Liu, F

    2004-01-01

    In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

  6. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  7. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner.

    PubMed

    Xu, Ye; Wu, Changqiang; Zhu, Wencheng; Xia, Chunchao; Wang, Dan; Zhang, Houbin; Wu, Jun; Lin, Gan; Wu, Bing; Gong, Qiyong; Song, Bin; Ai, Hua

    2015-07-01

    Dendritic cell (DC) based vaccines have shown promising results in the immunotherapy of cancers and other diseases. How to track the in vivo fate of DC vaccines will provide important insights to the final therapeutic results. In this study, we chose magnetic resonance imaging (MRI) to track murine DCs migration to the draining lymph node under a clinical 3 T scanner. Different from labeling immature DCs usually reported in literature, this study instead labeled matured DC with superparamagnetic iron oxide (SPIO) nanoparticle based imaging probes. The labeling process did not show negative impacts on cell viability, morphology, and surface biomarker expression. To overcome the imaging challenges brought by the limitations of the scanner, the size of lymph node, and the number of labeled cell, we optimized MRI pulse sequences. As a result, the signal reduction, caused either by gelatin phantoms containing as low as 12 SPIO-laden cells in each voxel or by the homing SPIO-laden DCs within the draining nodes after footpad injection of only 1 × 10(5) cells, can be clearly depicted under a 3 T MR scanner. Overall, the MRI labeling probes offer a low-toxic and high-efficient MR imaging platform for the assessment of DC-based immunotherapies.

  8. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  9. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner.

    PubMed

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-21

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  10. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs.

    PubMed

    Luechinger, R; Duru, F; Scheidegger, M B; Boesiger, P; Candinas, R

    2001-02-01

    Magnetic resonance imaging (MRI) is a widely accepted tool for the diagnosis of a variety of disease states. However, the presence of an implanted pacemaker is considered to be a strict contraindication to MRI in a vast majority of centers due to safety concerns. In phantom studies, the authors investigated the force and torque effects of the static magnetic field of MRI on pacemakers and ICDs. Thirty-one pacemakers (15 dual chamber and 16 single chamber units) from eight manufacturers and 13 ICDs from four manufacturers were exposed to the static magnetic field of a 1.5-Tesla MRI scanner. Magnetic force and acceleration measurements were obtained quantitatively, and torque measurements were made qualitatively. For pacemakers, the measured magnetic force was in the range of 0.05-3.60 N. Pacemakers released after 1995 had low magnetic force values as compared to the older devices. For these devices, the measured acceleration was even lower than the gravity of the earth (< 9.81 N/kg). Likewise, the torque levels were significantly reduced in newer generation pacemakers (< or = 2 from a scale of 6). ICD devices, except for one recent model, showed higher force (1.03-5.85 N), acceleration 9.5-34.2 N/kg), and torque (5-6 out of 6) levels. In conclusion, modern pacemakers present no safety risk with respect to magnetic force and torque induced by the static magnetic field of a 1.5-Tesla MRI scanner. However, ICD devices, despite considerable reduction in size and weight, may still pose problems due to strong magnetic force and torque.

  11. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    PubMed

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T.

  12. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    NASA Astrophysics Data System (ADS)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  13. Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Falsaperla, Rosaria; Calcagnini, Giovanni

    2015-01-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). For patients with an implanted cardiac stimulators, such as an implantable cardioverter/defibrillator (ICD), the movements inside the MRI environment may thus induce voltages on the loop formed by the leads of the device, with the potential to affect the behavior of the stimulator. In particular, the ICD's detection algorithms may be affected by the induced voltage and may cause inappropriate sensing, arrhythmia detections, and eventually inappropriate ICD therapy.We performed in-vitro measurements on a saline-filled humanshaped phantom (male, 170 cm height), equipped with an MRconditional ICD able to transmit in real-time the detected cardiac activity (electrograms). A biventricular implant was reproduced and the ICD was programmed in standard operating conditions, but with the shock delivery disabled. The electrograms recorded in the atrial, left and right ventricle channels were monitored during rotational movements along the vertical axis, in close proximity of the bore. The phantom was also equipped with an accelerometer and a magnetic field probe to measure the angular velocity and the magnetic field variation during the experiment. Pacing inhibition, inappropriate detection of tachyarrhythmias and of ventricular fibrillation were observed. Pacing inhibition began at an angular velocity of about 7 rad/s, (dB/dt of about 2 T/s). Inappropriate detection of ventricular fibrillation occurred at about 8 rad/s (dB/dt of about 3 T/s). These findings highlight the need for a specific risk assessment of workers with MR-conditional ICDs, which takes into account also effects that are generally not considered relevant for patients, such as the movement around the scanner bore.

  14. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.

    PubMed

    Raaymakers, B W; Lagendijk, J J W; Overweg, J; Kok, J G M; Raaijmakers, A J E; Kerkhof, E M; van der Put, R W; Meijsing, I; Crijns, S P M; Benedosso, F; van Vulpen, M; de Graaff, C H W; Allen, J; Brown, K J

    2009-06-21

    At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.

  15. Key clinical benefits of neuroimaging at 7T.

    PubMed

    Trattnig, Siegfried; Springer, Elisabeth; Bogner, Wolfgang; Hangel, Gilbert; Strasser, Bernhard; Dymerska, Barbara; Cardoso, Pedro Lima; Robinson, Simon Daniel

    2016-11-13

    The growing interest in ultra-high field MRI, with more than 35.000 MR examinations already performed at 7T, is related to improved clinical results with regard to morphological as well as functional and metabolic capabilities. Since the signal-to-noise ratio increases with the field strength of the MR scanner, the most evident application at 7T is to gain higher spatial resolution in the brain compared to 3T. Of specific clinical interest for neuro applications is the cerebral cortex at 7T, for the detection of changes in cortical structure, like the visualization of cortical microinfarcts and cortical plaques in Multiple Sclerosis. In imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology may be visualized with excellent spatial resolution. Using Susceptibility Weighted Imaging, the plaque-vessel relationship and iron accumulations in Multiple Sclerosis can be visualized, which may provide a prognostic factor of disease. Vascular imaging is a highly promising field for 7T which is dealt with in a separate dedicated article in this special issue. The static and dynamic blood oxygenation level-dependent contrast also increases with the field strength, which significantly improves the accuracy of pre-surgical evaluation of vital brain areas before tumor removal. Improvement in acquisition and hardware technology have also resulted in an increasing number of MR spectroscopic imaging studies in patients at 7T. More recent parallel imaging and short-TR acquisition approaches have overcome the limitations of scan time and spatial resolution, thereby allowing imaging matrix sizes of up to 128×128. The benefits of these acquisition approaches for investigation of brain tumors and Multiple Sclerosis have been shown recently. Together, these possibilities demonstrate the feasibility and advantages of conducting routine diagnostic imaging and clinical research at 7T.

  16. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities?

    DTIC Science & Technology

    2014-10-21

    the same space for descriptive statistics on each cohort. 7. Implemented a set of fMRI experiments to assess working memory and resting-state...Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size Ratio (PSR) • Amide Proton Transfer (APT...SIR qMT – 10:11 • Bloch-Siegert B1 mapping – 1:42 • Dual-echo B0 mapping – :04 • T1w MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34

  17. Spatial distortion correction and crystal identification for MRI-compatible position-sensitive avalanche photodiode-based PET scanners

    PubMed Central

    Chaudhari, Abhijit J.; Joshi, Anand A.; Wu, Yibao; Leahy, Richard M.; Cherry, Simon R.; Badawi, Ramsey D.

    2009-01-01

    Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulae derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ‘template’. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead

  18. [Prospects of the use of mobile MRI scanner in medical service of the Armed Forces].

    PubMed

    Troyan, V N; Dydykin, A V; Rikun, A O; Filisteev, P A; Zayats, V V; Zhigalov, A A

    2015-10-01

    Computed tomography is currently one of the most informative methods of diagnostics of a broad range of injuries and diseases, as well as an effective additional mean for various surgical interventions thank to intraoperative use. In this regard, the question of the necessity of the use of this diagnostic technology in mobile hospitals is one of the current tasks. The article analyses the experience of the use of mobile CT scanners at the medical service of the armed forces of foreign states and provides calculations indicating the necessity of the introduction of mobile CT scanners into the hospital link. The review and classification of mobile CT scanners have allowed to formulate technical requirements for their hardware capabilities, as well as to draw conclusions about the conditions of their effective use.

  19. Dynamic contrast-enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4.

    PubMed

    Fruytier, A-C; Magat, J; Neveu, M-A; Karroum, O; Bouzin, C; Feron, O; Jordan, B; Cron, G O; Gallez, B

    2014-11-01

    Dynamic contrast-enhanced (DCE)-MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti-angiogenic and vascular disrupting agents. Ultra-high-field MRI allows higher-resolution scanning for DCE-MRI while maintaining an adequate signal-to-noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium-based contrast agents (GdCAs), make DCE-MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE-MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4). Mice bearing transplantable liver tumor (TLT) hepatocarcinoma were divided into two groups (n = 5-6 per group and per GdCA): a treated group receiving 100 mg/kg CA4, and a control group receiving vehicle. The mice were imaged at 11.7 T with a T1 -weighted FLASH sequence 2 h after the treatment. Individual arterial input functions (AIFs) were computed using phase imaging. These AIFs were used in the Extended Tofts Model to determine K(trans) and vp values. A separate immunohistochemistry study was performed to assess the vascular perfusion and the vascular density. Phase imaging was used successfully to measure the AIF for the three GdCAs. In control groups, an inverse relationship between the molecular weight of the GdCA and K(trans) and vp values was observed. K(trans) was significantly decreased in the treated group compared with the control group for each GdCA. DCE-MRI at 11.7 T is feasible to assess tumor hemodynamics in mice. With K(trans) , the three GdCAs were able to track the early vascular effects induced by CA4 treatment.

  20. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  1. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities

    DTIC Science & Technology

    2015-10-01

    obtained high-resolution selective inversion recovery (SIR) qMT and analyzed the data according to (10) to generate the pool size ratio (PSR), exchange...rate (kmf), and longitudinal relaxation rate (R1f). In short, an inversion recovery MRI sequence was performed using a modified inversion pulse that...is relatively insensitive to B1 and B0 inhomogeneities. The inversion times were selected to sample the bi- exponential recovery known to exist when

  2. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms

    PubMed Central

    Abdel-Rehim, S.; Bagirathan, S.; Al-Benna, S.; O’Boyle, C.

    2014-01-01

    Summary Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries. PMID:26336370

  3. Burns from ECG leads in an MRI scanner: Case series and discussion of mechanisms.

    PubMed

    Abdel-Rehim, S; Bagirathan, S; Al-Benna, S; O'Boyle, C

    2014-12-31

    Iatrogenic burns are rare and preventable. The authors present two cases of burns from ECG leads, sustained during magnetic resonance imaging (MRI). Common features included a long duration spinal MR scan (120 and 60 minutes) and high patient body mass index (BMI >30). Both patients were discharged within 24 hours of admission, but required a period of outpatient burn care. The causation of these injuries remains unclear but there are several possible mechanisms including: electromagnetic induction heating, antenna effects and closed-loop current induction. The authors provide a description of the injuries, discuss possible mechanisms that may lead to burn injury in the MRI environment and suggest ways to reduce the risks of such injuries.

  4. Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7T Whole Body MRI Magnet

    SciTech Connect

    Quettier, Lionel

    2010-06-01

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working at 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.

  5. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  6. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.

    PubMed

    Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  7. Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus.

    PubMed

    Martuzzi, Roberto; van der Zwaag, Wietske; Farthouat, Juliane; Gruetter, Rolf; Blanke, Olaf

    2014-01-01

    To study the properties of human primary somatosensory (S1) cortex as well as its role in cognitive and social processes, it is necessary to noninvasively localize the cortical representations of the body. Being arguably the most relevant body parts for tactile exploration, cortical representations of fingers are of particular interest. The aim of the present study was to investigate the cortical representation of individual fingers (D1-D5), using human touch as a stimulus. Utilizing the high BOLD sensitivity and spatial resolution at 7T, we found that each finger is represented within three subregions of S1 in the postcentral gyrus. Within each of these three areas, the fingers are sequentially organized (from D1 to D5) in a somatotopic manner. Therefore, these finger representations likely reflect distinct activations of BAs 3b, 1, and 2, similar to those described in electrophysiological work in non-human primates. Quantitative analysis of the local BOLD responses revealed that within BA3b, each finger representation is specific to its own stimulation without any cross-finger responsiveness. This finger response selectivity was less prominent in BA 1 and in BA 2. A test-retest procedure highlighted the reproducibility of the results and the robustness of the method for BA 3b. Finally, the representation of the thumb was enlarged compared to the other fingers within BAs 1 and 2. These findings extend previous human electrophysiological and neuroimaging data but also reveal differences in the functional organization of S1 in human and nonhuman primates.

  8. Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T

    NASA Astrophysics Data System (ADS)

    Tsang, Adrian; Stobbe, Robert W.; Beaulieu, Christian

    2013-05-01

    Off-resonance can result in signal loss on triple-quantum-filtered (TQF) sodium images. Three correction methods have been proposed to mitigate this problem, but their effectiveness and necessity has not yet been evaluated for human brain. This evaluation is warranted given the doubling or quadrupling of scan length without the expected signal-to-noise ratio (SNR) benefit. First, simulations and agar gel experiments showed that the off-resonance effects on signal loss were asymmetric about on-resonance. Second, the two scan length doubling correction methods were tested for two sets of TQF acquisition parameters in 10 healthy volunteers at 4.7 Tesla. Using only manual shimming on the sodium signal and a 3-pulse TQF sequence with an optimal preparation time value of 6 ms, the majority of brain tissue voxels (87-94% depending on sequence parameters) experienced B0 inhomogeneity amounting to less than 10% signal losses. Relative signal intensities of 0.96 ± 0.04 and 0.98 ± 0.02 were measured in these voxels relative to on-resonant voxels for SNR-optimized and standard TQF parameters. The remaining brain voxels in regions with known susceptibility problems suffered more substantial signal losses, which were partially recovered with the correction methods. At field strengths below 4.7 T, at similar ranges of offset frequencies at higher fields and in typical volunteers, B0 correction appears unnecessary for TQF analysis in most of the brain. In many cases where regions with known susceptibility issues are not of concern, a doubling of scan time may be better spent to either improve SNR or spatial resolution in the TQF sodium images.

  9. Combined MRI-PET scanner: A Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field

    SciTech Connect

    Raylman, R.R.; Hammer, B.E.; Christensen, N.L.

    1996-08-01

    Positron emission tomography (PET) relies upon the detection of photons resulting from the annihilation of positrons emitted by a radiopharmaceutical. The combination of images obtained with PET and magnetic resonance imaging (MRI) have begun to greatly enhance the study of many physiological processes. A combined MRI-PET scanner could alleviate much of the spatial and temporal coregistration difficulties currently encountered in utilizing images from these complementary imaging modalities. In addition, the resolution of the PET scanner could be improved by the effects of the magnetic field. In this computer study, the utilization of a strong static homogeneous magnetic field to increase PET resolution by reducing the effects of positron range and photon noncollinearity was investigated. The results reveal that significant enhancement of resolution can be attained. For example, an approximately 27% increase in resolution is predicted for a PET scanner incorporating a 10-Tesla magnetic field. Most of this gain in resolution is due to magnetic confinement of the emitted positrons. Although the magnetic field does mix some positronium states resulting in slightly less photon noncollinearity, this reduction does not significantly affect resolution. Photon noncollinearity remains as the fundamental limiting factor of large PET scanner resolution.

  10. Functional asymmetry and effective connectivity of the auditory system during speech perception is modulated by the place of articulation of the consonant- A 7T fMRI study

    PubMed Central

    Specht, Karsten; Baumgartner, Florian; Stadler, Jörg; Hugdahl, Kenneth; Pollmann, Stefan

    2014-01-01

    To differentiate between stop-consonants, the auditory system has to detect subtle place of articulation (PoA) and voice-onset time (VOT) differences between stop-consonants. How this differential processing is represented on the cortical level remains unclear. The present functional magnetic resonance (fMRI) study takes advantage of the superior spatial resolution and high sensitivity of ultra-high-field 7 T MRI. Subjects were attentively listening to consonant–vowel (CV) syllables with an alveolar or bilabial stop-consonant and either a short or long VOT. The results showed an overall bilateral activation pattern in the posterior temporal lobe during the processing of the CV syllables. This was however modulated strongest by PoA such that syllables with an alveolar stop-consonant showed stronger left lateralized activation. In addition, analysis of underlying functional and effective connectivity revealed an inhibitory effect of the left planum temporale (PT) onto the right auditory cortex (AC) during the processing of alveolar CV syllables. Furthermore, the connectivity result indicated also a directed information flow from the right to the left AC, and further to the left PT for all syllables. These results indicate that auditory speech perception relies on an interplay between the left and right ACs, with the left PT as modulator. Furthermore, the degree of functional asymmetry is determined by the acoustic properties of the CV syllables. PMID:24966841

  11. Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Crozier, Stuart; De Vocht, Frank; Kromhout, Hans

    2014-11-01

    Clinical and research staff who work around magnetic resonance imaging (MRI) scanners are exposed to the static magnetic stray fields of these scanners. Although the past decade has seen strong developments in the assessment of occupational exposure to electromagnetic fields from MRI scanners, there is insufficient insight into the exposure variability that characterizes routine MRI work practice. However, this is an essential component of risk assessment and epidemiological studies. This paper describes the results of a measurement survey of shift-based personal exposure to static magnetic fields (SMF) (B) and motion-induced time-varying magnetic fields (dB/dt) among workers at 15 MRI facilities in the Netherlands. With the use of portable magnetic field dosimeters, >400 full-shift and partial shift exposure measurements were collected among various jobs involved in clinical and research MRI. Various full-shift exposure metrics for B and motion-induced dB/dt exposure were calculated from the measurements, including instantaneous peak exposure and time-weighted average (TWA) exposures. We found strong correlations between levels of static (B) and time-varying (dB/dt) exposure (r = 0.88-0.92) and between different metrics (i.e. peak exposure, TWA exposure) to express full-shift exposure (r = 0.69-0.78). On average, participants were exposed to MRI-related SMFs during only 3.7% of their work shift. Average and peak B and dB/dt exposure levels during the work inside the MRI scanner room were highest among technical staff, research staff, and radiographers. Average and peak B exposure levels were lowest among cleaners, while dB/dt levels were lowest among anaesthesiology staff. Although modest exposure variability between workplaces and occupations was observed, variation between individuals of the same occupation was substantial, especially among research staff. This relatively large variability between workers with the same job suggests that exposure classification

  12. A job interview in the MRI scanner: How does indirectness affect addressees and overhearers?

    PubMed

    Bašnáková, Jana; van Berkum, Jos; Weber, Kirsten; Hagoort, Peter

    2015-09-01

    In using language, people not only exchange information, but also navigate their social world - for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one's shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2014). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee

  13. Reproducibility of pulmonary blood flow measurements by phase-contrast MRI using different 1.5 T MR scanners at two institutions

    PubMed Central

    Iraha, Rin; Tsuchiya, Nanae; Yamashiro, Tsuneo; Iwasawa, Tae

    2017-01-01

    Background Magnetic resonance imaging (MRI) can be beneficial for diagnosis of disease by offering quantitative information. However, reproducibility can be a major problem when there is a numerical threshold in multi-institution, multi-vendor situations. Purpose To measure pulmonary blood flow with phase-contrast (PC) imaging using two different MR scanners (1.5 T) at different institutions in the same participants and to examine the reproducibility of the measurements. Material and Methods Participants were 10 healthy volunteers (5 men; age range, 27–36 years). The measurements included the mean and maximal blood velocities, the mean blood flow volume, and the acceleration time and volume (AT and AV), derived from the time-flow curve of the PC-MRI. Simultaneously obtained maximal, minimal, and mean areas from regions of interest set in the pulmonary artery were also calculated. In order to calculate the reproducibility of the quantitative variables, intra-class correlation coefficients (ICCs) were employed. When an adequate ICC was obtained, Bland–Altman analysis was conducted to identify any systematic bias. Results The ICCs were almost perfect for the mean blood flow volume and the AV (r = 0.82 and 0.80), and were substantial in the mean and maximal areas, and the AT (r = 0.63, 0.74, and 0.64, respectively). However, there was a fixed bias in the area measurement between the two scanners. Also, the AV had a proportional bias. Conclusion Our results reveal that various indices derived from PC-MRI on different MR scanners are promising as common indices for pulmonary flow assessment. Research and clinical use of PC-MRI for the pulmonary artery is expected to extend to multi-institution situations. PMID:28210495

  14. Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners.

    PubMed

    Bonutti, F; Tecchio, M; Maieron, M; Trevisan, D; Negro, C; Calligaris, F

    2016-03-01

    The purpose of this work is to give a contribution to the construction of a comprehensive knowledge of the exposure levels to gradient magnetic fields (GMF) in terms of the weighed peak (WP), especially for 3 Tesla scanners for which there are still few works available in the literature. A new generation probe for the measurement of electromagnetic fields in the range of 1 Hz-400 kHz was used to assess the occupational exposure levels to the GMF for 1.5 and 3.0 Tesla MRI body scanners, using the method of the WP according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) approach. The probe was placed at a height of 1.1 m, close to the MRI scanners, where operators could stay during some medical procedures with particular issues. The measurements were performed for a set of typical acquisition sequences for body (liver) and head exams. The measured values of WP were in compliance with ICNIRP 2010 reference levels for occupational exposures.

  15. Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners.

    PubMed

    Longo, Dario Livio; Arena, Francesca; Consolino, Lorena; Minazzi, Paolo; Geninatti-Crich, Simonetta; Giovenzana, Giovanni Battista; Aime, Silvio

    2016-01-01

    A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding affinity to albumin (KA(HSA) = 8.3 × 10(5) M(-1)) and the hydration state of the Gd ion (q = 2) in comparison to the recently reported B25716/1. The very markedly high binding affinity towards mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic field strength of 1 T. In vivo studies showed high enhancement of the vasculature and a prolonged accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great benefit arises from the combination of a benchtop MRI scanner operating at 1 T and the albumin-binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved characterization of tumor vascular microenvironment.

  16. NOTE: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; Lagendijk, J. J. W.; Overweg, J.; Kok, J. G. M.; Raaijmakers, A. J. E.; Kerkhof, E. M.; van der Put, R. W.; Meijsing, I.; Crijns, S. P. M.; Benedosso, F.; van Vulpen, M.; de Graaff, C. H. W.; Allen, J.; Brown, K. J.

    2009-06-01

    At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.

  17. 7T transmit/receive arrays using ICE decoupling for human head MR imaging.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Feng, Baotong; Ma, ChuangXin; Wei, Long; Xue, Rong

    2014-09-01

    In designing large-sized volume type phased array coils for human head imaging at ultrahigh fields, e.g., 7T, minimizing electromagnetic coupling among array elements is technically challenging. A new decoupling method based on induced current compensation or elimination (ICE) for a microstrip line planar array has recently been proposed. In this study, an eight-channel transmit/receive volume array with ICE-decoupled loop elements was built and investigated to demonstrate its feasibility and robustness for human head imaging at 7T. Isolation between adjacent loop elements was better than - 25 dB with a human head load. The worst-case of the isolation between all of the elements was about - 17.5 dB. All of the MRI experiments were performed on a 7T whole-body human MR scanner. Images of the phantom and human head were acquired and g-factor maps were measured and calculated to evaluate the performance of the coil array. Compared with the conventional capacitively decoupled array, the ICE-decoupled array demonstrated improved parallel imaging ability and had a higher SNR. The experimental results indicate that the transceiver array design with ICE decoupling technique might be a promising solution to designing high performance transmit/receive coil arrays for human head imaging at ultrahigh fields.

  18. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  19. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    SciTech Connect

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos; Eracleous, Eleni; Pitris, Constantinos; Christoforou, Eftychios G.

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

  20. Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.

    PubMed

    Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd

    2009-12-01

    We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.

  1. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG.

    PubMed

    Kobald, S Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-06-21

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention.

  2. The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG

    PubMed Central

    Kobald, S. Oliver; Getzmann, Stephan; Beste, Christian; Wascher, Edmund

    2016-01-01

    Environmental noise is known to affect personal well-being as well as cognitive processes. Besides daily life, environmental noise can also occur in experimental research settings, e.g. when being in a magnetic resonance scanner. Scanner background noise (SBN) might pose serious confounds for experimental findings, even when non-auditory settings are examined. In the current experiment we tested if SBN alters bottom-up and top-down related processes of selective visual attention mechanisms. Participants completed two blocks of a visual change detection task, one block in silence and one block under SBN exposure. SBN was found to decrease accuracy in measures of visual attention. This effect was modulated by the temporal occurrence of SBN. When SBN was encountered in the first block, it prevented a significant improvement of accuracy in the second block. When SBN appeared in the second block, it significantly decreased accuracy. Neurophysiological findings showed a strong frontal positivity shift only when SBN was present in the first block, suggesting an inhibitory process to counteract the interfering SBN. Common correlates of both top-down and bottom-up processes of selective visual attention were not specifically affected by SBN exposure. Further research appears necessary to entirely rule out confounds of SBN in assessing visual attention. PMID:27324456

  3. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners

    PubMed Central

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  4. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  5. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  6. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    PubMed

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields.

  7. QUANTITATIVE 7T PHASE IMAGING IN PREMOTOR HUNTINGTON DISEASE

    PubMed Central

    Apple, Alexandra C.; Possin, Katherine L.; Satris, Gabriela; Johnson, Erica; Lupo, Janine M.; Jakary, Angela; Wong, Katherine; Kelley, Douglas A. C.; Kang, Gail A.; Sha, Sharon J.; Kramer, Joel H.; Geschwind, Michael; Nelson, Sarah J.; Hess, Christopher P.

    2014-01-01

    Background and Purpose In vivo MRI and postmortem neuropathological studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease (HD), implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MRI to determine whether quantitative phase, a putative marker of these endpoints, is altered in subjects with premotor HD. Materials and Methods Local field shift (LFS), calculated from 7T MR phase images, was quantified in 13 subjects with premotor HD and 13 age- and gender-matched controls. All participants underwent 3T and 7T MRI, including volumetric 3T T1 and 7T gradient-recalled echo sequences. LFS maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. HD-specific neurocognitive assessment was also performed and compared to LFS. Results Subjects with premotor HD had smaller caudate nuclear volume and higher LFS than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between LFS and genetic disease burden was also found, and there was a trend towards significant correlations between LFS and neurocognitive tests of working memory and executive function. Conclusion Subjects with premotor HD exhibit differences in 7T MRI phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high field MRI of quantitative phase may be a useful marker for monitoring neurodegeneration in premanifest HD. PMID:24742810

  8. MR Spectroscopic Imaging of Peripheral Zone in Prostate Cancer Using a 3T MRI Scanner: Endorectal versus External Phased Array Coils.

    PubMed

    Nagarajan, Rajakumar; Margolis, Daniel Ja; Raman, Steven S; Ouellette, David; Sarma, Manoj K; Reiter, Robert E; Thomas, M Albert

    2013-01-01

    Magnetic resonance spectroscopic imaging (MRSI) detects alterations in major prostate metabolites, such as citrate (Cit), creatine (Cr), and choline (Ch). We evaluated the sensitivity and accuracy of three-dimensional MRSI of prostate using an endorectal compared to an external phased array "receive" coil on a 3T MRI scanner. Eighteen patients with prostate cancer (PCa) who underwent endorectal MR imaging and proton (1H) MRSI were included in this study. Immediately after the endorectal MRSI scan, the PCa patients were scanned with the external phased array coil. The endorectal coil-detected metabolite ratio [(Ch+Cr)/Cit] was significantly higher in cancer locations (1.667 ± 0.663) compared to non-cancer locations (0.978 ± 0.420) (P < 0.001). Similarly, for the external phased array, the ratio was significantly higher in cancer locations (1.070 ± 0.525) compared to non-cancer locations (0.521 ± 0.310) (P < 0.001). The sensitivity and accuracy of cancer detection were 81% and 78% using the endorectal 'receive' coil, and 69% and 75%, respectively using the external phased array 'receive' coil.

  9. Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design.

    PubMed

    Wu, Xiaoping; Schmitter, Sebastian; Auerbach, Edward J; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-02-01

    In this work, the use of multi-spoke slice-selective parallel transmit (pTX) RF pulse was explored to address B 1+ inhomogeneity in the largest transverse section of the liver at 7T. The impact of the number of spokes was specifically investigated, considering RF pulses consisting of 2, 3 and 4 spokes, as well as single-spoke RF pulses corresponding to static B 1 shimming. Healthy volunteers were imaged on a whole body MR scanner equipped with an eight-channel transmit system. A robust and fast transmit B 1 (B 1+) estimation method was employed to obtain the eight-channel B 1+ maps within a single breath hold. Gradient echo (GRE) images of the liver were acquired using the four different RF pulses and the results were compared. The use of static B 1 shimming (i.e., 1-spoke RF pulse) resulted in partial improvement but significant signal dropouts were still observed in the target region. By comparison, the use of multi-spoke pTX RF pulse design gave rise to much improved excitation homogeneity without signal dropouts. These results demonstrate the effectiveness of multi-spoke pTX RF pulse design in B 1+ homogenization for liver magnetic resonance imaging (MRI) at 7T. The current findings at 7T may have implications for body imaging applications in clinical settings at 3T where B 1+ inhomogeneities are also known for degrading image quality in the torso.

  10. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    PubMed Central

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  11. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.

    PubMed

    Gonzalez-Rosa, Javier J; Inuggi, Alberto; Blasi, Valeria; Cursi, Marco; Annovazzi, Pietro; Comi, Giancarlo; Falini, Andrea; Leocani, Letizia

    2013-07-01

    We investigated the neural correlates underlying response inhibition and conflict detection processes using ERPs and source localization analyses simultaneously acquired during fMRI scanning. ERPs were elicited by a simple reaction time task (SRT), a Go/NoGo task, and a Stroop-like task (CST). The cognitive conflict was thus manipulated in order to probe the degree to which information processing is shared across cognitive systems. We proposed to dissociate inhibition and interference conflict effects on brain activity by using identical Stroop-like congruent/incongruent stimuli in all three task contexts and while varying the response required. NoGo-incongruent trials showed a larger N2 and enhanced activations of rostral anterior cingulate cortex (ACC) and pre-supplementary motor area, whereas Go-congruent trials showed a larger P3 and increased parietal activations. Congruent and incongruent conditions of the CST task also elicited similar N2, P3 and late negativity (LN) ERPs, though CST-incongruent trials revealed a larger LN and enhanced prefrontal and ACC activations. Considering the stimulus probability and experimental manipulation of our study, current findings suggest that NoGo N2 and frontal NoGo P3 appear to be more associated to response inhibition rather than a specific conflict monitoring, whereas occipito-parietal P3 of Go and CST conditions may be more linked to a planned response competition between the prepared and required response. LN, however, appears to be related to higher level conflict monitoring associated with response choice-discrimination but not when the presence of cognitive conflict is associated with response inhibition.

  12. Can the Neural Basis of Repression Be Studied in the MRI Scanner? New Insights from Two Free Association Paradigms

    PubMed Central

    Kessler, Henrik; Do Lam, Anne T. A.; Fell, Juergen; Schmidt, Anna-Christine; Axmacher, Nikolai

    2013-01-01

    Background The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods. Methods We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory. Results In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences. Conclusions These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex. PMID:23638050

  13. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  14. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  15. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner.

    PubMed

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly

  16. The pattern of exposure to static magnetic field of nurses involved in activities related to contrast administration into patients diagnosed in 1.5 T MRI scanners.

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-06-01

    Static magnetic fields (SMFs) and time-varying electromagnetic fields exposure is necessary to obtain the diagnostic information regarding the structure of patient's tissues, by the use of magnetic resonance imaging (MRI) scanners. A diagnostic procedure may also include the administration of pharmaceuticals called contrast, which are to be applied to a patient during the examination. The nurses involved in administering contrast into a patient during the pause in examination are approaching permanently active magnets of MRI scanners and are exposed to SMF. There were performed measurements of spatial distribution of SMF in the vicinity of MRI magnets and parameters of personal exposure of nurses (i.e. individual exposimetric profiles of variability in time of SMF affecting the nurse who is performing tasks in the vicinity of magnet, characterized by statistical parameters of recorded magnetic flux density affecting the nurse). The SMF exposure in the vicinity of various MRI magnets depends on both magnetic flux density of the main field B 0 (applicable to a patient) and the construction of the scanner, but the most important factor determining the workers' exposure is the work practice. In the course of a patient's routine examination in scanners of B₀ = 1.5 T, the nurses are present over ∼0.4-2.9 min in SMF exceeding 0.03% of B₀ (i.e. 0.5 mT), but only sometimes they are present in SMF exceeding 5% of B 0 (i.e. 75 mT). When patients need more attention because of their health status/condition, the nurses' exposure may be significantly longer--it may even exceed 10 min and 30% of B 0 (i.e. 500 mT). We have found that the level of exposure of nurses to SMF may vary from < 5% of the main field (a median value: 0.5-1.5%; inter-quartile range: 0.04-8.8%; max value: 1.3-12% of B₀) when a patient is moved from the magnets bore before contrast administration, up to the main field level (B₀) when a patient stays in the magnets bore and nurse is crawling into the

  17. Cylindrical Scanner

    SciTech Connect

    Hall, Thomas E.

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.

  18. Dynamic B0 shimming at 7 T.

    PubMed

    Sengupta, Saikat; Welch, E Brian; Zhao, Yansong; Foxall, David; Starewicz, Piotr; Anderson, Adam W; Gore, John C; Avison, Malcolm J

    2011-05-01

    Dynamic slice-wise shimming improves B0 field homogeneity by updating shim coil currents for every slice in a multislice acquisition, producing better field homogeneity over a volume than can be obtained by a single static global shim. The first aim of this work was to evaluate the performance of slice-wise field-map-based second-order dynamic shimming in a human high-field 7 T clinical scanner vis-à-vis image based second order static global shimming. Another goal was to characterize eddy currents induced by second and third order shim switching. A final aim was to compare global and dynamic shimming through shim orders to elucidate the relative benefits of going to higher orders and to dynamic shim updating from a static shimming regime. An external hardware module was used to store and dynamically update slice-optimized shim values during multislice data acquisition. High-bandwidth multislice gradient echo scans with B0 field mapping and low-bandwidth single-shot echo planar scans were performed on phantoms and humans using second-order dynamic and static global shims. For the measurement of second and third order shim induced eddy currents, step response temporal phase changes of individual shims were measured and fit to shim harmonics spatially and to multiexponential decay functions temporally. Finally, an order-wise field-map-based comparison was performed with first, second and third order global static shimming, first and second order dynamic shimming, as well as combined second or third order global and first order dynamic shim. Dynamic shimming considerably improved B0 homogeneity compared to static global shimming both in phantoms and in human subjects, reducing image distortion and signal dropout. The unshielded second and third order shims generated strong B0 and self and cross-term eddy fields, with multiple time constants ranging from milliseconds to seconds. Field homogeneity improved with increasing order of shim, with dynamic shimming performing

  19. SU-E-QI-19: Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model

    SciTech Connect

    Chen, X; Chen, L; Hensley, H; Cvetkovic, D; Fan, J; Ma, C; Zhang, C

    2014-06-15

    Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on the tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.

  20. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  1. 7T human spine imaging arrays with adjustable inductive decoupling.

    PubMed

    Wu, Bing; Wang, Chunsheng; Krug, Roland; Kelley, Douglas A; Xu, Duan; Pang, Yong; Banerjee, Suchandrima; Vigneron, Daniel B; Nelson, Sarah J; Majumdar, Sharmila; Zhang, Xiaoliang

    2010-02-01

    Ultrahigh-field human spine RF transceiver coil arrays face daunting technical challenges in achieving large imaging coverage with sufficient B(1) penetration and sensitivity, and in attaining robust decoupling among coil elements. In this paper, human spine coil arrays for ultrahigh field were built and studied. Transceiver arrays with loop-shaped microstrip transmission line were designed, fabricated, and tested for 7-tesla (7T) MRI. With the proposed adjustable inductive decoupling technique, the isolation between adjacent coil elements is easily addressed. Preliminary results of human spine images acquired using the transceiver arrays demonstrate the feasibility of the design for ultrahigh-field MR applications and its robust performance for parallel imaging.

  2. MRI renaissance.

    PubMed

    Hensley, S

    1997-12-01

    A few years ago, magnetic resonance imaging was healthcare's version of a foreign sports car-flashy, expensive and impractical. Now, after years in the doldrums, sales of MRI systems are roaring back. An aging fleet of MRI scanners due for replacement and a hearty increase in doctors' use of the versatile imaging tools are combining to fuel the surge in demand, vendors and customers say.

  3. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  4. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging.

  5. Dual Optimization Method of RF and Quasi-Static Field Simulations for Reduction of Eddy Currents Generated on 7T RF Coil Shielding

    PubMed Central

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B.; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T.; Handler, William B.; Chronik, Blaine A.; Ibrahim, Tamer S.

    2015-01-01

    Purpose To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. Methods One set of a four-element, 2×2 Tic-Tac-Toe (TTT) head coil structure is selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents are quantitatively studied in the time and frequency domains. The RF characteristics are studied using the finite-difference time-domain (FDTD) method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in-vivo human subjects. Results The eddy current simulation method is verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding can significantly distort the gradient fields. EPI images, B1+ maps and S matrix measurements verified that the proposed slot pattern can suppress the eddy currents while maintaining the RF characteristics of the transmit coil. Conclusion The presented dual-optimization method could be used to design the RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. PMID:25367703

  6. Minimum Field Strength Simulator for Proton Density Weighted MRI

    PubMed Central

    Chen, Weiyi; Nayak, Krishna S.

    2016-01-01

    Objective To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. Materials and Methods Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. Results The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. Conclusions Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques. PMID:27136334

  7. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner.

    PubMed

    Slates, R B; Farahani, K; Shao, Y; Marsden, P K; Taylor, J; Summers, P E; Williams, S; Beech, J; Cherry, S R

    1999-08-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.

  8. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    SciTech Connect

    Fischbach, Frank; Bunke, Juergen; Thormann, Markus; Gaffke, Gunnar; Jungnickel, Kerstin; Smink, Jouke; Ricke, Jens

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewing in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.

  9. Stacked magnetic resonators for MRI RF coils decoupling

    NASA Astrophysics Data System (ADS)

    Georget, Elodie; Luong, Michel; Vignaud, Alexandre; Giacomini, Eric; Chazel, Edouard; Ferrand, Guillaume; Amadon, Alexis; Mauconduit, Franck; Enoch, Stefan; Tayeb, Gérard; Bonod, Nicolas; Poupon, Cyril; Abdeddaim, Redha

    2017-02-01

    Parallel transmission is a very promising method to tackle B1+ field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR). By combining numerical and experimental methodologies, we prove that this novelty passive solution allows an efficient decoupling of elements of a phased-array coil. We demonstrate the ability of this technique to significantly reduce by more than 10 dB the coupling preserving the quality of images compared to ideally isolated linear resonators on a spherical salty agar gel phantom in a 7 T MRI scanner.

  10. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  11. Human brain MRI at 500 MHz, scientific perspectives and technological challenges

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis; Schild, Thierry

    2017-03-01

    The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Alternative Energies and Atomic Energy Commission launched a program to conceive and build a ‘human brain explorer’, the first human MRI scanner operating at 11.7 T. This scanner was envisioned to be part of the ambitious French-German project Iseult, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using ultra-high field MRI. In this article we provide a summary of the main neuroscience and medical targets of the Iseult project, mainly to acquire within timescales compatible with human tolerances images at a scale of 100 μm at which everything remains to discover, and to create new approaches to develop new imaging biomarkers for specific neurological and psychiatric disorders. The system specifications, the technological challenges, in terms of magnet design, winding technology, cryogenics, quench protection, stability control, and the solutions which have been chosen to overcome them and build this outstanding instrument are provided. Lines of the research and development which will be necessary to fully exploit the potential of this and other UHF MRI scanners are also outlined.

  12. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  13. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Qu, Peng; Shen, Gary X

    2007-04-01

    Microstrip transmission-line loop arrays have been recently proposed for parallel imaging at ultrahigh fields due to their advantages in element decoupling and to their increased coil quality factor. In the microstrip loop array design, interconnecting capacitors become necessary to further improve the decoupling between the adjacent elements when nonoverlapped loops are placed densely. However, at ultrahigh fields, the capacitance required for sufficient decoupling is very small. Hence, the isolations between the elements are usually not optimized and the array is extremely sensitive to the load. In this study, a theoretical model is developed to analyze the capacitive decoupling circuit. Then, a novel tunable loop microstrip (TLM) array that can accommodate capacitive decoupling more easily at ultrahigh fields is proposed. As an example, a four-element TLM array is constructed at 7 T. In this array, the decoupling capacitance is increased to a more reasonable value. Isolation between the adjacent elements is better than -37 dB with the load. The performance of this TLM array is also demonstrated by MRI experiments.

  14. Comparison of Muscle BOLD Responses to Arterial Occlusion at 3T and 7T

    PubMed Central

    Towse, Theodore F.; Childs, Benjamin T.; Sabin, Shea A.; Bush, Emily C.; Elder, Christopher P.; Damon, Bruce M.

    2014-01-01

    Purpose The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7T by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. Methods Eight subjects (3 male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3T and 7T, R2* rate constants were calculated as R2* = 1/T2*. Results The mean pre-occlusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs 35.17 ± 0.35 s−1 respectively, p <0.001). Also, the mean ΔR2*END and ΔR2*POST values were greater for 7T than for 3T (−2.36 ± 0.25 vs. −1.24 ± 0.39 s−1, respectively, Table 1). Conclusion Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation. PMID:25884888

  15. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  16. Robotic Prostate Biopsy in Closed MRI Scanner

    DTIC Science & Technology

    2008-02-01

    requirements are defined, the system designed and constructed, the controller developed, and the full system evaluated in phantom models. 15...and robot control. The functions of the device will be tested in phantom studies at the Brigham and Women’s Hospital. B.3. Progress Report for First...for targeting five 1cm objects in a tissue phantom proved successful. Further, the MR compatibility of the system has been thoroughly evaluated

  17. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping

    PubMed Central

    Wei, Hongjiang; Xie, Luke; Dibb, Russell; Li, Wei; Decker, Kyle; Zhang, Yuyao; Johnson, G. Allan; Liu, Chunlei

    2016-01-01

    The proper microstructural arrangement of complex neural structures is essential for establishing the functional circuitry of the brain. We present an MRI method to resolve tissue microstructure and infer brain cytoarchitecture by mapping the magnetic susceptibility in the brain at high resolution. This is possible because of the heterogeneous magnetic susceptibility created by varying concentrations of lipids, proteins and irons from the cell membrane to cytoplasm. We demonstrate magnetic susceptibility maps at a nominal resolution of 10-µm isotropic, approaching the average cell size of a mouse brain. The maps reveal many detailed structures including the retina cell layers, olfactory sensory neurons, barrel cortex, cortical layers, axonal fibers in white and gray matter. Olfactory glomerulus density is calculated and structural connectivity is traced in the optic nerve, striatal neurons, and brainstem nerves. The method is robust and can be readily applied on MRI scanners at or above 7 T. PMID:27181764

  18. Polygon scanners revisited

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    1997-07-01

    The demands for increased throughput, pixel density, and format size in the laser beam imaging field continue to challenge opto-mechanical scanning products and the electronics that drive them. The polygon line scanner has superior scan rate and scan efficiency among candidate mechanical scanners but, historically, has had inferior cross- scan and in-scan accuracy. To date, due to cost considerations, these limitations have excluded the polygon scanner from practical use in high resolution, flat field, large format commercial applications. This paper illustrates the tradeoffs among the three most common mechanical scanners; single reflection rotary scanner, resonant galvanometric scanner, and polygon scanner. The purpose of this discussion is to illustrate that the polygon scanner holds the best promise of advancing the state-of-art in reasonable cost, large format, high resolution, flat field imaging once the problems of cross-scan and in-scan errors are reconciled in the design of the system. Also introduced is a polygon scanning system that fulfills the requirements of an advanced flat field, large format line imaging platform.

  19. Focusing laser scanner

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1979-01-01

    Economical laser scanner assembled from commercially available components, modulates and scans focused laser beam over area up to 5.1 by 5.1 cm. Scanner gives resolution comparable to that of conventional television. Device is highly applicable to area of analog and digital storage and retrieval.

  20. Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact

    NASA Astrophysics Data System (ADS)

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.

  1. Integrated SSFP for functional brain mapping at 7T with reduced susceptibility artifact.

    PubMed

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J J

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48±0.53 (%) and 2.96±0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7T.

  2. Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models.

    PubMed

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A; Vincent, Jason A; Dell, Katherine M; Drumm, Mitchell L; Brady-Kalnay, Susann M; Griswold, Mark A; Flask, Chris A; Lu, Lan

    2015-03-01

    High-field preclinical MRI scanners are now commonly used to quantitatively assess disease status and the efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical 7.0-T MRI implementation of the highly novel MR fingerprinting (MRF) methodology which has been described previously for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a fast imaging with steady-state free precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 min. This initial high-field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for the quantification of numerous MRI parameters for a wide variety of preclinical imaging applications.

  3. Gradient-Modulated PETRA MRI.

    PubMed

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J; Garwood, Michael

    2015-12-01

    Image blurring due to off-resonance and fast T 2(*) signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2(*) signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.

  4. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  5. 26 CFR 1.25-7T - Public notice (Temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates During A Taxable Year § 1.25-7T Public notice (Temporary). (a) In general. At least 90 days prior to the issuance of any mortgage credit certificate under a qualified mortgage...

  6. An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.

    PubMed

    Kim, Kyoung-Nam; Han, Sang-Doc; Seo, Jeung-Hoon; Heo, Phil; Yoo, Dongkyeom; Im, Geun Ho; Lee, Jung Hee

    2016-09-30

    The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1(+)|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1(+)| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1(+)| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction.

  7. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  8. Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex✰

    PubMed Central

    Shih, Yen-Yu Ian; Chen, You-Yin; Lai, Hsin-Yi; Kao, Yu-Chieh Jill; Shyu, Bai-Chuang; Duong, Timothy Q.

    2013-01-01

    High-resolution functional-magnetic-resonance-imaging (fMRI) has been used to study brain functions at increasingly finer scale, but whether fMRI can accurately reflect layer-specific neuronal activities is less well understood. The present study investigated layer-specific cerebral-blood-volume (CBV) fMRI and electrophysiological responses in the rat cortex. CBV fMRI at 40×40 µm in-plane resolution was performed on an 11.7-T scanner. Electrophysiology used a 32-channel electrode array that spanned the entire cortical depth. Graded electrical stimulation was used to study activations in different cortical layers, exploiting the notion that most of the sensory-specific neurons are in layers II–V and most of the nociceptive-specific neurons are in layers V–VI. CBV response was strongest in layer IV of all stimulus amplitudes. Current source density analysis showed strong sink currents at cortical layers IV and VI. Multi-unit activities mainly appeared at layers IV–VI and peaked at layer V. Although our measures showed scaled activation profiles during modulation of stimulus amplitude and failed to detect specific recruitment at layers V and VI during noxious electrical stimuli, there appears to be discordance between CBV fMRI and electrophysiological peak responses, suggesting neurovascular uncoupling at laminar resolution. The technique implemented in the present study offers a means to investigate intracortical neurovascular function in the normal and diseased animal models at laminar resolution. PMID:23384528

  9. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  10. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  11. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T.

    PubMed

    Massire, Aurélien; Taso, Manuel; Besson, Pierre; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2016-12-01

    Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2(*) relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1(+)-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p<10(-3)), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p<0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.

  12. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  13. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7 T and 7 T

    NASA Astrophysics Data System (ADS)

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7 T and 7 T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.

  14. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    PubMed

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.

  15. Performance of a novel piezoelectric motor at 4.7 T: applications and initial tests.

    PubMed

    Turowski, Steven G; Seshadri, Mukund; Loecher, Michael; Podniesinski, Edward; Spernyak, Joseph A; Mazurchuk, Richard V

    2008-04-01

    The focus of this report was to test the performance of a novel piezoelectric motor under high magnetic field strength conditions and to investigate its potential applications in small animal magnetic resonance imaging (MRI). The device is made entirely of nonferrous materials and consists of four piezoelectric ceramic plates connected to a threaded metal tube through which a screw migrates. Ultrasonic vibrations of the threads inherent to the tube result in rotational and translational motion of the screw. Potential applications of the piezoelectric motor were investigated at 4.7 T. Firstly, phantom studies showed the motor was capable of accurately delivering low injection volumes ( approximately 0.01 ml). Dynamic contrast-enhanced MRI (DCE-MRI) studies performed in vivo using serially acquired T1-weighted, spin-echo imaging demonstrated the ability of the motor to reliably administer MR contrast-enhancing agent into live tumor-bearing mice without the introduction of image artifacts. In a second set of experiments, the motor allowed for controlled, dynamic repositioning of an anatomic slice of interest in a live animal to magnetic field isocenter, which resulted in reduced geometric distortion and image artifact due to improved radiofrequency and gradient field homogeneity. In conclusion, piezoelectric motors are MR compatible and offer great potential for improving MRI efficiency and throughput, particularly in a preclinical setting. Further investigation into applications such as automated capacitor tuning and impedance matching for MR transceiver coils is warranted.

  16. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  17. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  18. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  19. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.

  20. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  1. Advances in Clinical PET/MRI Instrumentation.

    PubMed

    Herzog, Hans; Lerche, Christoph

    2016-04-01

    In 2010, the first whole-body PET/MRI scanners installed for clinical use were the sequential Philips PET/MRI with PMT-based, TOF-capable technology and the integrated simultaneous Siemens PET/MRI. Avalanche photodiodes as non-magneto-sensitive readout electronics allowed PET integrated within the MRI. The experiences with these scanners showed that improvements of software aspects, such as attenuation correction, were necessary and that efficient protocols combining optimally PET and MRI must be still developed. In 2014, General Electric issued an integrated PET/MRI with SiPM-based PET detectors, allowing TOF-PET. Looking at the MRI components of current PET/MR imaging systems, primary improvements come from sequences and new coils.

  2. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2016-11-15

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level.

  3. Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods.

    PubMed

    Giuliano, Alessia; Donatelli, Graziella; Cosottini, Mirco; Tosetti, Michela; Retico, Alessandra; Fantacci, Maria Evelina

    2017-02-11

    The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra-high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high-field scanners, these systems can provide new contrasts, increased signal-to-noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi-automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 Wiley Periodicals, Inc.

  4. Element decoupling of 7 T dipole body arrays by EBG metasurface structures: Experimental verification

    NASA Astrophysics Data System (ADS)

    Hurshkainen, Anna A.; Derzhavskaya, Tatyana A.; Glybovski, Stanislav B.; Voogt, Ingmar J.; Melchakova, Irina V.; van den Berg, Cornelis A. T.; Raaijmakers, Alexander J. E.

    2016-08-01

    Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7 T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7 T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7 T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298 MHz. To improve the detection range of the B1 + field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7 T MRI machine indicated redistribution of the B1 + field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14 dB accompanied by a strong field redistribution. In contrast, when put

  5. Investigation on Laser Scanners

    SciTech Connect

    Fuss, B.

    2004-09-30

    The study and purchase of a three-dimensional laser scanner for a number of diverse metrology tasks at SLAC will be covered. Specifications including range, accuracy, scan density, resolution, field of view and more are discussed and the results of field tests and demonstrations by four potential vendors is covered. This will include details on the scanning of accelerator components in a now defunct ring on site and how the instruments compare.

  6. 26 CFR 1.904-7T - Transition rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Transition rules (temporary). 1.904-7T Section 1... in each separate category of post-1986 undistributed earnings (as defined in § 1.902-1(a)(9)) that were accumulated, and post-1986 foreign income taxes (as defined in § 1.902-1(a)(8)) paid, accrued,...

  7. High throughput optical scanner

    SciTech Connect

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  8. Ultra-High-Field fMRI Reveals a Role for the Subiculum in Scene Perceptual Discrimination.

    PubMed

    Hodgetts, Carl J; Voets, Natalie L; Thomas, Adam G; Clare, Stuart; Lawrence, Andrew D; Graham, Kim S

    2017-03-22

    Recent "representational" accounts suggest a key role for the hippocampus in complex scene perception. Due to limitations in scanner field strength, however, the functional neuroanatomy of hippocampal-dependent scene perception is unknown. Here, we applied 7 T high-resolution functional magnetic resonance imaging (fMRI) alongside a perceptual oddity task, modified from nonhuman primate studies. This task requires subjects to discriminate highly similar scenes, faces, or objects from multiple viewpoints, and has revealed selective impairments during scene discrimination following hippocampal lesions. Region-of-interest analyses identified a preferential response in the subiculum subfield of the hippocampus during scene, but not face or object, discriminations. Notably, this effect was in the anteromedial subiculum and was not modulated by whether scenes were subsequently remembered or forgotten. These results highlight the value of ultra-high-field fMRI in generating more refined, anatomically informed, functional accounts of hippocampal contributions to cognition, and a unique role for the human subiculum in discrimination of complex scenes from different viewpoints.SIGNIFICANCE STATEMENT There is increasing evidence that the human hippocampus supports functions beyond just episodic memory, with human lesion studies suggesting a contribution to the perceptual processing of navigationally relevant, complex scenes. While the hippocampus itself contains several small, functionally distinct subfields, examining the role of these in scene processing has been previously limited by scanner field strength. By applying ultra-high-resolution 7 T fMRI, we delineated the functional contribution of individual hippocampal subfields during a perceptual discrimination task for scenes, faces, and objects. This demonstrated that the discrimination of scenes, relative to faces and objects, recruits the anterior subicular region of the hippocampus, regardless of whether scenes were

  9. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  10. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  11. Scanner focus metrology for advanced node scanner monitoring and control

    NASA Astrophysics Data System (ADS)

    Kim, Jimyung; Park, Youngsik; Jeong, Taehwa; Kim, Suhyun; Yoon, Kwang-Sub; Choi, Byoung-il; Levinski, Vladimir; Kandel, Daniel; Feler, Yoel; Gutman, Nadav; Island-Ashwal, Eltsafon; Cooper, Moshe; Choi, DongSub; Herzel, Eitan; David, Tien; Kim, JungWook

    2015-03-01

    Scanner Focus window of the lithographic process becomes much smaller due to the shrink of the device node and multipatterning approach. Consequently, the required performance of scanner focus becomes tighter and more complicated. Focus control/monitoring methods such as "field-by-field focus control" or "intra-field focus control" is a necessity. Moreover, tight scanner focus performance requirement starts to raise another fundamental question: accuracy of the reported scanner focus. The insufficient accuracy of the reported scanner focus using the existing methods originates from: a) Focus measurement quality, which is due to low sensitivity of measured targets, especially around the nominal production focus. b) The scanner focus is estimated using special targets, e.g. large pitch target and not using the device-like structures (irremovable aberration impact). Both of these factors are eliminated using KLA-Tencor proprietary "Focus Offset" technology.

  12. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T.

    PubMed

    Heo, Phil; Seo, Jeung-Hoon; Han, Sang-Doc; Ryu, Yeunchul; Byun, Jong-Deok; Kim, Kyoung-Nam; Lee, Jung Hee

    2016-11-01

    In ultra-high field (UHF) imaging environments, it has been demonstrated that multiple-mouse magnetic resonance imaging (MM-MRI) is dependent on key factors such as the radiofrequency (RF) coil hardware, imaging protocol, and experimental setup for obtaining high-resolution MR images. A key aspect is the RF coil, and a number of MM-MRI studies have investigated the application of single-channel RF transmit (Tx)/receive (Rx) coils or multi-channel phased array (PA) coil configurations under a single gradient coil set. However, despite applying a variety of RF coils, Tx (|B1(+) |)-field inhomogeneity still remains a major problem due to the relative shortening of the effective RF wavelength in the UHF environment. To address this issue, we propose a relatively smaller size of individual Tx-only coils in a multiple birdcage (MBC) coil for MM-MRI to image up to three mice. We use electromagnetic (EM) simulations in the finite-difference time-domain (FDTD) environment to obtain the |B1 |-field distribution. Our results clearly show that the single birdcage (SBC) high-pass filter (HPF) configuration, which is referred to as the SBCHPF , under the absence of an RF shield exhibits a high |B1 |-field intensity in comparison with other coil configurations such as the low-pass filter (LPF) and band-pass filter (BPF) configurations. In a 7-T MRI experiment, the signal-to-noise ratio (SNR) map of the SBCHPF configuration shows the highest coil performance compared to other coil configurations. The MBCHPF coil, which is comprised of a triple-SBCHPF configuration combined with additional decoupling techniques, is developed for simultaneous image acquisition of three mice. SCANNING 38:747-756, 2016. © 2016 Wiley Periodicals, Inc.

  14. In vivo quantification of amygdala subnuclei using 4.7 T fast spin echo imaging.

    PubMed

    Aghamohammadi-Sereshki, Arash; Huang, Yushan; Olsen, Fraser; Malykhin, Nikolai V

    2017-03-10

    The amygdala (AG) is an almond-shaped heterogeneous structure located in the medial temporal lobe. The majority of previous structural Magnetic Resonance Imaging (MRI) volumetric methods for AG measurement have so far only been able to examine this region as a whole. In order to understand the role of the AG in different neuropsychiatric disorders, it is necessary to understand the functional role of its subnuclei. The main goal of the present study was to develop a reliable volumetric method to delineate major AG subnuclei groups using ultra-high resolution high field MRI. 38 healthy volunteers (15 males and 23 females, 21-60 years of age) without any history of medical or neuropsychiatric disorders were recruited for this study. Structural MRI datasets were acquired at 4.7T Varian Inova MRI system using a fast spin echo (FSE) sequence. The AG was manually segmented into its five major anatomical subdivisions: lateral (La), basal (B), accessory basal (AB) nuclei, and cortical (Co) and centromedial (CeM) groups. Inter-(intra-) rater reliability of our novel volumetric method was assessed using intra-class correlation coefficient (ICC) and Dice's Kappa. Our results suggest that reliable measurements of the AG subnuclei can be obtained by image analysts with experience in AG anatomy. We provided a step-by-step segmentation protocol and reported absolute and relative volumes for the AG subnuclei. Our results showed that the basolateral (BLA) complex occupies seventy-eight percent of the total AG volume, while CeM and Co groups occupy twenty-two percent of the total AG volume. Finally, we observed no hemispheric effects and no gender differences in the total AG volume and the volumes of its subnuclei. Future applications of this method will help to understand the selective vulnerability of the AG subnuclei in neurological and psychiatric disorders.

  15. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  16. [3 Tesla MRI: successful results with higher field strengths].

    PubMed

    Schmitt, F; Grosu, D; Mohr, C; Purdy, D; Salem, K; Scott, K T; Stoeckel, B

    2004-01-01

    pancreas. The ability to increase resolution for musculoskeletal imaging has provided previously unseen detail. Bone structure, cartilage, and tendons and ligaments can be clearly visualized and pathology more easily detected due to an increased image quality. As the increase in field strength continues, a push to look at 7T has begun. The design philosophy is to keep the system as similar as possible, while changing only the frequency-dependent components. To date, both animal and human imaging have been performed on a whole body 7T scanner. Results show promise for both detailed imaging and functional MRI, but the road ahead is too long to be able to predict where it will end. The move toward higher field strengths is an exciting adventure in which 3T plays the role of trailblazer.

  17. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  18. Simultaneous Quantitative Imaging of Electrical Properties and Proton Density from B1 Maps Using MRI.

    PubMed

    Liu, Jiaen; Van de Moortele, Pierre-Francois; Zhang, Xiaotong; Wang, Yicun; He, Bin

    2016-03-29

    Electrical conductivity and permittivity of biological tissues are important diagnostic parameters and are useful for calculating subject-specific specific absorption rate distribution. On the other hand, water proton density also has clinical relevance for diagnosis purposes. These two kinds of tissue properties are inevitably associated in the technique of electrical properties tomography (EPT), which can be used to map in vivo electrical properties based on the measured B1 field distribution at Larmor frequency using magnetic resonance imaging (MRI). The signal magnitude in MR images is locally proportional to both the proton density of tissue and the receive B1 field; this is a source of artifact in receive B1-based EPT reconstruction because these two quantities cannot easily be disentangled. In this study, a new method was proposed for simultaneously extracting quantitative conductivity, permittivity and proton density from the measured magnitude of transmit B1 field, proton density-weighted receive B1 field, and transceiver phase, in a multi-channel radiofrequency (RF) coil using MRI, without specific assumptions to derive the proton density distribution. We evaluated the spatial resolution, sensitivity to contrast, and accuracy of the method using numerical simulations of B1 field in a phantom and in a realistic human head model. Using the proposed method, conductivity, permittivity and proton density were then experimentally obtained ex vivo in a pork tissue sample on a 7T MRI scanner equipped with a 16-channel microstrip transceiver RF coil.

  19. Simultaneous Quantitative Imaging of Electrical Properties and Proton Density From B1 Maps Using MRI.

    PubMed

    Jiaen Liu; Van de Moortele, Pierre-Francois; Xiaotong Zhang; Yicun Wang; Bin He

    2016-09-01

    Electrical conductivity and permittivity of biological tissues are important diagnostic parameters and are useful for calculating subject-specific specific absorption rate distribution. On the other hand, water proton density also has clinical relevance for diagnosis purposes. These two kinds of tissue properties are inevitably associated in the technique of electrical properties tomography (EPT), which can be used to map in vivo electrical properties based on the measured B1 field distribution at Larmor frequency using magnetic resonance imaging (MRI). The signal magnitude in MR images is locally proportional to both the proton density of tissue and the receive B1 field; this is a source of artifact in receive B1-based EPT reconstruction because these two quantities cannot easily be disentangled. In this study, a new method was proposed for simultaneously extracting quantitative conductivity, permittivity and proton density from the measured magnitude of transmit B1 field, proton density-weighted receive B1 field, and transceiver phase, in a multi-channel radiofrequency (RF) coil using MRI, without specific assumptions to derive the proton density distribution. We evaluated the spatial resolution, sensitivity to contrast, and accuracy of the method using numerical simulations of B1 field in a phantom and in a realistic human head model. Using the proposed method, conductivity, permittivity and proton density were then experimentally obtained ex vivo in a pork tissue sample on a 7T MRI scanner equipped with a 16-channel microstrip transceiver RF coil.

  20. What Scanner products are available?

    Atmospheric Science Data Center

    2014-12-08

    ... and longwave estimate. ERBS covers all 24-hour local time, but only for regions between 60N and 60S. Scanner and Nonscanner ... algorithm. Because of these differences, it is best to work with these two data sets separately. ERBE/ERBS scanner operated ...

  1. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  2. Laser Scanner Demonstration

    SciTech Connect

    Fuss, B.

    2005-09-06

    In the Summer of 2004 a request for proposals went out to potential vendors to offer a three-dimensional laser scanner for a number of unique metrology tasks at the Stanford Linear Accelerator Center (SLAC). Specifications were established including range, accuracy, scan density, resolution and field of view in consideration of anticipated department requirements. Four vendors visited the site to present their system and they were asked to perform three unique tests with their system on a two day visit to SLAC. Two of the three tests were created to emulate real-world applications at SLAC while the third was an accuracy and resolution series of experiments. The scope of these tests is presented and some of the vendor's results are included.

  3. A character string scanner

    NASA Technical Reports Server (NTRS)

    Enison, R. L.

    1971-01-01

    A computer program called Character String Scanner (CSS), is presented. It is designed to search a data set for any specified group of characters and then to flag this group. The output of the CSS program is a listing of the data set being searched with the specified group of characters being flagged by asterisks. Therefore, one may readily identify specific keywords, groups of keywords or specified lines of code internal to a computer program, in a program output, or in any other specific data set. Possible applications of this program include the automatic scan of an output data set for pertinent keyword data, the editing of a program to change the appearance of a certain word or group of words, and the conversion of a set of code to a different set of code.

  4. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    PubMed

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  5. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  6. EU Directive 2004/40: field measurements of a 1.5 T clinical MR scanner.

    PubMed

    Riches, S F; Collins, D J; Scuffham, J W; Leach, M O

    2007-06-01

    The European Union (EU) Physical Agents (EMF) Directive [1] must be incorporated into UK law in 2008. The directive, which applies to employees working in MRI, sets legal exposure limits for two of the three types of EMF exposure employed in MRI; time-varying gradient fields and radiofrequency (RF) fields. Limits on the static field are currently not included but may be added at a later date. Conservative action values have been set for all three types of exposure including the static field. The absolute exposure limits will exclude staff from the scanner bore and adjacent areas during scanning, impacting on many clinical activities such as anaesthetic monitoring during sedated scans, paediatric scanning and interventional MRI. When the legislation comes into force, NHS Trusts, scanner companies and academic institutions will be required to show compliance with the law. We present results of initial measurements performed on a 1.5 T clinical MRI scanner. For the static field, the proposed action value is exceeded at 40 cm from the scanner bore and would be exceeded when positioning a patient for scanning. For the RF field, the action values were only exceeded within the bore at distances of 40 cm from the scanner ends during a very RF intensive sequence; MRI employees are unlikely to be in the bore during an acquisition. For the time-varying gradient fields the action values were exceeded 52 cm out from the mouth of the bore during two clinical sequences, and estimated current densities show the exposure limit to be exceeded at 40 cm for frequencies above 333 Hz. Limiting employees to distances greater than these from the scanner during acquisition will have a severe impact on the future use and development of MRI.

  7. Multiple single-point imaging (mSPI) as a tool for capturing and characterizing MR signals and repetitive signal disturbances with high temporal resolution: the MRI scanner as a high-speed camera.

    PubMed

    Bakker, Chris J G; van Gorp, Jetse S; Verwoerd, Jan L; Westra, Albert H; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R

    2013-09-01

    In this paper we aim to lay down and demonstrate the use of multiple single-point imaging (mSPI) as a tool for capturing and characterizing steady-state MR signals and repetitive disturbances thereof with high temporal resolution. To achieve this goal, various 2D mSPI sequences were derived from the nearest standard 3D imaging sequences by (i) replacing the excitation of a 3D slab by the excitation of a 2D slice orthogonal to the read axis, (ii) setting the readout gradient to zero, and (iii) leaving out the inverse Fourier transform in the read direction. The thus created mSPI sequences, albeit slow with regard to the spatial encoding part, were shown to result into a series of densely spaced 2D single-point images in the time domain enabling monitoring of the evolution of the magnetization with a high temporal resolution and without interference from any encoding gradients. The high-speed capabilities of mSPI were demonstrated by capturing and characterizing the free induction decays and spin echoes of substances with long T2s (>30 ms) and long and short T2*s (4 - >30 ms) and by monitoring the perturbation of the transverse magnetization by, respectively, a titanium cylinder, representing a static disturbance; a pulsed magnetic field gradient, representing a stimulus inherent to a conventional MRI experiment; and a pulsed electric current, representing an external stimulus. The results of the study indicate the potential of mSPI for assessing the evolution of the magnetization and, when properly synchronized with the acquisition, repeatable disturbances thereof with a temporal resolution that is ultimately limited by the bandwidth of the receiver, but in practice governed by the SNR of the experiment and the magnitude of the disturbance. Potential applications of mSPI can be envisaged in research areas that are concerned with MR signal behavior, MR system performance and MR evaluation of magnetically evoked responses.

  8. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  9. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  10. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T

    NASA Astrophysics Data System (ADS)

    Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam

    2015-06-01

    The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.

  11. [Exposure to static magnetic field and health hazards during the operation of magnetic resonance scanners].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof; Politański, Piotr; Zmyślony, Marek

    2011-01-01

    Magnetic resonance imaging (MRI) scanners belong to the most modern imaging diagnostic devices, which involve workers' exposure to static magnetic fields (SMF) during the preparation and performance of MRI examinations. This paper presents the data on workers' exposure to SMF in the vicinity of MRI scanners and the analysis of SMF-related biological effects and health hazards to find out whether softening the legislative requirements concerning protection against SMF exposure of workers involved in MRI diagnostics is justified. Measurements in the vicinity of 1.5 T MRI magnets showed that exposure to SMF by various scanners depends on both SMF of magnets and scanners design, as well as on work organization. In a routine examination of one patient the radiographer is exposed to SMF exceeding 0.5 mT for app. 1.5-7 min, and up to 1.3 min to SMF exceeding 70 mT. In examinations of patients who need more attention, the duration of exposure may be significantly longer. The mean values (B mean) of exposure to SMF are 5.6-85 mT (mean 30 +/- 19 mT, N = 16). These data demonstrate that only well designed procedures, proper organization of workplace and awareness of workers how to attend the patients without being exposed to strong SMF allow for meeting the requirements of labor law concerning workers' exposure to SMF. The analysis of the available literature on biological effects of SMF has disclosed the lack of data on health effects of many years exposure of workers and the abundance of data demonstrating the biological activity of SMF. Therefore, a radical softening of legislative requirements concerning the exposure of workers' head or trunk is premature, and what is more, it is not indispensable for the development of MRI diagnostic. Such an action should be preceded by extensive international investigations on the health status of workers exposed to electromagnetic fields by MRI scanners.

  12. Assessment of magnetic field interactions and radiofrequency-radiation-induced heating of metallic spinal implants in 7 T field.

    PubMed

    Tsukimura, Itsuko; Murakami, Hideki; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru

    2016-10-21

    The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  13. Functional magnetic resonance imaging of the rat cerebellum during electrical stimulation of the fore- and hindpaw at 7 T

    NASA Astrophysics Data System (ADS)

    Peeters, Ronald; Verhoye, Marleen; Vos, Bart; De Schutter, Erik; Van der Linden, Anne-Marie

    1999-05-01

    Blood oxygenation level dependent contrast (BOLD) functional MRI responses at 7T were observed in the cerebellum of alpha- chloralose anesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing a high level of reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and medio-lateral band organization, more pronounced ipsilaterally. There was no overlap between the cerebellar activations caused by forepaw or hindpaw stimulation. Most remarkable was the overall horizontal organization of these responses: for both stimulation paradigms the patches and bands of activation were roughly positioned in either a cranial or caudal plane running antero-posteriorly through the whole cerebellum. This is the first fMRI study in the cerebellum of the rat. We relate our findings to the known projection patterns found with other techniques and to human fMRI studies. The horizontal organization found wasn't observed before in other studies using other techniques.

  14. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  15. Low-Cost High-Performance MRI

    PubMed Central

    Sarracanie, Mathieu; LaPierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5–3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  16. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  17. MRI Meets MPI: a bimodal MPI-MRI tomograph.

    PubMed

    Vogel, Patrick; Lother, Steffen; Rückert, Martin A; Kullmann, Walter H; Jakob, Peter M; Fidler, Florian; Behr, Volker C

    2014-10-01

    While magnetic particle imaging (MPI) constitutes a novel biomedical imaging technique for tracking superparamagnetic nanoparticles in vivo, unlike magnetic resonance imaging (MRI), it cannot provide anatomical background information. Until now these two modalities have been performed in separate scanners and image co-registration has been hampered by the need to reposition the sample in both systems as similarly as possible. This paper presents a bimodal MPI-MRI-tomograph that combines both modalities in a single system.MPI and MRI images can thus be acquired without moving the sample or replacing any parts in the setup. The images acquired with the presented setup show excellent agreement between the localization of the nanoparticles in MPI and the MRI background data. A combination of two highly complementary imaging modalities has been achieved.

  18. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE... Provisions § 1.892-7T Relationship to other Internal Revenue Code sections (temporary regulations)....

  19. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 9 2013-04-01 2013-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE... Provisions § 1.892-7T Relationship to other Internal Revenue Code sections (temporary regulations)....

  20. 26 CFR 1.892-7T - Relationship to other Internal Revenue Code sections (temporary regulations).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Relationship to other Internal Revenue Code sections (temporary regulations). 1.892-7T Section 1.892-7T Internal Revenue INTERNAL REVENUE SERVICE...-7T Relationship to other Internal Revenue Code sections (temporary regulations). (a) Section 893....

  1. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    PubMed

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  2. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems

    PubMed Central

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2015-01-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil’s microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape. PMID:25892746

  3. Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Varghai, Davood; Covey, Kelly; Sharma, Rahul; Cross, Nathan; Feyes, Denise K.; Oleinick, Nancy L.; Flask, Chris A.; Dean, David

    2008-02-01

    Post-operative verification of the specificity and sensitivity of photodynamic therapy (PDT) is most pressing for deeply placed lesions such as brain tumors. We wish to determine whether Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) can provide a non-invasive and unambiguous quantitative measure of the specificity and sensitivity of brain tumor PDT. Methods: 2.5 x 10 5 U87 cells were injected into the brains of six athymic nude rats. After 5-6 days, the animals received 0.5 mg/kg b.w. of the phthalocyanine photosensitizer Pc 4 via tail-vein injection. On day 7 peri-tumor DCE-MRI images were acquired on a 7T microMRI scanner before and after tail-vein administration of 100 μL gadolinium and 400 μL saline. After this scan the animals received a 30 J/cm2 dose of 672-nm light from a diode laser (i.e., PDT). The DCE-MRI scan protocol was repeated on day 13. Next, the animals were euthanized and their brains were explanted for Hematoxylin and Eosin (H&E) histology. Results: No tumor was found in one animal. The DCE-MRI images of the other five animals demonstrated significant tumor enhancement increase (p < 0.053 two-sided t-test and p < 0.026 one-sided t-test) following PDT. H&E histology presented moderate to severe tumor necrosis. Discussion: The change in signal detected by DCE-MRI appears to be due to PDT-induced tumor necrosis. This DCE-MRI signal appears to provide a quantitative, non-invasive measure of the outcome of PDT in this animal model and may be useful for determining the safety and effectiveness of PDT in deeply placed tumors (e.g., glioma).

  4. In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging.

    PubMed

    Malykhin, N V; Lebel, R M; Coupland, N J; Wilman, A H; Carter, R

    2010-01-15

    Several neuropsychiatric disorders involving hippocampal structural changes have been studied extensively using volumetric magnetic resonance imaging (MRI). These studies have mostly measured total hippocampal volume while the present study aimed to delineate and measure hippocampal subfields within the whole hippocampus and subdivisions along its longitudinal axis. Images were acquired at 4.7 T in 11 healthy subjects (5 males and 6 females, aged 23-56 years), using a fast spin echo (FSE) sequence with 0.52 x 0.68 x 1.0 mm(3) native resolution, collecting 90 contiguous coronal slices. Subiculum, cornu ammonis (CA1-3), and dentate gyrus were traced manually within the hippocampal head, body, and tail. We reported volumes for the subfields and demonstrated differences in the distribution within the hippocampus and its parts. The biggest part of the dentate gyrus was located in the hippocampal body, following the hippocampal head and tail. In contrast, the hippocampal head had the largest part of CA1-3, following the hippocampal body and tail. The hippocampal tail had the smallest portion of the subiculum compared to hippocampal head and tail. Subfield volumes were consistent between hemispheres and showed distributions within the longitudinal subdivisions that were consistent with histological data. Direct measurements of subfield distribution along the longitudinal axis of the hippocampus may be more sensitive to detecting disease effects than total volume measures and the differential distribution of subfield volumes may aid in the interpretation of measurements obtained at lower field strength and spatial resolution.

  5. High-Resolution 3D Proton MRI of Hyperpolarized Gas Enabled by Parahydrogen and Rh/TiO2 Heterogeneous Catalyst

    PubMed Central

    Barskiy, Danila A.; Coffey, Aaron M.; Truong, Milton L.; Salnikov, Oleg G.; Khudorozhkov, Alexander K.; Inozemtseva, Elizaveta A.; Prosvirin, Igor P.; Bukhtiyarov, Valery I.; Waddell, Kevin W.; Koptyug, Igor V.

    2015-01-01

    Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625 × 625 × 625 μm3) and large imaging matrix (128 × 128 × 32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time. PMID:24961814

  6. MRI and low back pain

    MedlinePlus

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  7. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  8. Shielded microstrip array for 7T human MR imaging.

    PubMed

    Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang

    2010-01-01

    The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.

  9. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  10. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function.

    PubMed

    Dumoulin, Serge O; Fracasso, Alessio; van der Zwaag, Wietske; Siero, Jeroen C W; Petridou, Natalia

    2017-01-16

    Human MRI scanners at ultra-high magnetic field strengths of 7 T and higher are increasingly available to the neuroscience community. A key advantage brought by ultra-high field MRI is the possibility to increase the spatial resolution at which data is acquired, with little reduction in image quality. This opens a new set of opportunities for neuroscience, allowing investigators to map the human cortex at an unprecedented level of detail. In this review, we present recent work that capitalizes on the increased signal-to-noise ratio available at ultra-high field and discuss the theoretical advances with a focus on sensory and motor systems neuroscience. Further, we review research performed at sub-millimeter spatial resolution and discuss the limits and the potential of ultra-high field imaging for structural and functional imaging in human cortex. The increased spatial resolution achievable at ultra-high field has the potential to unveil the fundamental computations performed within a given cortical area, ultimately allowing the visualization of the mesoscopic organization of human cortex at the functional and structural level.

  11. Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions

    PubMed Central

    Krieger, Axel; Susil, Robert C.; Ménard, Cynthia; Coleman, Jonathan A.; Fichtinger, Gabor; Atalar, Ergin

    2012-01-01

    This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery. Its compact size allows for use in both standard cylindrical and open configuration MRI scanners. Preliminary in vivo canine experiments and first clinical trials are reported. PMID:15709668

  12. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  13. Using fMRI to decode true thoughts independent of intention to conceal.

    PubMed

    Yang, Zhi; Huang, Zirui; Gonzalez-Castillo, Javier; Dai, Rui; Northoff, Georg; Bandettini, Peter

    2014-10-01

    Multi-variate pattern analysis (MVPA) applied to BOLD-fMRI has proven successful at decoding complicated fMRI signal patterns associated with a variety of cognitive processes. One cognitive process, not yet investigated, is the mental representation of "Yes/No" thoughts that precede the actual overt response to a binary "Yes/No" question. In this study, we focus on examining: (1) whether spatial patterns of the hemodynamic response carry sufficient information to allow reliable decoding of "Yes/No" thoughts; and (2) whether decoding of "Yes/No" thoughts is independent of the intention to respond honestly or dishonestly. To achieve this goal, we conducted two separate experiments. Experiment 1, collected on a 3T scanner, examined the whole brain to identify regions that carry sufficient information to permit significantly above-chance prediction of "Yes/No" thoughts at the group level. In Experiment 2, collected on a 7T scanner, we focused on the regions identified in Experiment 1 to examine the capability of achieving high decoding accuracy at the single subject level. A set of regions--namely right superior temporal gyrus, left supra-marginal gyrus, and left middle frontal gyrus--exhibited high decoding power. Decoding accuracy for these regions increased with trial averaging. When 18 trials were averaged, the median accuracies were 82.5%, 77.5%, and 79.5%, respectively. When trials were separated according to deceptive intentions (set via experimental cues), and classifiers were trained on honest trials, but tested on trials where subjects were asked to deceive, the median accuracies of these regions still reached 66%, 75%, and 78.5%. These results provide evidence that concealed "Yes/No" thoughts are encoded in the BOLD signal, retaining some level of independence from the subject's intentions to answer honestly or dishonestly. These findings also suggest the theoretical possibility for more efficient brain-computer interfaces where subjects only need to think

  14. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A.

    2012-05-15

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  15. A case study in scanner optimisation.

    PubMed

    Dudley, N J; Gibson, N M

    2014-02-01

    Ultrasound scanner preset programmes are factory set or tailored to user requirements. Scanners may, therefore, have different settings for the same application, even on similar equipment in a single department. The aims of this study were: (1) to attempt to match the performance of two scanners, where one was preferred and (2) to assess differences between six scanners used for breast ultrasound within our organisation. The Nottingham Ultrasound Quality Assurance software was used to compare imaging performance. Images of a Gammex RMI 404GS test object were collected from six scanners, using default presets, factory presets and settings matched to a preferred scanner. Resolution, low contrast performance and high contrast performance were measured. The performance of two scanners was successfully matched, where one had been preferred. Default presets varied across the six scanners, three different presets being used. The most used preset differed in settings across the scanners, most notably in the use of different frequency modes. The factory preset was more consistent across the scanners, the main variation being in dynamic range (55-70 dB). Image comparisons showed significant differences, which were reduced or eliminated by adjustment of settings to match a reference scanner. It is possible to match scanner performance using the Nottingham Ultrasound Quality Assurance software as a verification tool. Ultrasound users should be aware that scanners may not behave in a similar fashion, even with apparently equivalent presets. It should be possible to harmonise presets by consensus amongst users.

  16. Ultrasonic scanner for footprint identification

    NASA Technical Reports Server (NTRS)

    Derr, L. J.

    1974-01-01

    Scanner includes transducer, acoustical drive, acoustical receiver, X and Y position indicators, and cathode-ray tube. Transducer sends ultrasonic pulses into shoe sole or shoeprint. Reflected signals are picked up by acoustic receiver and fed to cathode-ray tube. Resulting display intensity is directly proportional to reflected signal magnitude.

  17. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  18. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  19. MRI findings in Hirayama disease.

    PubMed

    Raval, Monali; Kumari, Rima; Dung, Aldrin Anthony Dung; Guglani, Bhuvnesh; Gupta, Nitij; Gupta, Rohit

    2010-11-01

    The objective of the study was to study the magnetic resonance imaging (MRI) features of Hirayama disease on a 3 Tesla MRI scanner. Nine patients with clinically suspected Hirayama disease were evaluated with neutral position, flexion, contrast-enhanced MRI and fast imaging employing steady-state acquisition (FIESTA) sequences. The spectrum of MRI features was evaluated and correlated with the clinical and electromyography findings. MRI findings of localized lower cervical cord atrophy (C5-C7), abnormal curvature, asymmetric cord flattening, loss of attachment of the dorsal dural sac and subjacent laminae in the neutral position, anterior displacement of the dorsal dura on flexion and a prominent epidural space were revealed in all patients on conventional MRI as well as with the dynamic 3D-FIESTA sequence. Intramedullary hyperintensity was seen in four patients on conventional MRI and on the 3D-FIESTA sequence. Flow voids were seen in four patients on conventional MRI sequences and in all patients with the 3D-FIESTA sequence. Contrast enhancement of the epidural component was noted in all the five patients with thoracic extensions. The time taken for conventional and contrast-enhanced MRI was about 30-40 min, while that for the 3D-FIESTA sequence was 6 min. Neutral and flexion position MRI and the 3D-FIESTA sequence compliment each other in displaying the spectrum of findings in Hirayama disease. A flexion study should form an essential part of the screening protocol in patients with suspected Hirayama disease. Newer sequences such as the 3D-FIESTA may help in reducing imaging time and obviating the need for contrast.

  20. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex.

  1. [Innovation and Future Technologies for PET Scanners].

    PubMed

    Yamaya, Taiga

    2015-01-01

    Positron emission tomography (PET) plays important roles in cancer diagnosis, neuroimaging and molecular imaging research; but potential points remain for which big improvements could be made, including spatial resolution, sensitivity and manufacturing costs. Higher spatial resolution is essential to enable earlier diagnosis, and improved sensitivity results in reduced radiation exposure and shortened measurement time. Therefore, research on next generation PET technologies remains a hot topic worldwide. In this paper, innovation and future technologies for the next generation PET scanners, such as time-of-flight measurement and simultaneous PET/MRI measurement, are described. Among them, depth-of-interaction (DOI) measurement in the radiation sensor will be a key technology to get any significant improvement in sensitivity while maintaining high spatial resolution. DOI measurement also has a potential to expand PET application fields because it allows for more flexible detector arrangement. As an example, the world's first, open-type PET geometry "OpenPET", which is expected to lead to PET imaging during treatment, is under development. The DOI detector itself continues to evolve with the help of recently developed semiconductor photodetectors, often referred to as silicon photomultipliers.

  2. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus.

    PubMed

    Schindler, Stephanie; Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter

    2017-01-01

    The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region-analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map's theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity.

  3. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus

    PubMed Central

    Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter

    2017-01-01

    The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region—analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map’s theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity. PMID

  4. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  5. Evidence for a motor and a non-motor domain in the human dentate nucleus--an fMRI study.

    PubMed

    Küper, M; Dimitrova, A; Thürling, M; Maderwald, S; Roths, J; Elles, H G; Gizewski, E R; Ladd, M E; Diedrichsen, J; Timmann, D

    2011-02-14

    Dum and Strick (J. Neurophysiol. 2003; 89, 634-639) proposed a division of the cerebellar dentate nucleus into a "motor" and "non-motor" area based on anatomical data in the monkey. We asked the question whether motor and non-motor domains of the dentate can be found in humans using functional magnetic resonance imaging (fMRI). Therefore dentate activation was compared in motor and cognitive tasks. Young, healthy participants were tested in a 1.5 T MRI scanner. Data from 13 participants were included in the final analysis. A block design was used for the experimental conditions. Finger tapping of different complexities served as motor tasks, while cognitive testing included a verbal working memory and a visuospatial task. To further confirm motor-related dentate activation, a simple finger movement task was tested in a supplementary experiment using ultra-highfield (7 T) fMRI in 23 participants. For image processing, a recently developed region of interest (ROI) driven normalization method of the deep cerebellar nuclei was used. Dorso-rostral dentate nucleus activation was associated with motor function, whereas cognitive tasks led to prominent activation of the caudal nucleus. The visuospatial task evoked activity bilaterally in the caudal dentate nucleus, whereas verbal working memory led to activation predominantly in the right caudal dentate. These findings are consistent with Dum and Strick's anatomical findings in the monkey.

  6. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    NASA Astrophysics Data System (ADS)

    Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.

    2016-09-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  7. IR line scanner on UAV

    NASA Astrophysics Data System (ADS)

    Liu, Shi-chao; Qin, Jie-xin; Qi, Hong-xing; Xiao, Gong-hai

    2011-08-01

    This paper introduces the designing principle and method of the IR line scanner on UAV in three aspects of optical-mechanical system, electronics system and processing software. It makes the system achieve good results in practical application that there are many features in the system such as light weight, small size, low power assumption, wide field of view, high instantaneous field of view, high noise equivalent temperature difference, wirelessly controlled and so on. The entire system is designed as follows: Multi-element scanner is put into use for reducing the electrical noise bandwidth, and then improving SNR; Square split aperture scanner is put into use for solving the image ratation distortion, besides fit for large velocity to height ratio; DSP is put into use for non-uniformity correction and background nosie subtraction, and then improving the imagery quality; SD card is put into use as image data storage media instead of the hard disk; The image data is stored in SD card in FAT32 file system, easily playbacked by processing software on Windows and Linux operating system; wireless transceiver module is put into use for wirelessly controlled.

  8. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  9. 26 CFR 1.382-7T - Built-in gains and losses (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Built-in gains and losses (temporary). 1.382-7T... TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.382-7T Built-in gains and losses... recognized built-in gain. The term prepaid income means any amount received prior to the change date that...

  10. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging.

    PubMed

    Knoops, Paul G M; Beaumont, Caroline A A; Borghi, Alessandro; Rodriguez-Florez, Naiara; Breakey, Richard W F; Rodgers, William; Angullia, Freida; Jeelani, N U Owase; Schievano, Silvia; Dunaway, David J

    2017-04-01

    Two-dimensional photographs are the standard for assessing craniofacial surgery clinical outcomes despite lacking three-dimensional (3D) depth and shape. Therefore, 3D scanners have been gaining popularity in various fields of plastic and reconstructive surgery, including craniomaxillofacial surgery. Head shapes of eight adult volunteers were acquired using four 3D scanners: 1.5T Avanto MRI, Siemens; 3dMDface System, 3dMD Inc.; M4D Scan, Rodin4D; and Structure Sensor, Occipital Inc. Accuracy was evaluated as percentage of data within a range of 2 mm from the 3DMDface System reconstruction, by surface-to-surface root mean square (RMS) distances, and with facial distance maps. Precision was determined by RMS. Relative to the 3dMDface System, accuracy was the highest for M4D Scan (90% within 2 mm; RMS of 0.71 mm ± 0.28 mm), followed by Avanto MRI (86%; 1.11 mm ± 0.33 mm) and Structure Sensor (80%; 1.33 mm ± 0.46). M4D Scan and Structure Sensor precision were 0.50 ± 0.04 mm and 0.51 ± 0.03 mm, respectively. Clinical and technical requirements govern scanner choice; however, 3dMDface System and M4D Scan provide high-quality results. It is foreseeable that compact, handheld systems will become more popular in the near future.

  11. Bottom-up study of the MRI positive contrast created by the Off-Resonance Saturation sequence

    NASA Astrophysics Data System (ADS)

    Delangre, S.; Vuong, Q. L.; Henrard, D.; Po, C.; Gallez, B.; Gossuin, Y.

    2015-05-01

    Superparamagnetic iron oxide nanoparticles (SPM particles) are used in MRI to highlight regions such as tumors through negative contrast. Unfortunately, sources as air bubbles or tissues interfaces also lead to negative contrast, which complicates the image interpretation. New MRI sequences creating positive contrast in the particle surrounding, such as the Off-Resonance Saturation sequence (ORS), have thus been developed. However, a theoretical study of the ORS sequence is still lacking, which hampers the optimization of this sequence. For this reason, this work provides a self-consistent analytical expression able to predict the dependence of the contrast on the sequence parameters and the SPM particles properties. This expression was validated by numerical simulations and experiments on agarose gel phantoms on a 11.7 T scanner system. It provides a fundamental understanding of the mechanisms leading to positive contrast, which could allow the improvement of the sequence for future in vivo applications. The influence of the SPM particle relaxivities, the SPM particle concentration, the echo time and the saturation pulse parameters on the contrast were investigated. The best contrast was achieved with SPM particles possessing the smallest transverse relaxivity, an optimal particle concentration and for low echo times.

  12. Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    PubMed Central

    Fite, Brett Z.; Liu, Yu; Kruse, Dustin E.; Caskey, Charles F.; Walton, Jeffrey H.; Lai, Chun-Yen; Mahakian, Lisa M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C. PMID:22536396

  13. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.

    PubMed

    Hara, Masayuki; Salomon, Roy; van der Zwaag, Wietske; Kober, Tobias; Rognini, Giulio; Nabae, Hiroyuki; Yamamoto, Akio; Blanke, Olaf; Higuchi, Toshiro

    2014-09-30

    Bodily self-consciousness has become an important topic in cognitive neuroscience aiming to understand how the brain creates a unified sensation of the self in a body. Specifically, full body illusion (FBI) in which changes in bodily self-consciousness are experimentally introduced by using visual-tactile stimulation has led to improve understanding of these mechanisms. This paper introduces a novel approach to the classic FBI paradigm using a robotic master-slave system which allows us to examine interactions between action and the sense of body ownership in behavioral and MRI experiments. In the proposed approach, the use of the robotic master-slave system enables unique stimulation in which experimental participants can administer tactile cues on their own back using active self-touch. This active self-touch has never been employed in FBI experiments and it allows to test the role of sensorimotor integration and agency (the feeling of control over our actions) in FBI paradigms. The objective of this study is to propose a robotic-haptic platform allowing a new FBI paradigm including the active self-touch in MRI environments. This paper, first, describes the design concept and the performance of the prototype device in the fMRI environment (for 3T and 7T MRI scanners). In addition, the prototype device is applied to a classic FBI experiment, and we verify that the use of the prototype device succeeded in inducing the FBI. These results indicate that the proposed approach has a potential to drive advances in our understanding of human body ownership and agency by allowing novel manipulation and paradigms.

  14. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    PubMed

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc.

  15. A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation.

    PubMed

    Baecke, Sebastian; Lützkendorf, Ralf; Mallow, Johannes; Luchtmann, Michael; Tempelmann, Claus; Stadler, Jörg; Bernarding, Johannes

    2015-02-12

    Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments.

  16. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  17. Coastal zone color scanner retrospective

    NASA Astrophysics Data System (ADS)

    Mitchell, B. Greg

    1994-04-01

    The following special section of the Journal of Geophysical Research is dedicated to a retrospective of scientific studies using the coastal zone color scanner (CZCS) instrument. The CZCS was launched in late 1978 aboard the Nimbus 7 satellite as a "proof-of-concept" instrument to demonstrate the feasibility of using satellite platforms to monitor the distribution of oceanic phytoplankton in the world's oceans. It provided data until the middle of 1986. Phytoplankton primary production contributes approximately one half of the global biospheric fixation of organic matter by photosynthesis, thereby forming the base of the oceanic food web and providing a major sink for atmospheric CO2.

  18. Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners.

    PubMed

    Baumgart, F; Kaulisch, T; Tempelmann, C; Gaschler-Markefski, B; Tegeler, C; Schindler, F; Stiller, D; Scheich, H

    1998-10-01

    Electrodynamic speakers compatible with (functional) magnetic resonance imaging (MRI) are described. The speakers magnets are removed, their function is replaced by the scanner's magnetic field, resulting in an uncommon but efficient operation. The method can be used with headphones as well as woofers. Functional MRI is not associated with any known biological risks, but as a method for visualization of task-specific activation of brain regions it is undesirably noisy. Thus, it requires both noise protection and efficient sound transmission systems for delivering acoustic stimuli to subjects. Woofers could possibly be used in active noise-control systems. The speakers described in this paper can be used for either task.

  19. Magnetic Resonance Imaging of the Cervical Spinal Cord in Multiple Sclerosis at 7T

    PubMed Central

    Dula, Adrienne N.; Pawate, Siddharama; Dortch, Richard D.; Barry, Robert L.; George-Durrett, Kristen M.; Lyttle, Bailey D.; Dethrage, Lindsey M.; Gore, John C.; Smith, Seth A.

    2015-01-01

    Background The clinical course of MS is mainly attributable to cervical and upper thoracic spinal cord dysfunction. High-resolution, 7T anatomical imaging of the cervical spinal cord is presented. Image contrast between gray/white matter and lesions surpasses conventional, clinical T1- and T2-weighted sequences at lower field strengths. Objective To study the spinal cord of healthy controls and patients with MS using magnetic resonance imaging at 7T. Methods Axial (C2-C5) T1- and T2*-weighted and sagittal T2*-/spin-density-weighted images were acquired at 7T in 13 healthy volunteers (age 22-40 years), and 15 clinically diagnosed MS patients (age 19-53 years, EDSS 0-3) in addition to clinical 3T scans. In healthy volunteers, a high-resolution multi-echo gradient echo scan was obtained over the same geometry at both fields. Evaluation included signal and contrast to noise ratios and lesion counts for healthy and patient volunteers, respectively. Results/Conclusion High-resolution images at 7T exceeded resolutions reported at lower field strengths. Gray and white matter were sharply demarcated and MS lesions were more readily visualized at 7T compared to clinical acquisitions. with lesions apparent at both fields. Nerve roots were clearly visualized. White matter lesion counts averaged 4.7 vs. 3.1 (52% increase) per patient at 7T vs. 3T, respectively (p = 0.05). PMID:26209591

  20. A novel front-end chip for a human PET scanner based on monolithic detector blocks

    NASA Astrophysics Data System (ADS)

    Sarasola, I.; Rato Mendes, P.; Cuerdo, R.; García de Acilu, P.; Navarrete, J.; Cela, J. M.; Oller, J. C.; Romero, L.; Pérez, J. M.

    2011-01-01

    We are developing a positron emission tomography (PET) scanner based on avalanche photodiodes (APD), monolithic LYSO:Ce scintillator crystals and a dedicated readout chip. All these components allow operation inside a magnetic resonance imaging (MRI) scanner with the aim of building a PET/MRI hybrid imaging system for clinical human brain studies. Previous work verified the functional performance of our first chip (VATA240) based on a leading edge comparator and the principle of operation of our radiation sensors, which are capable of providing reconstructed images of positron point sources with spatial resolutions of 2.1 mm FWHM. The new VATA241 chip presented in this work has been designed with the aim of reducing the coincidence window of our final PET scanner by implementing an on-chip constant fraction discriminator (CFD), as well as providing a better robustness for its implementation in the full-scale PET scanner. Results from the characterization of the VATA241 chip are presented, together with the first results on coincidence performance, validating the new design for our application.

  1. Temporal MRI characterization of gelatin/hyaluronic acid/chondroitin sulfate sponge for cartilage tissue engineering.

    PubMed

    Chou, Cheng-Hung; Lee, Herng-Sheng; Siow, Tiing Yee; Lin, Ming-Huang; Kumar, Amit; Chang, Yue-Cune; Chang, Chen; Huang, Guo-Shu

    2013-08-01

    A tri-copolymer sponge consisting of gelatin, hyaluronic acid, and chondroitin sulfate (GHC) was designed to mimic the cartilage environment in vivo for cartilage regeneration. The present study aimed to temporally characterize the magnetic resonance relaxation time of GHC constructs in vivo in a rodent heterotopic model. GHC sponges with cells (GHCc) or without cells (GHC) implanted in rat leg muscle were monitored using MRI (4.7 T MR scanner) on day 0, 7, 14, and 21 after implantation. The results revealed that the transverse relaxation time (T2) of GHC constructs decreased significantly over time when compared to the T2 of GHCc constructs. However, the longitudinal relaxation time (T1) of GHCc and GHC constructs remained stable. Moreover, hematoxylin and eosin and immunohistochemical staining with antibodies to S100 protein, and types I and II collagen showed that normal morphology, phenotype, and function of chondrocytes were preserved in the GHCc construct. Thus, we concluded that GHC constructs adequately support chondrocyte growth and function. On top of that, T2 may be a useful tool for monitoring cartilage regeneration in GHC constructs.

  2. Academic and Career Advising of Scanners

    ERIC Educational Resources Information Center

    Bloom, Arvid J.; Tripp, Philip R.; Shaffer, Leigh S.

    2011-01-01

    "Scanners" has become a common term for a recently identified category of people who find choosing just one interest or career path difficult (Sher, 2006). Academic and career advisors who work with scanners will likely find that these students have difficulty selecting an academic major or career path and that they seem to suffer anxiety and a…

  3. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  4. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  5. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  6. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  7. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification....

  8. Discriminant analyses of Bendix scanner data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Leamer, R. W.; Gerbermann, A. H.; Torline, R. J.

    1972-01-01

    Flights over Weslaco, Texas are discussed, using the 9-channel Bendix scanner, providing calibrated data in the 380 to 1000 nm wavelength interval. These flights were at 2000 ft. These data gave seasonal coverage from the time signals, representing mainly the soil background. The ground truth data are provided; signature processing studies relating scanner data to ground truth were also carried out.

  9. Ultra-low field T1 vs. T1rho at 3T and 7T: study of rotationally immobilized protein gels and animal brain tissues

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Inglis, Ben; Barr, Ian; Clarke, John

    2015-03-01

    Clinical magnetic resonance imaging (MRI) machines operating in static fields of typically 1.5 T or 3 T can capture information on slow molecular dynamics utilizing the so-called T1rho technique. This technique, in which a radiofrequency (RF) spin-lock field is applied with microtesla amplitude, has been used, for example, to determine the onset time of stroke in studies on rats. The long RF pulse, however, may exceed the specific absorption rate (SAR) limit, putting subjects at risk. Ultra-low-field (ULF) MRI, based on Superconducting Quantum Interference Devices (SQUIDs), directly detects proton signals at a static magnetic field of typically 50-250 μT. Using our ULF MRI system with adjustable static field of typically 55 to 240 μT, we systematically measured the T1 and T2 dispersion profiles of rotationally immobilized protein gels (bovine serum albumin), ex vivo pig brains, and ex vivo rat brains with induced stroke. Comparing the ULF results with T1rho dispersion obtained at 3 T and 7 T, we find that the degree of protein immobilization determines the frequency-dependence of both T1 and T1rho. Furthermore, T1rho and ULF T1 show similar results for stroke, suggesting that ULF MRI may be used to image traumatic brain injury with negligible SAR. This research was supported by the Henry H. Wheeler, Jr. Brain Imaging Center and the Donaldson Trust.

  10. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  11. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  12. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  13. Spaceborne scanner imaging system errors

    NASA Technical Reports Server (NTRS)

    Prakash, A.

    1982-01-01

    The individual sensor system design elements which are the priori components in the registration and rectification process, and the potential impact of error budgets on multitemporal registration and side-lap registration are analyzed. The properties of scanner, MLA, and SAR imaging systems are reviewed. Each sensor displays internal distortion properties which to varying degrees make it difficult to generate on orthophoto projection of the data acceptable for multiple pass registration or meeting national map accuracy standards and is also affected to varying degrees by relief displacements in moderate to hilly terrain. Nonsensor related distortions, associated with the accuracy of ephemeris determination and platform stability, have a major impact on local geometric distortions. Platform stability improvements expected from the new multi mission spacecraft series and improved ephemeris and ground control point determination from the NAVSTAR/global positioning satellite systems are reviewed.

  14. Phantom haptic device upgrade for use in fMRI.

    PubMed

    Hribar, Ales; Koritnik, Blaz; Munih, Marko

    2009-06-01

    This paper presents an upgrade of a Phantom Premium 1.5 haptic device for use within a functional magnetic resonance imaging (fMRI) environment. A special mechanical extension that allows the haptic device to operate at a safe distance from the high-density magnetic field of an fMRI scanner has been developed. Extended haptic system was subjected to a series of tests to confirm electromagnetic compatibility with the fMRI scanner, for which key results are presented. With this fMRI compatible haptic platform a human brain activation during controlled upper limb movements can be studied. A simple virtual environment reaching task was programmed to study brain motor control functions. At the end preliminary results of an ongoing neurophysiological study are presented.

  15. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  16. MRI of neuronal plasticity in rodent models.

    PubMed

    Pelled, Galit

    2011-01-01

    Modifications in the behavior and architecture of neuronal networks are well documented to occur in association with learning and memory, as well as following injury. These plasticity mechanisms are crucial to ensure adequate processing of stimuli, and they also dictate the degree of recovery following peripheral or central nervous system injury. Nevertheless, the underlying neuronal mechanisms that determine the degree of plasticity of neuronal pathways are not fully understood. Recent developments in animal-dedicated magnetic resonance imaging (MRI) scanners and related hardware afford a high spatial and temporal resolution, making functional MRI and manganese-enhanced MRI emerging tools for studying reorganization of neuronal pathways in rodent models. Many of the observed changes in neuronal functions in rodent's brains following injury discussed here agree with clinical human fMRI findings. This demonstrates that animal model imaging can have a significant clinical impact in the neuronal plasticity and rehabilitation arenas.

  17. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI

    PubMed Central

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed. PMID:26745803

  18. [MRI of the prostate: optimization of imaging protocols].

    PubMed

    Rouvière, O

    2006-02-01

    This article details the imaging protocols for prostate MRI and the influence on image quality of each particular setting: type of coils to be used (endorectal or external phased-array coils?), patient preparation, type of sequences, spatial resolution parameters. The principle and technical constraints of dynamic contrast-enhanced MRI are also presented, as well as the predictable changes due to the introduction of high-field strength (3T) scanners.

  19. Computed Tomography and MRI of the Hepatobiliary System and Pancreas.

    PubMed

    Marolf, Angela J

    2016-05-01

    MRI and computed tomographic (CT) imaging are becoming more common in the diagnosis of hepatobiliary and pancreatic disorders in small animals. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible increasing the use of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary and pancreatic diseases because of lack of superimposition of structures, operator dependence, and through intravenous contrast administration. This added value provides more information for diagnosis, prognosis, and surgical planning.

  20. MRI simulator: a teaching tool for radiology

    NASA Astrophysics Data System (ADS)

    Rundle, Debra A.; Kishore, Sheel; Seshadri, Sridhar B.; Wehrli, Felix W.

    1990-08-01

    The increasing use of magnetic resonance imaging (MRI) as a clinical modality has put an enormous burden on medical institutions to cost-effectively teach Mill scanning techniques to technologists and physicians. Since MRI scanner time is a scarce resource, it would be ideal if the teaching could be effectively performed off-line. In order to meet this goal, the Radiology Department has designed and developed a Magnetic Resonance Imaging Simulator. The Simulator in its current implementation mimics the General Electric Signa scanner's user-interface for image acquisition. The design is general enough to be applied to other MRI scanners. One unique feature of the simulator is its incorporation of an image-synthesis module which permits the user to derive images for any arbitrary combination of pulsing parameters for spin-echo, gradient-echo, and inversion recovery pulse sequences. These images are computed in five seconds. The development platform chosen is a standard Apple Macintosh-Il computer with no specialized hardware peripherals. The user-interface is implemented in HyperCard. All other software development including synthesis and display functions are implemented under the MPW 'C' environment. The scan parameters, demographics and images are tracked using an Oracle database. Images are currently stored on magnetic disk but could be stored on optical media with minimal effort.

  1. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Adjustments § 1.482-7T Methods to determine taxable...

  2. 26 CFR 1.482-7T - Methods to determine taxable income in connection with a cost sharing arrangement (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Methods to determine taxable income in connection with a cost sharing arrangement (temporary). 1.482-7T Section 1.482-7T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Adjustments § 1.482-7T Methods to...

  3. Shoulder MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  4. Knee MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  5. Shoulder MRI

    MedlinePlus

    ... of the shoulder uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  6. Knee MRI

    MedlinePlus

    ... of the knee uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  7. Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T.

    PubMed

    Gambarota, G; Veltien, A; van Laarhoven, H; Philippens, M; Jonker, A; Mook, O R; Frederiks, W M; Heerschap, A

    2004-12-01

    The purpose of this study was to investigate the magnetic resonance imaging (MRI) characteristics of colon cancer metastases in rat liver at 7 T. A dedicated RF microstrip coil of novel design was built in order to increase the signal-to-noise ratio and, in combination with respiratory triggering, to minimize motion artifacts. T1- and T2-weighted MR imaging was performed to follow tumor growth. T1-weighted images provided a good anatomical delineation of the liver structure, while the best contrast between metastases and normal liver tissue was achieved with T2-weighted images. Measurements of T1 and T2 relaxation times were performed with inversion recovery FLASH and Carr-Purcell-Meiboom-Gill and inversion recovery FLASH imaging sequences, respectively, for quantitative MR characterization of metastases. Both the T1 and T2 of the metastases were significantly higher than those of normal liver tissue. Further, an increase in the T1 relaxation time of the metastases was observed with tumor growth. These findings suggest that quantitative in vivo MR characterization provides information on tumor development and possibly response to therapy, though additional studies are needed to elucidate the correlation between the changes in relaxation times and tumor microenvironment.

  8. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Ivanov, Dimo; Krieger, Steffen N; Lepsien, Jöran; Trampel, Robert; Turner, Robert; Möller, Harald E

    2014-08-15

    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.

  9. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  10. Miniaturized micro-optical scanners

    NASA Astrophysics Data System (ADS)

    Motamedi, M. Edward; Andrews, Angus P.; Gunning, William J.; Khoshnevisan, Moshen

    1994-11-01

    Optical beam scanners are critical components for airborne and space-based laser radar, on- machine-inspection systems, factory automation systems, and optical communication systems. We describe here a laser beam steering system based on dithering two complementary (positive and negative) microlens arrays. When the two microlens arrays are translated relative to one another in the plane parallel to their surfaces, the transmitted light beam is scanned in two directions. We have demonstrated scanning speeds up to 300 Hz with a pair of 6-mm- aperture microlens arrays designed for input from a HeNe laser. The output beam covers a discrete 16 X 16 spot scan pattern with about 3.6 mrad separation and only 400 (mu) rad of beam divergence, in close agreement with design predictions. This demo system is relatively compact; less than 2 in. on a side. We also describe several near-term applications, some critical design trade-offs, and important fabrication and design issues.

  11. Auditory intensity processing: Effect of MRI background noise.

    PubMed

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise.

  12. MRI compatibility of robot actuation techniques--a comparative study.

    PubMed

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  13. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  14. Multichannel compressive sensing MRI using noiselet encoding.

    PubMed

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  15. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  16. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  17. High voltage battery cell scanner development

    NASA Technical Reports Server (NTRS)

    Lepisto, J. W.; Decker, D. K.; Graves, J.

    1983-01-01

    Battery cell voltage scanners have been previously used in low voltage spacecraft applications. In connection with future missions involving an employment of high-power high voltage power subsystems and/or autonomous power subsystem management for unattended operation, it will be necessary to utilize battery cell voltage scanners to provide battery cell voltage information for early detection of impending battery cell degradation/failures. In preparation for such missions, a novel battery cell voltage scanner design has been developed. The novel design makes use of low voltage circuit modules which can be applied to high voltage batteries in a building block fashion. A description is presented of the design concept and test results of the high voltage battery cell scanner, and its operation with an autonomously managed power subsystem is discussed.

  18. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  19. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  20. Low-field MRI can be more sensitive than high-field MRI

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  1. Surgical planning and Neurologic Outcome after anterior approach to remove a disc herniation at the C7-T1 Level in 19 patients.

    PubMed

    Falavigna, Asdrubal; Righesso, Orlando; Betemps, Alejandro; de Los Rios, Pablo Fernando Vela; Guimarães, Rangel; Ziegler, Marcus; de Souza, Olivia Egger; da Silva, Pedro Guarise; Riew, Daniel K

    2013-11-18

    Study Design. Retrospective cohort study.Objective. The purpose of this study was to report the neurological presentation, outcome and surgical planning in a series of patients with a symptomatic single level C7-T1 disc herniation who underwent anterior surgical discectomy and fusion.Summary of Background Data. Disc herniations at C7-T1 are uncommon and there are few large series in the literature describing anterior treatment of such herniations.Methods. We performed a retrospective study of patients who underwent surgery for a C7-T1 disc herniation and reviewed the medical records, operative reports, and imaging studies. The surgeons' view line was drawn and its relation to the manubrium and the great vessels was determined on T1 sagittal magnetic resonance imaging (MRI). The location of the herniated disc in the spinal canal was determined using a T2 axial MRI and classified as central, foraminal and central/foraminal. Loss of muscle strength was evaluated preoperatively and at the last follow-up according to the classification of the Medical Research Council (MRC). The disc space was approached anteriorly by a standard cervical supramanubrial Smith-Robinson approach.Results. We identified 19 patients who had undergone C7-T1 discectomy and fusion. The mean age of the sample was 54.26 (±8.65) years. There was a higher proportion of male patients (57.9%, 11/19). The clinical presentation was predominantly motor deficit in 15/19 cases (78.9%) in intrinsic hand muscles, and usually improved after surgery. The mean follow-up period was 27.05 (± 15.10) months. All the patients underwent an anterior cervical supramanubrial approach with microdiscectomy and fusion. Anterior cervical plate fixation was used in 9/19 cases (47.3%). In the rest of the cases, a stand-alone intervertebral device was placed.Conclusion. An anterior cervical supramanubrial approach was easily accomplished in all patients. Motor deficit was the most common surgical indication.

  2. Measuring CT scanner variability of radiomics features

    PubMed Central

    Mackin, Dennis; Fave, Xenia; Zhang, Lifei; Fried, David; Yang, Jinzhong; Taylor, Brian; Rodriguez-Rivera, Edgardo; Dodge, Cristina; Jones, A. Kyle; Court, Laurence

    2015-01-01

    Objectives The purpose of this study was to determine the significance of inter-scanner variability in CT image radiomics studies. Materials and Methods We compared the radiomics features calculated for non-small cell lung cancer (NSCLC) tumors from 20 patients with those calculated for 17 scans of a specially designed radiomics phantom. The phantom comprised 10 cartridges, each filled with different materials to produce a wide range of radiomics feature values. The scans were acquired using General Electric, Philips, Siemens, and Toshiba scanners from four medical centers using their routine thoracic imaging protocol. The radiomics feature studied included the mean and standard deviations of the CT numbers as well as textures derived from the neighborhood gray-tone difference matrix. To quantify the significance of the inter-scanner variability, we introduced the metric feature noise. To look for patterns in the scans, we performed hierarchical clustering for each cartridge. Results The mean CT numbers for the 17 CT scans of the phantom cartridges spanned from -864 to 652 Hounsfield units compared with a span of -186 to 35 Hounsfield units for the CT scans of the NSCLC tumors, showing that the phantom’s dynamic range includes that of the tumors. The inter-scanner variability of the feature values depended on both the cartridge material and the feature, and the variability was large relative to the inter-patient variability in the NSCLC tumors for some features. The feature inter-scanner noise was greatest for busyness and least for texture strength. Hierarchical clustering produced different clusters of the phantom scans for each cartridge, although there was some consistent clustering by scanner manufacturer. Conclusions The variability in the values of radiomics features calculated on CT images from different CT scanners can be comparable to the variability in these features found in CT images of NSCLC tumors. These inter-scanner differences should be

  3. Sodium Magnetic Resonance Imaging of Ankle Joint in Cadaver Specimens, Volunteers, and Patients After Different Cartilage Repair Techniques at 7 T

    PubMed Central

    Zbýň, Štefan; Brix, Martin O.; Juras, Vladimir; Domayer, Stephan E.; Walzer, Sonja M.; Mlynarik, Vladimir; Apprich, Sebastian; Buckenmaier, Kai; Windhager, Reinhard; Trattnig, Siegfried

    2015-01-01

    Objectives The goal of cartilage repair techniques such as microfracture (MFX) or matrix-associated autologous chondrocyte transplantation (MACT) is to produce repair tissue (RT) with sufficient glycosaminoglycan (GAG) content. Sodium magnetic resonance imaging (MRI) offers a direct and noninvasive evaluation of the GAG content in native cartilage and RT. In the femoral cartilage, this method was able to distinguish between RTs produced by MFX and MACT having different GAG contents. However, it needs to be clarified whether sodium MRI can be useful for evaluating RT in thin ankle cartilage. Thus, the aims of this 7-T study were (1) to validate our sodium MRI protocol in cadaver ankle samples, (2) to evaluate the sodium corrected signal intensities (cSI) in cartilage of volunteers, (3) and to compare sodium values in RT between patients after MFX and MACT treatment. Materials and Methods Five human cadaver ankle samples as well as ankles of 9 asymptomatic volunteers, 6 MFX patients and 6 MACT patients were measured in this 7-T study. Sodium values from the ankle samples were compared with histochemically evaluated GAG content. In the volunteers, sodium cSI values were calculated in the cartilages of ankle and subtalar joint. In the patients, sodium cSI in RT and reference cartilage were measured, morphological appearance of RT was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system, and clinical outcome before and after surgery was assessed using the American Orthopaedic Foot and Ankle Society score and Modified Cincinnati Knee Scale. All regions of interest were defined on morphological images and subsequently transferred to the corresponding sodium images. Analysis of variance, t tests, and Pearson correlation coefficients were evaluated. Results In the patients, significantly lower sodium cSI values were found in RT than in reference cartilage for the MFX (P = 0.007) and MACT patients (P = 0.008). Sodium cSI and

  4. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  5. Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies.

    PubMed

    Glover, Gary H; Mueller, Bryon A; Turner, Jessica A; van Erp, Theo G M; Liu, Thomas T; Greve, Douglas N; Voyvodic, James T; Rasmussen, Jerod; Brown, Gregory G; Keator, David B; Calhoun, Vince D; Lee, Hyo Jong; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Gadde, Syam; Preda, Adrian; Lim, Kelvin O; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2012-07-01

    This report provides practical recommendations for the design and execution of multicenter functional MRI (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The study was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multisite aspects include: (i) establishing and verifying scan parameters including scanner types and magnetic fields, (ii) establishing and monitoring of a scanner quality program, (iii) developing task paradigms and scan session documentation, (iv) establishing clinical and scanner training to ensure consistency over time, (v) developing means for uploading, storing, and monitoring of imaging and other data, (vi) the use of a traveling fMRI expert, and (vii) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery.

  6. High resolution nuclear magnetic resonance imaging of pig knees at 4.7 T.

    PubMed

    Robinson, E M; Mackenzie, I S; Freemont, A; Jasani, M K

    1988-01-01

    We present images of the pig knee joint which illustrate the resolution that is easily obtainable in high field (4.7 T) NMR imaging. We also describe a variant of the birdcage resonator which utilizes a novel tuning mechanism of simple construction.

  7. Portable MRI

    SciTech Connect

    Espy, Michelle A.

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  8. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  9. MRI Safety during Pregnancy

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  10. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  11. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  12. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  13. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  14. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  15. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  16. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  17. The PRESTO technique for fMRI

    PubMed Central

    van Gelderen, P.; Duyn, J.H.; Ramsey, N.F.; Liu, G.; Moonen, C.T.W.

    2012-01-01

    In the early days of BOLD fMRI, the acquisition of T2* weighted data was greatly facilitated by rapid scan techniques such as EPI. The latter, however, was only available on a few MRI systems that were equipped with specialized hardware that allowed rapid switching of the imaging gradients. For this reason, soon after the invention of fMRI, the scan technique PRESTO was developed to make rapid T2* weighted scanning available on standard clinical scanning. This method combined echo shifting, which allows for echo times longer than the sequence repetition time, with acquisition of multiple k-space lines per excitation. These two concepts were combined in order to achieve a method fast enough for fMRI, while maintaining a sufficiently long echo time for optimal contrast. PRESTO has been primarily used for 3D scanning, which minimized the contribution of large vessels due to inflow effects. Although PRESTO is still being used today, its appeal has lessened somewhat due to increased gradient performance of modern MRI scanners. Compared to 2D EPI, PRESTO may have somewhat reduced temporal stability, which is a disadvantage for fMRI that may not outweigh the advantage of reduced inflow effects provided by 3D scanning. In this overview, the history of the development of the PRESTO is presented, followed by a qualitative comparison with EPI. PMID:22245350

  18. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  19. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  20. MRI-Safe Robot for Endorectal Prostate Biopsy

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Srimathveeravalli, Govindarajan; Sebrecht, Peter; Petrisor, Doru; Coleman, Jonathan; Solomon, Stephen B.; Hricak, Hedvig

    2014-01-01

    This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. The paper describes MRI-Safe requirements, presents the kinematic architecture, design and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple 3 degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal to noise ratio (SNR) change. Robot’s accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro and animal tests are 0.37mm, 1.10mm, 2.09mm, and 2.58mm respectively. These values are acceptable for clinical use. PMID:25378897

  1. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  2. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    PubMed Central

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  3. Management of a sandbag accident in an MRI unit.

    PubMed

    Lee, Chee Hwee; Lin, Ming-Fang; Chan, Wing P

    2015-11-01

    Our aim is to report the cause and management of a ferromagnetic sandbag accident that occurred when an unconscious patient was sent for brain MRI. A 2-kg sandbag had been placed in the vicinity of his right groin to aid hemostasis after a femoral venous puncture for thrombocytopenia. His clothing and blanket had not been examined thoroughly before he was moved to the scanner and the sandbag went unnoticed. Its attraction to the scanner and adherence to the scanner rim resulted in a minor abrasion and bruise on the patient's face. We decided to manually remove some of the pellets from the sandbag after cutting the vinyl bag at one corner with a nonferromagnetic screwdriver. Piece-meal removal of about two-thirds of the pellets facilitated removal of the remaining pellets and the sandbag as a whole. The word "sandbag" is misleading and led to a lack of communication between the clinical team and the MRI staff and failure by the MRI staff to recognize a sandbag as a ferromagnetic object. Careful manual removal of small amounts of pellets can be used to avoid more time- and labor-intensive strategies to deal with a sandbag accident (e.g., magnet quench or ramp-down). Installation of a ferromagnetic material detector to screen patients before entering the scanner room is recommended.

  4. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  5. A flexible and wearable terahertz scanner

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  6. Scanner identification with extension to forgery detection

    NASA Astrophysics Data System (ADS)

    Khanna, Nitin; Chiu, George T. C.; Allebach, Jan P.; Delp, Edward J.

    2008-02-01

    Digital images can be obtained through a variety of sources including digital cameras and scanners. With rapidly increasing functionality and ease of use of image editing software, determining authenticity and identifying forged regions, if any, is becoming crucial for many applications. This paper presents methods for authenticating and identifying forged regions in images that have been acquired using flatbed scanners. The methods are based on using statistical features of imaging sensor pattern noise as a fingerprint for the scanner. An anisotropic local polynomial estimator is used for obtaining the noise patterns. A SVM classifier is trained for using statistical features of pattern noise for classifying smaller blocks of an image. This feature vector based approach is shown to identify the forged regions with high accuracy.

  7. The design of a double-tuned two-port surface resonator and its application to in vivo Hydrogen- and Sodium-MRI

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Högler, Miroslav; Molkenthin, Ute; Junge, Sven; Gallagher, Lindsay; Mhairi Macrae, I.; Fagan, Andrew J.

    2012-04-01

    The design and construction of a two-port surface transceiver resonator for both 1H- and 23Na-MRI in the rodent brain at 7 T is described. Double-tuned resonators are required for accurately co-registering multi-nuclei data sets, especially when the time courses of 1H and 23Na signals are of interest as, for instance, when investigating the pathological progression of ischaemic stroke tissue in vivo. In the current study, a single-element two-port surface resonator was developed wherein both frequency components were measured with the same detector element but with each frequency signal routed along different output channels. This was achieved by using the null spot technique, allowing for optimal variable tuning and matching of each channel in situ within the MRI scanner. The 23Na signal to noise ratio, measured in the ventricles of the rat brain, was increased by a factor of four compared to recent state-of-the-art rat brain studies reported in the literature. The resonator's performance was demonstrated in an in vivo rodent stroke model, where regional variations in 1H apparent diffusion coefficient maps and the 23Na signal were recorded in an interleaved fashion as a function of time in the acute phase of the stroke without having to exchange, re-adjust, or re-connect resonators between scans. Using the practical construction steps described in this paper, this coil design can be easily adapted for MRI of other X-nuclei, such as 17O, 13C, 39K, and 43Ca at various field strengths.

  8. Two-Point Magnitude MRI for Rapid Mapping of Brown Adipose Tissue and Its Application to the R6/2 Mouse Model of Huntington Disease

    PubMed Central

    Müller, Hans-Peter; Bornstedt, Axel; Ludolph, Albert C.; Landwehrmeyer, G. Bernhard; Rottbauer, Wolfgang; Kassubek, Jan; Rasche, Volker

    2014-01-01

    The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes. PMID:25144457

  9. Women are more strongly affected by dizziness in static magnetic fields of magnetic resonance imaging scanners.

    PubMed

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Reinhard, Iris; Gilles, Maria; Paslakis, Georgios; Rauschenberg, Jaane; Gröbner, Jens; Semmler, Wolfhard; Deuschle, Michael; Meyer-Lindenberg, Andreas; Flor, Herta; Nees, Frauke

    2014-10-01

    Increasing field strengths in MRI necessitate the examination of potential side effects. Previously reported results have been contradictory, possibly caused by imbalanced samples. We aimed to examine whether special groups of people are more prone to develop side effects that might have led to contradictory results in previous studies. We examined the occurrence of sensory side effects in static magnetic fields of MRI scanners of 1.5, 3, and 7 T and a mock scanner in 41 healthy participants. The contribution of field strength, sex, age, and attention to bodily processes, and stress hormone levels to the sensation of dizziness was examined in separate univariate analyses and in a joint analysis that included all variables. Field strength and sex were significant factors in the joint analysis (P=0.001), with women being more strongly affected than men by dizziness in higher static magnetic fields. This effect was not mediated by the other variables such as attention to bodily symptoms or stress hormones. Further research needs to elucidate the underlying factors of increased dizziness in women in static magnetic fields in MRI. We hypothesize that imbalanced samples of earlier studies might be one reason for previous contradictory results on the side effects of static magnetic fields.

  10. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  11. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  12. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  13. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  14. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  15. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  16. Battlefield MRI

    DOE PAGES

    Espy, Michelle

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  17. Sodium MRI.

    PubMed

    Ouwerkerk, Ronald

    2011-01-01

    Sodium ((23)Na) imaging has a place somewhere between (1)H-MRI and MR spectroscopy (MRS). Like MRS it potentially provides information on metabolic processes, but only one single resonance of ionic (23)Na is observed. Therefore pulse sequences do not need to code for a chemical shift dimension, allowing (23)Na images to be obtained at high resolutions as compared to MRS. In this chapter the biological significance of sodium in the brain will be discussed, as well as methods for observing it with (23)Na-MRI. Many vital cellular processes and interactions in excitable tissues depend on the maintenance of a low intracellular and high extracellular sodium concentration. Healthy cells maintain this concentration gradient at the cost of energy. Leaky cell membranes or an impaired energy metabolism immediately leads to an increase in cytosolic total tissue sodium. This makes sodium a biomarker for ischemia, cancer, excessive tissue activation, or tissue damage as might be caused by ablation therapy. Special techniques allow quantification of tissue sodium for the monitoring of disease or therapy in longitudinal studies or preferential observation of the intracellular component of the tissue sodium. New methods and high-field magnet technology provide new opportunities for (23)Na-MRI in clinical and biomedical research.

  18. Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet.

    PubMed

    de Vocht, F; Stevens, T; Glover, P; Sunderland, A; Gowland, P; Kromhout, H

    2007-05-01

    The study investigates the impact of exposure to the stray magnetic field of a whole-body 7 T MRI scanner on neurobehavioral performance and cognition. Twenty seven volunteers completed four sessions, which exposed them to approximately 1600 mT (twice), 800 mT and negligible static field exposure. The order of exposure was assigned at random and was masked by placing volunteers in a tent to hide their position relative to the magnet bore. Volunteers completed a test battery assessing auditory working memory, eye-hand co-ordination, and visual perception. During three sessions the volunteers were instructed to complete a series of standardized head movements to generate additional time-varying fields ( approximately 300 and approximately 150 mT.s(-1) r.m.s.). In one session, volunteers were instructed to keep their heads as stable as possible. Performance on a visual tracking task was negatively influenced (P<.01) by 1.3% per 100 mT exposure. Furthermore, there was a trend for performance on two cognitive-motor tests to be decreased (P<.10). No effects were observed on working memory. Taken together with results of earlier studies, these results suggest that there are effects on visual perception and hand-eye co-ordination, but these are weak and variable between studies. The magnitude of these effects may depend on the magnitude of time-varying fields and not so much on the static field. While this study did not include exposure above 1.6 T, it suggests that use of strong magnetic fields is not a significant confounder in fMRI studies of cognitive function. Future work should further assess whether ultra-high field may impair performance of employees working in the vicinity of these magnets.

  19. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  20. Techniques for Fast Stereoscopic MRI

    PubMed Central

    Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    Stereoscopic MRI can impart 3D perception with only two image acquisitions. This economy over standard multiplanar 3D volume renderings allows faster frame rates, which are needed for real-time imaging applications. Real-time 3D perception may enhance the appreciation of complex anatomical structures, and may improve hand-eye coordination while manipulating a medical device during an image-guided interventional procedure. To this goal, a system is being developed to acquire and display stereoscopic MR images in real-time. A clinically used, fast gradient-recalled echo-train sequence has been modified to produce stereo image pairs. Features have been added for depth cueing, view sharing, and bulk signal suppression. A workstation was attached to a clinical MR scanner for fast data extraction, image reconstruction and stereoscopic image display. PMID:11477636

  1. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Market discount fraction reported with other financial information with respect to REMICs and collateralized debt obligations (temporary). 1.6049-7T... TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6049-7T Market discount...

  2. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  3. Bottled liquid explosive scanner by near infrared

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo

    2016-05-01

    A bottled liquid explosive scanner has been developed using near infrared technology for glass or PET bottles and ultrasound technology for metal cans. It has database of near infrared absorbance spectra and sound velocities of various liquids. Scanned liquids can be identified by using this database. This device has been certified by ECAC and installed at Japanese international airport.

  4. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  5. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  6. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  7. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2016-07-12

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  8. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  9. Rail profile control using laser triangulation scanners

    NASA Astrophysics Data System (ADS)

    Boronahin, Ð. ńlexandr M.; Larionov, Daniil Yu.; Podgornaya, Liudmila N.; Shalymov, Roman V.; Filatov, Yuri V.; Bokhman, Evgueny D.

    2016-11-01

    Rail track geometric parameters measurement requires knowledge of left and right rail head location in each section. First of all displacement in transverse plane of rail head point located at a distance of 14 mm below the running surface, must be controlled [1]. It is carried out by detecting of each rail profile using triangulation laser scanners. Optical image recognition is carried out successfully in the laboratory, approaches used for this purpose are widely known. However, laser scanners operation has several features on railways leading to necessity of traditional approaches adaptation for solving these particular problems. The most significant problem is images noisiness due to the solar flashes and the effect of "Moon path" on the smooth rail surface. Using of optical filters gives inadequate result, because scanner laser diodes radiation frequency varies with temperature changes that forbid the use of narrow-band filters. Consideration of these features requires additional constructive and algorithmic solutions, including involvement of information from other sensors of the system. The specific usage of optical scanners for rail profiles control is the subject of the paper.

  10. Dedicated PET scanners for breast imaging.

    PubMed

    Freifelder, R; Karp, J S

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  11. Dedicated PET scanners for breast imaging

    NASA Astrophysics Data System (ADS)

    Freifelder, Richard; Karp, Joel S.

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  12. Integration of Diagnostic and Interventional MRI for the Study of Persistent Prostate Cancer after External Beam Radiotherapy

    DTIC Science & Technology

    2009-10-01

    Interventional MRI for the Study of Persistent Prostate Cancer after External Beam Radiotherapy PRINCIPAL INVESTIGATOR: Cynthia Ménard, M.D...2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Integration of Diagnostic and Interventional MRI for the Study of Persistent Prostate Cancer after...clinical testing of a novel technique for magnetic resonance imaging ( MRI ) guided prostate biopsy in a 1.5T horizontal bore scanner using a dedicated

  13. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  15. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 13. SITE BUILDING 002 SCANNER BUILDING "B" FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SITE BUILDING 002 - SCANNER BUILDING - "B" FACE LOADING DOCK AND PERSONNEL ACCESS RAMP TO FALLOUT SHELTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 28. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SITE BUILDING 002 - SCANNER BUILDING - AT INTERIOR OF LEVEL 5, FACE A - SHOWS ANTENNA RECEIVERS, EMITTERS/RECEIVERS, IN GENERAL ARRANGEMENT. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 22. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL ROOM. RECEIVER EQUIPMENT ON RIGHT WITH RF RADIATION MONITOR CABINET. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  1. Replication of Functional MRI Detection of Deception

    PubMed Central

    Kozel, F. Andrew; Laken, Steven J.; Johnson, Kevin A.; Boren, Bryant; Mapes, Kimberly S.; Morgan, Paul S.; George, Mark S.

    2009-01-01

    Background Several studies support the use of fMRI for detecting deception. There have been, however, no reported replications on different scanners or at different locations. In a previous study, deception was accurately detected in at least 90% of the participants in two independent cohorts. This study attempted to replicate those findings using a different scanner and location. Methods Healthy participants 18–50 years of age were recruited from the local community. After providing written informed consent, participants were screened to ensure that they were healthy, not taking any medications, and safe to have an MRI. For the testing paradigm, subjects chose one of two objects (ring or watch) to “steal” and placed it in their locker. Participants were then scanned while being visually presented with a series of questions. Functional MRI analysis was performed in the same manner as described in Kozel et al. 2005. A Chi-Squared test was used to test for a significant difference between the results in the previous study and in this replication study. Results Thirty subjects (20 women, mean age 29.0±6.5 years) were scanned with one subject being noncompliant with the protocol. Twenty-five of twenty-nine (86%) participants were correctly identified when being deceptive. There was no statistical difference between the accuracy rate obtained in this study (25/29) versus the previous study (28/31) (Chi-Squared, χ2=0.246, p=0.6197). Conclusions Our methodology for detecting deception was successfully replicated at a different site suggesting that this methodology is robust and independent of both scanner and location. PMID:19844599

  2. Biomedical Applications of Sodium MRI In Vivo

    PubMed Central

    Madelin, Guillaume; Regatte, Ravinder R.

    2013-01-01

    In this article, we present an up-to-date overview of the potential biomedical applications of sodium MRI in vivo. Sodium MRI is a subject of increasing interest in translational imaging research as it can give some direct and quantitative biochemical information on the tissue viability, cell integrity and function, and therefore not only help the diagnosis but also the prognosis of diseases and treatment outcomes. It has already been applied in vivo in most of human tissues, such as brain for stroke or tumor detection and therapeutic response, in breast cancer, in articular cartilage, in muscle and in kidney, and it was shown in some studies that it could provide very useful new information not available through standard proton MRI. However, this technique is still very challenging due to the low detectable sodium signal in biological tissue with MRI and hardware/software limitations of the clinical scanners. The article is divided in three parts: (1) the role of sodium in biological tissues, (2) a short review on sodium magnetic resonance, and (3) a review of some studies on sodium MRI on different organs/diseases to date. PMID:23722972

  3. Cervical cyst of the ligamentum flavum and C7-T1 subluxation: case report.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Gorgoglione, Leonardo; Bisceglia, Michele; D'Angelo, Vincenzo

    2005-10-01

    A patient with progressive gait disturbance resulting from a cyst of the cervical ligamentum flavum associated with C7-T1 listhesis is reported. Surgical removal of the cyst improved the patient's myelopathy. Intraspinal degenerative cysts are preferentially located in the lumbar region:unusual is the cervical localization. Differential diagnosis includes ligamentum flavum cyst, synovial and ganglion cysts. Association between degenerative intraspinal cysts and listhesis is discussed. To our knowledge, this is the first case of cyst of the ligamentum flavum associated with cervical subluxation.

  4. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  5. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  6. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  7. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  8. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  10. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  12. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  14. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  15. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  16. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  17. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  18. Magnetic resonance imaging of the initial active stage of equine laminitis at 4.7 T.

    PubMed

    Arble, Jason B; Mattoon, John S; Drost, Wm Tod; Weisbrode, Steven E; Wassenaar, Peter A; Pan, Xueliang; Hunt, Robert J; Belknap, James K

    2009-01-01

    Equine laminitis is a severely debilitating disease. There is a poor understanding of the underlying pathophysiology, and traditional imaging modalities have limited diagnostic capacity. High field strength magnetic resonance (MR) imaging allows direct visualization of the laminae, which other modalities do not. This would prove useful both in assessment of clinical patients and in further investigation into the pathophysiology of the disease. The objective of this study was to characterize the anatomic changes within the equine foot associated with the initial active stage of laminitis. Images obtained using a 4.7 T magnet were compared with digital radiographs using histologic diagnosis as the reference standard. Objective measurements and subjective evaluation for both modalities were evaluated for the ability to predict the histologic diagnosis in horses with clinical signs of laminitis as well as in clinically normal horses and horses that were in a population at risk for developing laminitis. Signal intensity and architectural changes within the corium and laminae were readily seen at 4.7 T, and there was a strong association with the histologic diagnosis of active laminitis. Measurements obtained with MR imaging were more sensitive and specific predictors of laminitis than those obtained radiographically. Subjective evaluation with MR imaging was more sensitive than with radiography and should become more specific with greater understanding of normal anatomy.

  19. The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models

    PubMed Central

    Lee, Chan Wha; Choi, Sun Il; Lee, Sang Jin; Oh, Young Taek; Park, Gunwoo; Park, Na Yeon; Yoon, Kyoung-Ah; Kim, Sunshin; Suh, Jin-Suck

    2017-01-01

    Purpose We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models. Materials and Methods Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence. Results Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor. Conclusion Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety. PMID:27873495

  20. Sodium MRI in human heart: a review.

    PubMed

    Bottomley, Paul A

    2016-02-01

    This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.

  1. A compact vertical scanner for atomic force microscopes.

    PubMed

    Park, Jae Hong; Shim, Jaesool; Lee, Dong-Yeon

    2010-01-01

    A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner's performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated.

  2. Physics of MRI: a primer.

    PubMed

    Plewes, Donald B; Kucharczyk, Walter

    2012-05-01

    This article is based on an introductory lecture given for the past many years during the "MR Physics and Techniques for Clinicians" course at the Annual Meeting of the ISMRM. This introduction is not intended to be a comprehensive overview of the field, as the subject of magnetic resonance imaging (MRI) physics is large and complex. Rather, it is intended to lay a conceptual foundation by which magnetic resonance image formation can be understood from an intuitive perspective. The presentation is nonmathematical, relying on simple models that take the reader progressively from the basic spin physics of nuclei, through descriptions of how the magnetic resonance signal is generated and detected in an MRI scanner, the foundations of nuclear magnetic resonance (NMR) relaxation, and a discussion of the Fourier transform and its relation to MR image formation. The article continues with a discussion of how magnetic field gradients are used to facilitate spatial encoding and concludes with a development of basic pulse sequences and the factors defining image contrast.

  3. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications.

  4. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  5. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  6. Design of a Second Generation Firewire Based Data Acquisition System for Small Animal PET Scanners.

    PubMed

    Lewellen, T K; Miyaoka, R S; Macdonald, L R; Haselman, M; Dewitt, D; Hunter, William; Hauck, S

    2008-10-19

    The University of Washington developed a Firewire based data acquisition system for the MiCES small animal PET scanner. Development work has continued on new imaging scanners that require more data channels and need to be able to operate within a MRI imaging system. To support these scanners, we have designed a new version of our data acquisition system that leverages the capabilities of modern field programmable gate arrays (FPGA). The new design preserves the basic approach of the original system, but puts almost all functions into the FPGA, including the Firewire elements, the embedded processor, and pulse timing and pulse integration. The design has been extended to support implementation of the position estimation and DOl algorithms developed for the cMiCE detector module. The design is centered around an acquisition node board (ANB) that includes 65 ADC channels, Firewire 1394b support, the FPGA, a serial command bus and signal lines to support a rough coincidence window implementation to reject singles events from being sent on the Firewire bus. Adapter boards convert detector signals into differential paired signals to connect to the ANB.

  7. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  8. Data collection and analysis strategies for phMRI.

    PubMed

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  9. EEG/functional MRI in epilepsy: The Queen Square Experience.

    PubMed

    Hamandi, Khalid; Salek-Haddadi, Afraim; Fish, David R; Lemieux, Louis

    2004-01-01

    The recording of EEG during functional MRI scanning (EEG/fMRI) has opened up new dimensions in brain research. The simultaneous recording of EEG activity and its temparospatial haemodynamic correlates is a powerful tool in the non-invasive mapping of normal and pathological brain function. The technological constraints imposed by having a conductor (the EEG) within the magnetic environment of the MRI scanner have been sufficiently overcome for high quality EEG recording during MRI. The initial applications of EEG/fMRI were in the study of epileptiform discharges in epilepsy. This has been rapidly followed by studies of normal EEG rhythms and evoked response in healthy subjects. The ability to map brain areas involved in the generation of epileptiform discharges recorded on the surface EEG has been shown using EEG/fMRI in patients with epilepsy. This has potential clinical applications in providing additional localizing information in the pre-surgical workup of epilepsy patients and in gaining a greater understanding of the neurobiology of interictal epileptiform discharges and epileptic seizures. In this review we address the issues in recording EEG during fMRI and review the application of EEG/fMRI in the study of patients with epilepsy at our centre.

  10. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  11. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  12. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.

    PubMed

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R; Su, Jason; Rutt, Brian K

    2014-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classic Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility of

  13. Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T

    PubMed Central

    Meinert, Christina; Brandt, Ulrike; Heine, Viktoria; Beyert, Jessica; Schmidl, Sina; Wübbeler, Jan Hendrik; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2017-01-01

    2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 μmol mg-1 min-1) and is controlled by LysR (MIM_c37410

  14. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T

    PubMed Central

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R.; Su, Jason; Rutt, Brian K.

    2013-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classical Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility

  15. Ratiometric MRI sensors based on core-shell nanoparticles for quantitative pH imaging.

    PubMed

    Okada, Satoshi; Mizukami, Shin; Sakata, Takao; Matsumura, Yutaka; Yoshioka, Yoshichika; Kikuchi, Kazuya

    2014-05-21

    Ratiometric MRI sensors consist of paramagnetic cores and pH-sensitive polymer shells. The core-shell nanostructure enables the coexistence of two incompatible NMR relaxation properties in one particle. The sensors show pH sensitivity in transverse relaxivity (r2 ), but not in longitudinal relaxivity (r1 ). Quantitative pH imaging is achieved by measuring the r2 /r1 value with a clinical 3 T MRI scanner.

  16. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T.

    PubMed

    Massire, Aurélien; Cloos, Martijn A; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (≥ 7T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions.

  17. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  18. A radiofrequency coil configuration for imaging the human vertebral column at 7 T

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Teeuwisse, W.; Reijnierse, M.; Collins, C. M.; Smith, N. B.; Webb, A. G.

    2011-02-01

    We describe the design and testing of a quadrature transmit, eight-channel receive array RF coil configuration for the acquisition of images of the entire human spinal column at 7 T. Imaging parameters were selected to enable data acquisition in a clinically relevant scan time. Large field-of-view (FOV) scanning enabled sagittal imaging of the spine in two or three-stations, depending upon the height of the volunteer, with a total scan time of between 10 and 15 min. A total of 10 volunteers have been scanned, with results presented for the three subjects spanning the range of heights and weights, namely one female (1.6 m, 50 kg), one average male (1.8 m, 70 kg), and one large male (1.9 m, 100 kg).

  19. Out-and-in spiral spectroscopic imaging in rat brain at 7 T.

    PubMed

    Hiba, Bassem; Faure, Bérengère; Lamalle, Laurent; Décorps, Michel; Ziegler, Anne

    2003-12-01

    With standard spectroscopic imaging, high spatial resolution is achieved at the price of a large number of phase-encoding steps, leading to long acquisition times. Fast spatial encoding methods reduce the minimum total acquisition time. In this article, a k-space scanning scheme using a continuous series of growing and shrinking, or "out-and-in," spiral trajectories is implemented and the feasibility of spiral spectroscopic imaging for animal models at high B(0) field is demonstrated. This method was applied to rat brain at 7 T. With a voxel size of about 8.7 microl (as calculated from the point-spread function), a 30 x 30 matrix, and a spectral bandwidth of 11 kHz, the minimum scan time was 9 min 20 sec for a signal-to-noise ratio of 7.1 measured on the N-acetylaspartate peak.

  20. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  1. Cortical lamina-dependent blood volume changes in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E

    2015-02-15

    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity

  2. Design and control of a nanoprecision XYΘ scanner

    NASA Astrophysics Data System (ADS)

    Choi, Young-Man; Kim, Jung Jae; Kim, Jinwoo; Gweon, Dae-Gab

    2008-04-01

    This paper describes the design and control of a nanoprecision XYΘ scanner consisting of voice coil motors and air bearing guides. The proposed scanner can be installed on a conventional XY stage with long strokes to improve the positioning accuracy and settling performance. Major design considerations in developing a high precision scanner are sensor accuracy, actuator properties, structural stability, guide friction, and thermal expansion. Considering these factors, the proposed scanner is made of invar, which has a small thermal expansion coefficient and good structural stiffness. Four voice coil motors drive the scanner, which is suspended by four air bearing pads, in the x, y, and θ directions. The scanner's position is measured by three laser interferometers which decouple the scanner from the conventional stage. The mirror blocks reflecting the laser beams are fixed using viscoelastic sheets, ensuring that the scanner has a well-damped structural mode. A time delay control algorithm is implemented on the real-time controller to control the scanner. The effectiveness of the proposed scanner is verified experimentally.

  3. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  4. In amnio MRI of mouse embryos.

    PubMed

    Roberts, Thomas A; Norris, Francesca C; Carnaghan, Helen; Savery, Dawn; Wells, Jack A; Siow, Bernard; Scambler, Peter J; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F

    2014-01-01

    Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.

  5. ‘Extra-operatve’ MRI (eoMRI) for Brain Tumor Surgery – Initial Results at a Single Institution

    PubMed Central

    Abd-El-Barr, Muhammad M.; Santos, Seth M.; Aglio, Linda S.; Young, Geoffrey S.; Mukundan, Srinivasan; Golby, Alexandra J.; Gormley, William B.; Dunn, Ian F.

    2015-01-01

    Background There is accumulating evidence that extent of resection (EOR) in intrinsic brain tumor surgery prolongs overall survival (OS) and progression-free survival (PFS). One of the strategies to increase EOR is the use of intraoperative MRI (ioMRI). However, considerable infrastructure investment is needed to establish and maintain a sophisticated ioMRI. We report the preliminary results of an extra-operative (eoMRI) protocol, with a focus on safety, feasibility and EOR in intrinsic brain tumor surgery. Methods Ten patients underwent an eoMRI protocol consisting of surgical resection in a conventional operating room followed by an immediate MRI in a clinical MRI scanner while the patient was still under anesthesia. If MRI suggested residual safely resectable tumor, the patient was returned to the operating room. Retrospective volumetric analysis was undertaken to investigate the percentage of tumor resected after first resection and if applicable, after further resection. Results 6 out of 10 (60%) patients were felt to require no further resection after eoMRI. The EOR in these patients was 97.8±1.8%. In the 4 patients who underwent further resection, the EOR during the original surgery was 88.5±9.5% (p =0.04). There was an average of 10.1 % more tumor removed between the first and second surgery. In 3/4 (75%) of patients who returned for further resection, gross total resection of was achieved. Conclusion An eoMRI protocol appears to be a safe and practical method to ensure maximum safe resections in patients with brain tumors and can be performed readily in all centers with MRI capability. PMID:25700968

  6. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  7. A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects

    ERIC Educational Resources Information Center

    Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene

    2012-01-01

    We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…

  8. Variable power combiner for RF mode shimming in 7-T MR imaging.

    PubMed

    Yazdanbakhsh, Pedram; Solbach, Klaus; Bitz, Andreas K

    2012-09-01

    This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level.

  9. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  10. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  11. A volume scanner for diffuse imaging

    NASA Astrophysics Data System (ADS)

    Vafa, Elham; Roberts, Nicolas; Sharafutdinova, Galiya; Holdsworth, John

    2016-11-01

    Non-invasive optical screening mammography has a significant barrier in the extreme scatter of human tissue at optical wavelengths. A volume scanner suited for high numerical aperture capture of scattered light from diffuse media has been designed, modelled using Trace Pro software and experimentally constructed. Modelling results indicate the presence of an embedded volume with different scatter properties from the bulk yields a measurable difference in the overall scatter pattern and intensity recorded. Work towards a full tomographic reconstruction from scattered light recorded on the two dimensional array detector is currently underway.

  12. A laser scanner for 35mm film

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1977-01-01

    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer.

  13. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  14. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  15. The Lick Observatory image-dissector scanner.

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wampler, E. J.

    1972-01-01

    A scanner that uses an image dissector to scan the output screen of an image tube has proven to be a sensitive and linear detector for faint astronomical spectra. The image-tube phosphor screen acts as a short-term storage element and allows the system to approach the performance of an ideal multichannel photon counter. Pulses resulting from individual photons, emitted from the output phosphor and detected by the image dissector, trigger an amplifier-discriminator and are counted in a 24-bit, 4096-word circulating memory. Aspects of system performance are discussed, giving attention to linearity, dynamic range, sensitivity, stability, and scattered light properties.

  16. Data Collection and Analysis Strategies for phMRI

    PubMed Central

    Mandeville, Joseph B.; Liu, Christina H.; Vanduffel, Wim; Marota, John J.A.; Jenkins, Bruce G.

    2014-01-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed “phMRI”. The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. PMID:24613447

  17. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging.

    PubMed

    Mainero, Caterina; Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Nielsen, A Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P

    2015-04-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤ 3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥ 4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients' normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10(-10) and P < 10(-7)), and mean

  18. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  20. The use of mobile 3D scanners in maxillofacial surgery.

    PubMed

    Peters, Florian; Möhlhenrich, Stephan Christian; Ayoub, Nassim; Goloborodko, Evgeny; Ghassemi, Alireza; Lethaus, Bernd; Hölzle, Frank; Modabber, Ali

    There are many possibilities for the use of three-dimensional (3D) scanners in maxillofacial surgery. This study aimed to investigate whether the bundling and syncing of two 3D scanners has advantages over single-scanner acquisition in terms of scan quality and the time required to scan an object. Therefore, the speed and precision of 3D data acquisition with one scanner versus two synced scanners was measured in 30 subjects. This was done by analyzing the results obtained by scanning test objects attached to the forehead and cheeks of the subjects. Statistical methods included the Student t test for paired samples. Single-scanner recording resulted in significantly lower mean error of measurement than synced recording with two scanners for length (P < 0.001), all frontal/lateral plane angles (P = 0.034, P < 0.001, P = 0.002, P = 0.003), and side/side plane angles (P = 0.014, P < 0.001, P = 0.015, P = 0.011) of the test object on the cheek. Likewise, the single-scanner method resulted in a significantly lowermean error of measurement than the two-scanner method for frontal/lower plane angles (P < 0.001), right/lower plane angles (P < 0.001), and left/lower plane angles (P = 0.002). Conversely, synced recording of data with two scanners resulted in a significant reduction of scanning time (P < 0.001). Compared to data acquisition with a single 3D scanner, the bundling of two 3D scanners resulted in faster scanning times but lower scan quality.

  1. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  2. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  3. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  4. SPIN-ECHO MRSI AT 7T WITH FREQUENCY MODULATED REFOCUSING PULSES

    PubMed Central

    Zhu, He; Soher, Brian J.; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B.

    2012-01-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high order shimming and determine optimum radiofrequency (RF) transmit level, respectively. One sequence (‘Hahn-MRSI’) used reduced flip angle (90°) refocusing pulses for lower RF power deposition, while the other sequence used adiabatic fast passage (AFP) refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In 4 normal subjects, AFP-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, TR, TE and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible. PMID:22692894

  5. Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.

    PubMed

    Zhu, He; Soher, Brian J; Ouwerkerk, Ronald; Schär, Michael; Barker, Peter B

    2013-05-01

    Two approaches to high-resolution SENSE-encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole-slice coverage are described. Both sequences use high-bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE-encoding to reduce scan time, and dual-band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high-order shimming and determine optimum radiofrequency transmit level, respectively. One sequence ("Hahn-MRSI") used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit-B1 level. In four normal subjects, adiabatic fast passage-MRSI showed a signal-to-noise ratio improvement of 3.2±0.5 compared to Hahn-MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE-acceleration factor. An interleaved two-slice Hahn-MRSI sequence is also demonstrated to be experimentally feasible.

  6. Refocused double-quantum editing for lactate detection at 7 T.

    PubMed

    Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2013-01-01

    Lactate is an important marker for anaerobic glucose metabolism, and it is therefore of particular interest in, for example, cerebral ischemia, skeletal muscle disorders, and in the monitoring of oncology treatments. However, the in vivo detection of lactate with magnetic resonance spectroscopy is complicated by the overlap of the low-intensity lactate methyl resonance with lipid signal. Therefore, double-quantum filters have been employed to dephase the overlapping lipid signal, as they allow for a very high lipid suppression efficiency. For reliable lactate detection in lipid-rich environment, very large crushing gradients have to be employed to dephase the lipid signal under the noise level. Double-quantum filters are generally associated with signal loss of the metabolite of interest. For lactate, half of the signal is lost by selecting either the double- or the zero-quantum coherences. Moreover, owing to incomplete refocusing, traditional double-quantum filters with very large crusher gradients exhibit additional loss of the already low-lactate signal. In this study, a refocused double-quantum filter is described, which does not suffer from this source of additional signal loss. Therefore, it becomes possible to detect lactate at lower concentrations, or in lipid-rich environments. Lactate measurements are shown in the human calf muscle at 7 T.

  7. NAAG Detection in the Human Brain at 7T by TE Optimization and Improved Wiener Filtering

    PubMed Central

    An, Li; Li, Shizhe; Wood, Emily T; Reich, Daniel S; Shen, Jun

    2014-01-01

    Purpose We report enhanced signal detection for measuring N-acetyl-aspartyl-glutamate (NAAG) in the human brain at 7T by TE-optimized point-resolved spectroscopy (PRESS) and improved Wiener filtering. Methods Using a highly efficient in-house developed numerical simulation program, a PRESS sequence with (TE1, TE2) = (26, 72) ms was found to maximize the NAAG signals relative to the overlapping Glu signals. A new Wiener filtering water reference deconvolution method was developed to reduce broadening and distortions of metabolite peaks caused by B0 inhomogeneity and eddy currents. Results Monte Carlo simulation results demonstrated that the new Wiener filtering method offered higher spectral resolution, reduced spectral artifacts, and higher accuracy in NAAG quantification compared to the original Wiener filtering method. In vivo spectra and point spread functions of signal distortion confirmed that the new Wiener filtering method lead to improved spectral resolution and reduced spectral artifacts. Conclusions TE-optimized PRESS in combination with a new Wiener filtering method made it possible to fully utilize both the NAAG singlet signal at 2.05 ppm and the NAAG multiplet signal at 2.18 ppm in the quantification of NAAG. A more accurate characterization of lineshape distortion for Wiener filtering needs B0 field maps and segmented anatomical images to exclude contribution from cerebral spinal fluid. PMID:24243344

  8. Neurometabolic abnormalities in schizophrenia and depression observed with magnetic resonance spectroscopy at 7 T

    PubMed Central

    Osuch, Elizabeth A.; Schaefer, Betsy; Rajakumar, Nagalingam; Neufeld, Richard W. J.; Théberge, Jean; Williamson, Peter C.

    2017-01-01

    Background Examining neurometabolic abnormalities in critical brain areas in schizophrenia and major depressive disorder (MDD) may help guide future pharmacological interventions including glutamate-modulating treatments. Aims To measure metabolite concentrations within the anterior cingulate cortex (ACC) and thalamus of people with schizophrenia and people with MDD. Methods Spectra were acquired from 16 volunteers with schizophrenia, 17 with MDD and 18 healthy controls using magnetic resonance spectroscopy on a 7 Tesla scanner. Results In the thalamus, there were lower glycine concentrations in the schizophrenia group relative to control (P=0.017) and MDD groups (P=0.012), and higher glutamine concentrations relative to healthy controls (P=0.009). In the thalamus and the ACC, the MDD group had lower myo-inositol concentrations than the control (P=0.014, P=0.009, respectively) and schizophrenia (P=0.004, P=0.002, respectively) groups. Conclusion These results support the glutamatergic theory of schizophrenia and indicate a potential glycine deficiency in the thalamus. In addition, reduced myo-inositol concentrations in MDD suggest its involvement in the disorder. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28243459

  9. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  10. An empirical study of scanner system parameters

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.; Biehl, L.; Simmons, W.

    1976-01-01

    The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.

  11. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  12. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.

  13. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  14. Sinus MRI scan

    MedlinePlus

    ... sinuses. The test is noninvasive. MRI uses powerful magnets and radio waves instead of radiation. Signals from ... in the eyes. Because the MRI contains a magnet, metal-containing objects such as pens, pocketknives, and ...

  15. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  16. MRI Safety during Pregnancy

    MedlinePlus

    ... 20 to 40 minutes. top of page Contrast material For some MRI exams, a contrast material called gadolinium will need to be injected into a vein in the arm. While contrast material sometimes improves the MRI images, during pregnancy the ...

  17. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  18. Iterative Method for Predistortion of MRI Gradient Waveforms

    PubMed Central

    Harkins, Kevin D.; Does, Mark D.; Grissom, William A.

    2014-01-01

    The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response. PMID:24801945

  19. Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus

    PubMed Central

    Plantinga, Birgit R.; Roebroeck, Alard; Kemper, Valentin G.; Uludağ, Kâmil; Melse, Maartje; Mai, Jürgen; Kuijf, Mark L.; Herrler, Andreas; Jahanshahi, Ali; ter Haar Romeny, Bart M.; Temel, Yasin

    2016-01-01

    Introduction: The subthalamic nucleus, substantia nigra, and globus pallidus, three nuclei of the human basal ganglia, play an important role in motor, associative, and limbic processing. The network of the basal ganglia is generally characterized by a direct, indirect, and hyperdirect pathway. This study aims to investigate the mesoscopic nature of these connections between the subthalamic nucleus, substantia nigra, and globus pallidus and their surrounding structures. Methods: A human post mortem brain specimen including the substantia nigra, subthalamic nucleus, and globus pallidus was scanned on a 7 T MRI scanner. High resolution diffusion weighted images were used to reconstruct the fibers intersecting the substantia nigra, subthalamic nucleus, and globus pallidus. The course and density of these tracks was analyzed. Results: Most of the commonly established projections of the subthalamic nucleus, substantia nigra, and globus pallidus were successfully reconstructed. However, some of the reconstructed fiber tracks such as the connections of the substantia nigra pars compacta to the other included nuclei and the connections with the anterior commissure have not been shown previously. In addition, the quantitative tractography approach showed a typical degree of connectivity previously not documented. An example is the relatively larger projections of the subthalamic nucleus to the substantia nigra pars reticulata when compared to the projections to the globus pallidus internus. Discussion: This study shows that ultra-high field post mortem tractography allows for detailed 3D reconstruction of the projections of deep brain structures in humans. Although the results should be interpreted carefully, the newly identified connections contribute to our understanding of the basal ganglia. PMID:27378864

  20. [Adaptative radiotherapy: The case for MRI-guided radiotherapy].

    PubMed

    Maingon, P

    2016-10-01

    The concept of image-guided radiotherapy benefits from the development of magnetic resonance imaging (MRI) associated with different capacities of tissue analyses such as spectroscopy or diffusion analysis. The production of devices allowing the repositioning of patients through MRI represents a strong added value without delivering any additional dose to the patient while the optimization of the adaptative strategies are facilitated by a better contrast of the soft tissues compared to the scanner. The advantages of MRI are well demonstrated for brain tumours, head and neck carcinomas, pelvic tumors, mediastinal malignancies, gastrointestinal tract diseases. Adaptative radiotherapy inaugurates a new area of radiotherapy with different modalities. Several technological solutions are provided or discussed allowing the patients to benefit from thses new technologies as soon as possible.

  1. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

    PubMed Central

    Xiao, YiZi; Zitella, Laura M.; Duchin, Yuval; Teplitzky, Benjamin A.; Kastl, Daniel; Adriany, Gregor; Yacoub, Essa; Harel, Noam; Johnson, Matthew D.

    2016-01-01

    Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS. PMID:27375422

  2. Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI

    PubMed Central

    Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.

    2015-01-01

    One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852

  3. Implementation of time-efficient adaptive sampling function design for improved undersampled MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeok; Kim, Hyeonjin

    2016-12-01

    To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.

  4. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    PubMed

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously.

  5. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner.

    PubMed

    Shah, N Jon

    2015-07-01

    The aim of this paper is twofold: firstly, to explore the potential of simultaneously acquiring multimodal MR-PET-EEG data in a human 9.4 T scanner to provide a platform for metabolic brain imaging. Secondly, to demonstrate that the three modalities are complementary, with MRI providing excellent structural and functional imaging, PET providing quantitative molecular imaging, and EEG providing superior temporal resolution. A 9.4 T MRI scanner equipped with a PET insert and a commercially available EEG device was used to acquire in vivo proton-based images, spectra, and sodium- and oxygen-based images with MRI, EEG signals from a human subject in a static 9.4 T magnetic field, and demonstrate hybrid MR-PET capability in a rat model. High-resolution images of the in vivo human brain with an isotropic resolution of 0.5 mm and post-mortem brain images of the cerebellum with an isotropic resolution of 320 µm are presented. A (1)H spectrum was also acquired from 2 × 2 × 2 mm voxel in the brain allowing 12 metabolites to be identified. Imaging based on sodium and oxygen is demonstrated with isotropic resolutions of 2 and 5 mm, respectively. Auditory evoked potentials measured in a static field of 9.4 T are shown. Finally, hybrid MR-PET capability at 9.4 T in the human scanner is demonstrated in a rat model. Initial progress on the road to 9.4 T multimodal MR-PET-EEG is illustrated. Ultra-high resolution structural imaging, high-resolution images of the sodium distribution and proof-of-principle (17)O data are clearly demonstrated. Further, simultaneous MR-PET data are presented without artefacts and EEG data successfully corrected for the cardioballistic artefact at 9.4 T are presented.

  6. 27. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC MONITOR NO. 4 IN OPERATION AT 2002 ZULU, OCTOBER 26, 1999 CAPE COD, AS PAVE PAWS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  13. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  18. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    NASA Astrophysics Data System (ADS)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion

  20. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    PubMed Central

    Surti, S; Werner, M E; Karp, J S

    2013-01-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20–25 mm thick crystals and 16–22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with > 22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and NEC, as well image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 liters of LSO and 17.1 liters of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC/cm in a 35 cm diameter×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm while for LaBr3 scanners, the highest NEC/cm is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show best lesion detection performance is achieved in scanners with long AFOV (≥ 36 cm) and using thin crystals (≤ 10 mm of LSO and ≤ 20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners

  1. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  2. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  3. Clinical applications of PET/MRI: current status and future perspectives.

    PubMed

    Nensa, Felix; Beiderwellen, Karsten; Heusch, Philipp; Wetter, Axel

    2014-01-01

    Fully integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners have been available for a few years. Since then, the number of scanner installations and published studies have been growing. While feasibility of integrated PET/MRI has been demonstrated for many clinical and preclinical imaging applications, now those applications where PET/MRI provides a clear benefit in comparison to the established reference standards need to be identified. The current data show that those particular applications demanding multiparametric imaging capabilities, high soft tissue contrast and/or lower radiation dose seem to benefit from this novel hybrid modality. Promising results have been obtained in whole-body cancer staging in non-small cell lung cancer and multiparametric tumor imaging. Furthermore, integrated PET/MRI appears to have added value in oncologic applications requiring high soft tissue contrast such as assessment of liver metastases of neuroendocrine tumors or prostate cancer imaging. Potential benefit of integrated PET/MRI has also been demonstrated for cardiac (i.e., myocardial viability, cardiac sarcoidosis) and brain (i.e., glioma grading, Alzheimer's disease) imaging, where MRI is the predominant modality. The lower radiation dose compared to PET/computed tomography will be particularly valuable in the imaging of young patients with potentially curable diseases.However, further clinical studies and technical innovation on scanner hard- and software are needed. Also, agreements on adequate refunding of PET/MRI examinations need to be reached. Finally, the translation of new PET tracers from preclinical evaluation into clinical applications is expected to foster the entire field of hybrid PET imaging, including PET/MRI.

  4. On the spectral quality of scanner illumination with LEDs

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2013-01-01

    Document scanner illumination has evolved along with general illumination technologies. LEDs have become more and more popular as the illumination sources for document scanning. LED technologies provide a wide range of choices both in terms of structural design and spectral compositions. In this report, we examine some popular LED technologies used for document scanner. We evaluate the color rendering performance of scanner models with different illumination technologies by examining their rendering of the Macbeth ColorChecker™ in sRGB. We found that more phosphors in phosphor conversion types of white LEDs may not be necessarily advantageous in terms of scanner color rendering performance. Also CIS type of scanner may be sensitive to the peak wavelength shift and can be particularly problematic when the peaks are out of certain range.

  5. Optical performance requirements for MEMS-scanner-based microdisplays

    NASA Astrophysics Data System (ADS)

    Urey, Hakan; Wine, David W.; Osborn, Thor D.

    2000-08-01

    High-resolution and high frame rate dynamic microdisplays can be implemented by scanning a photon beam in a raster format across the viewer's retina. Microvision is developing biaxial MEMS scanners for such video display applications. This paper discusses the optical performance requirements for scanning display systems. The display resolution directly translates into a scan-angle-mirror-size product and the frame rate translates into vertical and horizontal scanner frequencies. (theta) -product and fh are both very important figures of merit for scanner performance comparison. In addition, the static and dynamic flatness of the scanners, off-axis motion and scan repeatability, scanner position sensor accuracy all have a direct impact on display image quality.

  6. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  7. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  8. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  9. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES Information Returns § 1.6049-7T Market discount fraction reported with... purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to be reported with...

  10. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  11. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  12. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner.

    PubMed

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  13. Biodegradable Magnetic Particles for Cellular MRI

    NASA Astrophysics Data System (ADS)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  14. Multicenter Evaluation of Geometric Accuracy of MRI Protocols Used in Experimental Stroke

    PubMed Central

    Milidonis, Xenios; Lennen, Ross J.; Jansen, Maurits A.; Mueller, Susanne; Boehm-Sturm, Philipp; Holmes, William M.; Sena, Emily S.; Macleod, Malcolm R.; Marshall, Ian

    2016-01-01

    It has recently been suggested that multicenter preclinical stroke studies should be carried out to improve translation from bench to bedside, but the accuracy of magnetic resonance imaging (MRI) scanners routinely used in experimental stroke has not yet been evaluated. We aimed to assess and compare geometric accuracy of preclinical scanners and examine the longitudinal stability of one scanner using a simple quality assurance (QA) protocol. Six 7 Tesla animal scanners across six different preclinical imaging centers throughout Europe were used to scan a small structural phantom and estimate linear scaling errors in all orthogonal directions and volumetric errors. Between-scanner imaging consisted of a standard sequence and each center’s preferred sequence for the assessment of infarct size in rat models of stroke. The standard sequence was also used to evaluate the drift in accuracy of the worst performing scanner over a period of six months following basic gradient calibration. Scaling and volumetric errors using the standard sequence were less variable than corresponding errors using different stroke sequences. The errors for one scanner, estimated using the standard sequence, were very high (above 4% scaling errors for each orthogonal direction, 18.73% volumetric error). Calibration of the gradient coils in this system reduced scaling errors to within ±1.0%; these remained stable during the subsequent 6-month assessment. In conclusion, despite decades of use in experimental studies, preclinical MRI still suffers from poor and variable geometric accuracy, influenced by the use of miscalibrated systems and various types of sequences for the same purpose. For effective pooling of data in multicenter studies, centers should adopt standardized procedures for system QA and in vivo imaging. PMID:27603704

  15. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser

  16. Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol

    PubMed Central

    Apostolova, Liana G.; Zarow, Chris; Biado, Kristina; Hurtz, Sona; Boccardi, Marina; Somme, Johanne; Honarpisheh, Hedieh; Blanken, Anna E.; Brook, Jenny; Tung, Spencer; Lo, Darrick; Ng, Denise; Alger, Jeffry R.; Vinters, Harry V.; Bocchetta, Martina; Duvernoy, Henri; Jack, Clifford R.; Frisoni, Giovanni; Bartzokis, George; Csernansky, John G.; de Leon, Mony J.; deToledo-Morrell, Leyla; Killiany, Ronald J.; Lehéricy, Stéphane; Malykhin, Nikolai; Pantel, Johannes; Pruessner, Jens C.; Soininen, Hilkka; Watson, Craig

    2015-01-01

    Objective The pathologic validation of European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Center Harmonized Hippocampal Segmentation Protocol (HarP). Methods Temporal lobes of nine Alzheimer's disease (AD) and seven cognitively normal subjects were scanned post-mortem at 7 Tesla. Hippocampal volumes were obtained with HarP. Six-micrometer-thick hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet. Hippocampal subfields were manually traced. Neuronal counts, Aβ, and tau burden for each hippocampal subfield were obtained. Results We found significant correlations between hippocampal volume and Braak and Braak staging (ρ = −0.75, P = .001), tau (ρ = −0.53, P = .034), Aβ burden (ρ = −0.61, P = .012), and neuronal count (ρ = 0.77, P < .001). Exploratory subfield-wise significant associations were found for Aβ in CA1 (ρ = −0.58, P = .019) and subiculum (ρ = −0.75, P = .001), tau in CA2 (ρ = −0.59, P = .016), and CA3 (ρ = −0.5, P = .047), and neuronal count in CA1 (ρ = 0.55, P = .028), CA3 (ρ = 0.65, P = .006), and CA4 (ρ = 0.76, P = .001). Conclusions The observed associations provide the pathological confirmation of hippocampal morphometry as a valid biomarker for AD and the pathologic validation of HarP. PMID:25620800

  17. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

    PubMed

    Longo, Dario Livio; Dastrù, Walter; Digilio, Giuseppe; Keupp, Jochen; Langereis, Sander; Lanzardo, Stefania; Prestigio, Simone; Steinbach, Oliver; Terreno, Enzo; Uggeri, Fulvio; Aime, Silvio

    2011-01-01

    Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.

  18. [Testing an ultrasonic scanner for determination of urinary bladder volume].

    PubMed

    Rohde, T; Jensen, K M; Colstrup, H

    1992-11-30

    Bladderscan BVI 2000 is a portable ultrasound scanner, specially constructed for determination of bladder volume. We have tested this scanner for accuracy, systematic errors and the training required to use it. The bladder volumes measured by ultrasound scanning were compared with the true volumes. Fifty-six measurements were made. We found the accuracy of BVI 2000 sufficient to determine bladder volumes as either small or large. We found no systematic errors. No special training is required to use the scanner. The device is thus useful in most clinical situations when greater accuracy than indicated here is not necessary.

  19. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  20. A general solution for the registration of optical multispectral scanners

    NASA Technical Reports Server (NTRS)

    Rader, M. L.

    1974-01-01

    The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.

  1. Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions.

    PubMed

    Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor

    2012-12-31

    Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller.

  2. Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions

    PubMed Central

    Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor

    2013-01-01

    Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480

  3. LANDSAT-4 horizon scanner performance evaluation

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.

    1984-01-01

    Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.

  4. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  5. From Beamline to Scanner with 225Ac

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (< 1 mCi) quantities for in-house chemistry and imaging research that aims to improve and assess 225Ac radiopharmaceutical targeting. This presentation provides an overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  6. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  7. Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

    PubMed Central

    Zhang, Jun; Chen, Duofang; Liang, Jimin; Xue, Huadan; Lei, Jing; Wang, Qin; Chen, Dongmei; Meng, Ming; Jin, Zhengyu; Tian, Jie

    2014-01-01

    Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system. PMID:24940545

  8. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  9. Is there any difference in Amide and NOE CEST effects between white and gray matter at 7 T?

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Vitaliy; Siero, Jeroen C. W.; Wijnen, Jannie; Visser, Fredy; Luijten, Peter R.; Klomp, Dennis W. J.; Hoogduin, Hans

    2016-11-01

    Measurement of Chemical Exchange Saturation Transfer (CEST) is providing tissue physiology dependent contrast, e.g. by looking at Amide and NOE (Nuclear Overhauser Enhancement) effects. CEST is unique in providing quantitative metabolite information at high imaging resolution. However, direct comparison of Amide and NOE effects between different tissues may result in wrong conclusions on the metabolite concentration due to the additional contributors to the observed CEST contrast, such as water content (WC) and water T1 relaxation (T1w). For instance, there are multiple contradictory reports in the literature on Amide and NOE effects in white matter (WM) and gray matter (GM) at 7 T. This study shows that at 7 T, tissue water T1 relaxation is a stronger contributor to CEST contrasts than WC. After water T1 correction, there was no difference in Amide effects between WM and GM, whereas WM/GM contrast was enhanced for NOE effects.

  10. Simultaneous Multi-slice Turbo-FLASH Imaging with CAIPIRINHA for Whole Brain Distortion-Free Pseudo-Continuous Arterial Spin Labeling at 3 and 7T

    PubMed Central

    Wang, Yi; Moeller, Steen; Li, Xiufeng; Vu, An T.; Krasileva, Kate; Ugurbil, Kamil; Yacoub, Essa; Wang, Danny JJ

    2015-01-01

    Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label, improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 Tesla. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76±0.10 and 0.74±0.11 at 7T, 0.70±0.05 and 0.65±0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84±0.09 and 0.79±0.10 for MB factor of 3 and 5 respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields. PMID:25837601

  11. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  12. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  13. Agricultural Applications and Requirements for Thermal Infrared Scanners

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  14. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  15. Building a 3D Computed Tomography Scanner From Surplus Parts.

    PubMed

    Haidekker, Mark A

    2014-01-01

    Computed tomography (CT) scanners are expensive imaging devices, often out of reach for small research groups. Designing and building a CT scanner from modular components is possible, and this article demonstrates that realization of a CT scanner from components is surprisingly easy. However, the high costs of a modular X-ray source and detector limit the overall cost savings. In this article, the possibility of building a CT scanner with available surplus X-ray parts is discussed, and a practical device is described that incurred costs of less than $16,000. The image quality of this device is comparable with commercial devices. The disadvantage is that design constraints imposed by the available components lead to slow scan speeds and a resolution of 0.5 mm. Despite these limitations, a device such as this is attractive for imaging studies in the biological and biomedical sciences, as well as for advancing CT technology itself.

  16. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  17. Voxel-based Morphometric MRI Post-processing in MRI-negative Epilepsies

    PubMed Central

    Wang, ZI; Jones, SE; Jaisani, Z; Najm, IM; Prayson, RA; Burgess, RC; Krishnan, B; Ristic, A; Wong, CH; Bingaman, W; Gonzalez-Martinez, JA; Alexopoulos, AV

    2015-01-01

    Objective In the presurgical workup of MRI-negative (MRI−, or “nonlesional”) pharmacoresistant focal epilepsy (PFE) patients, discovering a previously undetected lesion can drastically change the evaluation and likely improve surgical outcome. Our study utilizes a voxel-based MRI post-processing technique, implemented in a morphometric analysis program (MAP), to facilitate detection of subtle abnormalities in a consecutive cohort of MRI− surgical candidates. Methods Included in this retrospective study was a consecutive cohort of 150 MRI-surgical patients. MAP was performed on T1-weighted MRI, with comparison to a scanner-specific normal database. Review and analysis of MAP were performed blinded to patients’ clinical information. The pertinence of MAP+ areas was confirmed by surgical outcome and pathology. Results MAP showed a 43% positive rate, sensitivity of 0.9 and specificity of 0.67. Overall, patients with MAP+ region completely resected had the best seizure outcomes, followed by the MAP− patients, and patients who had no/partial resection of the MAP+ region had the worst outcome (p<0.001). Subgroup analysis revealed that visually identified subtle findings are more likely correct if also MAP+. False-positive rate in 52 normal controls was 2%. Surgical pathology of the resected MAP+ areas contained mainly non-balloon-cell FCD. Multiple MAP+ regions were present in 7% of patients. Conclusions MAP can be a practical and valuable tool to: (1) guide the search for subtle MRI abnormalities, and (2) confirm visually identified questionable abnormalities in patients with PFE due to suspected FCD. A MAP+ region, when concordant with the patient’s electro-clinical presentation, should provide a legitimate target for surgical exploration. PMID:25807928

  18. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP)

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  19. Realignment strategies for awake-monkey fMRI data.

    PubMed

    Stoewer, Steffen; Goense, Jozien; Keliris, Georgios A; Bartels, Andreas; Logothetis, Nikos K; Duncan, John; Sigala, Natasha

    2011-12-01

    Functional magnetic resonance imaging (fMRI) experiments with awake nonhuman primates (NHPs) have recently seen a surge of applications. However, the standard fMRI analysis tools designed for human experiments are not optimal for NHP data collected at high fields. One major difference is the experimental setup. Although real head movement is impossible for NHPs, MRI image series often contain visible motion artifacts. Animal body movement results in image position changes and geometric distortions. Since conventional realignment methods are not appropriate to address such differences, algorithms tailored specifically for animal scanning become essential. We have implemented a series of high-field NHP specific methods in a software toolbox, fMRI Sandbox (http://kyb.tuebingen.mpg.de/~stoewer/), which allows us to use different realignment strategies. Here we demonstrate the effect of different realignment strategies on the analysis of awake-monkey fMRI data acquired at high field (7 T). We show that the advantage of using a nonstandard realignment algorithm depends on the amount of distortion in the dataset. While the benefits for less distorted datasets are minor, the improvement of statistical maps for heavily distorted datasets is significant.

  20. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.